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A R T I C L E I N F O A B S T R A C T

Editor: A. Ringwald We propose simple scenarios where the observed dark matter abundance arises from decays and scatterings of 
heavy quarks through freeze-in of an axion-like particle with mass in the 10 keV−1MeV range. These models can 
be tested by future X-ray telescopes, and in some cases will be almost entirely probed by searches for two-body 
decays 𝐾 → 𝜋 + invis. at NA62. As a byproduct, we discuss the cancellation of IR divergencies in flavor-violating 
scattering processes relevant for thermal axion production, and derive the general contribution to axion-photon 
couplings from all three light quarks.
1. Introduction

QCD Axions and axion-like particles (ALPs) with masses below the 
MeV scale are excellent Dark Matter (DM) candidates, provided that the 
associated Peccei-Quinn (PQ) breaking scale 𝑓𝑎 is sufficiently large in 
order to ensure stability on cosmological scales [1–3]. These particles 
are light enough to be produced in stellar plasmas, and constraints from 
star cooling typically require 𝑓𝑎 ≳ 109 GeV, seemingly rendering axion 
production at particle colliders hopeless. However, collider searches are 
actually sensitive to such large scales, if the axion has flavor-violating 
(FV) couplings to SM fermions [4–9]. Precision flavor experiments then 
allow to probe scales of the order of 𝑓𝑎 ∼ 1012 GeV by searching for 𝐾 →
𝜋 + invis. at NA62 [10], 1010 GeV with 𝜇→ 𝑒 + invis. at MEG-II [8,11], 
Mu3e [12], Mu2e or COMET [13], and 109 GeV with 𝐵→𝐾 + invis. at 
Belle II [7].

As flavor-violating axion couplings are determined by the misalign-
ment of PQ charges and SM Yukawas, their prediction from UV scenarios 
requires a theory of flavor. Particularly economic models of this kind can 
be constructed when PQ acts as a flavor symmetry explaining Yukawa 
hierarchies [14–18], although the resulting size of flavor-violating cou-
plings largely depends on the particular scenario. Here instead we link 
the size of flavor-violating axion couplings to the observed DM relic 
abundance, requiring thermal production of DM axions in the right 
amount via freeze-in of decays (and scatterings) of SM fermions. As 
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Ω𝑎 ∝𝑚𝑎Γ(𝑓𝑖→ 𝑓𝑗𝑎), this fixes the rate of these decays for a given axion 
mass, which indeed is in the reach of current experiments. This idea has 
originally been proposed in Ref. [19] in the context of lepton flavor-
violating (LFV) decays, it is the purpose of this article to extend the 
analysis to quarks.

The quark scenario differs from the lepton scenarios in several as-
pects. Thermal axion production has to respect the Warm DM bound, 
𝑚𝑎 ≳ 10keV, and axion decays into photons have to be sufficiently 
suppressed in order to satisfy stringent constraints from X-ray and low-
energy 𝛾 -ray line searches. This requires the absence of EM and color 
anomalies, so that the decay rate is additionally suppressed by power of 
𝑚4
𝑎∕𝑚

4
𝑓

. In the case of LFV decays 𝑓 = 𝑒, 𝜇, so that some hierarchy be-
tween diagonal and off-diagonal couplings is needed in order to ensure 
sufficient stability. In contrast in the quark case the mass suppression is 
at least 𝑚4

𝑎∕𝑚
4
𝜋 , thus improving axion stability and reducing the need of 

coupling hierarchies. Another important difference is the relative size 
of axion production rates from decays and scattering processes. While 
in the LFV scenarios production from diagonal scattering is suppressed 
with respect to decays by a factor of 𝛼em, in the quark case this becomes 
a factor 𝛼𝑠, so that decays and scattering are almost equally relevant 
for couplings of similar size. This also implies that NLO corrections are 
sizable, and we will discuss the corrections from flavor-violating scat-
tering processes, which naively involves IR divergences. However, we 
will demonstrate that such terms are canceled in the relevant temper-
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ature regime by thermal and virtual corrections, partially reproducing 
results in Ref. [20].

We now proceed by defining the basic framework in Section 2 and in-
troduce two classes of simple benchmark scenarios. We then discuss ax-
ion stability, axion production in the early universe and constraints from 
structure formation and astrophysics. We use these results to project 
present constraints and future sensitivities on the 2-dimensional pa-
rameter of our benchmark models in Section 3, before concluding in 
Section 4.

2. Framework

We consider an anomaly-free ALP 𝑎 that only couples to SM quarks

 = 1
2
(𝜕𝜇𝑎)2 −

𝑚2
𝑎

2
𝑎2 +

𝜕𝜇𝑎

2𝑓𝑎
𝑞𝑖𝛾
𝜇
(
𝐶𝑉𝑞𝑖,𝑞𝑗

+𝐶𝐴𝑞𝑖,𝑞𝑗 𝛾5
)
𝑞𝑗 , (1)

where 𝐶𝑉 ,𝐴𝑞𝑖,𝑞𝑗 are traceless hermitian matrices in flavor space. These cou-
plings arise from the misalignment of PQ charges and quark Yukawa 
matrices

𝐶𝑉 ,𝐴𝑞 =𝑈†
𝑞𝑅
𝑋𝑞𝑅𝑈𝑞𝑅 ±𝑈†

𝑞𝐿
𝑋𝑄𝐿𝑈𝑞𝐿 , (2)

where 𝑞 = 𝑢, 𝑑, and 𝑋𝑄𝐿, 𝑋𝑢𝑅 , 𝑋𝑑𝑅 are traceless1 diagonal matrices 
containing the PQ charges of 𝑄𝐿, 𝑢𝑅, 𝑑𝑅, respectively, while 𝑈𝑞𝐿,𝑞𝑅
are unitary matrices that diagonalize the quark Yukawas according to 
𝑌

diag
𝑞 =𝑈†

𝑞𝐿
𝑌𝑞𝑈𝑞𝑅 , where 𝑉CKM =𝑈†

𝑢𝐿
𝑈𝑑𝐿 is the CKM matrix.

Different scenarios can occur depending on the specific choices for 
flavor rotations 𝑈𝑞 and PQ charges 𝑋𝑞 . In the following we consider two 
classes of benchmark scenarios. In the first class we take into account 
a single flavor transition at a time, so only two charges of right-handed 
(RH) quarks are different from zero, e.g. 𝑋𝑑𝑅 = diag(0, 1, −1), 𝑋𝑢𝑅 =
𝑋𝑄𝐿 = 0. The corresponding unitary matrix is restricted to a rotation 
in the same sector, i.e. is a rotation in the 2-3 plane by some angle 𝛼
with 0 ≤ 𝛼 ≤ 𝜋∕2. This gives

𝐶𝑉
𝑑
= 𝐶𝐴

𝑑
=
⎛⎜⎜⎝
0 0 0
0 sin𝛼 cos𝛼
0 cos𝛼 −sin𝛼

⎞⎟⎟⎠ , 𝐶𝑉𝑢 = 𝐶𝐴𝑢 = 0 . (3)

We call this scenario the “𝑏𝑠 scenario”, analogously we define the 𝑏𝑑, 
𝑐𝑢, 𝑠𝑑, 𝑡𝑢 and 𝑡𝑐 scenarios. These benchmarks scenarios have only three 
free parameters: the ALP mass 𝑚𝑎 , the decay constant 𝑓𝑎, and the rota-
tion angle 𝛼 that controls the ratio of flavor-diagonal and off-diagonal 
ALP couplings. We will fix one of these parameters (𝑓𝑎) by demanding 
that ALPs are thermally produced in the right abundance via thermal 
freeze-in. As a consequence, we will obtain a two-dimensional param-
eter space in the plane (𝑚𝑎, 𝛼), which is subject to various constraints 
from direct searches, astrophysics and cosmology. As we are going to 
discuss in Section 3, only few of the six possible scenarios are viable 
and give rise to a distinct phenomenology.

The second class of scenarios is obtained by assuming that the uni-
tary flavor rotations are given by the CKM matrix, while PQ charges 
in the quark sector are either vanishing or taken to be the most gen-
eral assignment, 𝑋𝑞 = diag(1, 𝑋, −1 −𝑋), where the PQ charge 𝑋 is a 
real number. Below we consider two explicit benchmark scenarios: ei-
ther only left-handed quarks are charged under PQ, i.e., 𝑋𝑢𝑅 = 𝑋𝑑𝑅 =
0, 𝑋𝑄𝐿 = diag(1, 𝑋, −1 −𝑋), and the CKM is coming entirely from the 
down-quark sector, 𝑈𝑢𝐿 = 1, 𝑈𝑑𝐿 = 𝑉CKM, or only right-handed down 
quarks are charged, 𝑋𝑄𝐿 = 𝑋𝑢𝑅 = 0, 𝑋𝑑𝑅 = diag(1, 𝑋, −1 −𝑋) and the 
relevant rotation is CKM-like, 𝑈𝑑𝑅 = 𝑉CKM. We call these scenarios the 
“CKM𝑄𝐿 scenario” and the “CKM𝑑𝑅 scenario”, respectively. These sce-
narios are considered to be representative for the phenomenology of 
more realistic models, where flavor-rotations are determined by the 

1 This ensures that the ALP has no anomalous couplings to photons and gluons, 
2

as the mixed PQ × EM×EM and PQ × SU(3)𝑐 × SU(3)𝑐 anomalies vanish.
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same dynamics that explain fermion mass hierarchies, which may be 
the PQ symmetry itself [17,18,21]. As in the first class, these two sce-
narios have just three parameters, where again 𝑓𝑎 is determined by the 
observed relic abundance, leaving a two-dimensional parameter space 
in the plane (𝑚𝑎, 𝑋), which is subject to phenomenological constraints.

2.1. Dark matter stability

To be stable on cosmological scales, axion decays into SM parti-
cles must be sufficiently suppressed. We will take 𝑚𝑎 ≪ 𝑚𝜋 , so that 
only decays into photons are possible. The dominant constraints on 
the decay rate come from X-ray telescopes, and are of the order 𝜏𝛾𝛾 ≳
(1026 ÷ 1028) sec, depending on 𝑚𝑎, which is roughly 10 orders of mag-
nitude larger than the age of the Universe.

In our benchmark models, the decay 𝑎 → 𝛾𝛾 takes place through 
quarks loops. For heavy quarks one can use perturbative results, while 
for lights quarks (𝑢, 𝑑, 𝑠) one has to rely on chiral perturbation theory 
since 𝑚𝑎 ≪ ΛQCD. In the following we use and extend the results of 
Ref. [22]. The decay rate into photons is given by

Γ𝛾𝛾 =
𝛼2em𝑚

3
𝑎

64𝜋3𝑓 2𝑎
|||𝐶heavy
𝛾𝛾 +𝐶 light

𝛾𝛾
|||2 , (4)

where the effective photon couplings receive contributions from heavy 
and light quarks. The heavy quark contribution is given by

𝐶
heavy
𝛾𝛾 ≈

∑
𝑖=𝑐,𝑏,𝑡

𝑄2
𝑖 𝐶𝑖
𝑚2
𝑎

4𝑚2
𝑖

, (5)

where 𝐶𝑖 ≡ 𝐶𝐴𝑞𝑖𝑞𝑖 and we have neglected terms of order 𝑚4
𝑎∕𝑚

4
𝑖
. Using the 

results detailed in Appendix A, the light quarks contribute dominantly 
through axion-𝜋, axion-𝜂 and axion-𝜂′ mixing

𝐶
light
𝛾𝛾 ≈

𝐶𝑢 −𝐶𝑑
2

𝑚2
𝑎

𝑚2
𝜋

+
√
2
6

(𝐶𝑢 +𝐶𝑑 −𝐶𝑠)
𝑚2
𝑎

𝑚2
𝜂

+
√
2
3

(𝐶𝑢 +𝐶𝑑 + 2𝐶𝑠)
𝑚2
𝑎

𝑚2
𝜂′

, (6)

with (𝑚𝜋, 𝑚𝜂, 𝑚𝜂′ ) = (135, 548, 958) MeV, and we have neglected multi-

plicative corrections of order 𝑚2
𝑎∕𝑚

2
𝜋,𝜂,𝜂′

, besides small corrections from 
isospin breaking.

Thus the effective coupling to photons is suppressed by at least 
𝑚2
𝑎∕𝑚

2
𝜋 , since there is no color nor electromagnetic anomaly [23–27]. 

As a result the axion lifetime is given by (assuming that axion-pion mix-
ing is the dominant contribution)

𝜏𝑎 ≈ 3 × 1026sec
(
0.1 MeV
𝑚𝑎

)7(𝑓𝑎∕(𝐶𝑢 −𝐶𝑑 )
109 GeV

)2
, (7)

so that for parameters consistent with freeze-in production and WDM 
bounds (see below) the axion lifetime easily exceeds the age of the uni-
verse, and can be sufficiently large in order to satisfy the stringent limits 
from X-ray telescopes.

For axion masses in the keV-MeV range we use the constraints sum-
marized in Appendix A of Ref. [19], where the strongest bounds are 
set by different X-rays and low energy gamma rays line searches: Chan-
dra [28,29], Newton-XMM [30], NuStar [31–34], and INTEGRAL [35]. 
For heavier masses 1 MeV ≲𝑚𝑎 ≲ 1000 MeV the most stringent limits on 
the 𝑎 → 𝛾𝛾 decay rate come from COMPTEL and EGRET, and we take 
the constraints presented in Ref. [36]. Further limits are provided by the 
optical depth since recombination, which is measured by the Planck col-
laboration [37]. Fast DM decay into photons would significantly modify 
the fraction of free electrons after reionization and, consequently, would 
attenuate the small-scale acoustic peaks of the CMB power spectrum. 
The model-independent bounds for the optical depth can be found in 
Ref. [38,39]. These limits constrain rates of the order 𝜏𝛾𝛾 ≈ 1024 sec, and 

are therefore less constraining than the X-ray telescopes in the relevant 
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parameter region (cf. Fig. 2). Various future X-ray missions are designed 
to further extend the limits, and we use the optimistic projections col-
lected in Ref. [19] for GECCO [40], THESEUS [41] and Athena [42–44].

2.2. Dark matter production

For sufficiently large decay constants, 𝑓𝑎 ≳ 108 GeV, the axion was 
never in thermal equilibrium with the SM bath. Thermal axions are then 
produced via 2 → 2 scattering and decay processes of quarks in the ther-
mal bath, which allows to explain the observed DM relic density through 
the freeze-in mechanism [45]. The total relic axion abundance is given 
by Ω𝑎ℎ2 = Ω𝑎ℎ2|dec + Ω𝑎ℎ2|scatt , where Ω𝑎ℎ2|dec and Ω𝑎ℎ2|scatt are the 
contributions from (flavor-violating) quark decays 𝑞𝑖 → 𝑞𝑗𝑎 and flavor-
diagonal quark scattering processes 𝑞𝑖𝑔(𝛾) → 𝑞𝑖𝑎 and 𝑞𝑖𝑞𝑖 → 𝑔(𝛾) 𝑎, re-
spectively (we will comment on flavor-violating scattering processes in 
Section 2.3). The corresponding cross-sections read

𝜎𝑞𝑖𝛾→𝑞𝑖𝑎 =
𝛼em𝑄

2
𝑖

8𝑓 2𝑎
|𝐶𝐴𝑞𝑖𝑞𝑖 |2 𝑥

(
−2 ln𝑥− 3 + 4𝑥− 𝑥2

)
1 − 𝑥

,

𝜎𝑞𝑖𝑞𝑖→𝛾𝑎 =
𝛼em𝑄

2
𝑖

𝑓 2𝑎
|𝐶𝐴𝑞𝑖𝑞𝑖 |2 𝑥 tanh−1(

√
1 − 4𝑥)

1 − 4𝑥
, (8)

where 𝑥 = 𝑚2
𝑞𝑖
∕𝑠 and 𝑄𝑖 is the electric charge of 𝑞𝑖 . The corresponding 

gluon scattering processes are obtained from these results by replacing 
𝛼em𝑄

2
𝑖
→ 𝛼𝑠∕6 in 𝜎𝑞𝑖𝛾→𝑞𝑖𝑎 and 𝛼em𝑄2

𝑖
→ 4𝛼𝑠∕9 in 𝜎𝑞𝑖𝑞𝑖→𝛾𝑎, in agreement 

with e.g. Ref. [46]. The decay rate is given by

Γ𝑞𝑖→𝑞𝑗𝑎 =
𝑚3
𝑞𝑖

64𝜋𝑓 2𝑎
|||𝐶𝑞𝑖𝑞𝑗 |||2 ⎛⎜⎜⎝1 −

𝑚2
𝑞𝑗

𝑚2
𝑞𝑖

⎞⎟⎟⎠
3

, (9)

where 𝐶𝑞𝑖𝑞𝑗 ≡
√|𝐶𝑉𝑞𝑖𝑞𝑗 |2 + |𝐶𝐴𝑞𝑖𝑞𝑗 |2 and we have neglected the ALP mass. 

Following Refs. [45,47], one can use these results to derive analytical 
estimates for the corresponding contributions to the freeze-in abundance, 
assuming that the effective number of relativistic degrees of freedom in 
the SM bath is approximately constant and that the axion production 
takes place during radiation domination. Under these assumptions one 
obtains, including charge multiplicities (cf, Appendix C in Ref. [48])

Ω𝑎ℎ2|dec ≈ 0.12
( 𝑚𝑎
0.1 MeV

)(9.7 × 109 GeV
𝑓𝑎∕𝐶𝑞𝑖𝑞𝑗

)2(
𝑚𝑞𝑖
GeV

)

×

(
70

𝑔∗(𝑚𝑞𝑖 )

)3∕2

for decays , (10)

Ω𝑎ℎ2|scatt ≈ 0.12
( 𝑚𝑎
0.1 MeV

)(1.4 × 1010 GeV
𝑓𝑎∕𝐶𝐴𝑞𝑖𝑞𝑖

)2(
𝑚𝑞𝑖
GeV

)

×

(
70

𝑔∗(𝑚𝑞𝑖 )

)3∕2(
𝛼𝑠(𝑚𝑞𝑖 )
0.48

)
for scattering , (11)

where we have omitted the sub-dominant contribution from photon 
scattering.

It is clear from Eqs. (10) and (11) that the scattering contribution is 
only slightly smaller than the contribution from quark decays, as a re-
sult of the large size of the strong coupling close to the GeV scale. This 
also implies that omitting higher-order QCD corrections is not a good 
approximation, so we consider our leading-order results to be valid only 
up to (1) corrections, which however only has a mild impact on the 
relevant model parameter 𝑓𝑎 . Keeping in mind this uncertainty, we can 
still obtain more accurate expressions by solving the Boltzmann equa-
tion numerically, which leads to the results presented in Section 3. We 
stress that for this procedure we only use the temperature dependence 
of energy and entropy degrees of freedom 𝑔(𝑠)∗(𝑇 ), and unlike Ref. [49]
we neither consider thermal masses nor flavor off-diagonal scattering 
3

processes. Indeed both effects represent only a subset of the full (and 
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unknown) NLO corrections to the leading order effects to which we re-
strict here, as explained in more detail in Section 2.3.

In addition to the purely IR contribution to the DM abundance dis-
cussed above, freeze-in scenarios are potentially sensitive also to pro-
cesses that are dominated by high temperatures. In particular, at en-
ergies above the electroweak scale, we have to take into account also 
operators like

eff = −𝐶𝐴𝑞𝑖𝑞𝑗
𝑖𝑎

𝑓𝑎

𝑚𝑞𝑖
𝑣
𝐻𝑄𝑖𝑞𝑅𝑗 , (12)

where 𝑄𝑖 (𝐻) denotes the quark (Higgs) doublet field. This operator 
can be obtained from Eq. (1) upon integrating by parts and using the 
equations of motion in the unbroken phase, and for simplicity we have 
set 𝐶𝑉𝑞𝑖𝑞𝑗 = 𝐶

𝐴
𝑞𝑖𝑞𝑗

. This gives rise to scattering processes like 𝑞𝑖𝑞𝑗 → ℎ𝑎, 
which lead to axion production rates that are UV sensitive and thus 
depend on the reheating temperature 𝑇𝑅 . The corresponding UV contri-
bution to the relic abundance can be related to the decay contribution 
as [45]

Ω𝑎ℎ2|UV ≈
𝑚𝑞𝑖𝑇𝑅

3𝜋3𝑣2
× Ω𝑎ℎ2|𝑞𝑖→𝑞𝑗𝑎 . (13)

While one could take into account such UV sensitive contributions on 
the price of introducing 𝑇𝑅 as an additional parameter of the models, 
here we want to stick to the minimal number of parameters and thus 
take 𝑇𝑅 sufficiently small such that the IR contributions always dom-
inate the relic abundance. As we will see below, this procedure also 
suppresses the misalignment contribution, which also depends on addi-
tional parameters (the original misalignment angle). Hence, we establish 
an upper bound on 𝑇𝑅 by requiring that the axion abundance gener-
ated from UV sensitive processes is smaller than the one from decays, 
giving 𝑇𝑅 < 3𝜋3𝑣2∕𝑚𝑞𝑖 = 3 × 106 GeV( GeV∕𝑚𝑞𝑖 ). Equivalently we can 
consider an upper bound on the Hubble parameter at reheating

𝐻𝑅 < 11keV

(
GeV
𝑚𝑞𝑖

)2

, (14)

where have assumed 𝑔∗(𝑇𝑅) ≈ 106.75.
We can now discuss possible sources of non-thermal production. The 

most relevant is the misalignment mechanism for ALPs [50,51]. Also 
this contribution depends on the reheating temperature, as the onset 
of axion oscillations (defined by2 𝑚𝑎 ≃𝐻) occurs prior to reheating in 
the axion mass range under consideration. Todays misalignment abun-
dance is then suppressed due to the dilution that occurred during an 
initial period of matter domination3 that took place between the on-
set of oscillations and 𝑇𝑅. The resulting ALP abundance in terms of the 
misalignment angle 𝜃0 is then given by [51–53]

Ω𝑎ℎ2|mis ≈ 4 × 10−3
(
𝐻𝑅

11keV

)1∕2( 𝑓𝑎𝜃0

1010 GeV

)2
. (15)

We notice that the misalignment contribution can be somewhat larger 
than in models where the ALP is only coupled to leptons [19], as heavy 
quarks require sizable 𝑓𝑎 scales. Still, misalignment production is never 
relevant in the interesting parameter region compatible with astrophys-
ical bounds, as we will discuss in Sec. 3.

2.3. Flavor-violating scattering processes and infrared finiteness

In addition to 𝑞𝑖→ 𝑞𝑗𝑎 decays, axion production via freeze-in is also 
affected by flavor-changing quark and gluon scatterings [46,49,54]. For 
the special case of 𝑏𝑞 → 𝑎𝑔, 𝑏𝑔→ 𝑎𝑞, and 𝑞𝑔→ 𝑎𝑏 reactions, with 𝑞 =

2 For the numerical values below we have used 𝑚𝑎 = 1.6𝐻(𝑇 𝑜𝑠𝑐) as suggested 
in Ref. [51].

3 If inflation ends in a period of kination instead the misalignment contribu-

tion would be enhanced.
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Fig. 1. Diagrams contributing to axion production from flavor-violating quark and gluon scatterings.
𝑠, 𝑑, the diagrams are shown in Fig. 1. The squared amplitude for any of 
these three processes depends both on the bottom and the light quark 
masses. Neglecting the latter, an infrared divergence occurs, while using 
non-zero light-quark mass may still lead to an unphysical enhancement 
of the cross section due to the sizeable quark-mass hierarchy. Let us 
consider the square of the diagram in Fig. 1a. If 𝑞 is massless and its 
momentum is collinear to the momentum of the gluon, a singularity 
occurs. In order to isolate the divergent terms, we assign the light quark 
a small mass 𝑚𝑞 as a regulator, and take the limit 𝑚𝑞 → 0 when possible. 
The square of the diagram summed over spins and integrated over the 
final state momenta can be expressed as a unitary cut of the forward-
scattering diagram

∝ 2𝑠+
4𝑚4
𝑏

𝑠
+

2𝑠𝑚2
𝑏

𝑠−𝑚2
𝑏

ln
(𝑠−𝑚2

𝑏
)2

𝑠𝑚2
𝑞

, (16)

where 𝑠 = (𝑝𝑏 + 𝑝𝑞)2 is the squared centre-of-mass energy. A logarith-
mic divergence occurs in the last term, and the same happens in all 
contributions involving the diagrams in Figs. 1a and 1c. To deal with 
these singularities, we follow the procedure introduced in Ref. [55]
based on the Kinoshita-Lee-Nauenberg (KLM) theorem [56–58]. The 
forward-scattering diagram in Eq. (16) allows for two other unitary cuts 
corresponding to so-called anomalous thresholds [59–62], which eval-
uate to

+

∝ −4𝑚2
𝑏
−

4𝑚4
𝑏

𝑠
−

2𝑠𝑚2
𝑏

𝑠−𝑚2
𝑏

ln
(𝑠−𝑚2

𝑏
)2𝑚2

𝑏

𝑠2𝑚2
𝑞

, (17)

yielding a finite result for 𝑚𝑞 → 0 when added to Eq. (16). We apply 
this procedure whenever an infrared divergence occurs in the total cross 
sections of the processes listed in Fig. 1, which allows us to obtain well-
defined expressions. Still, another sort of singularity persists.

The square of the diagram in Fig. 1d leads to a finite total cross 
section, but diverges for small gluon energy in thermal averaging. The 
problem has been resolved in Ref. [20] for electromagnetic correc-
tions to charged particle decays in a thermal medium. In our case, we 
must include the gluon-induced bottom thermal mass and wave-function 
renormalization factor in the 𝑏 → 𝑞𝑎 decay. Furthermore, in analogy 
to Eq. (9) of Ref. [20], we add the temperature-dependent part of the 
gluon Bose-enhancement factor in the 𝑏 → 𝑞𝑎𝑔 decay. As a result, the 
𝑠-channel 𝑏𝑔→ 𝑎𝑞 cross section is found to be completely canceled for 
values of 𝑠 < 2𝑚2

𝑏
. Putting everything together, the ratio of temperature-

dependent axion production rates from scattering 𝛾𝑆 and decays 𝛾𝐷 is 
4

finite in the limit 𝑚𝑞 → 0 and given by
𝛾𝑆
𝛾𝐷

=
𝛼𝑠
𝜋

∞

∫
1

𝑑�̃�
�̃�− 1√
�̃�

𝐾1
(
𝑥𝑏
√
�̃�
)

𝐾1
(
𝑥𝑏
) {

− �̃�− 4 − 3
�̃�
+ 12
�̃�− 1

(18)

+
[
8 − 8
�̃�
+ 10
�̃�− 1

+ 4
(�̃�− 1)2

]
ln �̃�

+
[
�̃�+ 2 − 8

�̃�− 1
+ 4

(�̃�− 1)2

]
𝜃(�̃�− 2)

}
,

with �̃� = 𝑠∕𝑚2
𝑏

and 𝑥𝑏 =𝑚𝑏∕𝑇 .
Axion production via freeze-in is dominated by temperatures slightly 

below the heavy quark mass. From Eq. (18), taking 𝑥𝑏 = 3 leads to 
𝛾𝑆∕𝛾𝐷 ≈ 0.7. This contrasts with the findings of Ref. [49], where thermal 
masses are used in the leading order cross-sections to handle diver-
gencies. This leads to an enhancement of the scattering production by 
two orders of magnitude relative to decay at the relevant temperature 
slightly below the heavy quark mass. In our procedure, this enhance-
ment is canceled by the contributions of the anomalous thresholds, as 
in Eq. (17). Those are indeed related to thermal-mass effects, but instead 
of the scattering, they enter the leading-order 𝑏 → 𝑞𝑎 decay kinematics 
through mass-derivative relations (see Eq. (35) in Ref. [63] for an exam-
ple). However, we note that our approximation of thermal effects is not 
complete and only represents a minimal set of contributions needed for 
infrared finiteness. A more complete treatment of thermal corrections 
may be considered in future work.

2.4. Warm dark matter

Soon after its production, DM free-streams and suppresses the pri-
mordial fluctuations related to the matter power spectrum. DM free-
streaming leaves its footprints on large-scale structures and can be con-
strained by looking at the absorption features of the spectra of distant 
quasars through the Lyman-𝛼 forest (Ly-𝛼) [64]. In particular, one can 
set a “warmness bound” on the DM mass to avoid large free-streaming 
[65–67]. The Ly-𝛼 limits have been recasted for different freeze-in pro-
cesses by computing the exact DM velocity distribution, which results 
in the “Warm Dark Matter” (WDM) constraint [68–70]

𝑚𝑎 ≳ 0.01 MeV
( 𝑚WDM
3.5keV

)4∕3
(

70
𝑔∗(𝑚𝑞)

)1∕3
, (19)

where 𝑚WDM ≈ 3.5keV or 5.3keV for the conservative and stringent 
bounds, respectively. For simplicity we took here the bound for DM 
production from 2-body decays, the bound for production via 2 → 2
scattering is very similar [68].

2.5. Other astrophysical bounds

Sufficiently light ALPs coupled to SM fermions can efficiently extract 
energy from stellar objects and are subject to limits from star cool-
ing [71]. Quark couplings induce axion couplings to nucleons, which 
allow for efficient axion production in hot stellar plasmas, such as in 
the proto-neutron star formed during core-collapse supernovae. Suf-
ficiently light axions (𝑚𝑎 ≲ 100 MeV) would extract energy from the 
proto-neutron star, which is constrained by the usual energy loss ar-
gument for SN1987A [71]. Lighter axions (𝑚𝑎 ≲ 0.4keV) are also con-
strained by measurements of the White Dwarf (WD) luminosity func-

tion, which primarily limits electron couplings at the order of 𝑓𝑎∕𝐶𝑒 ≥
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2.5 × 109 GeV [72], but due to Renormalization Group evolution this 
also puts constraints on axion couplings to top quarks [4] at the level [7]

𝑓𝑎∕𝐶𝑡 ≥ 1.7 × 109 GeV , (20)

where we ignored the mild logarithmic dependence on the UV scale by 
setting 𝑓𝑎 = 1010 GeV for simplicity.

In order to extract the resulting SN1987A limits on axion-quark cou-
plings, we match the Lagrangian in Eq. (1) to the axion-nucleon effective 
Lagrangian. Following Ref. [73], we obtain the following effective La-
grangian in the non-relativistic limit, which should be reliable as long as 
the ALP mass and the relevant energies are smaller than the QCD mass 
gap Δ ≈ 100 MeV

𝑎𝑁 =𝑁𝑣𝜇𝜕𝜇𝑁 +
𝜕𝜇𝑎

𝑓𝑎

𝐶𝑢 −𝐶𝑑
2

Δ𝑢−𝑑𝑁𝑆𝜇𝜎3𝑁 (21)

+
𝜕𝜇𝑎

𝑓𝑎

[
𝐶𝑢 +𝐶𝑑

2
Δ𝑢+𝑑 +

∑
𝑞=𝑠,𝑐,𝑏,𝑡

𝐶𝑞Δ𝑞

]
𝑁𝑆𝜇𝑁 ,

where 𝑁 = (𝑝, 𝑛) is the nucleon isospin doublet, 𝑣𝜇 is the four-velocity of 
the nucleon, 2𝑆𝜇 ≡ 𝛾𝜇𝛾5 is the spin operator and Δ𝑢±𝑑 ≡Δ𝑢 ±Δ𝑑. The 
coefficients Δ𝑞, 𝑞 = 𝑢, 𝑑, 𝑠, 𝑐, 𝑏, 𝑡 are extracted from lattice QCD studies 
and low-energy experiments, and can be found in Ref. [73]. Here we 
use the recent analysis in Ref. [74], giving

𝐶𝑝 ≈ 0.82𝐶𝑢 − 0.45𝐶𝑑 − 0.052𝐶𝑠 ,

𝐶𝑛 ≈ 0.82𝐶𝑑 − 0.45𝐶𝑢 − 0.052𝐶𝑠 ,
(22)

where we have neglected the contributions from heavy quarks. Bounds 
on these couplings can be obtained from the burst duration of the neu-
trino emission of SN1987A, which yields [75]

0.61𝑔2𝑎𝑝 + 𝑔
2
𝑎𝑛 + 0.53𝑔𝑎𝑛𝑔𝑎𝑝 < 8.26 × 10−19 , (23)

where 𝑔𝑎𝑖 ≡ 𝐶𝑖𝑚𝑖∕𝑓𝑎. These constraints are roughly comparable to limits 
that can be derived from observations of neutron star cooling rates [76], 
and give for 𝐶𝑝 ≈ 𝐶𝑛 ≈ 𝐶𝑁

𝑓𝑎∕𝐶𝑁 ≳ 1.5 × 109 GeV . (24)

3. Results

It is clear from Eqs. (10) and (11) that for heavy quarks 𝑚𝑞𝑖 ≳ GeV
and axion masses 𝑚𝑎 ∼ 0.1 MeV satisfying the WDM bound in Eq. (19), 
the observed DM relic abundance can be obtained for 𝑓𝑎 ∼ 1010 GeV, 
while respecting the limits from X-ray telescopes in Eq. (7) and the su-
pernova bounds in Eq. (24). This also implies that axion couplings to 
light quarks, i.e., the 𝑠𝑑 scenario, are not viable, since the strong con-
straints from 𝐾+ → 𝜋+ + inv. searches [10,77] essentially exclude the 
whole parameter space, as the relic abundance require too low 𝑓𝑎 val-
ues. In contrast freeze-in via heavy-quark couplings (𝑐, 𝑏, 𝑡) gives larger 
values of 𝑓𝑎, and there is not much difference between axion produc-
tion via flavor-diagonal or flavor-violating couplings, as 𝛼𝑠 is sizable.4

It turns out that all five scenarios in the first class discussed in Section 2
are indeed viable for all values of 𝛼, which controls the ratio of diagonal 
to off-diagonal couplings. This is because for values of 𝑚𝑎 that respect 
the WDM bound, not only the constraints on flavor-diagonal couplings 
from star cooling are satisfied, but also the stringent laboratory limits on 
flavor-violating decays with missing energy are respected, even taking 
into account near-future projections. This regards 𝐷→ 𝜋+inv. searches 

4 This is in contrast to the 𝜇𝑒 scenario considered in Ref. [19], where axion 
production via flavor-diagonal scattering is suppressed by 𝛼em, and requires very 
low values of 𝑓𝑎 that are already excluded by X-ray searches. These limits disap-
pear in the limit where axion couplings are mainly flavor-violating, which pro-
vides a scenario compatible with present laboratory searches for 𝜇→ 𝑒 + invis.
5

and in the reach of near-future experimental proposals.
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at CLEO [7,78] (𝑐𝑢 scenario), 𝐵→ 𝜋 + inv. searches at BaBar [7,79] (𝑏𝑑
scenario) and 𝐵 → 𝐾 + inv. searches at Belle II [80] and BaBar [81]
(𝑏𝑠 scenario), where we used the combined limit on the two-body de-
cay recently provided in Ref. [82], BR(𝐵→𝐾𝑎) < 8.0 ×10−6 at 95% CL 
for 𝑚𝑎 ≪ 100 MeV. Note that the 𝑡𝑐 and 𝑡𝑢 scenarios are constrained 
only mildly by WD cooling (Eq. (20)) and SN1987A (Eq. (24)), and 
SM loop contributions to 𝐾 → 𝜋𝑎 are absent in these cases as the ax-
ion only couples to RH quarks.5 Thus we obtain five simple benchmark 
models that generate the DM relic abundance and are compatible with 
all present constraints. In Fig. 2 we display the 2-dimensional parame-
ter space for two of such models, the 𝑡𝑢 scenario and the 𝑏𝑠 scenario. 
Analogous figures for the 𝑡𝑐 scenario and the 𝑏𝑑 and 𝑐𝑢 scenarios are 
not shown since they are very similar to the 𝑡𝑢 and 𝑏𝑠 scenario, re-
spectively. All scenarios have in common that even future laboratory 
searches for two-body flavor-violating decays with missing energy will 
not probe the interesting region of axion masses satisfying the WDM 
bound, which is right of the vertical dashed black line. For the 𝑏𝑠 sce-
nario we have indicated the maximal size of the 𝐵→𝐾𝑎 target branch-
ing ratio compatible with the WDM bound, which is of the order of 
BR(𝐵 → 𝐾𝑎)target ≈ 1 × 10−9, clearly beyond the reach of running or 
near-future 𝐵-factories [7] indicated by the green dashed line. The same 
conclusions are valid for 𝐷 → 𝜋, with BR(𝐷 → 𝜋𝑎)target ≈ 2 × 10−10, 
and 𝐵→ 𝜋 transitions with BR(𝐵→ 𝜋𝑎)target ≈ 6 × 10−10, such that all 
scenarios will be tested only by future X-ray telescopes. Note however 
that colliders are in principle better suited to probe the remaining pa-
rameter space as compared to X-ray line searches, as the constrained 
axion mass scales rather weakly with the axion decay rate into pho-

tons, 𝑚𝑎 ∝ Γ1∕6𝑎→𝛾𝛾 (Eq. (7)), but strongly with flavor-violating decay rates 
𝑚𝑎 ∝ Γ1∕2𝑞𝑖→𝑞𝑗𝑎 (Eq. (9)), after fixing 𝑓 2𝑎 ∝ 𝑚𝑎 with the relic abundance 
(Eq. (10)).

We finally discuss benchmark models where present collider con-
straints exceed the WDM bound, such that the remaining parameter 
space will be complementary probed by precision flavor experiments 
and X-ray telescopes. This is the case for the other two benchmark 
scenarios discussed in Section 2, where the PQ charge is taken as a 
free parameter and the rotation to the quark mass basis is fixed by 
the CKM matrix. The resulting parameter space is shown in Fig. 3 for 
the CKM𝑄𝐿 and the CKM𝑑𝑅 scenario, which reproduce the observed 
DM relic abundance for the indicated values for 𝑚𝑎 and the PQ charge 
𝑋. The dominant contribution to axion production comes from unsup-
pressed processes involving the heaviest quarks, which is 𝑡𝑡 scattering 
in the CKM𝑄𝐿 scenario and 𝑏𝑏 scattering in the CKM𝑑𝑅 scenario, since 
quark mixing in the CKM is small and cannot compensate the mild 
𝛼𝑠 suppression in scatterings compared to decays. Still the CKM in-
volves a rather large rotation in the 𝑠𝑑 sector of order 𝜆 ≈ 0.23, which 
induces a sizable coupling of the axion to 𝑠𝑑 quarks in both scenar-
ios for generic values of 𝑋, unless the first two generations have the 
same PQ charge, i.e. 𝑋 = 1, leading to an approximate 𝑆𝑈 (2) symme-
try and 𝐶𝑉

𝑠𝑑
involves additional CKM suppression.6 Close to this value 

the stringent limits on 𝐾 → 𝜋𝑎 from NA62 [77] are relaxed, which 
otherwise give constraints of order 𝑓𝑎∕𝐶𝑉𝑠𝑑 > 4 × 1011 GeV [10]. For |𝑋 − 1| ≳ 0.44 (CKM𝑑𝑅 ) or |𝑋 − 1| ≳ 0.24 (CKM𝑄𝐿 ) the resulting limits 
exceed the WDM bound, so that NA62 will probe the remaining param-
eter space in the near future complementary to future X-ray telescopes. 
Interestingly, the parameter space of the CKM𝑑𝑅 scenario will be almost 
entirely probed by 𝐾 → 𝜋𝑎 and 𝑎 → 𝛾𝛾 searches, leaving only a nar-
row region between axion masses 10 ≲ 𝑚𝑎 ≲ 100keV and PQ charge |𝑋 − 1| ≲ 0.15.

5 Otherwise one would obtain constraints on 𝑓𝑎 of the order of 
few×108 GeV [7].

6 See Ref. [21] for a motivated scenario where this situation arises by iden-
tifying PQ as a subgroup of a horizontal 𝑈 (2) symmetry explaining Yukawa 

hierarchies.
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Fig. 2. Parameter space in the (𝑚𝑎, 𝛼) plane for selected benchmark models defined in Section 2, which reproduce the observed DM relic abundance everywhere. The 
𝑡𝑢 scenario (left panel) is representative for the 𝑡𝑐 scenario, the 𝑏𝑠 scenario (right panel) for the 𝑏𝑑 and 𝑐𝑢 scenarios. The angle 𝛼 controls the ratio of flavor-diagonal 
to flavor-off-diagonal couplings, see Eq. (3). The shaded blue region shows CMB constraints on the axion lifetime, while the shaded gray bound indicates to the region 
excluded by X-ray telescopes. The dark gray region is excluded by SN (WD) cooling, while the green shaded region is probed by collider searches. The stringent 
WDM bound (the conservative is weaker by a factor 1.7) is denoted by a dashed black line along with the corresponding target branching ratio for 𝐵→ 𝐾𝑎, and 
green (orange) dashed lines indicate the prospective limits from future laboratory searches (X-ray telescopes). The upper axis indicates the value of 𝑓𝑎 needed to 
reproduce the relic abundance for 𝛼 = 0, with a mild dependence on 𝛼.

Fig. 3. Parameter space in the (𝑚𝑎, 𝑋) plane for the CKM𝑄𝐿 (left panel) and CKM𝑑𝑅 (right panel) benchmark models defined in Section 2, which reproduce the 
observed DM relic abundance everywhere. The parameter 𝑋 controls the ratio of PQ charges for LH quarks (CKM𝑄𝐿 ) or RH down-quarks (CKM𝑑𝑅 ), which are rotated 
to the quark mass basis by CKM rotations, see Eq. (3). The shaded blue region shows CMB constraints on the axion lifetime, while the shaded gray bound indicates to 
the region excluded by X-ray telescopes. The green shaded region is excluded by 𝐾 → 𝜋𝑎 searches at NA62. The stringent WDM bound (the conservative is weaker 
by a factor 1.7) is denoted by a dashed black line along with the corresponding target branching ratio for 𝐾 → 𝜋𝑎, and green (orange) dashed lines indicate the 
prospective limits from future laboratory searches (X-ray telescopes). The upper axis indicates the value of 𝑓𝑎 needed to reproduce the relic abundance for 𝑋 = 1, 
6

with a mild dependence on 𝑋.
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4. Conclusions

To summarize, we have explored the production of axion DM from 
decays and scatterings of heavy quarks via thermal freeze-in. This gives 
rise to very simple scenarios with few parameters able to explain the 
observed DM abundance, which are subject to various constraints from 
precision flavor experiments, star cooling, X-ray telescopes and structure 
formation. Similar to the lepton case explored in Ref. [19], we have 
focused on two classes of models with only two parameters after fixing 
the axion decay constant to values that reproduce the observed DM relic 
abundance. Apart from the axion mass, the free parameter is the ratio of 
flavor-diagonal couplings to flavor-violating couplings in the first class 
(effective 2-flavor scenarios), and the overall PQ charge in the second, 
with flavor violation controlled by the CKM matrix.

Compared to the case of an ALP coupled to electrons [19], in the 
quark scenarios the axion decay rate into photons is additionally sup-
pressed by at least a factor 𝑚4

𝑒∕𝑚
4
𝜋 , which enhances axion stability and 

eases constraints on flavor-diagonal couplings from X-ray line searches. 
As axion production from quark scattering is only mildly suppressed 
with respect to quark decays as a result of large values of 𝛼𝑠 close to the 
GeV scale, we find that there is not much difference between scenar-
ios with flavor-violating coupling and flavor-diagonal couplings of the 
same size, in stark contrast to LFV models [19]. This also implies that 
next-to-leading order corrections to axion production are sizable, which 
we have calculated here for the first time for the case of flavor-violating 
2 → 2 scattering processes. We showed that in concordance with the 
KLN theorem IR divergencies in these processes are canceled by taking 
into account contributions from anomalous thresholds (partially related 
to thermal corrections), at least for energies below the heaviest quark 
involved. A more complete analysis of NLO corrections is left for future 
work.

The main results of our analysis are summarized in Fig. 2 for the 
effective 2-flavor model and the CKM scenarios in Fig. 3. The allowed 
parameter space of all 2-flavor models has similar shapes (thus we only 
show the 𝑡𝑢 and 𝑏𝑠 scenarios as representatives), and are viable except 
for the 𝑠𝑑 model, which is essentially ruled out by present 𝐾 → 𝜋𝑎 con-
straints. These scenarios will only be probed by future X-ray telescopes, 
as the sensitivities of future flavor factories will still be weaker than the 
constraints on Warm Dark Matter. On the other hand in the CKM scenar-
ios the strongest limits in the low axion mass regime arise from searches 
for 𝐾 → 𝜋𝑎 at NA62. The expected sensitivity together with X-ray line 
searches will allow to probe large portions of the remaining parameter 
space, giving excellent prospects to explore a very simple class of axion 
DM models at the high-intensity frontier.
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Appendix A. Axion-photon coupling

In this appendix we present the details of the light quark contribu-
tion to the axion-photon coupling in Eq. (6) due to axion mixing with 
𝜋, 𝜂 and 𝜂′ in leading order chiral perturbation theory (𝜒PT). Our anal-
ysis complements the results of Ref. [83], where the contribution to 
axion-meson mixing from the axion-gluon coupling was calculated. Here 
instead we provide the contribution from axion couplings to all three 
light quarks.

We start by matching the Lagrangian in Eq. (1) to 3-flavor 𝜒PT. After 
integrating out the heavy quarks, we define the effective axion couplings 
as diagonal 3 × 3 matrices 𝑘𝑅,𝐿 = 1∕2 diag(𝐶𝑉𝑢𝑢 ± 𝐶

𝐴
𝑢𝑢, 𝐶

𝑉
𝑑𝑑

± 𝐶𝐴
𝑑𝑑
, 𝐶𝑉𝑠𝑠 ±

𝐶𝐴𝑠𝑠), and the Lagrangian reads

light =
1
2
(𝜕𝜇𝑎)2 −

𝑚2
𝑎

2
𝑎2 + Ψ̄(𝑖 ∕𝐷 −𝑀𝑞)Ψ (A.1)

+
𝜕𝜇𝑎

𝑓𝑎
Ψ̄𝛾𝜇

(
𝑘𝐿𝑃𝐿 + 𝑘𝑅𝑃𝑅

)
Ψ , (A.2)

where Ψ ≡ (𝑢, 𝑑, 𝑠)𝑇 and 𝑀𝑞 = diag(𝑚𝑢, 𝑚𝑑, 𝑚𝑠). The chiral Lagrangian is 
written in terms of the unitary 3 × 3 matrix Σ containing the Goldstone 
boson octet (𝜋, 𝐾, 𝜂8) and the singlet 𝜂0 as Σ = exp

(
𝑖
√
2Φ∕𝑓𝜋

)
, where

Φ=

⎛⎜⎜⎜⎜⎝
𝜋0 + 𝜂8√

3

√
2𝜋+

√
2𝐾+√

2𝜋− −𝜋0 + 𝜂8√
3

√
2𝐾0√

2𝐾−
√
2�̄�0 − 2√

3
𝜂8

⎞⎟⎟⎟⎟⎠
+
√

2
3
𝜂0𝟙 . (A.3)

At leading order the 𝑆𝑈 (3)L × 𝑆𝑈 (3)R symmetry gives

𝜒PT = 1
2
(𝜕𝜇𝑎)2 −

𝑚2
𝑎

2
𝑎2 +

𝑓 2𝜋
8

Tr
[
𝐷𝜇Σ𝐷𝜇Σ†]

+
𝑓 2𝜋
4
𝐵0Tr

[
𝑀𝑞Σ† + h.c.

]
− 1

2
𝑀2

0 𝜂
2
0 , (A.4)

where the explicit mass term 𝑀0 takes into account the explicit breaking 
of the anomalous 𝑈 (1)𝐴 symmetry and the covariant derivative reads

𝐷𝜇Σ = 𝜕𝜇Σ+ 𝑖𝑒𝐴𝜇 [𝑄,Σ] + 𝑖
𝜕𝜇𝑎

𝑓𝑎
(𝑘𝐿Σ− Σ𝑘𝑅) , (A.5)

where 𝑄 = diag(2∕3, −1∕3, −1∕3) is the electric charge matrix of the 
light quarks.

Notice that the axion enters the chiral Lagrangian only through 
derivative terms, since there is no axion-gluon coupling. This gives the 
kinetic mixing with the mesons in the diagonal entries of Φ, apart from 
the usual meson mass matrix. Defining 𝜙 = (𝑎, 𝜋0, 𝜂8, 𝜂0), one obtains for 
the relevant quadratic Lagrangian  ⊃ 1∕2𝐾𝑖𝑗𝜕𝜇𝜙𝑖𝜕𝜇𝜙𝑗 − 1∕2𝑀2

𝑖𝑗
𝜙𝑖𝜙𝑗 , 

with

𝐾𝑖𝑗 = 𝛿𝑖𝑗 +𝐾𝑖1𝛿1𝑗 +𝐾𝑗1𝛿1𝑖 . (A.6)

Here

𝐾𝑖1 = − 𝜖

2
√
6

⎛⎜⎜⎜
(𝜖2)√

3(𝐶𝑢 −𝐶𝑑 )
𝐶𝑢 +𝐶𝑑 − 2𝐶𝑠√

⎞⎟⎟⎟ ,
⎜⎝ 2(𝐶𝑢 +𝐶𝑑 +𝐶𝑠)
⎟⎠
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𝑀2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝑚2
𝑎 0 0 0

0 2𝐵0�̂� − 𝐵0√
3
Δ −

√
2
3𝐵0Δ

0 − 𝐵0√
3
Δ 2

3𝐵0(�̂�+ 2𝑚𝑠)
4

3
√
2
𝐵0(�̂�−𝑚𝑠)

0 −
√

2
3𝐵0Δ

4
3
√
2
𝐵0(�̂�−𝑚𝑠)

2
3𝐵0(2�̂�+𝑚𝑠) +𝑀2

0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

(A.7)

where we have defined �̂� ≡ (𝑚𝑢 +𝑚𝑑 )∕2, Δ =𝑚𝑑 −𝑚𝑢 and 𝜖 ≡ 𝑓𝜋∕𝑓𝑎.
We continue by taking the isospin limit Δ = 0, so that only 𝜂8 −

𝜂0 mass mixing takes place. The mass basis is thus defined by a single 
rotation(
𝜂8
𝜂0

)
=
(

cos𝜃 sin𝜃
−sin𝜃 cos𝜃

)(
𝜂

𝜂′

)
, (A.8)

with the rotation angle 𝜃 given by

tan𝜃 = 4
3
√
2

𝐵0(�̂�−𝑚𝑠)
𝑚2
𝜂′
− 2∕3𝐵0(�̂�+ 2𝑚𝑠)

. (A.9)

In the limit where axion-meson mixing can be neglected, 𝑓𝑎 << 𝑓𝜋 , the 
entries of the meson mass matrix can be obtained as usual, giving in 
the isospin limit 𝑚2

𝜋 = 2𝐵0�̂� and 𝑚2
𝐾
= 𝐵0(�̂� +𝑚𝑠). The explicit 𝑈 (1)𝐴

breaking term 𝑀2
0 is determined by the 𝜂′-mass, so that not only the 

mixing angle, but also the 𝜂-mass are predicted, at least in the leading-
order (LO) level we are considering here. We obtain for the 𝜂-mass (in 
agreement with e.g. Ref. [84])

𝑚2
𝜂 =𝑚

2
𝜂8
− 8

9
(𝑚2
𝜋 −𝑚

2
𝐾
)2

𝑚2
𝜂′
−𝑚2

𝜂8

, (A.10)

where 𝑚2
𝜂8

≡ (4𝑚2
𝐾
−𝑚2

𝜋)∕3 ≈ 566MeV denotes the 𝜂-mass one obtains 
using the Gell-Mann-Okubo formula, that is, decoupling the 𝜂′. Instead 
Eq. (A.10) gives 𝑚𝜂 ≈ 494 MeV, which is in mild tension with the mea-
sured 𝑚𝜂 ≈ 548 MeV. It is well known that 𝜒PT at leading order is not 
adequate to describe 𝜂 − 𝜂′ mixing [85,86], and (𝑝4) give important 
corrections to mixing angles and masses [84,87,88]. For our purposes 
however the LO result for the mixing angle suffices, keeping in mind 
that uncertainties from higher-order corrections are large. This gives in 
agreement with Ref. [84]

tan𝜃 = 4
3
√
2

𝑚2
𝜋 −𝑚

2
𝐾

𝑚2
𝜂′
−𝑚2

𝜂8

, (A.11)

and numerically 𝜃 ≈ −20◦. Other methods give values ranging from 
−13◦ to −22◦ [87], so that in the following we work with the choice 
sin𝜃 ≈ −1∕3, as frequently done in the literature [89,90]. The field re-
definition in Eq. (A.8) modifies kinetic mixing, resulting in a rotation 
acting on 𝐾𝑖1 in Eq. (A.7), which becomes after setting 𝑠𝜃 ≡ sin𝜃 ≈
−1∕3, 𝑐𝜃 ≡ cos𝜃 ≈ 2

√
2∕3

𝐾21 → − 𝜖

2
√
6

[
(𝐶𝑢 +𝐶𝑑 )(𝑐𝜃 −

√
2𝑠𝜃) − 2𝐶𝑠(𝑐𝜃 +

𝑠𝜃√
2
)

]
= − 𝜖

2
√
3
(𝐶𝑢 +𝐶𝑑 −𝐶𝑠) ,

𝐾31 → − 𝜖

2
√
6

[
(𝐶𝑢 +𝐶𝑑 )(𝑠𝜃 +

√
2𝑐𝜃) − 2𝐶𝑠(𝑠𝜃 −

𝑐𝜃√
2
)

]
= − 𝜖

2
√
6
(𝐶𝑢 +𝐶𝑑 + 2𝐶𝑠) . (A.12)

Finally we canonically normalize kinetic terms, and re-diagonalize the 
mass matrix. At linear order in 𝑓𝑎∕𝑓𝜋 this is straightforward, and 
8

gives the following relation between the fields in the original basis 
Physics Letters B 856 (2024) 138923

𝜙 = (𝑎, 𝜋0, 𝜂8, 𝜂0) and canonically normalized mass eigenstates 𝜙phys =
(𝑎phys, 𝜋0phys, 𝜂phys, 𝜂

′
phys)

𝜋0 ≈ 𝜋0phys + 𝜖
𝐶𝑢 −𝐶𝑑
2
√
2

𝑚2
𝑎

𝑚2
𝑎 −𝑚2

𝜋

𝑎phys , (A.13)

𝜂8 ≈ 𝜂phys + 𝜖
𝐶𝑢 +𝐶𝑑 −𝐶𝑠

2
√
3

𝑚2
𝑎

𝑚2
𝑎 −𝑚2

𝜂

𝑎phys , (A.14)

𝜂0 ≈ 𝜂′phys + 𝜖
𝐶𝑢 +𝐶𝑑 + 2𝐶𝑠

2
√
6

𝑚2
𝑎

𝑚2
𝑎 −𝑚

2
𝜂′

𝑎phys . (A.15)

These results allow to compute the light quark contribution to the axion 
couplings to photons, which the axion inherits from the meson cou-
plings, suppressed by mixing. The pseudoscalar couplings to photons 
induced by the electromagnetic anomaly read

EMA = 𝑖
2
𝑁𝑐𝛼em
4𝜋

𝐹𝜇𝜈𝐹
𝜇𝜈Tr [𝑄2(logΣ − logΣ†)]

= −
𝛼em
4𝜋𝑓𝜋

𝐹𝐹

(√
2𝜋0 +

√
2
3
𝜂8 +

4√
3
𝜂0

)
. (A.16)

Plugging in the mixing relations in Eq. (A.13), and matching to the 
axion-photon coupling defined as

a𝛾𝛾 = 𝐶𝛾𝛾
𝛼em
4𝜋
𝑎

𝑓𝑎
𝐹𝜇𝜈𝐹

𝜇𝜈 , (A.17)

we finally obtain the light quark contribution 𝐶 light
𝛾𝛾 in Eq. (6), which is 

valid in the limit 𝑚𝑎 ≪𝑚𝜋,𝜂,𝜂′ and taking 𝑠𝜃 ≈ −1∕3.
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