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Abstract

Future transportation systems serve as a crucial foundations for enhancing hu-
man productivity. Among these, automated driving has emerged as a vital tech-
nology with the potential to improve the comfort and efficiency of road traffic
while freeing human hands from driving tasks.

It is anticipated that automated driving systems will coexist with human drivers
on the road for decades before achieving full automation. As such, a key re-
search goal is to develop autonomous vehicles that closely mimic human driv-
ing behavior, enabling passengers, other human drivers, and traffic participants
to better understand and cooperate with these vehicles. Furthermore, ensuring
provable safety is essential for the widespread acceptance of automated driv-
ing systems.

To develop driving behavior capable of handling generic traffic scenarios,
existing approaches often frame the behavior planning problem as a sequen-
tial decision-making process aimed at maximizing expected future rewards.
These methods frequently suffer from unrealistic reward functions and lack
definitive proof of human-like behavior. To address these shortcomings,
machine-learning techniques have been employed to derive driving policies
from recorded human driving trajectories in real traffic. However, some of
these approaches face runtime challenges, while others struggle to ensure
compliance with traffic rules and safety regulations.

In this work, I introduce a high-level decision-making framework for au-
tonomous vehicles, focusing on safety across diverse traffic situations and
adherence to traffic rules. This method, enhancing an existing safety concept,
takes into account factors like road types and occlusions, while also relaxing
safety requirements to achieve more natural driving behavior. It involves
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Abstract

generating safe action options, simulating future traffic scenarios to assess
outcomes, and using machine learning to analyze human driving data for
decision-making. This results in actions that mirror human decision processes
in complex driving environments.

My approach is evaluated through simulations of various scenarios, including
parallel lanes and intersecting lanes. Simulation evaluations demonstrated that
the learned policy outperformed the rule-based baseline approaches, producing
more human-like behavior while balancing driving efficiency, comfort, per-
ceived safety, and politeness.

Finally, the key part of the proposed approach has been successfully deployed
on real experimental vehicles. Demonstrations have been conducted on a test
track, as well as in regular on-road experiments.
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Kurzfassung

Zukünftige Mobilitätskonzepte bilden die entscheidende Grundlage für die
Steigerung der menschlichen Produktivität. Unter ihnen hat sich das automa-
tisierte Fahren als eine wichtige Technologie etabliert, die darauf abzielt, den
Komfort und die Effizienz des Straßenverkehrs zu verbessern und gleichzeitig
die Hände der Fahrer von Fahraufgaben zu befreien.

Es ist absehbar, dass automatisierte Fahrsysteme für mehrere Jahrzehnte mit
menschlichen Fahrern auf der Straße koexistieren werden, bevor sie vollständig
automatisiert sind. Daher ist es ein wichtiges Forschungsziel, autonome Fahr-
zeuge zu entwickeln, die menschliches Fahrverhalten möglichst genau imitie-
ren, damit Passagiere, andere Fahrer und Verkehrsteilnehmer diese Fahrzeuge
besser verstehen und mit ihnen kooperieren können. Darüber hinaus ist die Ge-
währleistung nachweisbarer Sicherheit für die breite Akzeptanz automatisierter
Fahrsysteme von entscheidender Bedeutung.

Um ein Fahrverhalten zu erzeugen, das für generische Verkehrsszenarien ge-
eignet ist, stellen bestehende Ansätze das Verhaltensplanungsproblem häufig
als sequenziellen Entscheidungsprozess dar, bei dem zukünftige erwartete Be-
lohnungen maximiert werden. Ein wesentlicher Nachteil dieser Methoden be-
steht in der Schwierigkeit, geeignete Belohnungsfunktionen für realistisches
und menschähnliches Verhalten zu finden. Um diese Mängel zu beheben, sind
Techniken des maschinellen Lernens vorgeschlagen worden, um Fahrverhalten
aus aufgenommenen menschlichen Trajektorien im realen Verkehr abzuleiten.
Einige dieser Ansätze haben jedoch Laufzeitprobleme, während andere Schwie-
rigkeiten haben, die Einhaltung von Verkehrsregeln und Sicherheitsvorschrif-
ten sicherzustellen.
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Kurzfassung

In dieser Arbeit stelle ich einen Ansatz zur Verhaltensplanung für autonome
Fahrzeuge vor, der im Hinblick auf die Sicherheit in verschiedenen Verkehrs-
situationen und die Einhaltung von Verkehrsregeln entwickelt wird. Diese Me-
thode, die ein bestehendes Sicherheitskonzept verbessert, berücksichtigt Fakto-
ren wie Straßentypen und Verdeckungen und lockert gleichzeitig Sicherheits-
anforderungen, um ein natürlicheres Fahrverhalten zu erreichen. Sie beinhaltet
die Erzeugung sicherer Aktionskandidaten, die Bewertung des Szenenfortgangs
durch Vorwärtssimulation und die Verwendung von maschinellem Lernen zur
Analyse von menschlichen Fahrdaten für die Entscheidungsfindung. Dies führt
zu Verhalten, die menschliche Entscheidungsprozesse in komplexen Fahrum-
gebungen widerspiegeln.

Mein Ansatz wird in Simulationen verschiedener Szenarien bewertet, darunter
parallele Fahrbahnen und sich kreuzende Fahrbahnen. Simulationsevaluatio-
nen zeigten, dass unsere erlernte Fahrstrategie im Vergleich zu regelbasierten
Ansätzen eine menschenähnlichere Verhaltensweise aufweist und dabei die Ef-
fizienz und sicherheit, den Komfort und die Höflichkeit besser ausbalanciert.

Schließlich wurden die Schlüsselkomponente des vorgeschlagenen Ansatzes er-
folgreich in echten Versuchsfahrzeugen implementiert. Demonstrationen wur-
den sowohl auf einer Teststrecke als auch bei Experimenten im Straßenverkehr
durchgeführt.
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1 Introduction

The development of Autonomous Driving (AD) technology is a complex and
multifaceted undertaking that involves numerous sub-modules. Over the past
several decades, significant efforts have been devoted to researching and devel-
oping AD systems with the goal of enhancing the overall safety and efficiency
of road traffic.

Section 1.1 first introduces the context and motivation of the work. Section 1.2
formulates the objectives. Afterward, Section 1.3 summarizes the contributions
of the work.

1.1 Context and Motivation of the Work

AD can hardly be achieved solely through a single module. A reasonable di-
vision of the functionality of AD into sub-systems and sub-modules enables a
structured and simplified realization of functional safety, as well as the oppor-
tunity for parallel development and testing. However, it is critical to establish
proper interfaces between sub-systems and sub-modules in advance to ensure
seamless integration and interoperability.

In the literature, it has been suggested in [Taş17] that an AD system can be
subdivided into four sub-systems, namely sensors, perception and scene un-
derstanding, behavior and motion planning, and vehicle control and actuation.
The sensors collect environmental data using devices like cameras, radars and
lidars. Perception and scene understanding processes this data to identify vehi-
cle’s surroundings, classify obstacles, assess their movements, and understand
their intentions. Behavior and motion planning then uses this information to
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1 Introduction

determine the vehicle’s driving decisions and plan future trajectory, consider-
ing safety and traffic rules. Ultimately, vehicle control and actuation manages
the vehicle’s steering, acceleration, and braking functions to accurately follow
the outlined trajectory.

The present work focuses on behavior and motion planning, specifically on
the behavior planning (or decision making) aspect of AD. It generates high-
level semantic decisions, such as changing lanes, yielding, or passing through
intersections, rather than concrete time-state sequences (trajectories) which is
managed by motion planning (or trajectory planning).

It is important to note that a decision-making module cannot assume perfect
knowledge about the environment, as neither the perception module nor the
scene understandingmodule can provide perfect states and predictions for traf-
fic participants. With these uncertainties, the perceived safety of the passengers
is more likely to be compromised, leading to increased driving risks. Slowing
down is often considered a universal solution to minimize driving risks, but
this may result in overly cautious behavior, thus affecting driving efficiency.
Therefore, it is crucial for the decision maker to strike a balance between risk
and utility.

Furthermore, decision making in AD becomes particularly challenging in
mixed traffic situations where Autonomous Vehicles (AVs) coexist with
human-driven vehicles and other traffic participants. From their perspective,
the behavior of AVs should be similar to that of human drivers to enable
normal interaction. A different behavior can lead to misinterpretation, causing
traffic problems, disturbances to other road participants, or even accidents.
Additionally, as the universal acceptance of autonomous driving systems relies
on the provable safety and explainability of the output decision, decision-
making systems that are opaque and lack interpretability of their outputs are
not suitable for this purpose.

2



1.2 Objectives

1.2 Objectives

Motivated by the numerous challenges associated with developing AD systems,
the objective of this research is to propose a novel approach for high-level de-
cision making in AVs that can make reasonable decisions under uncertain en-
vironment perception and scene understanding. The proposed approach should
be versatile enough to be applied to various traffic scenarios without requiring
significant modifications. Additionally, the output decision should remain at
a semantic level, which can then be transferred to any trajectory planning and
control module.

Prioritizing the safety of both the autonomous vehicle and other traffic par-
ticipants, the approach must allow for formal safety verification under certain
traffic rules and reasonable assumptions. The approach will also be designed
to output decisions that are interpretable and explainable, so that human users
and regulators can understand the system’s decision-making process and ensure
that it is behaving in a safe and responsible manner.

Furthermore, the proposed approach should make decisions that are similar
to the patterns from human driving trajectories and should balance efficiency,
comfort, and perceived safety in a human-like way. Ideally, the approach should
allow for the acquisition of diverse driving policies from the training data to
reflect different types of drivers. To achieve this adaptability, the proposed
approach will be based on a machine learning framework, which will allow
the system to learn from real-world driving data and adapt to new scenarios
as they arise.

Overall, the proposed decision-making approach aims to address the key chal-
lenges of developing a safe, efficient, and adaptable AD system. By incor-
porating machine learning, formal safety verification, and interpretability, the
proposed approach has the potential to significantly improve the safety and ef-
ficiency of autonomous driving systems, and enable the widespread adoption
of this transformative technology.

3
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1.3 Contributions

The contributions of this thesis are as follows:

• Proposing a comprehensive framework for learning human-like driving
behaviors from recorded data, integrating human knowledge (e.g., traf-
fic rules) for high-level decision-making. This framework ensures inter-
pretability and traceability of decisions.

• Refining the safety concept from [Nau20a], extending the Responsibility-
Sensitive Safety (RSS) framework [Sha17] to cover various traffic sce-
narios and intersection types, addressing occlusions and proximity chal-
lenges. Precise definitions for vehicle reachability and other limits en-
hance the safety model.

• The extended RSS safety concept is further relaxed in the case of a better
perception and scene understanding, e.g. by the proposed method for
temporal tracking of occluded road sections. Statistic analyses on the
relaxed safety concept on real traffic data are performed as well.

• Introducing a new schema for representing and executing high-level ac-
tions in various scenarios, and proposing rule-based policies that are
provable safe within the safety framework.

• To derive driving policies from real data, key features affecting driving
decisions are identified. Their values are estimated viaMonte-Carlo Sim-
ulation (MCS) that is able to handle uncertainties and occlusions.

• Developing a clustering approach with MCS-derived features to group
training data, capturing varied driving styles and facilitating diverse pol-
icy learning.

• Creating a method to convert recorded trajectories into interactive simu-
lations, enabling the evaluation of our approach in realistic settings.

4



2 Fundamentals and Related Work

Decision making is a cornerstone of autonomous systems, underpinning their
ability to navigate complex environments, interact safely with other agents,
and achieve designated objectives. However, the real-world scenarios in
which these systems operate often present numerous uncertainties, arising
from incomplete observations, unpredictable environments, or inherent system
dynamics. This chapter delves into the theoretical foundations and practical
approaches to decision making under such uncertainties, setting the stage for
its application in the field of automated driving.

2.1 Fundamentals of Decision Making under
Uncertainty

The art and science of making informed choices in the face of uncertainty
have been a focal point of research across diverse domains, from economics to
robotics. Decision making under uncertainty attempts to offer robust solutions
that account for various sources of ambiguities, ensuring reliable and efficient
system behavior. The following subsections dissect the principal methodolo-
gies for sequential decision making, decision making with state or model un-
certainty, and the emerging field of learning decisions directly from demon-
strations.
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2.1.1 Sequential Decision Making

Sequential decision making involves making a series of decisions over time,
often with the intent of optimizing a particular outcome. The Markov Deci-
sion Process (MDP) framework serves as a foundational model for represent-
ing these decision making processes.

Markov Decision Process (MDP)

A MDP is a mathematical structure, described by the tuple (𝑆, 𝐴, 𝑇 , 𝑅), where
𝑆 represents a finite set of states, capturing all possible situations or config-
urations of the system in question. 𝐴 denotes a finite set of actions, defin-
ing the different choices or maneuvers that can be executed in any given state.
𝑇 ∶ 𝑆 × 𝐴 × 𝑆 → [0,1] is the state transition function. It provides the dynam-
ics of the environment, stipulating the probability of moving from one state to
another after choosing a specific action. The state transition occurs probabilisti-
cally, based on the present state and chosen action. This presupposition, which
posits that the subsequent state relies solely on the current state and action,
excluding any preceding states or actions, is termed the Markov assumption.
𝑅 ∶ 𝑆 × 𝐴 × 𝑆 → ℝ is the reward function, which allots a numerical reward
(or cost) for transitioning between states given an action.

Within the MDP framework, a policy 𝜋 is defined as a mapping from states
to actions, 𝜋 ∶ 𝑆 → 𝐴. In deterministic policies, each state is mapped to a
specific action. In stochastic policies, 𝜋 defines a probability distribution over
actions for each state, 𝜋 ∶ 𝑆 → 𝒫 (𝐴), where 𝒫 (𝐴) is the set of all probability
distributions over 𝐴.

The objective in an MDP is to determine an optimal policy 𝜋∗ that maximizes
the expected cumulative reward over time. The quality of a policy is quantified
by its value function 𝑉 𝜋(𝑠), which calculates the expected cumulative reward
of starting in state 𝑠 and following policy 𝜋.
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Bellman Equation

The value function is a cornerstone of understanding the quality of decision
making in MDPs. It quantifies the expected cumulative reward when starting
from a particular state 𝑠 and following a specific policy 𝜋.

Mathematically, for a policy 𝜋, the value function 𝑉 𝜋(𝑠) is defined as:

𝑉 𝜋(𝑠) = 𝔼
[

∞

∑
𝑡=0

𝛾 𝑡𝑅(𝑠𝑡, 𝜋(𝑠𝑡), 𝑠𝑡+1)|𝑠0 = 𝑠
]

(2.1)

Where 𝔼 is the expectation operator, and 𝑠𝑡 denotes the state at time 𝑡. The dis-
count factor 𝛾 (where 0 ≤ 𝛾 < 1) determines the present value of future rewards,
with a lower 𝛾 giving more weight to immediate rewards and a higher 𝛾 empha-
sizing long-term gains.This function provides a measure of the worth of a state
when adhering to policy 𝜋, considering both immediate and future rewards.

While each policy has its value function, some policies are better than others.
The optimal value function 𝑉 ∗(𝑠) signifies the highest expected cumulative re-
ward achievable from state 𝑠:

𝑉 ∗(𝑠) = max
𝜋

𝑉 𝜋(𝑠) (2.2)

It represents the best performance that can be attained from a state, irrespective
of the initial policy.

Obtaining 𝑉 ∗(𝑠) directly is often computationally challenging, especially for
large state spaces. However, one can exploit the recursive nature of the value
function to simplify the process. This brings us to the Bellman equation, which
provides a relationship between the value of a state and the potential values of
its successors.

The Bellman optimality equation is foundational for deriving the optimal value
function and, subsequently, the optimal policy. It is given by:

7
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𝑉 ∗(𝑠) = max
𝑎∈𝐴 ∑

𝑠′∈𝑆
𝑇 (𝑠, 𝑎, 𝑠′)[𝑅(𝑠, 𝑎, 𝑠′) + 𝛾𝑉 ∗(𝑠′)] (2.3)

The term max𝑎∈𝐴 seeks the action that maximizes the expected value of the cu-
mulative reward. The sum over 𝑠′ accounts for all possible next states, weight-
ing them by their transition probabilities. The reward 𝑅(𝑠, 𝑎, 𝑠′) represents the
immediate reward, and 𝛾𝑉 ∗(𝑠′) captures the discounted future reward.

The beauty of the Bellman optimality equation lies in its recursive structure.
By iteratively updating the value function estimates using this equation, one
can converge to the optimal value function. In essence, the Bellman equation
offers a systematic, recursive approach to deduce the optimal decision-making
strategy in MDPs.

Solving MDPs

Several iterative algorithms aim to solve MDPs and obtain the optimal pol-
icy 𝜋∗:

• Value Iteration (VI): VI successively refines the value of each state using
the Bellman equation until a convergence criterion is met. With each iter-
ation, the value function approximation improves, eventually converging
to the optimal value function.

• Policy Iteration (PI): PI alternates between assessing a fixed policy and
enhancing it based on the current estimated value function. Although
the number of possible policies is exponential in the number of states, PI
often converges quickly for small problems. However, it can be expensive
for large problems as the policy needs to be evaluated each iteration.

In essence, the MDP framework provides a systematic approach to address se-
quential decision-making challenges, offering the tools to find the best action
strategy for any given system.

8



2.1 Fundamentals of Decision Making under Uncertainty

2.1.2 Decision Making with State Uncertainty

State uncertainty introduces a significant layer of complexity in the decision-
making process. It emerges when an agent cannot perfectly perceive its environ-
ment due to noise, sensor limitations, or other sources of ambiguity. The Par-
tially Observable Markov Decision Process (POMDP) serves as a foundational
model to address decision making in scenarios riddled with state uncertainties.

Partially Observable Markov Decision Process (POMDP)

A POMDP is an extension of the MDP that incorporates the notion of ob-
servations. Formally, a POMDP is described by the tuple (𝑆, 𝐴, 𝑇 , 𝑅, 𝑂, 𝑍),
where 𝑂 represents a finite set of observations that the agent can perceive.
𝑍 ∶ 𝑆 × 𝐴 × 𝑂 → [0,1] is the observation function, which provides the proba-
bility of observing 𝑜 ∈ 𝑂 after taking action 𝑎 ∈ 𝐴 and landing in state 𝑠′ ∈ 𝑆.

Given the uncertainties in state observations, agents operating within POMDPs
often maintain a belief 𝑏(𝑠), which is a probability distribution over all states
in 𝑆. The set of all possible beliefs constitutes the belief space, denoted as
𝐵. With each action taken and subsequent observation received, the belief is
updated to better reflect the current understanding of the environment. Several
methods, such as the Kalman filter and particle filter, are employed to update
these beliefs:

• Kalman Filter: Assuming the system and observations are linear and
Gaussian, the Kalman filter offers an efficient way to update beliefs based
on a series of measurements over time. It has several extensions to be
applicable on non-linear systems as well.

• Particle Filter: For non-linear or non-Gaussian systems, particle filters
use a set of samples (or particles) to represent the belief distribution and
update it.
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Offline vs. Online Belief State Planning

Offline methods aim to compute a policy for every possible belief in the belief
space 𝐵 beforehand. While these methods can produce policies that are imme-
diately accessible during execution, they often face scalability issues, especially
in large state spaces. In contrast, online methods compute actions on-the-fly
based on the current belief. By focusing only on the immediate decision, online
methods can navigate large state spaces more efficiently, and adapt to unfore-
seen scenarios or non-stationary environments better. While online methods
offer several advantages, they also face some challenges.

• Computational Time Constraints: Online methods require real-time
or near-real-time computation. For environments that necessitate rapid
decisions, the agent might not have sufficient time to explore the belief
space deeply, leading to suboptimal actions.

• Limited Lookahead: Due to time constraints, online methods might of-
ten consider only a limited horizon. This can cause them to miss long-
term consequences of actions, making the decision process myopic.

• Vulnerability to Model Imperfections: Online methods rely heavily on
the accuracy of the system’s model for on-the-fly computations. Any
imperfection in the model, such as inaccurate transition or observation
probabilities, can greatly degrade the quality of decisions.

Despite these challenges, online belief state planning remains a valuable ap-
proach in many scenarios, especially when the state space is large or when the
environment is dynamic. However, understanding these limitations is crucial
to apply online methods effectively and to devise potential mitigations.

There are several methods for solving POMDPs online. For instance, forward
search evaluates the consequences of possible actions by simulating trajectories
from the current belief state. While effective in evaluating the consequences of
actions by simulating trajectories, it has some significant challenges. For in-
stance, the branching factor in forward search can lead to exponential growth
in the number of trajectories as the depth of search increases. This can become
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computationally intractable for deep searches or environments with many ac-
tions. In order to tackle the problems, branch and bound aims to prune the
search tree by setting bounds on the potential value of trajectories. If a partial
trajectory’s upper bound is lower than the currently known best solution’s lower
bound, this trajectory can be pruned without further exploration. This approach
reduces the search space significantly, making the process more efficient. In-
stead of considering all possible trajectories, sparse sampling selects a random
subset to evaluate. This method, while potentially missing certain paths, drasti-
cally reduces the computational overhead. By adjusting the number of samples,
one can trade-off between accuracy and computational efficiency.

Transitioning from traditional forward search methods, Monte Carlo Tree
Search (MCTS) has emerged as a powerful tool for online belief state planning.
By statistically sampling the belief space, MCTS focuses on more promising
paths, leveraging the exploration-exploitation trade-off. Its tree-based structure
allows for iterative deepening, addressing the short-horizon bias of conven-
tional forward search. With its ability to scale gracefully with computational
resources and provide anytime solutions, MCTS stands as a robust alternative
in scenarios where forward search’s disadvantages become pronounced.

In sum, when grappling with state uncertainty, methodologies derived from
POMDPs offer robust tools to ensure agents make informed decisions, even
when faced with partial or noisy observations.

2.1.3 Decision Making with Model Uncertainty

Model uncertainty arises when the agent lacks a complete understanding or
model of the environment dynamics, leading to a need for exploration. Rein-
forcement Learning (RL) is a paradigm where agents learn by interacting with
an environment and receiving feedback in the form of rewards. The primary
goal in RL is to find a strategy or policy that maximizes the expected cumu-
lative reward over time.

11



2 Fundamentals and Related Work

Model-based vs. Model-free Methods

In the RL framework, there are two main approaches: model-based and model-
free. Model-based methods utilize a model of the environment’s dynamics to
plan and decide on actions, often allowing for efficient learning. However, ac-
quiring an accurate model can be challenging in many real-world situations. In
contrast, model-free methods do not rely on an explicit model of the environ-
ment. Instead, they learn a policy or value function directly from interactions
with the environment, making them more versatile in the face of model un-
certainty.

Q-learning

Focusing on model-free methods, one of the most fundamental algorithms is
Q-learning. The central idea is to learn the Q-function, denoted 𝑄(𝑠,𝑎), which
represents the expected cumulative reward from taking action 𝑎 in state 𝑠 and
following the optimal policy thereafter. The Q-function is updated iteratively
using the Bellman equation:

𝑄(𝑠,𝑎) ← 𝑄(𝑠,𝑎) + 𝛼 (𝑟 + 𝛾 max
𝑎′

𝑄(𝑠′, 𝑎′) − 𝑄(𝑠,𝑎)) (2.4)

where 𝛼 is the learning rate, 𝑟 is the immediate reward after taking action 𝑎 in
state 𝑠, 𝛾 is the discount factor, and 𝑠′ is the succeeding state after the action.

On-policy vs. Off-policy Methods

Model-free methods can be further categorized into on-policy and off-policy
methods. On-policy methods, learn the value of the policy being used for ex-
ploration, i.e., the same policy is responsible for both learning and decision
making. Off-policy methods, like Q-learning, learn the value of an optimal pol-
icy while behavior might be derived from another exploratory policy, allowing
them to learn independently of the policy used to generate the data.
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As the field of RL evolved, several advanced on-policy algorithms emerged,
aiming to address challenges in stability, scalability, and efficiency. Trust Re-
gion Policy Optimization [Sch15] and Proximal Policy Optimization [Sch17]
enforce a constraint on the policy update to ensure that changes aren’t too dras-
tic, promoting stable learning.

Besides Q-learning, Actor-Critic [Sut99] methods count as off-policy ap-
proaches as well, which decouple the policy and value function into two
separate structures: an actor that proposes actions based on the learned policy
and a critic that evaluates them based on the learned value function. This
separation allows for more stable and efficient learning. Deep Deterministic
Policy Gradient [Sil14] is an actor-critic method but is designed for continuous
action spaces.

On-policy approaches are constantly adapting to their learned behavior, making
them more responsive to changes but are often more expensive to train. In con-
trast, off-policy methods, can learn from past experiences or even hypothetical
scenarios. This decoupling allows for greater training flexibility. However, a
major challenge is reconciling the discrepancy between the target and behav-
ior policies, requiring complex corrections to align state-action distributions,
which, if not managed carefully, can lead to learning instability and divergence
due to high variance or bias.

2.1.4 Learning Decisions from Demonstration

Learning from demonstration, often referred to as Imitation Learning (IL), is a
paradigm where the learning agent seeks to emulate expert behavior by observ-
ing demonstrations. Unlike traditional RL, where agents learn from trial and
error, imitation learning benefits from expert knowledge, potentially speeding
up the learning process. IL introduces two additional notations. 𝜏 is a trajec-
tory, which is a sequence of state-action pairs 𝜏 = {(𝑠1, 𝑎1), … , (𝑠𝑇 , 𝑎𝑇 )}. 𝒟
represents a dataset of expert trajectories 𝒟 = {𝜏1, 𝜏2, … , 𝜏𝑁 }.
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Behavior Cloning (BC)

Behavior Cloning (BC) is a supervised learning approachwhere the agent learns
a policy 𝜋(𝑎|𝑠) that tries to replicate the expert’s actions in observed states.
Mathematically, BC seeks to maximize the likelihood of the observed expert
actions given the states:

𝜋∗ = argmax
𝜋 ∑

𝜏∈𝒟
∑

(𝑠,𝑎)∈𝜏
log𝜋(𝑎|𝑠) (2.5)

However, BC has inherent shortcomings such as cascading errors, where small
errors can compound over time as the agent diverges from the expert’s trajec-
tory, and poor generalization, where BC might not perform well in states not
present in the demonstration dataset. To address these challenges, strategies
like Dataset Aggregation (DAgger) [Ros11] have been proposed. DAgger in-
volves iteratively collecting dataset from both the expert and the current policy
to ensure the policy is trained on its distribution of states.

Inverse Reinforcement Learning (IRL)

Inverse Reinforcement Learning (IRL) is predicated on determining the under-
lying reward function that an expert might be optimizing, given their observed
behaviors. Traditional IRL endeavors to find a reward function that makes the
expert’s behavior appear optimal. In contrast, Maximum Entropy IRL [Zie08]
assumes the expert acts optimally with respect to some reward function but also
behaves to maximize the entropy of their policy. This view suggests that the
expert introduces randomness in their actions, reflecting a probabilistic manner
in decision making.

Formally, the objective in Maximum Entropy IRL is given by:

max
𝑅 ( ∑

𝜏∈𝒟
𝑝(𝜏|𝑅) − 𝜆𝐻(𝜏)

)
, (2.6)
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where 𝑅 is the inferred reward function and 𝜏 is a trajectory consisting of state-
action pairs. 𝑝(𝜏|𝑅) denotes the probability of trajectory 𝜏 given the reward
function 𝑅. It indicates how probable a particular trajectory is for a given re-
ward function. Deriving this requires solving an MDP with reward function 𝑅
to get a policy and then computing the likelihood of the trajectory under this
policy. 𝐻(𝜏) is the entropy of the trajectory, signifying the unpredictability
in the expert’s behavior. 𝜆 is a parameter balancing the expert data fit and the
policy’s entropy. A higher 𝜆 emphasizes stochasticity, while a smaller one ac-
centuates fitting expert demonstrations.

The goal in Maximum Entropy IRL is to deduce a reward function 𝑅 that har-
monizes these two components: aligning with expert trajectories while also
encapsulating stochastic behavior.

Adversarial Methods

Generative Adversarial Imitation Learning (GAIL) [Ho16] presents an adver-
sarial approach to imitation learning. The idea is to train a policy 𝜋 and a
discriminator concurrently. The discriminator, 𝐷(𝑠, 𝑎), tries to distinguish be-
tween the agent’s and expert’s trajectories. It is trained to maximize:

ℒ𝐷 = ∑
𝜏∈𝒟

log𝐷(𝑠, 𝑎) + ∑
𝜏′∼𝜋

log(1 − 𝐷(𝑠, 𝑎)), (2.7)

while the policy, 𝜋(𝑎|𝑠), minimizes:

ℒ𝜋 = 𝔼(𝑠,𝑎)∼𝜋[log(1 − 𝐷(𝑠, 𝑎))]. (2.8)

In GAIL, the policy learns to produce trajectories that the discriminator can not
distinguish from the expert’s, leading to imitation of the expert behavior.

To summarize, IL provides a path to harness expert demonstrations, sidestep-
ping some challenges posed by traditional RL. Whether through direct repli-
cation in BC, reward inference in IRL, or adversarial frameworks like GAIL,
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these methods present rich avenues for learning policies in complex environ-
ments, especially when exploration is costly or dangerous.

2.2 Decision Making for Automated Driving

Decisionmaking under uncertainty is a fundamental concept that finds its appli-
cation in various domains, including robotics. However, when it comes to AD,
the decision-making process is nuanced and presents unique challenges. Unlike
general decision making for robotics, AD operates in a dynamic environment
with multiple unpredictable agents, such as human drivers, pedestrians, and
other road users. This introduces additional complexities:

Human Interaction: AD systems must anticipate and understand human be-
havior, which cannot be directly measured, leading to high uncertainties in pre-
diction [Hub17].

Dynamic Environments: Road conditions, traffic flow, and environmental fac-
tors can change rapidly, requiring the AD system to constantly adapt and make
decisions in real-time.

Traffic Rule Compliance: AVs are required to obey various predefined traffic
rules that has large influence on the decision-making process.

Safety Constraints: Unlike other robotic systems, any decisionmade by an AD
system has direct implications on human safety, both inside and outside the ve-
hicle. Especially critical is the fact that AVs usually drive at higher speed which
makes safety more difficult to maintain. This necessitates the development of
decision-making algorithms that prioritize safety above all else.

Given these challenges, various approaches have been proposed to address de-
cision making for AD. In the subsequent sections, I will delve into probabilistic
planning approaches, RL, and imitation learning, shedding light on the recent
advancements and methodologies in these areas.
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2.2.1 Probabilistic Planning Approaches

Probabilistic planning approaches aim to address the inherent uncertainties in
the decision-making process for AD. By leveraging probabilistic models, these
approaches provide a structured way to handle the unpredictable nature of the
driving environment.

A notable approach in this domain is the use of MCTS. For instance, a coop-
erative combinatorial motion planning algorithm has been proposed that does
not necessitate inter-vehicle communication, relying instead onMCTS [Len16].
This approach is particularly beneficial in scenarios like autonomous highway
driving.

The challenge of understanding and predicting the intentions of surrounding ve-
hicles has been formulated as a POMDP. The intention of other vehicles serves
as hidden variables in this model, accounting for uncertainties stemming from
noisy sensor data and the unobservable nature of human intentions [Hub17].
This POMDP formulation has been further extended to address complex driv-
ing scenarios. For instance, merging into narrow gaps in high traffic density
urban environments requires considering interactions with other vehicles. By
including surrounding drivers in the state space, a more interactive behavior
can be realized, which is solved online using Monte Carlo sampling combined
with an efficient A* rollout heuristic [Hub18].

Another challenge in urban driving is handling occlusions. A POMDP-based
maneuver planner has been introduced that usesMonte Carlo sampling to gener-
ate possible future episodes. These episodes account for the uncertain behavior
of known traffic participants and the existence probability of phantom vehicles
in occluded areas [Hub19].

The concept of belief-based rewards has also been explored, where planning in
POMDPs inherently gathers the necessary information to act optimally under
uncertainties. By considering belief-based rewards, POMDP planning can be
guided towards informative beliefs, combining the original reward with the
expected information gain [Fis20]. Efficiency in sampling-based planning
approaches has been enhanced by utilizing variants of Multi-Armed Bandit
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heuristics. These heuristics make Lipschitz continuity assumptions on the out-
comes of actions, improving the efficiency of such planning methods [Taş21].

Lastly, to address the curse of dimensionality in belief space planning, policies
trained in belief space have been proposed as heuristics. These heuristics guide
online belief space planning algorithms, offering a more efficient solution to
the problem [Fis22].

In summary, probabilistic planning approaches offer a robust framework for
decision making in AD, accounting for uncertainties presented by the dynamic
driving environment. However, they still face some challenges:

• Computational Complexity: As the size of the state, action, or obser-
vation space increases, the computational requirements grow, making it
intractable for real-time decision making in complex driving scenarios.

• Non-parallelizable Tree Search: Tree searches in POMDPs are inher-
ently sequential and may not be easily parallelized, limiting the speed-up
gains from modern multi-core processors.

• Scalability Issues: Real-world driving environments have huge number
of scenarios and environmental conditions, making these approaches less
practical for comprehensive AD systems.

• Difficulty in Imitating Human Behavior: As POMDPs still rely on
the underlying reward function, replicate human-like driving behavior
remains a challenge.

2.2.2 Reinforcement Learning

RL has emerged as a powerful tool for decision making in complex environ-
ments, offering the potential to learn optimal policies from interactions with
the environment. In the context of AD, RL provides a framework to learn driv-
ing behaviors that can adapt to the dynamic and uncertain road environments.
However, the application of RL to AD presents unique challenges and consider-
ations, which have been addressed in various ways by the research community.
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Solving Scenarios with Deep Reinforcement Learning

Deep RL combines the power of neural networks with RL to handle high-
dimensional state spaces in driving scenarios. For instance, the on-ramp merge
scenario, a challenging task due to the interactive nature of merging with high-
way traffic, has been tackled using deep RL techniques. A Long Short-Term
Memory (LSTM) architecture was employed to model the interactive environ-
ment, feeding into a Deep Q-Network (DQN) to determine the optimal driving
policy [Wan17]. Planning with high-level actions is incorporated in [Tri20]
to increase the safety of the merging policy, allowing the learning component
to be agnostic to the low-level control scheme. Passenger comfort is further
increased by combining model predictive control with RL in [Lub21].

To ensure robust lane change decisions under observation uncertainties, an ob-
servation adversarial RL approach was proposed, optimizing lane change poli-
cies while keeping policy variations within bounds [He23]. Overtaking is also
challenging as it requires long-horizon planning capability and is tackled in
[Liu20] with DQN. Similarly, deep RL has been applied to navigate occluded
intersections, surpassing the performance of heuristic approaches in task com-
pletion time and goal success rate [Ise18]. The challenge of negotiating be-
haviors at intersections has also been addressed using DQN, where the policy
adapts vehicle speed based on observations of other vehicles’ distances and
speeds [Tra18].

Safety Considerations

Safety remains paramount in AD. A multi-agent RL approach was proposed to
ensure both driving comfort and safety. This approach decomposes the prob-
lem into a Policy for Desires and trajectory planning with hard constraints. The
introduction of anOption Graph further reduces the effective horizon, optimiz-
ing gradient estimation [Sha16]. Another approach combined RL with formal
safety verification, ensuring only safe actions are chosen. This method achieved
fast learning rates without causing collisions, outperforming rule-based sys-
tems [Mir18]. The challenge of navigating intersections was addressed using
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a modular decision making algorithm, incorporating a safe RL algorithm with
model-checking for safety guarantees and a belief update technique for robust-
ness against perception errors [Bou19].

Incorporating risk measure in learning process is another way of improving
safety performance. In order to address scalability and safety, a constrained
RL approach was proposed, automating the trade-off between risk and utility
without requiring reward parameter tuning in [Kam22]. A risk-aware DQN
approach was introduced for navigating unsignalized occluded intersections,
incorporating risk prediction into the Q-network for safer policies [Kam20].

Architectural Innovations and Scalability

Handling variable-sized inputs, especially in dynamic environments like AD,
requires specialized architectures. The limitations of fully-connected neural
networks and other established approaches were addressed by employing the
structure of Deep Sets in off-policy RL, which showed better generalization to
unseen situations [Hue19]. The combination of planning and deep RL has also
been explored, using the AlphaGo Zero algorithm extended to a domain with
a continuous state space, outperforming baseline methods [Hoe20]. Another
approach combined RL with game theory, using a training curriculum based on
level-k behavior, resulting in policies robust to model discrepancies [Bou20].

Offline RL and Incorporating Human Demonstrations

Offline RL, learning directly from offline datasets, is especially relevant for
AD due to the feasibility of collecting real-world driving data. An offline RL
benchmark for AD was introduced, deploying popular offline algorithms and
analyzing their performance under different datasets [Fan22]. Human demon-
strations offer valuable insights into safe and efficient driving behaviors. By
incorporating human demonstrations into the RL-based decision making strat-
egy, the safety of RL decisions was significantly improved, outperforming other
learning-based strategies [Wu22].
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Discussion

RL has shown promise in various domains, including games and robotics. How-
ever, deploying RL approaches in real-world AD systems presents several ma-
jor challenges:

• Safety Concerns: RL agents learn by interacting with environments,
which often involves making mistakes to learn optimal strategies. How-
ever, in real-world driving, mistakes can be catastrophic.

• Sim-to-Real Transfer: While training RL agents in simulators is safer
and more scalable, transferring learned policies to real-world scenarios
is non-trivial due to the reality gap. Simulated environments can not
perfectly replicate real-world conditions.

• Modeling Human Behavior: A human-like driving behavior is hardly
achievable just by designing a reward function.

• Interpretable and Explainable AI: For safety and regulatory reasons, it
is crucial to understand and explain the decisions made by AD systems.
RL policies, especially those derived from deep learning, can be black-
boxes, making them hard to interpret.

2.2.3 Imitation Learning

In the context of AD, IL involves learning from human driving trajectories to
make decisions that closely resemble human behavior. This section delves into
the various methodologies in IL that have been developed for AD.

Behavior Cloning

BC for AD is often an end-to-end approach where the system learns to map ob-
servations directly to actions using supervised learning. The primary advantage
of this method is its simplicity, as it directly learns from expert demonstrations
without the need for reward engineering. Direct mapping from observations
(e.g. input camera images) to actions abandons many intermediate modules as
well. Success in complex scenarios, especially in lateral motion control [Sha18]
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has been demonstrated. As seen in the NAVNet architecture [Sak19], it also
possesses the ability to handle temporal dynamics and convolutional percep-
tual representations. However, according to [Cod19], end-to-end BC has the
following shortcomings:

• Requiring huge amount of training data.

• Susceptibility to dataset bias and overfitting.

• Absence of causal modeling.

• Training instabilities that may hinder real-world deployment.

Inverse Reinforcement Learning

IRL seeks to deduce the latent reward structures that experts implicitly follow,
offering a deeper understanding of the motivations behind expert decisions.
This approach has been applied in various contexts within the field of AD.

Some research has delved into the hierarchical nature of driving decisions, en-
compassing both discrete and continuous choices. For instance, a probabilistic
prediction approach based on hierarchical IRL has been proposed, which has
shown promise in scenarios like ramp-merging [Sun18].

Personalizing AD to individual preferences is a growing area of interest. The
Personalized Adaptive Cruise Control (ACC) system learns driver-specific car-
following preferences using model-based maximum entropy IRL [Zha22]. Ad-
ditionally, leveraging naturalistic human driving data, models have been pro-
posed that focus on discrete latent driving intentions, offering a more realis-
tic representation of human driving behavior [Hua20, Xu23]. In the field tra-
jectory planning, the exploration of cost functions in IRL has been pivotal in
understanding their suitability for mimicking human behavior across various
scenarios [Nau20b]. Furthermore, the integration of BC with IRL, as proposed
in a preprocessing framework for expert examples, has shown potential in en-
hancing the quality of expert demonstrations, leading to more accurate reward
functions [Li21].
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Ensuring safety in IRL is paramount. Research like Constrained Soft Reinforce-
ment Learning has addressed maximum entropy IRL in constrained environ-
ments, emphasizing the importance of safety [Fis21]. Cooperative trajectory
planning methods, combined with Maximum Entropy IRL and MCTS, have
been proposed to learn reward models that mimic expert cooperative trajecto-
ries [Kur22]. Notably, DriveIRL has demonstrated the real-world potential of
IRL in dense urban traffic scenarios [Pha23].

Adversarial Methods

Adversarial methods in IL involve a game-theoretic approach where a policy is
trained to imitate expert behavior while a discriminator attempts to differentiate
between the policy’s actions and those of the expert.

GAIL stands as a fundamental approach in adversarial IL for driver behav-
ior modeling. It has showcased significant robustness compared to direct BC
[Sac22]. Variations of GAIL, such as those augmented with BC, have been
proposed for urban driving scenarios, emphasizing the method’s versatility and
efficiency in diverse contexts [Kar21]. Another notable advancement is the
use of GAIL for modeling driver behavior in multi-agent settings, highlight-
ing the method’s capability to capture complex interactions among multiple
agents [Bha23].

Adversarial IL’s adaptability is evident in its ability to learn effectively from im-
perfect demonstrations. By leveraging confidence scores, methods like two-step
importance weighting IL and GAIL with imperfect demonstration and confi-
dence have been developed to address challenges posed by sub-optimal demon-
strations [Wu19]. Furthermore, novel techniques to enhance performance in the
presence of imperfect demonstrations are introduced in [Hu23], underscoring
the method’s resilience.

To enhance the safety, the Safety-Aware Hierarchical Adversarial Imitation
Learning [Jam23] approach employs hierarchical adversarial IL tailored for ur-
ban environments, demonstrating the method’s potential in handling complex
urban driving scenarios.
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Discussion

In summary, while BC offers a direct and intuitive approach to imitation learn-
ing, it can face challenges in generalization and robustness. IRL, with its fo-
cus on underlying reward structures, provides a deeper understanding but can
be computationally intensive. Adversarial Methods, especially GAIL, strike
a balance by leveraging game-theoretic principles to achieve robustness and
generalization, making them promising for real-world applications. However,
safety is not always guaranteed and traffic rules can hardly be integrated in these
approaches, despite special hierarchical safety design [Jam23].

2.3 Safety in Decision Making for Automated
Driving

Safety is paramount in the field of AD. As vehicles become increasingly au-
tonomous, the decision-making processes guiding their actions must be robust,
reliable, and above all, safe. Ensuring safety in decisionmaking is not just about
preventing collisions; it is about instilling trust in passengers, other road users,
and the wider public. This trust hinges on the vehicle’s ability to make deci-
sions that are not only technically sound but also align with human expectations
and traffic norms. From navigating complex urban environments to handling
high-speed highway scenarios, the vehicle’s decision-making system must be
equipped to assess risks, anticipate uncertainties, make informed choices that
prioritize safety, and have a fall-back plan [Wan20c]. In the subsequent sec-
tions, I delve deeper into the intricacies of risk assessment and the verification
of safety, two critical pillars that uphold the safety standards in AD decision
making.

2.3.1 Risk Assessment

Risk assessment is a crucial component in the decision-making process for AD.
It quantifies the potential dangers associated with a given action or trajectory,
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enabling the system tomake decisions that prioritize safety. Traditional metrics,
often referred to as Time-To-X metrics, have been widely used to evaluate the
risk of potential collisions [Lef14]. These include:

Time to Collision (TTC): Defined as the time it would take for two vehicles
to collide if they continue at their current speeds and on their current paths.
Mathematically, it is given by:

TTC = 𝑑
𝑣ego − 𝑣obstacle

(2.9)

where 𝑑 is the distance between the ego vehicle and the obstacle, and 𝑣ego and
𝑣obstacle are their respective velocities.

Time to React (TTR): Represents the time available for the vehicle to take
an evasive action before a potential collision. It can be derived from various
sensor data and contextual information.

Time Headway (THW): The time it would take for the ego vehicle to reach
the position of the vehicle in front, given by:

THW = 𝑑
𝑣ego

(2.10)

While these metrics provide a foundational understanding of collision risks,
they might not capture the complexities and uncertainties inherent in real-
world driving scenarios, especially in dynamic and occluded environments.
Advanced approaches have emerged to address these challenges.

A group of studies focuses on the concept of predictive risk maps or safety
envelopes [Dam15, Pie18, Ber22, Pie19], which evaluate future behavior al-
ternatives in terms of predictive risks. For instance, the work in [Dam15] in-
troduces predictive risk maps that indicate the risk associated with a certain
ego-car trajectory at different predicted times. Similarly, the idea of navigating
based on occupancy risk is explored in [Pie18], where the density and motion
of objects are mapped to an occupancy risk, allowing agents to adjust their
interactions based on chosen risk levels. Parameters for quantifying the risk
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levels are learned from real-world datasets [Pie18] and this approach is further
improved in [Pie19].

Another significant direction in risk assessment is the emphasis on probabilistic
motion prediction. The study in [Kim18] presents an algorithm that assesses
collision risks for local path candidates by predicting the motion of surrounding
vehicles based on lane probabilities. This concept of lane-based risk assessment
is further explored in [Woo18, Kum18], where advanced adaptive cruise con-
trol systems and lane merging frameworks are proposed. These systems aim
to minimize collision risks by predicting the intentions and future actions of
surrounding traffic participants.

A few studies have delved into the analytic computation of collision probabili-
ties, e.g. [Phi19, Alt21], gains time efficiency compared to MCS, while some
others [Wan20b] approximates long-term collision risk by inferring from the
risks of short-term MCSs. The work in [Fre20] takes a different approach by
deriving a risk approximation framework directly in continuous time, address-
ing the limitations of discrete-time dynamics.

Lastly, the challenge of real-time risk assessment, especially in scenarios with
occlusions, is addressed in [Yu20, Taş18, McG19, Wan20a]. These studies em-
phasize the importance of considering visibility and interactions in risk assess-
ment, proposing methods that ensure collision-free navigation even in highly
occluded environments under certain assumptions.

In conclusion, while traditional risk metrics provide a baseline for understand-
ing collision risks, the dynamic nature of real-world driving scenarios neces-
sitates the development of advanced risk assessment methodologies. The inte-
gration of predictive risk maps, probabilistic motion prediction, and occlusion-
aware techniques, as highlighted in the aforementioned studies, paves the way
for safer and more efficient AD systems.

2.3.2 Verification of Safety

Safety verification is a cornerstone in the development and deployment of AD
systems. While probabilistic collision risk assessments provide insights into
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potential hazards, they cannot offer formal guarantees of safety. This is where
formal safety verification approaches come into play, ensuring that the decision-
making processes of AVs adhere to rigorous safety standards, even in complex
and uncertain environments. There are mainly two research directions in pro-
viding formal safety verification: reachable-set analysis and RSS-based safety
analysis.

Reachable-set Analysis

Reachable-set analysis [Alt14, Alt16] is a powerful tool that provides over-
approximations of all possible states a system can reach, ensuring that an AV’s
decisions remain within safe bounds. The work by [Alt16] introduces a method
that over-approximates all possible occupancies of surrounding traffic partic-
ipants over time, allowing for formal guarantees of collision-free maneuvers.
Similarly, the study in [Son18] presents a worst-case analysis of the TTR, pro-
viding a deterministic upper bound for this critical metric. Addressing the chal-
lenges posed by occlusions, [Orz18] introduces a safety verificationmethod that
uses the vehicle’s field-of-view and a map to identify potentially hidden obsta-
cles, ensuring safety even in scenarios with limited visibility.

RSS Safety and Extensions

The RSS model, introduced by [Sha17], provides a formalized approach to
safety assurance, focusing on defining and verifying safe states for AVs. This
model has inspired several extensions and refinements. For instance, [Orz19]
integrates RSS-motivated safe-states with reachable-set analysis to ensure
safety in complex traffic scenarios. The research in [Nau21] delves into the
parameters of RSS, aiming to strike a balance between safety and traffic flow.
Further enhancing the RSSmodel, [Sid22] presents a framework that calculates
minimum safe inter-vehicular distances for various control policies. The work
by [Has23] introduces a goal-aware extension of RSS, utilizing program logic
to handle complex planning scenarios. Lastly, addressing the challenges posed
by perception uncertainties, [Ber22] offers a probabilistic approach on top of
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the original deterministic RSS approach to calculate safety envelopes, allowing
for adjustable safety and performance based on chosen risk levels.

Discussion

The strength of reachable-set analysis lies in its ability to account for the worst-
case scenarios, ensuring that no potential state is overlooked. However, this
approach can often be overly conservative, potentially leading to inefficient
driving behaviors and hindering the smooth integration of AVs into existing
traffic flows. On the other hand, the RSS model, emphasizes the responsibility
of safety and adherence to traffic rules, instead of ensuring absolute safety. This
results in a less conservative and more practical safety framework, better suited
for dynamic and unpredictable traffic environments. Furthermore, the adapt-
ability and extensibility of the RSS model, as evidenced by its various refine-
ments and extensions to different scenarios, make it a more scalable solution.
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3 High-level Decisions under Safety
Constraints

Following the objectives of this study and an overview of the state-of-the-art
approaches, this chapter delves into the specifics of my proposed method. Prior
to making any decision, it is of paramount importance for the decision-making
system to ensure safety and comfort of passengers, as well as comply with traf-
fic regulations and avoid collisions with other vehicles and obstacles. The pri-
mary contribution of this section is the formulation of safety requirements for
a decision process that integrates diverse traffic rules and uncertainties.

To begin, an overview of my overall decision-making process is provided in
Section 3.1, in which the inputs and outputs of the pipeline are briefly intro-
duced, and simplifications and assumptions are discussed. Subsequently, in
Section 3.2, I present a comprehensive discussion of the underlying safety con-
cept for different types of roads, intersections, and possible occlusions. In order
to avoid overly cautious behavior, safety constraints can be gradually relaxed as
perception and scene understanding capabilities improve, as discussed in Sec-
tion 3.3. Finally, in Section 3.4, I propose a representation of high-level actions
for various scenarios and derive rule-based policies that are provably safe based
on the aforementioned safety concept.

3.1 Model Assumptions and Overview of the
Approach

AD systems typically rely on sensors to perceive the environment. However,
due to physical limitations of the sensors, the resulting measurements can be
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3 High-level Decisions under Safety Constraints

noisy and the environment only partially observed. As a result, the perception
module of AD systems can only provide probabilistic distributions that repre-
sent possible ranges of object states, rather than revealing ground-truth states.
My proposed decision-making module is assumed to receive these uncertain
states of surrounding agents and obstacles, with given distributions. Regard-
ing agents in occluded roads, further assumptions will be introduced in later
chapters.

In addition to reactive decisions, it is desirable for AD systems to estimate hid-
den states of surrounding traffic participants, such as intended routes or lane
change probabilities, in order to make proactive decisions. This corresponds to
the scene understanding or prediction discussed in Section 1.1. For evaluation
of my approach, I propose proof-of-concept scene understanding approaches in
this work, which can be replaced by any upstream modules. Depending on the
scenarios and traffic rules, the intentions of other agents can be dependent or
independent of the ego vehicle’s decision. For example, in an on-ramp merg-
ing scenario, the willingness of relevant vehicles to cooperate with the merg-
ing vehicle may depend on its approaching style. In contrast, at intersections
where vehicles’ priority must be ensured, crossing decisions are typically made
independently of non-prioritized vehicles. Therefore, I suggest selecting an in-
teractive behavior modeling or a single-shot intention estimation depending on
the specific scenario.

Many researchers strive to achieve AD without relying on pre-existing High-
Definition (HD) maps by using powerful perception modules to reconstruct the
environment, e.g. via perceived road boundaries, traffic signs, and traffic lights
[Wen21, Mey18]. However, this approach is challenging, and in my work, I
assume the availability of a HD map that contains all necessary information
about traffic rules and road layout, such as the lanelet2 framework [Pog18].
Additionally, I assume the availability of a self-localization module that pro-
vides the state of the ego vehicle with negligible uncertainty.

The goal of the decision-making module is to provide a safe, efficient and com-
fortable high-level decision that is afterwards processed and refined by a trajec-
tory planner. A feasible way is to frame the decision into planning targets and
constraints. However, in order to ensure at least one local optimum from the

30



3.1 Model Assumptions and Overview of the Approach

planner, the kinematic (e.g. maximum turning radius) and dynamic constraints
(e.g. maximum longitudinal acceleration) of the vehicle need to be accounted
for beforehand. Assuming a successful generation of the trajectory by the plan-
ner, negligible control errors are expected as well.

My work assumes that the AV is equipped with sensors that provide a 360°
coverage of the surrounding environment within a certain distance range. Any
obstacle that has a similar height to the AV, such as other vehicles and walls,
is assumed to limit the Field of View (FoV) of the AV and create occlusions,
inside of which no object is perceivable anymore. However, existing objects
within the FoV are assumed to be detected. Dealing with possible ghost objects
[Tas20], i.e. false positives, is possible but is not within the scope of this work.

ego

0.4 0.6
ego

0.4 0.6

MC 
simulation

feature: �1 

MC 
simulation

feature: ��

(risk, utility, 
comfort, ...) Trajectory 

planner, 
controller

Decision Making PipelineInput

action
   an

ar
gm

ax
�

�
�

(�
, �

�)

�
T
� �

+
�

Decision

ego

0.4 0.6

�(�, �1)

�(�, ��)

action
   a1

Figure 3.1: Overview of the decision making pipeline.

The comprehensive methodology of my approach, depicted in Figure 3.1, pro-
ceeds as follows: in a given scenario, multiple high-level action candidates are
conceived, conforming to the HD map and traffic regulations. Each high-level
action undergoes a safety audit based on the criteria delineated in Section 3.2.
Assuming the ego vehicle chooses an action 𝑎𝑖 from the current state 𝑠, and
adheres to a policy that elects 𝑎𝑖 with a probability of 𝜋(𝑎𝑖|𝑠) = 𝜋(𝑎𝑖) = 1
that is independent of the future states, I employ MCS to generate prospective
rollouts. These rollouts involve repeated queries of estimated intentions or in-
teractive behavioral models (introduced in later chapters) of perceived traffic
participants, accounting for all occlusion possibilities. After extensive rollouts
for each policy (action), certain features can be ascertained which provide in-
sight into the merits of implementing that specific policy (action). A linear
function, harboring unknown parameters ( a vector of weights w and bias 𝑏), is
used to estimate the action value (also known as Q-value)
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𝑄(𝑠, 𝑎𝑖) = w⊤f(𝑠, 𝑎𝑖) + 𝑏 = w⊤f𝑖 + 𝑏 (3.1)

for every candidate action 𝑎𝑖 under the present state 𝑠, derived from their fea-
tures f𝑖. The final decision corresponds to the action yielding the maximal Q-
value. Since all actions have the same bias 𝑏, I eliminated it, i.e. 𝑄(𝑠, 𝑎𝑖) =
w⊤f𝑖. Ultimately, the aim is to update the weights w, such that the Q-value of
the most human-like action surpasses other actions.

The rationale behind opting for feature vectors to represent the Q-value and
learn the weights, rather than directly learning the policy distribution 𝜋(𝑎|𝑠)
based on human driving trajectories as per conventional behavioral cloning ap-
proaches, lies in the incomplete coverage of the states in the dataset. Even if
the distribution 𝑃 (𝑎|𝑠) can be trained reliably for states encompassed in the pro-
vided dataset, the resulting policy would be untrained in other states. Utilizing a
feature function facilitates generalization to unseen states, given that the feature
space dimensionality is significantly smaller than the state space [Koc22].

3.2 Ensuring Safety with Extended
Responsibility-sensitive Safety (RSS)

One of the key challenges for universal acceptance of AVs by the public is driv-
ing without putting human lives at risk. The goals of convenience and safety
are often perceived as contradictory, where maximizing one could potentially
damage the other [Wan23a, Wan23b]. As public roads are shared with numer-
ous other traffic participants, such as vehicles, cyclists, and pedestrians, AVs
must not only drive by maximizing their own objectives, such as high speed,
but also take into account the risk they pose to others. However, AVs should
at least achieve a certain level of efficiency to accomplish their goals within
an acceptable time. Assuming worst-case behaviors of all traffic participants
could result in the ego vehicle driving at extremely low speed or even stand-
ing still. Moreover, as stated in [Sha17], guaranteeing that the ego vehicle will
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never be involved in a collision is intractable in real traffic, regardless of the
speed. Therefore, reducing the speed is not an ideal way to ensure safety.

After reviewing many approaches for safety verification in Section 2.3.2, such
as RSS [Sha17] and reachable-set analysis [Alt14], I propose the following ob-
jectives for an ideal safety verification approach in real road traffic:

1 Safety needs formal guarantees. As argued in [Nau20a], any on-road or
simulation-based safety validation with huge kilometers is undesired,
because any code change in the planning pipeline needs a complete
reevaluation that is extremely expensive.

2 Safety verification approaches need to be real-time capable, to prevent
the vehicle from entering an unsafe state before completing the
verification of its output behavior.

3 Instead of guaranteeing that the ego vehicle will not be involved in a
collision, the guarantee is never to cause a collision. This can be
achieved by incorporating traffic rules that introduce fixed driving rules,
such as traffic lights, and the sense of priority, such as the right-of-way
rule. However, some traffic rules1 cannot be mathematically expressed
in a machine-readable format. Thus, the necessary translation of traffic
rules into mathematical formulations can be proposed to enable their
use in safety-critical applications.

4 While operating within the bounds of traffic regulations, safety
verification should additionally aim at achieving an overall smooth
traffic flow but not overly-conservative driving behaviors.

Motivated by similar objectives, [Nau20a] extends the RSS concept [Sha17]
and includes the consideration of traffic rules at intersections with crossing and
merging traffic, and parallel lanes. In this work, I further enhance this approach

1 For example, “An [nicht besonders geregelten] Kreuzungen und Einmündungen hat die Vorfahrt,
wer von rechts kommt.”(§8 I StVO)
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3 High-level Decisions under Safety Constraints

by considering: a wider range of traffic participants, occlusions, the safety chal-
lenges posed by close consecutive intersections, and other limiting factors, such
as the maximum reachability of vehicles.

In this work, I assume a prior HD map that embeds all traffic rules and road
geometries. My safety concept is mainly based on a lane-wise road topology,
where lateral safety is ensured by avoiding collisions with lane boundaries when
driving on a single lane that does not interfere with any other lane. I first review
longitudinal safety on a single lane in Section 3.2.1, then extend to parallel
lanes in Section 3.2.2, where lane changes occur, and to intersecting lanes in
Section 3.2.3, where priority rules apply. In addition, I consider the impact of
sensor occlusions and limited FoV in Section 3.2.4.

3.2.1 RSS Safety for Single Lane

The RSS concept defines basic longitudinal safety in a leader-follower setup on
a single lane, as presented in [Sha17]. It emphasizes the need for the follower to
maintain a minimum safe distance from the leader, which ensures that the fol-
lower will not collide with the leader even in the following worst-case scenario:
The predecessor, previously traveling with a velocity of 𝑣lead, decelerates with
the maximum deceleration of 𝑎max,dcc,obj until it comes to a complete stop. Dur-
ing a reaction time of 𝜌ego, the ego vehicle, which was previously traveling at
𝑣ego, accelerates with a maximum acceleration of 𝑎max,acc,ego, and then brakes
with a assured deceleration of 𝑎max,dcc,ego.

I propose to deviate from this assumed worst case and do not assume the accel-
eration phase of ego vehicle during the reaction time. In reality, during usual
car-following, the ego vehicle will not apply 𝑎max,dcc,ego unless the distance to
the front vehicle is sufficiently larger than its desired distance headway. An-
other case where the ego might execute 𝑎max,dcc,ego is when the traffic starts to
flow and the leading vehicle and ego vehicle accelerate both with their max-
imum capabilities. However, in this case, the ego vehicle is usually highly
concentrated and the reaction time is smaller than the average human perfor-
mance, which balances the more traveled distance during the reaction phase
with 𝑎max,dcc,ego. Therefore, I assume the ego vehicle maintains its previous
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velocity 𝑣ego during the reaction phase. With this assumption, the minimum
safe distance can be computed as

𝑑safe = max
(

(𝑣ego − 𝑣lead)𝜌ego +
𝑣2
ego

−2𝑎max,dcc,ego
−

𝑣2
lead

−2𝑎max,dcc,obj
,0

)
(3.2)

In some cases, e.g. due to a very large velocity of the predecessor, the required
safe distance can be negative. The max() function prevents it and generates a
non-negative safety distance.

3.2.2 RSS Safety for Parallel Lanes

In this section, I present the safety approach in the context of parallel lanes
for unidirectional traffic, which permit lane changes between them, typically
marked by dashed lines. Parallel lanes can be classified into two types - multi-
lane configurations, wherein drivers have the freedom to change lanes, and en-
trance lanes, which require mandatory merging, as depicted in Figure 3.2.

(a) Parallel lanes where lane changes are possible (b) Parallel lanes where a mandatory merging for
the blue vehicle is demanded.

Figure 3.2: Two types of parallel lanes where lane change and merging safety needs to be ensured.

A safety concept for cut-ins is presented in [Nau20a], where a constant acceler-
ation 𝑎max,acc,ego of the cut-in vehicle is assumed. However, this is not always
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possible and thus I propose the following safety rule for lane change and merg-
ing: Upon completion of merging1, the merging vehicle should accelerate with
some assumed acceleration 𝑎max,acc,ego, whichmight be limited due to other fac-
tors2. From themoment of completedmerging, a reaction time of 𝜌obj is allotted
to the prioritized following vehicle on the target lane, which then decelerates
with 𝑎soft,dcc,obj. The merging is considered as safe and not significantly imped-
ing the prioritized vehicle, when their distance is not less than 𝑑safe from the
merging time until a stable state.

An analytical solution of the initially required safe distance of the merging
vehicle to the prioritized following vehicle 𝑑safe,follow,init can be found in
[Nau20a] with the assumption that the merging vehicle can keep accelerating
with 𝑎max,acc,ego after merging. However, in the presence of aforementioned
factors, 𝑎max,acc,ego of merging vehicle is not always guaranteed, and thus an
analytical solution might not exit.

I propose to utilize numerical simulation to examine the safety of the merg-
ing or lane change, in case that an analytical solution is not available. After
finishing lane change, I simulate the following scenario forward with a small
time interval3: The leading vehicle on the target lane continues with constant
velocity, the following vehicle on the target lane decelerates with 𝑎soft,dcc,obj
after a reaction time of 𝜌obj, and the merging or lane change vehicle acceler-
ates with its maximum possible acceleration 𝑎pos,acc,ego < 𝑎max,acc,ego such that
𝑑safe,lead to the leading vehicle on the target lane is not violated. A safe and non-
disruptive merging or lane change can be characterized by the preservation of
a minimum safe distance, denoted as 𝑑safe,follow, between the ego vehicle and
the following vehicle on the target lane from the moment of lane change until
a critical time point4.

1 Merging or lane change is considered as complete, when the vehicle has left the lane with a certain
proportion, e.g. 1

2 of the vehicle’s geometry.
2 Such as reaching the speed limit or the presence of a leading vehicle on the merging lane.
3 Such that vehicles do not pass through each other’s geometry between two time steps.
4 The time point where the distance between the ego vehicle and the following vehicle on the target
lane increases faster than the required safe distance.
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Figure 3.3: An example of numerical simulation to check lane change or merging safety.

Figure 3.3 illustrates an example of the numerical simulation with 0.2 s time in-
terval of a critical merging or lane change. The ego vehicle finishes lane change
at time 0 at 𝑥 = 0m, where the leading vehicle and the following vehicle on
the target lane initially locate at 15m and −55m. From this time point, the
follower on the target lane is assumed to decelerate with 𝑎soft,dcc,obj = −1.2 m

s2
after a reaction time 𝜌obj = 0.5 s. The initial distances after lane change to the
leader and follower are apparently bigger than 𝑑safe at time 0. However, the
lane change is still critical, because the simulated distance to the following ve-
hicle at around 3.5 s just meets the required safe distance 𝑑safe,follow. Therefore,
𝑑safe,follow,init > 𝑑safe,follow is initially demanded, in order to not force the follow-
ing vehicle on the target lane to brake more than 𝑎soft,dcc,obj. In this example,
𝑡 = 3.5 s is the critical time point.

To assess the practical feasibility of the proposed safety concept, I conduct a
thorough evaluation on real-world driving data to quantify the percentage of
human drivers who adhere to this rule. For this purpose, I leverage the HighD
[Kra18] and ExitD [Moe22] datasets. To facilitate a fair comparison, I select
a parameter set comprising of 𝑎soft,dcc,obj = −1.2 m

s2 (considered a comfortable
value in [Hob77]), 𝜌ego = 0.5 s (anticipated for AVs in [Xu21]), and 𝜌obj =
0.7 s (recommended in [Mar16]). The results of this analysis are presented in
Table 3.1, which outlines the percentage of safe lane changes observed in the
datasets for different combinations of 𝑎max,dcc,ego and 𝑎max,dcc,obj.
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Table 3.1: Percentage of RSS safe lane changes (from 12380 lane changes in HighD dataset ) and
merges (from 4604 on-ramp merges in ExitD dataset) with certain deceleration pa-
rameters. Both datasets are recorded on German highways. Note that 𝑎max,dcc,obj ≤
𝑎max,dcc,ego is assumed.

Ratio of safe lane changes 𝑎max,dcc,obj( m
s2 )

-6 -8 -10 -12

𝑎max,dcc,ego( m
s2 )

-6 0.877 0.775 0.563 0.511
-8 0.886 0.761 0.677
-10 0.889 0.804
-12 0.885

Ratio of safe merges 𝑎max,dcc,obj( m
s2 )

-6 -8 -10 -12

𝑎max,dcc,ego( m
s2 )

-6 0.928 0.846 0.723 0.662
-8 0.943 0.909 0.860
-10 0.949 0.933
-12 0.955

Upon analyzing the results presented in Table 3.1, it becomes evident that with
the setting where the maximum possible deceleration of the leader 𝑎max,dcc,obj is
−2 m

s2 more than the follower 𝑎max,dcc,ego
1, only around 80% of all lane changes

in the HighD dataset and around 90% of all merges in the ExitD dataset satisfy
the RSS safety criterion. Notably, the percentage of unsafe lane changes is sig-
nificantly lower than the number of recorded accidents, which were found to be
zero in both datasets. This discrepancy suggests that there may be a mismatch
between the proposed RSS safety concept and human driving consensus. It is
argued in [Nau21] that the majority of human RSS violations can be attributed
to the additional assumptions that humans tend to apply while driving. This
intriguing observation warrants further investigation, which will be carried out
in detail in the forthcoming Section 3.3.

1 It is suggested to assume that the leader has more braking capability as the follower to have a
more strict safety condition.
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3.2.3 RSS Safety for Intersecting Lanes

While the preceding subsection addressed longitudinal safety in the context of
parallel lanes, the present subsection focuses on the safety of lanes that in-
tersects. To this end, [Nau20a] proposes a classification scheme that distin-
guishes between three distinct traffic patterns - crossing, merging, and diverg-
ing. In cases of diverging traffic, wherein vehicles originating from the same
lane continue on different lanes, the longitudinal safety principles discussed in
Section 3.2.1 are deemed adequate. In contrast, I revise the safety approach
for crossing and merging traffic scenarios, and subsequently introduce my pro-
posed enhancements. It is important to note that my analysis focuses solely
on scenarios governed by priority-based traffic rules and does not take into ac-
count specialized traffic rules, such as those pertaining to zipper merging or
intersections controlled by traffic lights.

Safety for Merging and Crossing Conflict Zones

The term of a conflict zone serves as a fundamental basis for discussions re-
lated to safety in intersecting lanes, which is defined as the region of overlap
between lanes that may result in potential conflicts. Figure 3.4 presents one ex-
ample at an unsignalized intersection, where the ego vehicle should give way to
the oncoming prioritized vehicles. Two of their possible routes intersect with
the route (green dashed line) of the ego vehicle, resulting in a crossing and a
merging conflict zone.

ego

prioritized objects

crossing

merging

Figure 3.4: Example of crossing and merging conflict zones at a right-before-left intersection.
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I reformulate the proposal in [Nau20a] with additional terms and supplemental
constraints for better scalability. For a crossing conflict zone, the safety of the
non-prioritized vehicle (ego) can be ensured when at least one of the conditions
C1 and C2 is held:

• C1: Ensure to be able to stop before the conflict zone.

• C2: Ensure to safely pass the conflict zone.

To satisfy C1, the ego vehicle needs to be able to stop before the conflict zone
with less than its executable deceleration 𝑎max,dcc,ego. There are two ways to
satisfy C2, which are:

• C2(𝑎): At the time ego vehicle enters the conflict zone with its maximum
reachability, e.g. maximum acceleration 𝑎max,acc,ego until the allowed
speed limit 𝑣limit, the prioritized vehicle is at sufficient distance, i.e. its
required deceleration to stop in front of the conflict zone is acceptable,
e.g. less than its 𝑎soft,dcc,obj.

• C2(𝑏): Ego vehicle can guarantee to have left the conflict zone with its
maximum reachability for a predefined Time of Zone Clearance (TZC)
𝑡TZC,min, before the prioritized vehicle can enter it with its maximum
reachability, e.g. 𝑎max,acc,obj until its maximum velocity 𝑣max,obj.

The TZC denotes the duration between the departure of the first vehicle from
the conflict zone and the arrival of the second vehicle into it. Note that the max-
imum velocity 𝑣max,obj of other vehicles should be set to a realistic value which
represents expected speeding (e.g. 110% of the speed limit 𝑣limit) [Orz18].

In the case of merging conflict zones, C1 still applies. However, the conflict
zone cannot be fully traversed, as the length of overlap between two merging
lanes can be unlimited. Once the merging is complete, the ego vehicle becomes
the leading vehicle for the prioritized vehicle. If the prioritized vehicle can
maintain a safe RSS following distance to the ego vehicle with only a slight
deceleration, the merging maneuver is deemed non-impeding and courteous.
As such, I propose C3 as a replacement for C2, which is essentially a rephrased
version of the safety rule for lane change in Section 3.2.2:
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• C3: From the moment that the ego vehicle enters the conflict zone, as
determined by its maximum reachability, until the critical time point, the
prioritized vehicle maintains RSS safe following distance 𝑑safe,follow to
the ego vehicle, with no more than 𝑎soft,dcc,obj deceleration performed.

Note that the maximum reachability of the ego vehicle and prioritized vehicles
in 𝐶2 and 𝐶3 may be subject to various limiting factors, which will be dis-
cussed in subsequent sections. The computation of the critical time point was
already discussed in Section 3.2.2. Although 𝑡TZC,min = 0 s is sufficient to en-
sure safety, it may still be perceived as threatening by drivers of the prioritized
vehicles. As a result, I must identify an acceptable value for 𝑡TZC,min to ensure
that no overreactions occur on the part of the prioritized vehicles. In order to
accomplish this, I conducted an analysis of 4057 crossing scenarios and the
associated TZCs using data from the inD dataset [Boc20]. The TZC was com-
puted for each vehicle based on the assumptions outlined in C2(𝑏) when C1 is
no longer applicable. My findings indicate that 81.4% of vehicles crossed with
a TZC of more than 0.5 s and 61.6% with more than 1 s. To not have overly
conservative safety conditions, I select 𝑡TZC,min = 0.5 s. The RSS parameters
employed for the AV are presented in Table A.2 in the column “normal”.

Safety for Cyclists and Pedestrian Crossing

Pedestrians are only considered for intersecting-lane scenarios, e.g. at zebra
crossing, but not in parallel-lane scenarios1. Otherwise, they are responsible
for their own safety if the ego vehicle reacts properly, e.g. brakes in time.

I do not implement specific RSS safety rules for cyclists. Instead, cyclists driv-
ing on vehicle lanes are treated as vehicles but with different RSS parameters,
such as maximum deceleration 𝑎max,decel, due to their distinct dynamics. Cy-
clists located on walkways are treated as normal pedestrians.

1 Exceptions are e.g. pedestrian zones, where the ego vehicle is traveling with sufficiently low
velocity such that stopping with small braking distance is possible where consideration of RSS
is not needed.
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Zebra crossing belongs to crossing conflict zones, where C1 and C2 apply, prior-
itizing pedestrians instead of vehicles. As pedestrians have different dynamics,
I reformulate C2:

• C2,p: Ego vehicle can guarantee to have left the conflict zone with its
maximum reachability for a predefined TZC 𝑡TZC,min, before the priori-
tized pedestrians can enter it with their maximum reachability.

The maximum reachability of pedestrians is defined as the ability to accelerate
to a maximum velocity of 𝑣max,p with no delay and other limitations, taking into
account their high mobility. In the inD dataset, the maximum recorded velocity
of pedestrians is 15.07 m

s , which is considered an outlier. Therefore, I select
𝑣max,p = 5.02 m

s at the 99th percentile. This value is significantly higher than
the 85th percentile speed of 2.39 m

s reported in another study [Jai14].

To allow a better overview of the proposed RSS safety rules, Figure 3.5 illus-
trates the examination process for a single conflict zone.

C1: can stop before 
conflict zone?

yes

safe

no

type of conflict 
zone?

crossing merging zebra

fulfill C2(a) or C2(b)?

yes no

fulfill C3? fulfill C2,p?

safe unsafe

no yes

safe unsafe

yes no

Figure 3.5: Overview of the RSS safety decision graph for a single conflict zone.
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Stop Line, Regulatory Element and its Conflict Zones

I utilize lanelet2 maps where traffic rules are well-defined and encoded in Regu-
latory Elements (REs) [Pog18]. In the case of unsignalized intersections, right-
of-way REs govern traffic rules and determine which vehicles have priority.
Each right-of-way RE comprises the following components:

• Stop line: before which the yielding vehicle is recommended to stop, such
that no conflict zone is impeded.

• Traffic sign (optional): e.g. yielding sign, stop sign, etc.

• Yielding lanelet: vehicles tending to pass through this lanelet should yield
to prioritized traffic participants.

• Right-of-way lanelets: traffic participants that are possible to pass one of
the right-of-way lanelets have priority over the yielding vehicles.

Using information obtained from the right-of-way RE, I can easily identify
the prioritized traffic participants and their corresponding conflict zones in the
scene. I accomplish this by iterating over all perceived traffic participants and
checking whether they possess a possible route1 that can traverse one of the
right-of-way lanelets. If such a route exists, the traffic participant has priority.
Corresponding conflict zones can be generated by calculating the overlapping
area between all their possible routes and the ego vehicle’s route.

For example, in Figure 3.4, the left turning lanelet of the ego vehicle is desig-
nated as the yielding lanelet, while the oncoming lanelets of the west and south
arms serve as the right-of-way lanelets. If a vehicle approaches from the south
arm, it will create two additional conflict zones with the ego vehicle.

Figure 3.6 illustrates the ego vehicle coming from the same direction but driv-
ing different routes, where the right-of-way lanelets and possible conflict zones
differ considerably. When the ego vehicle plans to go straight (left figure), only
the oncoming lanelet of the west arm will be the right-of-way lanelet, resulting

1 A route means all the lanelets that can be used to a destination. They can be connected by a
generic sequence of lane changes and successors.
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in three possible conflict zones. If it tends to turn right (right figure), it is not
required to yield to any other vehicles.

egoego

right-of-way 
lanelet

yielding 
lanelet

possible conflict 
zones

no conflict zone

Figure 3.6: Possible conflict zones depending on the ego route.

Supplemental Constraints for Maximum Reachability of the Ego Vehicle

When checking if the ego vehicle can safely pass a conflict zone with C2, C2,p
and C3, the termmaximum reachability is introduced, which refers to the ability
to accelerate to the maximum speed. I identify three important factors that can
limit the maximum reachability of the ego vehicle.

The first factor is the presence of a leading vehicle. If the leading vehicle is
possible to come to a complete stop at or shortly after the conflict zone, the time
for the ego vehicle to reach or leave the conflict zone may become infinite. In
such cases, none of C2 (including C2(𝑎) and C2(𝑏)), C2,p and C3 can be satisfied.

The second factor is the presence of two consecutive stop lines or REs. In
the example of Figure 3.4, there is one zebra crossing right after the conflict
zones. If safely passing the pedestrian crossing is not guaranteed, themaximum
reachability of the ego vehicle is additionally limited by “being able to stop
before the zebra crossing”, when assessing safety for the two red conflict zones.
This ensures that when the ego vehicle is doing its best to reach or pass the red
conflict zones to satisfy C2, C2,p and C3, its speed is still low enough to allow
it to stop before the next pedestrian crossing.

The third factor is the physical and comfort limitation. The former includes
friction limit which reduces the acceleration ability. Without this information
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explicitly provided, the assumption is that the ego vehicle can always achieve its
maximum longitudinal acceleration 𝑎max,acc,ego. However, due to comfort rea-
sons, the maximum velocity of the ego vehicle can be limited by the maximum
lateral acceleration 𝑎max,acc,lat,ego on curvy roads.

In summary, the three supplemental constraints for maximum reachability of
the ego vehicle are formulated as follows:

• If ego vehicle has a leading vehicle, the maximum reachability is lim-
ited by keeping the RSS safety distance 𝑑safe,lead to the leading vehi-
cle, while the leading vehicle decelerates with its maximum deceleration
𝑎max,dcc,obj.

• If the next stop line or RE is close to the current one, and safely passing
all the conflict zones of the next stop line is not guaranteed, themaximum
reachability is limited by being able to safely stop before the first conflict
zone of the next stop line with 𝑎max,dcc,ego.

• The maximum reachability is limited by not exceeding the velocity that
reaches its maximum lateral acceleration 𝑎max,acc,lat,ego.

RSS Safety for Traversing a Regulatory Element

With the term RE, I introduce the RSS safety condition for the non-prioritized
vehicle traversing through a RE as follows: The safety of the non-prioritized
vehicle (ego) can be ensured when at least one of the conditions C1,reg and
C2,reg is held:

• C1,reg: Ensure to be able to stop before the first conflict zone of the RE.

• C2,reg: Ensure to safely pass all conflict zones of the RE simultaneously.

Figure 3.7 presents the examination of RSS safety for traversing a stop line or
RE that has multiple conflict zones.

45



3 High-level Decisions under Safety Constraints

C1,reg: can stop before the 
first conflict zone? 

yes no

Iterate through 
all conflict zones end

Safely pass? (C2, C2,p 
or C3 based on type)

yes no

C2,reg

type

safeunsafe

safe

Figure 3.7: Overview of the RSS safety decision graph for a stop line or RE.

3.2.4 RSS Safety under Occlusions

When driving on a single lane, the ego vehicle needs to be able to stop fully
within its visible range 𝑑vis, by assuming a static obstacle just behind the visible
range. This additionally limits its maximum velocity 𝑣max,vis,ego besides the
speed limit 𝑣limit. An analytical solution of 𝑣max,vis,ego is given in [Nau20a]

𝑣max,vis,ego = 𝑎max,dcc,ego𝜌ego + √𝑎max,dcc,ego𝜌ego2 − 2𝑎max,dcc,ego𝑑vis (3.3)

When performing lane changes or merging on parallel lanes, RSS safety veri-
fication requires observing the leading vehicle on the ego lane and target lane,
and the following vehicle on the target lane, as proposed in Section 3.2.2. How-
ever, in some cases, the FoV may be occluded, resulting in potential dangerous
lane changes. In such scenarios, worst-case phantom vehicles can be assumed
to be located at the critical sensing edge, as shown in Figure 3.8a. In this case,
a leading phantom vehicle with 0 m

s velocity and a following phantom vehi-
cle with 𝑣max,obj velocity can be assumed on the left lane at the sensing edge.
However, with this worst-case assumption, the lane change may become almost
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intractable. Therefore, it is recommended to perform lane changes and merging
with a sufficient FoV on the target lane to ensure safety.

When approaching intersections under occlusion, prioritized traffic participants
may be hidden. In [Orz18], it is proposed to over-approximate the possible
states in occluded road sections and assume worst-case phantom vehicles lo-
cated at the sensing borders. These phantom vehicles are assumed to travel
with 𝑣max,obj and create several possible conflict zones for the RE. A crossing
or pass decision can only be made when C2,reg is fulfilled, taking all the phan-
tom prioritized vehicles into account. The resulting behavior is provably safe
even in the worst-case scenario, but may be overly conservative [Wan21].

ego

obstacleobstacle

(a) Occlusions on parallel lanes that affect lane change and merging.

ego

dynamic 
obstacle

potential 
phantom 
vehicles

(b) Occlusions at intersections that create potential phantom vehicles on prioritized road section.

Figure 3.8: Occlusions on parallel-lanes and intersecting lanes.
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Although occlusions can greatly limit the driving behavior that aims for comfort
and convenience, human drivers have the ability to reason and speculate about
what might be possible in such occlusions, allowing them to maintain safety
without overreacting or significantly reducing their speed. To address occlu-
sions in a more effective and less overly conservative manner, I will introduce
an approach in the next subsection which was published in [Wan21].

3.3 Relaxing Safety Constraints with Better
Perception and Scene Understanding

In pursuit of objective 4 in Section 3.2, I aim to develop a safety concept that
maximizes the convenience of non-prioritized vehicles while not compromis-
ing the safety of prioritized traffic participants, resulting in a better traffic flow.
To achieve this goal, my enhanced RSS safety concept is further relaxed when
there is a better perception and scene understanding capability. This is par-
ticularly evident in cases where a larger visible distance 𝑑vis is available, as it
directly alleviates the constraints on the velocity limit 𝑣max,vis,ego. However, I
also consider other aspects that require a certain level of reasoning in order to
further relax other safety constraints.

3.3.1 Visible Pre-predecessor

On a single lane, the ego vehicle shall not collide with its predecessor by assum-
ing the worst-case maximum deceleration of it, as discussed in Section 3.2.1.
However, as discovered in [Nau21] in the real data, RSS safety is violated by
human drivers much more than the number of recorded traffic accidents. It
is argued that most human RSS violations can be explained by the assump-
tion, that an emergency deceleration of the predecessor occurs for other rea-
sons. For example, human drivers rely on the behavior of the pre-predecessor
to infer whether a deceleration of the predecessor is likely to occur. If the pre-
predecessor is detected and tracked, human drivers can assume that a decelera-
tion of the predecessor is likely caused by a deceleration of the pre-predecessor.
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Moreover, if the pre-predecessor is very far away or does not appear within the
sensing range, executing emergency brake by the predecessor without any rea-
son is even against the regulation [Müh72] as it largely hinders the traffic flow.
Therefore, the 𝑎max,dcc,obj assumption of the predecessor can be reduced de-
pending on the distance to the pre-predecessor, which would further reduce the
required safety distance between the vehicles.

dsafe,leaddsafe,follow

pre-predecessor

predecessor

predecessor

pre-predecessor

Figure 3.9: Examples of scenarios where the RSS safe distances 𝑑safe,follow and 𝑑safe,lead can
be reduced by assuming predecessor brake less than 𝑎max,dcc,obj with visible pre-
predecessor.

Figure 3.9 presents two example scenarios where RSS safety distances
𝑑safe,follow and 𝑑safe,lead can be reduced. In the left one, the ego vehicle (blue)
is treated as predecessor and is assumed to brake less than 𝑎max,dcc,obj because
the pre-predecessor is visible by the following vehicle on the target lane. The
same explanation goes for the right one.

Note that this assumption can only be hold with a precondition: no other obsta-
cles, e.g. pedestrians or vehicles from other lanes, can suddenly enter between
predecessor and pre-predecessor (as shown by the red arrows in Figure 3.9 )
until the lane change is complete and all the vehicles restore a stable state1. If
so, the lane change action should be aborted immediately.

With a visible pre-predecessor and the precondition met, I reduce the assump-
tion of the maximum deceleration of the predecessor to 0.5𝑎max,dcc,obj, which
corresponds to −5 m

s2 for 𝑎max,dcc,obj = −10 m
s2 . This value is not overly opti-

mistic since only 6 out of all 107613 trajectories in the HighD dataset exhibit a
larger deceleration. Moreover, the possible deceleration of the predecessor can
vary depending on the distance to the pre-predecessor. Therefore, I propose an

1 Every vehicle that is involved in the lane change restore their usual RSS safe distance 𝑑safe
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enhancement to the RSS safety distance in Section 3.2.1: Assuming the pre-
predecessor1 brake with 𝑎max,dcc,obj until a full stop, the needed deceleration for
the predecessor not colliding with pre-predecessor is 𝑎need, the predecessor will
brake with 𝑎′

max,dcc which is a bounded value of 𝑎need between 0.5𝑎max,dcc,obj and
𝑎max,dcc,obj. The new safe distance 𝑑′

safe can be calculated correspondingly with
Equation (3.2).

With the additional assumptions, I have re-examined the safe lane change ratio
in the datasets and presented the results in Table 3.2. The relaxed RSS safety
leads to significantly fewer violations when compared to Table 3.1. With the
parameter set of 𝑎max,dcc,obj = −10 m

s2 and 𝑎max,dcc,ego = −8 m
s2 , the safe lane

change and merging ratios have increased from 76.1% and 90.9% to 92.1% and
97.5%, respectively. Even though the number of violations is still lower than the
number of accidents, I posit that this new approach strikes a reasonable balance
between safety and human consensus.

Table 3.2: Percentage of RSS safe lane changes (from 12380 lane changes in HighD dataset) and
merges (from 4604 on-ramp merges in ExitD dataset) with certain deceleration pa-
rameters. Both datasets are recorded on German highways. Note that 𝑎max,dcc,obj ≤
𝑎max,dcc,ego is assumed.

Ratio of safe lane changes 𝑎max,dcc,obj( m
s2 )

-6 -8 -10 -12

𝑎max,dcc,ego( m
s2 )

-6 0.974 0.875 0.796 0.728
-8 0.976 0.921 0.873
-10 0.976 0.944
-12 0.977

Ratio of safe merges 𝑎max,dcc,obj( m
s2 )

-6 -8 -10 -12

𝑎max,dcc,ego( m
s2 )

-6 0.990 0.945 0.876 0.811
-8 0.993 0.975 0.947
-10 0.995 0.987
-12 0.995

1 In case it is out of sensing range, assuming one at the sensing border.
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I recommend to use this approach for scenarios where the preconditions of the
additional assumptions can be checked at a low cost (e.g., merging into one-lane
road). However, for free lane change on multiple lanes, checking the precon-
ditions against all neighboring vehicles is almost intractable. In such cases, I
suggest applying the approach described in Section 3.2.1.

3.3.2 Tracking of Occlusions

In Section 3.2.4, I discussed the trade-off between assuming worst-case prior-
itized vehicles in occlusions to ensure provable safety and producing efficient
driving behavior. However, human drivers possess the ability to reason about
possible traffic participants in occlusions by utilizing their prior knowledge
about the street and continuously observing changes in the FoV while moving
forward. I propose an approach in this subsection to replicate this human-like
intelligence, which was published in [Wan21].

I initially introduce the approach for reasoning about states of occluded vehi-
cles, but it can be easily adapted for application to other types of traffic partici-
pants. By reducing the state intervals in occlusions from worst case, the safety
constraints of the RSS framework in Section 3.2.4 can be relaxed, allowing for
more expedient traversal of all the conflict zones of one RE.

State Set and Subset

Two mild assumptions are involved for simplification. Firstly, the vehicles are
assumed tomove along the centerline, since the longitudinal distance to the con-
flict zone is the one that affects the RSS safety directly. However, the concept
is applicable for more dimensions such as lateral position and orientation, in
order to model more traffic participants like pedestrians and cyclists. Given the
longitudinal position along the centerline of the route, the global coordinates
of the vehicle can be retrieved by utilizing the lanelet2 map. The second mild
assumption is, no vehicle drives backward, i.e. with velocity lower than 0 m

s .

With those assumptions, the state of a vehicle on a certain route is represented
as the longitudinal position 𝑠 and the velocity 𝑣. The state set of the vehicle
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is then a two-dimensional space defined by 𝒮 = {(𝑠, 𝑣)} with 𝑠 ∈ [𝑠1, 𝑠2] and
𝑣 ∈ [0 m

s , 𝑣max,obj]. One subset S can be arbitrary part of the set S ∈ 𝒮 , which
can be represented by S = {(𝑠, 𝑣)} with 𝑠 ∈ [𝑠, 𝑠] and 𝑣 ∈ [𝑣, 𝑣]. Each subset
S contains a part of possible states of vehicles on the lane. One example is
shown in Figure 3.10.

s1 s2

0

vmax,obj

s s
v

v
Subset

Set

Velocity (m/s)

S (m)

Figure 3.10: Example of set and subset.

When the target lane is occluded, I can over-approximate all the possible vehi-
cles’ states in the occlusions by creating several sets [𝒮1, 𝒮2, ...] on each of the
occluded sections of the lane in v-s-space.

Operations on Subsets

I first define three geometric operations for a subset S: Grow, split and merge.

Grow Split Merge
s

v
s

v

s´
v´

s´

v´

Figure 3.11: Grow, split and merge operations for subsets.

Grow: After a certain time period 𝑡, one subset S expands its region and prop-
agate its {𝑣, 𝑣, 𝑠, 𝑠} to {𝑣′, 𝑣′, 𝑠′, 𝑠′}, by following the vehicle dynamics,
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i.e. acceleration limits 𝑎max,dcc,obj and 𝑎max,acc,obj. One example is shown in
Figure 3.11. The new limits are computed following

𝑣′ =
{

𝑣 + 𝑡𝑎max,acc,obj (𝑣 + 𝑡𝑎max,acc,obj ≤ 𝑣max,obj)
𝑣max,obj (𝑣 + 𝑡𝑎max,acc,obj > 𝑣max,obj)

(3.4)

𝑣′ =
{

𝑣 + 𝑡𝑎max,dcc,obj (𝑣 + 𝑡𝑎max,dcc,obj ≥ 0)
0 (𝑣 + 𝑡𝑎max,dcc,obj < 0) (3.5)

𝑠′ =
⎧⎪
⎨
⎪⎩

𝑠 + 𝑣𝑡 + 1
2 𝑎max,acc,obj𝑡2 (𝑣 + 𝑡𝑎max,acc,obj ≤ 𝑣max,obj)

𝑣max,obj𝑡 − (𝑣max,obj−𝑣)2

2𝑎max,acc,obj
(𝑣 + 𝑡𝑎max,acc,obj > 𝑣max,obj)

(3.6)

𝑠′ =
⎧⎪
⎨
⎪⎩

𝑠 + 𝑣𝑡 + 1
2 𝑎max,dcc,obj𝑡2 (𝑣 + 𝑡𝑎max,dcc,obj ≥ 0)

𝑠 − 𝑣2

2𝑎max,dcc,obj
(𝑣 + 𝑡𝑎max,dcc,obj < 0) (3.7)

Split: One subset can be split into several subsets if they can cover the same
region as the original subset, as shown in Figure 3.11.

Merge: As the reverse of split, several subsets can also be substituted by one
subset, if it covers all their regions. However, this might introduce some over-
approximation of the state intervals, as illustrated in Figure 3.11.
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Figure 3.12: The pipeline of tracking subsets.

Tracking Subsets in Occlusions

The objective of this approach is to track potential hidden vehicles in occlu-
sions, thereby relaxing the worst-case assumption and using this information
for behavior planning. The pipeline (as depicted in Figure 3.12) begins with
initializing subsets on newly observed occlusions. By utilizing the aforemen-
tioned operations to predict the subsets and updating them with new observa-
tions, they can be tracked in a closed loop. At each planning step, the updated
subsets can be used to generate phantom vehicles and verify the safety con-
straints of the RSS framework.

Initialize: As depicted in Figure 3.12, when the ego vehicle observes an oc-
clusion on the prioritized lane, a state set 𝒮 = (𝑠, 𝑣) with 𝑠 ∈ [𝑠1, 𝑠2] and
𝑣 ∈ [0 m

s , 𝑣max,obj] can be initialized in v-s-space. 𝒮 encompasses all the po-
tential states of the vehicles in the initial occlusions. Then, the initial set 𝒮 is
split into subsets with a discretization size of Δ𝑣 = 0.2 m

s and Δ𝑠 = 0.2m, each
of which covers a portion of the possible states in the occlusions.

Predict: The prediction step is described in detail in Figure 3.13. After one
time step, the ego vehicle moves to a slightly different position. Meanwhile,
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all the initialized subsets with a size of Δ𝑣 and Δ𝑠 should also grow according
to the vehicle dynamics, albeit with different scales. For instance, subsets A
and B in Figure 3.13 will have different sizes according to Equation (3.4) to
Equation (3.7) after growing. The union of all grown subsets will no longer be
rectangular, but rather similar to the green region in the upper right figure of
3.13. The reason for this distorted shape is that the subsets in the upper part will
move faster than the subsets in the bottom, due to their overall higher velocity.
After growing, the number of subsets remains the same, but they differ in size
and overlap with each other. I then employ the split operation for all the subsets
with the discretization size of Δ𝑣 and Δ𝑠. For example, subsets A and B will be
split into four subsets each. By doing so, the total number of subsets increases
exponentially. To prevent memory and computational issues, I limit the number
of subsets by merging the split subsets using a strategy displayed in the bottom
left of Figure 3.13. The rectangular envelope of all subsets can be discretized
with Δ𝑣 and Δ𝑠, which results in M×N grids in v-s-space. The split subsets are
merged into one if their centers lie within the same grid, for instance, the two
blue subsets in Figure 3.13 will bemerged into one. After the entire prediction
step, I obtain another set of subsets, with a maximum number of M×N, each
of which has a maximum size of 2Δ𝑣 × 2Δ𝑠, as illustrated in the upper right
figure of Figure 3.12.

Update: As the ego vehicle already has a new FoV after one time step, the
predicted subsets should be updated according to the new observation. One
subset will be removed once any part between its 𝑠 and 𝑠 is exposed in the
FoV. As Δ𝑠 is much smaller than the length of a real vehicle and a subset has
maximum 2Δ𝑠 size after prediction, it is guaranteed that a vehicle covered by
a subset is visible, once the subset itself is visible.
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Figure 3.13: Predicting subsets.

Losing Track on Borders of Occluded Lane Sections

Up until this point, I have only considered cases where both ends of the occluded
section are under tracking. This ensures that no new vehicle from outside can
enter the occluded lane section. However, when one end of the occluded section
connects with the invisible world, it is assumed that new subsets with a velocity
interval of [0 m

s , 𝑣max,obj] will enter the occlusion from the connecting point.
The new subsets are predicted and updated in the same manner as the existing
subsets. One example is depicted in Figure 3.14.

s

v

Both ends 
are tracked

s

v
Losing 
track of 
this border

New subsets 
initialized

s

v

Figure 3.14: Losing track on borders of occluded lane sections
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Application on RSS Safety Verification

In this chapter, this approach is utilized for verifying RSS safety under oc-
clusions. Once the state intervals of possible hidden prioritized vehicles are
over-approximated by this approach, the maximum reachability of the possible
hidden vehicles can be determined. The evaluation in [Wan21] shows that a
significantly less conservative behavior can be achieved when occlusions can
be tracked with this approach.

3.3.3 Limited Reachability of Prioritized Vehicles

As discussed in Section 3.2.3, the maximum reachability of the ego vehicle can
be restricted under several conditions. Similarly, the maximum reachability of
the prioritized vehicles can also be limited. The former enhances the safety
requirements, whereas the latter weakens them.

Limitation by Comfort

Prioritized vehicles may not be able to reach their maximum velocity 𝑣max,obj
due to high curvature of the roads, as depicted in Figure 3.15. In this case,
a reasonable maximum lateral acceleration 𝑎max,acc,lat,obj can be assumed for
prioritized vehicles.

Ideally, the 𝑎max,acc,lat,obj should be the maximum lateral acceleration recorded
in real traffic. In [Rey01], it was demonstrated that human drivers can toler-
ate different maximum lateral accelerations at different velocities. However,
for simplicity, I only consider a single value at all velocities. The maximum
recorded lateral acceleration in the inD and rounD datasets is 7.83 m

s2 , which
matches the results of the experiments in [Rey01], which found a maximum
lateral acceleration of approximately 8 m

s2 at a speed of 10 m
s for various partic-

ipants. Therefore, I set 𝑎max,acc,lat,obj = 7.83 m
s2 .
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ego

prioritized vehicle

Figure 3.15: Themaximum reachability of the prioritized vehicle is limited by themaximum lateral
acceleration caused by the curvature of the road.

Limitation by Traffic Rule

Prioritized vehicles may be stopped by traffic rules for an unknown period of
time, such as when facing traffic lights or pedestrian crossings, as illustrated in
Figure 3.16. If the ego vehicle can perceive this information reliably, I propose
the following assumptions for themaximum reachability of prioritized vehicles:

• With a pedestrian blocking the route of the prioritized vehicle, it is as-
sumed that the pedestrian will pass with its maximum velocity 𝑣max,p and
the prioritized vehicle will accelerate with 𝑎max,acc,obj such that it can pass
the pedestrian tightly.

• With a red traffic light blocking the route of the prioritized vehicle, it is
assumed that the traffic light will switch to yellow and then green imme-
diately (unless the ego vehicle observes the beginning of the red traffic
light and a minimum duration can be assumed in this case), and the prior-
itized vehicle will continue its velocity within the reaction time 𝜌obj and
then accelerate with 𝑎max,acc,obj until reaching 𝑣max,obj.
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Figure 3.16: The maximum reachability of the prioritized vehicle is limited by a crossing pedes-
trian or a red traffic light, when the ego vehicle tends to follow the blue dashed route.

Other obstacles could also block prioritized vehicles, such as another stationary
vehicle with emergency lights activated. However, as an overtaking maneuver
may be performed to avoid such obstacles, they are not regarded as legal and
definite blockage.

Limitation by Conscious Decision

Prioritized vehicles are assumed to make conscious decisions that maximize
their utility and minimize their risk while allowing for the convenience of non-
prioritized vehicles, if feasible.
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ego

prioritized vehicle A

prioritized vehicle B

(a) The ego vehicle must ensure RSS safety with the prioritized vehicle B. It is not necessary to assess RSS safety
for vehicle A, as a conscious decision for it is to not change lanes to the right.

ego

prioritized vehicle Dprioritized vehicle C

(b) It is evident that a conscious decision for vehicle C is to stay in the current lane, while for vehicle D, it may
be to change lanes to the right to overtake. Thus, ensuring RSS safety with vehicle D is necessary.

ego

prioritized vehicle Fprioritized vehicle E

(c) When prioritized vehicles have a compelling reason to change lanes, such as continuing along their route,
RSS safety must be ensured for all of them.

Figure 3.17: Examples of prioritized vehicles making conscious decisions that affect the RSS
safety of the ego vehicle.

In the examples illustrated in Figure 3.17a, the ego vehicle should yield to pri-
oritized vehicles A and B. However, for prioritized vehicle A, changing lanes
to the right could put it at risk if the ego vehicle suddenly moves in, without
gaining any benefit. Therefore, a conscious decision for vehicle A to maintain
smooth traffic flow for all vehicles is to stay in the current lane. In this scenario,
ensuring RSS safety with vehicle A is not necessary. However, in Figure 3.17b,
changing lanes to the right for vehicle D may be beneficial if overtaking vehicle
C allows for a higher velocity. In this case, ensuring RSS safety with vehicle D
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is necessary. In Figure 3.17c, both prioritized vehicles may have a compelling
reason to change lanes if their routes necessitate it. In this situation, ensuring
RSS safety for both vehicles is required. Furthermore, aside from the exam-
ple depicted in Figure 3.17c, the prioritized vehicles may have other reasons to
change lanes, such as parking on the right side if allowed.

As a result, I introduce the following RSS common sense to additionally limit
the maximum reachability of prioritized vehicles in order to allow an overall
smooth traffic:

• If changing to the lane thatmay conflict with the non-prioritized vehicle is
not advantageous (such as gaining velocity, continuing its route, pulling
over, etc.), the prioritized vehicle is not assumed to do so and may be
excluded when assessing RSS safety.

I do not cover all possibilities of this rule since the term “advantageous”can be
scenario-dependent. Instead, I leave this rule open to allow concrete mathe-
matical formulations depending on scenarios.

3.4 High-level Actions and Rule-based Policies

Following a comprehensive discussion on RSS safety, I propose high-level ac-
tion spaces for various scenarios and introduce safe rule-based policies based
on these actions in this section.

Driving behind a leading vehicle in a single lane typically does not require
high-level decision making and can be efficiently addressed using contempo-
rary ACC functionality. As a result, my proposed high-level action represen-
tations are solely intended for scenarios that require semantic decisions. Simi-
larly to Section 3.2, I divide these scenarios into two categories: parallel lanes
and intersecting lanes. The former involve decisions such as lane changes or
merging. The latter include scenarios where a decision does not require any in-
telligence, e.g. at intersections controlled by traffic lights. Rather, I focus solely
on unsignalized intersections controlled by priority rules, but decisions can be
ambiguous. Such scenarios include unsignalized intersections, unprotected left
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3 High-level Decisions under Safety Constraints

turns, and roundabouts, where semantic decisions like slowing down, passing,
or stopping are possible.

Subsequently, I present proof-of-concept low-level executions of the proposed
actions that generate longitudinal and lateral control signals, primarily relying
on the Intelligent Driver Model (IDM) [Tre00]. Although the low-level planner
can be replaced by any trajectory planner and controller, it adequately serves
my evaluation purposes. Following this, I introduce several rule-based policies
based on the proposed RSS-safe actions. They will serve as baseline policies
in subsequent chapters.

3.4.1 Parallel Lanes

In parallel lanes, the vehicle can make longitudinal and lateral decisions in a
combinatorial manner. Parallel lanes can be further categorized into scenarios
that involve free lane changes and mandatory merging, as illustrated in Fig-
ure 3.2. It is important to note that mandatory merging not only encompasses
on-ramp merging scenarios, but also cases where the ego vehicle is pursuing a
clear target lane, such as when it intends to exit the highway and must merge
into the right adjacent lanes. I define distinct high-level action classes for free
lane changes and mandatory merging.

High-level Actions for Free Lane Change

In free lane change scenarios, I define five semantic actions:

• 𝑎free,1: Keep lane and maintain a regular car-following style

• 𝑎free,2: Keep lane and use a more conservative car-following style

• 𝑎free,3: Keep lane and use a more aggressive car-following style

• 𝑎free,4: Change lane to the left into the current gap

• 𝑎free,5: Change lane to the right into the current gap
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High-level Actions for Mandatory Merging

In mandatory merging scenarios, I prefer actions that have a semantic meaning,
such as possible gaps implicitly constructed by vehicles on the target lane, in-
stead of longitudinal and lateral accelerations or jerks, as implemented in some
RL-based approaches [Fis22]. To limit the action space, I account for a max-
imum of four vehicles on the target lane that are longitudinally closest to the
ego vehicle and within the FoV. Consequently, the number of actions is lim-
ited to five, with four of them involving merging in front of the target vehicles,
and the fifth one involving merging into the very last gap after the last target
vehicle. The merging actions are denoted as 𝑎merge,𝑖, where 𝑖 refers to the gap
number. My decision-making pipeline, as depicted in Figure 3.1, is capable of
addressing a variable number of gaps, in case of less than four target vehicles.

Low-level Action Executions

Once a high-level decision 𝑎free,𝑖 or 𝑎merge,𝑖 is made, it is decoupled into a lon-
gitudinal acceleration 𝑎lon and lateral velocity 𝑣lat for the purpose of proof-of-
concept control of the vehicle.

The IDM generates the longitudinal acceleration ̇𝑣IDM

̇𝑣IDM = 𝑎
(

1 − (
𝑣
𝑣d )

4
− (

𝑑∗ (𝑣, Δ𝑣)
𝑑 )

2

)
(3.8)

where 𝑑∗ is the desired distance to the vehicle ahead, which is defined by

𝑑∗ (𝑣, Δ𝑣) = 𝑑0 + 𝑣𝑇d + 𝑣Δ𝑣
2√𝑎𝑏

. (3.9)

The parameters that need to be set include the maximum acceleration (𝑎), de-
sired velocity (𝑣d), minimum accepted distance (𝑑0), desired time gap (𝑇d), and
desired deceleration (𝑏). The output acceleration is determined by the velocity
difference (Δ𝑣) and the distance to the vehicle in front (𝑑).
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3 High-level Decisions under Safety Constraints

The action 𝑎free,1 can directly utilize the output of IDM, while 𝑎free,2 can be
realized by reducing 𝑣d and increasing 𝑇d (e.g. by 10%), whereas the opposite
can be taken for 𝑎free,3.

For other actions (𝑎free,4, 𝑎free,5, 𝑎merge,𝑖) where lane changes or merging are in-
volved, this formula can not be directly applicable. The reason is that the ego
vehicle should fit into a gap that is constructed by two vehicles, i.e. the lead-
ing and following vehicles on the target lane, rather than following a single
vehicle. It could even be possible that both vehicles of the gap are behind or
ahead of the ego vehicle, resulting in negative distances 𝑑. Furthermore, dur-
ing longitudinal adjustment, it is necessary to maintain a proper distance from
the leading vehicle on the source lane as well, i.e., multiple leading vehicles
need to be taken into account simultaneously. In order to address these issues,
I introduce several modifications and customize the IDM model, which I refer
to as the Intelligent Driver Model for Merging (MIDM) in later chapters. The

̇𝑣IDM generated by MIDM can be formulated as

̇𝑣IDM =𝑎(1 − (
𝑣
𝑣d )

4
−

𝑛
max
𝑖=1

⎛
⎜
⎜
⎝

𝑑∗
(𝑣, Δ𝑣f𝑖)
𝑔(𝑑f𝑖 )

⎞
⎟
⎟
⎠

2

+
(

𝑑∗ (𝑣b, Δ𝑣b)
𝑔(𝑑b) )

2

)
(3.10)

where 𝑔(𝑑) = max{𝛿, 𝑑} is the bounded distance with 𝛿 to be a small number
(e.g. 1𝑒−10) to prevent numerical errors. The Δ𝑣b, Δ𝑣f𝑖 , 𝑑b, 𝑑f𝑖 are velocity dif-
ferences and distances to the following vehicle of the gap and the 𝑖-th leading ve-
hicle. Note that for leading vehicles, the distance 𝑑f𝑖 is positive when the vehicle
is in front of the ego vehicle. For the following vehicle, 𝑑b is positive when it is
behind the ego vehicle. In this case, there are two possible leading vehicles, one
on the target lane and one on the source lane. Finally, the output longitudinal ac-
celeration will be bounded via 𝑎lon = min(max( ̇𝑣IDM, 𝑎max,dcc,ego), 𝑎max,acc,ego)
to the range of [𝑎max,dcc,ego, 𝑎max,acc,ego].

Figure 3.18 illustrates two examples of how the MIDM controls the ego vehicle
to fit into different gaps that are moving with constant velocity. Parameters
used in Equation (3.10) are listed in Table A.1.
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x(m)-5 10 50
ego

target gap

(a) The ego vehicle is initially behind the gap.

x(m)700 50
ego

target gap

(b) The ego vehicle is initially in front of the gap.

Figure 3.18: Longitudinal position 𝑥 and acceleration 𝑎lon of the ego vehicle with MIDM. The
leader and the follower of the target gap are moving with constant velocity. Pa-
rameters 𝑎max,dcc,ego and 𝑎max,acc,ego are set to −2 m

s2 and 2 m
s2 in this example (from

[Wan23a], ©2023 IEEE).

The lateral velocity 𝑣lat of the actions 𝑎free,1, 𝑎free,2 and 𝑎free,3 are 0 m
s . For the

other actions, the non-holonomic kinematics of the autonomous car are taken
into account by constraining 𝑣lat via a maximum side slip angle similar as pro-
posed in [Hub18] where the positive sign of 𝑣lat points to the target lane.

𝑣lat =
{

min{0.17𝑣, 0.8 m
s } RSS safe w.r.t. the gap

−min{0.17𝑣, 0.8 m
s } else (3.11)

The prerequisite for having lateral velocity is RSS safety to the leading and
following vehicle. Additionally, each action includes a fallback longitudinal
reaction. As soon as the RSS safety is violated, e.g. by other vehicles cutting
in front closely or because the merging lane is going to end1, the emergency
braking 𝑎min,decel will overwrite the output of the MIDM.

1 Equivalent to an obstacle with velocity 0m/s standing at the end of merging lane.
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Follow lane behavior with yielding capability

Multi-lane driving requires a more sophisticated policy than MIDM when ve-
hicles on other lanes require cooperation from the ego vehicle during a lane
change. This necessitates that the ego vehicle behaves courteously towards
lane-changing or merging vehicles that clearly communicate their desire to
change lanes (e.g., via the use of turn signals). To address this, I introduce
the Cooperative Intelligent Driver Model (CIDM). When a cut-in desire from
another vehicle is detected, the ego vehicle calculates a yielding motivation
value 𝑚 using a logistic regression function

𝑚 = 1
1 + 𝑒−𝜃𝑇

Y𝑓Y
(3.12)

with the 𝜃Y to be the weight vector and 𝑓Y = [𝑑, 𝑡TH, ̇𝑡TH] to be the fea-
ture vector, where 𝑑 denotes the distance between the ego vehicle and the
merging vehicle, 𝑡TH = 𝑑

𝑣main
is the time headway to the merging vehicle and

̇𝑡TH = 𝑣main−𝑣merge
𝑣main

is the changing rate of time headway. 𝑣main and 𝑣merge are the
velocities of the ego vehicle and the merging vehicle. The model is trained with
the Interaction dataset [Zha19] and ExitD dataset [Moe22] where in total 3320
vehicles are recorded to yield to a merging vehicle and 432 vehicles not. The
learned parameters are presented in Table A.3 together with modified versions
for different driving styles. To control the willingness to yield, I introduce a
threshold value 𝑚th = 0.5. If the vehicle decides to yield (𝑚 > 𝑚th), it treats
both the merging vehicle and the preceding vehicle in the current lane as target
vehicles and calculates its acceleration using Equation (3.10).

Rule-based Lane Change Policy and Merging Policy

After introducing the action classes and their low-level executions formulti-lane
scenarios, different rule-based policies are proposed utilizing these actions.

For free lane change, theMinimizing Overall Braking Induced by Lane changes
(MOBIL) strategy [Kes07] can be used as one rule-based lane change policy.
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This model makes lane change decisions with the objective of maximizing the
acceleration of all the involved vehicles. The IDMmodel is used to calculate the
accelerations of the surrounding vehicles. Then, a lane change is performed if

̃𝑎e − 𝑎e + 𝑝 ∗ (( ̃𝑎n − 𝑎n) + ( ̃𝑎o − 𝑎o)) > 𝑎th (3.13)

where 𝑎e, 𝑎n, and 𝑎o represent the accelerations of the ego vehicle, the fol-
lowing vehicle on the neighbor lane, and the following vehicle on the original
lane, respectively, assuming no lane change of the ego vehicle is performed.
Correspondingly, the ones with tildes represent their accelerations if the ego
vehicle changes lane. The politeness factor 𝑝 is included to control how much
the acceleration gains and losses of other vehicles are valued. The left side of
Equation (3.13) represents the overall acceleration gain 𝑎gain, which must be
greater than a threshold value 𝑎th for a lane change to occur. Note that if a lane
change is possible in both directions, it will be performed in the direction where
Equation (3.13) is satisfied and whose 𝑎gain is higher.

This MOBIL policy is unable to choose between 𝑎free,1, 𝑎free,2, and 𝑎free,3.
Therefore, when applying this policy, 𝑎free,2 and 𝑎free,3 are not considered.
The politeness factor 𝑝 and the acceleration threshold 𝑎th are presented in
Table A.4, along with modified versions for different driving styles.

The MOBIL model can be combined with the CIDM in order to perform a lane
change for cut-in attempts, which I call Cooperative Minimizing Overall Brak-
ing Induced by Lane changes (CMOBIL). If the vehicle has high motivation to
yield (𝑚 > 𝑚th), 𝑎e will be computed additionally taking the vehicle with cut-
in desire as one of the front vehicles. Depending on Equation (3.13), it either
performs a lane change or decelerates.

In mandatory merging scenarios, a rule-based merging policy based on heuris-
tics is described in [Nau19]. In this approach, each gap is assumed to move
with constant velocity, and the merging vehicle tries to reach the gap by either
accelerating or decelerating at a constant rate. The gap selection heuristic in-
volves selecting the gap that can be reached earliest in space along the target
lane. This policy is called Closest-Gap Merging Policy (CGMP).
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3.4.2 Intersecting Lanes

In the case of intersecting lanes, specifically unsignalized intersections, I pro-
pose longitudinal high-level decisions, which can then be transformed into ei-
ther a longitudinal recommended velocity profile or a desired acceleration. The
assumption is that the AV moves along the centerline of the route, without
any lateral decision making involved. Obstacle avoidance within the lane, fine
speed control and comfort maximization, etc. are supposed to be accomplished
within the subsequent trajectory planner.

High-level Actions and Rule-Based Policies

I introduce three basic high-level actions for intersections.

• Stop (𝑎inter,1): Stopping before the first conflict zone (or the stop line).

• Pass (𝑎inter,p): Passing the conflict zones with maximum reachability.

• Squeeze (𝑎inter,s): Carefully advancing with minimum velocity.

Figure 3.7 depicts a simplest RSS-safe policy for passing intersections. This
policy guarantees that either stopping before the first conflict zone or passing
all conflict zones is satisfied. However, in scenarios where no intersection be-
tween the two conditions can be found, the ego vehicle can become trapped
in a deadlock situation where traversing from one to the other with only stop
and pass is not possible, especially in cases with strong occlusions. In such
situations, I introduce a third action, squeeze, which allows the ego vehicle to
slowly approach or even enter the conflict zone to gain more visibility, for in-
stance, with a velocity of 1 m

s . This action is considered RSS-safe as well. I
refer to this simple policy as the first basic intersection policy (B1).

Extended Actions and Advanced Policies

It has been observed that in certain scenarios of the datasets, human drivers
are able to find a smoother transition between stopping (C1) and passing

68



3.4 High-level Actions and Rule-based Policies

({C2,C2,p,C3}), such as intersections with slight occlusion. Instead of stop-
ping before the conflict zones with constant deceleration, until {C2,C2,p,C3}
is satisfied to switch to pass, they try to decelerate less at the beginning. This
allows them to switch to pass before they must execute a harsh brake to avoid
violating C1. To replicate this behavior, I can introduce another action that is
similar to stop but with less deceleration at the beginning and more deceler-
ation as the vehicle approaches the conflict zones. Conversely, there are also
scenarios where the ego vehicle slows down more at the beginning. This can
signal the vehicle’s cooperative stopping intention to other traffic participants.

There are potentially infinite variations of approaching or stopping styles, but
for the simplicity of the action space, I introduce only two additional actions:
fast approach (𝑎inter,2) and early stop (𝑎inter,3) in addition to the existing stop ac-
tion. The low-level implementation of these actions is discussed in the next sub-
section. With these new actions, I can create more rule-based policies such as
B2, which replaces stop in B1 with fast approach, and B3, which replaces stop
in B1 with early stop. Furthermore, more advanced and human-like policies
can be developed, such as dynamically selecting different approaching styles at
each decision step rather than sticking to a single one.

The rule-based policies B1, B2 and B3 are visualized in Figure 3.19.

Safely pass all conflict 
zones? (fulfill {C2, C2,p, C3})

yes

no

B1, B2, B3: Pass

B1: Stop
B2: Fast approach
B3: Early stop

Approaching one stop line
Deadlock by 

occlusion yes

no

B1, B2, B3: Squeeze

Figure 3.19: Flow charts for the policies B1, B2 and B3 (from [Wan23b], ©2023 IEEE).

Low-level Action Executions

IDM is again utilized to generate longitudinal acceleration 𝑎lon = ̇𝑣IDM for all
approaching actions, where the stop line or the first conflict zone is regarded
as an additional virtual obstacle with 0 velocity. In order to generate different
approaching styles fast approach, stop and early stop, I add another parameter 𝛼
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into the original formulation, which is reformulated as Intelligent Driver Model
for Intersection (IIDM)

̇𝑣IDM = 𝑎
⎛
⎜
⎜
⎜
⎝

1 − (
𝑣
𝑣d )

4
− 𝛼

⎛
⎜
⎜
⎝
max

⎛
⎜
⎜
⎝

𝑑∗
(𝑣, Δ𝑣flead)

𝑑flead
,

𝑑∗
(𝑣, Δ𝑣fsl)

𝑑fsl

⎞
⎟
⎟
⎠

⎞
⎟
⎟
⎠

2⎞
⎟
⎟
⎟
⎠

(3.14)

where 𝑑∗ (𝑣, Δ𝑣) = 𝑑0 + 𝑣𝑇d + 𝑣Δ𝑣
2√𝑎𝑏

is the desired distance to the vehicle
ahead. The parameters to set are similar to Equation (3.8). 𝛼 aims to control
the contribution of the leading vehicle (flead) or virtual obstacle from stop line
(fsl) to the overall acceleration and is 1 in the original IDM formulation. In my
work, 𝛼 is set to 0.5 for fast approach, 1 for stop and 2 for early stop.

Figure 3.20 depicts an occluded intersection, where a human driver is not de-
celerating with the typical IDM deceleration to stop before the conflict zones.
Instead, a smoother transition between stop and pass is observed, which is both
safe and comfortable. Among the three predefined actions, the fast approach
trajectory matches the human driver’s trajectory the best and should be selected
in this case by a human-like policy.

In the case of the pass action, the longitudinal acceleration should be deter-
mined by the maximum reachability of the ego vehicle before leaving all con-
flict zones. This concept is discussed in detail in Section 3.2.3. As for the
squeeze action, the longitudinal acceleration can be obtained by using a speed
P-controller that aims to maintain a velocity of 1 m

s .
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vehicle
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(a) Ego vehicle approaching an occluded intersection
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(b) Human approaching profile and generated action profiles

Figure 3.20: The ego vehicle is approaching an occluded intersection with potential phantom ve-
hicles. The y coordinate of (b) is the longitudinal distance along the green dashed
route of the ego vehicle in (a). One recorded human driver tries to approach with the
black trajectory. My IIDM generates three different profiles for the three approaching
actions (from [Wan23b], ©2023 IEEE).
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4 Learning Driving Policies from
Naturalistic Trajectories

The objective of this chapter is to determine the most human-like, convenient,
comfortable, and least risky high-level decision from the action candidates pro-
posed in Section 3.4, which already comply with the RSS safety constraints.
As stated in Section 3.1, the aim is to characterize all actions using feature vec-
tors. Utilizing recorded trajectories, the goal is to update the weights 𝑤 of the
linear function in Figure 3.1, in order to maximize the Q-value of the more
human-like actions over other actions.

In this chapter, I first categorize various relevant features for decision making in
Section 4.1. I then introduce an approach in Section 4.2 to estimate the features
under a probabilistic environment. Subsequently, I optimize the Q-function
using human driving trajectories, and finalize the learned policies for different
scenarios in Section 4.3. To imitate diverse driving styles of humans, I perform
driving style analysis and induce stylized policies in Section 4.4.

4.1 Relevant Features for Decision Making

A previous study [Nau20b] has already provided a summary of the existing fea-
tures in the current state of the art. However, these features are primarily perti-
nent to trajectory planning rather than high-level decision making. In trajectory
planning, optimizing for comfort and smoothness of the trajectory is often a crit-
ical objective, which can be achieved by minimizing the input jerk sequences
[Zie15]. Conversely, for behavior-level decision making, the emphasis is more
on high-level features, such as anticipated progress and perceived safety.
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I classify all the features into four categories that are deemed important in high-
level decision making: utility, ride comfort, perceived safety, and politeness.
The features are represented numerically using scalars, for which mathematical
formulations, either based on a resulting trajectory from an action, or based on
other estimation methods, have been developed in Section 4.2. To enable com-
parison among the different features, they have been additionally normalized
between 0 and 1 using the established formulations.

4.1.1 Utility

In the context of MDP, utility refers to the accumulated future rewards dis-
counted over time, which can incorporate a wide range of attributes that impact
driving behavior [Kno21], e.g. progress towards the destination, time spent
driving, collision avoidance, etc. However, I adopt a different interpretation
of the term utility, using it specifically to represent how progress towards the
destination can be achieved through a specific action. Furthermore, I subdivide
utility into three concrete features:

• 𝑈1: How quickly the overall progress can be made by the action.

• 𝑈2: How soon the action (e.g. merging into a gap) can be completed.

• 𝑈3: How likely the action (e.g. merging into a gap) can be achieved.

A high 𝑈1 indicates that the vehicle is able to maintain a speed closer to the
desired velocity. The calculation of 𝑈1 is based solely on the vehicle’s velocity,
and can be formulated as follows:

𝑈1 = 1 −
|
1
𝑛

𝑛

∑
𝑖=1

𝑣𝑖
𝑣des

− 1
|

(4.1)

where 𝑣1, 𝑣2, … , 𝑣𝑛 denotes the sequence of velocities resulting from the given
action, and 𝑣des represents the desired velocity of the driver. This formulation
also penalizes velocities that exceed 𝑣des. It is worth noting that the desired
velocity reflects the driver’s preference rather than the speed limit. However,
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for automated vehicles, the desired velocity should be set to the speed limit
𝑣limit or the speed recommendation of the road in order to comply with legal
requirements and avoid disrupting traffic flow.

In scenarios where explicit maneuvers are required, such as lane changes, merg-
ing, approaching intersections, the 𝑈2 and 𝑈3 features play a more significant
role. They cannot be directly estimated from a resulting trajectory but are
rather semantic-level information. For instance, when merging onto a high-
way, choosing a gap that requires less merging time (𝑈2) and is more likely to
succeed (𝑈3) is usually a more attractive option than cutting into the very first
gap that seems to be the fastest option (𝑈1). At intersections, 𝑈2 and 𝑈3 de-
scribe how quickly and how likely it is to cross the intersection. In Section 4.2,
I will explain how to estimate 𝑈2 and 𝑈3.

4.1.2 Ride Comfort

Human comfort in AVs are characterized by naturality, disturbances, apparent
safety, and motion sickness, as suggested in [Elb15]. Naturality and motion
sickness are difficult to quantify using a single trajectory and are therefore not
considered in this work. Apparent safety, on the other hand, is accounted for in
other proposed features and is not included in the ride comfort category.

In trajectory planning, disturbances such as jerk and acceleration in the longi-
tudinal and lateral directions are often considered to affect driving comfort and
are penalized in the cost function [Zie15, Bur18]. However, in high-level de-
cision making, optimizing plans with respect to jerk is not essential. Instead, I
only take longitudinal and lateral acceleration into account.

In parallel-lane scenarios, the output decision is decoupled into longitudinal
acceleration and lateral velocity by my low-level execution 𝑎free,𝑖,𝑎merge,𝑖 =
[𝑎lon, 𝑣lat], see Section 3.4.1. The lateral acceleration at the 𝑖-th time step 𝑎lat,𝑖
is derived by 𝑎lat,𝑖 = 𝑣lat,𝑖−𝑣lat,𝑖−1

Δ𝑡 .

At intersections, the output decision consists of only one longitudinal accelera-
tion value 𝑎lon along the centerline of the route. The lateral acceleration can be
inferred from the velocity 𝑣 and the curvature of the centerline 𝜅 via 𝑎lat = 𝑣2𝜅.
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Assumingwe have a sequence of {𝑎lon,1, 𝑎lon,2, … , 𝑎lon,𝑛} and {𝑎lat,1, 𝑎lat,2, … , 𝑎lat,𝑛}
from a trajectory, the comfort feature 𝐶 is computed by

𝐶 = 1 − 1
𝑛

𝑛

∑
𝑖=1

√𝑎2
lon,𝑖 + 𝑎2

lat,𝑖

|𝑎max,dcc,obj|
(4.2)

4.1.3 Perceived Safety and Driving Risk

Perceived safety is also treated as risk and has several definitions in the liter-
ature, depending on the scenario. I have reviewed numerous approaches that
aim to compute collision risk in Section 2.3.1, which typically rely on upstream
predictions of other vehicles that do not involve the ego vehicle. However, col-
lision probability can also depend on the reaction time and style of each driver,
making it computationally intractable to compute by considering all possible
reactions of the agents involved. Moreover, as collisions are rare occurrences
in real-world traffic, validating the collision probability is challenging.

Instead of relying on collision probability, I count events as risky, where eva-
sive reactions of the ego vehicle are essential to maintain RSS safety, such as
emergency braking or evasion. If a collision still occurs, the ego vehicle is not
considered responsible, in accordance with the principles of RSS. The margin
where the evasive reaction should be initiated is when the RSS safety is violated
or about to be violated. Driving risk is then defined as the probability of taking
evasive reactions, to restore or maintain RSS safety. Accordingly, I introduce
two categories of driving risk: emergency risk 𝑅1 and fall-back risk 𝑅2.

The emergency risk represents the probability of emergency situations where
the RSS safety is violated, either passively (e.g., by intruding traffic participants
who disregard RSS) or actively (e.g., by violating 𝐶1,reg and 𝐶2,reg simultane-
ously). In such cases, a “proper response”, such as braking with 𝑎max,dcc,ego,
needs to be performed. For example, during free driving, other vehicles on ad-
jacent lanes might disregard the RSS safety and suddenly cut in front of the ego
vehicle, forcing the ego vehicle to respond appropriately and execute a harsh
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brake, resulting in a non-zero emergency risk. With this definition, one may ar-
gue that the emergency risk is always greater than 0 as long as there is a vehicle
on the adjacent lane ahead. While this is true, the emergency risk is expected
to be extremely low in most situations and should not affect my normal driving.
In order to minimize the possibility of being involved in traffic accidents (even
if not responsible), thresholds for the emergency risk can be proposed but is not
in the scope of this work.

The fall-back risk represents the probability of switching to the fall-back plan,
where the RSS safety is on the verge of being violated. The fall-back plan is
still RSS-safe, but considered risky because the driver or passengers may feel
endangered. For example, in a highway on-ramp merging scenario, a fall-back
plan may be a failed merge followed by a harsh stop at the end of the merg-
ing lane. At an occluded intersection, when the vehicle approaches without
caution (e.g. with fast approach), hoping that no prioritized vehicle is behind
the occlusion so that switching to pass is possible soon, but one suddenly ap-
pears, the uncomfortable final part of the trajectory has to be executed. In this
work, a fallback is defined as a deceleration over a threshold 𝑎fallback,dcc, such
as 𝑎fallback,dcc = 0.8𝑎max,dcc,ego.

I list some situations where 𝑅1 and 𝑅2 may be greater than 0. 𝑅1 > 0 when

• Traffic participants behave beyond RSS assumptions (e.g. decelerate
more than 𝑎max,dcc,obj or drive over 𝑣max,obj).

• Traffic participants violate traffic rules (e.g. take way, cut in, or cross
disregarding RSS safety requirements).

• Perception results are associated with high uncertainty (e.g. ghost objects
or extremely large estimation error).

𝑅2 > 0 when

• The ego vehicle has an incorrect estimation of the turning, routing, or
cooperation intentions of other traffic participants.

• The ego vehicle estimates the uncertainty in occlusions overly optimistic.

It is difficult to eliminate the emergency risk (𝑅1) entirely since adversarial be-
haviors cannot be avoided by AVs. However, it can be minimized by sacrificing
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the utility and estimating the worst-case scenarios. The primary goal of this
work, however, is not to eliminate 𝑅1, but rather to ensure that the autonomous
vehicles do not cause accidents. In the event of high 𝑅1, the autonomous vehi-
cles must adhere to traffic rules and be prepared for any emergency situation.
Furthermore, it is assumed that the perception system operates reasonably well,
and therefore, the third point is not considered in this work.

The fall-back risk 𝑅2 can be eliminated, e.g. by always following stop or early
stop actions, and can also be reduced without compromising utility too much,
e.g. by having a better prediction module that generates a more accurate estima-
tion of the environment. However, as the consequence of switching to fallback
is not as severe as an emergency situation, human drivers often risk the fallback
to be more efficient. For instance, when crossing a familiar intersection with
occlusions where oncoming prioritized vehicles are rarely encountered from
experience, they may tolerate one harsh brake in 100 fast crossings, rather than
100 soft brakes, among which 99 are unnecessary. In this example, the low
probability of vehicles coming out of occlusion will reduce 𝑅2 and allow for
a more efficient crossing. The goal is to find a balance between utility and
driving risk with recorded human driving trajectories and imitate how humans
compromise between both.

𝑅1 and 𝑅2 are high-level features that cannot be directly computed for an action,
similar to 𝑈2 and 𝑈3. In order to estimate them, I propose an approach that will
be explained in detail in Section 4.2.

4.1.4 Politeness

Courteous behavior during driving is important and can have a positive impact
on overall traffic flow. When drivers exhibit courteous behaviors, it can reduce
the likelihood of traffic jams and bottlenecks, leading to a more efficient use
of road space. A skilled driver not only considers their own benefit but also
behaves in a way that minimizes the impact on the comfort and utility of other
drivers. The ability to plan suitable courteous behaviors is crucial for the public
acceptance of autonomous systems. Moreover, human drivers and other traffic
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participants expect cooperative behavior from autonomous vehicles. For in-
stance, pedestrians crossing a zebra crossing often check for approaching vehi-
cles even if they have priority. This is known as a two-step crossing as proposed
in [Jai14]. If the vehicles are far away or decelerating early, pedestrians feel safe
and proceed to cross. Conversely, if vehicles are not slowing down, pedestrians
usually wait and observe their behavior. If a vehicle demonstrates an explicit
courteous behavior, such as slowing down early, it encourages pedestrians to
cross earlier, reducing the crossing time for both parties and increasing the util-
ity of all traffic participants.

Moreover, cooperative behavior can also create a less stressful driving experi-
ence for all road users, avoiding potential hazard situations, for example yield-
ing to merging vehicles early to avoid risky and aggressive cut-ins.

The level of politeness exhibited by the ego vehicle can be quantified by com-
puting the average utility 𝑈1 and average comfort 𝐶 of the 𝑛 surrounding traffic
participants. Specifically, I define 𝑃1 = 1

𝑛 ∑𝑛
𝑖=1 𝑈1,𝑖 and 𝑃2 = 1

𝑛 ∑𝑛
𝑖=1 𝐶𝑖, where

𝑈1,𝑖 and 𝐶𝑖 represent the utility and comfort of the 𝑖-th object, respectively. The
trajectories of the surrounding traffic participants can be obtained through my
proposed MCS approach, which will be elaborated in detail in Section 4.2.

4.2 Feature Estimation via Monte-Carlo
Simulation (MCS)

Human drivers often consider the entire driving environment and make deci-
sions that are not necessarily optimal but reasonable, taking into account all
possible evolutions of the scene. However, finding optimal solutions in large
multi-agent settings using methods such as MCTS can be complex due to the
exponential growth of the action and observation space with the number of
agents. To address this challenge, I propose semantic high-level action candi-
dates that comply with traffic rules and RSS safety as suboptimal options. My
approach focuses on achieving a certain degree of convenience and safety rather
than to be optimal with an engineered reward function, which I believe is more
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practical and achievable in real traffic scenarios. The goal is to select the most
appropriate option from these choices.

The decision-making process relies on the features associated with each action,
such as risk, utility, and comfort. To obtain these features, I use MCS to sim-
ulate the environment forward from the current scene, where the ego vehicle
follows one of the high-level actions, and the surrounding agents react based on
either a fixed prediction or an interactive driver model. The ego vehicle does not
change its action unless the maneuver of the action is complete (e.g. completed
lane change) or in case of a fall-back reaction (e.g. returning back to source
lane in merging, or brake to stop before conflict zones). The simulation also in-
cludes sampling phantom vehicles from occlusions. Each episode of MCS can
result in a different future due to the randomness in the environment model,
which will be discussed in the next subsections. To obtain accurate feature
values through MCS, the environment model should closely resemble reality.
For each possible action candidate, the simulation is repeated with a sufficient
number of episodes 𝑁 , after which the feature values can be computed based
on the simulation histories. To make decisions in real-time, each episode of
MCS is limited by a simulation horizon 𝑡mcs,max, with a discrete time step Δ𝑡,
resulting in 𝑚 = 𝑡mcs,max

Δ𝑡 time steps.

4.2.1 Feature Estimation

In order to acquire 𝑈1 (average speed), 𝐶 (comfort), 𝑃1 and 𝑃2 (polite-
ness), the trajectories of the ego vehicle and other traffic participants need
to be available. 𝑈2 (maneuver completion time), 𝑈3 (maneuver success
rate), 𝑅1 (emergency risk) and 𝑅2 (fall-back risk) are rather values that
can not be estimated from the trajectories, but from other semantic infor-
mation of the MCSs. I introduce the tag ∗ for the estimated feature vector
f∗𝑎𝑖 = [𝑈 ∗

1,𝑎𝑖
, 𝑈 ∗

2,𝑎𝑖
, 𝑈 ∗

3,𝑎𝑖
, 𝐶∗

𝑎𝑖 , 𝑅∗
1,𝑎𝑖

, 𝑅∗
2,𝑎𝑖

, 𝑃 ∗
1,𝑎𝑖

, 𝑃 ∗
2,𝑎𝑖

] for a certain action 𝑎𝑖 ∈ 𝒜 .
𝒜 could be {𝑎free,1, 𝑎free,2, 𝑎free,3, 𝑎free,4, 𝑎free,5}, {𝑎merge,1, 𝑎merge,2, ..., 𝑎merge,𝑛}
or {𝑎inter,1, 𝑎inter,2, 𝑎inter,3} depending on the scenarios.

After eachMCS, the trajectories of all agents can be recorded, and𝑈1, 𝐶 , 𝑃1 and
𝑃2 are computed once for this episode according to the equations in Section 4.1.
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I propose to compute 𝑈 ∗
1,𝑎𝑖

, 𝐶∗
𝑎𝑖 , 𝑃 ∗

1,𝑎𝑖
and 𝑃 ∗

2,𝑎𝑖
by averaging 𝑈1, 𝐶 , 𝑃1 and 𝑃2

over all the episodes.

From one MCS, not only numerical values, i.e. 𝑈1, 𝐶 , 𝑃1 and 𝑃2, are obtained,
but also other semantic information, such as whether a maneuver succeeds or a
fall-back action has been executed. If themaneuver succeeds in 𝑖-th episode, the
simulated completion time 𝑡mcs,finish,𝑖 is recorded. Otherwise, 𝑡mcs,max is utilized
for 𝑡mcs,finish,𝑖. As a result, 𝑈 ∗

2,𝑎𝑖
(average normalized completion time of ma-

neuver 𝑎𝑖) and 𝑈 ∗
3,𝑎𝑖

(success rate of maneuver 𝑎𝑖) can be formulated as follows

𝑈 ∗
2,𝑎𝑖

= 1
𝑁

𝑁

∑
𝑖=1 (

𝑡mcs,finish,𝑖
𝑡mcs,max ) (4.3)

𝑈 ∗
3,𝑎𝑖

=
𝑛mcs,finish

𝑁 (4.4)

where 𝑛mcs,finish represents the number of episodes where the desiredmaneuvers
are completed. Similarly, 𝑅∗

1,𝑎𝑖
and 𝑅∗

2,𝑎𝑖
represent the ratios of episodes where

the RSS safety is violated the ego vehicle has executed an emergency brake,
and where a fall-back plan have been executed.

4.2.2 Modeling State Uncertainty

As outlined in Section 3.1, it is assumed that uncertainties are present in the
states (e.g. position, velocity, acceleration) of both the ego vehicle and traf-
fic participants. The localization and perception module provide established
distributions for these uncertainties.

Upon initiating a fresh episode of MCS, the states of all traffic participants are
stochastically sampled from their distributions. Consequently, in each episode
of MCS, all agents within the scenario may commence with varying positions
and velocities, among other factors, albeit within a confined scope.
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4.2.3 Modeling Surrounding Vehicles

In MCS, the primary traffic participants modeled are human-operated vehicles.
They are simulated to exhibit diverse behavior models, driving patterns, and
navigational goals. Additionally, they are assumed to possess comprehensive
knowledge of traffic regulations and an accurate perception of their surround-
ings. To preserve efficiency, the behavior models ought to be uncomplicated,
facilitating rapid querying, since executing the environment across numerous
MCSs can impose considerable computational demands. Consequently, more
intricate learning-based behavior models, such as those founded on neural net-
works, are excluded from this study.

Car Following

In a car-following scenario on a singular lane, it is assumed that neighboring
vehicles adhere to the IDM with predetermined parameters. Optionally, their
IDM parameters may be fine-tuned based on long-term observations, provided
the perception and scene comprehension modules possess the requisite capa-
bilities. For example, if a vehicle maintains its velocity (velocity fluctuation
of less than 1.5 m

s ) for over 3 s, with a time headway exceeding 3 s to the pre-
ceding vehicle, the current velocity is employed as the desired velocity 𝑣des.
More sophisticated approaches to estimate the IDM parameters online can also
be found [Kre22].

Cooperative Yielding to Merging vehicles

As the ego vehicle (AV) or other vehicles execute a mandatory merge and ap-
proach a gap, it is crucial to observe relevant vehicles on the target lane to eval-
uate their cooperativeness and determine whether to proceed with the initially
identified gap.

Estimating the yielding intention is similar to computing the yielding motiva-
tion in Equation (3.12). I use the same logistic function
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𝑃 (yielding| ̂𝑓Y) = 1
1 + 𝑒− ̂𝜃𝑇

Y
̂𝑓Y

(4.5)

with a different feature vector ̂𝑓Y = [𝑎, 𝑑, 𝑡TH, ̇𝑡TH], where another feature 𝑎 is
included, i.e. the acceleration of the vehicle whose yielding intention is esti-
mated. The other features remain unaltered. The ̂𝜃Y vector is retrained with
the same data used for training the CIDM. The resulting ̂𝜃Y is presented in
Table A.7.

For initialization of the MCSs, the yielding intention of the target vehicle is
sampled from the initial 𝑃 (yielding| ̂𝑓Y). In essence, if a target vehicle exhibits
𝑃 (yielding| ̂𝑓Y) = 0.4, it will be initialized with a cooperative intention in 40%
of the episodes of MCSs and a non-cooperative intention in other episodes.
During a single MCS, the yielding intention will be reevaluated every 1 second.
A new yielding intention is deemed cooperative when 𝑃 (yielding| ̂𝑓Y) > 0.5.
Once the yielding intention is classified as cooperative, the target vehicle ei-
ther conducts a lane change or decelerates based on Equation (3.13) with the
CMOBIL model.

Mandatory Merging

Vehicles operating on a mandatory merging lane are presumed to adhere to a
probabilistic merging model. This model yields a list of probabilities for all
gaps that the merging vehicle approaches. The CGMP serves as the founda-
tion, which can also be expressed probabilistically. Initially, the time required
to complete the approach to the 𝑖-th gap is calculated as 𝑡merge,𝑖, with the method
presented in [Nau19]. Subsequently, the probability corresponding to the gap
being approached by the vehicle is inferred by assuming a Boltzmann distribu-
tion, as illustrated in Equation (4.6). Merging intentions are assessed tactically
at 1-second intervals within the MCS.

𝑃merge,𝑖 = 𝑒−𝑡merge,𝑖

∑𝑛
𝑗=1 𝑒−𝑡merge,𝑗 (4.6)
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Free Lane Change

Evaluating the lane change probability of nearby vehicles is crucial when con-
ducting MCS for multi-lane roads. Lane change intention can be estimated us-
ing two approaches: model-based and movement-based [Wis17]. The former
calculates the motivation for a lane change using a deterministic lane change
model, such asMOBIL, while the latter estimates lane change probability based
on vehicle states, e.g. lateral velocity, lateral distance to the centerline.

For the model-based approach, I estimate the lane change probability utilizing
the acceleration gain from Equation (3.13) of MOBIL. I designate the net ac-
celeration gain for keeping the current lane as Δ𝑎k = 0, and for changing lanes
to the left and right as Δ𝑎l = 𝑎gain,l − 𝑎th and Δ𝑎r = 𝑎gain,r − 𝑎th, respectively.
The probability mass for each option is computed by

𝑚MOBIL,𝑖 = 𝑒Δ𝑎i

∑𝑗∈{k,l,r} 𝑒Δ𝑎j
, for 𝑖 ∈ {k,l,r} (4.7)

In the movement-based approach, I devise another logistic regression model to
calculate the lane change probability mass 𝑚move,𝑖, employing the movements
(signed lateral distance to the centerline 𝑑c and the lateral velocity 𝑣lat of the
target vehicle) as features.

Ultimately, the probabilities derived from both approaches are combined using
the Mixing Rule of Evidence Theory [Sen02]

𝑃𝑖 = 𝑤1𝑚MOBIL,𝑖 + 𝑤2𝑚move,𝑖, for 𝑖 ∈ {k,l,r} (4.8)

with 𝑤1 and 𝑤2 to be equally set to 0.5.

Intersection Behavior

Within the MCS, as surrounding vehicles approach an unsignalized intersec-
tion, they adhere to one of the rule-based yielding policies (B1, B2, and B3)
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outlined in Section 3.4.2. Given that all these policies comply with RSS safety
requirements, they should not result in collisions during MCSs.

Behavior Models for Different Driving Styles

In real-world scenarios, roads are populated by drivers exhibiting various driv-
ing styles. To simulate this diversity, I predefine three driving styles (aggres-
sive, normal, defensive) based on aggressiveness, each associatedwith a distinct
set of parameters. For example, aggressive agents prefer shorter time head-
ways and higher desired velocities during car-followingwith IDM, exhibit lower
probabilities of yielding to merge attempts with CIDM and CMOBIL, and have
a smaller threshold 𝑎th for lane changes with MOBIL. The parameters for all
driving styles are summarized in Appendix A.1. Furthermore, when approach-
ing an intersection, agents are assigned different rule-based yielding policies
(B1, B2, or B3) according to their aggressiveness levels. Upon initializing the
MCS, each vehicle is assigned an aggressiveness level, and subsequently, a spe-
cific parameter set and behavior model. Ideally, the aggressiveness level should
be determined by tracking each vehicle’s history, which can be achieved with
an external module outside the scope of my work.

Trucks are assumed to be accurately classified by the perception module due
to their significantly larger size. They typically exhibit less dynamic driving
behavior and slower desired speeds but are more aggressive in terms of reduced
cooperativeness concerning yielding intentions. Consequently, I introduce a
separate parameter set specifically for trucks as well.

Routing Intention Estimation

Each vehicle has distinct goals, which are unknown to the ego vehicle with-
out supplementary information (such as indicators). The goal is represented
by a global route, comprising a sequence of lanelets on the map. An example
is depicted in the left figure of Figure 4.1. As input for the MCS, the prob-
abilities {𝑃 (𝑟𝑖), … , 𝑃 (𝑟𝐼 )}𝑣𝑛 of each vehicle 𝑣𝑛 following all possible routes
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{𝑟𝑖, … , 𝑟𝐼 }𝑣𝑛 for 𝐼 ∈ ℕ are necessary. In the absence of external predic-
tion modules, equal probabilities are assigned. Upon initializing an episode
of MCS, all vehicles are randomly assigned to one of the routes sampled from
their probability distributions.

I employ a basic routing prediction method [Pet13] that generates routing prob-
abilities by matching the vehicle’s state distribution to the centerline of each
route. Initially, the Mahalanobis distance 𝑑(𝑣𝑛, 𝑟𝑖) between the vehicle 𝑣𝑛 and
the route 𝑟𝑖 is calculated, followed by the induction of probability by assuming
a Boltzmann distribution.

𝑃 (𝑟𝑖)𝑣𝑛 = 𝑒−𝑑(𝑣𝑛,𝑟𝑖)

∑𝐼
𝑗=1 𝑒−𝑑(𝑣𝑛,𝑟𝑗 ) , for 𝑖 ∈ {1, … , 𝐼} (4.9)

Figure 4.1: Different route options from lanelet2 map for vehicles (left) and pedestrians (right)
given the pose (red arrow) (from [Wan23b], ©2023 IEEE).

In general, any prediction module (e.g., [Que18]) capable of providing the same
information can be employed, enhancing the modularity of my method and ren-
dering it prediction-agnostic.
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4.2.4 Modeling Surrounding Pedestrians and Cyclists

In MCS, pedestrians may have multiple potential routes as well, and the estima-
tion is conducted using the same method as for vehicles, as depicted in the right
figure of Figure 4.1. When no zebra crossing is ahead, pedestrians are assumed
to move constantly with the detected velocity following one of the routes. How-
ever, when they are closer to the zebra crossing than a threshold 𝑑min but not
yet on it, they will begin making crossing decisions. Once on the zebra cross-
ing, they are simulated to cross straight ahead with a velocity sampled from a
uniform distribution 𝒰(0.5𝑣max,p, 𝑣max,p).

I assume an interactive behavior model for pedestrians attempting to cross ze-
bra crossings. The fundamental idea is that pedestrians tend to start crossing
with a higher probability when the traffic is clear but will hesitate when the
street is busy, or vehicles are driving fast and do not exhibit decelerating inten-
tions explicitly, as discovered in this research [Sch22]. I fit a logistic regression
model for predicting the crossing probability of pedestrians at zebra crossings
using the inD dataset

𝑃cross = 1
1 + 𝑒−(𝜃𝑇

p 𝑓p+𝑏p)
(4.10)

with 𝜃p as the weight vector, 𝑏p the bias, and 𝑓p = [𝑎v, 𝑎v,need, 𝑣𝑟] the feature
vector, where 𝑎v denotes the current acceleration of the closest oncoming ve-
hicle to the zebra crossing, 𝑎v,need is its required acceleration to stop before the
zebra crossing, and 𝑣𝑟 = 1− 𝑣

𝑣limit
is its normalized speed to the speed limit. The

results of 𝜃p and 𝑏p can be found in TableA.6. A crossing decision ismadewhen
𝑃cross > 0.5. Before stepping onto the zebra crossing, pedestrians will update
their decision every 1 second of simulation time by computing 𝑃cross again.

Cyclists are also recorded in the datasets. I do not introduce specific behavior
models or intention estimationmethods for cyclists but assign either pedestrian-
like or vehicle-like behavior models. Cyclists perceived to be on the walkway
will be modeled with pedestrian behaviors. Those driving on vehicle lanes

87



4 Learning Driving Policies from Naturalistic Trajectories

will be treated similarly to vehicles, albeit with cyclist-specific IDM and RSS
parameters based on the dynamics of bicycles.

4.2.5 Modeling of Abnormal Behaviors

In Section 4.1.3, various scenarios are identified where traffic participants ex-
hibit abnormal behaviors, resulting in emergency responses from the ego ve-
hicle (𝑅1 > 0). To obtain a realistic estimation of 𝑅1 (emergency risk), these
behaviors must be incorporated into the MCS as well. I examined several in-
stances of non-compliant traffic rule behaviors and quantified their occurrences
in the datasets. The findings are presented in Table 4.1.

Table 4.1: Traffic rules non-compliant behaviors and their occurrence rate.

Type Datasets Total cases Occurrence rate
(%)

Exceeding 20%
speed limit

InD, rounD 19671 vehicles 4.8

Exceeding RSS
acceleration/de-
celeration

InD, rounD 19671 vehicles 0.01

Taking way disre-
spect RSS safety

InD, rounD 11081
intersections

17.1

Unexpected pedes-
trian crossing

InD 3093 pedestrians 0

In addition to assigning the three aggressive levels to vehicles, I also allocate
abnormal behaviors to vehicles initialized in the MCS based on their actual
occurrence rates in the datasets. This can be done, for example, by assigning
an abnormal RSS parameter or a high desired speed, among other factors. It
is worth to mention that no unexpected pedestrian crossings1 were recorded in
the datasets. Nonetheless, I still assign 0.1% of pedestrians in MCSs to deviate
from their optional routes and potentially cross the street unexpectedly. Ideally,

1 Those that occur outside of zebra crossings and resulted in other vehicles braking more than
𝑎soft,dcc,obj.

88



4.2 Feature Estimation via Monte-Carlo Simulation (MCS)

this probability can be calculated by monitoring pedestrian movement through
external modules.

4.2.6 Sampling of Phantom Vehicles from Occlusions

In MCS, vehicles are expected to approach and cross intersections following
rule-based policies that are RSS safe, even in the presence of occlusions. How-
ever, simulating the FoV for every agent in the scene is computationally infea-
sible. Thus, I assume that other vehicles possess a perfect perception of the
environment and make informed decisions. For the ego vehicle, the FoV poly-
gon is simulated forward as it moves, taking into account currently perceived
static obstacles and simulated dynamic obstacles (excluding pedestrians). With
the limited FoV, the ego vehicle can only pass when the safety condition de-
scribed in Section 3.2.4 is satisfied.

ego

dynamic obstacle

static obstacles

occluded prioritized 
road sections

potential conflict zones

potential phantom 
vehicles at sensing 
border

ego route 

Figure 4.2: Possible phantom vehicles on occluded prioritized road sections.

During a MCS where the ego vehicles follows fast approach, it might not need
to switch to fallback when no vehicle is simulated to emerge from occlusion.
However, in reality, if the ego vehicle behaves the same way and expect a
smooth transition to pass based on its anticipation fromMCSs, it may be forced
to fall back when vehicles appear from occlusion. To account for this potential
fallback probability, phantom vehicles also have to be sampled from occluded
road sections. The concept involves sampling based on the perceived traffic
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density. To reduce the computational burden of MCS, phantom vehicles are
only sampled from occluded sections of prioritized roads.

Figure 4.2 illustrates an example of possible occluded prioritized routes under
the FoV, where phantom vehicles need to be sampled in MCS. For doing this,
the traffic density 𝑔 = 𝑁veh

𝐿 is first computed, where 𝑁veh represents the number
of the perceived dynamic vehicles in the scene (including the ego vehicle), and
𝐿 is the total length of roads in all directions covered by the FoV. The expected
number of phantom vehicles on each occluded section will be 𝑛𝑖,exp = 𝑔𝑙𝑖 ∈ ℝ
where 𝑙𝑖 represents the length of the 𝑖-th section. The actual number of sampled
vehicles is 𝑛𝑖,sample = ⌊max(𝒩 (𝑛𝑖,exp, 1), 0)⌋ and ⌊⌋ is a floor function. After
𝑛𝑖,sample is decided, phantom vehicles are sampled on the occluded sections with
the following rules:

• They must keep at least 0.5 s time distance to both the already existing
phantom vehicles on the section, and the visible vehicles outside of the
section. If not possible, no new vehicle is sampled.

• They are initialized with a velocity following a uniform distribution
𝒰(0.8𝑣limit, 1.2𝑣limit).

• Their behavior models and other parameters are allocated the same way
as the visible vehicles.

4.2.7 Run-time Evaluation

In comparison to MCTS that is often used for solving POMDPs, which gener-
ally builds search trees and is not readily parallelizable, each individual MCS
operates independently from others, enabling parallelizationwithin amulti-core
system. The feature values converge with an increasing number of MCSs. I ex-
amined the relationship between accuracy and speed in relation to the number
of episodes for the MCS. This evaluation was conducted in a representative
urban driving scenario featuring five pedestrians, one cyclist, and four nearby
vehicles, along with occlusions generated by static and dynamic obstacles, as
depicted in Figure 4.3a. The accuracy of the MCS can be characterized by
the variance of the estimated feature values (e.g., estimated fall-back rate 𝑅∗

2)
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4.3 Learning Policies from Datasets

across multiple runs, each with an identical number of episodes. As the num-
ber of episodes grows, the variance decreases. Conversely, the run-time will
expand as the number of episodes increases. I performed the experiment on
a laptop equipped with a Core-i7 8th-Gen Intel CPU and 8 threads, evaluat-
ing episodes in parallel. The outcomes are displayed in Figure 4.3b. I deem
500 episodes to be an appropriate balance between run-time and accuracy. The
parameters for configuring theMCS can be found in Table A.5. It is worth men-
tioning that my approach can be further enhanced with customized hardware,
such as CPU with numerous cores, or even Graphics Processing Units (GPUs).

ego

(a) A typical urban driving scene.
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(b) Variance and execution time with the number of MCSs.

Figure 4.3: Run-time and accuracy evaluation in a representative scenario.

4.3 Learning Policies from Datasets

As illustrated in Figure 3.1, following the approximation of features for each
action using MCSs, a linear function with parameters 𝑤 is employed to gen-
erate Q-values for the action. To learn a policy that balances feature values
akin to human drivers—neither excessively egoistic (overemphasizing utility
and comfort) nor overly cautious (prioritizing risk too much)—it is first neces-
sary to determine human decision preferences. A neural network is not used to
represent the Q-function because the aim is to explicitly present the weighting
for each feature, thereby better understanding the decision and avoiding over-
fitting to the limited data.
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4 Learning Driving Policies from Naturalistic Trajectories

Since humans may value features differently for lane changes, mandatory merg-
ing, and intersections, separate datasets are employed to learn distinct sets of
weights for different scenarios. In total, three sets of weights are generated for
free lane change, merging, and intersection policies. The highD [Kra18] and
exitD [Moe22] datasets are used for the first two policies, while the InD [Boc20]
and rounD [Kra20] datasets are applied for learning intersection behavior. The
data generated for the intersection policy is divided into a 50% training set and
a 50% test set. However, all data for parallel-lane policies are used for train-
ing, as evaluation is conducted in separate simulations rather than on the traffic
scenes of the datasets.

4.3.1 Generation of Training Data

Each training data point 𝑑 in the training dataset 𝒟 consists of the data
[𝑓 ∗

𝑎1 , … , 𝑓 ∗
𝑎𝑛 ] and the label [𝑃𝑎1 , … , 𝑃𝑎𝑛 ]. Here, 𝑛 represents the number of

action candidates and 𝑎𝑖 ∈ 𝒜 . The probability or preference 𝑃𝑎𝑖 , reflecting
how human drivers select each of the actions 𝑎𝑖, can be estimated based on their
recorded trajectories. Distinct estimation methods are employed depending
on the scenarios under consideration.

Intersecting Lanes

For unsignalized intersections, where only longitudinal decisions are made,
matching the ground-truth trajectories of human drivers to the action candi-
dates 𝑎inter,𝑖 can be ambiguous. Consequently, I adopt a probabilistic matching
approach rather than a deterministic one.

From MCSs, the average velocity profiles 𝑉 𝑎𝑖 = [𝑣𝑎𝑖,𝑡0 , 𝑣𝑎𝑖,𝑡1 , … , 𝑣𝑎𝑖,𝑡mcs,max ]
can be obtained, where 𝑣𝑎𝑖,𝑡𝑗 = 1

𝑁 ∑𝑁
𝑘=1 𝑣𝑎𝑖,𝑘,𝑡𝑗 , and 𝑣𝑎𝑖,𝑘,𝑡𝑗 is the velocity of

the ego vehicle at 𝑡𝑗 time step of 𝑘-th MCS by following the action 𝑎𝑖.
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4.3 Learning Policies from Datasets

For every valid frame1 of every recorded vehicle in the dataset, 𝑁 episodes of
MCSs take place for each of the three actions, producing three distinct average
velocity profiles. Afterward, an error 𝜖𝑎𝑖 between the ground-truth velocity pro-
file 𝑉gt = [𝑣gt,𝑡0 , … , 𝑣gt,𝑡mcs,max ] of the vehicle and the three generated velocity
profiles 𝑉 𝑎𝑖 is computed with

𝜖𝑎𝑖 = 1
𝑚 ∑𝑡𝑗

|𝑣gt,𝑡𝑗 − 𝑣𝑎𝑖,𝑡𝑗 | (4.11)

where 𝑚 is the number of the time steps in a MCS episode. The probability
𝑃𝑎𝑖 is estimated with

𝑃𝑎𝑖 = 𝑒−𝜖𝑎𝑖

∑𝑎𝑗
𝑒−𝜖𝑎𝑗

, 𝑎𝑖, 𝑎𝑗 ∈ 𝒜 (4.12)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

t(s)

2

4

6

8

10

v
(m

/s
)

Fast approach

Early stop

Stop

Human trajectory

Figure 4.4: Example of the average velocity profiles from MCSs and the human-driven trajectory
at 1 training frame (from [Wan23b], ©2023 IEEE).

As an illustration, I perform the MCSs with 𝑡mcs,max = 4 s in the scenario de-
picted in Figure 4.2. The average velocity profiles for the three actions from
MCSs, along with the ground-truth human trajectory, are recorded and dis-
played in Figure 4.4. The turning points of the three velocity profiles represent
the transition between slowing down and pass, where the simulated FoV cov-
ers a sufficient portion of the prioritized lanes and safety conditions are met.

1 Frames are valid when the vehicle in the ground-truth trajectory has not passed all intersections.
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4 Learning Driving Policies from Naturalistic Trajectories

Utilizing Equation (4.12), the matched probabilities of the three actions are
𝑃𝑎inter,2 = 0.635 (fast approach), 𝑃𝑎inter,1 = 0.364 (stop), and 𝑃𝑎inter,3 = 0.001
(early stop).

There are four intersections and three roundabouts containing in total 56 record-
ings of ca. 30 minutes in inD and rounD datasets. I evaluated 37016 valid
frames and generated training data of the same size.

Parallel Lanes

In parallel-lane scenarios, acquiring ground-truth actions is straightforward.
For mandatory merging, the ultimately achieved gap is assumed to be the
ground-truth gap initially targeted. For lane changes, since I already know
whether a lane change occurs in the trajectory, I assume a lane change decision
is made when the lateral velocity exceeds 0.25m/s in the target direction. This
value is greater than 98.1% of the lateral velocities in trajectories without lane
changes. The lane change decision persists until more than half of the ego
vehicle’s geometry locates on another lane, i.e. 𝑃𝑎free,4 = 1 or 𝑃𝑎free,5 = 1.
For other frames, I assume the decision is one of 𝑎free,1, 𝑎free,2 and 𝑎free,3,
where 𝑃𝑎free,4 = 𝑃𝑎free,5 = 0.

I apply the same probabilistic matching method to match the ground-truth ve-
locity profile to one of the velocity profiles of 𝑎free,1, 𝑎free,2 and 𝑎free,3, resulting
in three probabilities 𝑃𝑎free,1 + 𝑃𝑎free,2 + 𝑃𝑎free,3 = 1.

Training data is tactically extracted from the datasets with 1 s interval. Too
small time interval results in similar states and outputs. From HighD and ExitD
datasets, I obtain 23154 valid1 training frames for the merging scenario and
253331 valid training frames for lane changes (22.05% of the frames have lane
change labels).

1 The first and last two seconds of each trajectory are discarded as the vehicle is at the edge of the
FoV of the drone. Frames where no vehicle is on the target lane for merging are also considered
invalid.
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4.3.2 Loss Function and Learned Policies

I use softmax cross-entropy loss ℒ for back-propagation and updating the pa-
rameters 𝑤, which is formulated for the entire training dataset as

ℒ = − ∑
𝑑∈𝒟

∑
𝑎𝑖∈𝒜

𝑃𝑎𝑖 log
⎛
⎜
⎜
⎝

𝑒−𝑄𝑎𝑖

∑𝑎𝑗 ∈𝒜 𝑒−𝑄𝑎𝑗

⎞
⎟
⎟
⎠

= − ∑
𝑑∈𝒟

∑
𝑎𝑖∈𝒜

𝑃𝑎𝑖 log
⎛
⎜
⎜
⎝

𝑒−w⊤f∗𝑎𝑖

∑𝑎𝑗 ∈𝒜 𝑒−w⊤f∗𝑎𝑗

⎞
⎟
⎟
⎠

(4.13)

Consequently, the learned weights for the three scenarios (free lane change,
mandatory merging, and intersection) are presented in Table A.8. Analogous
to the feature values, the absolute values of the weights are also normalized
between 0 and 1. In this manner, the human preferences for each feature are
comparable and representative across different policies.

With these learned weights, I formulate three policies for different scenarios,
i.e. Learned Merging Policy (LMP), Learned Lane Change Policy (LLCP) and
Learned Intersection Policy (LIP).

For evaluation purposes, I incorporate an additional merging behavior where
I do not permit arbitrarily high fall-back risk, approximated by the estimated
fall-back rate 𝑅∗

2 fromMCS. As before, the action with the highest quality value
𝑄 is chosen, but only after those with fall-back risk higher than the threshold
𝑅∗

2,th have been discarded. If the fall-back risks for all actions exceed 𝑅∗
2,th, the

decision will be tomerge into the very last gap. I set the threshold at 𝑅∗
2,th = 0.2,

which is higher than the risk of 3.9% of all human merging decisions. This
policy is termed Risk-Bounded Learned Merging Policy (RBLMP).
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4.4 Learning Policies for Diverse Driving Styles

Incorporating the possibility for users of AD systems to select driving styles that
closely resemble their own preferences enhances the overall user experience
and fosters wider acceptance of autonomous vehicles. By offering a range of
predefined driving policies, the AV can cater to the diverse needs of individual
drivers, thereby making the technology more competitive in the market. This
feature acknowledges the inherent variability in human driving behavior, and
adapts the autonomous vehicle’s decision-making process to better align with
the expectations and comfort levels of its users.

The importance of providing customizable driving styles lies in the fact that
drivers differ significantly in terms of risk tolerance, politeness, and preference
for efficiency or comfort. An aggressive driver, for instance, may prioritize
utility and be willing to accept higher risks, while a cautious driver may em-
phasize politeness and comfort over other factors. By allowing users to select
from a range of predefined driving policies, autonomous vehicles can emulate
the unique characteristics of human driving behavior, resulting in a more intu-
itive and personalized driving experience.

Furthermore, the flexibility to adjust driving styles online while the vehicle
is in operation enables users to adapt the AV’s behavior according to changing
road conditions, traffic situations, or personal preferences. This feature not only
enhances the vehicle’s adaptability and responsiveness but also empowers users
with a greater sense of control and trust in the system, which is essential for the
successful integration of autonomous vehicles into daily life.

The driving style of the learned policy can be reflected in the weights assigned
to the features. For example, an aggressive driver might assign more weight
to utility and less to risk, while a cautious driver might prioritize politeness
and comfort over other features. In the previous section, all training data for a
given scenario were used to train a single policy, thus obtaining a universal set
of weights. However, this data may encompass human drivers with different
styles and driving preferences, such as both aggressive and cautious drivers.
Consequently, this section proposes a method for clustering the training data
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into several subsets that represent diverse driving preferences and deriving dis-
tinct sets of weights for each.

4.4.1 Clustering of Training Data

I introduce three driving styles depending on the level of aggressiveness. Each
recorded trajectory 𝜉𝑖 in the datasets belongs to one driver and all the training
data in this trajectory 𝑑 ∈ 𝜉𝑖 should be assigned to the same style.

First, I compute an average feature vector f𝜉𝑖 for the trajectory 𝜉𝑖 using

f𝜉𝑖 = 1
𝑛 ∑

𝑑∈𝜉𝑖
∑

𝑎𝑗 ∈𝒜
f∗𝑎𝑗 𝑃𝑎𝑗 (4.14)

where 𝑛 is the number of training data in this trajectory. To recall the nota-
tion, f∗𝑎𝑗 represents the estimated eight-dimensional feature vector from MCS
for executing 𝑎𝑗 at the data point 𝑑 of the trajectory. 𝑃𝑎𝑗 denotes the estimated
probability of human driver executing 𝑎𝑗 at this time point. This feature vector
describes an average behavior of a trajectory 𝜉𝑖.

I argue that aggressiveness is a one-dimensional feature, where I can employ
Principal Component Analysis (PCA) to reduce the eight-dimensional feature
vector f𝜉𝑖 to a single dimension. Subsequently, I apply k-means clustering to
the reduced one-dimensional feature for all trajectories in the dataset, creating
three clusters 𝐶1, 𝐶2, and 𝐶3. It is not yet clear to which aggressive level the
trajectories in each cluster belong. However, this information can be retrieved
after training three policies using the trajectories in the three clusters, by looking
at the resulting weights on different features. As mentioned before, the policy
that weights utility more and risk less will be categorized to aggressive style;
the same logic applies conversely.

Each cluster contains a specific number of trajectories (e.g., 𝜉𝑖 ∈ 𝐶𝑘) and their
corresponding training data 𝑑 ∈ 𝜉𝑖. However, not all trajectories in a cluster
may clearly belong to that cluster, particularly those at the margins of other
clusters, which need to be excluded when training a stable and stylized policy.
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To address this issue, I adopt a probabilistic assignment to each cluster, where
three probabilities 𝑃 (𝜉𝑖 ∈ 𝐶1), 𝑃 (𝜉𝑖 ∈ 𝐶2), and 𝑃 (𝜉𝑖 ∈ 𝐶3) are utilized. These
probabilities are computed using:

𝑃 (𝜉𝑖 ∈ 𝐶𝑘) = 𝑒−𝑑(𝜉𝑖,𝐶𝑘)

∑3
𝑗=1 𝑒−𝑑(𝜉𝑖,𝐶𝑗 ) (4.15)

where 𝑑(𝜉𝑖, 𝐶𝑘) represents the distance of one trajectory 𝜉𝑖 to the cluster 𝐶𝑘,
which can be obtained with

𝑑(𝜉𝑖, 𝐶𝑘) = 1
𝑛𝐶𝑘

∑
𝜉𝑗 ∈𝐶𝑘

𝑑(𝜉𝑖, 𝜉𝑗) = 1
𝑛𝐶𝑘

∑
𝜉𝑗 ∈𝐶𝑘

𝑑(f𝜉𝑖 , f𝜉𝑗 ) (4.16)

𝑛𝐶𝑘 is the number of trajectories in the cluster 𝐶𝑘 and 𝑑(f𝜉𝑖 , f𝜉𝑗 ) is the Euclidean
distance of two feature vectors of two trajectories.

In each cluster, I eliminate the trajectories with the lowest 20% probability of
belonging to that cluster (𝑃 (𝜉𝑖 ∈ 𝐶𝑘) < 0.2), and retain the remaining 80% of
trajectories for training the policy.

4.4.2 Learned Stylized Policies

Upon clustering and filtering the datasets, I obtain three clusters of trajectories
for all three scenarios, i.e. free lane change, merging and intersection. The
number of remaining valid trajectories and their training data frames for the
three scenarios are displayed in Table 4.2.

Table 4.2: Number of remaining valid trajectories and training frames. 1k = 1000.

Free lane change Merging Intersection
𝐶1 𝐶2 𝐶3 𝐶1 𝐶2 𝐶3 𝐶1 𝐶2 𝐶3

Trajectories 19k 10k 4k 2.5k 953 361 6.4k 4.2k 1.2k
Frames 76k 41k 13k 8.9k 3.1k 1.2k 24k 15k 4.5k

98



4.4 Learning Policies for Diverse Driving Styles

Utilizing the same strategy and loss function as in Equation (4.13), I could train
in total three policies for each scenario. Observations reveal that the weights
obtained from training with the second cluster, 𝐶2, are fast identical to those de-
rived from utilizing the entire dataset (shown in Table A.8). This phenomenon
can be attributed to the fact that the behavior typified by the second level of
aggressiveness closely aligns with what is considered normal behavior. This
similarity suggests that the universal policy, which is trained across the full
dataset, effectively neutralizes the influence of both aggressive and defensive
data, resulting in comparable weights.

Consequently, in each scenario, I derive an additional two policies correspond-
ing to the aggressive and defensive categories, utilizing the remaining two clus-
ters. The weights for all such stylized policies are subsequently calculated and
detailed in Table A.9. It is important to note that the assignment of aggressive
or defensive to each policy depends on the weights to specific features. For in-
stance, the weight attributed to the aggressivemerging policy for utility 𝑈1 (av-
erage velocity) stands at 0.7, significantly higher than that for a defensive policy,
which is 0.4. This aggressive policy also assigns a markedly lower weight to
the fall-back risk 𝑅2 (-0.4) in comparison to the defensive policy (-0.7), indi-
cating a higher tolerance for fall-back rates. The policies thus formulated are
designated as Learned AggressiveMerging Policy (LAMP), Learned Defensive
Merging Policy (LDMP), Learned Aggressive Lane Change Policy (LALCP),
Learned Defensive Lane Change Policy (LDLCP), Learned Aggressive Inter-
section Policy (LAIP), and Learned Defensive Intersection Policy (LDIP).
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As outlined in Section 1.2, the objective of this research is to develop a high-
level decision-making approach for uncertain environments. While prioritiz-
ing RSS safety, the resulting decisions should emulate human-like patterns,
striking a balance between efficiency, comfort, risk, and courtesy. Since con-
ducting extensive on-road tests is infeasible, I propose evaluating my approach
in close-to-real simulation environments. To showcase the potential of each
policy comprehensively, evaluations are performed in various scenarios specif-
ically designed for the relevant policies. Additionally, case studies are con-
ducted to visualize the trajectories of the output behaviors and demonstrate the
capabilities of my approach in detail.

The evaluation scenarios are divided into parallel-lane scenarios in Section 5.1
and intersecting-lane scenarios in Section 5.2, aligned with developed policies.
The former encompasses mandatory merging, exiting from main roads, and
free lane change scenarios. The latter includes situations such as unsignalized
intersections, zebra crossings, and roundabouts, with and without occlusions.
Lastly, in Section 5.3, I implement real-time capable software and integrate it
into our automated driving pipeline, testing it in both a closed-loop simulation
and on our experimental vehicle.

5.1 Evaluation on Parallel-lane Scenarios

I divide the parallel-lane scenarios into on-ramp merging, free lane change, and
freeway exiting. To evaluate the policies for these scenarios, I developed a ver-
satile and modular simulation environment. First, I provide a brief overview
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of the simulation setup. Subsequently, I assess the behaviors in specific chal-
lenging scenarios as well as on randomly generated traffic situations. The latter
approach enables the derivation of various statistics and metrics, such as the
frequency of successful merges and fallback occurrences.

5.1.1 Evaluation Simulation

While existing simulators (e.g., SUMO [Lop18]) can simulate highway or
multi-lane scenarios, implementing customized behavior for other agents is
not straightforward. Consequently, I developed my customized simulation.
This simulation allows for the manual design of road networks (including an
arbitrary number of main lanes, merging lanes, and exit lanes) with customiz-
able parameters (shape, width, length, speed limit, etc.). Agents exhibiting
any designed behavior with various parameters can be initialized on each lane.
After running the simulation, each agent can sense its surrounding environment
within a predefined range and move according to its customized behavior. The
simulation features appropriate visualization and allows for recalling agents’
history, in order to highlight interesting showcases.

Lane-based Behavior Models

For evaluation purposes, one or two autonomous agents are initialized with my
learned behaviors (LLCP, LMP, or RBLMP), while other agents follow the
rule-based policies (detailed in Section 3.4.1) depending on their respective
lanes. Environmental agents are assigned the CMOBIL policy on main lanes
and the CGMP policy onmerging lanes. These agents will switch their behavior
model upon transitioning to a different lane type. For example, a merging agent
initialized with CGMP will adopt the CMOBIL policy upon completing the
merge and entering the main lanes.
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Initialization of Parameters

Parameters for IDM, CMOBIL, and RSS of non-autonomous agents in the sim-
ulator are randomized and hidden from the autonomous agents. Autonomous
agents can only estimate the intention, behaviormodels, and parameters of other
agents before initiating the MCS, as explained in Section 4.2.3. This introduces
an estimation error, which inevitably exists when estimating real-world situa-
tions. Moreover, agents exhibiting abnormal behavior can be simulated, such
as those with unrealistic and risky IDM parameters (e.g., a desired time head-
way of only 0.3 s) or RSS parameters with 𝑎max,dcc,obj = −0.5 m

s2 . To closely
emulate real traffic, vehicles on the rightmost main lane and merging lane are
partially (30%) initialized as trucks, which possess larger geometries and dis-
tinct behavioral parameters. However, autonomous agents are assumed to be
able to classify these trucks and estimate their behavior differently for MCS,
following Section 4.2.3.

Reproducible Random Traffic

To ensure a fair comparison of different policies, a large number of random
traffic situations and their road corridors are generated and saved in configu-
ration files. These files can be loaded by the simulation for each policy, pro-
ducing identical initial scenes. Reloading only the states of the environmental
agents is not enough, as their hidden parameters are also randomized (e.g. IDM,
CMOBIL, and RSS parameters). To reproduce the exact same parameters when
comparing different policies, random seeds that are utilized to generate these
parameters for each environmental agent are stored in the configuration files as
well. However, the subsequent development of the traffic scene will diverge
depending on the autonomous agents’ behaviors.

5.1.2 Compared Policies and Metrics

I compare my learned policies with the rule-based baseline policy for each
parallel-lane scenario and introduce various metrics derived from the massively
simulated random traffic.
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For on-ramp merging, LMP, LAMP (aggressive), LDMP (defensive), and
RBLMP (risk-bounded) are evaluated against the baseline CGMP. In this
scenario, average merging time and number of fallback occurrences 𝑛fallback
serve as metrics.

For free lane change, the learned policies LLCP, LALCP (aggressive), and
LDLCP (defensive) are compared with the rule-based policies CIDM and
CMOBIL. CIDM only allows yielding for other cut-in vehicles by decel-
erating, not lane change. In this scenario, the number of lane changes 𝑛lc,
𝑛fallback, average 𝑈1 (speeding), and average 𝐶 (comfort) of the ego vehicle
are considered significant metrics.

I treat freeway exiting as a scenario similar to on-ramp merging, where one
target lane exists and the lane change intention is signaled early enough for
other vehicles to cooperate and create a gap. As such, all merging policies are
suitable and evaluated. If more than one merge is required (e.g., if the ego
vehicle is on the leftmost lane), the merging policy can be executed repeatedly.
The only modification when applying the learned policies for exiting is that,
during MCS construction, the ego lane is assumed to end shortly1 and no later
than the end of the exit opening. With this heuristic, the ego vehicle will not
always pursue the first perceived gap due to the risk associatedwithmy assumed
lane ending. Important metrics for this scenario are similar to those for on-ramp
merging, including average exiting time and 𝑛fallback.

5.1.3 Evaluation on Generated Traffic

On-Ramp Merging

I generate 500 random scenes with two main lanes on the left side and one
merging lane on the right side. The lanes are randomly assigned one of the
three speed limits: 60 km

h , 80 km
h , and 100 km

h , resulting in varying merging
lane lengths. Random agents are generated on the main lanes with two different
densities, represented by the time headway 𝑡HW between vehicles following two

1 The remaining distance is just enough for the ego vehicle to stop fully with −2 m
s2
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uniform distributions 𝒰(0.8 s, 1.4 s) and 𝒰(1.2 s, 2.0 s). Two vehicles with a 1 s
time headway are initialized on the merging lane, with the samemerging policy.
Each of the three policies is evaluated once across the exact same 500 initial
scenes to ensure comparability of results. Figure 5.1 presents an example of
the merging evaluation simulation.
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Figure 5.1: An example of the merging evaluation scene. The two blue rectangles represent two
merging vehicles with the same policy. On the main lanes, the bigger black rectangles
represent trucks, and others are random vehicles.

Finally, some statistics are summarized in Table 5.1 after all 1000 merges.

Table 5.1: Statistics for merging on 500 random traffics.

Policies merging time (𝑠) 𝑛fallback

𝑡HW ∼ 𝒰(0.8 s, 1.4 s)

CGMP (rule-based) 8.142 181
LMP (learned policy) 6.212 22
LAMP (aggressive style) 6.091 23
LDMP (defensive style) 6.235 19
RBLMP (risk-bounded) 6.582 11

𝑡HW ∼ 𝒰(1.2 s, 2.0 s)

CGMP 5.314 124
LMP 4.482 19
LAMP 4.461 17
LDMP 4.498 11
RBLMP 4.591 9

As expected, merging in denser traffic results in more fallbacks and increased
merging time. Notably, all learned policies enable significantly faster merging
and yield far fewer fallbacks than the baseline policy CGMP. By bounding the
risk, merges are slightly slower but produce fewer fallbacks than without risk
constraints. Applying different driving styles, the average merging time and
𝑛fallback fluctuate within a small range. A more aggressive driving style leads
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to reduced merging time without sacrificing risk (𝑛fallback). In contrast, a more
cautious behavior lowers risk at the cost of slower merging. The reason why the
slightly more aggressive merging style LAMP does not substantially increase
the failure rate of merging might be that, during merging in dense traffic, ap-
proaching a gap aggressively can also enhance the chance of success, as other
vehicles are more likely to open the gap.

Free-way Exiting

The map is constructed with three main lanes and one exiting lane on the right
side. Random vehicles are generated on the map with a density of 𝑡HW ∼
𝒰(1.2 s, 1.8 s). I initiate the ego vehicle on the far left lane at two distances:
200m and 500m before the exit opening ends, with 1000 simulations each.
Note that exiting is considered successful when the ego vehicle is positioned
in the exit lane before the exit opening ends. Figure 5.2 illustrates an example
of the exiting scene in evaluation simulation and Table 5.2 presents the simu-
lation results.
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Figure 5.2: An example of the exiting scenario. The blue vehicle is initialized randomly on one of
the two left main lanes and tries to merge to the exiting lane. Distance to the exiting
lane is 200m in this example.

A similar pattern tomerging is observed, with learned policies generally outper-
forming CGMP. By bounding risk, exits are slightly slower but produce fewer
fallbacks. The earlier the ego vehicle begins merging to the right, the less risky
the exit will be. Therefore, it is recommended to initiate exiting with sufficient
buffer if the route is known in advance from the map.
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Table 5.2: Statistics for exiting on 1000 random traffics.

Policies exiting time (𝑠) 𝑛fallback

200m remaining distance

CGMP (rule-based) 12.145 73
LMP (learned policy) 11.905 37
LAMP (aggressive style) 11.857 39
LDMP (defensive style) 11.913 35
RBLMP (risk-bounded) 11.935 36

500m remaining distance

CGMP 27.857 24
LMP 26.462 5
LAMP 26.433 6
LDMP 26.502 4
RBLMP 26.561 3

Free Lane Change

The random traffic settings for evaluating lane change policies have some dif-
ferences compared to those for merging policies. The map contains three main
lanes and one merging lane. Two vehicles are initiated on the merging lane,
driving with CGMP. On the main lanes, vehicles are generated with random
time headway 𝑡HW ∼ 𝒰(1.4 s, 2.2 s). Only one vehicle on the main lanes is
randomly selected as an autonomous agent and drives with the compared lane
change policies. In total, 1500 scenes are generated and simulated twice. In the
first round, all vehicles have recommended parameters with minor randomness.
The second round is more challenging, with 20% of vehicles assigned inappro-
priate IDM and RSS parameters (desired time headway 𝑇d = 0.3 s and max-
imum deceleration of others 𝑎max,dcc,obj = −0.5 m

s2 ), resulting in risky follow-
driving behaviors, close-to-crash lane changes, and merges. If this occurs, the
vehicle behind must execute an emergency brake, which counts as a fallback as
well. Figure 5.3 illustrates an example of the free lane change scene in evalua-
tion simulation and Table 5.3 presents the statistical results.

107



5 Evaluation

Created in Master PDF Editor

0 50 100 200 250 300150
x(m)

10

0

y(
m

)

Figure 5.3: An example of the free lane change scenario. The blue vehicle is initialized randomly
on one of the three main lanes.

Table 5.3: Statistics for evaluation on 1500 random traffics. (avg. = average)

Policies 𝑛lc 𝑛fallback avg. 𝑈1 avg. 𝐶1

0%
abnormal
agents

CIDM 0 0 0.901 0.828
CMOBIL 1220 11 0.905 0.809
LLCP (learned policy) 280 0 0.911 0.829
LALCP (aggressive style) 263 0 0.916 0.817
LDLCP (defensive style) 270 0 0.906 0.843

20%
abnormal
agents

CIDM 0 26 0.896 0.815
CMOBIL 1288 23 0.905 0.799
LLCP 277 7 0.906 0.815
LALCP 252 9 0.911 0.803
LDLCP 261 6 0.902 0.828

Overall, the learned policies of all styles lead to significantly fewer lane changes
than CMOBIL but still provide higher velocity and comfort. Another notice-
able advantage of the learned policies is that they result in substantially less
risky driving behavior with far fewer fallbacks. In the first round, where others
drive safely, CIDM has a reasonable 0 fallbacks because others do not per-
form unsafe cut-ins. However, CMOBIL has 11 fallbacks. After reproducing
the simulations, I discovered that this occurs when the ego vehicle intends to
change lanes and another vehicle on the third lane starts a lane change towards
the same lane. The lane changes of both vehicles are initially safe, but as soon
as they appear on the target lane simultaneously, the one behind becomes un-
safe. In this case, it is unclear which vehicle is at fault. Note that for the free
lane change evaluation, I apply the RSS safety rule in Section 3.2.2 without
relaxation as recommended. However, this edge case is not covered and could
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prompt further investigation, which is beyond the scope of this work. Nonethe-
less, the learned policies can prevent this risky situation and have 0 fallbacks,
as they recognize the lane change intentions of others and can abort their lane
change early on. In the second round with aggressive agents, it appears that
even maintaining lane (CIDM) can be risky due to unsafe cut-ins from others.
However, the learned policies enable the vehicle to change to safer lanes or
execute deceleration action 𝑎free,2 as soon as the aggressive cut-in intention is
recognized, leading to far fewer fallbacks.

As expected, a more aggressive driving style (LALCP) achieves higher utility
but lower comfort than LLCP, with fewer lane changes. In contrast, a more
cautious style (LDLCP) increases comfort by slightly compromising velocity.

5.1.4 Challenging Scenarios

On-Ramp Merging

The primary challenge of merging in dense traffic is recognizing the coopera-
tive intentions of vehicles on other lanes and selecting the appropriate gap to
attempt merging.

I present an example in Figure 5.4, where two blue agents try to merge to the
main lane. Figure 5.4a shows three moments of driving with CGMP, while
Figure 5.4b with LMP and RBLMP that generate the same output behavior. In
Figure 5.4a, the first merging vehicle using CGMP insists on merging in front
of the red agent and eventually has to fall back and stop, as it cannot estimate
the red agent’s yielding intention. In contrast, with LMP and RBLMP, the au-
tonomous agents can successfully complete the merging process (Figure 5.4b).
At the beginning, the red vehicle’s cooperation intention is unclear, so the first
autonomous agent tries to merge in front. However, as the simulation proceeds
and the merging lane nears its end, the fallback probability for merging in front
increases. Consequently, the decision switches to merging behind the red ve-
hicle just in time.
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(a) 𝑡 = 1 s, 5 s, 7 s
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(b) 𝑡 = 1 s, 3 s, 5 s

Figure 5.4: An example of merging scenario where the blue rectangles are merging agents, and
others are surrounding agents. (a) Merging agents follow CGMP. (b) Merging agents
follow LMP and RBLMP.

Free Lane Change

Typical free lane changes occur when the ego vehicle desires a higher speed
but is blocked by slower vehicles in front, while other lanes are free. Both
CMOBIL and LLCP can achieve this behavior through their design. Therefore,
I select some more challenging scenarios that demonstrate the superiority of
LLCP over CIDM and CMOBIL.
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Figure 5.5 showcases three scenarios in which autonomous vehicles governed
by LLCP demonstrate courteous behavior, facilitating smoother cut-ins for en-
vironmental merging vehicles. In Figure 5.5a, a left lane change minimally
impacts the utilities of both the ego vehicle and the merging vehicle. In situa-
tions where a lane change is not feasible (Figure 5.5b and Figure 5.5c), LLCP
either decelerates (𝑎free,2) or accelerates (𝑎free,3), to enable more seamless merg-
ing. CMOBIL can also execute deceleration or lane change, depending on the
total acceleration gain, provided the ego vehicles are aware of the merging in-
tentions. Nonetheless, CMOBIL is incapable of performing acceleration, as
depicted in Figure 5.5c.
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(a) Lane change (𝑎free,4) for
merging vehicles.
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(b) Decelerate (𝑎free,2) for merg-
ing vehicles.
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(c) Accelerate (𝑎free,3) for merg-
ing vehicles.

Figure 5.5: The autonomous agent (blue rectangle) with LLCP performs different courteous be-
havior (represented by green arrows) to enable a smoother merging of other vehicles.

I conducted further evaluations of the LLCP in various challenging scenarios,
which the CIDM and CMOBIL are unable to address. In Figure 5.6a, the ego
vehicle employing LLCP executes a left lane change to mitigate the risk of
a vehicle behind the truck abruptly overtaking without prior indication. The
likelihood of this event is not negligible, as the vehicle approaches the truck at
a high relative speed. I perform MCSs for maintaining the current lane (𝑎free,1)
and changing to the left lane (𝑎free,4) at this moment. The 𝑅∗

2 and 𝑈 ∗
1 values for
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𝑎free,1 are 0.11 and 0.79, whereas 𝑎free,4 yields 0 and 0.86, making it a safer and
faster option. Lacking an explicit lane change signal from the vehicle behind
the truck, the CMOBIL is incapable of executing this proactive maneuver.

Figure 5.6b presents an additional scenario in which the ego vehicle is impeded
by a slow-moving vehicle ahead. Concurrently, another slow vehicle occupies
the left lane, rendering a left lane change unproductive. The CMOBIL suggests
a right lane change, which yields the greatest acceleration gain. Nevertheless,
this decision carries potential risks, as the two vehicles on the merging lane
could complete their merge anytime, necessitating increased braking by the ego
vehicle. The MCS generates 𝑅∗

2,𝑎free,5
= 0.34, 𝑈 ∗

1,𝑎free,5
= 0.68 for a right lane

change and 𝑅∗
2,𝑎free,2

= 0, 𝑈 ∗
1,𝑎free,2

= 0.77 for deceleration. Consequently, based
on the LLCP, 𝑎free,2 is considered a superior alternative.

(a) A foresighted lane change

(b) Decelerate instead of changing lane to right

Figure 5.6: Two challenging scenarios that can be tackled by LLCP but not CMOBIL. The ego
vehicle is shown in blue and others in black. The velocities are attached to the rect-
angles. One truck is represented by a slightly bigger black rectangle (from [Wan23a],
©2023 IEEE).
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5.2 Evaluation on Intersecting-lane Scenarios

To demonstrate the superiority of the LIP over rule-based policies, I first evalu-
ate them in an interactive simulation built upon datasets. I further showcase the
generalization and scalability of my approach by evaluating it on a new round-
about from the Interaction dataset [Zha19], which was not utilized for training.
I classify evaluation scenarios into three categories: unsignalized intersections
with mild occlusions due to static obstacles, intersections with severe occlu-
sions, and roundabouts. I perform quantitative evaluations and present interest-
ing case studies comparing the policies in the end.

5.2.1 Evaluation Simulation

Existing simulators and benchmark tools include Carla [Dos17], which offers
realistic environment representation and sensor simulation but faces challenges
in integrating lanelet2 maps and requires significant effort to design a low-level
control interface. CommonRoad [Alt17] serves as another benchmark for eval-
uating planning algorithms, providing simulations that are partially recorded
from real traffic and partially hand-crafted to create hazardous situations. How-
ever, it mainly focuses on evaluating motion planning algorithms’ cost func-
tions and it is less relevant for my high-level behavior generation approach.
BARK [Ber20] aims to provide a realistic, interactive simulation environment
initiated from datasets with reactive surrounding agents following several pre-
designed behavior models. Its design best meets my requirements. However,
it does not support lanelet2 maps, and its benchmark function is not yet fully
released. P3IV [Tas21] supports lanelet2 format and is able handle occlusions
and uncertainty of objects, but it is not aimed for learning-based methods.

Evaluating behavior models in entirely offline datasets has the advantage of re-
alistic agent movement based on recorded trajectories. However, the drawback
is that they do not react to the automated ego vehicle, which deviates from the
ground truth starting from the second simulation step. Following BARK’s con-
cept, I construct a similar simulation using the test data of the inD and rounD
datasets, and Interaction datasets that is not used for training.
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After running the simulation, one vehicle in the scene is designated as the ego
vehicle, following a specific driving policy and replacing its original trajectory.
Other agents behave according to their recorded trajectories but the control will
be overtaken by AD policies once any of the following conditions are met:

• The distance to its front agent is less than the RSS-safe distance computed
using relaxed RSS parameters.

• Starting to cross the intersection if the crossing is not RSS-safe according
to relaxed RSS parameters.

Overridden AD agents are randomly assigned an aggressive level, and their
behavior models and parameters are initialized according to Section 4.2.3.

Due to the limited FoV of the recording drone, new agents might spawn from
the scene edge, potentially colliding with overridden agents. I do not spawn
these new agents if any of the following conditions are met:

• The spawned position is already occupied by other agents.

• The distance of the spawning position to its front or following agent is
less than the RSS safe distance computed using relaxed RSS parameters.

Relaxed RSS parameters enable more aggressive driving, for example, assum-
ing a larger 𝑎max,dcc,ego and a smaller 𝑡TZC,min, among other factors. These pa-
rameters are presented in Table A.2.

With these modifications, the simulation closely approximates reality while
populating the environment with reactive agents that strive to avoid collisions
and adhere to traffic rules. To validate my simulation, I compared it to one that
only replays the offline datasets for other vehicles. Each vehicle in the datasets
is treated as the ego vehicle once and follows the learned policy, while oth-
ers either behave reactively or strictly follow their recorded trajectories. After
processing the entire test dataset, I recorded the number of resulting collisions
between all agents. On average, the number of collisions for simulating one
AD agent is reduced from 2.3 to 0.05 by introducing my modifications. The
remaining collisions primarily result from edge cases, such as the front vehicle
not being clearly identified as they drive in the center of two lanes, or bound-
ing boxes from the original trajectories having slight overlap due to inaccurate
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dataset pre-processing. Despite these limitations, my simulation is considered
sufficiently realistic, as on average, only 9.5% of agents in the scene have been
overridden, and themajority of other agents continue to follow their trajectories.

5.2.2 Compared Policies and Metrics

I compare six policies, five of which have already been explained, including
rule-based ones (B1 and B2) and learned ones for different driving styles (LIP,
LAIP, and LDIP). To demonstrate the impact of the prediction module on the
quality of the learned policy, I employ a superior proof-of-concept routing pre-
diction module instead of Equation (4.9) and apply LIP to it, resulting in the
sixth policy, i.e., Learned Intersection Policy with Better Prediction (LIPBP).
Since all the ground-truth routes of the surrounding agents are known, their fu-
ture 3 s of points on the ground-truth routes with a 0.5 s interval are used for
matching to their possible routes, resulting in significantly better prediction ac-
curacy. Mathematical details are omitted which are similar to Equation (4.9).
My objective is not to provide an exceptional prediction module but to demon-
strate how a good one can enhance planning quality.

I evaluate the following four metrics:

• Mean Distance Error (MDE) to the ground-truth trajectory: to show the
human-likeness of each policy.

• Average velocity: proportional to the inverse of average crossing time,
but includes the parts after crossing the intersection and is more repre-
sentative of the overall utility.

• Fall-back ratio: how often does the ego agent need to switch to fallback.

• Velocity gain of the traffic: how the average velocity of traffic flow is
improved compared to policy B1.

To ensure a fair comparison of the policies, the simulation time for all evalu-
ated policies of a vehicle is equal, which is the duration of the ground-truth
trajectory.
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5.2.3 Evaluation on Test Scenarios

Intersections with Mild Static Occlusion

In the inD dataset, there are three intersections where occlusions caused by
static obstacles are not severe enough to hinder driving. A total of 458 vehicles
are evaluated, all of which encountered at least one yielding intersection.

Table 5.4: Statistics for simulation evaluation at intersections with mild static occlusion.

Policies MDE (m) Average
velocity
(ms )

Fall-back
ratio (%)

Velocity
gain of the
traffic (ms )

B1 (normal stop) 8.46 6.19 5.02 0
B2 (fast approach) 10.51 6.91 17.14 -0.02
LIP (learned policy) 9.94 6.74 9.72 0.003
LIPBP (better prediction) 10.25 6.81 9.06 0.002
LAIP (aggressive style) 9.06 6.81 15.9 0.03
LDIP (defensive style) 8.57 6.32 5.9 0.002

Quantitative outcomes are displayed in Table 5.4. B1 demonstrates the most
human-like behavior, albeit with a relatively low mean velocity. As it em-
ploys stop for the approaching action, it exhibits the lowest fall-back ratio. The
non-zero fall-back ratio for B1 arises from instances where vehicles start being
recorded close to an intersection and maintain high speeds, while the B1 policy
has already switched to pass with satisfied RSS safety conditions, triggering
fallbacks. Conversely, B2 (fast approach) attains the highest overall velocity
but suffers from the largest fall-back ratio, making it the least human-like pol-
icy. Furthermore, traffic flow is negatively affected.

Both LIP and LIPBP present similar performance characteristics. They ex-
hibit more human-like behavior and achieve substantially lower fall-back ratios
than B2, accompanied by a minor decrease in velocity. Considering politeness
within the features leads to an enhanced overall traffic flow. Utilizing superior
prediction results in a reduced fall-back ratio and improved mean velocity.
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An aggressive learned driving style, LAIP, showcases a behavior that lies be-
tween LIP and B2, with higher utility than LIP but more fall-backs, akin to B2.
In contrast, LDIP embodies behavior more closely aligned with B1.

Intersections with Severe Static Occlusion

In the inD dataset, there exists an intersection where buildings and parked ve-
hicles severely occlude all arms of the intersection, as depicted in Figure 4.2.
Additionally, a pedestrian crossing on the west arm of the intersection, marked
with a black polygon, requires the ego vehicle to yield to pedestrians. A total of
824 vehicles are evaluated, each having encountered at least one yielding inter-
section or pedestrian crossing. Quantitative results can be found in Table 5.5.

Table 5.5: Statistics for simulation evaluation for intersections with severe static occlusion.

Policies MDE (m) Average
velocity
(ms )

Fall-back
ratio (%)

Velocity
gain of the
traffic (ms )

B1 (normal stop) 9.98 5.33 2.5 0
B2 (fast approach) 9.38 5.86 30.3 0.09
LIP (learned policy) 9.51 5.66 7.3 0.06
LIPBP (better prediction) 9.55 5.63 6.6 0.07
LAIP (aggressive style) 9.05 5.83 28 0.08
LDIP (defensive style) 9.63 5.56 3.6 0.05

Under conditions of severe occlusion, B1 emerges as the least human-like pol-
icy, achieving the lowest velocity. In contrast, B2 is the fastest and most human-
like policy, but with a substantial 30.3% fall-back ratio, resulting in a highly
unpleasant driving experience. Both LIP and LIPBP considerably reduce the
fall-back ratio while slightly increasing MDE and reducing velocity. Policies
that attain higher average velocities also facilitate smoother traffic flow. Em-
ploying a superior prediction module assists in reducing the fall-back ratio by
better estimating the turning intentions of prioritized vehicles. Different driv-
ing styles, such as LAIP and LDIP, exhibit expected patterns in average velocity
and fall-back ratio.
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Roundabouts

In the rounD dataset, there are three roundabouts where the streets are predom-
inantly clear in all directions. 4282 vehicles are evaluated in these scenarios.

The quantitative results are provided in Table 5.6. The simulation outcomes are
similar to the intersections with severe static occlusions. The learned policies
attain average velocities and manage risk at varying levels, depending on their
driving styles. Utilizing an improved prediction module results in enhance-
ments across most performance metrics.

Table 5.6: Statistics for simulation evaluation for roundabouts.

Policies MDE (m) Average
velocity
(ms )

Fall-back
ratio (%)

Velocity
gain of the
traffic (ms )

B1 (normal stop) 6.40 5.41 0.8 0
B2 (fast approach) 6.31 5.65 24.2 0.025
LIP (learned policy) 6.36 5.53 4.0 0.004
LIPBP (better prediction) 6.31 5.59 4.8 0.013
LAIP (aggressive style) 6.33 5.63 20.1 0.04
LDIP (defensive style) 6.37 5.46 2.2 0.002

Unseen Roundabout in Interaction Dataset

The learned policies demonstrate improved performance across various sce-
narios within the datasets, albeit on the same intersections as the training
data. To showcase the generalization of my approach, I select the roundabout
DR_DEU_Roundabout_OF from the Interaction Dataset and apply the same
quantitative evaluation. A total of 552 vehicles are evaluated, and the results are
presented in Table 5.7. The statistics exhibit a pattern similar to that of the three
roundabouts in the inD dataset, where the learned policies effectively maximize
the ego vehicle’s utility while maintaining a reasonably low fall-back ratio.

The evaluation results on the unseen roundabout demonstrate that my approach
is map-agnostic. As the MCSs operate directly on the map and consider traffic
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participants as input without abstracting any information, the estimated fea-
tures maintain comparable accuracy for any unseen intersection. Exceptions
may arise when performing MCSs on new scenarios where traffic participants
exhibit significantly different behaviors (e.g., in different countries), potentially
causing substantial errors in the behavior modeling described in Section 4.2.

Table 5.7: Statistics for simulation evaluation for an unseen roundabout in Interaction dataset.

Policies MDE (m) Average
velocity
(ms )

Fall-back
ratio (%)

Velocity
gain of the
traffic (ms )

B1 (normal stop) 6.58 6.83 0.4 0
B2 (fast approach) 6.13 6.94 13.4 0.03
LIP (learned policy) 6.02 6.92 0.9 0.01
LIPBP (better prediction) 6.09 6.93 1.3 0.02
LAIP (aggressive style) 6.22 6.91 10.3 0.01
LDIP (defensive style) 6.08 6.87 0.2 0.005

5.2.4 Case Study

I examine several representative scenarios and analyze the driving history of
each driving policy, including 𝑠-profiles (longitudinal distance along the route)
and 𝑎-profiles (acceleration). To avoid cluttering the charts, I do not present
the profiles of LAIP and LDIP.

Figure 5.7 illustrates a complex unprotected left turn with multiple potential
conflict zones, where potentially occluded and some visible vehicles have pri-
ority. The approaching accelerations of the policies differ, but all policies suc-
cessfully navigate the intersection with similar 𝑠-profiles after the intersection
is clear.
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(a) Unprotected left turn.

0 2 4 6 8 10 12 14 16 18
20

30

40

50

60

70

80

s(
m

)

B1

B2

LIP

LIPBP

Human trajectory

Conflict zone

0 2 4 6 8 10 12 14 16 18
t(s)

−6

−4

−2

0

2

4

6

a
(m
/s

2
)

Fall-back threshold

(b) 𝑠-profiles and 𝑎-profiles of different policies

Figure 5.7: The ego vehicle (green) tries to finish an unprotected left turn. The yellow polygon in
the background visualizes the ground-truth position of the ego vehicle (from [Wan23b],
©2023 IEEE).

120



5.2 Evaluation on Intersecting-lane Scenarios

Figure 5.8 presents a scenario where the intersection is not severely occluded,
but cautious driving is still required. Approaching relatively fast (with B2, LIP,
and LIPBP) enables a smooth transition between deceleration and pass. With
B1, the ego vehicle’s velocity is significantly reduced. B2 attains a higher speed
than even the human trajectory, which is efficient but may cause passengers to
feel endangered. LIP and LIPBP generate the most human-like trajectories.

Figure 5.9 depicts a scenario at the same intersection, but with the ego vehi-
cle approaching from the north arm. The prioritized lane (west arm) is further
occluded by parked cars. B2 once again achieves the highest utility but must
execute a fallback since stopping in front of the conflict zones is no longer guar-
anteed and pass is not safe either. B1 decelerates more but manages to pass the
conflict zones without a fallback. LIP and LIPBP exhibit the same behavior,
decelerating more than B1 initially but accelerating earlier than B1. As a re-
sult, B1, LIP, and LIPBP achieve nearly the same utility, slightly lower than
the human, but all without a fallback. The human driver does not slow down
excessively at the outset but intrudes into the conflict zones more aggressively
than the squeeze action.

Figure 5.10 demonstrates the behaviors at consecutive stop lines, where the first
is a pedestrian crossing and the second requires yielding to prioritized cyclists.
After the ego vehicle detects the pedestrian, LIP and LIPBP execute an early
stop action and decelerate more than B1 and B2 to demonstrate cooperative in-
tention towards the pedestrian. The rationale for executing early stop is that, in
MCSs, early deceleration encourages the pedestrian to choose the cross deci-
sion based on the pedestrian behavior models in Section 4.2.4. Consequently,
the pedestrian can cross the zebra more quickly, clearing the conflict zone ear-
lier and enabling the ego vehicle to pass sooner as well. This approach is ex-
pected to increase both the ego vehicle’s and pedestrian’s utilities. Note that B2
leads to a fallback again, as the conflict zone is not cleared soon enough. Sub-
sequently, all four policies traverse the second stop line and its conflict zones
similarly to the human trajectory.
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(a) Intersection with ordinary occlusion.
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(b) 𝑠-profiles and 𝑎-profiles of different policies

Figure 5.8: The ego vehicle (green) is approaching an intersection with ordinary occlusion. The
profiles of LIP and LIPBP overlap (from [Wan23b], ©2023 IEEE).
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(a) Intersection with severe occlusion.
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(b) 𝑠-profiles and 𝑎-profiles of different policies

Figure 5.9: The ego vehicle (green) is approaching an intersection with severe occlusion. The
profiles of LIP and LIPBP overlap (from [Wan23b], ©2023 IEEE).
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38

(a) Intersection with consecutive stop lines.
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Figure 5.10: The ego vehicle (green) is approaching consecutive stop lines. The first one is a
pedestrian crossing, and the second one is a yielding (from [Wan23b], ©2023 IEEE).
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(a) Roundabout.
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Figure 5.11: The ego vehicle (green) is approaching a roundabout. The vehicle with id 38 is
recorded to exit the roundabout via the west exit (from [Wan23b], ©2023 IEEE).
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Figure 5.11 displays a roundabout scenario. The human driver approaches the
roundabout with only slight deceleration and enters with minimal hesitation.
This is likely because the intention of the vehicle with id 38 is well-estimated
by humans, for example, through indicator signals. The basic policy B1 and
the learned policy LIP exhibit similar behavior, as they are uncertain about
the exiting intention of id 38. Consequently, they must come to a full stop to
ensure safety. B2 attempts to approach quickly, but safety is not guaranteed
until the exiting behavior of id 38 is confirmed, leading to a fallback. However,
with an improved prediction module and better intention estimation, LIPBP
adjusts its velocity such that entering the roundabout becomes safe earlier and
without a fallback.

In summary, B1 demonstrates the most conservative driving behavior, but it
is the least risky one. B2, being the opposite of B1, maximizes the utility of
the ego vehicle but at the cost of the most frequent fallbacks. The learned pol-
icy LIP strikes a good balance between utility, risk, and overall traffic flow. It
achieves similar human-likeness, utility, and traffic flow as B2, but with signif-
icantly fewer fallbacks. By incorporating a better prediction module (LIPBP),
the fallback ratio is further reduced without affecting other metrics.

5.3 On-vehicle Implementation and Testing

To demonstrate the applicability of my proposed approach, the core compo-
nents are implemented in C++ using the middleware Robot Operating System
(ROS) [Qui09] for communication with other modules and integrated into an
automated driving pipeline. Owing to time constraints, only the baseline policy
B1 and the learned policy LIP are ultimately developed, which can handle driv-
ing at unsignalized intersections and roundabouts, along with safety verification
through RSS and MCS employing the lanelet2 library [Pog18].

The modularity of my approach is evidenced by its successful integration into
the arbitration-graph-based decision-making pipeline [Orz21]. The necessary
inputs are detailed in Section 3.1. The output high-level decision is converted
into a customized corridor message, comprising left and right boundaries, a
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reference centerline, and a suggested speed profile along the path. Utilizing
this interface, an optimization-based trajectory planner and a subsequent con-
troller from [Zie14] are employed to generate the desired trajectory and control
commands.

5.3.1 Simulation Testing

The development and preliminary evaluation of behavior planning and control
can be effectively carried out using CoInCar-Sim [Nau18]. This simulation re-
lies on input from a simulated perception and localization system. For control
purposes, a realistic vehicle model is implemented, incorporating characteris-
tics from an actual car. The simulation is also based on ROS, allowing for
seamless transfer of tested software from CoinCar-Sim to a real vehicle.

(a) A stopping trajectory is planned for the priori-
tized vehicle in roundabout.

(b) An accelerating trajectory is planned when the
first vehicle has left the roundabout and the sec-
ond one is far away to the conflict zone.

Figure 5.12: Two screeshots of the yielding scenario at a roundabout in the CoInCar-Sim. The
planned trajectory is visualized with the colored circles at equidistant times. The
left, right boundaries and the reference line of the driving corridor are illustrated by
the red, green and blue lines. The red polygon represents the potential conflict zone
between the route of the ego vehicle and prioritized vehicles.

Integration of Baseline Behavior

Firstly, some basis functionalities, e.g. conflict zone extraction and RSS safety
assessment, are integrated into the behavior pipeline. Subsequently, the base-
line behavior B1 is implemented within the arbitration graph.
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Figure 5.12 demonstrates a yielding scenario at a roundabout, serving as an
example for testing my implementation. As the ego vehicle approaches the
roundabout (Figure 5.12a), it perceives a prioritized vehicle. It is not possible
to pass the conflict zone without violating RSS safety, resulting in a stopping
decision, which is then translated into a stopping trajectory. Once the first pri-
oritized vehicle exits the roundabout and the second one remains far from the
conflict zone, passing the conflict zone is deemed safe according to RSS veri-
fication. Consequently, an accelerating trajectory is generated to represent the
pass decision, as depicted in Figure 5.12b.

Integration of Learned Yielding Behavior

(a) Stop before the conflict zone by B1 with stop action.

(b) Stop before the conflict zone by LIP with fast approach action.

Figure 5.13: Different actions allow for different approaching styles and speed profiles. The
planned speed profiles along the future path are illustrated by the colored curves above
the ego vehicle. The fast approach action decelerates later than the stop action.
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Figure 5.14: Comparison of LIP and B1.

After extensively testing the baseline behavior B1 across various scenarios
and intersections, the MCS that demands a multi-threading programming and
the learned yielding policy LIP are prepared for integration into the behavior
pipeline. I first test the LIP in comparison to the B1 at an intersection, where
the ego vehicle (white one) plans to turn left and the object (gray box) is set to
turn right, resulting into two possible conflict zones as the route of the object
is initially unknown to the ego vehicle. Figure 5.13 presents the scene. Since
the object holds precedence over the ego vehicle, the latter should halt and
yield passage to the former. Nevertheless, the velocity and proximity to the
conflict zones may allow for a more comfortable deceleration method rather
than abruptly stopping at the stop line.

As depicted in Figure 5.14, the LIP possesses the capability to opt for the fast
approach action, which presents less deceleration at the beginning than the stop
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action and a similar maximum deceleration overall. This allows for faster and
smoother transition to pass action with less velocity reduction.

5.3.2 On-road Testing

The baseline yielding policy B1, along with RSS safety verification, was suc-
cessfully showcased in two different events. At the time of the events, the
learned yielding behavior was not ready and therefore, not demonstrated.

Demonstration On Experimental Vehicle

The first event is the demonstration day of Intelligent Vehicle Symposium 2022
in Aachen, on the Aldenhoven Testing Center track using our experimental ve-
hicle Joy, as depicted in Figure 5.16. The baseline policy B1 is validated by
interacting with other human-driven vehicles in the corresponding scenarios.

Figure 5.15: Our experimental vehicle Joy. Photo by the Institute of Measurement and Control
Systems (MRT), Karlsruher Institute of Technology (KIT).
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The track encompasses three types of unsignalized intersections, including a
roundabout (the same one as in Figure 5.12), an unprotected left turn, and a
merge into a prioritized lane.

Mandatory Stop
Unprotected 

left turn

Figure 5.16: Demonstration track (red) in Aldehoven testing center. Imagery © 2023, map data ©
2023 GeoBasis-DE/BKG (©2009)

Demonstration On Concept Vehicles of UNICARagil

On the final event of theUNICARagil project, the autonomous operation of four
conceptual vehicles, namely AutoSHUTTLE, AutoTAXI, AutoELF, and Auto-
CARGO, is demonstrated on the Aldenhoven Testing Center track. Each vehicle
navigates through distinct tracks, dynamically interacting with various vehicles
driven by humans (except for AutoCARGO, which operates only in standstill
in the final event). The yielding policy B1, in conjunction with an enhanced
mandatory stopping policy1, has been implemented across these vehicles. The
visual representation of the vehicles can be found in Figure 5.17, with the spe-
cific tracks they followed and the scenarios encountered depicted in Figure 5.18
and Figure 5.19.

1 The ego vehicle only commences the assessment of RSS safety and traversal through conflict
zones subsequent to coming to a complete halt.
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Figure 5.17: Concept vehicles of the project UNICARagil. From left to right are AutoSHUTTLE,
AutoTAXI, AutoELF, and AutoCARGO. Photo by the author.

AutoELF

Entering 
roundabout

Unprotected 
left turn

Figure 5.18: Track for AutoELF (red) in Aldehoven testing center. Imagery ©2023, map data
©2023 GeoBasis-DE/BKG (©2009)
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AutoTAXI

AutoSHUTTLE

Mandatory Stop

Entering 
roundabout

Unprotected 
left turn

Mandatory Stop

Unprotected 
left turn

Unprotected 
left turn & 
Yielding

Figure 5.19: Tracks for AutoTAXI (green) and AutoSHUTTLE (pink) in Aldehoven testing center.
Imagery ©2023, map data ©2023 GeoBasis-DE/BKG (©2009)

Although the learned policy LIP and its accompanying MCS were not avail-
able for the demonstration, subsequent efforts have resulted in their successful
implementation. These components have undergone rigorous testing within the
CoInCar-Sim framework and are presently poised for utilization on the Joy plat-
form. Specifically, their application is prepared for deployment on a local track
situated in the city of Karlsruhe.
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6 Conclusions and Future Directions

6.1 Conclusions

This work presents a novel approach for generating high-level decisions for AVs
that can effectively handle diverse uncertainty sources stemming from imper-
fect perception and scene understanding modules. While adhering to formal
safety verification based on RSS, the approach manages to mimic behavior pat-
terns observed in human-driven trajectories, striking a balance between effi-
ciency, comfort, perceived safety, and politeness in a human-like manner. The
output decision remains at the semantic level, ensuring independence from sub-
sequent trajectory planning and control modules. Notably, the pipeline does not
require any black-box systems, allowing for explainable and traceable output
decisions in case of observed undesired behavior.

Safety verification is paramount in AD. This work adheres to the principles of
RSS and introduces additional extensions grounded on traffic rules and right-
of-way stipulations for various scenarios, as outlined in Section 3.2. Examples
include parallel lanes and intersections. These augmentations address diverse
conflict zones, traffic participants, and occlusions, while also accounting for
critical limiting factors such as the ego vehicle’s restricted reachability.

Owing to the stringent constraints imposed by safety requirements, decision-
making efficiency is frequently constrained. To avoid excessive conservatism
and adopt a more human-like approach to safety, the enhanced RSS concept is
further relaxed in the presence of improved perception and scene understand-
ing capabilities, as detailed in Section 3.3. This includes occlusion tracking, for
example. To validate this relaxed safety concept, statistical analysis is carried
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out on real-world traffic data across a range of scenarios. Appropriate repre-
sentations of high-level actions are proposed under safety constraints in Sec-
tion 3.4, with several rule-based policies serving as a baseline built upon safe
high-level actions.

The objective of this work is to identify the decision that humans would choose
in the same situation from all available action candidates. To this end, I pro-
pose characterizing each action using various features that encompass different
aspects, as described in Section 4.1, such as utility, comfort, risk, and polite-
ness. Human-like behavior is achieved implicitly by optimizing the weighting
of these features such that the Q-value of the action closest to the implicitly in-
ferred ground-truth action is maximized. To estimate the feature values of each
action, considering diverse environmental uncertainties, MCS is employed to
simulate potential future scene progressions, with behavior models and prior
predictions of surrounding traffic participants iteratively queried. A probabilis-
tic environmental model is proposed in Section 4.2. In addition to emulating a
universal human driving style in Section 4.3, I identify distinct human driving
styles, cluster the datasets, and learn various policies from each dataset group
in Section 4.4. This enables the preparation of predefined driving styles and
even online behavior tuning to cater to users’ preferences.

Evaluations were conducted in customized simulation environments, one fea-
turing randomly generated traffic and the other using recorded trajectories with
reactive agents. Simulation results demonstrate the applicability of my ap-
proach in typical urban and highway driving scenarios, as well as its superiority
over rule-based policies, exhibiting enhanced performance in human-likeness,
safety, efficiency, and politeness. Additionally, on-vehicle implementation and
driving experiments showcase the potential and scalability of my approach in
real-world driving situations.

My approach boasts several notable features. One is its highly modular de-
sign, accepting uncertain perception results in any form as input. The output
consists of high-level decisions, which can be converted into low-level control
commands by any trajectory planning module. Another advantage is the ease
of tracing back the resulting decision, facilitated by examining the MCS or the
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Q-value from the linear function. Moreover, this approach is applicable to any
scenario, provided that RSS safety and high-level actions are defined a prior.

6.2 Future Directions

The proposed approach serves as a foundation for several promising future re-
search directions. First, its application can be extended to additional scenarios,
such as overtaking, navigating narrow roads with oncoming traffic, or situations
with specific traffic rules like zipper merging.

Moreover, moving beyond the basic behavior modeling and routing prediction
for surrounding agents employed in this work, advanced strategies can further
enhance the performance of the approach. Scene understanding and prediction
using machine learning techniques with realistic traffic data will yield more
reliable environmental modeling, enabling improved MCS for determining ac-
curate feature values.

In terms of perceived environmental input, it is important to consider not only
the uncertain states of traffic participants but also their classes and existence
probabilities. Class distinctions affect behavior modeling, while uncertain ex-
istence alters the risk level associated with each action. These uncertainties also
impact RSS safety, which currently assumes a deterministic world with certain
agent states when generating safety requirements. A more practical approach
for real-world applications would treat agent states as probabilistic or truncated
distributions, incorporating state bounds when constructing worst-case setups
for RSS. Recent research has already been started in this field [Ber22].

Finally, some real-life scenarios necessitate explicit cooperative signals to re-
solve deadlock situations, such as when AVs from all four arms of a right-
before-left intersection arrive simultaneously. Without one vehicle relinquish-
ing priority and conveying cooperation through machine-readable signals (e.g.,
flashing headlights as human drivers do), no vehicle can proceed. Other AVs
should be capable of interpreting these signals and properly accounting for the
cooperative agent in their RSS safety assessments, such as ignoring it when
examining right-of-way safety.
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Acronyms

ACC Adaptive Cruise Control

AD Autonomous Driving

AV Autonomous Vehicle

BC Behavior Cloning

CGMP Closest-Gap Merging Policy

CIDM Cooperative Intelligent Driver Model

CMOBIL Cooperative Minimizing Overall Braking Induced by Lane
changes

DAgger Dataset Aggregation

DQN Deep Q-Network

FoV Field of View

GAIL Generative Adversarial Imitation Learning

GPU Graphics Processing Unit

HD High-Definition
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Acronyms

IDM Intelligent Driver Model

IIDM Intelligent Driver Model for Intersection

IL Imitation Learning

IRL Inverse Reinforcement Learning

LAIP Learned Aggressive Intersection Policy

LALCP Learned Aggressive Lane Change Policy

LAMP Learned Aggressive Merging Policy

LDIP Learned Defensive Intersection Policy

LDLCP Learned Defensive Lane Change Policy

LDMP Learned Defensive Merging Policy

LIP Learned Intersection Policy

LIPBP Learned Intersection Policy with Better Prediction

LLCP Learned Lane Change Policy

LMP Learned Merging Policy

LSTM Long Short-Term Memory

MCS Monte-Carlo Simulation

MCTS Monte Carlo Tree Search

MDE Mean Distance Error
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Acronyms

MDP Markov Decision Process

MIDM Intelligent Driver Model for Merging

MOBIL Minimizing Overall Braking Induced by Lane changes

PCA Principal Component Analysis

PI Policy Iteration

POMDP Partially Observable Markov Decision Process

RBLMP Risk-Bounded Learned Merging Policy

RE Regulatory Element

RL Reinforcement Learning

ROS Robot Operating System

RSS Responsibility-Sensitive Safety

THW Time Headway

TTC Time to Collision

TTR Time to React

TZC Time of Zone Clearance

VI Value Iteration
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A Appendix

A.1 Parameters of Different Driving Styles

Table A.1: IDM parameters for different driving styles.

Aggressive Normal Defensive Trucks Unit
𝑎 2.5 2 1.5 1 m/s2

𝑑0 1.5 2 3 5 m
𝑇d 1.2 1.5 2 1.5 s
𝑏 -3 -2 -1.5 -1 m/s2

Table A.2: RSS parameters for different driving styles and the relaxed RSS parameter.

Aggressive Normal Defensive Trucks Relaxed Unit
𝜌ego 0.3 0.4 0.5 0.6 0.2 s
𝜌obj 0.5 0.7 1 0.8 0.5 s

𝑎max,dcc,ego -6 -8 -6 -4 -8 m/s2

𝑎max,dcc,obj -6 -10 -10 -6 -6 m/s2

𝑎max,acc,ego 2.5 2 1.5 1 3 m/s2

𝑎max,acc,obj 2 3 3.5 3 2 m/s2

𝑎max,acc,lat,ego 5 4 3 2 5 m/s2

𝑎max,acc,lat,obj 6 7.83 9 7.83 6 m/s2

𝑎soft,dcc,obj -2.5 -2 -1.5 -2 -3 m/s2

𝑡TZC,min 0.3 0.5 0.8 0.5 0.3 s
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A Appendix

Table A.3: Parameters for computing yielding motivation.

Styles 𝜃Y
Aggressive [0.08, 1.4, -5]
Normal [0.1, 1.8, -4.8]

Defensive [0.15, 2, -4.5]
Trucks [0.08, 1.4, -5]

Table A.4: MOBIL parameters for different driving styles.

Aggressive Normal Defensive Trucks Unit
𝑝 0.5 0.9 1.0 0.5 s

𝑎th 0.3 0.5 0.7 0.3 s

A.2 Parameters for MCS

Table A.5: Parameters for MCS setup.

𝑡mcs,max 12 s
𝑁 500
Δ𝑡 0.3 s

Table A.6: Parameters for estimating pedestrian crossing intention.

𝜃p [0.75, -0.5, -1.5]
𝑏p -2

Table A.7: Parameters for estimating yielding intentions of prioritized vehicles during merging

̂𝜃Y [0.08, 1.4, -5, -1.1]
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A.3 Learned Weights of All Policies

A.3 Learned Weights of All Policies

Table A.8: Learned weights 𝑤 for merging, free lane change and right-of-way intersection scenar-
ios.

Utility Comfort Risk Politeness
𝑈1 𝑈2 𝑈3 𝐶 𝑅1 𝑅2 𝑃1 𝑃2

wmerge 0.5 -1 0.05 0.05 -0.7 -0.5 0.1 0.15
wfree 0.183 -0.15 0.3 0.1 -0.367 -0.34 1.0 0.25
winter 1 -0.95 0.88 0.08 -0.16 -0.5 0.16 0.16

Table A.9: Learned stylized (aggressive and defensive) weights for merging, free lane change and
right-of-way intersection scenarios.

Utility Comfort Risk Politeness
𝑈1 𝑈2 𝑈3 𝐶 𝑅1 𝑅2 𝑃1 𝑃2

wmerge,agg 0.7 -1 0.08 0.02 -0.5 -0.4 0.06 0.12
wmerge,def 0.4 -0.8 0.04 0.9 -1 -0.7 0.15 0.2
wfree,agg 0.25 -0.23 0.5 0.06 -0.27 -0.3 1.0 0.14
wfree,def 0.14 -0.12 0.2 0.15 -0.45 -0.4 1.0 0.33
winter,agg 1 -0.93 0.95 0.03 -0.12 -0.12 0.12 0.04
winter,def 1 -0.79 0.66 0.23 -0.44 -0.8 0.25 0.79
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