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Abstract  

This paper presents a methodical approach for measuring the process quality of the agricultural task 

soil tillage. This is a crucial step towards the development of automation in the context of autonomous 

agricultural field work. Therefore, the relevant parameters that define the process quality for autonomous 

tillage must be identified. These parameters depend on the agricultural task, such as primary tillage, 

stubble cultivation, or seedbed preparation, and are based on the farmer’s expertise and focus. The quality 

parameters are the identified set of parameters for each task that indicate the quality of the process. For 

each individual parameter, the proposed measurement method can be applied. The method involves three 

basic steps. (1) Different algorithms are implemented to characterize the quality parameter based on, e.g., 

3D point cloud data or image data. The algorithms are verified in a deterministic environment, such as a 

simulation environment or a test bench. (2) Afterwards, the Spearman correlation coefficient of the var-

ious parameter metrics is analyzed to cluster the metrics into groups with similar physical properties. 

Based on the clustering, parameters can be chosen considering defined criteria (low resource-intensive, 

sensor-setup specific, etc.). (3) Finally, the selection of the parameter metric is validated by testing the 

implementation infield, considering challenging cases, anomalies, and influencing factors such as work-

ing speed or soil dependencies. The measurement method for the quality parameter could be used to 

derive a model that describes the variation of the parameters concerning the degrees of freedom of the 

agricultural task, e.g. the working speed or working depth for the tillage process.  
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1. Introduction 

Soil tillage in agriculture aims to create an optimal soil structure for the crop, including the processes 

of germination and growth. Tillage tasks vary throughout the year, depending on the crop rotation. Farm-

ers perform primary tillage before seedbed preparation and sowing to mix and loosen the soil. This is 

typically accomplished using implements such as plows or heavy cultivators. During seedbed prepara-

tion, the uppermost layer of soil is loosened, finely crumbled, and reconsolidated, typically with imple-

ments like a seedbed combination or rotary harrow. Stubble cultivation after harvest in summer and the 

incorporation of cover crops in spring are carried out only as deep as necessary to break the soil's capil-

larity and protect the water content in the soil. A fine cultivator or disk harrow can be used here. 

Despite the diversity of the tasks, objectives, and implements, tillage is often a research focus regard-

ing automation in agriculture. A potential explanation is its greater tolerance to error than other tasks, 

such as sowing. The interest in tillage automation is also underlined by the scarcity of skilled labor in 

agriculture, especially for tasks with low area performance (ha/h). In addition to these benefits, there are 

also sustainability aspects in the automation of tillage. Automation of the tillage process can improve 

energy efficiency or help protect the soil through minimized soil intervention, enhancing biological ac-

tivity and forming a more resilient soil structure with higher resistance to erosion.  

Features such as guidance systems and telemetry solutions are already established in the market. 

Streitberger et al. (2018) state that these features are classified within automation levels 1 and 2. Moving 

on to automation level 3, the automated vehicles must monitor the process and environment. Verband 

Deutscher Maschinen- und Anlagenbau (VDMA) Landtechnik & Bayerischer Bauernverband (2020) 

specifies autonomy level 2 concerning soil tillage as manual adjustment and guidance of the implement 

with an assistance system. In contrast, level 3 describes the automatic control and documentation of 

subtasks according to the farmer's specifications. A measurement system is required to assist during the 

process and assess and document the process’s output, which is here defined as process quality. 

Surface roughness, crop residue cover, and aggregate size distribution are potential process quality 

parameters that could be considered for measurement in the context of tillage. Most metrics and algo-

rithms for the description of surface roughness are based on height profiles. These height profiles can be 

derived from contact-measurement devices like relief meters (Kuipers, 1957) or non-contact-measure-

ment devices like laser scanners or stereo vision systems (Boysen et al., 2023; Martinez-Agirre et al., 



2016; Riegler-Nurscher et al., 2017; Taconet & Ciarletti, 2007; Thomsen et al., 2015). The evaluated 

metrics range exemplary from the prediction of the surface storage capacity (Hansen et al., 1999) over 

to the standard deviation of individual elevation points, respectively, the index of Currence and Lovely 

(1970) to the Peak Frequency (Römkens & Wang, 1986).  

Sieve analysis is widely applied to determine the aggregate size distribution. However, it can be in-

fluenced by changes in aggregate structure resulting from frictional effects caused by transport, filling 

the sieve, and oscillation motion of the sieve (Anisch et al., 2016). Sensor-based evaluations may be 

based on 3D data, as exemplified by the method presented by Steinhaus and Frerichs (2020), or on the 

evaluation of image data. The various image-based algorithms can be classified into computer vision 

(e.g. Bosilj et al., 2020; Itoh et al., 2008) or machine learning approaches (e.g. Ajdadi et al., 2016; Ali-

rezazadeh et al., 2021; Azizi et al., 2020). The aggregate size distribution can be described over the 

working width or summarized as the mean weighted diameter. Furthermore, it is possible to describe 

aggregates' spatial distribution. 

There are several methods for determining crop residue cover. The so-called meter stick or line 

method determines the degree of cover based on the overlap of organic material with a placed stick. 

Another method is to compare images indicating a specified crop residue cover level. Measurement 

methods can also be based on image data (e.g. Pforte, 2010; Riegler-Nurscher et al., 2018; Schmidt, 

2022). Potential metrics for describing the parameter include crop residue cover based on individual 

detected pixels/grid points, the area with a defined percentage of crop residue cover, or the distribution 

of the crop residue cover. In addition, it could be possible to determine the orientation of the crop in 3D 

data and verify if the organic matter has been effectively pulled out/separated from the soil. 

Measurement methods based on non-contact measurement devices like laser scanners or camera sys-

tems provide higher accuracy for these exemplary process quality parameters. However, they need man-

ually labeled data as a reference. Regarding crop residue cover, Riegler-Nurscher et al. (2018) demon-

strated that these human-labeled data also underlay uncertainty. They examined the standard deviation 

of ten evaluators and showed that the deviations for soil, living biomass, and remains in the classes to be 

labeled were 5.5 %, 4.2 %, and 3.5 %, respectively. Analyses of aggregates are similarly subject to un-

certainty. The intricate fracture patterns observed in soil mechanics can impede the clear identification 

of aggregate boundaries. 

Despite the large variety of potential metrics and algorithms for the various process quality parame-

ters, there is still no commonly applied framework for comparing measured and evaluated parameters in 

the field. Therefore, this paper presents a methodical approach to identify the most relevant metric to 

describe the individual process quality parameter to monitor and measure the quality of the tillage pro-

cess. The method ensures that the measured parameters are verified in controlled, reproducible conditions 

to derive reference values. The validation is then conducted by field trials. 

2. Methodical Approach for Tillage Process Quality Measurement 

Before the measurement, it is necessary to identify the process quality parameters to be measured. 

The process quality parameters are selected after literature research and interviews with experts (farmers, 

agronomists, etc.). This parameter identification step, exemplary for the tillage process with a cultivator, 

is visualized in the bottom line in Figure 1. For the tillage process with a plow, process quality parame-

ters candidates are crop residue cover (target value 0...5 % (Bernacki et al., 1972)), furrow width, depth, 

and evenness or shape of cut soil bar.  

After identifying the process quality parameters, the measurement method for each parameter itself 

can be applied. The first step involves the implementation of various metrics to characterize process 

quality parameters related to the tillage process. Different metrics can evaluate varying data fundamen-

tals, such as 3D point clouds for spatial metrics and 2D images for texture analysis. Testing the algorithms 

for the different parameter metrics under various conditions in a deterministic environment is necessary 

to verify the algorithms. In this verification step, it is possible to ascertain whether the metric accurately 

reflects the intended process quality parameter and its behavior, as well as to derive reference values 

from simulations. Simulation techniques or controlled experiments conducted in laboratory settings (e.g., 

soil bin) can be utilized for this purpose. The validation of the simulation or the test bench setup is not 

part of the proposed measurement method. 



 

Figure 1. Proposed Methodical Approach to measure process quality in tillage processes. 

 

In the second step, the evaluated metrics undergo statistical evaluation using Spearman's rank corre-

lation coefficient. Spearman rank correlation coefficient is relatively robust against outliers and therefore 

preferred to the Pearson correlation coefficient (Bortz & Schuster, 2010). The reason for this is the use 

of the ranks of the analyzed values instead of their actual value. The Spearman’s rank correlation coeffi-

cient 𝑟𝑆 is calculated  

𝑟𝑆 = ρ𝑅(𝑋),𝑅(𝑌) =
cov(𝑅(𝑋), 𝑅(𝑌))

𝜎𝑅(𝑋)𝜎𝑅(𝑌)
 (1) 

where 𝜌𝑅(𝑋),𝑅(𝑌) is the Pearson correlation coefficient of the ranked variables 𝑅(𝑋), 𝑅(𝑌), 

cov(𝑅(𝑋), 𝑅(𝑌)) is the covariance matrix, and 𝜎𝑅(𝑋), 𝜎𝑅(𝑌) are the standard deviations of the ranked 

variables 𝑅(𝑋), 𝑅(𝑌) (Bortz & Schuster, 2010). This analysis enables the identification of parameter 

metrics that share similar physical properties. The correlation of metrics with 𝑟𝑆 values close to 1 or -1 

suggest similar physical properties. By identifying clusters among the parameters, we can efficiently 

select those from the cluster that describe a process quality parameter, for example, with minimal com-

putation time or the best fit with the existing sensor setup. Parameters that do not fit into any cluster 

require special consideration as they could indicate a distinct property or be suited only for specific cir-

cumstances.  

In the third step, the chosen process quality parameter metrics must be validated using data from field 

trials. The investigations under determinate environmental conditions ensured the metrics' correctness. 

So, for infield data, the process quality parameter values classified on an ordinal scale must correspond 

to the subjective classifications of a sample of farmers and agronomists. Anomaly cases should be con-

sidered. In addition, Spearman correlation coefficients can again be calculated. In addition to the param-

eters’ sensitivity to e.g. anomaly cases, the agreement of the results with those of the deterministic envi-

ronment should also be analyzed. Any unexpected differences must then be investigated in more detail. 

The following chapter outlines the methodological approach for the tillage task with a cultivator as 

an example. The cultivator, characterized by its limited adjustment options and wide range of applica-

tions, facilitates data generation across various scenarios with differing quality requirements and long 

operating times throughout the year. This design supports a focus on data collection rather than attach-

ment settings, thereby focusing on the methodological approach. 

3. Methodical Process Quality Measurement of the Cultivator 

In textbooks by authors such as Köller (1981), Köller and Hensel (2019), Soucek & Pippig (1990), 

or Estler & Knittel (1996), the primary objectives of tillage are to maintain or enhance the soil's charac-

teristics to create favorable germination and growth conditions for crops and to minimize the growth of 

undesirable vegetation. Surface roughness, residue crop cover, and aggregate size distribution are possi-

ble parameters to determine the quality of tillage using a cultivator. The optimal parameter values and 

their relative importance vary from case to case and are, therefore, at the process planner's discretion, 

namely the farmer. 

To extract suitable metrics to describe the process quality parameters, the method presented in Chap-

ter 2 is used. A simulation environment represents the deterministic environment. Since the widely used 

sieve analysis, for instance, only measures static diameters, modeling the soil aggregates with hemi-

spheres is proposed in the initial step. Based on this, deformed spheres (modified in size and shape) can 
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also be used. These spheres are distributed on a ground plate based on the Rosin-Rammler-Sperling-

Bennett distribution (Hillig, 1986; Soucek, 1986). The ground plate can imitate the landscape with 

heights and depths and thus, for example, represent an uneven terrain. In addition to the soil aggregates, 

organic material can be simulated in various distribution densities on the ground. It is recognized that the 

simulation approach offers the potential to investigate a range of sensors and their suitability efficiently. 

Nevertheless, it is crucial to acknowledge that this simplified simulation approach does not fully reflect 

the complexities of reality. As an alternative to the simulation, a test bench scenario, such as a soil bin, 

also provides a deterministic environment.  

The Spearman correlation coefficient is then calculated for the various metrics described in Chapter 2 

and analyzed in correlation matrices. Correlating parameters form a cluster. Metrics are selected based 

on the clusters and the decision criteria, e.g., low resource-intensive, sensor-setup specific. 

The selection of the parameter metrics must then be validated. An experimental setup is suitable for 

this purpose. Figure 2 shows three field sections (peat soil). Section 1 is not processed, while sections 2 

and 3 are processed at different working speeds with the same cultivator and cage roller. If, for example, 

the selected roughness metric is to be validated, the metric for section 2 should give the smallest values. 

Larger values should result for section 3 and 1. An alternative value system that is entirely at odds with 

the aforementioned one would also be acceptable. 

 

 

Figure 2. Soil surface after the tillage process with a cultivator with cage roller. 

4. Discussion 

This paper's measurement method could help identify suitable metrics for measuring the tillage pro-

cess quality. Such a measurement system would be necessary for the next tillage autonomy level 2 and 

3, as outlined by VDMA Landtechnik & Bayerischer Bauernverband (2020). The assistance system 

(level 2) and the automatic control and documentation of subtasks according to the farmer’s specifica-

tions (level 3) require a control loop, as exemplified in Figure 3. The farmer is still responsible for the 

process planning and specifying the agronomical boundary conditions and process parameters (working 

depth, implement, objectives, …). Furthermore, the farmer defines the process quality parameters as 

reference variables for the automated system. The proposed measurement method supports the selection 

of the measured input values for the controller. Influences on the soil fracture behavior, like non-homo-

geneous soil type, moisture, or density, must be considered in the modeling (Bögel, 2022; Elijah, D. L. 

& Weber, 1971). The control idea can be expanded by the efficiency aspect, as suggested by Kazenwadel 

et al. (2023), so that it results in a multicriterial optimization problem. It should be considered that it is 

not easy to model all the influences cleanly, as the implement itself (roller, type of tines/blades) also 

strongly impacts the process quality. Therefore, modeling will probably first run out for separate imple-

ment configurations. By adopting this modeling approach, the necessity for continuous measurement in 

the control loop could eventually be significantly reduced.  

The methodology primarily focused on process quality parameters, assuming optimal implementation 

functionality. However, process parameter monitoring is imperative for the automated system. This in-

cludes, for example, the material flow in the implement (detection of blockages) or the condition of the 

tines or blades.  

Additionally, the proposed method omits the validation of the simulation itself, noting that the simu-

lation environment serves as a means to an end. Nonetheless, given the method's requirement for valida-

tion on real data for each parameter, the authors find this approach acceptable. 



 

 

Figure 3. Exemplary Closed Control Loop of an automated tillage process. 

5. Conclusion 

The literature introduces various parameters with many metrics to describe the quality of the tillage 

process. This paper presented a methodological approach to evaluate the different metrics to find the 

most relevant ones. Therefore, the method consists of three steps: In the first step verifying the parame-

ter’s metric in a deterministic environment (simulation, test bench) is done. In the second step, the avail-

able metrics are clustered based on similar physical properties identified using the Spearman correlation 

coefficient. In the last step, the most significant metrics are validated on infield data. The idea of model-

ing the parameters over the possible degrees of freedom (manipulated variable and disturbances) needs 

further investigation but could be one possible use case for the method.  
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