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Tc and the elastocaloric effect of Sr2RuO4 under 〈110〉 uniaxial stress: No indications
of transition splitting

Fabian Jerzembeck ,1,* You-Sheng Li,1,2 Grgur Palle ,3 Zhenhai Hu,1 Mehdi Biderang ,4 Naoki Kikugawa ,5

Dmitry A. Sokolov,1 Sayak Ghosh ,6 Brad J. Ramshaw ,6,7 Thomas Scaffidi ,8,4 Michael Nicklas ,1 Jörg Schmalian ,3,9

Andrew P. Mackenzie,1,10,† and Clifford W. Hicks1,11,‡

1Max Planck Institute for Chemical Physics of Solids, D-01187 Dresden, Germany
2Department of Physics, National Taiwan University, Taipei 10617, Taiwan, Republic of China

3Institute for Theory of Condensed Matter, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
4Department of Physics, University of Toronto, 60 St. George Street, Toronto, Ontario M5S 1A7, Canada

5National Institute for Materials Science, Tsukuba 305-0003, Japan
6Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853, USA

7Canadian Institute for Advanced Research, Toronto, Ontario M5G 1M1, Canada
8Department of Physics and Astronomy, University of California, Irvine, California 92697, USA

9Institute for Quantum Materials and Technologies, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
10Scottish Universities Physics Alliance (SUPA), School of Physics and Astronomy,

University of St. Andrews, St. Andrews KY16 9SS, United Kingdom
11School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, United Kingdom

(Received 7 June 2024; accepted 7 August 2024; published 26 August 2024)

There is considerable evidence that the superconductivity of Sr2RuO4 has two components. Among this
evidence is a jump in the shear elastic modulus c66 at the critical temperature Tc, observed in ultrasound
measurements. Such a jump is forbidden for homogeneous single-component order parameters, and it implies
that Tc should develop as a cusp under the application of shear strain with 〈110〉 principal axes. This shear
strain should split the onset temperatures of the two components, if they coexist, or select one component if
they do not. Here, we report measurements of Tc and the elastocaloric effect of Sr2RuO4 under uniaxial stress
applied along the [110] lattice direction. Within experimental resolution, we resolve neither a cusp in the stress
dependence of Tc, nor any second transition in the elastocaloric effect data. We show that reconciling these null
results with the observed jumps in c66 requires extraordinarily fine tuning to a triple point of the Ginzburg-Landau
parameter space. In addition, our results are inconsistent with homogeneous time-reversal symmetry breaking at
a temperature T2 � Tc as identified in muon spin relaxation experiments.

DOI: 10.1103/PhysRevB.110.064514

I. INTRODUCTION

Although it has a critical temperature Tc of only 1.5 K,
Sr2RuO4 has become one of the most studied unconventional
superconductors. This is in part because even though the
normal state of Sr2RuO4 is extraordinarily well-characterized,
the pairing mechanism and superconducting order parameter
remain unclear [1–6]. Given the extremely high purity of
the crystals available for experimental investigation [7], this
should be a soluble problem, and it has become a benchmark
for the progress of the broader field of unconventional super-
conductivity.
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As often happens when a large number of experiments are
performed on a single material, the results and/or interpreta-
tions of some experiments disagree. While it is appropriate for
theory to attempt to reconcile apparently contradictory results,
the possibility of experimental error must also be kept in mind.
It can be subtle. In the history of Sr2RuO4, a conflict existed
for nearly two decades between two different probes of the
competition between superconducting condensation energy
and magnetic polarization energy. Pauli critical field limit-
ing [8,9] was consistent with even-parity spin-singlet order,
but the magnetic polarizability of the superconducting state
measured by the NMR Knight shift [10] contradicted that con-
clusion, leading to extensive discussion of spin-triplet order
parameters. The issue was resolved only after a systematic
error in the original NMR measurements was uncovered [11].
Although some researchers continue to explore the possibil-
ity of spin-triplet pairing in Sr2RuO4 [12–15], the weight
of recent evidence is now strongly in favor of spin-singlet,
even-parity order [11,16–20].

This experience provides strong motivation to check
other apparently settled experimental facts about the
superconductivity of Sr2RuO4. A major question is whether
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the superconducting order parameter breaks time-reversal
symmetry. It has long been widely accepted as fact that it
does, on the basis of muon spin rotation (μSR), Kerr rota-
tion, and Josephson junction data [21–26]. However, some
expected experimental signatures have not been observed
[27,28].

Recently, it has become possible to test for two expected
consequences of time-reversal symmetry breaking (TRSB)
in Sr2RuO4 under uniaxial pressure. The uniaxial pressure
should break the degeneracy of the order parameter com-
ponents required to produce a TRSB state, yielding, first, a
cusp in the stress dependence of Tc centered on zero pres-
sure [29,30], and second, a splitting of the transition under
nonzero pressure that should be observable in thermodynamic
data. Under uniaxial pressure along the [100] lattice direc-
tion, neither effect has been observed, in spite of several
searches [31–33]. However, transition splitting was observed
in μSR measurements, a nonthermodynamic probe, under
[100] uniaxial stress [23]. One possible interpretation of
this discrepancy is that the thermodynamic measurements of
Refs. [31–33] were not sensitive enough to detect the second
transition.

There is therefore a premium on extending thermodynamic
studies to a situation in which there is more guidance on
expected thermodynamic quantities. Recent observations of
a jump in the elastic modulus c66 at Tc, determined via ul-
trasound measurements [34,35], provide such guidance for
uniaxial stress applied along the [110] lattice direction. This
stress axis has largely been neglected because the coupling
of the electronic structure of Sr2RuO4 to stress applied along
the [110] direction is weak [31,36]. However, the observed
magnitudes of the jumps in c66 imply, through Ehrenfest
relations that we derive below, that the cusp and splitting
should, surprisingly, be easily observable under stress along
this direction.

We report results of high-resolution studies of both the
magnetic susceptibility and elastocaloric effect under [110]
uniaxial pressure. Within tight limits, we resolve neither a
cusp nor transition splitting. We show that our results cannot
be plausibly reconciled with the observed jumps in c66 un-
der assumption of a homogeneous superconducting state—the
level of tuning implied is implausibly fine.

Combining our results with those from previous work on
[001] uniaxial pressure allows a prediction for the dependence
of Tc on hydrostatic pressure. We find good agreement with
measurements of Tc under hydrostatic pressure [37], which
shows that our data are thermodynamically consistent with
previous results. However, our data are not consistent with
recently reported μSR results, in which a transition splitting
under [110] stress was reported [38].

While presenting negative results is infrequently done, two
reasons motivated our efforts for doing so. In the context of
Sr2RuO4, we believe that our findings make a bulk, ther-
modynamic superconducting state that breaks time-reversal
symmetry exceedingly unlikely. They also call into ques-
tion the existence of any two-component order parameter in
Sr2RuO4. The robustness of our conclusion stems from the
special place held by thermodynamics in understanding the
physics of many-body systems. Our results, therefore, narrow
down the search for the symmetry of the pairing state of a

FIG. 1. Schematic dependence of the phase transition tem-
peratures on strain ε110. Orange line: for single-component and
some two-component order parameters, the onset temperature of
superconductivity derives only from the A1g-symmetric strain com-
ponents, εd and ε3, and so it varies smoothly across ε110 = 0. Dark
blue: For (dxz, dyz ) pairing and accidentally degenerate (s, dxy ) and
(dx2−y2 , gxy(x2−y2 ) ) pairing a cusp, i.e., a sudden change of slope in
Tc(ε110) occurs, due to coupling to the shear strain component ε6.
Light blue: in some cases (see Fig. 4) there is a second transition at
T2 below Tc, also with a cusp. The inset shows the components of the
applied strain when uniaxial stress is applied along a 〈110〉 direction.

material that has been emblematic of the field of unconven-
tional superconductivity.

II. STRAIN COMPONENTS

To frame the discussion in the paper, we introduce a no-
tation for strains. We will use the symbols ε110 and σ110 to
denote the strain and stress along the [110] lattice direction,
under conditions of uniaxial stress. When these symbols are
used, it is assumed that there are also transverse strains due to
the Poisson effect. Based on the elastic moduli at 4 K reported
in Ref. [34], σ110 = (187 GPa) × ε110.

The strain can be resolved into components. We choose
here to resolve it into shear strain ε6, c-axis strain ε3, and
in-plane dilatation εd ≡ ε1 + ε2, where ε1 through ε6 are the
strain components expressed in the standard Voigt notation.
While εd and ε3 transform under the trivial representation A1g

of the point group, ε6 transforms under B2g. These three strain
components are illustrated in the inset of Fig. 1. The 4 K
elastic moduli from Ref. [34] yield

εd = αd σ110, ε3 = α3 σ110, ε6 = α6 σ110, (1)

with αd = 0.003 07 GPa−1, α3 = −0.001 02 GPa−1, and
α6 = 0.007 65 GPa−1.

For all possible order parameters, nonzero εd and ε3 result
in a smooth variation of Tc which is linear in strain to leading
order. We label this line as Tc0 in Fig. 1. A leading-order cou-
pling to ε6 is permitted only for certain two-component order
parameters, and it results in a cusp in the strain dependence of
Tc, that is, a discontinuity in slope of magnitude 2|dTc/dε6|:

�Tc(εd , ε3, ε6) = dTc

dεd
εd + dTc

dε3
ε3 +

∣∣∣∣dTc

dε6

∣∣∣∣|ε6| + · · · , (2)

where the ellipsis denotes higher-order terms, and it will be
suppressed from now on. Below, we show that for even-parity
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pairing states, such a cusp occurs for symmetry-protected two-
component order parameters that combine (dxz, dyz ) Cooper
pairs, and for accidentally degenerate two-component order
parameters that combine (s, dxy) or (dx2−y2 , gxy(x2−y2 ) ) Cooper
pairs. From Eq. (1) it follows that Tc as a function of σ110, our
experimental control parameter, obeys

�Tc(σ110) =
⎛
⎝∑

i=d,3

dTc

dεi
αi + sgn(σ110)

∣∣∣∣dTc

dε6

∣∣∣∣α6

⎞
⎠σ110. (3)

This behavior is illustrated in Fig. 1. For a single-component
superconducting order parameter and for two-component
states other than the ones listed above, |dTc/dε6| = 0. It is
this distinct behavior with respect to ε6 that allows for the key
conclusions of this paper.

In some cases, one expects a second transition at a temper-
ature T2 < Tc where a composite of the two order parameter
components breaks an additional symmetry. If this happens,
one expects behavior similar to Eq. (3), but with the crucial
distinction that the sign in front of the cusp is negative:

�T2(σ110) =
⎛
⎝∑

i=d,3

dT2

dεi
αi − sgn(σ110)

∣∣∣∣dT2

dε6

∣∣∣∣α6

⎞
⎠σ110, (4)

as sketched in Fig. 1. From the slopes |dTc/dε6| and (if a
second transition occurs) |dT2/dε6|, an upper bound on the
jump in elastic constant c66 may be obtained; this relation is
presented below.

III. RESULTS: MEASUREMENT OF Tc(σ110)

To probe the dependence of Tc on σ110, we studied the
magnetic susceptibility of single crystals of Sr2RuO4. Stress
was applied using piezoelectric-based apparatus that incorpo-
rated both force and displacement sensors [39]. Samples were
sculpted into dumbbell shapes using a Xe plasma focused ion
beam, a step that allows higher stresses to be reached [40].
To measure magnetic susceptibility, concentric coils of a few
turns each were wound around the central neck portion of the
samples, and their mutual inductance was measured. For each
sample, the zero-stress point was identified by deliberately
breaking the sample under tension, then measuring Tc with
the two parts separated [41].

Three samples were measured. Samples 1 and 2 were taken
from the same original crystal, in which the growth direction
was almost exactly along [110], while sample 3 was taken
from a crystal where the growth direction was about 15◦ away
from [110]. In all cases, the samples were cut from the original
crystal such that the pressure was applied along [110] within
� 3◦. Samples 1 and 2 both withstood tensile stresses of up
to σ110 ≈ +0.2 GPa, while sample 3 broke under very low
tensile stress. Samples 1 and 3 were compressed to σ110 <

−2 GPa.
For sample 1, there was some hysteresis in Tc(σ110). The

most likely origin was a hysteretic component of the applied
stress that had 〈100〉 principal axes: Tc of Sr2RuO4 responds
much more sensitively to 〈100〉 than 〈110〉 shear stress [31].
After measurement of sample 1, the apparatus was modified
to attenuate transmission of stress components other than the
desired [110] uniaxial stress. This step drastically reduced the
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FIG. 2. (a)–(c) Temperature dependence of the mutual induc-
tance M of the susceptibility coils wrapped around the sample, for
samples 1, 2, and 3, respectively. The numbers indicate the applied
stress, σ110, in GPa, and σ110 < 0 denotes compression. (d) Tc, de-
termined as the points where M crossed the thresholds indicated in
panels (a)–(c), against stress. To illustrate the level of drift, the points
are colored by the order in which they were measured. For sample
1, due to hysteresis only data from decreasing-σ ramps are shown.
The black lines are quadratic fits to the data. (e) Points: dTc/dσ110

determined from piecewise linear fits. Straight lines: dTc/dσ110 from
the quadratic fits in panel (d). (f) Expected form of dTc/dσ110, if there
is a sharp cusp on top of a quadratic background. (g) Expected form
of dTc/dσ110 if the cusp is broadened by, for example, internal strain
inhomogeneity.

hysteresis for samples 2 and 3. The modification is described
in Appendix A.

Raw data—the mutual inductance M of the susceptibility
coils—for all three samples are shown in Figs. 2(a)–2(c). For
all, the transition width was about 50 mK and it did not
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increase much as stress was applied. This transition width
could be a consequence of an inhomogeneous defect density,
and/or an internal field of 〈100〉 shear strain due to defects.
It is not a consequence of whatever internal field of 〈110〉
shear strain may be present. It can be seen in Fig. 2(d) that
σ110 ≈ −1 GPa is required to suppress Tc by 50 mK, which is
an unrealistically large internal stress except in the immediate
vicinity of defects [42].

Figure 2(d) shows Tc(σ110) of the three samples, where Tc

is taken as the point where M crosses the thresholds indicated
in panels (a)–(c). To convey the level of drift, the data points
are colored by the order in which they were measured. Due
to the hysteresis, for sample 1 only data points taken under
decreasing σ110 are shown.

Linear fits over the range −0.2 < σ110 < 0.2 GPa give
dTc/dσ110 = 68.3, 65.8, and 58.5 mK/GPa for samples 1, 2,
and 3, respectively. Including uncertainty on the force sensor
calibration, we take dTc/dσ110|σ110=0 = 64 ± 7 mK/GPa.

For none of the samples is there an obvious cusp at σ110 =
0. To look more closely, we determine the slopes dTc/dσ110

from piecewise linear fits, choosing windows small enough
that for samples 1 and 2 there are windows at σ110 > 0. Re-
sults from this fitting are shown in Fig. 2(e). If there were
a sharp cusp in Tc(σ110) at σ110 = 0, the points at σ110 > 0
would be above the trend from σ110 < 0. They are not. Also
shown in Fig. 2(e) is dTc/dσ110 determined from quadratic
fits to Tc(σ110) over the entire measured stress range. The
rms difference between the piecewise-fitted and these globally
fitted slopes is 10 mK/GPa.

A cusp could be broadened by internal strain. In Fig. 2(f)
we illustrate the expected form of dTc/dσ110 if there is a
sharp cusp, and in Fig. 2(g) if it is rounded. With rounding,
dTc/dσ110 deviates from the background over a range of stress
around σ110, such that even in sample 3, where essentially no
tensile stress could be applied, the effects of a cusp could have
become visible. No such deviation is visible in the data.

We take a conservative upper limit on any change in
slope dTc/dσ110 across a cusp, �(dTc/dσ110), of 20 mK/GPa,
whether the cusp is sharp or rounded. This upper limit implies∣∣∣∣dTc

dε6

∣∣∣∣ = 1

2α6
�

(
dTc

dσ110

)
< 1.3 K, (5)

which is our first key experimental result. The implication of
this tight upper bound on |dTc/dε6| will be discussed in detail
later in the paper.

IV. ELASTOCALORIC EFFECT EXPERIMENTS

It is clear from the Tc(σ110) data that the superconductivity
couples much more weakly to shear strain with 〈110〉 than
〈100〉 principal axes; data under 〈100〉 uniaxial stress are
published in, for example, Refs. [31,33]. It might not then
seem that the elastocaloric effect (the change in sample tem-
perature induced by applied stress) under [110] stress would
be a particularly effective probe of the physics. However, that
is not necessarily the case. Under adiabatic conditions, the
elastocaloric coefficient η is given by

η ≡ dT

dε
= −T

C

∂S

∂ε
, (6)

where C is the heat capacity, S is the entropy, and the direc-
tion of strain ε is fixed by the conditions of the experiment.
Suppose, for a moment, single-component superconductivity.
The Ginzburg-Landau free energy of the single-component
superconducting state is then given by

F = Fn + a(T, ε)

2
|ψ |2 + u

4
|ψ |4. (7)

Here, a(T, ε) = a0(T − Tc0(ε)), and Fn is the free energy in
the normal state. The entropy below Tc0 is given by

S(T, ε) = Sn + a0(T − Tc0(ε))
2u

, (8)

where Sn = −∂Fn/∂T is the normal state entropy. It follows
from Eq. (6) that the change in η at Tc, �η, equals

�η

ηn(Tc)
= −

(
1 − 1

ηn(Tc)

dTc

dε

)
×

(
1 + Cn(Tc)

�C

)−1

, (9)

where ηn is the normal-state elastocaloric coefficient, Cn is the
normal-state heat capacity, and �C is the heat-capacity jump
at Tc. In the case of two-component order and near zero stress,
Eq. (9) applies for strains ε that transform under the trivial
representation: εd or ε3. For two-component order and under
nonzero stress that splits the transitions, Eq. (9) applies for
strains εd , ε3, and ε6.

Equation (9) allows for rather general insights into the
strain dependence of Tc. Suppose the term dTc/dε is negligi-
ble compared to ηn. Since 1 + Cn/�C > 1, the magnitude of
η would fall at Tc, but it would not change sign. This behavior
is in contrast to the behavior under [100] uniaxial stress, where
dTc/dε is much larger and η is observed to change sign at Tc

[43]. Importantly, Eq. (9) shows that �η can be substantial
even if dTc/dε = 0.

It has been demonstrated that for Sr2RuO4 under uniaxial
stress at low temperatures, η can be measured with a higher
signal-to-noise ratio than heat capacity [33,43]. Therefore, in
the case in which the superconducting transition splits into
transitions at Tc and T2, the elastocaloric effect is an ideal
probe to search for thermodynamic signatures of the transition
at T2.

Elastocaloric effect data from two samples under [110]
uniaxial pressure are shown in Fig. 3. In the normal state,
η is negative over the range of pressures and temperatures
studied, meaning that S in the normal state increases when
samples are tensioned. Inspection of the data shows that, at
all strains measured, only one transition is observed. There is
no visible sign of uniaxial pressure-dependent splitting of the
main transition—any structure in the transition that is seen
at zero pressure (likely due to slight inhomogeneity of the
strain field and/or defect density) remains the same at nonzero
pressure. We may therefore proceed with analysis under a
tentative hypothesis of single-component order. The observed
behavior across Tc is as expected for small |dTc/dε110|: η is
smaller below Tc, but its sign is unchanged.

The small size of the signal makes data analysis more
challenging than for [100] uniaxial stress [43]. To analyze
the data, we assume that the normal-state heat capacity of
Sr2RuO4 at low temperatures is given by

Cn = (γ0 + γ1ε110)T + βT 3, (10)
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FIG. 3. Elastocaloric coefficient η vs temperature for two sam-
ples. For clarity, all curves apart from the black ones are shifted
vertically with respect to each other. The method of analysis is
discussed in the text and Appendix B.

which yields

ηn = −γ1T

γ0 + γ1ε110 + βT 2
. (11)

The elastocaloric effect is a recently introduced technique
[44], and experimental uncertainties remain, especially in
quantifying the actual strain oscillation amplitude, δε, and the
degree of adiabaticity, A. (A = 1 denotes perfect adiabaticity,
and A = 0 denotes complete dissipation of temperature os-
cillations into the stress cell.) However, the key quantity in
Eq. 9, �η/ηn(Tc), can be obtained directly from the jump
in measured thermocouple voltage at Tc, without knowledge
of A or δε. That quantity can then be used to solve for γ1,
which is the only quantity in Eqs. (10) and (11) that is not
fixed by experimental data. We set γ0, β, and �C/Cn to
literature values of 37.5 mJ/mol K2, 0.197 mJ/mol K4, and
0.65, respectively [34,45]. In Eq. (9), we set ε to be ε110, cor-
responding to our measurement conditions, and we set dTc/dε

to 64 mK/GPa × 187 GPa = 12.0 K. Averaging results from
the two samples, we obtain γ1 = 0.43 J/mol K2.

All the terms in Eq. (11) are now known, and we may then
apply Eq. (11) to extract A(T ) × δε(T ). In effect, where the
raw data deviate from the form given in Eq. (11), we make an
assumption that it is more likely to be due to T dependence of
Aδε than that there are terms in Cn beyond those in Eq. (10)
that are important at low T and ε110. We then extrapolate
A(T )δε(T ) to T < Tc to obtain a best estimate for the ECE
in the superconducting state. This is what is shown in Fig. 3.
Further details are given in Appendix B.

V. DISCUSSION

The qualitative finding from these 〈110〉 uniaxial pressure
experiments on Sr2RuO4 is that we do not observe either
of two key predicted features of two-component supercon-
ducting states: neither a cusp in Tc, nor splitting of the
superconducting transition into two transitions at Tc and T2.
In this discussion, we review the consistency of these findings
with those of other experiments, and the implications for
theories of the superconducting order parameter of Sr2RuO4.
In both sections, we frame the discussion with the quantitative
bounds that we have placed on the putative existence of a cusp
or of transition splitting, rather than on categorical statements
that neither exists.

A. Comparison with hydrostatic pressure dependence of Tc

In this work, we have determined that dTc/dσ110 = 64 ±
7 mK/GPa. As shown in Appendix D, combining this re-
sult with previous measurement under pressure applied along
the c-axis that dTc/dσ001 = 76 ± 5 mK/GPa [40] enables a
prediction for the dependence of Tc on hydrostatic pressure
σhyd: dTc/dσhyd = 204 ± 12 mK/GPa. This allows a useful
cross-check on the accuracy of our uniaxial pressure data,
because the dependence of Tc on hydrostatic pressure has been
measured in four independent experiments [24,37,46,47].
However, since the Tc of most studied samples were substan-
tially below 1.5 K, which is pointing to strong disorder, we
focus on the hydrostatic pressure dependence of Ref. [37],
optimal-Tc experiment, which found σhyd: dTc/σhyd = 220 ±
20 mK/GPa. The agreement with the derivation from uniaxial
stress measurements is reassuring.

B. Comparison with μSR under [110] uniaxial pressure

Recently, a μSR study under 〈110〉 uniaxial pressure in-
ferred transition splitting, with a TRSB transition at T2 = Tc −
(0.7 ± 0.2) K/GPa [38], which corresponds to dT2/dε110 ≈
131 K. The transition at T2 would be within our measured
temperature range for each of the stresses shown for sample B
in Fig. 3, and it would have been visible as long as |�η2| were
larger than ∼0.2 K, or 2% of the jump in ECE at Tc, |�ηc|.
As with previous comparisons of μSR and heat-capacity data
under [100] uniaxial pressure [23], it is hard to imagine a tran-
sition to a second homogeneous thermodynamic state yielding
such a small anomaly. We note the low statistical signifi-
cance of the splitting reported in Ref. [38]; a simple repeat
of that measurement would be useful. However, we believe
that the direction of travel is toward fundamental reevalu-
ation of the interpretation of μSR data in unconventional
superconductors.

C. Relationship with jumps in c66 observed
in ultrasound experiments

One of the motivations for the current experiments was to
perform a careful comparison with the results of ultrasound
experiments, which have resolved jumps in the elastic con-
stant c66 at the superconducting transition. The observation of
a jump in this elastic constant is particularly significant be-
cause it implies the existence of some kind of two-component
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superconducting order parameter; a single-component order
parameter gives a jump in other elastic constants, but not in
c66. Jumps of 0.03 and 0.15 MPa were reported on the basis
of separate pulse-echo measurements at 169 and 201 MHz,
respectively [35], and of 1.05 MPa on the basis of a resonant
ultrasound experiment performed at much lower frequencies
of approximately 2 MHz [34]. The difference between the
two pulse-echo results was attributed to possible mode mixing
in the 201 MHz experiment. It has been suggested that the
difference between the pulse-echo and resonant ultrasound
results is a consequence of the very different measurement
frequencies, with the higher frequencies thought to suppress
the jump from its intrinsic thermodynamic value [35]. For the
purposes of the analysis that follows, we will take the quoted
numbers at face value and examine the extent to which they
are consistent with our results, under an assumption that all
the experiments are giving information on bulk, homogeneous
thermodynamic phases.

To frame our thermodynamic analysis, we first give some
important results about Ehrenfest relations, giving the full
derivation in Appendix E. Broadly speaking, there are two
possibilities for two-component order parameters that give
a jump in c66 in Sr2RuO4. One is that degeneracy of the
components is symmetry-protected, i.e., the components are
equivalent on a tetragonal lattice. Given the strong evidence
for even-parity, spin-singlet superconductivity in Sr2RuO4

[11,19,43,48], these two components would have dxz and
dyz symmetry. The other possibility is accidental degeneracy
between certain non-symmetry-related components, namely
the pair (s, dxy) or the pair (dx2−y2 , gxy(x2−y2 ) ). For both pairs,
multiplying the components yields a composite order that
couples linearly to shear strain with 〈110〉 principal axes, that
is, ε6. Single-component order parameters, in contrast, do not
yield a jump in c66 at Tc. Neither do two-component order
parameters which do not couple to ε6 shear strain: the pairs
(s, dx2−y2 ), (s, gxy(x2−y2 ) ), (dxy, dx2−y2 ), and (dxy, gxy(x2−y2 ) ). A
table of these possibilities is shown in Fig. 4.

Consider first the symmetry-protected possibility,
(dxz, dyz ). If, at temperatures well below Tc, the components
combine to break time-reversal symmetry, then under shear
strain with 〈110〉 principal axes the transition would split
into a transition at Tc into dxz ± dyz order, followed by a
transition at T2 into (dxz ± dyz ) ± i(dxz ∓ dyz ) order. This
possibility is illustrated in Fig. 4(a). If the components
combine to form B2g-nematic order (that is, dxz ± dyz order),
there would be no second transition at lower temperature.
There would be a first-order transition along the ε6 = 0
line, where the favored orientation of the nematicity flips.
This possibility is illustrated in Fig. 4(b). Finally, if the
components form B1g-nematic order, i.e., dxz or dyz without
coexistence of the two components, then 〈110〉 shear strain is
again expected to yield a split transition. The order parameter
just below Tc would be dxz ± dyz, and at T2 there would be a
symmetry-breaking transition at which the principal axes of
the nematicity rotate away from the 〈110〉 axes and towards
the 〈100〉 axes.

The accidentally degenerate pairs (s, dxy) and
(dx2−y2 , gxy(x2−y2 ) ) could also combine to yield TRSB or
B2g-nematic orders—for example, s ± idxy or s ± dxy.
The T -ε6 phase diagrams would be qualitatively the

ε6 ε6 ε6

non-TRSBTRSB

(dxz, dyz)

(s, dxy),

(s, dx²−y²),
(s, g),

(dxy, dx²−y²),
(dxy, g),

(dx²−y², g)

Tc

T2

Tc

T2

(b) B2g-nematic (c) B1g-nematic(a)

ε6 ε6

ε6

ε6

(e) B2g-nematic (f) no 
coexistence

(d)

(g)

single-
component

FIG. 4. T -ε6 phase diagrams for various possible order parame-
ters. g denotes gxy(x2−y2 ). The first row illustrates (dxz, dyz ) order and
the ways in which these components can combine at temperatures
well below Tc. In panel (a), they form TRSB order, dxz ± idyz. In
panel (b), they form B2g-nematic order, dxz ± dyz. In panel (c), they
form B1g-nematic order: condensation of either component alone,
without coexistence. The next row illustrates the equivalent possibil-
ities for accidentally degenerate two-component orders that couple
linearly to ε6. The bottom row illustrated the expected strain depen-
dence of order parameters, which do not couple linearly to ε6. In
all panels, single black lines indicate second-order transitions, dou-
ble lines indicate first-order transitions, and color gradients indicate
crossovers. Further explanation is provided in the text.

same as for the (dxz, dyz ) pair; see Figs. 4(d) and 4(e).
The remaining possibility—absence of coexistence—is
qualitatively different from the (dxz, dyz ) case, because for
these accidentally degenerate pairs there is no diagonal
reflection symmetry x ↔ y which protects the B2g nematic
state. Just below Tc and with ε6 
= 0, the two components
would combine to yield B2g-nematic order, and a cusped
dependence of Tc on ε6. As T is further reduced, one of the
components would come to dominate, but this would be a
smooth crossover. This possibility is illustrated in Fig. 4(f).

Analysis of each situation yields the following Ehrenfest
relations (Appendix E 3). For B2g-nematic order constructed
from (dxz, dyz ) components,

�c66 = �C0

Tc0

∣∣∣∣dTc

dε6

∣∣∣∣
2

, (12)

where �C0 is the jump in heat capacity at the superconducting
transition in the unstressed system, and Tc0 is Tc in the un-
stressed system. On the other hand, for both dxz ± idyz TRSB
and (dxz, dyz ) B1g-nematic order,

�c66 = �C0

Tc0

∣∣∣∣dTc

dε6

∣∣∣∣
∣∣∣∣dT2

dε6

∣∣∣∣. (13)
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This equation is obtained from Eq. (E41) in Appendix E,
with α in that equation set to zero. Here, we label as �C0

the heat-capacity jump without splitting—anywhere along the
transition line when splitting does not occur, and at ε6 = 0
when it does. Tc0 is the critical temperature in the absence of
splitting.

We begin with the simpler of the above Ehrenfest rela-
tions, Eq. (12), which applies to dxz ± dyz B2g-nematic order.
�C0 in Sr2RuO4 is 38 mJ/mol K [49,50]. Combining this
with the largest and smallest literature values for �c66, 1.05
and 0.03 MPa, yields values for |dTc/dε6| of 48 and 8 K,
respectively. As stated above, we resolve no cusp, with our
experiment placing an upper limit on |dTc/dε6| of 1.3 K. If
both our experiments and the ultrasound studies are probing
bulk, homogeneous thermodynamic states, there is therefore
a discrepancy of between a factor of 37 and 6 between our
upper limit on |dTc/dε6| and predictions from Eq. (12) using
measured values of �c66. We can therefore rule out bulk
B2g-nematic order, namely dxz ± dyz order, as the origin of the
observed jumps in c66.

In the case of dxz ± idyz or B1g-nematic dxz or dyz order,
where it is Eq. (13) that applies, the very small upper limit that
our measurements place on |dTc/dε6| could in principle be
compensated by a very large value of |dT2/dε6|. However, the
numbers are stark. For �c66 = 0.03 MPa, |dT2/dε6| > 51 K
would be required to be compatible with our finding that
|dTc/dε6| < 1.3 K. For the largest measured value of �c66,
1.05 MPa, |dT2/dε6| > 1785 K would be required.

A difference of this magnitude between |dT2/dε6| and
|dTc/dε6| would require a very high degree of tuning. To
quantify this fine-tuning, let us parametrize the free energy
of (dxz, dyz ) order in the following way [Eq. (E13)]:

F = a

2
(|�1|2 + |�2|2) + u

4
(|�1|2 + |�2|2)2 + γ u|�1|2|�2|2

+ γ ′ u
2

(�∗
1�

∗
1�2�2 + �∗

2�
∗
2�1�1). (14)

�1 and �2 are, respectively, the amplitudes of the dxz and
dyz components. γ ′ > 0 favors combining them with a π/2
phase shift, yielding dxz ± idyz TRSB order, while γ ′ < 0 fa-
vors dxz ± dyz B2g-nematic order. γ > 0 disfavors coexistence
of the two components; B1g-nematic order is obtained when
γ > |γ ′|. For a generic microscopic theory, the three quartic
coefficients are expected to be comparable in magnitude, giv-
ing γ , γ ′ on the order of 1. The γ -γ ′ phase diagram is shown
in Fig. 5.

As discussed above, our data are not consistent with
B2g-nematic order, but TRSB and B1g-nematic orders are in
principle possible. By exploiting the Ehrenfest relation (13),
one may bound the ratio

r ≡
∣∣∣∣dTc

dε6

∣∣∣∣
∣∣∣∣dT2

dε6

∣∣∣∣
−1

(15)

from above to obtain r < (1.3 K)/(51 K) = 0.026. Here we
have used the smallest reported �c66 > 0.03 MPa to obtain a
conservative estimate. One may show that in the B1g-nematic
region r = γ + γ ′, and that in the TRSB region r = 2γ ′/(1 +
γ − γ ′) [Eq. (E46)]. Therefore, the regions of the phase dia-
gram in Fig. 5 colored blue would be consistent with our data:
the interaction between the two components must be tuned

B1g-nematic

unstable

B2g-nematic TRSB

-1

-0.5

-0.5 0.50

0

0.5

γ'

γ

r < 0.026

TRSB
and
r < 0.026
and
r' < 0.05

FIG. 5. Phase diagram of the Ginzburg-Landau parameter space
for (dxz, dyz ) superconductivity, based on the free energy written in
Eq. (14). γ and γ ′ are parameters of this free energy that define
whether the ground state is B1g-nematic, B2g-nematic, or TRSB. The
blue region is the region consistent with the condition |dTc/dε6| <

1.3 K and �c66 > 0.03 MPa. Within the TRSB region, the red patch
near the γ = γ ′ = 0 triple point is additionally consistent with the
heat-capacity data of Ref. [33] under 〈100〉 uniaxial stress. The upper
bounds on the ratios r, r′ are explained in the main text.

right to the cusp of B2g nematicity, but without the order being
B2g-nematic.

We can add to this diagram constraints imposed by mea-
surements under 〈100〉 uniaxial stress. The analogous ratio

r′ ≡
∣∣∣∣ dTc

d (ε1 − ε2)

∣∣∣∣
∣∣∣∣ dT2

d (ε1 − ε2)

∣∣∣∣
−1

(16)

is inversely related to the ratio of the heat-capacity jumps
at the upper and lower transitions [Eq. (E62)]. In Ref. [33],
it was shown that the heat-capacity anomaly at any second
transition is at most 5% of that at Tc, corresponding (again, for
dxz ± idyz order) to the condition r′ < 0.05. Within the TRSB
region of the phase diagram, r′ = −(γ − γ ′)/(1 + γ − γ ′).
Therefore, the region within the TRSB phase consistent with
both sets of experiments is only the red region in Fig. 5. That
is, if the order parameter of Sr2RuO4 is a TRSB order param-
eter constructed from components with symmetry-protected
degeneracy, the interaction between these components would
need to be doubly fine-tuned so as to lie extremely close to the
triple point in the phase diagram.

So far, there are no data ruling out B1g nematicity at the
same level that B2g nematicity is excluded here. The upper
limit on |dTc/d (ε1 − ε2)| is 11 K [32], not as tight as the
limit set here on |dTc/dε6|. Therefore, within the B1g-nematic
region we require only the single level of fine-tuning described
above, γ + γ ′ < 0.026, but we emphasize that it is a stringent
condition.

In the case of TRSB order constructed from acciden-
tally degenerate components, the Ehrenfest relation Eq. (13)
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becomes an inequality:

�c66 � �C0

Tc0

∣∣∣∣dTc

dε6

∣∣∣∣
∣∣∣∣dT2

dε6

∣∣∣∣, (17)

and we still obtain an upper bound on �c66 derivable from
the strain variations of the transition temperatures. This equa-
tion is Eq. (E41) from Appendix E 3, with α 
= 0. As under the
dxz ± idyz hypothesis, reconciling our data with the observed
�c66 would still require fine tuning, with |dT2/dε6| vastly
larger than |dTc/dε6|.

In the absence of coexistence—the case illustrated in
Fig. 4(f)—no similarly strong conclusions can be drawn.
Equation (12) would apply directly at the superconducting
transition, as it must, but under the hypothesis of accidental
degeneracy there would be a crossover just below Tc from
strain-induced B2g nematicity to single-component order. In
experimental data, it is likely that the changes in c66 from the
two features would merge into a single resolution-limited step,
so that Eq. (12) would not be applicable in practice. Neverthe-
less, it seems almost certain that reconciling observed values
of �c66 with our upper limit on |dTc/dε6| would still require
a high degree of tuning.

D. Implications of the lack of transition splitting
in elastocaloric measurements

The lower limit |dT2/dε6| > 51 K established above for
dxz ± idyz and B1g-nematic (dxz, dyz ) order is made even more
stringent by analysis of our elastocaloric effect data. For small
splitting, i.e., Tc − T2 
 Tc0, we require

�Cc

Tc
+ �C2

T2
= �C0

Tc0
, (18)

where �Cc and �C2 are, respectively, the jumps in heat ca-
pacity at Tc and T2. The condition that degeneracy of the two
components is symmetry-protected imposes the additional
condition that

�Cc

Tc

T2

�C2
=

∣∣∣∣dT2

dε6

∣∣∣∣
∣∣∣∣dTc

dε6

∣∣∣∣
−1

. (19)

Making use of these conditions, it is straightforward to
derive the ECE. The derivation is shown in Appendix C. In
Fig. 6, we show the range of |dTc/dε6| and |dT2/dε6| over
which a second transition at T2 would have been observable
in our elastocaloric effect data. To obtain this plot, we set a
conservative observability threshold that the jump in η at T2

be at least 0.2 K. Although the noise level for sample B is
smaller than this, inhomogeneity broadening might be larger
than for the transition at Tc, due to its potentially steeper
slope. This observability threshold yields the curved line that
bounds the observable region on the left. Added to this plot
is the relation between |dTc/dε6| and |dT2/dε6| fixed by the
constraint �c66 = 0.03 MPa. It crosses out of the observable
region at |dT2/dε6| = 144 K. That is, to account for nonob-
servation of a second transition in the ECE data under an
assumption of (dxz, dyz ) order and taking �c66 = 0.03 MPa,
we require |dTc/dε6| < 0.47 K and |dT2/dε6| > 144 K,
which is a substantial tightening of the condition |dTc/dε6| <

1.3 K obtained from direct measurement of Tc(ε110).

0 0.5
0

400

200
144

600

1.0 1.5
dTc

dε6

(K)

dT
2

dε
6

(K
)

excluded by
ECE data

Δc66=
0.03 MPa

FIG. 6. Region of observability of a second transition in elas-
tocaloric effect data. In the red region, a jump in the elastocaloric
effect would have been resolvable at T2 in our data, under an as-
sumption of dxz ± idyz or B1g-nematic, (dxz, dyz ) superconductivity.
The thick line is the set of points defined by the condition �c66 =
0.03 MPa.

The upper and lower boundaries of the observable region
correspond to a requirement:

42 K <

∣∣∣∣ dT2

dε110

∣∣∣∣ < 750 K.

The lower limit corresponds to a change of 0.1 K at the largest
strain applied to sample B, −0.45 GPa/187 GPa = −2.4 ×
10−3. At this strain, T2 would be ≈0.07 K less than Tc, which
we estimate as the minimum separation at which a second
transition would become distinct from the main transition.
The upper bound corresponds to a requirement that T2 not
drop below our lowest measurement temperature, 1 K, at the
smallest applied strain, ≈0.10 GPa/187 GPa = 5.3 × 10−4.
The |dT2/dε6| − |dTc/dε6| curve that would yield �c66 =
1.05 MPa lies entirely above the observable region in Fig. 6,
and therefore, if we take �c66 = 1.05 MPa, our ECE data do
not further tighten the constraint |dTc/dε6| < 1.3 K obtained
from direct measurement.

This analysis does not strictly apply to fine-tuned acci-
dental degeneracies, but the situation for those is expected to
be similar. There might be alternative fine-tuning routes that
yield small �C2 with modest |dT2/dε6|, but our data never-
theless imply at least two levels of fine-tuning with accidental
degeneracy: the accidental degeneracy itself, and the tuning
required to obtain the observed �c66 in a way consistent with
the null results in this report.

E. Implications for understanding ultrasound data

The above analysis, combined with the fact that the lit-
erature values of �c66 have a large variation, causes us to
speculate that all the reported ultrasound measurements of
�c66 substantially exceed the value (which may well be zero)
that can be attributed to a homogeneous, two-component order
parameter alone. We propose as subjects for future study the
effects on the ultrasound measurements of quenched disor-
der, particularly extended defects, in the crystals. Possible
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inhomogeneities of the superconducting state itself should
also be carefully considered. For example, there is evidence
for domain walls in the superconducting state [25,26,51], and
their motion, which was not considered here, might affect
ultrasound measurements. We note in passing that attribut-
ing the variation in the ultrasound results to differences in
the measurement frequency does not help to resolve the
discrepancies that our work has highlighted. The reverse is
true, because it is more likely that lower-frequency mea-
surements would yield the thermodynamically correct result,
but it is the lowest-frequency measurement that yielded the
largest �c66. Finally, we note that the limit |dTc/dε6| < 1.3 K
is independent of anything concluded from Eqs. (13)–(17).
Within the standard Ginzburg-Landau theory described in
Appendix E, this limit is satisfied automatically by any single-
component order parameter, for which |dTc/dε6| = 0. For
theories involving two-component order parameters it sets a
key constraint, along with the others regarding the observ-
ability of transition splitting in ECE measurements. These
constraints are stringent, and it remains to be seen whether
they can be met by any plausible microscopic theory of a
two-component order parameter.

VI. CONCLUSION

We have measured Tc and the elastocaloric effect in
Sr2RuO4 under uniaxial stress applied along the crystalline
[110] direction, and we found no sign of a two-component
superconducting state. Namely, we found neither a cusp in the
strain dependence of Tc around zero strain, nor a second tran-
sition in elastocaloric effect data under nonzero applied strain.
To reconcile our data with even the smallest reported jump
in c66 under a hypothesis of homogeneous two-component
superconductivity requires an extreme level of tuning for
all proposed order parameters, while some are effectively
ruled out. The difficulty in obtaining clear thermodynamic
evidence for two-component superconductivity, both in the
results reported here and in previous measurements under
[100] uniaxial stress, means that the possibility that the super-
conducting order parameter of Sr2RuO4 is single-component,
without breaking time-reversal symmetry, must be seriously
considered. The true experimental conditions and/or the
interpretations of the measurement results, both thermody-
namic and nonthermodynamic, that have shown evidence for
time-reversal symmetry breaking should be reinvestigated.
However, it is a fact that a large number of experimental
probes have found unusual behavior in Sr2RuO4, such as
the jump in c66, increased ultrasound dissipation below Tc

[51], nonzero Kerr rotation [21], and anomalous switching
behavior in junctions [25,52], among others. Therefore, even
if the bulk order parameter turns out to be both spin-singlet
and single-component, it appears probable that there is nev-
ertheless something unusual about the superconductivity of
Sr2RuO4, and that the nature of this “unusualness” has per-
haps not been identified even in approximate form by the
research community.

The data that support the findings of this study are openly
available from the Max Planck Digital Library [53].
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FIG. 7. Photograph of the sample carrier used to reduce hystere-
sis for samples 2 and 3. A photograph of sample 3 is also shown.
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APPENDIX A: SAMPLE CARRIER DESIGN
FOR LOW HYSTERESIS

To cancel differential thermal contraction between the
piezoelectric actuators and the body of the uniaxial stress cell,
there are three actuators. The outer two are joined electri-
cally, and ideally move identically. If they do not, a torque
is generated within the cell that deforms the cell body and
can yield a transverse displacement applied across the sample.
That is a problem for measurement of Sr2RuO4 under 〈110〉
uniaxial stress: a transverse displacement across the sample
generates shear strain with 〈100〉 principal axes within the
sample, and Tc of Sr2RuO4 responds very sensitively to 〈100〉
shear strain. Hysteresis in this torque, from hysteresis in the
actuator motion, resulted for sample 1 in hysteresis in Tc that
was large compared with the signal we aimed to measure.
To reduce this hysteresis, the sample carrier photographed in
Fig. 7 was used for samples 2 and 3. It incorporates necks that
attenuate the transmission of transverse displacements to the
sample.

APPENDIX B: CALIBRATION OF THE ECE

The elastocaloric effect η ≡ dT/dε is obtained by ap-
plying a small ac strain to a sample and measuring the ac
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FIG. 8. (a) Extraction of Tc from elastocaloric data. The data here
are from sample A at 0 GPa. (b) Derivation of A(T )δε(T ) for samples
A and B to obtain agreement with Eq. (11) in the normal state.

temperature response. This ac strain can be superimposed
onto much larger dc strains to measure the elastocaloric
effect at different applied pressures. Details can be found in
Refs. [43,44]. The temperature response is measured with a
Au/AuFe thermocouple, which is glued by epoxy (Dupont
6838) to the center of the sample.

An example of extraction of �η/ηn is shown in Fig. 8(a).
The measured thermocouple voltage is extrapolated from
above and below the transition into the transition region.
The temperature at which the data pass through the median
line between these extrapolations is identified as Tc. The ex-
trapolation from below to Tc is identified as Vs(Tc), and the
extrapolation from above is identified as Vn(Tc), and �η/ηn is
set to (Vs − Vn)/Vn. As discussed above, applying Eq. (9) with
dTc/dε set to 12.0 K yields γ1 = 0.43 J/mol K2.

The conversion from thermocouple voltage V to η is given
by

η(T ) = V (T )

S(T )A(T )δε(T )
,

where S(T ) is the Seebeck coefficient of the thermocouple,
0 < A < 1 is the degree of adiabaticity, and δε is the strain os-
cillation amplitude. S(T ) was determined by a thermocouple
calibration in reference to a calibrated RuO2 thermometer in
Refs. [54,55]. We then derive the form of A(T ) × δε(T ) that
yields agreement in the normal state with Eq. (11). A(T ) ×
δε(T ) is obtained as a third-order polynomial, α0 + α2T 2 +
α3T 3; the T -linear term is omitted because linear variation in
the T → 0 limit is not generally expected. Results are shown
in Fig. 8(b). These derived curves are then extrapolated to
below Tc, yielding results shown in Fig. 3.

APPENDIX C: JUMP IN ECE

In Sec. IV of the main text we showed how the elastocaloric
coefficient for a single-component order parameter is derived
from a Ginzburg-Landau ansatz. In this Appendix, we derive
the elastocaloric coefficient of two-component order. Equa-
tion (9) can be rewritten to

η = ηn +
(

−ηn + dTc0

dε

)(
1 + Tc0

�C0

Cn

T

)−1

. (C1)

In the case of strain-split transitions, Eq. (C1) still applies
at the first transition, at Tc. We have only a relabelling of

quantities, following the above-described notation for split
transitions. Let η1 be the elastocaloric coefficient for the
temperature range T2 < T < Tc. We have

η1 = ηn +
(

−ηn + dTc

dε

)(
1 + Tc

�Cc

Cn

T

)−1

. (C2)

Let η2 be the elastocaloric coefficient at T < T2. To obtain
η2, we take Eq. (C2) and replace ηn with η1, �Cc with �C2,
and Tc with T2. We assume that Tc and T2 are both in the
strain-linear regime, and we apply the condition Eq. (19).
After simplification, the result is

η2 = ηn +
(

−ηn + dTc0

dε

)(
1 + Tc0

�C0

Cn

T

)−1

. (C3)

If ε is ε6, then Eq. (C3) simplifies to

η2 = ηn − ηn

(
1 + Tc0

�C0

Cn

T

)−1

. (C4)

Equation (C3) is precisely the same as Eq. (C1), though with
a slight difference in interpretation: in Eqs. (C3) and (C4),
Tc0 is the transition temperature that would be obtained in the
absence of splitting.

To evaluate the above expressions and obtain the left-
hand bounding line in Fig. 6, we set γ0 = 0.038 J/mol K2,
Tc0 = 1.5 K, γ1 = 0.43 J/mol K2, β = 0.000 197 J/mol K4,
and ε110 = −5 × 10−4. Because the relevant data were taken
almost entirely under compressive stress, we set dTc/dε110 =
12.0 K − α6 × dTc/dε6.

APPENDIX D: COMPONENT ANALYSIS

As a cross-check we can calculate from the stress de-
pendence of Tc under [110] pressure, dTc/dσ110 = −64 ±
7 mK/GPa, and the stress dependence of Tc under [001]
pressure, dTc/dσ001 = −76 ± 5 mK/GPa [40], the stress de-
pendence of Tc under hydrostatic pressure and compare this
to the experimental results. Based on the 4 K elastic moduli
reported in [34], we obtain the following relations between
strain and applied stress:

dεd

dσ110
= 0.003 07 GPa−1,

dε3

dσ110
= −0.001 02 GPa−1,

dεd

dσ001
= −0.002 04 GPa−1,

dε3

dσ001
= 0.004 57 GPa−1,

dεd

dσhyd
= 0.004 11 GPa−1,

dε3

dσhyd
= 0.002 54 GPa−1.

(D1)

In these expressions, εd = ε1 + ε2. So we have

0.064 ± 0.007 K = 0.003 07
dTc

dεd
− 0.001 02

dTc

dε3
,

0.076 ± 0.005 K = −0.002 04
dTc

dεd
+ 0.004 57

dTc

dε3
.

Solving these equations yields

dTc

dεd
= 31.0 ± 2.6 K,

dTc

dε3
= 30.4 ± 1.8 K.
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TABLE I. Irreducible representations (irreps) of D4h under which
the bilinear forms φμ transform. The bilinears are constructed
from two-component order parameters � = (�1, �2) according to
Eq. (E1). � belongs to the 2D irreps Eg,u on the left, whereas on
the right �1,2 belong to two 1D irreps �1,2, respectively. The ±
irrep superscripts describe the behavior under time reversal. Only
accidentally degenerate pairs whose �1 ⊗ �2 = B2g are analyzed in
this Appendix.

� ∈ Eg,u �1 ∈ �1, �2 ∈ �2

Bilinear Irrep Bilinear Irrep

φ0 A+
1g φ0 A+

1g

φx B+
2g φx (�1 ⊗ �2)+

φy A−
2g φy (�1 ⊗ �2)−

φz B+
1g φz A+

1g

Using the third line of Eq. (D1) yields dTc/dσhyd = 0.204 ±
0.012 K/GPa.

APPENDIX E: GINZBURG-LANDAU ANALYSIS

Here we analyze the response of a two-component or-
der parameter � = (�1,�2)ᵀ to σ6 shear stress within the
Ginzburg-Landau framework, under the assumptions of ho-
mogeneous strain and superconductivity. While the analysis
of a symmetry-protected two-component order parameter had
already been done for the D4h point group [34,35], the case
of accidental degeneracy has not been analyzed in the liter-
ature to the degree of detail required for our analysis. The
symmetry-protected case corresponds to the two-dimensional
irreducible representations Eg and Eu whose wave functions
we may write as (dxz, dyz) and (px, py), respectively. Acci-
dental degeneracy could, in principle, be between any pair
of one-dimensional irreducible representations (irreps). We
consider only those degenerate pairs that couple linearly to σ6,
which are A1g ⊕ B2g (s, dxy) and B1g ⊕ A2g (dx2−y2 , gxy(x2−y2 )).
Odd-parity 1D irrep pairs, such as A1u ⊕ B2u and B1u ⊕
A2u, are also possible in principle, but not deemed likely due
to Pauli limiting [8,9] and NMR Knight shift experiments
[11,17–20]. Quadratic coupling to σ6 does not induce a jump
in the shear elastic modulus c66 nor does it split the transition.

Before we proceed with the Ginzburg-Landau analysis, let
us briefly discuss how we obtained the phase diagrams shown
in Fig. 4. Introduce the bilinear forms

φμ = �†τμ�, (E1)

where τ0 is the 2 × 2 unit matrix and τx,y,z are Pauli matri-
ces. The transformation properties of φμ are summarized in
Table I. A sufficient condition for a cusp in Tc(σ6) is that there
exists a φμ that transforms like the shear strain σ6 ∈ B+

2g. In
our case, this is only possible for φx. If φx acquires a nonzero
expectation value below Tc at ε6 = 0, then strain acts like a
conjugate field that lifts the degeneracy between ±〈φx〉, and
only one transition takes place since the symmetry associated
with φx is already broken. If, on the other hand, φx is not the
bilinear that acquires a finite expectation value below Tc at
ε6 = 0, an additional symmetry can still break, resulting in a
second transition.

The Ginzburg-Landau expansion of the free energy in the
absence of stress is given by

F = Fn + a

2
φ0 + u

4
φ2

0 +
∑

μ=x,y,z

vμ

4
φ2

μ

+ ã

2
φz + ṽ

4
φ0φz. (E2)

From Table I, it is easy to see that this is the most general form
of an invariant (A+

t1g
) function that is quadratic in φμ, and that

is quartic in �. Due to the Fierz identity

φ2
0 =

∑
μ=x,y,z

φ2
μ, (E3)

there is a redundancy between the vμφ2
μ terms that we elimi-

nate by setting

vz = 0. (E4)

In the case of a symmetry-protected degeneracy, φz trans-
forms under B1g and therefore ã = ṽ = 0. Below the transition
temperature Tc0, the quadratic coefficient changes sign. To
leading order in temperature, a(T ) is thus linear in T with
a positive slope ȧ > 0:

a = (T − Tc0) × ȧ, (E5)

whereas the quartic coefficients are T -independent.
When �1,2 belong to two 1D irreps, φz transforms trivially

and both ã and ṽ are allowed to be finite. However, since
�1 and �2 are unrelated by symmetry, we may rescale them
(�1,�2) �→ (s�1, s−1�2) by a factor s = ( u+ṽ

u−ṽ
)
1/8

so that
after the rescaling

ṽ = 0, (E6)

which we assume henceforth. Regarding ã, in the expansion
F = ȧ1(T − Tc0,1)|�1|2 + ȧ2(T − Tc0,2)|�2|2 + · · · the fine-
tuning of the two transition temperatures corresponds to the
requirement that Tc0,1 = Tc0,2 ≡ Tc0. Hence a(T ) is given by
Eq. (E5) with ȧ = ȧ1 + ȧ2, while

ã(T ) = α × a(T ) (E7)

for a T -independent coefficient α = ȧ1−ȧ2
ȧ1+ȧ2

. α can take any
value in between −1 and 1 and reflects the absence of a
symmetry transformation connecting �1 and �2. Thus in the
symmetry-protected case the only formal difference is that
α = 0, given that ṽ = 0 in both cases.

Let us now include elasticity. When strains εi are present
in the system, they couple to the superconductivity via

Fc =
6∑

i=1

2∑
a,b=1

λiabεi�
∗
a�b, (E8)

where λiab are the coupling constants. As it turn out, when the
elastic free energy is quadratic in εi,

Fε = 1

2

6∑
i, j=1

ci j,0εiε j, (E9)

one may decouple the elastic and superconducting parts of the
free energy, greatly simplifying the free-energy minimization
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problem. Here ci j,0 is the elastic tensor in the absence of super-
conductivity. This decoupling is accomplished by introducing
the “external” strain

εi,0 ≡ εi +
6∑

j=1

2∑
a,b=1

c−1
i j,0λiab�

∗
a�b, (E10)

which is decoupled from � and directly related to the ex-
ternal stress: εi,0 = ∑6

j=1 c−1
i j,0σ j . It is the strain that would

be obtained under a given set of stresses in the absence of
superconductivity.

In practice, the difference between εi,0 and the total strain εi

is negligible for Sr2RuO4: the larger of the two reported values
of �c66 is ∼10−5c66,0 [34,35], and the experimental upper
limit on any spontaneous nematic strain is on the order of 10−8

[Eq. (E48)], far smaller than the scale of the strains applied
in this work. For this reason, in the main text we make no
distinction between εi,0 and εi. Here, we retain this distinction
to be able to calculate the jump in the shear modulus �c66.

In the presence of σ6 external shear stress, the total free
energy after decoupling therefore equals

F = Fn + Fε0 + F�0, (E11)

where the elastic part is

Fε0 = 1
2 c66,0ε

2
6,0 − σ6ε6,0, (E12)

and the superconducting part is

F�0 = a

2
(|�1|2 + |�2|2) + α

a

2
(|�1|2 − |�2|2)

+ u

4
(|�1|2 + |�2|2)2 + γ u|�1|2|�2|2

+ γ ′ u
2

(�∗
1�

∗
1�2�2 + �∗

2�
∗
2�1�1)

+ σ6c−1
66,0λ6(�∗

1�2 + �∗
2�1). (E13)

Here we have explicitly written out F�0 in terms of � instead
of φμ. The form of the coupling to σ6 ∈ B+

2g follows from
Table I; for the accidentally degenerate case, we assumed
�1 ⊗ �2 = B2g. By enacting (�1,�2) �→ (�1,−�2), we can
always make λ6 > 0, which we henceforth assume. For later
convenience, we parametrized the quartic coefficients in terms
of γ , γ ′ which are related to the vx,y of Eq. (E2) via vx =
(γ + γ ′)u and vy = (γ − γ ′)u. In shifting from εi to εi,0, the
quartic coefficients u, γ , γ ′ have been renormalized.

The free energy is bounded from below when u > 0 and
γ − |γ ′| > −1; these constraints define the physical part of
the parameter space. To find the minimum of F�0, we use the
spherical parametrization(

�1

�2

)
= �0

(
cos θ

sin θ eiφ

)
(E14)

in terms of which

F�0 = A(θ, φ)
a

2
�2

0 + U (θ, φ)
u

4
�4

0, (E15)

where

A(θ, φ) = 1 + α cos(2θ ) + β sin(2θ ) cos(φ), (E16)

U (θ, φ) = 1 + �(φ) sin2(2θ ), (E17)

�(φ) = γ + γ ′ cos(2φ). (E18)

Here we have introduced the shorthand

β ≡ 2λ6ε6,0

a
. (E19)

The saddle point equations for the nontrivial solution whose
�2

0 = −aA/(uU ) > 0 are

0 = sin(φ) sin(2θ )

[
γ ′ cos(φ) sin(2θ ) − βU

2A

]
, (E20)

0 = � sin(2θ ) cos(2θ ) + U

A
[α sin(2θ ) − β cos(φ) cos(2θ )].

(E21)

1. Solutions for σ6 = 0

In the absence of applied stress (β = 0), these saddle point
equations are easily solved. They give three classes of solu-
tions:

(i) �1 or �2 only: θ = 0 or π/2, � ∼ (1, 0) or (0,1).
(ii) B2g-nematic: θ = 1

2 arccos(−αx+), φ = 0 or π ,
� ∼ (1,±1).
(iii) TRSB: θ = 1

2 arccos(−αx−), φ = ±π
2 , � ∼ (1,±i).

In these expressions,

x± ≡ 1 + γ ± γ ′

γ ± γ ′ . (E22)

In the case of symmetry-protected degeneracy (α = 0), the
�1-only and �2-only ground states are degenerate and may
be identified with B1g-nematic order.

The free-energy values for these solutions are

F�0 = − a2

4u
×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1 + α)2, �1 only,

(1 − α)2, �2 only,
1−α2x+
1+γ+γ ′ , B1g − nem,
1−α2x−
1+γ−γ ′ , TRSB.

(E23)

The preferred global minimum is

γ − |γ ′| > − |α|
1 + |α| , α > 0 : �1 only,

γ − |γ ′| > − |α|
1 + |α| , α < 0 : �2 only,

−1 < γ + γ ′ < − |α|
1 + |α| , γ ′ < 0 : B2g-nem,

−1 < γ − γ ′ < − |α|
1 + |α| , γ ′ > 0 : TRSB. (E24)

For the α = 0 case, the corresponding phase diagram is shown
in Fig. 5 of the main text. For finite α, the B1g-nematic region
of Fig. 5 becomes �1 or �2 only, and its lower edge γ −
|γ ′| = 0 is shifted downward by |α|

1+|α| .

2. Solutions for σ6 �= 0

First consider T > Tc0. In this case, F�0 < 0 is only ob-
tained when A(θ, φ) < 0. By minimizing Eq. (E16), we see
that the minimum of A(θ, φ) is 1 −

√
α2 + β2 and has φ = 0

or π with θ 
= 0, which corresponds to B2g-nematic order.
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Hence

Tc = Tc0 + λ6|ε6,0|
ȧ

2√
1 − α2

(E25)

and the symmetry is B2g-nematic.
Now consider reducing T below Tc. As illustrated in Fig. 4,

a second transition takes place when the ground state breaks
time-reversal symmetry, whether the degeneracy is symmetry-
protected or not, and when the ground state is B1g-nematic. In
the latter case, the degeneracy must be symmetry-protected
because only then is the (�1,�2) �→ (�2,�1) symmetry
present, which forbids a smooth crossover between B1g- and
B2g-nematic states.

To determine the lower transition temperature T2, we need
to solve the saddle point equations (E20) and (E21) and fig-
ure out which solution yields the smallest free energy. For
the nematic case, φ = 0 or π , and θ is determined by the
transcendental equation

[cos(2θ ) + αx+] sin(2θ ) = β

γ + γ ′ cos(2θ ). (E26)

When the σ6 = β = 0 ground state is B2g-nematic, θ of the
global minimum changes smoothly with σ6 and there is no
second transition. The same happens when �1 or �2 are the
ground states and α 
= 0: we have a smooth crossover, as one
can show by analyzing the bifurcation of the solutions.

When the ground state is B1g-nematic and α = 0, B1g-
nematic solutions overtake the B2g-nematic solutions below
|β| = γ + γ ′, yielding

T2 = Tc0 − λ6|ε6,0|
ȧ

2

γ + γ ′ . (E27)

When the ground state is TRSB with symmetry-protected
degeneracy,

T2 = Tc0 − λ6|ε6,0|
ȧ

1 + γ − γ ′

γ ′ . (E28)

Along the line γ = γ ′ that is the boundary between the B1g

and TRSB regions of the α = 0 parameter space [Eq. (E24)],
these two expressions for T2 agree. When the ground state is
TRSB with accidental degeneracy,

T2 = Tc0 − λ6|ε6,0|
ȧ

1 + γ − γ ′

γ ′
√

1 − α2x2−
. (E29)

In the TRSB case, one may solve the saddle-point equations in
closed form:

θ = 1
2 arccos(−αx−), (E30)

φ = ± arccos

⎛
⎜⎝λε6,0

a

1 + γ − γ ′

γ ′
√

1 − α2x2−

⎞
⎟⎠, (E31)

F�0 = − a2

4u

1 − α2x−
1 + γ − γ ′ − λ2

6ε
2
6,0

2uγ ′ . (E32)

3. Ehrenfest relations

The jump in the heat capacity across the superconducting
transition is given by

�C0

Tc0
= − ∂2F�0

∂T 2

∣∣∣∣
T =Tc0,σ6=0

. (E33)

From the free-energy expressions of Eq. (E23),

�C0

Tc0
= ȧ2

2u
×

⎧⎪⎪⎨
⎪⎪⎩

(1 + |α|)2, �1 or �2 only,

1−α2x+
1+γ+γ ′ , B2g-nem,

1−α2x−
1+γ−γ ′ , TRSB.

(E34)

The shear elastic modulus c66 below Tc is given by

1

c66
= 1

c66,0
− ∂2F�0

∂σ 2
6

∣∣∣∣
T,σ6=0

. (E35)

The jump �c66 = c66,0 − c66|T =Tc0 is the difference between
c66 just above Tc0 and that just below it.

When the ground state is �1 or �2 only,

�c66 = 2λ2
6

u

1 + |α|
(γ + γ ′)(1 + |α|x+)

. (E36)

This is derived by solving Eq. (E26) for small β. In the case of
symmetry-enforced degeneracy (α = 0), that is, B1g-nematic
ground states, one obtains the following Ehrenfest relation:

�c66 = �C0

Tc0

∣∣∣∣ dTc

dε6,0

∣∣∣∣
∣∣∣∣ dT2

dε6,0

∣∣∣∣. (E37)

In the general α 
= 0 case, we could try using Tc instead of T2

above, but the corresponding dimensionless ratio can be any
positive real number, depending on the values of α and γ + γ ′
which we do not know.

When the ground state is B2g-nematic, by solving Eq. (E26)
one finds that

�c66 = 2λ2
6

u

1 − α2x3
+

(1 + γ + γ ′)(1 − α2x2+)
, (E38)

and therefore

�c66
�C0
Tc0

∣∣ dTc
dε6,0

∣∣∣∣ dTc
dε6,0

∣∣ = (1 − α2)(1 − α2x3
+)

(1 − α2x+)(1 − α2x2+)
. (E39)

When α = 0, this expression reduces to the standard Ehren-
fest relation. The stability condition for B2g-nematic order
[Eq. (E24)] corresponds to −1/|α| < x+ < 0 and the right-
hand side can equal any number between (1 − α2) and +∞
for α 
= 0 and x+ in this range.

When the ground state is TRSB, the second derivative of
Eq. (E32) with respect to ε6,0 yields

�c66 = λ2
6

uγ ′ . (E40)

The corresponding Ehrenfest relation takes the form

�c66
�C0
Tc0

∣∣ dTc
dε6,0

∣∣∣∣ dT2
dε6,0

∣∣ =
√

1 − α2
√

1 − α2x2−
1 − α2x−

� 1. (E41)
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In the −1/|α| < x− < 0 region where TRSB is the ground
state [Eq. (E24)], the right-hand side takes values in between
0 and 1, and for α = 0 it equals 1.

4. Ratio relations

Here we show that the ratios of the jumps at the upper and
lower transitions are related. These relations hold only for the
symmetry-protected case (α = 0). Denote �Cc and �c66,c the
jumps at the upper transition (T = Tc), and �C2 and �c66,2

the jumps at the lower transition (T = T2).
The jumps at the upper transition are (α = 0, σ6 
= 0)

�Cc

Tc
= ȧ2

2u

1

1 + γ + γ ′ , (E42)

�c66,c = 2λ2
6

u

1

1 + γ + γ ′ . (E43)

The jumps at the lower transition are (α = 0, σ6 
= 0)

�C2

T2
= ȧ2

2u
×

⎧⎨
⎩

γ+γ ′
1+γ+γ ′ , B1g-nem,

2γ ′
(1+γ+γ ′ )(1+γ−γ ′ ) , TRSB,

(E44)

�c66,2 = 2λ2
6

u
×

{ 1
(γ+γ ′ )(1+γ+γ ′ ) , B1g-nem,

1+γ−γ ′
(1+γ+γ ′ )2γ ′ , TRSB.

(E45)

To find these expressions, we had to solve Eq. (E26) around
the β at which the solutions bifurcate. Note that �Cc/Tc +
�C2/T2 and �c66,c + �c66,2 reproduce the previous �C0/Tc0

and �c66 with α = 0. Combining, we obtain the ratio relations∣∣ dT2
dε6,0

∣∣∣∣ dTc
dε6,0

∣∣ =
�Cc
Tc

�C2
T2

= �c66,2

�c66,c
=

{ 1
γ+γ ′ , B1g-nem,

1+γ−γ ′
2γ ′ , TRSB.

(E46)

5. Nematic strain

The second term in Eq. (E10) defines the “internal” strain,
which is the strain generated by the superconducting order
parameter:

εnem
6 = − λ6

c66
(�∗

1�2 + �∗
2�1)

= − λ6

c66
�2

0 sin(2θ ) cos φ. (E47)

Due to the proportionality to cos φ, when σ6 = 0 only the
B2g-nematic states generate a nonzero ε6. Its value is bounded
from above through

c66,0

∣∣εnem
6

∣∣
�C0
Tc0

∣∣ dTc
dε6,0

∣∣|T − Tc0|
=

√
1 − α2

√
1 − α2x2+

1 − α2x+
� 1, (E48)

where the right-hand side is in between 0 and 1 in the
range −1/|α| < x+ < 0 where B2g-nematic order is preferred
[Eq. (E24)], and for α = 0 equals 1.

6. Case of B1g stress

As discussed in the main text, if one combines the measure-
ments of the current paper with those performed under 〈100〉
uniaxial stress [33], one can put tight constraints on where
precisely Sr2RuO4 must be in the phase diagram of Fig. 5.

To make contact with the measurements under 〈100〉 uni-
axial stress, here we briefly summarize the results of the
Ginzburg-Landau analysis for B1g stress, σB1g = 1

2 (σ1 − σ2) =
σ100/2. Superconductivity couples linearly to B1g stress only
in the case of symmetry-protected degeneracy (α = 0), which
we henceforth consider.

The coupling to B1g stress takes the form

F�0 = · · · + σB1gc
−1
B1g

λB1g (|�1|2 − |�2|2), (E49)

where cB1g = 1
2 (c11 − c12). By a rotation

�̃ = 1√
2

(
1 −1
1 1

)
� (E50)

and reparametrization

ũ = (1 + γ + γ ′)u, (E51)

γ̃ = − 1
2γ − 3

2γ ′

1 + γ + γ ′ , (E52)

γ̃ ′ = − 1
2γ + 1

2γ ′

1 + γ + γ ′ , (E53)

one obtains a free energy identical in form to Eq. (E13). Hence
all the previous formulas carry over if we replace u, γ , γ ′, λ6

with ũ, γ̃ , γ̃ ′, λB1g , and exchange what one identifies as B1g

with B2g, and vice versa.
The upper transition temperature is given by

Tc = Tc0 + 2λB1g

∣∣εB1g,0

∣∣
ȧ

. (E54)

At finite B1g stress, the superconductivity is B1g-nematic
slightly below Tc. When B1g-nematic pairing is the ground
state, there is no second transition. For the other two cases,

T2 = Tc0 − 2λB1g

∣∣εB1g,0

∣∣
ȧ

×
{−x+, B2g-nem,

−x−, TRSB.
(E55)

The heat-capacity jumps are

�Cc

Tc
= ȧ2

2u
, (E56)

�C2

T2
= ȧ2

2u
×

{−1/x+ for B2g-nem,

−1/x− for TRSB.
(E57)

The jumps in the B1g elastic constants are

�cB1g,c =
2λ2

B1g

u
, (E58)

�cB1g,2 =
2λ2

B1g

u
×

{−x+ for B2g-nem,

−x− for TRSB.
(E59)

The total jumps are obtained by summing the jumps at the
upper and lower transition, if it takes place.
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The Ehrenfest relation for B1g-nematic states is

�cB1g = �C0

Tc0

∣∣∣∣∣ dTc

dεB1g,0

∣∣∣∣∣
∣∣∣∣∣ dTc

dεB1g,0

∣∣∣∣∣. (E60)

The Ehrenfest relation when B2g-nematic or TRSB pairing is
preferred in the absence of stress is

�cB1g = �C0

Tc0

∣∣∣∣∣ dTc

dεB1g,0

∣∣∣∣∣
∣∣∣∣∣ dT2

dεB1g,0

∣∣∣∣∣. (E61)

Ratio relations are∣∣ dT2
dεB1g,0

∣∣∣∣ dTc
dεB1g,0

∣∣ =
�Cc
Tc

�C2
T2

= �cB1g,2

�cB1g,c

=
⎧⎨
⎩

−x+, B2g-nem,

−x−, TRSB.
(E62)
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