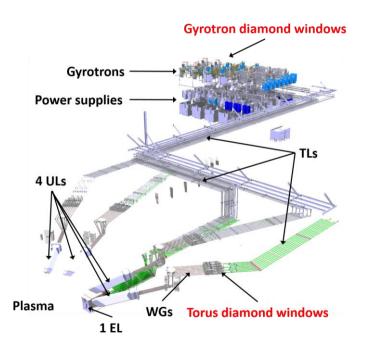
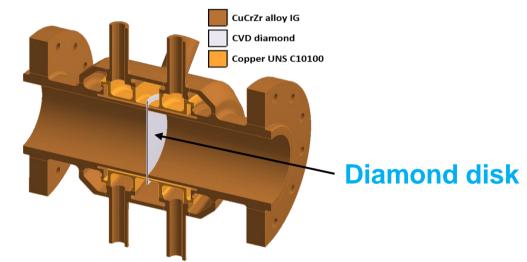


Initial characterization of MPA CVD diamond to be investigated by fracture toughness measurements

G. Aiello, C. Bonnekoh, A. Meier, T. Scherer, S. Schreck, K. Seemann, D. Strauss

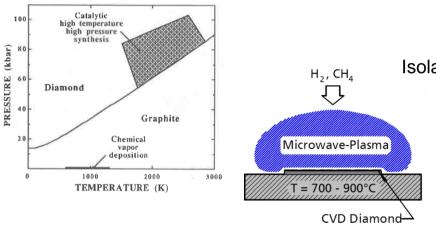
www.kit.edu

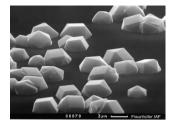



Outline

- Context
- MPA CVD diamond and properties
- Experimental setup for fracture toughness
- Characterization techniques for the samples
- Numerical analyses
- Summary and outlook

Context - EC H&CD system (ITER)





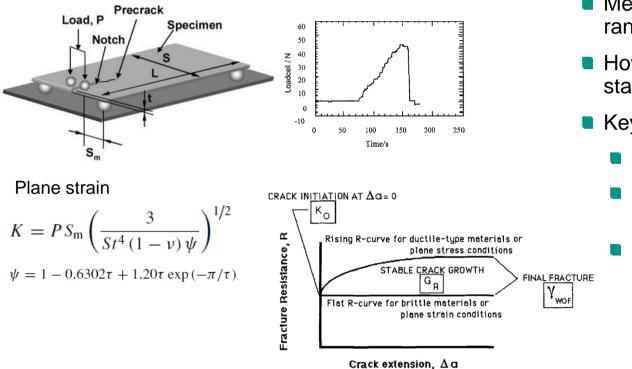
- Fundamental <u>safety role</u> of diamond disks in fusion reactors
- Failure to fracture is the main failure mode for the disks

MPA CVD diamond

Polycrystalline plate

Isolated crystallites (nucleation)

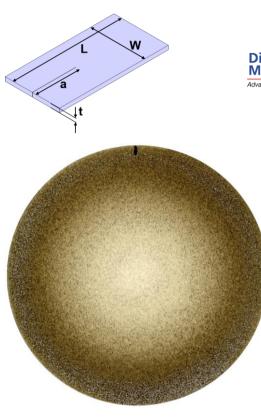
- $t = n \frac{\lambda_m}{2}$
- Diamond growth by Microwave Plasma Assisted (MPA) Chemical Vapour Deposition (CVD)
- Unique solution for MW-class, CW operation
- Growth rate of 0.1-10 µm/h
- Disk resonant thickness t = 1.11 mm (ITER)


Fracture toughness (K_{IC}) of diamond - literature

Fractur toughne (MPa m	ess $ $ Error $	Type of diamond	Thickness (µm)	Shape	Dimensions (mm)	# of samples	Test method	Code	Papers no.	Year
6.3	-	MPA CVD diamond	150 to 200	Disk	ø 25	2	Tensile test	E-399	10, 1	1995
5.6	0.4	MPA CVD diamond	150 to 200	-	-	8	Indentation		10	1995
5.3	1.3	MPA CVD diamond	400	-	-	11	Indentation		6	1991
8.7	0.3	MPA CVD diamond	880	Rectangular	13 x 18	-	Double torsion		8	1998
8.3	0.4	MPA CVD optical diamond	1000	Rectangular	13 x 18	5	Double torsion		3	2004
8.5	1	MPA CVD mechanical diamond	1000	Rectangular	13 x 18	2	Double torsion		3	2004
6.5	1.2	Arc-discharge CVD diamond	244 (aver.)	Disk	ø7 to ø16	5	Ball on ring		5	1992
7.6	1.8	Arc-discharge CVD diamond	244 (aver.)	Disk	-	4	Indentation		5	1992
8	-	Arc-discharge CVD diamond	485	Rectangular	2 x 10	9	Three-point	E-399	7	2000
9.2	-	Arc-discharge CVD diamond	485	Rectangular	2 x 10	8	Three-point	E-399	7	2000
4.6	-	Arc plasma jet CVD	300 to 700	Disk	ø8	-	Ball on ring		13	1998
6	-	CVD diamond	300	-	-	-	Indentation		2	1994
6.8	1.1	Arc plasma jet/hot filament CVD	450	Rectangular	2,5 x 12	3	Three-point	E-399	12	2001
3.4	-	Natural diamond type la and Ila	-	-	-	9	Indentation		4	1981
13	-	PDC - cobalt phase	700 (aver.)	Rectangular	~15 x 30	5	Double torsion		11	1994

5

Double torsion (DT) method for measurement

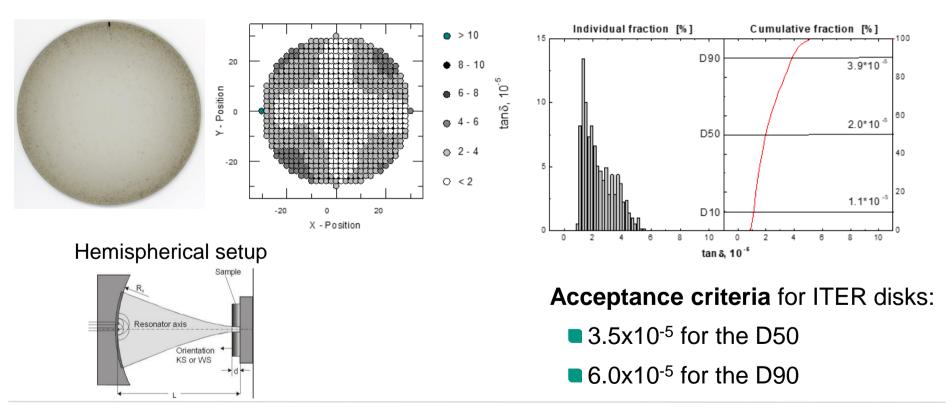

- Method applied to a very extensive range of materials
- However, it has not been standardized yet
- Key features:
 - A relatively simple method
 - K_I independent of crack lenght for a certain range
 - Ideal method for opaque materials

A. Shyam et al., J. Mater Sci 41, 2006

Diamond samples

	t (mm)	W (mm)	L (mm)	L/W	W/t
Big samples	1.11	15	30	2.0	13.5
Small samples	1.11	12	22	1.8	10.8

- Two diamond disks fabricated at end 2023: optical and thermal grade
- High cost of diamond is the limiting factor for a good statistics in the experimental measurements
- Preliminary samples available for initial characterization



Thermal disk Ø 150 mm Optical disk Ø 80 mm

Loss tangent measurements – optical grade

X-ray diffraction (XRD) measurements

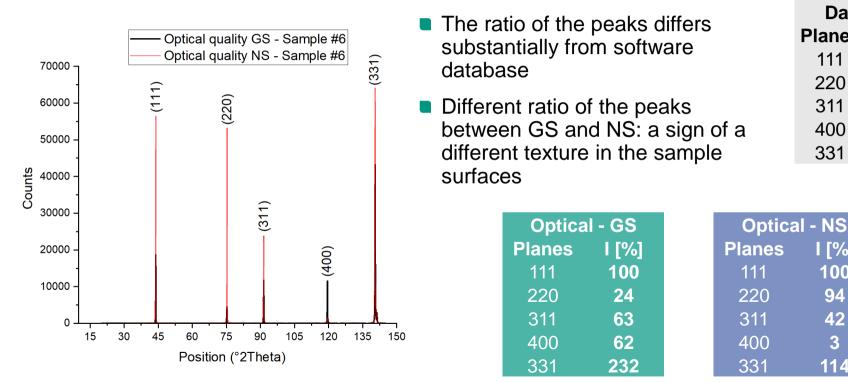
Objectives:

- XRD pattern
- Texture measurements
- Residual stress analysis

Growth Side (GS)

Thermal quality

Nucleation Side (NS)



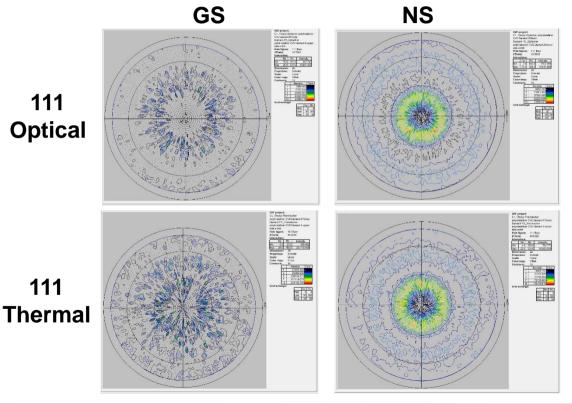
Empyrean diffractometer (Malvern Panalytical)

XRD pattern – optical grade

Database				
Planes	l [%]			
111	100			
220	25			
311	16			
400	8			
331	16			

| [%]

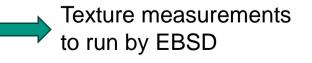
100


94

42

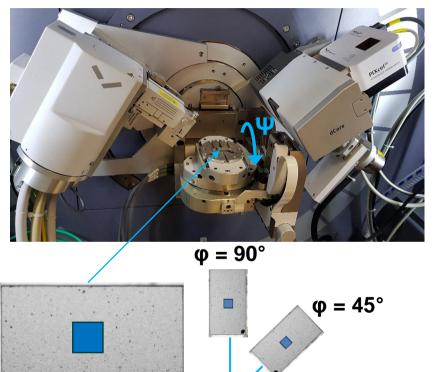
3

114


XRD texture – optical quality

 Texture measurements were done in a 2 mm x 2 mm central area in the samples

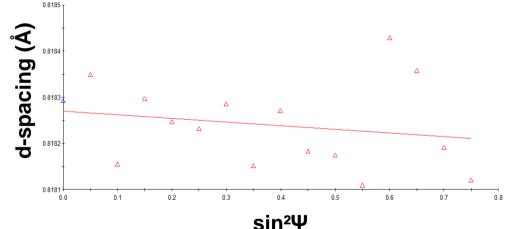
- It was not possible to draw a clear conclusion
- No crystallographic direction is however perfectly parallel to the diamond growth direction
- As expected, circular symmetry occurs

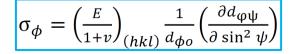


XRD residual stress analysis - I

- Determination of macroscopic in-plane residual stresses by sin²Ψ method
- Sampling area of 3 mm x 3 mm
- Cu K_{α} radiation
- (331) lattice plane selected corresponding to 2θ = 140.6°
- φ 3 directions around surface normal
- Ψ 16 sample tilt angles from 0 to 60°
- Modified Lorentzian shape function
- Isotropic elastic constants from database

$$\sigma_{\phi} = \left(\frac{E}{1+\nu}\right)_{(hkl)} \frac{1}{d_{\phi o}} \left(\frac{\partial d_{\phi \psi}}{\partial \sin^2 \psi}\right)$$


Institute for Applied Materials


 $\boldsymbol{\omega} = \mathbf{0}^{\circ}$

XRD residual stress analysis - II

- Determination of macroscopic in-plane residual stresses by sin²Ψ method
- Sampling area of 3 mm x 3 mm
- Cu K_{α} radiation
- (331) lattice plane selected corresponding to 2θ = 140.6°
- φ 3 directions around surface normal
- Ψ 16 sample tilt angles from 0 to 60°
- Modified Lorentzian shape function
- Isotropic elastic constants from database

XRD residual stress analysis - III

- First XRD residual stress measurements, to be consider as preliminary
- Average macro-residual stress appears to vary from few MPa to ~200 MPa, both in tensile and compression state
- Large value of standard deviation (maybe influence of texture, columnar growth as observed in Harker, 1994)
- Maybe triaxial stress state?
- Further investigations on the macroresidual stress state are ongoing

	NS σ (MPa)	GS σ (MPa)	Ф (°)
Optical	-8.8 ± 47.9	74.7 ± 112	0
grade	93.9 ± 45.9	-114 ± 88.7	45
	-67.5 ± 34.6	-84.6 ± 110	90
,			
	NO	00	

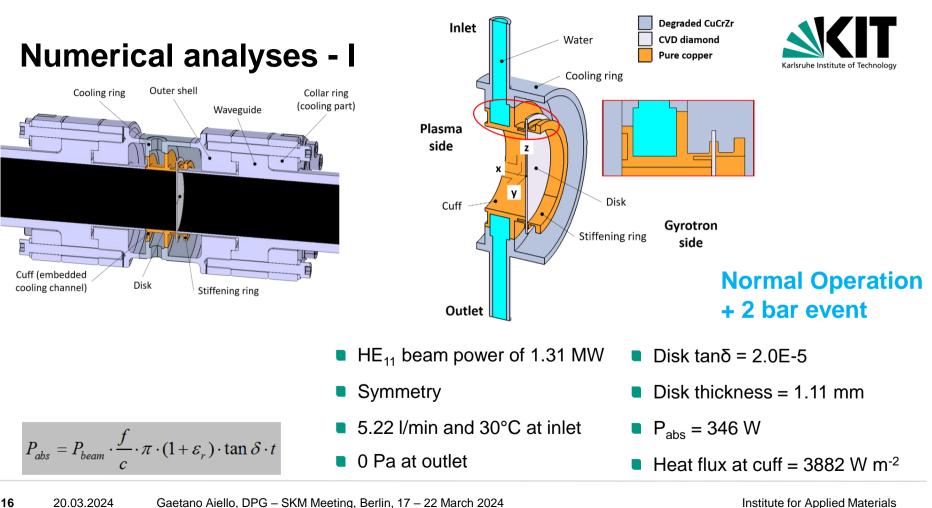
Ф (°)	GS σ (MPa)	NS σ (MPa)	
0	-161 ± 88.6	25 ± 71.1	Thermal
45	-26.9 ± 142	-47.2 ± 56.1	grade
90	193 ± 122	-32.8 ± 90.5	

Other characterization techniques

Raman

- Test measurements at ISSP, Riga (LV)
- Measurements planned at KIT

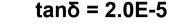
Electron Backscatter Diffraction (EBSD)

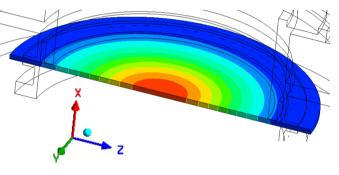

Data evaluation on going

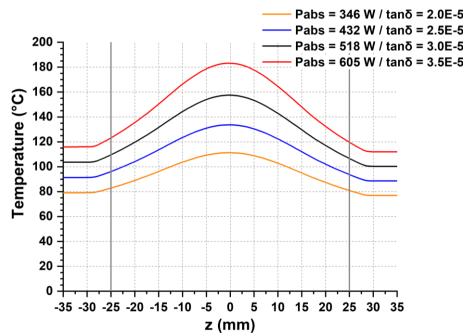
Auger / XPS

Measurements on going

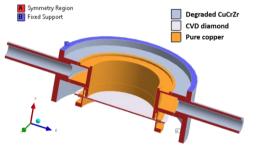
Optical quality



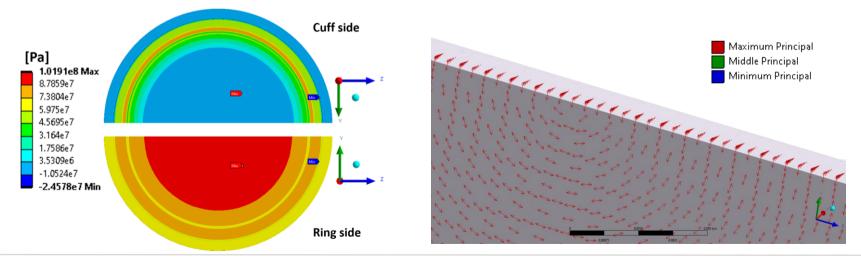



Numerical analyses - II

[°C] 1.113e+02 1.079e+02 1.044e+02 1.010e+02 9.752e+01 9.408e+01 9.063e+01 8.718e+01 8.374e+01 8.029e+01 7.684e+01



- Maximum T in the disk lower than design safe limit of 250 °C
 - Sensitivity study for loss tangent
 - Robust window design from thermal perspective



Numerical analyses - III

- Worst case: Normal Operation + 2 bar event on cuff side
- Maximum stress in the disk lower than 150 MPa allowable limit
- Vector plots of the maximum principal stresses

Summary & outlook

- A deeper mechanical characterization of MPA CVD diamond regarding its main failure mode is required
- The method for fracture toughness measurement was selected and characterization of the diamond samples have been started
- Numerical analyses for worst load scenario of the diamond disks were performed
- Continue characterization of samples
- Generate drawings of the setup and carry out the experiments

This work was supported by Fusion for Energy (F4E) under the grant contract No. F4E-GRT-615. The views and opinions expressed herein reflect only the author's views and not necessarily those of F4E and ITER Organisation (IO). F4E and IO are not liable for any use that may be made of the information contained therein.

This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme (Grant Agreement No 101052200 — EUROfusion). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them.

