10th International Conference on Engineering for Waste and Biomass Valorisation

August 20-23, 2024 Sendai, Japan

The influence of brominated flame-retardants on the pyrolysis behavior of plastics via TGA and Py-GC-MS

<u>Razan ALSHARQAWI</u>, Daniela MERZ, Britta BERGFELDT, Grazyna STRACZEWSKI, Salar TAVAKKOL, Dieter STAPF

22.08.2024

Background

Examples of BFRs

Background

¹ Adapted and recreated from https://plasticseurope.org/knowledge-hub/chemical-recycling-mass-balance-explained/ ² Cl threshold value for industrial steam crackers, from Kusenberg et al., 2022, DOI: 10.1016/j.wasman.2021.11.009

⁴ Sai et al., 2022, DOI: DOI: 10.1002/sus2.73

⁵ Barontini et al., 2006, DOI: 10.1016/j.jaap.2006.01.003

Test matrix

Model materials

٠

٠

٠

Test matrix

Analytical methods

Test matrix

Analytical methods

¹ Adapted and recreated from https://particletechlabs.com/analytical-testing/thermogravimetric-analysis/ ² Adapted and recreated from https://www.azom.com/article.aspx?ArticleID=5951/

Institute for Technical Chemistry

HBr formation and tracing

Samples	Loading of ALIPH / wt%	Br content / wt%
ALIPH	100	64
PS	0	0
PS50ALIPH	50	32
PS26ALIPH	26	16.6
PS10ALIPH	10	6.4

Institute for Technical Chemistry

HBr formation and tracing

Samples	Loading of ALIPH / wt%	Br content / wt%
ALIPH	100	64
PS	0	0
PS50ALIPH	50	32
PS26ALIPH	26	16.6
PS10ALIPH	10	6.4

3

ALIPH

HBr formation and tracing

Polypropylene (PP)

Aromatic flame retardant (AROM)

HBr formation and tracing

Samples	Loading of AROM / wt%	Br content / wt%
AROM	100	81
PP	0	0
PP50AROM	50	41
PP21AROM, compounded	21	17
PP10AROM	10	8.1

Confirmed by Py-GC-MS: AROM yields **aromatic Br-HCs** (C6+)

HBr formation and tracing

Samples	Loading of AROM / wt%	Br content / wt%
DBDPE	100	81
PP	0	0
PP50AROM	50	41
PP21AROM, compounded	21	17
PP10AROM	10	8.1

Sample mass (%)

Confirmed by Py-GC-MS: PP21AROM yields aromatic Br-HCs (C6+)

ALIPH vs. AROM flame retardants

HBr formation and tracing

Samples	Loading of BFR / wt%	Br content / wt%
PS26ALIPH, mixed	26	16.6
PP21AROM, compounded	21	17
+ <u>ALIPH</u> : • Non-o • High	overlapping p release of HB	ohenomena r
AROM:		

- Overlapping phenomena
- Low release of HBr

Conclusion

Summary & Outlook

ITC

ITC @ WasteEng 2024

Scan me!

Michael Zeller Oral Flash #54

Circular **polyurethane** via pyrolysis

Niklas Netsch

Oral #53

Mixed plastics in pyrolysis Razan Alsharqawi Oral #52

> Brominated flame retardants in pyrolysis

In collaboration with: LANXESS Energizing Chemistry

Malte Hennig

Oral #58

Value chain integration of pyrolysis products

Dr.-Ing. Salar Tavakkol

Group Leader Pyrolysis Technology

Prof. Dieter Stapf

Head of Institute for Technical Chemistry KIT

