
Computers & Industrial Engineering 196 (2024) 110507

A
0

Contents lists available at ScienceDirect

Computers & Industrial Engineering

journal homepage: www.elsevier.com/locate/caie

A machine learning-based simulation metamodeling method for dynamic
scheduling in smart manufacturing systems
Erfan Nejati a,d, Ensieh Ghaedy-Heidary a,b, Amir Ghasemi c,∗, S. Ali Torabi a

a School of Industrial Engineering, College of Engineering, University of Tehran, Tehran, Iran
b Department of Management Sciences, University of Waterloo, Waterloo, Canada
c Institute AIFB, Karlsruhe Institute of Technology (KIT), Kaiserstr. 89, Karlsruhe, Germany
d Rotman School of Management, University of Toronto, Toronto, Canada

A R T I C L E I N F O

Keywords:
Smart manufacturing
Digital twin
Machine learning
Simulation
Metamodeling
Stochastic flexible job shop

A B S T R A C T

Conventional Digital Twins (DTs) in smart manufacturing rely on complex and time-intensive simulation
models, hindering real-time DT-based decision-making. However, the availability of big data in Manufacturing
Execution Systems (MES) enables training different Machine Learning (ML) models for fast and accurate
predictions and decision assessments. Accordingly, this paper proposes an ML-Based Simulation Metamodeling
Method (MLBSM) to facilitate DT-based decision-making for dynamic production scheduling in complex
Stochastic Flexible Job Shop (SFJS) environments. The proposed MLBSM integrates three modules: a novel data
vectorizing method (SPBM), multi-output Adaptive Boosting Regressor (ABR) models, and a new statistical risk
evaluation method. SPBM converts unstructured production log data into numerical vectors for ABR training
by calculating numeric penalty scores for each job based on the position of operations in the schedule queue.
Each trained ABR predicts mean job completion times for various dynamic scenarios based on shift schedules.
The risk evaluation method estimates the standard deviation of job completion times and calculates the delay
probability scores for each job, aiding DT in promptly evaluating production schedules. Working seamlessly
together, MLBSM modules present a novel way of using production log data for ML training and ultimately
bypassing several computationally intensive simulation replications. In this research, a simulation model
generates the synthetic MES data, focusing on the machining process at a photolithography workstation in
the semiconductor manufacturing. Experiments demonstrate the MLBSM’s accuracy and efficiency, predicting
high-risk jobs with over 80% recall and being at least 70 times faster than conventional simulation runs.
Sensitivity analyses also confirm the MLBSM’s consistency under different workstation conditions.
1. Introduction

The considerable digital transformation brought by Industry 4.0
(I4.0) has led to the advent of various information and communica-
tion technologies in the context of smart manufacturing environments,
such as Cyber-Physical Systems (CPSs) (Ghasemi, Farajzadeh, Heavey,
Fowler, & Papadopoulos, 2024). CPSs provide a network of cyber and
physical counterparts with the ability to learn, detect changes, and
make autonomous and real-time decisions (Lee, 2008; Leitão, Colombo,
& Karnouskos, 2016). CPSs are used to create a virtual copy of the ac-
tual system, which is then monitored to collect data and make real-time
decisions (Hermann, Pentek, Otto, et al., 2015). The aforementioned
abilities of the CPSs have resulted in the advent of Digital Twins (DTs),
which have been gaining attention in recent years.

∗ Corresponding author at: Institute AIFB, Karlsruhe Institute of Technology (KIT), Kaiserstr. 89, Karlsruhe, Germany.
E-mail addresses: e.nejati@mail.utoronto.ca (E. Nejati), eghaedyh@uwaterloo.ca (E. Ghaedy-Heidary), amir.ghasemi@kit.edu (A. Ghasemi),

satorabi@ut.ac.ir (S.A. Torabi).

More precisely, DTs are digital copies of physical systems hosted
by the cyber side of CPSs. As Fig. 1 shows, by interacting with
the shop floor through MESs, DTs are employed to plan and control
complex manufacturing systems (García, Bregon, & Martínez-Prieto,
2022). To accomplish this, DTs require a competent tool to provide a
valid and detailed representation of the physical system. This is usually
provided by a detailed simulation model. Simulation models have long
proven their potential in modeling complex and stochastic manufactur-
ing environments (Pires, Cachada, Barbosa, Moreira, & Leitão, 2019).
In other words, simulation models are dominantly used for evaluating
system designs and planning decisions within manufacturing systems.
Accordingly, DT-based decision-making is conducted by assessing the
performance of the system under different scenarios using the simula-
tion model. In this way, based on the performance measures calculated
https://doi.org/10.1016/j.cie.2024.110507

vailable online 20 August 2024
360-8352/© 2024 The Authors. Published by Elsevier Ltd. This is an open access ar
ticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/caie
https://www.elsevier.com/locate/caie
mailto:e.nejati@mail.utoronto.ca
mailto:eghaedyh@uwaterloo.ca
mailto:amir.ghasemi@kit.edu
mailto:satorabi@ut.ac.ir
https://doi.org/10.1016/j.cie.2024.110507
https://doi.org/10.1016/j.cie.2024.110507
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cie.2024.110507&domain=pdf
http://creativecommons.org/licenses/by/4.0/

E. Nejati et al. Computers & Industrial Engineering 196 (2024) 110507
Fig. 1. A general framework for DT.

by the simulation model for each test scenario, the best decision can be
made for the system under study.

Although simulation-based approaches are among the most pow-
erful tools in modeling complex manufacturing systems, simulation
runs can become highly time-intensive. This is mainly due to the fact
that simulation models perform various numerical calculations for each
entity or process involved in manufacturing systems (Pierreval, 1992).
While in some cases, individual analysis of each entity or minor process
might be required, in many others, simulation models are solely used
to make an overall decision for the whole system based on performance
measure values they calculate regarding each decision alternative. For
instance, as it is shown for the case of DTs in Fig. 1, simulation runs
are integrated with decision support modules that are usually some
optimization methods (e.g., Genetic Algorithm) specifically designed to
explore the solution space of different decision problems in the factory.
In this collaboration, each optimization method passes one or a set
of feasible solutions to the simulation model and waits until the sim-
ulation calculates and returns the corresponding system performance
measure values for each feasible solution. Subsequently, based on the
calculated performance measures, the optimization method compares
the alternatives and makes the final decision, which could hopefully
be an optimal one. However, it takes a significant amount of time for
each performance measure to be calculated by the simulation model.
Additionally, given the uncertain parameters involved in the simulation
model, such as the stochastic nature of incoming entities, simulation
runs must be replicated multiple times for each feasible solution to
ensure reaching reliable calculated values. This computational demand
can become even more substantial when considering the vast solution
space that most decision problems encompass and the millions of
feasible solutions that need exploration and evaluation in this process.
In smart manufacturing environments (e.g., semiconductor manufac-
turing plants), online orders are placed every minute by customers,
and several dynamic events, such as equipment status fluctuations,
may happen at each moment; therefore, waiting about half an hour or
even more to reschedule such a highly dynamic environment through
a simulation–optimization collaboration makes no sense.

To overcome the computation complexity caused by simulation
models, a potent substitution is needed to provide DT with the fast
prediction of performance measures. Recently, the availability of big
data collected via sensors of embedded Internet-of-Things (IoT) sys-
tems and stored at MES enables modern manufacturing systems to
train Machine Learning (ML) models. These models can be employed
to make time-efficient and accurate predictions about the system’s
performance. To be more specific, a subclass of ML methods, known
as supervised ML methods, can be used to predict a target value
(performance measure) based on independent variables (decision al-
ternatives). Supervised methods can train accurate models to predict
the value of performance measures (simulation outputs) based on each
2
alternative decision (simulation inputs) (Monostori, 2002). Within the
literature, such abstract models fitted on inputs and outputs of a
simulation model are referred to as Simulation Metamodels (model of
a model) (Can & Heavey, 2012). These ML-based metamodels can be
considered a competent substitution for simulation models to provide
fast and accurate predictions of system performance measures. This
enhances the applications of DTs by providing required system metrics
to them in real time without spending a huge computation capacity.

Considering the advantages mentioned above of ML-based meta-
models, these methods are powerful tools to address complex prob-
lems within manufacturing systems in the era of I4.0. In this regard,
this paper develops a Machine Learning-Based Simulation Metamodel
(MLBSM) to address scheduling problem in the semiconductor manu-
facturing. As one of the early adaptors of I4.0, semiconductor manufac-
turing has one of the most capital intensive production systems (Mönch,
2018). Within this manufacturing system, the photolithography work-
station is known as the bottleneck resource. Since the system’s perfor-
mance is highly dependent on the performance of its bottleneck, devel-
oping a schedule for the photolithography workstation can considerably
improve the performance of the whole manufacturing system (Chen,
Chen, & Hung, 2020). Thus, the proposed MLBSM focuses on the
scheduling problem within the photolithography workstation while it
can be tailored for different types of scheduling problems which can be
seen in different manufacturing systems.

Furthermore, three special operational constraints differentiate the
scheduling problem of the photolithography work area from other
scheduling problems. These constraints, which are known as CAPPA
constraints in the literature, refer to machine process capability, ma-
chine dedication, and the maximum number of times each reticle can
be shared among different machines (Chen, Fathi, Khakifirooz, & Wu,
2022; Hu & Zhang, 2012). While simultaneous consideration of all
these constraints is crucial to the development of DTs, it dramatically
increases the simulation model’s complexity and has a substantial
impact on the amount of calculation required for a single simula-
tion replication. In addition, highly flexible operations and stochastic
setup and processing times are two inherent characteristics of the
photolithography work area, which are further obstacles in the way
of developing real-time DTs. In fact, these uncertainties add noise to
the values calculated by the simulation model, and obtained results
from a single simulation replication might not be reliable anymore.
Hence, statistically, several replications are needed to ensure those
calculated values are valid, which makes the simulation even more
time-consuming.

On the other hand, dynamic events, such as job arrivals and ma-
chine breakdowns, are likely to happen in this workstation. These
events prompt the need for real-time scheduling for this workstation.
This is mainly due to the fact that whenever a dynamic event occurs,
a new schedule needs to be developed (Chien & Lan, 2021; Xu, Shao,
Yao, Zhou, & Pham, 2016).

In order to cope with the resource-intensive computations and
achieve a real-time DT, the MLBSM is developed based on an ensemble
supervised learning method known as Adapted Boosting Regressor
(ABR), which predicts the performance measure (the risk of final prod-
uct delays) of the photolithography workstation quickly and accurately.
In addition to its accuracy and speed, ABR, as a simple tree-based ML
algorithm, makes the MLBSM explicable, which is not always the case
for other AI methods. For instance, while Deep Learning (DL) methods,
which primarily rely on Neural Networks, may yield more accurate
outputs, they are generally more time-intensive to train and are also
not as explainable as tree-based approaches. The transparency inherent
in all modules of the MLBSM, including ABR, can significantly enhance
the likelihood of managers relying on this innovative tool. Employing
the MLBSM as a replacement for the simulation model enables the de-
veloped DT to evaluate a vast number of alternative schedules quickly.
In this way, using less computational resources, real-time decisions

can be made dynamically in such a highly complex manufacturing

E. Nejati et al.

t

Computers & Industrial Engineering 196 (2024) 110507
environment. It is important to note that simulation in a DT provides
insights at a more detailed level, including individual jobs, machines,
and even operations. This allows decision-makers, whether human or
computer-based, to evaluate their alternatives with greater precision.
Such detailed insights can also support decision-making in various areas
beyond scheduling, such as inventory management, capacity planning,
marketing, and delivery. To maintain this level of detail in DT, the
MLBSM predicts results (delay risks) at the job level rather than for
the workstation as a whole.

Training ML models for manufacturing environments is highly de-
pendent on both the quality and size of the MES data (Dahmen et al.,
2019). The data used for training needs to provide knowledge over
all states (e.g., normal and abnormal operating conditions) that the
model should consider. These all-inclusive data characteristics enable
the ML model to provide DT with valid predictions over all possible
operating conditions, even those that rarely happen on the shop floor
(e.g., breakdowns or special order arrivals). As a result, depending
solely on the collected data from the shop floor may not be sufficient
for training a reliable ML model. This is mainly due to the fact that
the data obtained from the sensors mostly represent normal and near-
optimal working conditions, which the system was planned for and has
operated based on that so far. In addition, considering supervised ML,
another limitation is that a human manually labels the vast amount
of input data. Manual labeling is prone to errors and is labor and
time-intensive, especially in dynamic manufacturing environments with
frequent changes in products and processes. These limitations may
prohibit the development of successful ML applications in several man-
ufacturing cases. In that direction, creating virtual (synthetic) datasets
using simulation models could facilitate the creation of proper datasets
for training ML models in a cost and time-efficient way (Alexopoulos,
Nikolakis, & Chryssolouris, 2020).

Simulation models can be employed for creating valid training
datasets, including a wide range of system states, as well as for au-
tomating the data labeling process. In this regard, this paper introduces
a discrete-event simulation model representing the machining process
in a photolithography workstation. The simulation model considers the
existing assumptions of a real-world photolithography workstation and
aims to generate virtual MES data for training ML models and validate
the obtained ML predictions.

In summary, this paper tries to answer the following questions:

1. How to generate valid synthetic MES log data with the re-
quired quality and quantity, which embodies all aspects of the
photolithography process?

2. How to preprocess raw MES data and train ML models such
as the MLBSM which are capable of predicting the scheduling
performance measures?

3. How can the developed the MLBSM be used for DT-based real-
time decision-making in a dynamic environment?

4. How accurately does the MLBSM work in a DT to provide timely
predictions regarding different operating conditions?

Accordingly, to address the above-mentioned research questions,
he following content is provided in this paper.

• Considering the machine process capability, machine dedication,
and maximum reticles sharing constraints (CAPPA constraints), si-
multaneously, as well as the stochastic nature of the photolithog-
raphy workstation (stochastic processing times and sequence-
dependent setup times) to design a simulation model. The model
simulates the machining process of the workstation based on
several random schedules and generates virtual MES log data
which can be used to develop a DT (Question 1).

• Proposing new sequencing priority-based vectorizing method to
convert different schedules to trainable numerical vectors. This
vectorizing method extracts numerical penalty scores for each

job based on the positions of their operations in the scheduling

3
queue. The numerical vector representations of the schedules are
then used to train an ABR method to predict the expected value
of completion times for each job (i.e., the system’s performance
measure) (Question 2).

• Proposing a new empirical statistical method to convert the pre-
dicted completion times to a delay risk score for each job at the
beginning of each production shift. The risk prediction method
enables the MLBSM to be used in a set of multiple consecutive
production shifts. In this way, the MLBSM can dynamically esti-
mate the delay risk scores at the beginning of each production
shift. The fast and accurate risk prediction helps to evaluate the
shift schedule in a real-time decision-making process (Question
3).

• Finally, four sets of experiments are conducted to evaluate the
validity of MLBSM predictions, accuracy and efficiency of ML
models, and the performance of the MLBSM as a DT-based de-
cision support tool, under either normal or abnormal scenarios in
the workstation (Question 4).

The remainder of this paper is organized as follows. Section 2
provides a literature review on the application of ML methods for
developing simulation metamodels in production systems. Section 3
presents the production scheduling problem within the photolithog-
raphy workstation. Section 4 describes the proposed the MLBSM to
address the production scheduling problem while Section 5 provides
the application of the MLBSM in a dynamic environment. Section 6
describes the ML model’s calibration procedure, and Section 7 reports
the numerical results of our experiments. Finally, Sections 8 and 9
concludes the paper and looks at possible future directions.

2. Literature review

As stated previously, this paper aims to develop a simulation meta-
model facilitating DT-based decision-making for production scheduling
within smart manufacturing environments. Considering ML’s great po-
tential in forecasting, it can enhance DT by developing accurate ML-
based metamodels. Hence, this section investigates the literature on
training ML models to develop a simulation metamodel within the
context of manufacturing systems. In this regard, firstly, this paper
focuses on the simulation metamodeling concept. Subsequently, various
metamodeling methods and the problem domains to which metamodels
are applied are introduced. Finally, the main gaps in the literature and
how this paper aims to address them are elaborated.

As it is described in Fig. 2, a simulation metamodel is a function,
say 𝑓 ′, that takes some design parameters of a simulation model (𝑓) as
inputs, represented here by a vector 𝑋, and generates an output 𝑌 ′ =
𝑓 ′(𝑋) (Barton, 2020). Examples of model design parameters include the
probability distribution of the input parameters, such as arrival rate and
mean service time, and system configuration parameters, such as the
number of servers, service priority, operational protocols, and buffer
capacity (Barton, 2020). In fact, the metamodel 𝑓 ′ produces an approx-
imation of some characteristic of a simulation output 𝑌 , e.g., the mean
or standard deviation of 𝑌 . This output is usually an index indicating
the performance measure of the system. Time in the system for a set
of jobs or customers, utilization of a particular resource (e.g., operator,
machine), and the net revenue over a specific time period are some
examples of simulation outputs. Generally, these outputs are averaged
over the length of a simulation run, but the averages vary randomly for
each simulation run.

According to Barton (2020), Metamodels have superiority over
simulation models mainly due to three reasons. Metamodels generally
have explicit form, they have deterministic outputs, and finally, once
fitted, they are computationally inexpensive to evaluate. Due to their
explicit form, metamodels are considerably insightful in understanding
the relationship between design parameters and performance measures
related to simulation outputs. Also, fitting a metamodel allows for char-

acterizing global variation of the stochastic outputs in a deterministic

E. Nejati et al. Computers & Industrial Engineering 196 (2024) 110507
Fig. 2. The metamodeling framework.

value describing the output, e.g., the mean or standard deviation value.
Finally, once fitted, metamodels can be used as a proxy to estimate
performance measures instead of making computationally expensive
and stochastic simulation replications. In this way, metamodels can
be widely used to ease many computationally intensive operations,
such as optimization, robust design, etc. (Amorim, Antunes, Ferreira,
& Couto, 2019; Barton & Meckesheimer, 2006; Dellino, Kleijnen, &
Meloni, 2009). In fact, the idea of developing simulation metamodels
to facilitate DT-based decision-making is mainly based on their com-
putationally inexpensive characteristic. Metamodels can help DT with
fast evaluation and comparison of various feasible decisions to find the
optimum one.

However, there are some undeniable challenges in developing meta-
models (Barton, 1998), and in a comprehensive work, Shao and Kibira
(2018) explore a wide range of them in the context of DT. The major
issues in metamodeling are the selection of a set of input variables and
justifying them to observe the output, as well as the selection of a func-
tional form for the approximation function. Generally, metamodeling
assumes that all input and output variables can take on continuously
varying values (continuous problems). In contrast to the extensive us-
age of metamodeling techniques for continuous issue domains, discrete
inputs and outputs (discrete problems) are rarely addressed by these
techniques. Discrete problems deal with ordinal integers, categorical
(qualitative) variables, permutations, and trees (Bartz-Beielstein & Za-
efferer, 2017). They may be mixed among themselves or mixed with
continuous variables. Ordinal integer variables can often be handled
quite similarly to real-valued variables. Others, like permutations, are
too complex to be easily represented by numeric vectors.

According to a survey conducted by Bartz-Beielstein and Zaefferer
(2017), there is a set of six metamodeling strategies to deal with
discrete problems:

(1) The naive approach: As long as the data can still be represented
as a vector (binary variables, integers, categorical data, permu-
tations) the modeling technique may simply ignore the discrete
structure, and work as usual;

(2) Custom modeling: A specific modeling solution is tailored to fit
the needs of a certain application;

(3) Inherently discrete models: Some models already are discrete in
their own design. For instance, tree-based models, like regression
trees or random forests;

(4) Mapping: Often, discrete variables or structures may be mapped
to a representation which can be handled easier. Random key
mapping for permutations or dummy variables for categori-
cal variables are two instances of this type of approach. Sim-
ilar to strategy 1, this approach may introduce redundancy or
infeasibility into the data structure;
4
(5) Feature extraction: Instead of directly modeling the relation
between an object (or its representation) and its quality, it is
possible to calculate the real-valued features of the objects. For
example, some features of a tree or graph can be extracted (path
lengths, tree depths, etc.). These numeric features can then be
modeled with standard techniques;

(6) Similarity-based modeling: Where available, measures of
(dis)similarity may be used to replace continuous measures that
are, e.g., employed in similarity-based models like k-nearest
neighbor (k-NN), support vector machines (SVM), radial basis
function networks (RBFN), or Kriging.

The above-mentioned strategies are not necessarily mutually exclu-
sive. Depending on the point of view, a mapping approach can be
interpreted as a similarity-based approach or vice versa. Moreover,
none of these strategies can have superiority over the others, even
the naive approach may be favorable if the problem is sufficiently
simple (Bartz-Beielstein & Zaefferer, 2017). However, in general, one
of the drawbacks of the more complex strategies (e.g., strategies 5 or
6) is extracting and adjusting proper features and measures to predict
simulation outputs. Also, this may be problematic if these measures
have to meet further requirements, like definiteness.

Another major issue in developing metamodels is the choice of a
functional form for the approximation function. This selection depends
on different factors such as the purpose of metamodeling, complexity
of the system, type of input and output variables, deterministic or
stochastic nature of outputs, and local or global approximation prop-
erties (Barton, 2009). While a wide range of functions is used within
metamodels (mentioned in Table 1), metamodels can be categorized
into three main groups based on their functional forms.

The first group consists of Regression Metamodels, such as those
with any linear, polynomial, quadratic, or nonlinear functional forms.
Regression models are simple and fast to fit on the data. Due to their
simplicity, many direct insights into the simulation’s behavior can be
obtained from the fitted model. For example, the linear coefficients’
magnitude indicates the simulation output’s relative sensitivities to all
design parameters (over the defined ranges of parameter values) (Bar-
ton, 2020). Similarly, quadratic coefficients can indicate nonlinearity
and convexity/concavity. Kriging (Gaussian Process) Metamodels (also
called Spatial Correlation), are the second group of metamodeling func-
tions that have great flexibility. Thus, they can model more complex
response function shapes compared with regression metamodels. If one
requires a global approximation to a nonlinear response, kriging meta-
models are an attractive alternative for regression. However, fitting
kriging models on data is more challenging compared to regression
metamodels. Furthermore, while fitted model coefficients give some
indication of how sensitive is the response changes to input change,
the detailed insight provided by a linear regression model cannot
be obtained from a kriging model. In addition, these models can be
sensitive to parameter choices (Gramacy & Lee, 2010).

Finally, the third group belongs to ML-based Metamodels. ML,
a subset of AI, is a group of computer techniques that focuses on
extracting useful knowledge from data and letting the ML component
decide. Supervised ML models e.g., Neural Networks, Tree-based, and
Support Vector Machine Methods, are widely acknowledged as promis-
ing tools for decision-making in manufacturing systems (Alexopoulos
et al., 2020). These methods can develop models to provide fast and
highly accurate predictions in the most complex systems (Min, Lu, Liu,
Su, & Wang, 2019). These capabilities of ML models make them suitable
for estimating proxy functions for the most complicated simulation
models. However, MLs are generally viewed as black boxes. While re-
gression coefficients or spatial correlation parameters are explainable,
ML coefficients generally do not provide an explanation of the impact
of independent variables on simulation output. Also, another challenge
in developing ML-based metamodels is that they are highly sensitive
to parameter selection and strategies dealing with discrete and mixed
inputs (Barton, 2020).

E. Nejati et al.

u
(
m
a
r
t
n
e
(
m

t
(
t
t
p
a
a
c
s
i
n
o

Computers & Industrial Engineering 196 (2024) 110507
Table 1
Summary of publications on metamodeling for a production scheduling problem with FS = Flow Shop; JS = Job Shop; FJS = Flexible Job Shop; and OS = Open Shop.

Reference Production
environment

Uncertainty in the
input variables

Metamodeling
strategy

Functional form Response variable Aim of metamodeling

Pierreval (1992) FS – Naive approach ML (Neural Network) Mean tardiness Dispatching rule
selection

Pierreval and
Huntsinger (1992)

JS – Naive approach ML (Neural Network) Mean tardiness Dispatching rule
selection

Weeks and Fryer
(1977)

JS – Naive approach Regression (Linear and
nonlinear)

Earliness and
tardiness cost

Providing insight

Koons and Perlic
(1977)

FS – Naive approach Regression (Linear) Mean waiting time,
total delay

Providing insight

Fonseca, Navaresse,
and Moynihan
(2003)

JS Processing times Mapping
approach

ML (Artificial Neural
Network)

Flow time Providing insight

Ankenman, Nelson,
and Staum (2010)

FS Processing times Similarity-based
modeling

Stochastic Kriging Mean cycle time Providing insight

Azadeh,
Moghaddam,
Geranmayeh, and
Naghavi (2010)

FS Setup times and
machine breakdown

Naive approach ML (Artificial Neural
Network)

Total tardiness Dispatching rule
selection

Yang, Liu, Nelson,
Ankenman, and
Tongarlak (2011)

JS – Naive approach Regression (Nonlinear) Mean cycle time

Nasiri,
Yazdanparast, and
Jolai (2017)

OS Job arrivals and
processing times

Naive approach ML (Artificial Neural
Network Multilayer
Perceptron)

Mean waiting time Dispatching rule
selection

Ghasemi, Ashoori,
and Heavey (2021)

JS Processing times
and setup times

Feature
extraction

ML (Genetic
Programming)

Completion times Developing a simulation
optimization method

This study FJS Processing times
and setup times

Feature
extraction

ML (Adapted Boosting
Regressor)

Completion times
and jobs’ risk

Providing real-time
DT-based decision
support
Regression models have been the popular tools for developing sim-
lation metamodels in earlier studies. In this regard, Weeks and Fryer
1977) proposed a regression simulation metamodel for estimating
inimum cost due dates in a Job Shop (JS) production system. In

nother study, Koons and Perlic (1977) analyzed a steel plant by
egression simulation metamodel. For predicting product mix and cycle
ime as a function of throughput, Yang et al. (2011) developed a
onlinear regression metamodel. In a more complex manufacturing
nvironment, for instance, semiconductor fabrication, Ankenman et al.
2010) extend the kriging methodology to design a metamodel. Their
odel represents the steady-state mean cycle time of a product.

ML models were also implemented in developing metamodels. In
his regard, a neural network approach was proposed by Pierreval
1992) to select dispatching rules for a simplified flow shop manufac-
uring system. The obtained data from a simulation model was used to
rain the network. The trained network was able to select the best dis-
atching rule itself. In another study, Pierreval and Huntsinger (1992)
pplied an artificial neural network for simulation metamodeling of
JS with deterministic processing time, transportation time, and a

onstant rate of job arrival. Fonseca et al. (2003) also applied the
ame method to estimate the mean lead times for orders processed
n a JS. Azadeh et al. (2010) proposed a trained multilayered neural
etwork metamodel integrated with a fuzzy simulation with the use
f the 𝛼-cuts method. Their algorithm, which was developed to solve

a complex maldistributed combinatorial dispatching decision problem,
is capable of modeling nonlinear and uncertain problems. In 2017,
a simulation–optimization approach was presented by Nasiri et al.
(2017) to address a stochastic open shop problem. Employing a multi-
layer perceptron artificial neural network, radial basis function, and
data envelopment analysis, they tried to determine the most efficient
dispatching rule for each machine. In a more recent study, Ghasemi
et al. (2021) proposed a Genetic Programming (GP) metamodel to be
replaced with the simulation replications in a stochastic environment.
5
A novel training vector was developed to train GP, which was further
integrated into an evolutionary optimization approach to sort feasi-
ble solutions of an SJSSP in a semiconductor manufacturing system.
Table 1 presents a summary of the reviewed articles.

As illustrated in Table 1, although a number of researchers de-
veloped metamodels to address production scheduling problems, the
models are still at rudimentary stages. On one hand, conventional meta-
models are mostly developed within simple production environments
such as FS and JS with small number of machines or operations which
is not a competent representation of the real-world problems. On the
other hand, these papers have mainly applied metamodels for providing
insights by correlation study, selecting dispatching rules, or sorting
different schedules. The common characteristic of all these applications
is that they were looking for ratios and proportions of response vari-
ables but not an exact estimation of their values. In addition, none of
the reviewed papers has reported any measurements to represent the
accuracy of their metamodels. These simplifications, lack of accurate
predictions, and weak functional form are the main drawbacks of using
naive approaches to deal with simulation inputs. However, when it
comes to developing a metamodel to be used within a DT, the least level
of simplification is allowed, as DTs need to be as realistic as possible. In
addition, providing fast and accurate predictions about the future of the
system is one of the key roles that DTs have. Thus, despite the formerly
developed metamodels, those applied to DTs need to accurately predict
response variables, not just a relative comparison between them.

Considering the abovementioned, this paper introduces a novel and
accurate metamodeling method, denoted as MLBSM, to facilitate DT-
based decision-making for a large-scale production scheduling problem
within one of the most complex production environments known as
Stochastic Flexible Job Shop (SFJS). With all its real-world assump-
tions, the photolithography workstation was considered to develop the
MLBSM. These assumptions include CAPPA constraints (special con-
straints belonging to the photolithography processes), stochastic pro-
cessing times, and stochastic sequence-dependent setup times. Based on

E. Nejati et al.

w
p
t
s
I
p
t
o
(
d
t

r
a
a
m
a
w
w
(
p
t
e
c
S
t
s
c
a
t
b
S
w
T
a
t

a
d

c
s
1
t
(
f
o
i
w
p
w
c
p
∞
b
a

b
c
s
Q
f

𝑌

Computers & Industrial Engineering 196 (2024) 110507
the schedule(s) for each production shift (input variable), the MLBSM
will be able to predict the mean completion times as well as tardiness
risk scores for each job as response variables in a timely manner.

3. Problem description

AI is a well-known I4.0 tool preponderantly used to improve the
performance level in various fields. As AI technology evolves to be-
come a more affordable tool, its applications in production operation
planning assist modern manufacturing systems with complex decision-
making processes. ML, a subset of AI, is a set of computer techniques
that uses learning or training to retrieve meaningful information from
a large amount of data. The retrieved information can further be used
to make real-time decisions for the business or factory that the data
belongs to Ahuett-Garza and Kurfess (2018).

It is possible to group ML methods into different categories based on
their outputs. Common algorithm types include (Monostori, 2002) (a)
supervised learning in which a supervisor provides the correct response
to each action, such as human or real-world data, (b) reinforcement
learning, where less feedback about each response is given compared
to the previous category (only an evaluation of each action is given by
the supervisor), and (c) unsupervised learning in which no evaluation
of actions is provided, assuming that there is no supervisor or known
feedback. Focusing on supervised learning, in this method, the algo-
rithm tries to find a pattern on a set of known actions and responses
(i.e. the available data), which is called a training dataset. This function
can be described as follows:

𝑄 = 𝑞({𝑧1,… , 𝑧𝑛}) (1)

here {𝑧1,… , 𝑧𝑛} is the vector of independent variables that describe
ossible actions and 𝑄 is an estimation of response(s) calculated using
he ML fitted function 𝑞. Training ML methods on MES data to fit
uch functions within smart manufacturing systems can be beneficial.
n other words, the trained ML models can provide fast and accurate
redictions for a wide range of performance measures (responses)
o evaluate operational decisions (actions) before implementing them
n the shop floor. These real-time predictions allow decision makers
a human or DT-based decision support tool) to compare alternative
ecisions to either minimize or maximize the performance measure in
he most complicated manufacturing environments.

SFJS environments are one of these complex manufacturing envi-
onments that represent many modern manufacturing systems as well
s the photolithography (Zhang, Wang, Qiu, & Liu, 2023). Within SFJS,
certain number of jobs must be processed on a certain number of
achines. Each job contains a certain number of operations. Moreover,

t least one of the operations can be processed on a set of machines
ith a stochastic processing time for each. Within the photolithography
orkstation, an example of SFJS environment, a number of wafers

jobs) which consists of a number of layers (operations) are to be
rocessed during each production shift. There are sets of machines
o perform photolithography processes, and the processing time for
ach process is a stochastic parameter. Planning operations on ma-
hines in SFJS is commonly referred to as the Stochastic Flexible Job
hop Scheduling Problem (SFJSSP), a complex problem belonging to
he NP-hard class of optimization problems due to the large solution
pace. In addition, particularly in photolithography workstations, the
omplexity of SFJSSP increases exponentially by considering practical
ssumptions of the workstation such as uncertainties, machine setup
imes, and photolithography operational constraints, machine capa-
ility, machine dedication, and maximum reticle sharing constraints.
FJSSPs mainly try to find an optimum schedule for the machines
hich process operations in order to complete and deliver jobs on time.
he completion time for each job is an important indicator within SFJS
s it directly impacts holding and penalty costs caused by early and

ardy jobs, respectively. Consequently, calculating completion times as

6
performance measure is essential within SFJSs to compare alternative
ecisions (the production shift schedule).

Due to the complexity and uncertainties involved in SFJSSPs, ac-
urate calculation of completion times is also a challenge. Consider a
imple FJS environment (without stochastic parameters) with 10 jobs,
0 operations per job, and 10 machines capable of processing all opera-
ions. A Job Shop Queue which is a sequence of 10×10 = 100 operations
i.e., 𝑋 = [𝑂𝑃1, 𝑂𝑃2,… , 𝑂𝑃100]) can be considered as a feasible solution
or this scheduling problem. Operations are assigned to machines based
n this sequence. Due to the flexibility of the system, each operation
n the queue can be assigned to a set of available machines in the
orkstation. As a result, 10×10×⋯×10 = 10100 different assignments are
ossible for this workstation based on a single job queue. Furthermore,
hen it comes to calculating completion times in an SFJS environment,

onsidering stochastic processing and setup times, extend these discrete
ossible values to a continuous domain which can be described as
× ∞ × 10100. In this situation, the completion time for each job

ecomes a highly stochastic variable depending on both the decision
nd the stochastic system parameters.

To deal with the aforementioned challenge in evaluating each feasi-
le solution (Job Shop Queue), typical DTs use several simulation repli-
ations to calculate the expected value of the completion times. Con-
idering Table 2, the expected value of completion times for Job Shop
ueue 𝑋 calculated using a simulation-based DT, can be described as

ollows:

= 1
𝑅

𝑅
∑

𝑟=1
𝑓𝑟
(

𝑋
)

(2)

where 𝑓𝑟 and 𝑅 refer to the completion time values calculated in
simulation replication 𝑟 and the total number of simulation replica-
tions, respectively. Also, 𝑌 denotes the vector of expected completion
times for all jobs. Although simulation models are capable of modeling
complex and stochastic manufacturing environments, simulation repli-
cations are time and resource-intensive. As a result, simulation models
lose their practicality when it comes to calculating system performance
measures in SFJSSPs.

In contrast, supervised ML methods can provide fast and powerful
DT-based decision support tools to estimate performance measures
within smart manufacturing. In fact, these methods can be trained
on a set of production data to predict performance measures such
as completion times accurately substituting time-intensive simulation
replications. In other words, the expected value of completion times
for Job Shop Queue 𝑋 calculated by an ML-based DT, can be described
as follows:

𝑌 ′ = 𝑓 ′
(

𝑋
)

; 𝑓 ′ ∼ 1
𝑅

𝑅
∑

𝑟=1
𝑓𝑟
(

𝑋
)

(3)

where 𝑌 ′ is an estimation for the vector of expected completion times
(𝑌), which is now predicted by a trained, supervised ML method, not
the simulation model. The concept of supplanting a time-consuming
simulation model with a trained ML model is called simulation meta-
modeling within the literature of AI applied to operation management
problems. However, in this context, supervised learning approaches
face two main difficulties: (1) the availability of appropriate datasets
with sufficient quality and quantity and (2) adding labels to the dataset
to train an ML model. According to Dahmen et al. (2019), three main
types of data are used to train ML models: (a) in-vivo data that are
captured from real-life situations that were not created or modified
specifically for the purpose of data collection, (b) in-vitro data collected
in a laboratory environment using physical sensors, and (c) synthetic
data which are generated using computer simulation models. Although
manufacturing companies typically have a large amount of in-vivo data,
gathering and cleaning it takes time. Furthermore, training data must
include knowledge of all states that the model should consider, such
as normal and abnormal operating conditions. For instance, in the
manufacturing environments, the majority of data typically reflects

E. Nejati et al. Computers & Industrial Engineering 196 (2024) 110507
Fig. 3. The overall framework for developing, validating, and implementing the MLBSM.
undamaged parts, with actual defects being infrequent. Even defective
parts often exhibit a varied distribution, where some types of defects
are prevalent while others are exceedingly rare. Relevant situations
requiring detection also tend to occur infrequently.

Moreover, another limitation of supervised ML is the human input
required to label the vast amount of raw data manually. Manual la-
beling is prone to errors and is labor and time-intensive, especially in
rapidly changing modern manufacturing environments where products
and processes change frequently. For example, in many manufacturing
environments workers visually inspect products on an assembly line,
labeling items as defective or non-defective based on observed flaws.
Workers also record repair and maintenance needs by manually logging
information in production software or spreadsheets. Additionally, in
many electronics manufacturing plants, new models of devices, such as
smartphones, are released several times a year. Each new model may
have different components, assembly processes, and quality control
criteria. Manually updating and labeling data for each new model’s
assembly or inspection process can lead to significant errors, as the
speed of change outpaces the ability of human workers to accurately
label and categorize the data.

These limitations may make it difficult to develop successful AI
applications in various manufacturing scenarios, as the time and cost
required to build such models may be prohibitive. In this regard, using
simulation tools to create virtual (synthetic) MES data could enable
manufacturing systems to generate appropriate datasets for training
ML models. Simulation models can be used to create valid training
datasets and automate the data labeling process, which can then be
fed into an ML algorithm. As a result, simulation can reduce the need
for large amounts of high-quality data from the real world, as well as
user participation in ML training and testing.

3.1. Overall framework

Taking into account the challenges mentioned above, this paper
aims to develop the MLBSM as an ML-based metamodel to facilitate
DT-based decision making. The overall framework of developing and
implementing the MLBSM is presented in Fig. 3. The figure presents
phases 1 and 2, the development and test implementation of the
MLBSM, as well as the development of the simulation model for the
photolithography workstation.

In order to address data availability and labeling, the initial step
involves designing a simulation model of the photolithography worksta-
tion, which takes into account a comprehensive set of its specifications.
This simulation model, described in Section 3.2, is further used to gen-
erate training datasets as input for the MLBSM. In the next step, several
random schedules (SFJSSP’s feasible solutions) are generated for all
possible dynamic scenarios. All combinations of the jobs scheduled to
be processed during each production shift and the tardy jobs from pre-

vious production shifts are considered in the aforementioned scenarios.

7
Then, the developed simulation model, simulates the photolithography
workstation for all of these randomly generated schedules. Subse-
quently, the simulation outputs are stored as virtual production log data
in the MES (synthetic data).

The MES data is categorized based on possible dynamic scenarios of
the fab, and it is used to create a number of training datasets for each
scenario. Passing each dataset to the Sequencing Priority-Based Method
(SPBM), a new effective vectorizing method, they get prepared to train
ML methods. Further on, a number of multi-output Adapted-Boosting
Regressors (ABRs) are trained on each vectorized dataset. These ABRs
aim to predict the expected value of completion times for each job
during each production shift. The trained ABRs are integrated with a
novel empirical statistical method. The mentioned method empowers
the MLBSM to predict delay risk scores for each job based on the
predicted expected value of the completion times. Finally, the MLBSM
is applied on a number of consecutive production shifts to evaluate the
shift schedule by predicting the delay risk of the jobs at the beginning
of each shift. To validate and evaluate the MLBSM, the predicted risk
scores are compared with the simulated state of each job at the end of
each production shift.

3.2. Simulation model for the photolithography workstation

As mentioned before, the simulation model developed in this paper
aims to calculate the system performance measures (outputs) based on
a Job Shop Queue (input). The simulation model is designed consider-
ing real-world assumptions of the photolithography workstation, such
as stochastic parameters and all three CAPPA constraints, which are
specialized assumptions related to this workstation. These constraints
indicate that, first, certain machines within the photolithography tool
must be qualified for different recipes (i.e. the machine process capabil-
ity constraints). Secondly, for some critical layers (operations), specific
machines within the toolset must be used to ensure the quality of the
integrated circuit (i.e. the machine dedication constraints). Whether a
layer is critical or non-critical, is an input parameter for the scheduling
problem, which is related to the technical design of the wafer (job).
Thirdly, the number of times a reticle is shared between different layers
should be less than its maximum share limit (i.e. the maximum reticle
sharing constraints) (Chung, Huang, & Lee, 2006).

Before presenting the simulation model formulation and algorithm,
the following example is considered to illustrate the inputs of the simu-
lation model. As shown in Fig. 4, this example consists of 𝑁 = 3 jobs for
the production shift 𝑠, which can be either the main jobs planned to be
processed in the shift or uncompleted operations of a tardy job from the
previous production shift. For each job 𝑗 = 1, 2, 3, 𝑁𝑂1 = 3, 𝑁𝑂2 = 3,
and 𝑁𝑂3 = 1 number of operations are considered, respectively. An
operation ID 𝑖 ∈ {1,… , 7} is assigned to each operation and 𝐶𝑟𝑖 shows
that if an operation is critical or not. Noting that all critical operations

for job 𝑗 must be processed on the same machine. Due to illustrative

E. Nejati et al.

j
S
f

Computers & Industrial Engineering 196 (2024) 110507
Table 2
Table of notations.

Indices and Sets

𝑠 = Shift index, 𝑠 ∈ {1,… , 𝑆}.
𝑗 = Jobs index, 𝑗 ∈ {1,… , 𝑁}.
𝑖, 𝑖′ , 𝑖′′ = Operations ids, 𝑖, 𝑖′ , 𝑖′′ ∈ {1,… , 𝑁𝑂𝑠}.
𝑤 = Operations indices for job 𝑗, 𝑤 ∈ {1,… , 𝑁𝑂𝑗}.
𝑚 = Machine ids, 𝑚 ∈ {1,… , 𝑁𝑀}.
𝑘 = Queuing position index, 𝑘 ∈ {1,… , 𝑁𝑂𝑠}.
𝑟 = Simulation replication index, 𝑟 ∈ {1,… , 𝑅}.

Parameters

𝑆 Number of shifts.
𝑁 Total Number of jobs.
𝑁𝐽

𝑠 Number of jobs mainly planned to be processed at shift 𝑠.
𝑁𝑈

𝑠 Number of uncompleted jobs at the end of shift 𝑠.
𝑁𝑠 = 𝑁𝐽

𝑠 +𝑁𝑈
𝑠−1 Number of jobs to be processed at shift 𝑠.

𝑁𝑂𝑠 Total number of operations at shift 𝑠..
𝑁𝑂𝑗 Total number of operations for job 𝑗.
𝑁𝑀 Number of machines.
𝛱𝑖𝑚 Probability distribution of processing time of operation id 𝑖 on machine 𝑚.
𝛹𝑖𝑖′ Probability distribution of sequence-dependent setup time between operation ids 𝑖 and 𝑖′.
𝑝̃𝑖𝑚 Stochastic processing time of operation 𝑖 on machine 𝑚.
𝑞𝑖𝑖′ Stochastic sequence-dependent setup time between operations 𝑖 and 𝑖′.
𝐽𝑠 Set of jobs mainly planned to be processed at shift 𝑠.
𝑈𝑠 Set of uncompleted jobs at the end of shift 𝑠 (each uncompleted job consist of undone operations of 𝐽𝑠).
𝐴𝑖 Set of alternative machines capable to process operation 𝑖.
𝑝̃𝑖𝑚 Stochastic processing time of operation id 𝑖 on machine 𝑚.
𝑞𝑖𝑖′ Stochastic sequence-dependent setup time between operations 𝑖 and 𝑖′.
𝑀𝑖𝑚 Alternative machine, 1 if machine 𝑚 is capable to process operation 𝑖, 0, otherwise.
𝐶𝑟𝑖 Critical operation, 1 if operation 𝑖 is critical, 0, otherwise.
𝑘𝑆 Sequence-dependent setup occurrence rate.
𝑘𝐷 Machine dedication ratio.
𝑘𝐹 Flexibility ratio.
𝑘𝑆𝑞 Constant of sequencing (0.8 ≤ 𝑘𝑆𝑞 ≤ 1.2).
𝐷 Shift duration.
𝑅 Number of simulation replications.
𝑁𝑅 Number of rows in the dataset used to train the machine learning model.
𝑀 A large number.

Decision variables

𝑋𝑠 = (𝑥𝑖𝑘𝑠)𝑁𝑂𝑠
The vector of feasible solution (Job Shop Queue) for shift 𝑠 where 𝑥𝑖𝑘𝑠 equals to 1, if operation id 𝑖 is assigned to the 𝑘th position of
the queue for shift 𝑠, 0, otherwise.

Functions

𝑌𝑠 = (𝑐𝑗𝑠)𝑁 The vector of completion times for shift 𝑠, where 𝑐𝑗𝑠 denotes completion time of job 𝑗 at shift 𝑠, 𝑗 ∈ {1,… , 𝑁}.
purposes, here stochastic values of 𝑝̃𝑖𝑚 and 𝑞𝑖𝑖′ are generated for all
possible situations of processing operation 𝑖 on the capable machine 𝑚
as well as all possible sequences between operations 𝑖 and 𝑖′. However,
in the main simulation algorithm, the stochastic value for each situation
is generated only if it happens. Also, the Job Shop Queue in Fig. 4
is an example of decision alternatives (feasible solutions) for SFJSSP,
which is used to calculate the system performance measures. It is
worth mentioning that the algorithm guarantees the feasibility of the
generated Job Shop Queue before passing it to the simulation model.
For example, operation five (note in this paper operations are indexed
sequentially across starting from the lowest job index to the highest
job index) is the second operation of job two. Therefore, based on
precedence constraints, it must follow the first operation of job two,
where 𝑥𝑖=5,𝑘=3,𝑠 = 1 denotes that.

Considering the presented structure for the system parameters and
the Job Shop queue as input to the simulation model, Algorithm 1
describes the simulation model to calculate the vector of performance
measure 𝑌𝑠 for alternative decision 𝑋 in one simulation replication.
More precisely, the vector 𝑌𝑠 represents the completion times for all
obs processed during the shift 𝑠 calculated regarding a specific Job
hop Queue 𝑋𝑠. The main steps in the algorithm can be summarized as
ollows:

1. Creating and setting initial values for temporary vectors, which
aim to store and update machines and jobs’ statuses during
simulation execution.
8
2. Starting simulation procedure by iterating through operations on
the Job Shop Queue.

2-1. Assigning the operation to the earliest available machine
considering machine capability and machine dedication
constraints.

2-2. Generating stochastic sequence-dependent setup time for
the operation based on the latest operation processed on
the selected machine.

2-3. Generating stochastic processing time for the operation.
2-4. Calculating start and finish times of setups and pro-

cesses for the operation on the selected machine based
on stochastic times generated in 2–2 and 2–3.

2-5. Updating temporary vectors generated in 1.

3. For all jobs processed in the shift, set their latest operation’s
completion time as the job completion time and return all jobs’
completion times as the output vector.

In addition to the parameters used in developing the simulation
model, we considered 𝑘𝑆 , 𝑘𝐷, and 𝑘𝐹 as three ratios that generally
describe some aspects of the operations processed during a production
shift. These parameters are further used in the statistical risk evaluation
method (Section 4.4) as well as in the validation and sensitivity analysis
experiments (Sections 7.2 and 7.3). For better understanding, 𝑘𝑆 is
the average occurrence rate of sequence-dependent setups between
operations. While the details of the setup for each operation are defined

and simulated based on the 𝑂𝑝𝑉 𝑒𝑐𝑖 described in Algorithm 1, this ratio

E. Nejati et al.

𝑘
a
p

u
M
p
b
A
l
c
s
m
s
p
a
t
m
S

f
a
u
d

4

f
p
p
p
a
m
t
r
s
i
i
e
o
t
M
S
p

4

f
2
a
s
i
t
r
S
I
o
m
t
t
p

r
o
p
d

i
c
d
(

Computers & Industrial Engineering 196 (2024) 110507
indicates the general occurrence of setups for all operations scheduled
during a production shift. Similarly, we defined two parameters to
represent the machine dedication constraint and the system’s flexibility.
For machine dedication, 𝑘𝐷 describes the dedication ratio, which means
𝐷 × 𝑁𝑂𝑗 operations of a job are critical in a production shift, on
verage. Similarly, 𝑘𝐹 is the flexibility ratio and shows the average
ercentage of machines capable of processing an operation.

Another important step in developing a simulation model is eval-
ating the model parameters. Due to a lack of access to real-world
ES data, the main sources for parameters related to simulating the

hotolithography workstation in this research are two papers published
y Ghaedy-Heidary, Nejati, Ghasemi, and Torabi (2024) and Ghasemi,
zzouz, Laipple, Kabak, and Heavey (2020). These papers have ana-

yzed this workstation through simulation modeling and, together, they
over a wide range of real-world assumptions considered in this re-
earch. It is worth noting that, in order to validate both the simulation
odel and its outputs, we applied the developed model to simulate

everal test problems as presented by Ghasemi et al. (2020). These test
roblems align with the semiconductor fab investigated in this paper
nd encompass all CAPPA constraints relevant to it. Furthermore, we
ested simplified versions of the model on other experimental problems
entioned in works by Ghasemi et al. (2021), Sharma and Jain (2017),

hen, Han, and Fu (2017) and Zhang et al. (2022).
The statistical compatibility observed between the results obtained

rom our developed simulation model and the values mentioned in the
forementioned papers gave us confidence. This confidence led us to
tilize the simulation model for generating synthetic production log
ata, including job completion times.

. Machine learning-based simulation method

Computer simulation models are among the most powerful tools
or providing advice and making optimal control decisions in com-
lex and uncertain environments. However, the advantages of this
otentiality can only be realized when it is accompanied by high com-
utational performance to provide real-time decision-making advice. As
n example, a majority of research proposing Simulation-based Opti-
ization methods to solve production scheduling problems deals with

he computational challenges by reducing the number of simulation
eplications (Yang, Lv, Xia, Sun, & Wang, 2014). This entails forgoing
ome stochastic scenario explorations in order to solve the problem
n a reasonable amount of computational time, with sometimes no
nsight into the ignored scenarios. In this regard, considering the DT
nvironment, an efficient estimation method with accurate and robust
bjective value estimations would be advantageous. In this section,
his paper focused on introducing an ML-based method, denoted as
LBSM, to decrease computational demand in dealing with large-scale

FJSSP by predicting job completion times and delay risks for a certain
roduction shift.

.1. Feasible solution structure

Similar to many evolutionary optimization algorithms developed
or scheduling problems (Ghaedy-Heidary et al., 2024; Ghasemi et al.,
021), the input of the simulation model in this work is defined in
chromosome structure. The selection of this structure enables the

imulation and, ultimately, the developed MLBSM to be integrated and
mplemented seamlessly with several existing optimization methods. In
he simulation algorithm, a chromosome for the production shift 𝑠 is
epresented as a sequenced vector 𝑋𝑠 (the Job Shop Queue presented in
ection 3) consisting of 𝑁𝑂𝑠 queue positions filled with 𝑁𝑂𝑠 operation
Ds. It is worth mentioning that the algorithm guarantees the feasibility
f the generated solution queues before passing them to the simulation
odel as input. As mentioned before, the simulation algorithm takes

he generated solution queue (𝑋𝑠) and operation vectors set to calculate
he system performance measure (completion times) based on the
rocedure shown in Algorithm 1.
9
Algorithm 1: Simulation algorithm for production shift 𝑠.
Inputs : 𝑋𝑠 = (𝑥𝑖𝑘𝑠)𝑁𝑂𝑠

,
𝑂𝑝𝑉 𝑒𝑐𝑖 =

(

𝑗, 𝐶𝑟𝑖,𝑀𝑖,𝛱𝑖, 𝛹𝑖
)

∀𝑖 ∈ {1, ..., 𝑁𝑂𝑠} where
𝑀𝑖 = {𝑚|𝑀𝑖𝑚 = 1},𝛱𝑖 = {𝛱𝑖′𝑚|𝑖′ = 𝑖}, 𝛹𝑖 = {𝛹𝑖′𝑖′′ |𝑖′′ =
𝑖}, 𝑁,𝑁𝑂,𝑁𝑂𝑗 , 𝑁𝑀

Output: 𝑌𝑠 = (𝑐𝑗𝑠)𝑁 The vector of completion times for jobs
begin

for 𝑗 = 1 to 𝑁 do
𝐽𝑠𝑡𝑎𝑡𝑢𝑠𝑗 = (𝐿𝑎𝑡𝑒𝑠𝑡𝑂𝑝𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛𝑇 𝑖𝑚𝑒 =
0, 𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑀𝑎𝑐ℎ𝑖𝑛𝑒𝐼𝑑 = 𝑁𝑎𝑁)

end
for 𝑚 = 1 to 𝑁𝑀 do

𝑀𝑠𝑡𝑎𝑡𝑢𝑠𝑚 = (𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝐴𝑡 = 0, 𝐿𝑎𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑𝑂𝑝𝐼𝑑 =
𝑁𝑎𝑁)

end
for 𝑘 = 1 to 𝑁𝑂 do

𝑖 = 𝑓𝑖𝑛𝑑
(

𝑖|𝑥𝑖𝑘𝑠 = 1
)

𝑗 = 𝑂𝑝𝑉 𝑒𝑐𝑖(1)
if 𝐶𝑟𝑖 == 0 then

𝑚̃ = 𝑓𝑖𝑛𝑑
(

𝑚|min
(

𝑀𝑠𝑡𝑎𝑡𝑢𝑠𝑚(1) ∀𝑚 ∈ 𝑀𝑖
))

else
if 𝐽𝑠𝑡𝑎𝑡𝑢𝑠𝑗 (2) = 𝑁𝑎𝑁 then

𝑚̃ = 𝑓𝑖𝑛𝑑
(

min
(

𝑀𝑠𝑡𝑎𝑡𝑢𝑠𝑚(1) ∀𝑚 ∈ 𝑀𝑖
))

else
𝑚̃ = 𝐽𝑠𝑡𝑎𝑡𝑢𝑠𝑗 (2)

end
end
if 𝑀𝑠𝑡𝑎𝑡𝑢𝑠𝑚̃ == 𝑁𝑎𝑁 then

𝑞𝑖′𝑖 = 0
else

𝑞𝑖′𝑖 = 𝑅𝑎𝑛𝑑
(

𝛹𝑖′𝑖|𝑖′ = 𝑀𝑠𝑡𝑎𝑡𝑢𝑠(2)
)

end
𝑝̃𝑖𝑚 = 𝑅𝑎𝑛𝑑

(

𝛱𝑖𝑚̃
)

𝑆𝑒𝑡𝑢𝑝𝑆𝑡𝑎𝑟𝑡𝑖 = 𝑀𝑠𝑡𝑎𝑡𝑢𝑠1
𝑆𝑒𝑡𝑢𝑝𝐹 𝑖𝑛𝑖𝑠ℎ𝑖 = 𝑆𝑒𝑡𝑢𝑝𝑆𝑡𝑎𝑟𝑡𝑖 + 𝑞𝑖′𝑖
𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑆𝑡𝑎𝑟𝑡𝑖 = max

(

𝐽𝑠𝑡𝑎𝑡𝑢𝑠𝑗 (1), 𝑆𝑒𝑡𝑢𝑝𝐹 𝑖𝑛𝑖𝑠ℎ𝑖
)

𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝐹 𝑖𝑛𝑖𝑠ℎ𝑖 = 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑆𝑡𝑎𝑟𝑡𝑖 + 𝑝̃𝑖𝑚
𝑀𝑠𝑡𝑎𝑡𝑢𝑠𝑚̃(1) = 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝐹 𝑖𝑛𝑖𝑠ℎ𝑖
𝑀𝑠𝑡𝑎𝑡𝑢𝑠𝑚̃(2) = 𝑖
𝐽𝑠𝑡𝑎𝑡𝑢𝑠𝑗 (1) = 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝐹 𝑖𝑛𝑖𝑠ℎ𝑖
𝐽𝑠𝑡𝑎𝑡𝑢𝑠𝑗 (2) = 𝑚̃

end
𝑌𝑠 =

(

𝐽𝑠𝑡𝑎𝑡𝑢𝑠𝑗 (1) ∀𝑗 ∈ {1, ..., 𝑁}
)

end

4.2. Generating vectorized dataset using the simulation model (Module I)

As discussed before, the ML model in this work is responsible for
estimating the jobs’ completion times (𝑌𝑠) for each production shift 𝑠
egarding each Job Shop Queue 𝑋𝑠. The main question in this part
f the research is how to extract and store knowledge from system
arameters (the simulation model inputs) to generate a rich training
ataset for ML, making it capable of predicting completion times.

To answer this question, this paper developed a multi-output train-
ng dataset consisting of 𝑁𝑅 rows with 𝑁𝑠 features and 𝑁𝑠 target
olumns. The row 𝑛𝑟 in this dataset represents a unique Job Shop Queue
enoted as 𝑐 (feature vector) as well as the calculated completion times
target vector) regarding 𝑐. For more detail, the 𝑗th element of the

target vector in the row 𝑛𝑟 represents the average completion time
for job 𝑗 calculated in 𝑅 simulation replications regarding Job Shop
Queue 𝑐. However, designing the feature vector is quite complex as
it needs to be a vector describing system parameters and differentiate
between Job Shop Queues in the most reliable way. Ghasemi et al.
(2021) address a Sequencing Priority-Based Method (SPBM) to extract

E. Nejati et al. Computers & Industrial Engineering 196 (2024) 110507
Fig. 4. Proposed SFJSSP example.
a set of trainable features from the Job Shop Queue for the SJSSP. As
an important contribution, this study has tried to modify the SPBM
method for FSJSSP and extract a vector of job penalty scores based on
a Job Shop Queue. The modified SPBM method for FSJSSP is designed
as follows.

Developing SPBM, initially, we defined the vector 𝑠𝑜𝑙𝑆𝑘(𝑠𝑜𝑙𝑐 (𝑘),
𝐴𝑠𝑜𝑙𝑐 (𝑘)) for each queue position, where 𝑠𝑜𝑙𝑐 (𝑘) describes the operation
which is assigned to the 𝑘th position of Job Shop Queue 𝑋𝑐

𝑠 . Also,
𝐴𝑠𝑜𝑙𝑐 (𝑘) is a set of machine IDs that are capable of processing 𝑠𝑜𝑙𝑐 (𝑘).
Within SPBM, in the first step, we need to define 𝑀𝑃 𝑐

𝑚,𝑠𝑜𝑙𝑐 (𝑘)
, which is

the machine penalty caused by machine 𝑚 on 𝑠𝑜𝑙𝑐 (𝑘) as follows:

𝑀𝑃 𝑐
𝑚,𝑠𝑜𝑙𝑐 (𝑘)

= max
{

0, 𝑃 𝑐
𝑠𝑜𝑙𝑐 (𝑘′)

|𝑚 ∈ 𝐴𝑠𝑜𝑙𝑐 (𝑘′), 1 ≤ 𝑘′ ≤ 𝑘 − 1
}

(4)

where 𝑃𝑠𝑜𝑙𝑐 (𝑘′) denotes the penalty of earlier operations in the queue
that will be explained further in this section . Due to the flexibility
of the system, the sum of 𝑀𝑃 s for all machines capable of processing
𝑠𝑜𝑙𝑐 (𝑘) is considered as one of the penalty sources for the operation
𝑠𝑜𝑙𝑐 (𝑘). This summation is denoted as 𝑆𝑀𝑃 and can be formulated as
follows:

𝑆𝑀𝑃 𝑐
𝑠𝑜𝑙𝑐 (𝑘)

=
∑

𝑚∈𝐴𝑠𝑜𝑙𝑐 (𝑘)

𝑀𝑃 𝑐
𝑚,𝑠𝑜𝑙𝑐 (𝑘)

(5)

By having 𝑆𝑀𝑃𝑠𝑜𝑙𝑐 (𝑘) formula, each operation in the Job Shop Queue
will have a sequence penalty as follows. If 𝑠𝑜𝑙𝑐 (𝑘) is the first operation
of any job 𝑗 and 𝑆𝑀𝑃𝑠𝑜𝑙𝑐 (𝑘) = 0:

𝑃 𝑐 = 0 (6)
𝑠𝑜𝑙𝑐 (𝑘)

10
If 𝑠𝑜𝑙𝑐 (𝑘) is not the first operation of any job 𝑗 and 𝑆𝑀𝑃𝑠𝑜𝑙𝑐 (𝑘) = 0:

𝑃 𝑐
𝑠𝑜𝑙𝑐 (𝑘)

= 𝑃 𝑐
𝑠𝑜𝑙𝑐 (𝑘)−1

+ 1 (7)

where 𝑃 𝑐
𝑠𝑜𝑙𝑐 (𝑘)−1

defines the penalty score for the operation 𝑠𝑜𝑙𝑐 (𝑘) − 1
of job 𝑗 (please note that 𝑠𝑜𝑙𝑐 (𝑘) − 1 indicates the previous operation
of the job 𝑗 in the queue and not the previous operation in the queue
𝑠𝑜𝑙𝑐 (𝑘−1)). If 𝑠𝑜𝑙𝑐 (𝑘) is the first operation of any job 𝑗 and 𝑆𝑀𝑃𝑠𝑜𝑙𝑐 (𝑘) >
0:

𝑃 𝑐
𝑠𝑜𝑙𝑐 (𝑘)

= 𝑆𝑀𝑃 𝑐
𝑠𝑜𝑙𝑐 (𝑘)

+ 1 (8)

Finally, if 𝑠𝑜𝑙𝑐 (𝑘) is not the first operation of any job 𝑗 and 𝑆𝑀𝑃𝑠𝑜𝑙𝑐 (𝑘) >
0:

𝑃 𝑐
𝑠𝑜𝑙𝑐 (𝑘)

= 𝑃 𝑐
𝑠𝑜𝑙𝑐 (𝑘)−1

+ 𝑆𝑀𝑃 𝑐
𝑠𝑜𝑙𝑐 (𝑘)

+ 2 (9)

As result, the 𝑆𝑃𝐵𝑀𝑐
𝑗 score is defined as penalty score for job 𝑗 in

solution queue 𝑐 and calculated as follow:

𝑆𝑃𝐵𝑀𝑐
𝑗 = log10

(

∑

𝑠𝑜𝑙𝑐 (𝑘)
𝑃 𝑐
𝑠𝑜𝑙𝑐 (𝑘)

)

; ∀𝑠𝑜𝑙𝑐 (𝑘) ∈ {1,… , 𝑁𝑂𝑗} (10)

where {1,… , 𝑁𝑂𝑗} represents the set of operations for job 𝑗. Having
𝑆𝑃𝐵𝑀𝑐

𝑗 calculated for all jobs in a shift 𝑠, the training vector 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑐 ,
which is further used to train the ML method, is defined as follows:

𝑇 𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑐𝑠 =
{

{∪𝑁
𝑗=1𝑆𝑃𝐵𝑀

𝑐
𝑗 } ∪ 𝑌 𝑐

𝑠
}

(11)

where 𝑌 𝑐 denotes the vector of completion times for all jobs, which is
the average of completion times calculated in 𝑅 simulation replications

E. Nejati et al. Computers & Industrial Engineering 196 (2024) 110507
Fig. 5. A sample structure of final vectorized dataset.
for Job Shop Queue 𝑐. The final dataset is generated for 𝑁𝑅 random
feasible solutions and can be described as follows:

𝑇 𝑟𝑎𝑖𝑛𝑖𝑛𝑔 =
{

∪𝑁𝑅
𝑐=1𝑇 𝑟𝑎𝑖𝑛𝑖𝑛𝑔

𝑐
𝑠=−1

}

(12)

Fig. 5 presents a sample structure of the final vectorized dataset
(𝑇 𝑟𝑎𝑖𝑛𝑖𝑛𝑔) for a production shift with five scheduled jobs. It worth
mentioning the 𝑇 𝑟𝑎𝑖𝑛𝑖𝑛𝑔 dataset can be calculated on the data derived
from any production shift 𝑠; however, as it is mentioned earlier, in
this paper, the synthetic data obtained from the simulation is used for
this purpose, which is not a real production shift. The value 𝑠 = −1
in Eq. (12) represents this fact. The overall framework for generating
the 𝑇 𝑟𝑎𝑖𝑛𝑖𝑛𝑔 dataset based on a sample problem of shift 𝑠 is presented
in Fig. 6.

To illustrate the training vector calculations, here we extend the
example provided in Fig. 4 to ensure calculation validity, 𝑃 scores
for all operations are calculated based on the queue sequence (start
with operation one, next four and etc.). Operation one is the first
operation in the queue, and no earlier operations penalties (𝑃 1

𝑠𝑜𝑙𝑐 (𝑘)
)

are calculated yet, so 𝑆𝑀𝑃 1
1 equals 0. As operation one is the first

operation of job one, based on Eq. (6), 𝑃 1
1 equals 0. Operation four

is the first operation of job two and can be processed on machines
two and three. Using Eq. (4), both 𝑀𝑃 1

2,4 and 𝑀𝑃 1
3,4 equal 0 which

results 𝑆𝑀𝑃 1
4 = 0 according to Eq. (5). Therefore, 𝑃 1

1 equals 0, based
on Eq. (6). Operation five can be processed on machines one and two.
Based on Eqs. (4) and (5), the 𝑆𝑀𝑃 score for operation five equals to
0 (𝑆𝑀𝑃 1

5 = 𝑀𝑃 1
1,5 +𝑀𝑃 1

2,5 = 0). Therefore, mentioning that operation
five is not the first operation of any job, 𝑃 1

5 = 𝑃 1
4 + 1 = 1, based on

Eq. (7). Operation two can be processed on all three machines and
using (4), 𝑀𝑃 1

1,2, 𝑀𝑃 1
2,2 = 0, and 𝑀𝑃 1

3,2 equal 1, 1, and 0 respectively
which result in 𝑆𝑀𝑃 1

2 = 𝑀𝑃 1
1,2 +𝑀𝑃 1

2,2 +𝑀𝑃 1
3,2 = 2, based on Eq. (5).

As a result, note that operation two is not the first operation of any
job, Eq. (9) is used to calculate 𝑃 1

2 = 𝑃 1
1 + 𝑆𝑀𝑃 1

2 + 2 = 4. Likewise,
the 𝑃 score for operations three and six is 14 and 35, respectively.
Finally, operation seven can be processed on machines one and three,
so 𝑆𝑀𝑃 1

7 = 𝑀𝑃 1
1,7 + 𝑀𝑃 1

3,7 = 70. Since operation seven is the first
operation of job three, using Eq. (8), the 𝑃 score equals 71 (𝑃 1

7 =
𝑆𝑀𝑃 1

7 + 1 = 71). Further, aggregation of 𝑃 scores for all operations
of a job based on Eq. (10) results 𝑆𝑃𝐵𝑀1

1 = 1.2553, 𝑆𝑃𝐵𝑀1
2 = 1.5441,

and 𝑆𝑃𝐵𝑀1
3 = 1.8513. Considering processing and setup time values

for all operations as described in Fig. 4 and letting 𝑅 = 1, the value
of the objective function for the current example solution is 𝐹 1 =
(10.1, 9, 11.1). Finally, using Eq. (11), the training vector of solution
𝑐 = 1 is defined as follows:

𝑇 𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑐=1𝑠 = {1.2553, 1.5441, 1.8513, 10.1, 9, 11.1} (13)

4.3. Machine learning method (Module II)

As stated previously, the ML model aims to predict average comple-
tion times regarding a Job Shop Queue. To do this, this study trained
Adapted Boosting Regressor (ABR) on 𝑇 𝑟𝑎𝑖𝑛𝑖𝑛𝑔 to predict 𝑌𝑠 for each
shift 𝑠 based on Job Shop Queue 𝑋 . ABR was first developed in a paper
𝑠

11
by Freund and Schapire (1997). However, in this study, the ABR class is
implemented from Scikit Learn 1.0 ensemble-based methods, originally
proposed by Drucker (1997). ABR’s main idea is to fit a sequence of
weak learners (i.e., models that are only marginally better than random
guessing, such as small decision trees) to repeatedly modified versions
of the data. The predictions from each of them are then combined to
produce the final prediction via a weighted majority vote (or sum).
Each so-called boosting iteration modifies the data by applying weights
𝑤1, 𝑤2,… , 𝑤𝑁 to each of the training samples. At first, those weights
are all set to 𝑤𝑖 = 1∕𝑁 , which means that the first step simply trains a
weak learner on the original data. Each subsequent iteration modifies
the sample weights individually and reapplies the learning algorithm
to the reweighted data. At a given step, the weights of those training
examples that were incorrectly predicted by the boosted model induced
in the previous step are increased, while the weights of those that were
correctly predicted are decreased. As iterations progress, difficult-to-
predict examples gain increasing influence. The ABR algorithm can be
summarized in the following steps:

1. Assigning equal weights to all the observations (𝑤𝑖 = 1∕𝑁 where
𝑁 is number of records).

2. Classifying random samples using stumps. The base learner
model (stumps) used in this study is a decision tree with maxi-
mum depth 3.

3. Calculating total error which is the sum of weights of misclassi-
fied records.

4. Calculating performance of the stump.
5. Updating Weights based on the performance of the stump.
6. Updating weights in iteration by making the second stump in

the forest based on the normalized weight and repeating steps
2 to 5 again by updating the weights for a particular number of
iterations.

7. Final predicting by obtaining the sign of the weighted sum of the
final predicted value.

It is worth mentioning that, in this research, the obtained results
from ABR is compared to three well-known tree-based ML algorithms to
ensure its accuracy and performance. These algorithms include Random
Forest Regression (RFR), Extra Trees Regression (ETR), and Gradient
Boosting Regression (GBR), which are briefly described in Appendix A.

4.4. Delay risks evaluation (Module III)

In this study, the job risk value for each job is defined as the
probability that the completion time of a job exceeds the production
shift duration (𝑃 {𝑐𝑗𝑠 > 𝐷}). In a photolithography workstation, the
stochastic setup and processing times are independent random vari-
ables for all operations in a shift. Also, the completion time of each
job can be considered as a random variable which is the sum of setup
and processing times. Thus, based on the Central Limit Theorem (CLT),
as the number of operations increase, the probability distribution of job
completion times tend towards a normal distribution (Ross, 2014). As

E. Nejati et al.

𝜎

Computers & Industrial Engineering 196 (2024) 110507
Fig. 6. Generating and vectorizing dataset for training the ML method.
a result, the risk value for job 𝑗 processed at production shift 𝑠 can be
calculated as follows:

𝑅𝑖𝑠𝑘𝑗𝑠 = 𝑃
{

𝑐𝑗𝑠 > 𝐷
}

; 𝑐𝑗𝑠 ∼  (𝜇𝑐𝑗 𝑠, 𝜎𝑐𝑗 𝑠) ∀𝑠 ∈ {1,… , 𝑆} (14)

where 𝐷 is the production shift duration and 𝑐𝑗𝑠 is the stochastic
completion time of job 𝑗 which is distributed normally with mean 𝜇𝑐𝑗𝑠
and standard deviation of 𝜎𝑐𝑗𝑠 . To calculate 𝑅𝑖𝑠𝑘𝑗𝑠 for each job, an
estimation of these parameters is needed. The developed ML model
is an accurate estimator for 𝜇𝑐𝑗𝑠 as its accuracy will be presented in
Section 7.2. However, during several experiments, ML methods failed
to estimate 𝜎𝑐𝑗𝑠 accurately. It might be due to the fact that the main
source of standard deviation in completion times is not laid in the
sequencing (Job Shop Queue), which is used to design training datasets.
As a result, in this section, an empirical statistical method is proposed
for estimating 𝜎𝑐𝑗 𝑠. First, consider 𝜎̃𝑜𝑝𝑗𝑠 as follow:

̃ 𝑜𝑝𝑗𝑠 =
√

(𝜎̄𝑃𝑗𝑠)2 + 𝑘𝑆 .(𝜎̄𝑆𝑗𝑠)2 (15)

which describes the estimated standard deviation of setup time and
processing time for each operation in job 𝑗. In Eq. (15) 𝜎̄𝑃𝑗𝑠 and 𝜎̄𝑆𝑗𝑠 are
defined as follows:

𝜎̄𝑃𝑗𝑠: Average standard deviation of processing times for all opera-
tions in job 𝑗.

𝜎̄𝑆𝑗𝑠: Average standard deviation of all possible sequence-dependent
setup times defined for all operations in job 𝑗.

The above equation follows the additivity of variances of indepen-
dent normal distributions. As Walpole, Myers, Myers, and Ye (1993)
describes, the variance of the sum of two or more independent variables
with normal distributions equals the sum of the variances of individual
variables. In this case, for each operation, there is a variance stemming
from its processing time and another from its setup time. Since not all
operations require a setup, the expected value of a setup occurring (𝑘𝑆)
is considered as the number of times (in this case, less than 1) that
a setup variance should be added to the processing time variance. By
having 𝜎̃𝑜𝑝𝑗 calculated, the estimated standard deviation of completion
time for job 𝑗 is defined as follows:

𝜎̃𝑗𝑠 =
√

𝑘𝑆𝑞 .𝑘𝐹 .𝑁𝑀.𝑁𝑂𝑗 .(𝜎̃
𝑜𝑝
𝑗𝑠)2 (16)

where 𝑘𝐹 and 𝑘𝑆𝑞 describe the flexibility ratio of the system (a system
characteristic which is described in Section 7.2) and sequencing con-
stant, respectively. To illustrate, Eq. (16) describes that the standard
12
deviation of the completion time for each job 𝑗 is mainly caused by
the standard deviation in its operations and setup times (𝑁𝑂𝑗 .(𝜎̃

𝑜𝑝
𝑗𝑠)

2).
In addition, in a fully flexible job shop, operations of job 𝑗 can be
processed on any machine before or after operations of job 𝑗′, which
causes an integration between operations of different jobs processed on
the same machines. As a result, 𝑁𝑀 is multiplied to show the effect
of this integration. However, multiplying 𝑁𝑀 models the integration
effect for a fully flexible system, and as the flexibility ratio of the system
decreases, the integration effect decreases, too. Thus, 𝑘𝐹 is added to
this equation, which is the system flexibility ratio and varies from 1
(for a fully flexible system) to 0 (non-flexible system). It adjusts the
estimator for different levels of system flexibility. Finally, although the
sequencing has a small effect on standard deviation, the sequencing
constant (0.8 ≤ 𝑘𝑆𝑞 ≤ 1.2) is added to adjust the estimator for unknown
sequencing effects in case a dispatching rule is used.

5. Dynamic shifts scheduling

With the trained ML model and the risk evaluation method, we can
estimate the mean completion time for each job and then estimate its
delay risk score using the empirical statistical method within a certain
production shift regarding the shift schedule (Job Shop Queue). Here,
we extended the MLBSM to apply it on a series of production shifts
and evaluate jobs’ risk scores for all jobs planned to be processed. To
become more clear, consider 𝑆 number of consecutive shifts. 𝐽𝑠 and
𝑈𝑠−1 denote two sets of jobs planned to be processed at shift 𝑠. 𝐽𝑠
defines a set of 𝑁𝐽

𝑠 number of jobs mainly planned to be processed
at shift 𝑠. Also, 𝑈𝑠−1 defines a set of 𝑁𝑈

𝑠−1 number of uncompleted jobs
from shift 𝑠−1 where their remaining operations are considered as new
jobs and planned to be processed at shift 𝑠. While 𝐽𝑠 is known for all 𝑆
production shifts at the beginning of the planning horizon (𝑠 = 1), the
𝑈𝑠−1 for each shift is unknown until the shift 𝑠−1 ends. It is caused due
to the uncertainty (stochastic setup and processing times) involved in
the system. As a result, it is clear that different combinations of 𝑁𝐽

𝑠 and
𝑁𝑈

𝑠−1 are possible for each shift 𝑠. However, the developed ML model
is only capable of estimating a fixed 𝑁-sized target vector based on a
fixed 𝑁-size feature vector where 𝑁 is the number of jobs scheduled
to be processed in a production shift (Section 4.2). To deal with this,
we trained a number of ML models for all possible combinations of
𝑁 𝑗 + 𝑁𝑢 . As a result, we have 𝑁 𝑗 × 𝑁𝑢 number of trained ML
𝑠 𝑠−1 𝑠 𝑠−1

E. Nejati et al. Computers & Industrial Engineering 196 (2024) 110507
Fig. 7. Proposed framework of using the MLBSM as a DSS for scheduling in a dynamic environment.
models, supporting predictions for all possible dynamic scenarios for
a production shift.

By having 𝑁𝐽
𝑠 , 𝑁𝑈

𝑠−1, and Job Shop Queue 𝑋𝑠 known at the begin-
ning of shift 𝑠, the algorithm chooses the suitable ML model (which is
trained on the 𝑁 𝑗

𝑠 +𝑁𝑢
𝑠−1 dataset). Then, the chosen ML model is used

to predict mean completion times for jobs in 𝐽𝑠 and 𝑈𝑠−1 regarding
𝑋𝑠. Finally, the predicted mean completion times are passed to the risk
evaluation method, and delay risk scores are calculated for all jobs.
Fig. 7 presents the application of the MLBSM in the described dynamic
environment.

6. ML calibration

Setting parameters of ML models has a significant effect on their
performance. Thus, in this section, we calibrate the parameter values
for ML models using Taguchi’s experimental design. This method is
based on a special set of arrays called orthogonal arrays to conduct
the minimum number of efficient experiments that could give insights
into all factors that affect the performance measure.

In this study, we used the coefficient of determination (𝑅2 Score) to
evaluate ML models, one of the most practical and known metrics in
evaluating estimation methods. Considering 𝑦̂𝑖 as the predicted value
of the 𝑖th sample and 𝑦𝑖 as the corresponding actual value, for total 𝑛
samples, the general formulation of the 𝑅2 Score is as follows:

𝑅2 (𝑦, 𝑦̂) = 1 −
∑𝑛

𝑖=1
(

𝑦𝑖 − 𝑦̂𝑖
)2

∑𝑛
𝑖=1

(

𝑦𝑖 − 𝑦̄
)2

(17)

where 𝑦̄ = 1
𝑛
∑𝑛

𝑖=1 𝑦𝑖. 𝑅2 Score indicates the goodness of fit and,
therefore, a measure of how well-unseen samples are likely to be
predicted by the model. The best possible score is 1.0, and it can
be negative (because the model can be arbitrarily worse). A constant
model that always predicts the expected value of 𝑦𝑖, disregarding the
input features, would get an 𝑅2 Score of 0.0.

To perform the Taguchi test, different levels of each affecting factor
(parameters) must be selected. Based on related research in the litera-
ture, such as the work of Ghasemi et al. (2021), this study uses three
parameter levels for testing. While adding more levels may result in
more efficient values for calibrating ML models, the marginal improve-
ments might not justify the exponentially increased computational time
needed for training these complex ML algorithms and comparing the
results. As this paper used four different ML methods for developing
the MLBSM as well as experiments in this study, four independent
Taguchi experiments with L9 orthogonal array are designed to calibrate
critical parameters for each of these ML methods. Considering the time-
consuming training phase of each of the four ML algorithms, the L9
orthogonal array can provides a good balance between the number of
13
Table 3
Taguchi test parameters.

Method Parameters Level-1 Level-2 Level-3

RFR
NR 2000 3000 4000
R 10 20 30
NEst 100 110 125

ETR
NR 2000 3000 4000
R 10 20 30
NEst 100 110 125

GBR

NR 2000 3000 4000
R 10 20 30
NEst 100 110 125
LR 0.08 0.09 0.10

ABR

NR 2000 3000 4000
R 10 20 30
NEst 100 110 125
LR 0.08 0.09 0.10

runs and the ability to estimate main effects. Table 3 describes three
levels of parameter values for RFR, ETR, GBR, and ABR. In this table,
NR, R, NEst, and LR denote the size of the training dataset, the number
of simulation replications, the number of estimators and the learning
rate, respectively, mentioning that the learning rate is only defined for
GBR and ABR.

It is important to note that parameter values at each level were
chosen using basic statistical methods and tailored to the characteristics
of each ML model. For instance, NR was set to its minimum value
required to maintain the accuracy of the model and prevent overfit-
ting (Freund & Schapire, 1997). R was determined using statistical
sample size selection methods to ensure a sufficient number of simula-
tion replicates for estimating the expected value of job completion time,
which is a stochastic parameter. Additionally, NEst can significantly
impact training times, and there is a trade-off between NEst and LR
in terms of the accuracy of the ML model (Drucker, 1997); therefore,
we carefully considered these aspects when selecting values for these
two parameters.

The Taguchi experiments were designed using Minitab 13. Then,
9 test runs were performed to train and evaluate each ML method (a
total of 36 runs for all methods) using Scikit Learn 1.0 and Python 3.9.
Table 4 describes selected parameter values for RFR, ETR, GBR, and
ABR based on obtained Taguchi results presented in Fig. 8.

7. Experimental results and sensitivity analyses

The main objective of this work is to present the MLBSM to predict
job delay risks dynamically in a fast and accurate manner. Therefore, in
this section, we have designed various experiments to evaluate the per-
formance of the MLBSM. Then, the developed the MLBSM is applied to

E. Nejati et al.

0
w
𝑅
s
s
m
𝑅

t
B
f

Computers & Industrial Engineering 196 (2024) 110507
Fig. 8. Taguchi test results for RFR, ETR, GBR, and ABR.
p
n

Table 4
Selected parameter values for RFR, ETR, GBR, and ABR.

Method Parameters

NR R NEst LR

RFR 3000 30 100 –
ETR 3000 20 110 –
GBR 4000 30 110 0.09
ABR 4000 30 125 0.10

a dynamic environment to forecast the system behavior during several
production shifts and analyze different sensitivity analysis scenarios.

7.1. Comparing ML methods

In this section, we compare ABR, which is used within the MLBSM,
with three other ML methods. ABR is a powerful tree-based ML method
used to forecast problems in different domains. Here, we compare ABR
with RFR and ETR as two well-known and fast tree-based methods and
also GBR as a powerful ensemble tree-based method.

To do this, we used the 𝑅2 Score as a comparison metric presented
in Section 6. Also, to get insights into the performance of each ML
method in different dynamic scenarios, we generated nine different
training datasets based on two sequential shifts considering the most
probable dynamic scenarios. These scenarios vary in 𝑁𝐽

𝑠 and 𝑁𝑈
𝑠−1 as

discussed in Section 5 and here we chose values 9, 10, 11 for 𝑁𝐽
𝑠 and

, 1, 2 for 𝑁𝑈
𝑠−1. All nine generated datasets had 4000 rows of data and

ere split to train (70%), and test (30%) sets used to train and evaluate
2 Score for the selected ML methods (total 36 runs). Note that nine

amples of 3000 rows were generated from these datasets based on the
elected parameters for RFR and ETR in the Taguchi test results, and the
ean completion times were calculated based on the selected values for
in Table 4.
Fig. 9 describes the average 𝑅2 Score and total running times for

raining each ML model on different datasets (dynamic scenarios).
ased on the obtained results, we conclude that the ABR method per-
orms slightly better than other ML methods, and thus, it is employed
14
in subsequent experiments in this work. Additionally, the ABR requires
more training time; however, because obtaining ML’s predictions for
the mean completion times is significantly faster than simulation repli-
cations, we disregard this in this case. It is worth noting that other
ML methods, e.g., Support Vector Regressor (SVR) and Multi-layer
Perceptron (MLP), were also evaluated during our study. Still, they
were not capable of being trained on the training vector (𝑅2 Score
< 0.3).

7.2. Model validation

As the second part of the experiments, the developed the MLBSM
was applied to a dynamic problem to validate the risk evaluation
method. To do this, we designed 𝑆 consecutive production shifts with
a duration time 𝐷. Then 𝑁𝐽

𝑠 number of jobs were generated that are
lanned to be processed at shift 𝑠 randomly. Each job has a random
umber of operations (𝑁𝑂𝑗). Also, each operation has a stochastic

processing time distributed normally. The mean (𝜇𝑃
𝑖) and the standard

deviation (𝜎𝑃𝑖) of this distribution is known and evaluated based on
distributions defined in Ghasemi et al. (2021). The setup times be-
tween operations are also normally distributed with known values of
𝜇𝑆
𝑖𝑖′ = 0.1 × 𝜇𝑃

𝑖 and 𝜎𝑆𝑖𝑖′ = 0.1 × 𝜎𝑃𝑖 for mean and standard deviation,
respectively (Ghaedy-Heidary et al., 2024). We also used 𝑘𝑆 , 𝑘𝐷, and 𝑘𝐹

as described in Section 3.2 to consider some general aspects of the op-
erations being schedules. Table 5 presents values for these parameters
in more detail.

Before starting the validation procedure, we need to train a number
of ML models supporting all possible dynamic scenarios in this numeric
example. To be clear, they were trained on all combinations of 𝑁𝐽

𝑠 , and
𝑁𝑈

𝑠−1, where 𝑁𝐽
𝑠 takes values 9, 10, and 11 and 𝑁𝑈

𝑠−1 can be 0 to 11
as it is almost impossible for the described system to face more than
11 tardy jobs at the end of a shift. It is worth mentioning, considering
the procedure presented in Section 4.1, the training datasets for each
scenario were generated on the second shift of a set of two consecutive
shifts. These shifts’ parameters are generated randomly based on the
same parameters described in Table 5.

Fig. 10 presents the validation procedure. At the beginning of the

procedure, we have ML models trained for different dynamic scenarios.

E. Nejati et al. Computers & Industrial Engineering 196 (2024) 110507
Fig. 9. Comparing ML models on different dynamic scenarios.
All 𝐽𝑠 (set of main jobs for shift 𝑠) known. Also, we consider 𝑈0 as
an empty set which means that no tardy jobs come from shift 𝑠 = 0
to 𝑠 = 1; however, 𝑈𝑠−1 is unknown for 𝑠 > 1 at the beginning,
and it will be calculated using the simulation model at the end of
each shift 𝑠 − 1. As a result, at the beginning of the shift 𝑠, 𝐽𝑠, and
𝑈𝑠−1 are known, and a random Job Shop Queue is generated for the
shift based on them. Having 𝑁𝐽

𝑠 and 𝑁𝑈
𝑠−1, the suitable ML model is

selected. The shift’s Job Shop Queue is converted to a vectorized form
using SBPM, and then mean completion times are predicted using the
selected ML model. The predicted values for each job are then passed
to the risk evaluation method. On the other side, we simulate the
system based on the Job Shop Queue to find completed and delayed
jobs. The obtained results from the simulation model are compared
with evaluated jobs’ risk values to validate the model. To ensure the
performance of the developed model regarding the uncertainties and
dynamic environment, first, we run 30 shifts as the warm-up phase,
then the validation metrics are calculated for the rest of the shifts,
excluding the warm-up phase.

Fig. 11 describes the system behavior and the completion time
estimation model performance in the dynamic environment. The graph
shows the number of processed jobs at each shift and their mean
simulated completion times. The mean estimated completion times
show that the estimated completion times using ABR follow the mean
simulated completion time values during both the warm-up and valida-
tion phases. Also, the Root Mean Square Errors (RMSEs) of estimated
completion times for jobs at each shift do not change meaningfully as
shifts are passed. The average RMSE of estimating completion time for
all jobs in the validation phase is 48.97 min. As a result, it seems that
the ABR is performing well in training and estimating completion times
for each job in the 480 min shifts.

To validate the risk evaluation method, we defined the shift tar-
diness ratio (number of delayed jobs at shift/total number of jobs
processed in shift). The shift tardiness ratio was compared to the mean
estimated job risk for each production shift. Fig. 12 shows the mean
estimated job risks and tardiness ratio for the warm-up and validation
phases and also indicates that there is a direct correlation between
them. To conduct a more quantitative analysis of the validity of the
MLBSM, we split jobs into low-risk (risk score ≤ 25%) and high-risk
(risk score ≥ 25%) jobs based on their estimated risk score. Table 6
summarizes the overall confusion matrix for these job groups and
their simulated state (completed or tardy) during the validation phase’s
70 shifts. The matrix indicates that from 739 jobs processed in the
validation phase, 54 of them did not finish during the shift they had
started (tardy jobs). To be make it more clear, we took the advantage of
recall rate to ensure the sensitivity of the MLBSM in detecting high-risk
jobs. The recall rate can generally be defined as follows:

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇 𝑟𝑢𝑒𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒
𝑇 𝑟𝑢𝑒𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

(18)

Considering the confusion matrix presented in Table 6, as the MLBSM
aims to predict tardy jobs as high-risk, tardy jobs predicted as High-
risk and Low-risk are True Positives and False Negatives, respectively.
15
Table 5
Model validation parameters and values.

System parameters

Learning model ABR
𝐷 480 min
𝑆 100
Warm-up phase 1 ≤ 𝑠 ≤ 30
Validation phase 31 ≤ 𝑠 ≤ 100
𝑁𝐽

𝑠 9 ≤ 𝑁𝐽
𝑠 ≤ 11

𝑁𝑈
𝑠−1 0 ≤ 𝑁𝑈

𝑠−1 ≤ 11

Job parameters

𝑁𝐽
𝑠  (9, 11)

𝑁𝑂𝑗  (9, 11)
𝛱𝑖𝑚  (𝜇𝑃

𝑖 = 62.49, 𝜎𝑃
𝑖 = 11.202)

𝛹𝑖𝑖′  (𝜇𝑆
𝑖𝑖′ = 6.25, 𝜎𝑆

𝑖𝑖′ = 1.122)
𝑘𝑆 0.1
𝑘𝐹 0.5
𝑘𝐷 0.3

Table 6
Confusion matrix for validation phase.

Simulated state of the wokrstation Total

Completed job Tardy job

MLBSM’s prediction Low-risk 657 6 663
High-risk 28 48 76

Total 685 54 739

Consequently, the recall rate of the MLBSM for identifying tardy jobs
as high-risk is:

𝑅𝑒𝑐𝑎𝑙𝑙 = 48
48 + 6

= 88.89 (19)

In fact, the MLBSM estimated a risk score of greater than 25% for 48 out
of 54 tardy jobs, resulting in an 88.89 percent recall rate for identifying
tardy jobs as high-risk. While the model’s precision (63.16%) is not
particularly high, estimating risks in a way that detects all tardy jobs
is much more important. It will help the shift scheduling procedure in
rescheduling the shift plan to ensure critical jobs are completed on time.

7.3. Sensitivity analysis

The goal of this section is to investigate the performance of the
MLBSM and also study the system behavior in the case of changing
three important parameters of the photolithography workstation. We
performed one-way sensitivity analysis on 𝑘𝑆 , 𝑘𝐹 , and 𝑘𝐷 at three levels
(50%, 100%, and 150% of the basic values) for each parameter value
described in Table 7 (total 27 combinations). The experiment procedure
and parameters are the same as the experiment presented in Section 7.2
and Table 5. Here, the mean tardiness ratio is used to show how the
system will react to changing each parameter. The mean tardiness ratio
is defined as the average tardiness ratio for all production shifts where

E. Nejati et al. Computers & Industrial Engineering 196 (2024) 110507
Fig. 10. Validating the MLBSM results in simulated dynamic environment of the workstation.
Fig. 11. System and the ABR performances during the warm-up and validation phases.
Fig. 12. Comparing the estimated mean job risks and tardiness rates during the warm-up and validation phases.
the warm-up shifts are excluded. Also, the mean estimated job risks
are average for all estimated risks for jobs processed after the warm-
up phase, which is used to evaluate the model performance within
different parameter levels.
16
Fig. 13 describes increased flexibility and dedication constraints
(decreasing 𝑘𝐹 and increasing 𝑘𝐷) will lead to more tardy jobs. It also
shows that the flexibility ratio has a more significant effect on the
system, which is three times larger than the dedication ratio effect.
However, increasing the setup ratio slightly affects the mean tardiness

E. Nejati et al. Computers & Industrial Engineering 196 (2024) 110507
Fig. 13. Comparing mean job risks estimated by the MLBSM and mean tardiness ratios (simulated) for different 𝑘𝑆 , 𝑘𝐹 , and 𝑘𝐷 levels.
Fig. 14. Comparing recall score for different 𝑘𝑆 , 𝑘𝐹 , and 𝑘𝐷 levels.
Table 7
Sensitivity analysis.

Parameter Level-1 Level-2 Level-3

𝑘𝑆 0.05 0.10 0.15
𝑘𝐹 0.25 0.50 0.75
𝑘𝐷 0.15 0.30 0.45

ratio (only a 1% increase in mean tardiness ratio when the setup ratio
was increased from 0.05 to 0.15). Furthermore, the mean estimated
job risks graphs indicate the same growth in job risks while flexibility
and dedication constraints increase and a small effect from the setup
ratio. The correlation between the mean tardiness ratio and the mean
estimated job risks guarantees that the model can make valid decision
supports for a wide range of jobs that vary in their parameters. It is
worth mentioning that the mean estimated job risks are mostly greater
than the simulated tardiness ratio of the system, which is caused as a
result of the higher recall that the model has compared to its precision.

Moreover, Fig. 14 illustrates the model’s recall in detecting high-
risk jobs (risk score ≥ 25%) for different levels of 𝑘𝑆 , 𝑘𝐹 , and 𝑘𝐷. It is
clear that the MLBSM always detects high-risk jobs with more than a 70
percent recall score. However, it seems that it performs slightly better
with the main job parameters (𝑘𝑆 = 0.10, 𝑘𝐹 = 0.50, and 𝑘𝐷 = 0.30).

7.4. Time complexity analysis and trade-offs

One of the ultimate goals of the MLBSM is to accelerate DT-
based decision-making by supplanting simulation models with ML
models and, consequently, avoiding numerous time-consuming simu-
lation replications. In this section, aiming to evaluate the performance
of the MLBSM in terms of time efficiency, we have designed two experi-
ments, one of which analyzes the MLBSM training and prediction times
17
at different numbers of simulation replications, and the other examines
these parameters when the MLBSM is applied to make predictions for
large-scale problems.

In the first experiment, the environment and all parameters remain
consistent with those outlined in Section 7.2 and Table 5. However, in
this particular experiment, the developed simulation model also works
parallel with the trained ML model to make estimations about the sys-
tem’s future status based on shifts’ production schedules. Subsequently,
a comparison is made between ML and simulation models at different
levels of simulation replication numbers (𝑅). This comparison is based
on their computation times and the accuracy of the results they produce
over 100 consecutive production shifts. It should be mentioned that
the MLBSM recall score in this experiment is calculated using the same
approach as described in Section 7.2, where ABR predictions of mean
completion times are passed to the statistical risk assessment method.
The MLBSM results are then compared with a single simulation repli-
cation for each production shift. For the recall score of the simulation,
everything remains the same except that in this experiment, ABR is
replaced with 30 simulation replications to calculate mean completion
times and these values are passed to the statistical risk evaluation
method. Subsequently, we calculated the recall score of the simulation
with the obtained results compared with single simulation replication
for each shift.

Fig. 15 presents the results of the first experiment. The foremost
observation indicates the increasing trend of the simulation model
execution time for large replication numbers. In contrast, the training
or prediction times of the MLBSM remain unaffected by the number of
simulation replications through which training datasets are generated
as these results are independent of replication number. However, as
the recall scores show, simulation replications are necessary to obtain
reliable decisions based on the simulation model or to train an accurate
ML-based tool using synthetic data. Considering this, for replication
numbers above 25, where the recall score stabilizes, the MLBSM can
perform approximately 20 times faster than a simulation model in

E. Nejati et al. Computers & Industrial Engineering 196 (2024) 110507
Fig. 15. Comparing time and recall score for the MLBSM and simulation model at different numbers of simulation replications.
Table 8
Probability distribution of the number of machines, jobs, and operations per job for
different levels of problem size.

Parameter Level-1 Level-2 Level-3 Level-4 Level-5 Level-6 Level-7

𝑁𝑀 5 10 15 20 25 30 35
𝑁𝐽

𝑠  (4, 6)  (9, 11)  (14, 16)  (19, 21)  (24, 26)  (29, 31)  (34, 36)
𝑁𝑂𝑗  (4, 6)  (9, 11)  (14, 16)  (19, 21)  (24, 26)  (29, 31)  (34, 36)

predicting the system’s future. Even if an unprecedented event occurs
in the factory, necessitating retraining of ML models, the MLBSM would
still yield predictions over 10 times faster than simulation replica-
tions. It should be noted, however, that achieving these time-efficient
predictions may require sacrificing 6 to 10 percent of the recall score.

The second experiment centers around the problem’s size. When
making production scheduling decisions, the size of the problem, de-
noting the number of machines, jobs, and operations per job involved
in the system, has a profound impact on the computational demands
needed to simulate the system. Furthermore, production scheduling
problems within a flexible job shop environment belong to a category of
optimization problems classified as NP-hard, which exhibit a solution
space expanding exponentially as the problem’s size grows. This fact
underscores the importance of developing a time-efficient tool such as
the MLBSM, which assists DTs in evaluating a significant portion of
feasible solutions in a limited time. To examine the time and accuracy
of the MLBSM compared to the simulation model, seven different levels
of complexity are considered, which are described in Table 8. Other
parameters and procedures of this experiment are the same as those
of the first experiment, except for the simulation replication number,
which is 30 and the same for all levels.

As Fig. 16 shows, when the size of the problem increases, the
times for simulation replications and training the MLBSM increase
exponentially, while there is no significant variation in the MLBSM
prediction times. These increasing trends can be attributed to the
larger number of entities and events that need to be simulated by the
simulation model, as well as the greater number of items in the feature
and target vectors for the ML model. However, the increase in training
times for the MLBSM is relatively small compared to the simulation
replication times. This fact makes the MLBSM suitable for evaluating
feasible solutions for large-scale problems, even under unprecedented
circumstances in the system that require training new ML models.
Additionally, the MLBSM predictions are about 70 times faster than
evaluating feasible solutions using simulation replications for large-
scale problems. Furthermore, the obtained results from recall scores do
not show a significant difference in the model’s performance between
the large-scale and small-sized problems, and approximately, there is
an average gap of 6.42% between the MLBSM and simulation recall
scores.
18
8. Discussion

As stated before, this paper aimed to develop an ML-based simu-
lation metamodel to facilitate real-time DT-based decision-making for
the production scheduling problem in complex manufacturing envi-
ronments such as the photolithography workstation. The conducted
experiments suggest that developing the MLBSM as a metamodel is a
huge step forward to achieving this goal. According to the obtained
results and regarding the research questions presented in Section 1, the
contributions of this paper are summarized as follows:

• (Question 1) The first and most fundamental challenge in the
way of developing ML-based tools in manufacturing systems is
the lack of viable data. Although in smart manufacturing envi-
ronments, the presence of sensors monitoring every second of the
process can partly play a role in solving the data availability prob-
lem, this data-gathering process cannot provide sufficient data
for analyzing many complex manufacturing problems. In fact,
sensor-gathered data suffer from the lack of insight into abnormal
operating conditions because the factory is often planned to oper-
ate at its optimum or near-optimum condition. Even the collected
data is not enough for analyzing the normal conditions when it is
compared with the huge solution space of a complex production
scheduling problem (e.g. SFJSSP presented in Section 3).
To deal with the data availability problem, in this work, we
designed a detailed simulation model by considering all known
aspects of the photolithography workstation, such as three spe-
cial operational constraints (machine process capability, machine
dedication, and the maximum number of times each reticle can be
shared among different machine) known as CAPPA constraints,
as well as, stochastic processing and sequence-dependent set-up
times. The developed simulation model then simulated the factory
in order to generate data similar to those collected by sensors
and stored in MES. However, the simulation was not limited
to the real operating condition of the workstation, and it could
generate data based on millions of randomly generated operation
conditions (either normal or abnormal). Having a massive amount
of synthetic production log data solved both quality and quantity
problems, paving the way for training advanced ML models and
eventually developing the MLBSM. It should be mentioned that
the similarity of simulated data with real-world MES data, in
terms of data structure, allows seamless integration of the MLBSM
with other MES and DT modules. This also enables the further use
of real-world data collected and stored in MES for improving ML
training and adjusting its predictions to changes in the process.

E. Nejati et al. Computers & Industrial Engineering 196 (2024) 110507
Fig. 16. Comparing time and recall score for the MLBSM and simulation model at different levels of problem size.
• (Question 2) The second problem was preprocessing and re-
trieving valuable information from raw production log data to
address the scheduling problem. The retrieved information, in
fact, must have formed a training dataset capable of training
the ML method to predict expected values of completion times
(performance measures) for each job. To deal with this problem,
SPBM as a vectorizing method, was developed. SPBM transforms
a Job Shop Queue (the structure of the shift schedule for each
production shift) into a numerical vector to form the feature
vector. Then, by joining the expected completion times, which
were calculated by the simulation, with the feature vector, the
training vector is generated. In fact, each training vector contains
information about a shift schedule and the expected completion
times calculated regarding that shift schedule. The developed
SPBM and the huge amount of synthetic data available enabled
us to design a number of training datasets to train ABR as an ML
method on them. It is worth mentioning that we had a number
of datasets, not only one, to address dynamic scenarios for each
production shift. Each dataset was built on a set of filtered data
to represent a combination of the number of the main jobs at that
shift and the tardy jobs from previous shifts, ready to be processed
at a shift.
The obtained results from experiments conducted in Section 7.1
are quite promising. First of all, after training ABR, it was used
to predict expected completion times regarding newly generated
schedules (out-sample test) under different dynamic scenarios.
When the ML-predicted values were compared with the simulated
values (calculated based on 30 replications), the average 𝑅2 Score
of all scenarios was 0.795, and the value for each scenario did
not fall below 0.760, which shows how reliable ABR works under
different scenarios. Needless to say that the execution time for
ABR is far smaller than 30 time-consuming simulation replica-
tions. Moreover, ABR was compared with three other tree-based
algorithms; although the average 𝑅2 Score of different scenarios
was only slightly higher for ABR, this algorithm showed more
stability over those scenarios, which convinced us to use this algo-
rithm instead of others. All these results validate the performance
of SPBM as a vectorizing method and also the accuracy of ABR as
an ML method.

• (Question 3) The third challenge we faced was taking advantage
of the developed ML-base tool for evaluating a large number of
feasible shift schedules. While the predicted expected completion
times seem to be a good performance measure for evaluating
shift schedules and finding the optimum one, it suffers from
ignoring the standard deviation, which is an important measure in
such highly stochastic manufacturing environments. To cover this
drawback, we defined a risk score as a performance measure that
19
is calculated by integrating ABR and a new empirical statistical
method. The statistical method enables the MLBSM to evaluate
each shift schedule not only based on the predicted expected
completion times but also by considering an estimation for the
standard deviation of the completion times. Using those key
modules, the MLBSM can provide DT with the delay risk scores for
each job at the beginning of each production shift. Consequently,
the DT can make a decision based on that prediction to choose
either a shift schedule that minimizes the risk value for a critical
job or one that minimizes the average delay for the whole system.
It is worth mentioning that, in this paper, we proposed a frame-
work in which the MLBSM was deployed to predict risk scores
dynamically for a number of consecutive production shifts.
In order to evaluate and validate the performance of the MLBSM
as a whole package consisting of ABR and the risk evaluation
modules, we designed an experiment, which is presented in Sec-
tion 7.2. In this experiment, the MLBSM was used to predict delay
risks for jobs at the beginning of a shift dynamically, and the
obtained results were compared with the simulated status of each
job after that production shift. The developed simulation model
(one replication), in this experiment, was responsible for acting
as the real manufacturing system during 100 consecutive shifts.
The obtained results pointed out that during investigated shifts
and among 739 processed jobs, 54 of them faced tardiness (were
not completed during the shift). Accordingly, the MLBSM was
capable of classifying 48 of those tardy jobs as high-risk jobs
by predicting risk scores of higher than 25% for them, which
resulted in an 88.89% recall ratio. As a result, considering the
DT environment, the MLBSM seems to be quite a fast and reliable
tool for comparing feasible shift schedules by taking uncertainties
of a highly complex and dynamic production environment into
account. It should also be noted that the MLBSM did not yield
a high precision ratio (63.16%). Precision would be an important
metric if decision-makers wanted to examine the exact completion
status of each job at the end of each shift. However, the MLBSM
primarily aims to detect high-risk jobs so that decision-makers can
eliminate Job Shop Queues leading to high-risk states and choose
less risky queues as an optimum decision. Therefore, the relatively
low precision does not hinder the decision-making process for
which the MLBSM is developed. Considering the high 𝑅2 Scores
of ABR predictions, the main source of this error is the statistical
risk evaluation method. Thus, improving this method or replacing
it with an ML model may significantly enhance precision for cases
requiring more precise predictions.

• (Question 4) The last concern was about the performance of
the MLBSM in terms of accuracy and time efficiency at different

E. Nejati et al.

a
p
p
t
a
c
g
i
w
f
t
c
p
L
s
c
r
o
p
a
i
o
t
t
t
f

Computers & Industrial Engineering 196 (2024) 110507
operating conditions. In fact, some critical parameters of a manu-
facturing environment might change over time due to different
technical setups (e.g., machine calibration) or types of orders
being processed at the factory, and these changes might affect the
performance of the MLBSM. In this regard, we aimed to ensure the
quality of predictions by performing a three-stage sensitivity anal-
ysis on three critical parameters in the photolithography work-
station: sequence-dependent setup occurrence rate, machine ded-
ication ratio, and flexibility ratio. Additionally, a time complexity
analysis was conducted to assess the computational advantages of
the MLBSM compared to multiple simulation replications across
various problem sizes. Furthermore, a time-accuracy trade-off
analysis was provided in Section 7.4.
The obtained results in Section 7.3 illustrate that both ABR and
risk evaluation modules in the MLBSM perform properly at dif-
ferent stages of each of these parameters. More precisely, not
only was no remarkable trend detected in the performance of
the MLBSM by increasing or decreasing a parameter value, but
the recall ratio for the MLBSM always remained higher than
71.4%. In addition, by changing the value of critical parame-
ters, the predicted risk values followed the same trend as the
average number of tardy jobs at production shifts (simulated),
approving that the MLBSM stays accurate in different conditions
in the manufacturing environment. The time-complexity analysis
presented in Section 7.4 also demonstrates that when the MLBSM
is applied to evaluate feasible solutions for larger-sized prob-
lems, it can significantly reduce the time required compared to
evaluation through simulation replications. To be more specific,
when analyzing production schedules for 100 consecutive dynam-
ically related production shifts in semiconductor manufacturing
(representing real-world-sized problems), the MLBSM can identify
high-risk jobs (the system performance metric) approximately 70
times faster than the simulation model. This time efficiency is
achieved at the cost of a 6.42% reduction in the recall score.
However, as long as the MLBSM offers quicker evaluations, it
can assist the optimization process in exploring and assessing a
larger portion of the problem’s extensive solution space within a
limited timeframe. This capability empowers the decision-making
process by obtaining better feasible solutions in a shorter period,
outweighing the relatively minor loss in prediction accuracy.

All these results made us confident in using the MLBSM as a fast,
ccurate, and reliable DT-based tool to provide a stochastic and com-
lex manufacturing system with real-time decision support addressing
roduction scheduling problems. Although the MLBSM is particularly
ailored to make predictions in semiconductor fabs, it can be effortlessly
djusted to other flexible job shop environments by eliminating CAPPA
onstraints considered in designing the simulation model. Additionally,
iven the reliable performance of SPBM and the risk evaluation method
n the complex and stochastic environment of the semiconductor fab,
e are optimistic that these methods can produce equally or even more

avorable results in other manufacturing settings with fewer complexi-
ies and uncertainties. For instance, SPBM, in its current configuration,
an also be used to vectorize data in a job shop, or, by omitting machine
enalty scores, it can be applied to parallel machine environments.
ikewise, the risk evaluation method, owing to its reliance on general
tatistical concepts, can be directly applied to various manufacturing
ontexts such as the ones mentioned earlier. Nevertheless, we strongly
ecommend that researchers conduct thorough testing and validation
f these the MLBSM applications in small-scale problems before im-
lementing them in real-world factories. More generally, the MLBSM,
s an ML-based metamodeling framework, may also prove beneficial
n other fields and industries seeking real-time DT-based solutions for
perational problems but deal with the lack of quality and quantity
raining data. Smart cities, healthcare systems, and retail delivery sys-
ems are some potential areas. However, it is essential to note that, in
hese contexts, all modules should be developed and rigorously tested

rom the ground up.

20
9. Conclusion

Despite several advantages, the computational time of simulation
models obstructs the design and implementation of real-time DTs. How-
ever, the availability of big data in Manufacturing Execution Systems
(MES) enables training different Machine Learning (ML) models for fast
and accurate predictions and decision assessments. Accordingly, this
paper have proposed an ML-Based Simulation Metamodeling Method
(MLBSM), aiming to facilitate DT-based decision making for dynamic
production scheduling in smart and highly complex manufacturing
environments. The MLBSM consists of three seamlessly integrated mod-
ules: a novel vectorizing method (SPBM), trained multi-output ABR
models, and a new statistical risk evaluation method. SPBM effectively
converts unstructured production log data into numerical vectors, on
which ABR algorithms are trained. Considering the dynamic nature of
the workstation, each trained ABR predicts mean job completion times
for different possible dynamic scenarios based on a shift schedule (Job
Shop Queue). By having mean completion times, the risk evaluation
method estimates the standard deviation of job completion times,
and ultimately, a delay probability score for each job is calculated.
These instant predictions can assist DT in promptly evaluating each
production schedule. In this research, a simulation model is developed
to generate synthetic MES data. The simulation model considers the
special characteristics of a photolithography workstation at a semi-
conductor manufacturing front-end fab. Conducted experiments have
demonstrated the performance and accuracy of each module and the
MLBSM as a whole. Comparing the MLBSM results with the original
simulation outputs shows that the MLBSM can be an accurate and
efficient tool for developing real-time DTs in highly complex manu-
facturing systems, as it can predict high-risk jobs with a recall score
of 88.89% and at least 70 times faster than simulation replications.
Sensitivity analyses confirm that the MLBSM remains consistent under
different operating conditions of the workstation.

This paper also recommends directions for future studies. As stated
before, the lack of sufficient MES data necessitated the generation of
synthetic MES data through a simulation model developed based on
real-world assumptions and parameters. Although this approach has
been used in several cases and has proven its potential to address data
availability issues, it was still a limitation for this research. Therefore,
future researchers are suggested to take the MLBSM a step closer to
real-world data by training ML models on actual MES data or using
such data for tuning simulation parameters and validating its results.
Additionally, the pre-processing approaches, particularly the vector-
izing phase, still need more investigation to achieve a higher recall
ratio and, more importantly, to address the low precision ratio of the
MLBSM. In this regard, one might focus on whether SPBM is the best
method for extracting trainable vectors from the Job Shop Queue or
not. Utilizing a more efficient and accurate vectorizing method can
simplify the use of ML algorithms, resulting in more time-efficient
training and prediction processes. Secondly, we considered a sim-
ple empirical statistical method for estimating the standard deviation.
Although this method performs quite well, improving the statistical
method or a metamodeling approach for estimating this parameter will
lead to higher precision in the risk evaluation phase. Thirdly, replacing
ABR with more advanced prediction methods like Deep Learning or
employing Agent-based approaches to develop more detailed simula-
tion methods can be advantageous for systems that prioritize higher
modeling accuracy and have the flexibility to accommodate longer
computational times. Additionally, there are many uncertainty sources
and dynamic events present in manufacturing systems. In this paper, we
considered the uncertainty in processing time and sequence-dependent
setup times, as well as the number of jobs at each production shift
(dynamic scenarios). However, other sources of uncertainty can be
considered in future works. Finally, applying the presented the MLBSM
to other real-world scheduling contexts is another research path worth

exploring.

E. Nejati et al.

i
M
P

D

A

Computers & Industrial Engineering 196 (2024) 110507
Table 9
Descriptive analysis of the synthetic dataset for ten jobs.

Columns (Features/Target variables) Count (NR) Average Standard deviation Minimum Q1 Q2 Q3 Maximum

J1 SPBM Score 4000 42.87 6.99 14.41 38.27 44.40 48.79 52.18
J2 SPBM Score 4000 43.01 6.71 17.66 38.79 44.42 48.53 51.95
J3 SPBM Score 4000 42.47 6.72 22.43 38.28 44.01 47.95 51.80
J4 SPBM Score 4000 42.31 7.20 20.45 38.00 43.93 48.10 52.64
J5 SPBM Score 4000 43.08 6.70 17.02 39.66 44.57 48.29 51.97
J6 SPBM Score 4000 42.83 6.74 20.21 38.38 43.98 48.44 52.99
J7 SPBM Score 4000 43.02 6.30 19.14 39.50 44.47 48.10 51.94
J8 SPBM Score 4000 42.92 6.82 15.98 38.55 44.54 48.52 51.98
J9 SPBM Score 4000 42.71 6.83 17.55 38.44 44.49 47.94 51.88
J10 SPBM Score 4000 42.69 7.04 18.57 38.37 44.48 48.29 52.78

J1 Completion Time 4000 1018.14 188.14 526.52 871.00 1016.33 1162.53 1509.96
J2 Completion Time 4000 930.85 185.80 519.02 796.45 937.55 1060.88 1402.76
J3 Completion Time 4000 992.20 201.35 538.47 841.42 1000.29 1147.54 1583.93
J4 Completion Time 4000 1006.61 196.33 583.86 863.91 1012.40 1161.60 1510.62
J5 Completion Time 4000 928.45 183.50 565.81 809.28 924.63 1051.44 1383.94
J6 Completion Time 4000 972.10 184.36 518.20 844.11 990.90 1116.25 1364.35
J7 Completion Time 4000 993.84 199.47 580.53 843.96 1004.94 1132.08 1458.49
J8 Completion Time 4000 1027.19 183.31 608.46 885.23 1034.90 1169.35 1482.04
J9 Completion Time 4000 983.02 186.33 504.44 850.87 989.63 1119.55 1390.35
J10 Completion Time 4000 969.61 186.98 523.02 838.57 985.73 1105.82 1437.65
A
s

v
n
s
d
t
o
t
o
f
d
d
o
o
v
t

n

CRediT authorship contribution statement

Erfan Nejati: Writing – review & editing, Writing – original draft,
Software, Methodology, Investigation, Formal analysis, Data curation,
Conceptualization. Ensieh Ghaedy-Heidary: Writing – original draft,
Conceptualization. Amir Ghasemi: Writing – review & editing, Writ-
ng – original draft, Validation, Supervision, Project administration,
ethodology, Formal analysis. S. Ali Torabi: Validation, Supervision,

roject administration.

ata availability

Data will be made available on request.

ppendix A. Descriptions of RFR, ETR, and GBR algorithm

• RFR: According to Breiman (2001), in RFR, each tree in the
ensemble is constructed using a sample that is drawn with re-
placement, also known as a bootstrap sample, from the training
dataset. Additionally, during the process of splitting each node
while constructing a tree, the optimal split is determined by
thoroughly searching the feature values of either all input fea-
tures or a randomly chosen subset of the same size. These two
sources of randomness aim to reduce the variance of the forest
estimator. Individual decision trees usually have high variance
and are prone to overfitting. The randomness introduced in forests
results in decision trees with partially independent prediction
errors. Averaging these predictions allows some errors to offset
each other. By aggregating various trees, random forests lower
the variance, albeit occasionally increasing the bias slightly. In
practical applications, the reduction in variance is frequently
substantial, resulting in a generally improved model.
Unlike the original publication by Breiman (2001), the scikit-
learn implementation (used in this research) aggregates classifiers
by averaging their probabilistic predictions rather than having
each classifier vote for a single class.

• ETR: In ETR, randomness is taken a step further in determining
how splits are computed. Similar to random forests, a random
subset of candidate features is used; however, instead of searching
for the most discriminative thresholds, thresholds are randomly
selected for each candidate feature. The best of these randomly-
generated thresholds is then chosen as the splitting rule. This
approach typically reduces the model’s variance slightly more,
albeit with a small increase in bias (Geurts, Ernst, & Wehenkel,

2006). a

21
• GBR: GBR, as described by Friedman (2001), constructs an en-
semble of weak learners, usually decision trees, in a sequential
manner. The process begins with an initial model that typically
predicts a constant value minimizing the loss function, such as
the mean of the target variable for squared error loss. In each
iteration, the algorithm computes pseudo-residuals, which are
the gradients of the loss function concerning the current model’s
predictions. These pseudo-residuals indicate the errors the current
model is making. A new weak learner is then fitted to these
pseudo-residuals, focusing on correcting the errors of the current
model.
The current model is updated by adding the new weak learner’s
predictions, scaled by a learning rate to control the contribution
of each learner and prevent overfitting. This iterative process
continues, with each new learner improving the accuracy of the
model by addressing the shortcomings of its predecessors. The
final predictive model is a weighted sum of all the weak learners,
combining their strengths to form a robust predictor. This method
effectively reduces prediction error through gradient descent,
minimizing the overall loss, and producing a powerful ensemble
model.

ppendix B. Descriptive analysis and correlation study of the
ynthetic dataset

Table 9 presents a descriptive analysis of the features and target
ariables in the real-size dataset used in this research. It should be
oted that, as described in Section 5, this research generates several
ynthetic datasets, each for training ABRs in a dynamic scenario. The
ataset presented in this appendix is one of the largest ones in terms of
he number of columns. Since the other datasets only differ from this
ne in their number of columns, the descriptive analysis presented in
his appendix provides insights into all the others. This dataset consists
f 4000 rows, each representing a randomly generated Job Shop Queue
or a production shift. During each shift, ten jobs are scheduled (the
ynamic scenario that this dataset is designed for), resulting in the
ataset having 20 columns (two columns for each job). For each job,
ne column represents the calculated SPBM Score (feature), and the
ther column represents the simulated mean completion times (target
ariable). Other system and job parameters related to the generation of
his data set are described in Table 5.

Due to the randomness of the 4000 Job Shop Queues, there is
o significant gap between the descriptive values of the SPBM Score

nd the simulated mean completion times of different jobs when we

E. Nejati et al. Computers & Industrial Engineering 196 (2024) 110507
Fig. 17. Kernel density plots with Normal distribution fits and the 𝑝-value for Kolmogorov–Smirnov tests for the feature columns in the dataset (SPBM Scores).
Fig. 18. Kernel density plots with Normal distribution fits and the 𝑝-value for Kolmogorov–Smirnov tests for the target variables columns in the dataset (Completion Times).
look at them as a whole. The slight differences stem from the nature
of each job. For instance, J5, with the smallest average of simulated
mean completion times, could have a smaller number of operations
compared to J8, which has the largest average of simulated mean
completion times. This gap is even smaller for SPBM Scores as these
scores are entirely independent of the Job Shop Queue and the position
of operations of each job in the queue. Therefore, since Job Shop
Queues are generated randomly, the gap between the SPBM Scores of
different jobs is minimized in this dataset.
22
Additionally, Figs. 17 and 18 illustrate the distribution of data
within each column. Each subplot in these figures shows a Kernel den-
sity plot estimated for each column, alongside a Normal distribution fit.
The comparison is further elucidated through a Kolmogorov–Smirnov
goodness-of-fit test, with the corresponding 𝑃 -value reported on each
subplot. The obtained results suggest that at a 95% confidence interval,
there is no evidence to reject the hypothesis that simulated mean
completion times follow a normal distribution. This characteristic was
previously discussed in Section 4.4 regarding the additivity property
of independent normal distributions. However, the normality test for

E. Nejati et al. Computers & Industrial Engineering 196 (2024) 110507
Fig. 19. Correlation matrix of features and target variables.
SPBM Scores is rejected at this confidence interval level, as the distri-
bution of these variables is skewed to the right. The normal distribution
of these variables was not a requirement, as ABRs can be trained and
predict regardless of the distribution of features.

Finally, aiming to investigate the relationship between features and
target variables, Fig. 19 illustrates the correlation matrix of the dataset
columns. As expected, each SPBM column is highly correlated with
its corresponding mean completion times column, demonstrating the
validity of the SPBM method in vectorizing a Job Shop Queue into a
numerical vector while minimizing the loss of information needed to
predict mean completion times.

References

Ahuett-Garza, H., & Kurfess, T. (2018). A brief discussion on the trends of habilitating
technologies for Industry 4.0 and Smart manufacturing. Manufacturing Letters, 15,
60–63.

Alexopoulos, K., Nikolakis, N., & Chryssolouris, G. (2020). Digital twin-driven super-
vised machine learning for the development of artificial intelligence applications
in manufacturing. International Journal of Computer Integrated Manufacturing, 33(5),
429–439.

Amorim, M., Antunes, F., Ferreira, S., & Couto, A. (2019). An integrated approach
for strategic and tactical decisions for the emergency medical service: Exploring
optimization and metamodel-based simulation for vehicle location. Computers &
Industrial Engineering, 137, Article 106057.

Ankenman, B., Nelson, B. L., & Staum, J. (2010). Stochastic kriging for simulation
metamodeling. Operations Research, 58(2), 371–382, URL http://pubsonline.informs.
org/doi/10.1287/opre.1090.0754.

Azadeh, A., Moghaddam, M., Geranmayeh, P., & Naghavi, A. (2010). A flexible artificial
neural network–fuzzy simulation algorithm for scheduling a flow shop with multiple
processors. International Journal of Advanced Manufacturing Technology, 50(5–8),
699–715.

Barton, R. (1998). Simulation metamodels. Vol. 1, In 1998 winter simulation conference.
proceedings (cat. no.98CH36274) (pp. 167–174). Washington, DC, USA: IEEE, ISBN:
978-0-7803-5133-2, URL http://ieeexplore.ieee.org/document/744912/.

Barton, R. R. (2009). Simulation optimization using metamodels. In Proceedings of the
2009 winter simulation conference WSC, (pp. 230–238). Austin, TX, USA: IEEE, ISBN:
978-1-4244-5770-0, URL http://ieeexplore.ieee.org/document/5429328/.

Barton, R. R. (2020). Tutorial: Metamodeling for simulation. In 2020 winter
simulation conference WSC, (pp. 1102–1116). Orlando, FL, USA: IEEE, ISBN:
978-1-72819-499-8, URL https://ieeexplore.ieee.org/document/9384059/.

Barton, R. R., & Meckesheimer, M. (2006). Metamodel-based simulation optimization.
Vol. 13, In Handbooks in Operations Research and Management Science (pp. 535–574).
ISBN: 0927-0507 Publisher: Elsevier.
23
Bartz-Beielstein, T., & Zaefferer, M. (2017). Model-based methods for continuous and
discrete global optimization. Applied Soft Computing, 55, 154–167, URL https:
//linkinghub.elsevier.com/retrieve/pii/S1568494617300546.

Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32.
Can, B., & Heavey, C. (2012). A comparison of genetic programming and artificial

neural networks in metamodeling of discrete-event simulation models. Computers
& Operations Research, 39(2), 424–436.

Chen, J. C., Chen, T.-L., & Hung, H.-C. (2020). Capacity allocation with lot splitting in
photolithography area using hybrid genetic algorithm based on self-tuning strategy.
Computers & Industrial Engineering, 148, Article 106656.

Chen, C., Fathi, M., Khakifirooz, M., & Wu, K. (2022). Hybrid tabu search algorithm for
unrelated parallel machine scheduling in semiconductor fabs with setup times, job
release, and expired times. Computers & Industrial Engineering, 165, Article 107915.

Chien, C.-F., & Lan, Y.-B. (2021). Agent-based approach integrating deep reinforcement
learning and hybrid genetic algorithm for dynamic scheduling for Industry 3.5
smart production. Computers & Industrial Engineering, 162, Article 107782.

Chung, S., Huang, C.-Y., & Lee, A. (2006). Capacity allocation model for photolithogra-
phy workstation with the constraints of process window and machine dedication.
Production Planning and Control, 17(7), 678–688.

Dahmen, T., Trampert, P., Boughorbel, F., Sprenger, J., Klusch, M., Fischer, K., et
al. (2019). Digital reality: a model-based approach to supervised learning from
synthetic data. AI Perspectives, 1(1), 1–12.

Dellino, G., Kleijnen, J. P., & Meloni, C. (2009). Robust simulation-optimization using
metamodels. In Proceedings of the 2009 winter simulation conference WSC, (pp.
540–550). IEEE, ISBN: 1-4244-5771-8.

Drucker, H. (1997). Improving regressors using boosting techniques. Vol. 97, In ICML
(pp. 107–115). Citeseer.

Fonseca, D. J., Navaresse, D. O., & Moynihan, G. P. (2003). Simulation metamodeling
through artificial neural networks. Engineering Applications of Artificial Intelligence,
16(3), 177–183.

Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line
learning and an application to boosting. Journal of Computer and System Sciences,
55(1), 119–139.

Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine.
Annals of Statistics, 1189–1232.

García, Á., Bregon, A., & Martínez-Prieto, M. A. (2022). Towards a connected digital
twin learning ecosystem in manufacturing: Enablers and challenges. Computers &
Industrial Engineering, 171, Article 108463.

Geurts, P., Ernst, D., & Wehenkel, L. (2006). Extremely randomized trees. Machine
Learning, 63, 3–42.

Ghaedy-Heidary, E., Nejati, E., Ghasemi, A., & Torabi, S. A. (2024). A simulation
optimization framework to solve stochastic flexible job-shop scheduling problems—
Case: Semiconductor manufacturing. Computers & Operations Research, 163, Article
106508.

Ghasemi, A., Ashoori, A., & Heavey, C. (2021). Evolutionary learning based sim-
ulation optimization for stochastic job shop scheduling problems. Applied Soft
Computing, 106, Article 107309, URL https://linkinghub.elsevier.com/retrieve/pii/
S1568494621002325.

http://refhub.elsevier.com/S0360-8352(24)00628-4/sb1
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb1
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb1
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb1
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb1
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb2
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb2
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb2
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb2
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb2
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb2
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb2
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb3
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb3
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb3
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb3
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb3
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb3
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb3
http://pubsonline.informs.org/doi/10.1287/opre.1090.0754
http://pubsonline.informs.org/doi/10.1287/opre.1090.0754
http://pubsonline.informs.org/doi/10.1287/opre.1090.0754
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb5
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb5
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb5
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb5
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb5
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb5
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb5
http://ieeexplore.ieee.org/document/744912/
http://ieeexplore.ieee.org/document/5429328/
https://ieeexplore.ieee.org/document/9384059/
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb9
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb9
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb9
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb9
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb9
https://linkinghub.elsevier.com/retrieve/pii/S1568494617300546
https://linkinghub.elsevier.com/retrieve/pii/S1568494617300546
https://linkinghub.elsevier.com/retrieve/pii/S1568494617300546
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb11
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb12
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb12
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb12
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb12
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb12
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb13
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb13
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb13
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb13
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb13
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb14
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb14
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb14
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb14
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb14
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb15
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb15
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb15
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb15
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb15
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb16
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb16
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb16
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb16
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb16
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb17
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb17
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb17
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb17
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb17
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb18
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb18
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb18
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb18
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb18
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb19
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb19
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb19
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb20
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb20
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb20
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb20
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb20
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb21
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb21
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb21
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb21
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb21
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb22
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb22
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb22
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb23
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb23
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb23
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb23
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb23
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb24
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb24
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb24
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb25
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb25
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb25
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb25
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb25
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb25
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb25
https://linkinghub.elsevier.com/retrieve/pii/S1568494621002325
https://linkinghub.elsevier.com/retrieve/pii/S1568494621002325
https://linkinghub.elsevier.com/retrieve/pii/S1568494621002325

E. Nejati et al.

G

G

H

Computers & Industrial Engineering 196 (2024) 110507
Ghasemi, A., Azzouz, R., Laipple, G., Kabak, K. E., & Heavey, C. (2020). Optimizing
capacity allocation in semiconductor manufacturing photolithography area – Case
study: Robert bosch. Journal of Manufacturing Systems, 54, 123–137, URL http:
//www.sciencedirect.com/science/article/pii/S0278612519301153.

hasemi, A., Farajzadeh, F., Heavey, C., Fowler, J., & Papadopoulos, C. T. (2024).
Simulation optimization applied to production scheduling in the era of industry 4.0:
A review and future roadmap. Journal of Industrial Information Integration, Article
100599.

ramacy, R. B., & Lee, H. K. H. (2010). Cases for the nugget in modeling computer
experiments. stat.

ermann, M., Pentek, T., Otto, B., et al. (2015). Vol. 45, Design principles for Industrie
4.0 scenarios: a literature review. Dortmund: Technische Universität Dortmund.

Hu, H., & Zhang, H. (2012). A simulation-based two-stage scheduling methodology
for controlling semiconductor wafer fabs. Expert Systems with Applications, 39(14),
11677–11684.

Koons, G., & Perlic, B. (1977). A study of rolling-mill productivity utilizing a statistically
designed simulation experiment: Technical report, Institute of Electrical and Electronics
Engineers (IEEE).

Lee, E. A. (2008). Cyber physical systems: Design challenges. In 2008 11th IEEE inter-
national symposium on object and component-oriented real-time distributed computing
(pp. 363–369). IEEE.

Leitão, P., Colombo, A. W., & Karnouskos, S. (2016). Industrial automation based
on cyber-physical systems technologies: Prototype implementations and challenges.
Computers in Industry, 81, 11–25.

Min, Q., Lu, Y., Liu, Z., Su, C., & Wang, B. (2019). Machine learning based digital
twin framework for production optimization in petrochemical industry. International
Journal of Information Management, 49, 502–519, URL https://linkinghub.elsevier.
com/retrieve/pii/S0268401218311484.

Mönch (2018). A survey of semiconductor supply chain models part III: master
planning, production planning, and demand fulfilment. International Journal of
Production Research, 56(13), 4565–4584, URL https://www.tandfonline.com/doi/
full/10.1080/00207543.2017.1401234.

Monostori, L. (2002). AI and machine learning techniques for managing complexity,
changes and uncertainties in manufacturing. IFAC Proceedings Volumes, 35(1),
119–130.

Nasiri, M. M., Yazdanparast, R., & Jolai, F. (2017). A simulation optimisation ap-
proach for real-time scheduling in an open shop environment using a composite
dispatching rule. International Journal of Computer Integrated Manufacturing, 30(12),
1239–1252.

Pierreval, H. (1992). Training a neural network by simulation for dispatching problems.
In The third international conference on computer integrated manufacturing (pp.
332–333). IEEE Computer Society.
24
Pierreval, H., & Huntsinger, R. C. (1992). An investigation on neural network capabili-
ties as simulation metamodels. In Proc. of the summer computer simulation conference
(pp. 413–417).

Pires, F., Cachada, A., Barbosa, J., Moreira, A. P., & Leitão, P. (2019). Digital twin in
industry 4.0: Technologies, applications and challenges. Vol. 1, In 2019 IEEE 17th
international conference on industrial informatics (pp. 721–726). IEEE.

Ross, S. M. (2014). Introduction to probability models. Academic Press.
Shao, G., & Kibira, D. (2018). Digital manufacturing: Requirements and challenges

for implementing digital surrogates. In 2018 winter simulation conference (pp.
1226–1237). IEEE.

Sharma, P., & Jain, A. (2017). Effect of routing flexibility and sequencing rules on
performance of stochastic flexible job shop manufacturing system with setup times:
Simulation approach. Proceedings of the Institution of Mechanical Engineers, Part B
(Management and Engineering Manufacture), 231(2), 329–345.

Shen, X.-N., Han, Y., & Fu, J.-Z. (2017). Robustness measures and robust scheduling
for multi-objective stochastic flexible job shop scheduling problems. Soft Computing,
21(21), 6531–6554.

Walpole, R. E., Myers, R. H., Myers, S. L., & Ye, K. (1993). Vol. 5, Probability and
statistics for engineers and scientists. Macmillan New York.

Weeks, J. K., & Fryer, J. S. (1977). A methodology for assigning minimum cost
due-dates. Management Science, 23(8), 872–881.

Xu, W., Shao, L., Yao, B., Zhou, Z., & Pham, D. T. (2016). Perception data-
driven optimization of manufacturing equipment service scheduling in sustainable
manufacturing. Journal of Manufacturing Systems, 41, 86–101.

Yang, F., Liu, J., Nelson, B. L., Ankenman, B. E., & Tongarlak, M. (2011). Metamodelling
for cycle time-throughput-product mix surfaces using progressive model fitting.
Production Planning and Control, 22(1), 50–68, URL https://www.tandfonline.com/
doi/full/10.1080/09537287.2010.490026.

Yang, H., Lv, Y., Xia, C., Sun, S., & Wang, H. (2014). Optimal computing budget
allocation for ordinal optimization in solving stochastic job shop scheduling
problems. Mathematical Problems in Engineering, 2014, 1–10, URL http://www.
hindawi.com/journals/mpe/2014/619254/.

Zhang, G., Lu, X., Liu, X., Zhang, L., Wei, S., & Zhang, W. (2022). An effective two-stage
algorithm based on convolutional neural network for the bi-objective flexible job
shop scheduling problem with machine breakdown. Expert Systems with Applications,
203, Article 117460.

Zhang, M., Wang, L., Qiu, F., & Liu, X. (2023). Dynamic scheduling for flexible job
shop with insufficient transportation resources via graph neural network and deep
reinforcement learning. Computers & Industrial Engineering, 186, Article 109718.

http://www.sciencedirect.com/science/article/pii/S0278612519301153
http://www.sciencedirect.com/science/article/pii/S0278612519301153
http://www.sciencedirect.com/science/article/pii/S0278612519301153
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb28
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb28
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb28
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb28
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb28
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb28
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb28
http://arxiv.org/abs/1007.4580
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb30
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb30
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb30
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb31
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb31
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb31
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb31
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb31
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb32
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb32
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb32
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb32
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb32
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb33
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb33
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb33
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb33
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb33
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb34
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb34
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb34
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb34
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb34
https://linkinghub.elsevier.com/retrieve/pii/S0268401218311484
https://linkinghub.elsevier.com/retrieve/pii/S0268401218311484
https://linkinghub.elsevier.com/retrieve/pii/S0268401218311484
https://www.tandfonline.com/doi/full/10.1080/00207543.2017.1401234
https://www.tandfonline.com/doi/full/10.1080/00207543.2017.1401234
https://www.tandfonline.com/doi/full/10.1080/00207543.2017.1401234
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb37
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb37
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb37
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb37
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb37
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb38
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb38
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb38
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb38
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb38
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb38
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb38
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb39
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb39
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb39
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb39
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb39
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb40
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb40
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb40
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb40
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb40
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb41
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb41
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb41
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb41
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb41
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb42
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb43
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb43
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb43
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb43
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb43
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb44
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb44
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb44
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb44
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb44
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb44
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb44
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb45
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb45
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb45
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb45
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb45
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb46
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb46
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb46
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb47
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb47
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb47
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb48
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb48
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb48
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb48
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb48
https://www.tandfonline.com/doi/full/10.1080/09537287.2010.490026
https://www.tandfonline.com/doi/full/10.1080/09537287.2010.490026
https://www.tandfonline.com/doi/full/10.1080/09537287.2010.490026
http://www.hindawi.com/journals/mpe/2014/619254/
http://www.hindawi.com/journals/mpe/2014/619254/
http://www.hindawi.com/journals/mpe/2014/619254/
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb51
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb51
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb51
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb51
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb51
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb51
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb51
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb52
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb52
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb52
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb52
http://refhub.elsevier.com/S0360-8352(24)00628-4/sb52

	A machine learning-based simulation metamodeling method for dynamic scheduling in smart manufacturing systems
	Introduction
	Literature review
	Problem description
	Overall framework
	Simulation model for the photolithography workstation

	Machine learning-based simulation method
	Feasible solution structure
	Generating vectorized dataset using the simulation model (Module I)
	Machine learning method (Module II)
	Delay risks evaluation (Module III)

	Dynamic shifts scheduling
	ML calibration
	Experimental results and sensitivity analyses
	Comparing ML methods
	Model validation
	Sensitivity analysis
	Time complexity analysis and trade-offs

	Discussion
	Conclusion
	CRediT authorship contribution statement
	Data availability
	Appendix A. Descriptions of RFR, ETR, and GBR algorithm
	Appendix B. Descriptive analysis and correlation study of the synthetic dataset
	References

