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1 Introduction

In recent years light new particles interacting very weakly with the Standard Model (SM)
have gained increased interest. The so far negative results on searches for heavy particles
above the electroweak scale at the LHC and high-intensity experiments have increased the
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interest in less explored scenarios, with additional degrees of freedom beyond the SM with
masses at sub-GeV scales. Such particles can be motivated by dynamics addressing the Strong
CP Problem (in case of the QCD axion) or the origin of neutrino masses (in case of sterile
neutrinos), but probably the main motivation is the possibility that such light particles could
be connected to the origin of particle dark matter (DM) [1].

In this context a popular scenario is the dark photon [2, 3], which is either itself DM or
is the only mediator (“Vector Portal”) between the SM and a hidden “dark sector”, which
contains one or several DM particles [4, 5], see ref. [6] for a review. The term “dark photon”
usually refers to a light vector particle coupled to the SM only via kinetic mixing or dipole
operators and that is often taken as the only new degree of freedom. Instead, the term
Z ′ is typically reserved for the vast model space of theories of gauged U(1)′ extensions of
the SM, where also a complete Higgs sector for U(1)′ breaking is explicitly present, besides
additional matter needed for anomaly cancellation, see, e.g., ref. [7] for a classification. While
the Z ′ vector boson is often taken to be heavy, with a mass much above the electroweak
(EW) scale, this particle can also be much lighter. The resulting coupling patterns are often
related to the underlying UV symmetries, see, e.g., refs. [8–11], and can leave imprints in
low-energy phenomenology/anomalies in current data, e.g., in (g − 2)µ [12] or in low-energy
QCD [13]. Beyond perturbative models, light vector particles can also be in the spectrum of
light resonances of low-energy, dark strongly coupled sectors, see, e.g., ref. [14]. To encompass
all these cases, we employ in the current work the term “light dark vector” (LDV), which
is a massive vector boson with mass much below the EW scale, and sufficiently suppressed
couplings to SM particles such that it is stable on collider scales. For the purpose of low-energy
phenomenology we leave its UV origin unspecified.

While constraints on light particles have been extensively studied in the context of
colliders, beam-dump experiments, astrophysics, and cosmology, their phenomenology at
precision flavor experiments has so far received less attention (see refs. [15, 16] for early
studies). Even if flavor-violating couplings may be considered more model-dependent than
flavor-diagonal couplings, they can provide for an efficient production of light invisible
particles from decays of SM leptons, mesons or baryons. Interestingly, direct searches at
laboratory experiments for such two-body decays with missing energy have the potential to
probe enormously large scales, as the relevant Lagrangian interactions can be dimension-five,
instead of dimension-six as in the case of heavy New Physics. For example, in models with
sufficiently light invisible bosons like the QCD axion, precision flavor experiments are sensitive
to scales as large as 1012 GeV from K → π + invis. searches at NA62 [17], 1010 GeV from
µ→ e+ invis. searches at MEG-II [18, 19], Mu3e [20], Mu2e or COMET [21], and 108 GeV
for b → d/s transitions at Belle II [22].1

The aim of the current work is to systematically study the flavor phenomenology of
light dark vector particles (LDVs), both in the quark and the lepton sectors. We restrict
the discussion to invisible particles, since after all the main (only) motivation for these
particles is the observed DM abundance, and we have in mind scenarios where either the
LDV is itself stable on cosmological scales or promptly decays to stable DM particles. This
analysis includes scenarios where the LDVs are just sufficiently long-lived to appear as missing

1For the flavor phenomenology of the QCD axion and light invisible axion-like particles see refs. [16, 18, 22–26].

– 2 –



J
H
E
P
0
8
(
2
0
2
4
)
1
1
1

energy. This is particularly justified for vector particles lighter than the electron, as their
decay into two photons is forbidden by the Landau-Yang theorem [27, 28]. As we shall
discuss, the resulting limits on flavor-violating interactions can be as strong as in the axion
case, which is not unexpected due to the Goldstone-boson equivalence theorem. In light of
past and ongoing experimental searches, it is thus important to systematically study the
phenomenological differences between light dark scalars and vectors originating from their
distinct helicity and coupling structure.

Earlier works have focused on the case of flavor-violating dipole couplings of a massless
dark photon in µ → e, s → d and c → u transitions [6, 29–34], or considered general
interactions and masses, but using only the available experimental limits on three-body
decays to neutrinos to study limits from s→ d and b→ s transitions [16, 35]. Here instead
we consider the case of a light vector particle with generic mass and either dipole or minimal
couplings to SM fermions, and recast available experimental data for two-body kinematics
in the case of hadron decays. We work within the framework of a general effective-field-
theory (EFT) approach and consider all possible quark flavor-violating transitions except
those involving the top quark (where constraints are very weak), and all possible lepton
flavor-violating (LFV) transitions. For the case of minimal couplings to a light invisible vector
particle, LFV decays have been studied in refs. [36, 37], here we also discuss dipole couplings
and include lepton polarization, which plays an important role in separating signal from SM
background. We derive bounds in the general parameter plane of light-vector mass and the
appropriate flavor-changing coupling by comparing theoretical predictions for the decay rates
to the experimental bounds from various flavor factories, such as NA62 [38, 39], BaBar [40, 41],
CLEO [42], Belle II [43, 44], BES III [45], and TWIST [46]. Whenever not available (as in the
case of, e.g., B → K/K∗/π + invis. or D → π + invis. decays), we derive model-independent
limits on the two-body decay rate as a function of the invisible particle mass by recasting
experimental data on the three-body decay with two invisible neutrinos. Finally, we also
discuss the scenario where the light vector has only flavor-universal couplings to SM fermions
in the UV, so that all quark flavor-changing effects in the IR are induced radiatively by the
Cabibbo-Kobayashi-Maskawa (CKM) matrix, satisfying the paradigm of Minimal Flavor-
Violation (MFV) [47, 48]. For this analysis we derive the relevant renormalization-group
equations (RGEs) for both dipole and minimal couplings, and use our results to convert
limits on the flavor-changing interactions into limits on flavor-diagonal couplings.

This work is organized as follows. In section 2 we define our basic setup by providing the
effective Lagrangian for dipole and minimal (vector) interactions of the LDV. The resulting
phenomenology is studied in the subsequent sections, separately for the quark (section 3)
and lepton (section 4) sectors, where we present our main results, the model-independent
bounds on generic flavor-violating LDV couplings as a functions of its mass. In section 5 we
use these constraints to derive bounds on flavor-universal UV couplings with either dipole
or vector interactions from RG-induced flavor violation. We conclude in section 6. Many
technical details are deferred to appendices: appendix C contains the details and results
of our recast of two-body flavor-violating decays with missing energy for generic masses of
the invisible particles (extending the analysis for a massless invisible particle in ref. [22]).
Appendix D contains the bounds on flavor-violating couplings in the chiral L/R basis (as
opposed to the V/A basis in section 3 and 4). The complete set of RGEs relevant for section 5
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is given in appendix B, and appendix E contains the full expressions of two-body decay rates
of mesons, baryons, and polarized leptons, for a generic mass for the light vector. We have
also collected the hadronic matrix elements entering the numerical analysis in appendix E.1.
Finally, appendix A contains a discussion of the EFT description of flavor-violating vector
couplings and their possible UV origin.

2 Setup

We extend the SM by a new, neutral, massive vector boson V ′
µ with a small mass mV ′ , which

arises either by spontaneous symmetry breaking of, e.g., a U(1)′ gauge symmetry or by the
Stueckelberg mechanism [49–51]. Here we focus on the case where this mass is much below
the electroweak scale, and the light dark vector (LDV) is either stable on collider scales
or decays into stable invisible particles.

The most general interactions of the LDV with the SM fermions can be parametrized
using an EFT approach, by considering the most general operators that respect the unbroken
part of the SM gauge group, SU(3)c × U(1)em. Here we focus on flavor-violating interactions
written without loss of generality in the fermion-mass basis. We can further assume that a
possible kinetic mixing between the photon and the LDV, i.e., ∝ ϵAµV ′

µ, has been diagonalized
such that V ′

µ is also in the mass-eigenstate basis. This diagonalization can be performed
equally well for a massless V ′

µ (cf. ref. [30]), and the difference with respect to the massive
case is merely that for massless vectors there remains an unphysical ambiguity in the choice
of “mass-eigenstate” basis, due to the presence of an unbroken SO(2) symmetry of the free
Lagrangian. Thus our setup applies equally well to the “massless dark photon” considered
in ref. [30] in the limit of mV ′ → 0.

Below the EW scale the lowest dimensional interactions of the LDV are described by
two classes of operators: dipole and vector interactions. Firstly, we consider flavor-violating,
dimension-five dipole interactions of the form

LD = −1
4V

′
µνV

′µν + m2
V ′

2 V ′
µV

′µ + 1
ΛV

′
µν f iσ

µν
(
CD
ij + iCD5

ij γ5
)
fj , (2.1)

where V ′
µν = ∂µV

′
ν − ∂νV

′
µ is the LDV field strength, σµν = i

2 [γν , γν ], and i ̸= j denote SM
quark or lepton flavors. Λ is the UV-completion scale of the associated dipole couplings CD

ij

and CD5
ij , which are hermitian matrices in flavor space,

(
CD
ij

)∗ = CD
ji and

(
CD5
ij

)∗ = CD5
ji .

Secondly, we consider flavor-violating couplings of the LDV to SM vector and axial-vector
currents. Naively these are dimension-four interactions below the EW scale. However, such
flavor-violating couplings violate U(1)′ gauge invariance (flavor-violating currents are not con-
served), and thus must be proportional to some power of the U(1)′-breaking order parameter,
which we take as the vacuum expectation value (VEV) in the dark sector. Therefore, the
flavor-violating vector couplings are actually dimension-five or higher, depending on the under-
lying UV model. In perturbative UV completions the lowest possible scaling is proportional to
a single power of the dark VEV, which upon including the dark gauge coupling becomes the
LDV mass mV ′ . Normalizing by some UV scale Λ, the flavor-violating vector interactions are

LV = −1
4V

′
µνV

′µν + m2
V ′

2 V ′
µV

′µ + mV ′

Λ V ′
µ f iγ

µ
(
CV
ij + CV5

ij γ5
)
fj , (2.2)
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where again i ̸= j denote SM quark or lepton flavors and the vector couplings CV
ij and CV5

ij

are hermitian matrices in flavor space,
(
CV
ij

)∗ = CV
ji and

(
CV5
ij

)∗ = CV5
ji .

By choosing a scaling that is linear in mV ′/Λ, we ensure that the growth of amplitudes
with longitudinally polarized LDVs in initial and/or final states ∝ E/mV ′ as mV ′ → 0 is
cancelled by the mV ′ dependence in the interaction. This leads to finite amplitudes in the
mV ′ → 0 limit (see refs. [16, 52–55] for related discussions), which are just the amplitudes
with the corresponding Goldstone bosons as initial/final states. An explicit example for a
UV model that provides this linear scaling is provided by Froggatt-Nielsen type models [56],
discussed in appendix A. However, the linear scaling with mV ′ is only one possibility. For
example, in UV models in which SM fermions do not carry U(1)′ charges the scaling can be
quadratic in the dark VEV, as the coefficients involve additional powers of the U(1)′ breaking
scale v′, ∝ mV ′v′/Λ2. An explicit realization of this scenario is also discussed in appendix A.

The interactions in eq. (2.1) and (2.2) can also be written in the chiral basis, which is
more suited to match explicit UV models. In this basis

LD = 1
ΛV

′
µν f iσ

µν
(
CDL
ij PL + CDR

ij PR
)
fj ,

LV = mV ′

Λ V ′
µ f̄iγ

µ
(
CVL
ij PL + CVR

ij PR
)
fj ,

(2.3)

where CDL
ij = (CDR

ji )∗, CVL
ij = (CVL

ji )∗, CVR
ij = (CVR

ji )∗ and the relations between the “V/A”
and the “L/R” bases are

CD
ij =

1
2
(
CDL
ij + CDR

ij

)
= 1

2
((
CDR
ji

)∗ + CDR
ij

)
, CV

ij =
1
2
(
CVL
ij + CVR

ij

)
, (2.4)

CD5
ij = i

2
(
CDL
ij − CDR

ij

)
= i

2
((
CDR
ji

)∗ − CDR
ij

)
, CV5

ij = 1
2
(
CVR
ij − CVL

ij

)
. (2.5)

Above the EW scale the operators must be expressed in a manifestly SU(2)L ×U(1)Y
invariant manner. For LV this is directly the case after embedding the left- and right-handed
fermions in the corresponding SU(2)L doublets and singlets, respectively. Instead, the dipole
operators in LD require an additional Higgs insertion, making them dimension-six operators

LD6 = 1
Λ2

6
V ′
µν

(
F iHC

D
ijσ

µνPRfj + h.c.
)
, (2.6)

with Fi and fj denoting here SU(2)L doublets and singlets, respectively, and H → H̃,
depending on the fermion sector and the hypercharge conventions. The matching to LD is
provided by identifying Λ6 =

√
vΛ, where v = 174GeV is the Higgs VEV.

In the following we derive bounds on the flavor-violating couplings in eq. (2.1) and (2.2)
from hadronic and leptonic decays with missing energy in the final state. This discussion
is unaffected by other possible interactions of the LDV with SM fields, in particular flavor-
diagonal couplings, as long as these couplings are sufficiently small to ensure that the LDV is
invisible on collider scales. We note that bounds on selected flavor-diagonal (dipole) couplings
from laboratory experiments and astrophysics have been given in ref. [6]. In our conventions
(Λ/CDii ), the bound on leptons is of the order of few TeV from LEP searches and 107 TeV
from star cooling (White Dwarfs (WD)/Red Giants (RG)). For quarks the laboratory bounds
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j i
P

V ′

P ′

CD,V
ij

j i
P

V ′

V

CD(5),V(5)
ij

j i

B

V ′

B′

CD(5),V(5)
ij

Figure 1. Illustrative Feynman diagrams with a flavor-violating qj → qi transition in two-body
decays of type P → P ′ + V ′, P → V + V ′, and B → B′ + V ′, in the left, middle, and right panel,
respectively.

(CMS) are of order 10TeV, while the observation of the neutrino burst from SN1987A gives
constraints on nucleon couplings of order 106 TeV. We are going to see below that for anarchic
couplings flavor-violating constraints easily beat collider constraints, and in some cases (s→ d

transitions) even star cooling constraints. We also note that the latter bounds disappear for
sufficiently heavy dark-vector masses above the stellar plasma temperatures, a few keV in
the case of WDs/RGs, and of the order of 100MeV in the case of SN1987A.

For massive LDVs neither the flavor-violating dipole (eq. (2.1)) nor the vector (eq. (2.2))
interactions are UV complete. The UV completion depends on the origin of the mass for the
LDV and the corresponding (highly model-dependent) radial mode required for the unitarity
of the theory. In turn this implies that unless the complete dark Higgs sector of the theory is
specified, there exist perturbative unitarity constraints on the couplings of the LDV, similar
to the unitarity constraints from WW →WW scattering in the Higgs-less SM. We briefly
note that, as long as the flavor bounds are applicable, i.e., LDV masses in the kinematically
allowed region, unitarity of 2 → 2 scattering poses constraints on the corresponding couplings
that are weaker than those limits by order of magnitudes. We thus refrain from elaborating
upon these constraints in the current work. For the case of unitarity bounds on massless
fermions with flavor-diagonal couplings coupled to transversely polarized vectors see, e.g.,
ref. [57]. The more general case including massive fermions with flavor-violating couplings
to LDVs will be presented in ref. [58].

3 Quark phenomenology of light dark vectors

In this section we derive bounds on the flavor-violating couplings CD(5)
ij in eq. (2.1) and CV(5)

ij

in eq. (2.2) for the quark-flavor transitions: s→ d, b→ s, b→ d, and c→ u. We employ the
following three types of two-body decays containing the LDV as an invisible final state2

• P → P ′ + V ′: pseudoscalar meson to pseudoscalar meson and LDV,

• P → V + V ′: pseudoscalar meson to vector meson and LDV,

• B → B′ + V ′: baryon to baryon and LDV.

Figure 1 shows representative Feynman diagrams for the three types of decays.
2Three-body decays and neutral meson mixing typically give weaker constraints, e.g., for example LHCb

constraints on B(s) → µµa cannot compete with Belle II limits [59].
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Quark Transition Hadronic Process Form Factors Experimental Limit

s→ d

K+ → π+ + V ′ [65, 66] NA62 [17, 38, 39]
Σ+ → p+ V ′ [34, 67–69] BES III [70], Lifetimer [22, 63]
Ξ− → Σ− + V ′ [34, 67–69] Lifetimer [22, 63]
Ξ0 → Σ0 + V ′ [34, 67–69] Lifetimer [22, 63]
Ξ0 → Λ + V ′ [34, 67–69] Lifetimer [22, 63]
Λ → n+ V ′ [34, 67–69] Lifetimer [22, 63]

B+ → K+ + V ′ [71] BaBarr [41], Belle IIr [44, 62]
b→ s B → K∗ + V ′ [71] BaBarr [41, 62]

Λb → Λ + V ′ [72] Lifetimer [22, 63]

B+ → π+ + V ′ [71, 73] BaBarr [40]
b→ d B → ρ+ V ′ [71] LEPr [60, 61]

Λb → n+ V ′ [72, 74] Lifetimer [22, 63]

c→ u
D+ → π+ + V ′ [75, 76] CLEOr [22, 42]
Λc → p+ V ′ [77] BES III [45], Lifetimer [22, 63]

Table 1. Overview of considered hadron decays with invisibles in the final state. The first column
shows the underlying quark-flavor transition, the second the specific hadronic process. The relevant
vector and dipole form factors are taken from the references in the third column. The last column
contains the references for the experimental upper limits on the respective branching ratios. A subindex
“r” indicates that a recast of experimental data was needed, see text and appendix C for details.

Appendix E contains the analytical expressions for the corresponding decays rates
(including the dependence on m′

V ); the relevant form factors are collected in appendix E.1.
Comparing the decay rates to the experimental upper limits on the branching ratios, we set
upper bounds on the couplings in the V/A basis3 of eq. (2.1) and eq. (2.2), i.e. on the set
{CD

ij ,CD5
ij ,CV

ij ,CV5
ij }. The limits are determined as a function of the LDV mass, with range

0 ≤ m2
V ′ ≤ (mI −mF)2 ≡ m2

V ′max depending on the masses of the initial, mI, and final, mF,
states of the decay at hand. Crucially, the form factors depend on the LDV mass and it is,
therefore, essential to consider the full form-factor parametrization for an accurate analysis.

The available theoretical and experimental information is summarized in table 1, where
we collect the references for the form factors and relevant experimental limits. Often
the experimental collaborations do not provide limits on two-body decays with missing
energy. Yet, in some cases there is enough information to extract this bound from available
data. We indicate this case by a subindex “r” in the last column of the table, and either
use existing recasts in the literature or perform our own recast, e.g., to find a bound on
B → π/K/K∗ + invis. from BaBar data on the corresponding three-body decays [40, 41],
see appendix C for details.

Concretely we use our recast for B → K(∗) + invis. only for LDV masses above 3GeV.
Note that we can recast only the experimental results of the BaBar collaboration and
cannot use the newer Belle measurements, since the Belle collaboration does not provide

3In appendix D we show the bounds in the L/R basis.
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the event count as a (binned) function of the missing-momentum distribution. We use
existing recasts for B → ρ+ invis. decays from LEP [60, 61], B → K + invis. decays from
Belle II [44, 62] (this recast is limited to masses below mV ′ = 3GeV), B → K∗+invis. decays
from BaBar [41, 62] (below mV ′ = 3GeV). For invisible baryon decays for which there is
no analysis, we derive limits using the total lifetime from the PDG [63] after subtracting
all observed channels as in ref. [22].

For the bound based on D → π + invis. decays we use the result of ref. [22] for mV ′ ≈ 0,
obtained from recasting CLEO data on D → (τ → πν)ν [42]. We also perform a recast of
these data for LDV masses up to mV ′ ≈ 0.5GeV (which is the upper range of the CLEO
data set), assuming the efficiency in all bins to be the same as for mV ′ ≈ 0. Note that
recasting BES III data [64] on D → πνν gives weaker constraints [22], although this result
does not use the full experimental information. It would be interesting if BES III would
provide an explicit two-body recast of their full data set. The collaboration actually does this
for the case of two-body hyperon decays Λc → p+ invis., albeit only for “massless” invisible
particles. Their signal region in fact covers invisible masses up to 316MeV, and leads to
limits that are much stronger than the ones obtained by saturating the total Λc lifetime [22].
As a conservative limit, to be replaced by a dedicated experimental analysis, we multiply
their limit for the massless case by a factor 1/2 (since close to the endpoint of the signal
region half of the signal events are lost due to energy resolution). We use the resulting
bound BR(Λc → pV ′) < 1.6× 10−4 for LDV masses up to 316MeV, and take lifetime limits
above 316MeV. We notice that a search for the decay D → π +X would not suffer from
two-body SM backgrounds in contrast to hyperon decays, where Λc → p + γ contributes
to the signal of a massless X, if the photon is missed.

To set constraints on the couplings {CD
ij ,CD5

ij ,CV
ij ,CV5

ij } we consider dipole (LD) and
vector interactions (LV) separately, and turn on a single coupling at a time. We use the theory
predictions in appendix E together with the form factors in table 1 (see also appendix E.1) to
calculate the decay rates as a function of the couplings and the LDV mass. The rates are then
compared to the experimental limits to obtain the bounds in the mass-coupling plane. We
include statistical and systematic uncertainties as follows. For the theory predictions we only
use the systematic uncertainties associated with hadronic form factors (these are the most
relevant ones), while the treatment of uncertainties of experimental limits depend on their
nature: for decays where the experimental collaborations provide two-body interpretations (or
a theory recast exists), we add the experimental and form-factor uncertainties in quadrature.
In the case where we performed our own two-body recast (as described in appendix C) we
treat theory uncertainties as Gaussian uncertainties smearing the expectation values of the
underlying Poisson probability distribution functions.

Our results are summarized in figures 2 and 3 in which we show the lower bounds on the
effective inverse coupling Λ/Cij for given LDV mass mV ′ . The plots are organized according
to the underlying flavor transition, i.e., s → d, b → s, b → d, and c → u and we separate
dipole {CD

ij ,CD5
ij } (figure 2) and vector couplings {CV

ij ,CV5
ij } (figure 3). Each plot shows the

bound on a single coupling for a given quark-flavor transition, with each line corresponding
to a particular hadronic decay, excluding the region below. Note that P → P ′ + V ′ decays
are only sensitive to {CD

ij and CV
ij} couplings, which follows from parity conservation of the

strong interactions and the Lorentz structure of the form factors (see appendix E.1). Also
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Figure 2. Lower limits on quark-flavor violating dipole couplings Λ/|CD
ij | (left column) and Λ/|CD5

ij |
(right column) of the LDV for s→ d, b→ s, b→ d, c→ u transitions @95% CL(s). See text for details.
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Figure 3. Lower limits on quark-flavor violating vector couplings Λ/|CV
ij | (left column) and Λ/|CV5

ij |
(right column) of the LDV for s→ d, b→ s, b→ d, c→ u transitions @95% CL(s). See text for details.
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note that dipole operators are dimension-six above the electroweak scale, so in fact the actual
UV scale probed is Λ6 =

√
vΛ in all transitions.

3.1 Dark dipole interactions

s → d transitions. The bounds on the dipole couplings {CD
sd,CD5

sd } are set by K → π+invis.
and hyperon decays, cf. table 1 and figure 2. For the two-body decay K → π + invis. we
use the bound provided by the NA62 collaboration [39]. For baryon decays there is an
upper limit from BES III [70] on the decay Σ+ → p+ invis. with a massless invisible. We
estimate the potential reach for this search by extending it to larger invisible masses by
assuming that the same experimental limit is valid for the whole kinematic range. This is
indicated by a dashed orange line. For all other baryon searches, we set upper limits on
branching ratios indirectly as in ref. [22] by subtracting the measured branching fractions
for all relevant hyperon decay channels from unity. Due to this rather weak limit, K → π

sets a much more stringent constraint than hyperon decays, limiting the UV scale Λ/CD
ij

to be at least of the order 1011 GeV. Note however that the search for Σ+ → p + invis.
strenghtens the upper limit by two orders of magnitude compared to the conservative limit
estimated with the total lifetime, and thus, out of all baryon decays, it yields the strongest
limit of order 107 GeV on the scale Λ/CD

ij .
Nevertheless baryon decays with missing energy are important for two reasons. The

decays to pseudoscalar, such as K → π, are only sensitive to the {CD
ij ,CV

ij} couplings.
Thus baryon decays are crucial to constrain the axial coupling Λ/CD5

ij (of the order of a
few ×107 GeV), as there are no two-body decays to vector particles in s → d transitions.
Moreover, the decay rates of pseudoscalar processes are proportional to the LDV mass for
the dipole interaction LD (cf. eq. (E.12)), and thus only baryon decays can constrain CD

ij for
small LDV masses. This can be see in figure 2 (upper left panel), where the bounds on CD

sd

from hyperon decays dominate for LDV masses of mV ′ ≈ 0 yielding a limit of O(107 GeV)
on the axial coupling Λ/CD5

ij . This provides a strong motivation for explicit direct searches
targeting baryon decays with invisible final states.

b → s transitions. The limits on the dipole couplings {CD
bs,CD5

bs } are set by B-meson
decays B → K/K∗ + invis. and baryon decays Λb → Λ + invis. The limits from the B-
meson decays are obtained from our own recast of BaBar data (cf. appendix C), except for
B+ → K+ + invis. for LDV masses mV ′ < 3GeV where we use the recast in ref. [62] of
the recent Belle II measurement of B+ → K+νν [44]. We also use the recast in ref. [62]
of the BaBar measurement of B → K∗νν [41] below LDV masses of 3 GeV. The limit on
unobserved Λb decays such as Λb → Λ+ invis. is obtained by comparing the SM prediction
for the total lifetime with the experimental one inferred from all observed channels, ascribing
the difference to the allowed value for the two-body invisible decay [22]. As for s → d

transitions, decays to pseudoscalar mesons such as B+ → K+ can neither constrain the axial
coupling CD5

bs , nor CD
bs for very small LDV masses. Otherwise, however, they do dominate

over the constraint from Λb → Λ.
In contrast to s→ d transitions, there is also a decay with vector mesons in the final-state,

B → K∗, which constrains both the CD
bs and the CD5

bs couplings in the entire LDV mass range,
if kinematically allowed. Hence, B → K∗ decays are complementary to B → K decays in
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constraining Λ/CD
bs, setting limits on the UV scale of the order 108 GeV, and also dominate

the bounds on Λ/CD5
bs of similar size, up to a small region where this channel is kinematically

closed and Λb → Λ decays set the strongest limit, of the order 107 GeV. Note that there is an
upper limit of order 108 GeV on Λ/CD

bs at around mV ′ ≈ 2GeV coming from B → K + V ′

decays [62], due to a 2.8σ excess in the latest Belle II measurement of B+ → K+νν [44].

b → d transitions. The bounds on the dipole couplings {CD
bd,CD5

bd } are obtained from
B-meson decays B → π/ρ+ invis. and baryon decays Λb → n+ invis. The limit on B → π

decays is obtained from our recast of BaBar data (cf. appendix C), while a limit on B → ρ

decays from LEP data [60] has been derived in ref. [61]. Analogously to b→ s transitions, the
pseudoscalar decay B → π does neither constrain the axial coupling CD5

bd nor CD
bd for small

LDV masses, while the decay to vector mesons B → ρ does. Thus the two meson decays are
complementary in setting limits on Λ/CD

bd, of the order of 108 GeV, while B → ρ dominates
the bounds on the limits on Λ/CD5

bd of similar size, except for LDV masses above the kinematic
threshold where Λb → n decays take over, constraining UV scales up to 107 GeV.

c → u transitions. Finally, the constraints on the dipole couplings {CD
cu,CD5

cu } are set by
D → π + invis. and the baryonic process Λc → p + invis. For D → π and LDV masses
mV ′ ≲ 0.5GeV, we performed a recast of the CLEO data set (analogous to the B-decay
recasts in appendix C). The result is shown as a solid, blue line in the bottom panel of figure 2.
CLEO has only collected data up to masses of mV ′ ≈ 0.5GeV, but we also show the potential
bound that could be obtained above this mass by extrapolating the bound for massless
invisible particles [22] to the whole kinematic range, which we indicate by a dashed blue line.

For Λc → p we show two limits in the bottom panel of figure 2: solid, orange lines denote
the bound obtained from simply saturating the total Λc lifetime, i.e., BR(Λc → p+ V ′) < 1,
while the green line indicates the 95% CL bound obtained from the BES III [45] result
for “massless” invisible particles, BR(Λc → p+ V ) < 8.0× 10−5 at 90% CL, which in fact
covers invisible masses up to 316MeV and are multiplied by a factor 1/2, see the discussion
in the beginning of this section. We estimate the potential reach for a search extending
to larger invisible masses by assuming that the same experimental limit below 316MeV
is also valid above, and indicate this extrapolation by a dashed, green line. We observe
that the strongest limits on Λ/CD

cu are set by the BES III search for a “massless” LDV in
Λc → p decays, which are valid for mV ′ ≲ 316MeV and are of the order of 107 GeV. Between
316MeV ≲ mV ′ ≲ 500MeV a limit of similar size is obtained from D → π decays, recasting
CLEO data on D → (τ → πν)ν. The only available limit on LDV masses above 0.5GeV
arises from the total Λc lifetime, which sets limits of order 105 GeV. Naively extrapolating
the limits from CLEO on D → π and BES III on Λc → p decays to higher LDV masses
instead suggests that present bounds could be strengthened by two orders of magnitude, if
BES III would either analyze the available searches for Λc → p decays with extended signal
regions, or use available data on D → πνν to set a limit on the two-body decay.

Currently only Λc → p decays are capable to set constraints on the axial coupling
Λ/CD5

cu , of the order of 105 GeV and 107 GeV for LDV masses above and below 316MeV,
respectively. Besides extending the search for Λc → p+ V ′ to higher LDV masses, this also
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motivates dedicated searches for other processes such as D → ρ+ invis. or Ds → K∗ + invis.
at current or future experiments.

3.2 Dark vector interactions

s → d transitions. The limits on the vector couplings {CV
sd,CV5

sd } are shown in figure 3.
As for dipole couplings, the relevant constraints arise from K → π and hyperon decays, see
table 1. Analogous to the dipole case, the limit from BES III on the decay Σ+ → p+ invis.
for a massless invisible is tentatively assumed to be valid for the whole kinematic range. The
limit on the scale is indicated by a dashed orange line. K → π decays dominate the limits
on Λ/CV

sd, restricting UV scales up to 1012 GeV, but cannot constrain the axial coupling
Λ/CV5

sd , where hyperon decays set the only available bounds of the order of 107 GeV. All
limits are non-vanishing when the LDV mass is taken to zero, which is due to the choice of
the prefactor in LV linear in the LDV mass, see eq. (2.2). This corresponds to the gauge-less
limit where the longitudinal polarization of the LDV is essentially a Goldstone boson. With
this scaling the flavor-violating decay is similar to the SM decay t→Wb, which also remains
finite in the gauge-less g → 0 limit, since the top quark dominantly decays to the charged
Goldstone Higgs, which couples only via Yukawas to the quarks. Different choices for the
prefactor, corresponding to specific UV completions, would result in bounds that would
vanish in the limit of massless LDVs, with a LDV mass dependence that can obtained by
rescaling the limits presented here.

b → s transitions. The constraints on the vector couplings CV
bs, CV5

bs are obtained from
B-meson decays B → K/K∗ + invis. and the baryonic decays Λb → Λ + invis. B+ → K+

sets the strongest constraint on Λ/CV
bs of the order of 108 GeV, but cannot constrain the axial

coupling Λ/CV5
bs . Here the dominant constraints are set by B → K∗ decays, also of the order

of 108 GeV, apart from the region where this channel is kinematically closed and Λb → Λ
takes over and sets limits on the UV scales up to 106 GeV. Again there is an upper limit of
order 1012 GeV on Λ/CV

bs at around mV ′ ≈ 2GeV coming from B → K + V ′ decays [62], due
to a 2.8σ excess from the latest Belle II measurement of B+ → K+νν [44].

b → d transitions. The bounds on the vector couplings CV
bd, CV5

bd arise from B-meson decays
B → π/ρ+ invis. and the baryonic decays Λb → n+ invis. . Analogously to b→ s transitions
B → π decay sets the strongest constraint on Λ/CV

bd of the order of 108 GeV, while Λ/CV5
bd

is limited to about the same values by B → ρ decays, up to LDV masses at the kinematic
threshold where Λb → n decays dominate the bound of order 106 GeV.

c → u transitions. Finally, the bounds on the vector couplings CV
cu, CV5

cu are set by the
decays D → π + invis. and Λc → p + invis. Meson decays D → π dominate the bound on
Λ/CV

cu of order 108 GeV, while only baryon decays Λc → p can constrain the axial coupling
Λ/CV5

cu at order 105 and 107 GeV, using the total lifetime and the extrapolation of the BES III
measurement, respectively, analogous to the dipole case. Again, it would be interesting if
BES III could extend their search for Λc → p + V ′ to higher invisible masses, as this is
expected to strengthen the present bound on the UV scale by two orders of magnitude.
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LFV Transition Experimental Limit

µ→ e TWIST [46], Jodidior [18, 78]
τ → e Belle II [43]
τ → µ Belle II [43]

Table 2. The LFV transitions relevant for the two-body decays ℓ→ ℓ′ + V ′ and the corresponding
relevant experimental measurements. The subindex “r” indicates that a recast of experimental data
was needed.

4 Lepton phenomenology of light dark vectors

In this section we present the bounds on the flavor-violating couplings in eq. (2.1) and (2.2)
from LFV decays ℓ→ ℓ′ + V ′ for lepton-flavor transitions µ→ e, τ → e, and τ → µ. There
are three main differences to the quark-sector analysis: (i) there is no hadronic input required,
(ii) the total decay rates only depend on the combination |CD

ij |2 + |CD5
ij |2 and |CV

ij |2 + |CV5
ij |2,

and (iii) for the case of µ→ e transitions one can profit from polarization in order to suppress
SM background from Michel decays. This allows us to distinguish between CV

ij and CV5
ij

using the angular distribution of the outgoing electron.
Concretely, for µ→ e we restrict the discussion to three benchmark scenarios, depending

on the angular dependence of the differential two-body LFV decay rate in the limit of
me = mV ′ = 0

dΓ(µ→ e+ V ′)
d cos θ ∝ (1 +A cos θ) , (4.1)

where θ is the angle between the outgoing electron momentum and the muon polarization. We
distinguish three benchmark cases: isotropic decays (A = 0), “V−A” structure A = −1, and
“V+A” structure A = +1. Clearly polarization does not help to distinguish an LFV signal from
the SM background for the SM case A = −1. Thus one can only rely on the monochromatic
electron as the signal, which leads to weaker bounds than in the other cases A = 0,+1 [18].
Interestingly, many proposals have been put forward to look for this decay at present and
future high-luminosity muon facilities [18–21], which are sensitive also to invisible LDVs. We
take present constraints on LFV transitions from the references indicated in table 2, and
compare them to the predictions for (polarized) lepton decay rates calculated in appendix E.5.

µ → e transitions. The bounds from µ→ e+ invis. decays on dipole and vector couplings
are shown in figure 4. We derive them employing constraints from experiments conducted at
TRIUMF, both by the TWIST collaboration [46] in 2015 (left panel) and Jodidio et al. [78] in
1986 (right panel). For the latter, we use the recast of ref. [18]. The three curves in figure 4
show the bounds for the three benchmark scenarios for chiral structures, corresponding to
CD
eµ = 0 or CD5

eµ = 0 for A = 0, and CD
eµ = ±iCD5

eµ for A ≈ ±1 in the upper panel, while in the
lower panel they correspond to CV

eµ = 0 or CV5
eµ = 0 for A = 0, and CV

eµ = ±CV5
eµ for A ≈ ±1.

For couplings that are not aligned to the SM, i.e., not “V− A”, the dominant constraints on
LDVs lighter than about 5 MeV are set by the Jodidio experiment, which limits UV scales of
the order of 1010 GeV. Heavier LDVs are constrained only by TWIST, setting limits of the
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Figure 4. Upper panel: lower limits on the dipole coupling for µ → e transitions Λ/|CD
eµ| from

TWIST [46] (left panel) and Jodidio et al. [18, 78] (right panel). The bounds are shown for three
different choices for CD5

eµ , corresponding to different angular distributions of the electron momentum, cf.
eq. (4.1): isotropic decay (A = 0), alignment to SM decay “V −A” (A = −1) and “V +A” (A = +1).
Lower panel: same for the vector coupling Λ/|CV

eµ|. See text for details.

order of few ×109 GeV. LDVs with “V−A” couplings are constrained by TWIST with bounds
of the same order, exceeding the corresponding Jodidio limits also in the light-mass regime.

τ → µ/e transitions. The limits from Belle II on τ → µ/e+ invis. decays constrain τ → e

and τ → µ transitions according to figure 5, where we shows the bounds on the dipole Λ/CD
τℓ

(left panel) and vector couplings Λ/CV
τℓ (right panel). Constraints on the axial couplings

Λ/CD5
τℓ and Λ/CV5

τℓ are at the same level, as the difference is suppressed by mℓ/mτ , cf.
appendix E.5. Bounds for τ → e and τ → µ transitions are comparable, limiting UV scales
of the order of few ×107 GeV for dipole couplings, and few ×106 GeV for vector couplings.

5 Flavor-violating LDVs from the renormalization group

In this section we study the phenomenologically interesting scenario in which LDV interactions
with the SM are flavor-universal in the UV theory, so that flavor-violating couplings are
generated only from the SM flavor violation via the renomalization-group evolution. We
start right below the UV scale Λ — taken to be much above the electroweak scale — and
consider SU(2)L ×U(1)Y invariant vector and dipole interactions of the V ′ to the SM. For
vector couplings see the trivial SU(2)L × U(1)Y generalization of eq. (2.3) and for dipole
couplings see eq. (2.6). We align possible new sources of flavor-violation of the V ′ with
the flavor violation in the SM by taking the vector couplings to be flavor-universal, i.e.,
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Figure 5. Upper panel: lower limits on the dipole (left panel) and vector (right panel) couplings
for τ → e transitions Λ/|CD

τe|, Λ/|CV
τe| from Belle II [43]. Lower panel: same for τ → µ transitions

Λ/|CD
τµ|, Λ/|CV

τµ|. Constraints on the axial couplings Λ/|CD5
τℓ | and Λ/|CV5

τℓ | are essentially of the same
size, as the difference is suppressed by mℓ/mτ , cf. appendix E.5.

proportional to the identity matrix in flavor space, and by taking the dipole couplings to be
proportional to the SM Yukawas. In both cases they are flavor diagonal in the mass basis, such
that flavor-changing interactions with the V ′ are only induced by the renormalization-group
evolution to the EW scale and always proportional to the CKM matrix. Flavor-violating
couplings in the IR thus follow the paradigm of minimal flavor violation (MFV) [47].

We do not explicitly consider kinetic mixing between the U(1)′ LDV and the U(1)Y
boson, as it leads only to a shift in the flavor-universal LDV couplings after diagonalising
the photon kinetic terms. By working in this basis, our results also apply to models with
kinetic mixing, upon re-defining the flavor-universal couplings.

We discuss separately the case of dipole and vector couplings in section 5.1 and 5.2,
respectively.

5.1 Dipole interactions

In the interaction basis, the dipole interactions of the LDV with SM fermions are given
by (cf. eq. (2.6))

Lint ⊃ −
(
QYuH̃uR +QYdHdR + h.c.

)
+ 1

Λ2
6
V ′
µν

(
QCD

u σ
µνH̃uR +QCD

d σ
µνHdR + h.c.

)
,

(5.1)
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i− j 2− 1 1− 2 2− 3 3− 2 1− 3 3− 1

(CDR
u )i ̸=j/Λ λ5y2

byc λ5y2
byc λ2y2

byt λ2y2
byt λ3y2

byt λ3y2
byt

(CDR
d )i ̸=j/Λ λ5y2

t ys λ5y2
t ys λ2y2

t yb λ2y2
t yb λ3y2

t yb λ3y2
t yb

Table 3. Parametric size of leading flavor-violating contributions at low-energy in the UV universal
scenario for dipole couplings, cf. eq. (5.3). Here λ ≈ 0.23 denotes the Wolfenstein parameter and
yf = mf/v are SM Yukawas couplings. Up-quark transitions (first line) are proportional to the high-
scale coupling cD

d , down-quark transitions (second line) are proportional to the high-scale coupling cD
u ,

and all entries are multiplied by v/Λ2
6 log(Λ6/µ)/(16π2).

with the SM Yukawa matrices Yf , f = u, d, and arbitrary 3× 3 matrices CD
f . The one-loop

RG equations for the couplings CD
f and the Yukawa matrices Yf are listed in appendix B.

For the UV universal setup that we consider, the initial conditions at the UV scale Λ6 are

CD
d

∣∣
µ=Λ6

= cD
d Yd

∣∣
µ=Λ6

, CD
u

∣∣
µ=Λ6

= cD
u Yu

∣∣
µ=Λ6

, (5.2)

with cD
f ∈ C. By solving the RGE at leading-logarithmic accuracy and subsequently rotating

to the mass basis for the quarks we find the low-energy dipole couplings in the L/R notation
of eq. (2.3) with f = u, d to be4

1
ΛCDR

u (µ) = v

Λ2
6

(
cD
u Ŷu −

1
16π2

(
3cD
u ŶuŶ

†
u Ŷu − cD

d VCKMŶdŶ
†
d V

†
CKMŶu

)
log(Λ6/µ)

)
,

1
ΛCDR

d (µ) = v

Λ2
6

(
cD
d Ŷd −

1
16π2

(
3cD
d ŶdŶ

†
d Ŷd − cD

u V
†

CKMŶuŶ
†
uVCKMŶd

)
log(Λ6/µ)

)
,

(5.3)

where VCKM is the CKM matrix, and Ŷf = mf/v are the diagonal SM Yukawas. The
left-handed couplings CDL

f are related to the ones in eq. (5.3) by hermitian conjugation,
CDL
f = (CDR

f )†. Note that indeed flavor off-diagonal entries are generated in both the up-
and the down-quark sector at one-loop. They are proportional to the CKM matrix and
the UV coupling of the other sector, i.e., CDR

u ∝ cDd and CDR
d ∝ cDu . Carrying out the

matrix multiplications, one can identify the numerically leading contribution to a given flavor
transition. We show these leading contributions in table 3 for both sectors.

Using these results, we determine the experimental limits on the high-scale couplings cD
d

and cD
u in eq. (5.2) from the limits on two-body meson decays discussed in section 3. Note that

the renormalization scale µ is set to the EW scale since below there is no Yukawa running.
As expected from the high-level of flavor suppression inherent to the setup, the resulting

bounds are very mild and often weaker than the constraints from perturbative unitarity.
For this reason we only display in figure 6 (left panel) the strongest bounds, which come
from B → K∗ and require Λ6 ∼ TeV for cD

u = 1 (for cD
d = 1 the limit on Λ6 is far below

the electroweak scale and is therefore not shown).

4Since the couplings at the UV scale Λ6 are aligned to the SM Yukawa matrices, a correction from the
Yukawa RGE, given in appendix B, must be included.
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Figure 6. Lower limits on the UV scale in the UV universal scenario for dipole (left panel) and
vector couplings (right panel), only showing the strongest constraints. See text for details.

5.2 Vector interaction

In the interaction basis, the vector interactions of the LDV with the SM fermions are given
by (cf. eq. (2.3))

Lint ⊃ −
(
QYuH̃uR +QYdHdR + h.c.

)
+ V ′

µ

(
QCV

Qγ
µQ+ uRC

V
u γ

µuR + dRC
V
d γ

µdR
)
,

(5.4)

with SM Yukawa matrices Yf , f = u, d, and arbitrary hermitian 3 × 3 matrices CV
X with

X = Q, u, d. The one-loop RG equations for the couplings CV
X and the Yukawa matrices

Yf are listed in appendix B. For the UV universal setup that we consider in this section,
the boundary conditions at the UV scale Λ are

CV
Q(Λ) = cV

Q 13 , CV
u (Λ) = cV

u 13 , CV
d (Λ) = cV

d 13 . (5.5)

with cV
X real numbers.

By solving the RGE at leading-logarithmic accuracy and subsequently rotating to the
mass basis for the quarks, we find the low-energy vector couplings in the L/R notation
of eq. (2.3) to be(
mV ′

Λ

)
CVL
u (µ) = cV

Q13 −
1

16π2

((
cV
Q − cV

u

)
ŶuŶ

†
u +

(
cV
Q − cV

d

)
VCKMŶdŶ

†
d V

†
CKM

)
log(Λ/µ) ,(

mV ′

Λ

)
CVL
d (µ) = cV

Q13 −
1

16π2

((
cV
Q − cV

u

)
V †

CKMŶuŶ
†
uVCKM +

(
cV
Q − cV

d

)
ŶdŶ

†
d

)
log(Λ/µ) ,(

mV ′

Λ

)
CVR
u (µ) = cV

u 13 −
1

8π2

(
cV
u − cV

Q

)
Ŷ †
u Ŷu log(Λ/µ) ,(

mV ′

Λ

)
CVR
d (µ) = cV

d 13 −
1

8π2

(
cV
d − cV

Q

)
Ŷ †
d Ŷd log(Λ/µ) , (5.6)

where VCKM is the CKM matrix and Ŷf = mf/v, f = u, d are the diagonal SM Yukawas.
Note that the couplings of right-handed interactions CVR

u , CVR
d are always flavor diagonal,

while flavor-violating terms in the IR are induced in the left-handed interactions CVL
u , CVL

d
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proportionally to cV
Q − cV

u and cV
Q − cV

d . Therefore, if the UV couplings are also universal
among the different sectors, i.e., cV

Q = cV
u = cV

d , there is no flavor violation in the IR at
one-loop, as in this case the LDV actually couples to the baryon-number current, which is
conserved at tree-level inducing flavor violation only at two-loop [79].

We now discuss this fact in more detail, before turning to the limits. One can rewrite the
interactions in eq. (5.4) for the case of flavor-universal UV boundary conditions in eq. (5.5)
in terms of the tree-level conserved (but anomalous) U(1)B current JµB = ∑

i

(
Q̄iγ

µQi +

ūRiγ
µuRi + d̄Riγ

µdRi
)
, and the two non-conserved currents JµNd =

∑
i d̄Riγ

µdRi, and JµNu =∑
i ūRiγ

µuRi. As all currents are not conserved beyond tree-level, we take their coefficients
to be proportional to the LDV mass

Lint ⊃ −
(
QYuH̃uR +QYdHdR + h.c.

)
+ mV ′

Λ V ′
µ

[
CV
BJ

µ
B + CV

NdJ
µ
Nd + CV

NuJ
µ
Nu

]
, (5.7)

Matching to eqs. (5.4) and (5.5) gives
mV ′

Λ cV
B = cV

Q ,
mV ′

Λ cV
Nd = cV

d − cV
Q ,

mV ′

Λ cV
Nu = cV

u − cV
Q . (5.8)

At the one-loop level there is no flavor violation proportional to CV
B . However, flavor violation

does arises due to the non-conserved currents and is thus proportional to the difference of
couplings cV

Q − cV
u and cV

Q − cV
d . Rewriting eq. (5.6) in terms of the UV coefficients cV

B, cV
Nd,

cV
Nu with the proper LDV mass scaling gives finally(

mV ′

Λ

)
CVL
u (µ) = mV ′

Λ

[
cV
B13 +

1
16π2

(
cV
NuŶuŶ

†
u + cV

NdVCKMŶdŶ
†
d V

†
CKM

)
log(Λ/µ)

]
,(

mV ′

Λ

)
CVL
d (µ) = mV ′

Λ

[
cV
B13 +

1
16π2

(
cV
NuV

†
CKMŶuŶ

†
uVCKM + cV

NdŶdŶ
†
d

)
log(Λ/µ)

]
,(

mV ′

Λ

)
CVR
u (µ) = mV ′

Λ

[(
cV
B + cV

Nu

)
13 −

1
8π2 c

V
NuŶ

†
u Ŷu log(Λ/µ)

]
,(

mV ′

Λ

)
CVR
d (µ) = mV ′

Λ

[(
cV
B + cV

Nd

)
13 −

1
8π2 c

V
NdŶ

†
d Ŷd log(Λ/µ)

]
, (5.9)

The numerically leading contributions to a given (hermitian) flavor transition in left-
handed interactions are shown in table 4 for both sectors. We display the resulting bounds on
Λ in the right panel of figure 6 for cV

Nu = 1 (there is no constraint from cV
Nd at one-loop), which

are of order Λ ≥ 103 TeV for K → π transitions. These limits are weakened by about an order
of magnitude for LDV masses above mK −mπ, where the dominant constraint comes from
B → K transitions. In dashed green, we also show the limits coming from the flavor-violating
contribution that is induced at the two-loop level by the coupling of the LDV to the anomalous
baryon current JµB . The corresponding limit on the scale Λ has been obtained by rescaling the
result for K → π of figure (1) from ref. [79], giving Λ ≥ 3.5TeV for cV

B = 1 and cV
Nu = cV

Nd = 0.
This is about three orders of magnitude weaker than the limit one obtains if the LDV also
couples to currents that are not conserved at tree-level, i.e., taking cVNu = cVNd = 1.

6 Summary and conclusions

In this work we have systematically studied the flavor phenomenology of light dark vectors
(LDVs). We have restricted our analysis to scenarios where the LDV is directly linked to
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i− j 2− 1 3− 2 3− 1

(CVL
u )i ̸=j λ5y2

t λ2y2
t λ3y2

t

(CVL
d )i ̸=j λ5y2

b λ2y2
b λ3y2

b

Table 4. Parametric size of leading flavor-violating contributions to the low-energy vector couplings
of V ′ in the UV universal scenario, cf. eq. (5.6). Here λ ≈ 0.23 denotes the Wolfenstein parameter.
Up-quark transitions (first line) are proportional to the high-scale coupling cV

u −cV
Q = cV

Nu, down-quark
transitions (second line) are proportional to the high-scale coupling cV

d − cV
Q = cV

Nd, and all entries are
multiplied by log(Λ/µ)/(16π2).

dark matter, and is either itself invisible or promptly decays to invisible particles, such that
the LDV appears as missing energy. Working in the context of a general EFT, we have
considered both flavor-violating dipole (see eq. (2.1)) and vector couplings (see eq. (2.2)) of
the LDV to SM fermions. We have calculated the resulting predictions for the decay rates of
mesons, baryons, and polarized leptons as a function of the LDV mass, see section E. These
predictions were compared to the experimental limits on various hadronic processes (table 1)
and LFV transitions (table 2). For B → π/K/K∗ decays experimental limits from B-factories
are only available for three-body decays with two invisible neutrinos, so we have recasted
available data to obtain bounds on the two-body decay with missing energy as a function of
the LDV mass, see figure 7. The resulting limits on general vector and dipole interactions of
the LDV are summarized in figures 2 and 3 for the quark sector, and in figure 4 and 5 for the
lepton sector. Vector couplings are at least dimension-five operators, which results in very
stringent limits on the UV scale, reaching up to 1012 GeV in K → π decays, 108 GeV in B-
and D-meson decays, 109 GeV in µ→ e decays, and 107 GeV in τ → µ/e decays. Bounds on
dipole couplings are weaker, if viewed as dimension-six operators above the EW scale, but
they still probe UV scales of order 106 GeV in K → π and µ → e decays. Importantly, all
channels will be improved by present or near-future experiments, such as NA62, Belle II,
BES III, MEG-II or Mu3e. We have also discussed a scenario where couplings in the UV are
flavor-universal, so that quark-flavor violation is only induced radiatively through the CKM
matrix. For this analysis we derived the relevant renormalization-group equations (RGEs) for
both dipole and minimal couplings in appendix B, and used our previous results to convert
limits on flavor-changing interactions into limits on flavor-diagonal couplings, see figure 6.

To summarize, the aim of this work is to stress the importance of flavor-violating
transitions for light, dark-matter searches, which is copiously produced in the lab as missing
energy in decays of SM particles. Here we focused on the LDV as part of a dark sector, and
showed that present constraints from precision flavor experiments already probe UV scales as
large as 1012 GeV. This underlines the important role of present and next-generation flavor
factories in hunting down dark matter in the laboratory.
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A UV motivation of vector couplings

In this section we motivate the scaling behavior of the flavor-violating vector coupling in
the Lagrangian of eq. (2.2), both by EFT considerations and explicit UV-complete models.
In perturbative UV completions, the scaling is at least linear in the dark U(1)′ breaking
scale, and we will provide two example scenarios: one that gives linear and one that gives
quadratic scaling. We begin with the EFT discussion of the latter.

A.1 EFT discussion for quadratic scaling

For the EFT approach it is convenient to consider the coupling to the Goldstone boson G in
the gauge-less limit, rather than the coupling of the dark vector V ′

µ itself. They are related by
the Goldstone-boson equivalence theorem, which states that at sufficiently high energies, or
equivalently sufficiently small dark vector masses m′

V , the vector boson coupling is dominated
by its longitudinal polarization, which in the small m′

V limit becomes the Goldstone boson.
Thus one can work out the couplings of the Goldstone boson and recover the relevant
vector-boson couplings by replacing ∂µG → −mV ′V ′

µ in the interaction Lagrangian.
We, therefore, consider the case where the dark U(1)′ gauge group is spontaneously

broken by some (SM singlet) scalar field S with charge +1 under the U(1)′. We take the
gauge-less limit, so that G is a true Goldstone boson, contained in S according to

S = v′√
2
exp

(
iG/v′

)
, (A.1)

where v′/
√
2 is the (real) VEV that breaks U(1)′, connected to the dark vector mass by

mV ′ = g′v′, and we have ignored the radial mode that obtains its mass around v′. This
mode, together with all UV fields are taken to be much heavier than the electroweak scale,
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so that in the IR there is only the SM and the Goldstone boson G ⊃ S, which is formally
invariant under global U(1)′ transformations treating S as a spurion with charge +1. Note
that one can always realize such a scenario by making g′ sufficiently small. Writing down
the general EFT for this setup, it is clear that if SM fields are not charged under U(1)′, the
possible couplings of the Goldstone to SM fields must involve the same powers of S† and
S. The first such bilinear that gives a non-trivial combination containing the Goldstone is
then S†

↔
∂ µS ⊃ iv′∂µG. This implies that, e.g., right-handed down quarks can only couple

to the Goldstone at the level of dimension-six operators only

L EFT
quadratic ⊃

cij
Λ2 (iS

†↔∂ µS)
(
dRiγ

µdRj
)
= −cijΛ2 v

′∂µG
(
dRiγ

µdRj
)
, (A.2)

where Λ is the UV scale and in general there is flavor violation in the (hermitian) EFT
coefficients, ci ̸=j ̸= 0. The coupling of the dark vector in this setup is then recovered by
∂µG → −mV ′V ′

µ, so is given by

L EFT
quadratic ⊃ cij

v′m′
V

Λ2 V ′
µ

(
dRiγ

µdRj
)
. (A.3)

This analysis demonstrates that the interactions of dark vectors with SM fields that are neutral
under the U(1)′ scale at least as m′

V /Λ× v′/Λ. In particular they involve an additional factor
of the U(1)′ breaking scale as compared to eq. (2.2). Below we will confirm this expectation
in an explicit UV model, see section A.3.

A.2 EFT discussion for linear scaling

In order to have dark-vector couplings with a linear scaling in the U(1)′ breaking scale, one
necessarily has to charge SM fields under U(1)′. In this case the vector boson couples directly
to the charged fields via the dimension-four operator, e.g., for right-handed down quarks

Llinear ⊃ g′V ′
µ

(
dRγ

µXddR
)
. (A.4)

where Xd is the diagonal U(1)′ charge matrix. To see how off-diagonal entries are generated,
one has to rotate to the mass basis, which is governed by the Yukawa couplings. It is clear
that there is no flavor violation if Xd is universal, i.e., proportional to the identity matrix. If
instead charges are non-universal, the mass matrix cannot be generic at the renormalizable
level, i.e., it does not yield realistic fermion masses without breaking U(1)′. Therefore,
insertions of S or S† have to be considered to obtain realistic fermion masses.

Restricting for simplicity to two generations, and charging only dR1 with charge +1,
i.e., Xd = Diag(1, 0), XQ = XH = 0, the full Yukawa matrix requires higher-dimensional
operators to have full rank

L EFT
linear ⊃ −yiQiHdR2 − zi

S†

Λ QiHdR1 + h.c. (A.5)

Thus the down-quark Yukawa matrix is given by

Yd =
(
z1ϵ y1
z2ϵ y2

)
with ϵ = v′√

2Λ
. (A.6)
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We can ignore here the Goldstone in S, since we already have the coupling of the gauge
field in eq. (A.4), which leads to flavor-violating couplings with V ′ after rotating to the
mass basis. Nevertheless we can also reproduce this coupling with the same arguments
as above: in the gauge-less limit, we rescale dR1 → dR1e

iG/v′ , which removes G from the
Yukawa sectors. Ignoring chiral anomalies, this rescaling only affects the kinetic terms, as
it is a local U(1)′ transformation

L EFT
linear ⊃ idR1/∂dR1 → −∂µG

v′
dR1γ

µdR1 , (A.7)

which reproduces eq. (A.4) upon ∂µG → −mV ′Vµ = −g′v′Vµ.
We are left to diagonalize the Yukawa matrix Yd in eq. (A.6), or rather Y †

d Yd, in order
to find the mixing matrix Vd of right-handed down quarks, defined as V †

QYdVd = Y diag
d . In

the limit when ϵ ≪ 1, one has

Vd ≈
(

1 z2/y2ϵ

−z2/y2ϵ 1

)
, (A.8)

where we have set y1 = 0 without loss of generality. Rotating the dark-vector couplings in
eq. (A.4) to the mass basis defined by dR → VddR gives finally

Llinear ⊃ g′V ′
µ

(
dRγ

µV †
dXdVddR

)
= g′V ′

µ(V ∗
d )1i(Vd)1j

(
dRiγ

µdRj
)
, (A.9)

so that indeed off-diagonal couplings are generated proportional to g′(V ∗
d )11(Vd)12∼g′ϵ∼m′

V /Λ.
To summarize, we have demonstrated that vector interactions of dark vectors can indeed

be proportional to a single power of the U(1)′ breaking, and thus scale with the dark-vector
mass as in eq. (A.4), if SM fermions have non-universal U(1)′ charges. This situation is quite
generic in models where SM Yukawa hierarchies are explained by non-anomalous abelian
flavor symmetries, for example simple U(1)F Froggatt-Nielsen models [56], see e.g. refs. [7] for
examples of such models without extra heavy fermions to cancel anomalies. It is well-known
how to build UV completions for such models [80, 81], and below in section A.4 we will
present an illustrative example.

A.3 Explicit UV model for quadratic scaling

We first construct an explicit renormalizable model for the scaling of vector interactions in
eq. (2.2) quadratic in the dark U(1)′ breaking scale. We restrict the discussion for simplicity
to the down-quark sector with two generations. The field content is summarized in table 5,
and is clearly anomaly-free.

The Lagrangian reads

L = Lkinetic + LYukawa + Lscalar + Lint-V ′ , (A.10)

with standard kinetic terms for all fields and

LYukawa = −Y d
ijQiHdRj −mψψLiψRi − αijψLidRjS

† + h.c. (A.11)

Lint-V ′ = −g′V ′
µ

(
ψLiγ

µψLi + ψRiγ
µψRi

)
, (A.12)

Lscalar = m2
H |H|2 +m2

S |S|2 − λH |H|4 − λS |S|4 − λHS |H|2|S|2 . (A.13)
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Qi dRi H S ψLi ψRi

SU(2)L 2 1 2 1 1 1
U(1)Y 1/6 −1/3 1/2 0 −1/3 −1/3
U(1)′ 0 0 0 1 −1 −1

Table 5. Field content of a renormalizable model featuring quadratic scaling. We restrict the
discussion to the down-quark sector with two generations for SM quarks and heavy vector-like fermions
ψLi, ψRi, with i = 1, 2 carrying U(1)′ charges in addition to the scalar S.

For a suitable choice of parameters, the last part in Lscalar gives a vacuum expectation
value to S, ⟨S⟩ = v′/

√
2, which sets the mass of the dark vector boson to

mV ′ = v′g′ , (A.14)

and induces a mixing between chiral quarks, dR, and vector-like fermions, ψ, from the mixing
term in LYukawa. In the limit of mψ ≫ v′ ≫ v we can integrate out the vector-like fermions
using their equations of motion neglecting their kinetic terms

ψRi = −αij
mψ

dRjS
† , ψLi = 0 . (A.15)

Plugging this back into kinetic terms and Lint lead to the EFT

Lint ⊃ −g′V ′
µ

S†S

m2
ψ

Cij
(
dRiγ

µdRj
)
+ S†S

m2
ψ

Cij
(
idRi/∂dRj

)
+ Si∂µS

†

m2
ψ

Cij
(
dRiγ

µdRj
)
,

(A.16)

where Cij = (α†α)ij . Next we integrate out the radial mode by substituting S with the
Goldstone parametrization in eq. (A.1) and use the definition of the dark-vector mass to find

Lint ⊃ −V ′
µ

mV ′v′

2m2
ψ

Cij
(
dRiγ

µdRj
)
+ (v′)2

2m2
ψ

Cij
(
idRi/∂dRj

)
+ ∂µG

v′

2m2
ψ

Cij
(
dRiγ

µdRj
)
,

(A.17)

recovering the gauge-invariant5 combination V ′
µ−∂µG/m′

V . Without loss of generality we can
assume that Y d

ij is diagonal, so that we are already in the mass basis. Nevertheless, we do need
to re-diagonalize the kinetic terms due to the second term in eq. (A.17) induced in the EFT. In
the limit of v′ ≪ mψ this is readily achieved by the rescaling dRi → dRi − (v′)2/(4m2

ψ)CijdRj .
This leads to additional small corrections of O(1/m4

ψ) to the final dark-vector couplings, which
can be neglected, such that the leading couplings from the first term in eq. (A.17) remain

Lquadratic = −mV ′v′

2m2
ψ

CijV
′
µ

(
dRiγ

µdRj
)
. (A.18)

These couplings are indeed quadratic in v′ and are in general flavor violating, Ci ̸=j ̸= 0. This
matches to the EFT term in eq. (A.3) upon identifying Cij/m2

ψ = −2cij/Λ2.
5In our conventions V ′

µ → V ′
µ + ∂µβ/g

′, S → exp(iβ)S, G→ G+ βv′, ψ → exp(−iβ)ψ.
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Qi dR1 dR2 H S ψL ψR

SU(2)L 2 1 1 2 1 1 1
U(1)Y 1/6 −1/3 −1/3 1/2 0 −1/3 −1/3
U(1)′ 0 1 0 0 1 0 0

Table 6. Field content of a renormalizable model featuring linear scaling. We restrict the discussion
to the down-quark sector with two generations for SM quarks and one family of heavy vector-like
fermions ψL, ψR uncharged under U(1)′.

A.4 Explicit UV model for linear scaling

We now construct an explicit renormalizable model for the minimal scaling of vector inter-
actions in eq. (2.2) proportional to a single power of the dark-vector mass. These types
of models are motivated by scenarios addressing the SM flavor puzzle with non-anomalous
abelian horizontal symmetries, see e.g. ref. [7]. We restrict the discussion for simplicity to the
down-quark sector with two generations. The field content is summarized in table 6, and is
not anomaly-free. However, we can always introduce further suitably charged chiral fermions
in the right-handed up- and charged-lepton sector in order to cancel color and electromagnetic
anomalies, respectively. Note that ψR and dR2 carry the same quantum numbers.

The Lagrangian reads

L = Lkinetic + LYukawa + Lscalar + Lint-V ′ , (A.19)

with standard kinetic terms for all fields and

LYukawa = −yiQiHdR2 − ziQiHψR −mψψLψR − αψLdR1S
† + h.c. (A.20)

Lint-V ′ = g′V ′
µdR1γ

µdR1 , (A.21)
Lscalar = m2

H |H|2 +m2
S |S|2 − λH |H|4 − λS |S|4 − λHS |H|2|S|2 , (A.22)

where we have simply defined ψR to be that field having a mass term with ψL. This already
gives eq. (A.4) and the first term in eq. (A.5) from the EFT discussion, so it only remains
to show that integrating out ψL, ψR induces the second term in eq. (A.5). The equations
of motion for the heavy fermions read, neglecting kinetic terms

ψL = − zi
mψ

QiH , ψR = − α

mψ
dR1S

† , (A.23)

and, therefore, the resulting EFT Lagrangian term is

Llinear ⊃
ziα

mψ
QiHdR1S

† . (A.24)

This indeed reproduces eq. (A.5) with the identification of the UV scale as Λ = −mψ/α.
The remaining calculation follows the EFT discussion, which shows that in these type of UV
models the flavor violating couplings to V ′ scale indeed linearly with mV ′/Λ.
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B Renormalization group equations

In this appendix we collect our results for the renormalization group equations relevant
for the SU(2)L ×U(1)Y interactions of the LDV with SM quarks as discussed in section 5.
Since in the current work we focused on the case of the UV universal scenario, in which
flavor-violation originates only from the SM CKM matrix, we present here only the one-loop
RGEs proportional to Yukawa couplings. However, in what follows the matrices CD

u , CD
d CV

Q ,
CV
u , and CD

d are generic matrices in flavor space, i.e., we have not assumed any alignment
with the SM Yukawas. The relevant terms in the Lagrangian are the SM Yukawa interaction,
the dipole, and the vector interactions with the LDV. They respectively read:

LYukawa = −QYuH̃uR −QYdHdR + h.c. , (B.1)

LDipole =
1
Λ2V

′
µν

(
QCD

u σ
µνH̃uR +QCD

d σ
µνHdR + h.c.

)
, (B.2)

LVector = V ′
µ

(
QCVQγ

µQ+ uRC
V
u γ

µuR + dRC
V
d γ

µdR
)
. (B.3)

The one-loop RGEs for Yukawa running read [82]

16π2 dYu
d lnµ = 3

2
(
YuY

†
uYu − YdY

†
d Yu

)
+ ncTr

[
YuY

†
u + YdY

†
d

]
Yu ,

16π2 dYd
d lnµ = 3

2
(
YdY

†
d Yd − YuY

†
uYd

)
+ ncTr

[
YuY

†
u + YdY

†
d

]
Yd ,

(B.4)

with nc = 3 denoting the number of colors. The one-loop running of the Yukawas is relevant
for the dipole analysis because the RG-evolved Yukawas contribute to the flavor-violating
couplings upon rotation to the quark mass-eigenstates at the EW scale [83].

For the one-loop RGE of the dipole couplings proportional to the SM Yukawas we find

16π2 dCD
u

d lnµ = 5
2YuY

†
uC

D
u − 3

2YdY
†
dC

D
u − CD

d Y
†
d Yu + 2CD

u Y
†
uYu + ncTr

[
YuY

†
u + YdY

†
d

]
CD
u ,

16π2 dCD
d

d lnµ = 5
2YdY

†
dC

D
d − 3

2YuY
†
uC

D
d − CD

u Y
†
uYd + 2CD

d Y
†
d Yd + ncTr

[
YuY

†
u + YdY

†
d

]
CD
d .

(B.5)

For the one-loop RGE of the vector couplings proportional to the SM Yukawas we find

16π2 dCV
Q

d lnµ = −YuCV
u Y

†
u − YdC

V
d Y

†
d + 1

2
(
YuY

†
u + YdY

†
d

)
CV
Q + 1

2C
V
Q

(
YuY

†
u + YdY

†
d

)
,

16π2 dCV
u

d lnµ = −2Y †
uC

V
QYu + Y †

uYuC
V
u + CV

u Y
†
uYu ,

16π2 dCV
d

d lnµ = −2Y †
dC

V
QYd + Y †

d YdC
V
d + CV

d Y
†
d Yd .

(B.6)

C Recast of experimental limits

Experimental collaborations often provide only limits on the P → P ′ + invisible branching
ratios in terms of the three body decay P → P ′νν, as a function of the squared invariant mass
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of the di-neutrino system q2. In order to get the experimental limits on the two body decays
P → P ′V , we use the event count nB per q2-bin information, if provided by the experimental
collaborations. Only the BaBar experiment [40, 41] provides all information needed to perform
a recast for two-body decays B → K/K∗/π + V . For B → K(∗) and dark-vector masses
mV ′ < 3GeV, we use the sophisticated recast of ref. [62], otherwise we estimate upper limits
on the Wilson coefficients in terms of the CLs method as explained below.

For a given Wilson coefficient C, the number of signal events s in a q2-bin i is given as

s = BRi
P→P ′(C)×Ntot × ϵi , (C.1)

where Ntot is the total number of P mesons and ϵi the efficiency associated to bin i. Further,
BRi

P→P ′(C) denotes the branching ratio of P → P ′ within the q2-bin i. The s+ b likelihood
is then given as a Poisson distribution in the number of signal plus background events. The
efficiency ϵi and total number of P mesons Ntot are included as global observables associated
to auxiliary measurements. The uncertainty on the signal, assumed to be Gaussian, is
given by the NP theoretical prediction and is dominated by the form-factor uncertainty.
The systematic uncertainty on the background is implemented as a Gaussian distribution.
With this in mind, we denote the likelihood as L(x|C, ν) with x being the outcome, i.e., the
observed data, C the parameter of interest, i.e., the Wilson coefficient, and ν the nuisance
parameters. As a test statistics tC , we choose a one-sided profile likelihood. Note that the
parameter of interest is actually |C|2 since the branching ratio only depends on |C|2 as we
only consider one coupling at a time. The p-value pC of the s + b hypothesis for a given
value of the Wilson coefficient C is then given by

pC =
∫ ∞

tobs
C

f(tC |C, ˆ̂ν(C)) dtC , (C.2)

where tobs
C denotes the value of the test statistics for the observed data, f denotes the pdf

of the test statistics tC , and ˆ̂ν(C) are the values of the nuisance parameter that maximise
the likelihood for a given C. The α% CLs limit on the Wilson coefficient is then given
by the value of C such that

pC
p0

= 1− α

100 , (C.3)

where p0 denotes the p-value of the background only hypothesis. In order to evaluate eq. (C.2),
one needs the pdf f of the test statistics tC for which we use the ROOT toolkit RooStats in
order to sample the distribution by means of a Monte Carlo method.

Taking the BR(P → P ′V ) as a parameter of interest instead of the Wilson coefficient C,
we can determine a model independent limit BRexp(P → P ′V ) on the two body branching
ratios, see figure 7.

D Limits in the L/R basis

In this appendix we present bounds on the couplings in the L/R basis {CDR
ij ,CDL

ij ,CVR
ij ,CVL

ij },
which are obtained from the limits in the V/A basis (discussed in section 3 and 4) using
eq. (2.4). As the decay rates are symmetric with respect to CL ↔ CR the bounds on both
couplings are the same.
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D.1 Quark dipole interactions
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Figure 8. Upper limits on quark-flavor violating dipole couplings Λ/|CDL
ij |, for s→ d, b→ s, b→ d

and c→ u transitions. Bounds on Λ/|CDR
ij | are identical.

D.2 Quark vector interactions
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Figure 9. Upper limits on quark-flavor violating vector couplings Λ/|CVL
ij |, for s→ d, b→ s, b→ d

and c→ u transitions. Bounds on Λ/|CVR
ij | are identical.
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Figure 10. Upper panel : lower limits on the dipole (left panel) and vector (right panel) couplings for
τ → e transitions Λ/|CDL(R)

τe |, Λ/|CVL(R)
τe | from Belle II [43]. Lower panel : same for τ → µ transitions

Λ/|CDL(R)
τµ |, Λ/|CVL(R)

τµ |.

p−→ p′
−→

−→
q

{P,B, ℓ}

V ′

{P ′,V, B′, ℓ′}

Figure 11. Two-body decays {P,B, ℓ} → {P ′,V, B′, ℓ′} + V ′. The blob represents the non-
perturbative QCD effects for the hadronic decays.

E Two-body decays to light dark vectors

In this appendix we present the full expressions for the two-body decays to a LDV that
enter our analysis, namely

• P → P ′ + V ′: pseudoscalar meson to pseudoscalar meson and LDV,

• P → V + V ′: pseudoscalar meson to vector meson and LDV,

• B → B′ + V ′: baryon to baryon and LDV,

• ℓ→ ℓ′V ′: lepton to lepton and LDV.

For the hadronic processes illustrative Feynman diagrams are shown in figure 1, while
throughout this appendix we define the two-body kinematics for all decays as in figure 11,

– 29 –



J
H
E
P
0
8
(
2
0
2
4
)
1
1
1

namely as

SM(p) → SM′(p′) + V ′(q) (E.1)

with q = p−p′ and q2 = (p−p′)2 = m2
V ′ . In the next subsection we collect the parametrization

of all the relevant form factors for the hadronic processes considered, and in the subsequent
subsections we present the expressions for the rates. The numerical values for the form-factors
are always taken from the most recent work referenced.

E.1 Form factors

P → P ′ + V ′

For these decays the hadronic matrix elements for the vector and axial-vector currents read [71]

⟨P ′(p′)|q′γµq|P (p)⟩ = (p+ p′)µfPP ′
+ (q2) + (p− p′)µfPP ′

− (q2) ,
⟨P ′(p′)|q′γ5γ

µq|P (p)⟩ = 0 .
(E.2)

The corresponding matrix elements for tensor and pseudo-tensor currents read [71]

⟨P ′(p′)|q′σµνq|P (p)⟩ =
2

mP +mP ′

(
p′µpν − p′νpµ

)
fPP

′
T (q2) ,

⟨P ′(p′)|q′σµνγ5q|P (p)⟩ =
2i

mP +mP ′
ϵµνρσp′ρpσf

PP ′
T (q2) ,

(E.3)

where here and throughout we use the ϵ0123 = −ϵ0123 = +1 convention for the Levi-Civita
tensor.

P → V + V ′

For the pseudoscalar decays to two vectors with V denoting the vector-meson, the hadronic
matrix element for the vector and axial-vector currents are parametrized as [71]

⟨V(p′, λ)|q′γµ (1∓ γ5) q|P (p)⟩ = Pµ1 V1(q2)± Pµ2 V2(q2)± Pµ3 V3(q2)± PµPVP (q
2) , (E.4)

where λ denotes the polarization of V. The kinematic functions read

PµP = i(ϵ∗ · q)qµ , Pµ1 = 2ϵµ αβγϵ
∗αp′βqγ ,

Pµ2 = i
[(
m2
P −m2

V

)
ϵ∗µ − (ϵ∗ · q)

(
p′ + p

)µ]
, Pµ3 = i(ϵ∗ · q)

[
qµ − q2

m2
P −m2

V
(p′ + p)µ

]
,

(E.5)

where ϵ∗µ = ϵ∗µ(p′, λ) denotes the polarization vector of the outgoing V. The scalar form
factors can be further parametrized as

VP (q2) = −2mV
q2 A0(m2

V ′) , V1(q2) = −V (q2)
mP +mV

, V2(q2) = −A1(q2)
mP −mV

,

V3(q2) = mP +mV
q2 A1(q2)− mP −mV

q2 A2(q2) ≡ 2mV
q2 A3(q2) ,

(E.6)

with A3(0) = A0(0), which ensures finite matrix elements at q2 = 0, i.e., for massless LDV.
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The corresponding matrix elements for tensor and pseudo-tensor currents read [71]

⟨V(p′, λ)|q′σµνq|P (p)⟩ = −iϵ∗αTαµν(q2) ,

⟨V(p′, λ)|q′σµνγ5q|P (p)⟩ =
1
2ϵ

∗
αϵµνρσT

αρσ(q2) ,
(E.7)

where

Tαµν(q2) = ϵαµνβ
[(
pβ + p′β − qβ

m2
P −m2

V
q2

)
TPV

1 (q2) + qβ
m2
P −m2

V
q2 TPV

2 (q2)
]

+ 2pα
q2 ϵ

µνβγpβp
′
γ

(
TPV

2 (q2)− TPV
1 (q2) + q2

m2
P −m2

V
TPV

3 (q2)
)
.

(E.8)

For vanishing momentum transfer q2 = 0, i.e., massless LDV, the scalar form-factors satisfy

TPV
1 (0) = TPV

2 (0) ≡ T , (E.9)

while the contribution proportional to T3(0) vanishes.

B → B′ + V ′

For the baryon decays the matrix elements for vector and axial-vector currents are parametrized
by [72, 74, 77]

⟨B′(p′)|q′γµq|B(p)⟩ = uB′(p′)
(
f1(q2)γµ − i

f2(q2)
mB

σµνq
ν + f3(q2)

mB
qµ

)
uB(p) ,

⟨B′(p′)|q′γµγ5q|B(p)⟩ = uB′(p′)
(
g1(q2)γµ − i

g2(q2)
mB

σµνq
ν + g3(q2)

mB
qµ

)
γ5uB(p) ,

(E.10)

with uB(p) and uB′(p′) the spinor functions for B and B′ respectively. For Λ decays the
values of the form factors are taken from [72, 74, 77], while for hyperon decays they are
taken from [67–69].

The corresponding matrix elements for tensor and pseudo-tensor currents have the
form [34, 84]

⟨B′(p′)|q′σµνq|B(p)⟩ = gBB
′

T uB′(p′)σµνuB(p) ,

⟨B′(p′)|q′σµνγ5q|B(p)⟩ = i

2g
BB′
T ϵµναβuB′(p′)σαβuB(p) ,

(E.11)

which is an approximation valid for m2
V ′ = 0, which we use for the hyperon decays. For

the baryon Λb → Λ, Λb → n, and Λc → p decays we use the available full parametrization,
given by [72, 77]

⟨B′(p′)|q′iσµνqνq|B(p)⟩ = uB′(p′)
(
fTV

1 (q2)
mB

(
γµq2 − qµ/q

)
− fTV

2 (q2)iσµνqν
)
uB(p) ,

⟨B′(p′)|q′iσµνqνγ5q|B(p)⟩ = uB′(p′)
(
fTA

1 (q2)
mB

(
γµq2 − qµ/q

)
− fTA

2 (q2)iσµνqν
)
γ5uB(p) .
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Having collected all hadronic input used in the analysis we next present the full expressions
for the two-body rates. We show separately the contributions from dipole and vector
interactions with the LDV, cf. eqs. (2.1) and (2.2). For brevity we drop the argument in
all form factors since it is always q2 = m2

V ′ in two-body decays. To shorten the expression
we also introduce the notations

κx ≡ m2
x/M

2 and λxy ≡ (1− κx − κy)2 − 4κxκy ,

with mx indicating the mass of the final-state particle x and M the mass of the decaying
particle.

E.2 Partial width for P → P ′ + V ′

The partial width for the decay P → P ′ + V ′ with an underlying q → q′ flavor-changing
transition is given respectively for dipole and vector interaction by

Γ(P → P ′V ′)
∣∣∣
D
= κV ′m3

P

4πΛ2
λ

3/2
P ′V ′(

1 +√
κP ′

)2 |fPP ′
T |2|CD

q′q|2 , (E.12)

Γ(P → P ′V ′)
∣∣∣
V
= m3

P

16πΛ2λ
3/2
P ′V ′ |fPP

′
+ |2|CV

q′q|2 , (E.13)

Note that due to the parity conservation of strong interactions the rate is independent of the
axial couplings CV5

ij and CD5
ij . Therefore, P → P ′ + V ′ decays are only sensitive to the CV(D)

ij

couplings. In the {L,R} basis, these decays are sensitive to both CDL(R)
ij , CVL(R)

ij couplings.
In the limit for massless LDV, the leading in mV ′ contributions to the decay rates read

lim
mV ′→0

Γ(P → P ′ + V ′)
∣∣∣
D
= m2

V ′mP

4πΛ2 (1−√
κP ′)3 |fPP ′

T |2|CD
q′q|2 , (E.14)

lim
mV ′→0

Γ(P → P ′ + V ′)
∣∣∣
V
= m3

P

16πΛ2 (1− κP ′)3 |fPP ′
+ |2|CV

q′q|2 . (E.15)

While the rate originating from dipole interactions vanishes in the massless limit, the
contribution of the vector interaction remains constant due to the linear scaling mV ′/Λ
introduced and discussed in eq. (2.2).

E.3 Partial width for P → V + V ′

The partial width for the decay P → V + V ′ with an underlying q → q′ flavor-changing
transition is given respectively for dipole and vector interaction by

Γ(P → V + V ′)
∣∣∣
D
= m3

P

2πΛ2λ
1/2
VV ′

(
AD|CD

q′q|2 +AD5|CD5
q′q|2

)
,

Γ(P → V + V ′)
∣∣∣
V
= m3

Pκ
2
V ′

8πΛ2 λ
1/2
VV ′

(
AV|CV

q′q|2 +AV5|CV5
q′q|2

)
,

(E.16)
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with the coefficients AX given by

AD = |TPV
1 |2λVV ′ , (E.17)

AD5 = |TPV
2 |2 8κV (1− κV)2 + κV ′ (1 + 3κV)2 − 2κ2

V ′(1 + 3κV) + κ3
V ′

8κV

+ |TPV
3 |2λ2

VV ′
κV ′

8κV(1− κV)2 − Re(TPV
2 TPV∗

3 )λVV ′
κV ′(1 + 3κV − κV ′)

4κV(1− κV)
, (E.18)

AV = |V |2 λVV ′(
1 +√

κV
)2 , (E.19)

AV5 = |A1|2
κ3
V ′ − 2κ2

V ′(1 + 3κV) + κV ′(1 + 3κV)2 + 8(1− κV)2κV

8κV
(
1−√

κV
)2

+ |A3|2
λ2
VV ′

2κV ′ (1− κV)2 +Re(A1A
∗
3)

√
1 + κV

2√κV (1− κV)2λVV ′ (1− κV ′ + 3κV) . (E.20)

In the limit of a massless LDV, the decay rates reduce to

lim
mV ′→0

Γ(P → VV ′)
∣∣∣
D
= m3

P

2πΛ2 (1− κV)3 |T |2
(
|CD
q′q|2 + |CD5

q′q|2
)
,

lim
mV ′→0

Γ(P → VV ′)
∣∣∣
V
= m3

P

16πΛ2 (1− κV)3
(
|A3|2|CV5

q′q|2 +
2κV ′ |V |2(√
κV + 1

)2 |CV
q′q|2

)
,

(E.21)

which illustrates that the sensitivity to CV
q′q weakens for very light LDVs.

E.4 Partial width for B → B′ + V ′

For baryon decays B → B′ + V ′ with an underlying q → q′ transition the contribution to
the partial width from the dipole and vector interaction read

Γ(B → B′V ′)
∣∣∣
D
= m3

B

4πΛ2λ
1/2
B′V ′

[ (
|fTV

1 |2Â−
D1 + |fTV

2 |2Â−
D2 + Â−

D12 Re(f
TV
1 fTV∗

2 )
)
|CD
q′q|2

+
(
|fTA

1 |2Â+
D1 + |fTA

2 |2Â+
D2 + Â+

D12 Re(f
TA
1 fTA∗

2 )
)
|CD5
q′q|2

]
,

Γ(B → B′V ′)
∣∣∣
V
= m3

B

16πΛ2λ
1/2
B′V ′

[ (
|f1|2Â−

V1 + |f2|2Â−
V2 + Â−

V12 Re(f1f
∗
2 )
)
|CV
q′q|2

+
(
|g1|2Â+

V1 + |g2|2Â+
V2 + Â+

V12 Re(g1g
∗
2)
)
|CV5
q′q|2

]
,

(E.22)

with the kinematic coefficients

Â±
D1 = κV ′

(
κ2
B′ + κB′ (κV ′ − 2)± 6√κB′κV ′ − 2κ2

V ′ + κV ′ + 1
)
,

Â±
D2 = 2κ2

B′ − κB′ (κV ′ + 4)± 6√κB′κV ′ − κ2
V ′ − κV ′ + 2 ,

Â±
D12 = 6κV ′ (√κB′ ∓ 1) (1 + κB′ ± 2√κB′ − κV ′) ,
Â±

V1 = (1 + κB′ ± 2√κB′ − κV ′) (1 + κB′ ∓ 2√κB′ + 2κV ′) ,
Â±

V2 = κV ′ (1 + κB′ ± 2√κB′ − κV ′) (2 + 2κB′ ∓ 4√κB′ + κV ′) ,
Â±

V12 = 6κV ′ (κB′ ± 2√κB′ − κV ′ + 1) (√κB′ ∓ 1) .
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In the limit of a massless LDV, the rates reduce to

lim
mV ′→0

Γ(B → B′V ′)
∣∣∣
D
= m3

B

2πΛ2 (1− κB′)3
[
|fTV

2 |2|CD
q′q|2 + |fTA

2 |2|CD5
q′q|2

]
,

lim
mV ′→0

Γ(B → B′V ′)
∣∣∣
V
= m3

B

16πΛ2 (1− κB′)3
(
|f1|2|CV

q′q|2 + |g1|2|CV5
q′q|2

)
.

(E.23)

For hyperon decays we use the form factor parametrization of eq. (E.11), valid for mV ′ = 0.
Nonetheless, we consider a massive LDV for the kinematics for completeness. The decay
rate reads

Γ(B → B′V ′)
∣∣∣
D
= m3

B

4πΛ2λ
1/2
B′V ′(gBB

′
T )2

(
Â−

D|C
D
q′q|2 + Â+

D|C
D5
q′q|2

)
, (E.24)

with the kinematic coefficients

Â±
D = (κB′ ± 2√κB′ − κV ′ + 1) (2κB′ ∓ 4√κB′ + κV ′ + 2) . (E.25)

In the limit of a massless LDV, the rate reduces to

lim
mV ′→0

Γ(B → B′V ′)
∣∣∣
D
= m3

B

2πΛ2 (1− κB′)3 |gBB′
T |2

(
|CD
q′q|2 + |CD5

q′q|2
)
. (E.26)

For a fully polarized initial B, the differential width read

dΓ(B → B′V ′)
d cos θ

∣∣∣∣
D
= m3

B

8πΛ2λ
1/2
B′V ′

[(
|fTV

1 |2Â−
D1 + |fTV

2 |2Â−
D2 + Â−

D12 Re(f
TV
1 fTV∗

2 )
)
|CD
q′q|2

+
(
|fTA

1 |2Â+
D1 + |fTA

2 |2Â+
D2 + Â+

D12 Re(f
TA
1 fTA∗

2 )
)
|CD5
q′q|2

−2λ1/2
B′V ′ cos θ

(
B̂D11 Im(fTV

1 fTA∗
1 ) + B̂−

D12 Im(fTV
1 fTA∗

2 )

+B̂D22 Im(fTV
2 fTA∗

2 ) + B̂+
D12 Im(fTV

2 fTA∗
1 )

)
Re(CD

q′qCD5∗
q′q )

−2λ1/2
B′V ′ cos θ

(
B̂D11 Re(fTV

1 fTA∗
1 ) + B̂−

D12 Re(f
TV
1 fTA∗

2 )

+B̂D22 Re(fTV
2 fTA∗

2 ) + B̂+
D12 Re(f

TV
2 fTA∗

1 )
)
Im(CD

q′qCD5∗
q′q )

]
,

dΓ(B → B′V ′)
d cos θ

∣∣∣∣
V
= m3

B

32πΛ2λ
1/2
B′V ′

[(
|f1|2Â−

V1 + |f2|2Â−
V2 + Â−

V12 Re(f1f
∗
2 )
)
|CV
q′q|2

+
(
|g1|2Â+

V1 + |g2|2Â+
V2 + Â+

V12 Re(g1g
∗
2)
)
|CV5
q′q|2

−2λ1/2
B′V ′ cos θ

(
B̂V11 Re(f1g

∗
1) + B̂+

V12 Re(f2g
∗
1)

+B̂−
V12 Re(f1g

∗
2) + B̂V22 Re(f2g

∗
2)
)
Re(CV

q′qCV5∗
q′q )

+2λ1/2
B′V ′ cos θ

(
B̂V11 Im(f1g

∗
1) + B̂+

V12 Im(f2g
∗
1)

+B̂−
V12 Im(f1g

∗
2) + B̂V22 Im(f2g

∗
2)
)
Im(CV

q′qCV5∗
q′q )

]
,

(E.27)
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with the kinematic coefficients

B̂D11 = κV ′ (κB′ + 2κV ′ − 1) , B̂D22 = 2κB′ + κV ′ − 2, B̂±
D12 = −κV ′ (3√κB′ ± 1) ,

(E.28)
B̂V11 = κB′ + 2κV ′ − 1, B̂V22 = κV ′ (2κB′ + κV ′ − 2) , B̂±

V12 = κV ′ (3√κB′ ± 1) .
(E.29)

In the limit of a massless LDV, the rate reduces to

lim
mV ′→0

dΓ(B → B′V ′)
d cos θ

∣∣∣∣
D
= m3

B

4πΛ2 (1−κB′)3
[
|fTV

2 |2|CD
q′q|2 + |fTA

2 |2|CD5
q′q|2

+2 cos θ
(
Im(fTV

2 fTA∗
2 )Re(CD

q′qCD5∗
q′q )+Re(fTV

2 fTA∗
2 ) Im(CD

q′qCD5∗
q′q )

)]
,

lim
mV ′→0

dΓ(B → B′V ′)
d cos θ

∣∣∣∣
V
= m3

B

32πΛ2 (1−κB′)3
(
|f1|2|CV

q′q|2 + |g1|2|CV5
q′q|2

+2 cos θ
(
Re(f1g

∗
1)Re(CV

q′qCV5∗
q′q )− Im(f1g

∗
1) Im(CV

q′qCV5∗
q′q )

))
.

(E.30)

E.5 Polarized lepton distributions and rates ℓ → ℓ′ + V ′

Next we consider the decays ℓ→ ℓ′ + V ′ for the case in which lepton-flavor violating dipole
or vector interactions with the LDV are present. In this case there is experimental sensitivity
to the polarization of the initial lepton by the measurement of the angular distribution of the
angle θ, defined as the angle between the polarization vector of ℓ and the three-momentum of ℓ′.
For the different LDV interactions we find for the differential width of a fully polarized initial ℓ

dΓ(ℓ→ ℓ′V ′)
d cos θ

∣∣∣∣
D
= m3

ℓ

8πΛ2λ
1/2
ℓ′V ′

[
(ÃD

+ + ÃD
−)
∣∣∣CD

ℓ′ℓ

∣∣∣2 + (ÃD
+ − ÃD

−)
∣∣∣CD5

ℓ′ℓ

∣∣∣2
+ ÃD

θ cos θ · Im(CD
ℓ′ℓCD5∗

ℓ′ℓ )
]
,

dΓ(ℓ→ ℓ′V ′)
d cos θ

∣∣∣∣
V
= m3

ℓ

32πΛ2λ
1/2
ℓ′V ′

[
(ÃV

+ + ÃV
−)
∣∣∣CV

ℓ′ℓ

∣∣∣2 + (ÃV
+ − ÃV

−)
∣∣∣CV5

ℓ′ℓ

∣∣∣2
+ ÃV

θ cos θ · Re(CV
ℓ′ℓCV5∗

ℓ′ℓ )
]
,

(E.31)

with the kinematic coefficients

ÃD
+ = 2 (1− κℓ′)2 − κV ′ (1 + κℓ′)− κ2

V ′ , ÃV
+ = (1− κℓ′)2 + κV ′ (1 + κℓ′)− 2κ2

V ′ ,

ÃD
− = −6√κℓ′κV ′ , ÃV

− = −6√κℓ′κV ′ , (E.32)

ÃD
θ = 2λ1/2

ℓ′V ′ (2− 2κℓ′ − κV ′) , ÃV
θ = 2λ1/2

ℓ′V ′ (1− 2κV ′ − κℓ′) .

In the limit of massless LDV, the polarized differential two-body rate reduces to

lim
mV ′→0

dΓ(ℓ→ ℓ′V ′)
d cos θ

∣∣∣∣
D
= m3

ℓ

4πΛ2 (1− κℓ′)3
(∣∣∣CD

ℓ′ℓ

∣∣∣2 + ∣∣∣CD5
ℓ′ℓ

∣∣∣2 + 2 cos θ · Im(CD
ℓ′ℓCD5∗

ℓ′ℓ )
)

lim
mV ′→0

dΓ(ℓ→ ℓ′V ′)
d cos θ

∣∣∣∣
V
= m3

ℓ

32πΛ2 (1− κℓ′)3
(∣∣∣CV

ℓ′ℓ

∣∣∣2 + ∣∣∣CV5
ℓ′ℓ

∣∣∣2 + 2 cos θ · Re(CV
ℓ′ℓCV5∗

ℓ′ℓ )
)
.
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Finally, after integrating over θ and averaging over the initial- and final-state polarizations,
the total decay rates read

Γ(ℓ→ ℓ′V ′)
∣∣∣
D
= λ

1/2
ℓ′V ′m3

ℓ

4πΛ2

(∣∣∣CD
ℓ′ℓ

∣∣∣2 (ÃD
+ + ÃD

−) +
∣∣∣CD5

ℓ′ℓ

∣∣∣2 (ÃD
+ − ÃD

−)
)
, (E.34)

Γ(ℓ→ ℓ′V ′)
∣∣∣
V
= λ

1/2
ℓV ′m3

ℓ

16πΛ2

(∣∣∣CV
ℓ′ℓ

∣∣∣2 (ÃV
+ + ÃV

−) +
∣∣∣CV5

ℓ′ℓ

∣∣∣2 (ÃV
+ − ÃV

−)
)
, (E.35)

which in the limit of massless LDVs reduces to

lim
mV ′→0

Γ(ℓ→ ℓ′V ′)
∣∣∣
D
= m3

ℓ

2πΛ2 (1− κℓ′)3
(∣∣∣CD

ℓ′ℓ

∣∣∣2 + ∣∣∣CD5
ℓ′ℓ

∣∣∣2) ,

lim
mV ′→0

Γ(ℓ→ ℓ′V ′)
∣∣∣
V
= m3

ℓ

16πΛ2 (1− κℓ′)3
(∣∣∣CV

ℓ′ℓ

∣∣∣2 + ∣∣∣CV5
ℓ′ℓ

∣∣∣2) .
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