Modern Software Libraries for Graph Partitioning (Abstract)

Nikolai Maas
nikolai.maas@kit.edu
Karlsruhe Institute of

Technology
Karlsruhe, Germany

Lars Gottesbiiren
lars.gottesbueren@kit.edu
Karlsruhe Institute of
Technology
Karlsruhe, Germany

me mh

uncontract

@ L(mtrnt
,
% 4,

Peter Sanders Daniel Seemaier

sanders@kit.edu daniel.seemaier@Xkit.edu
Karlsruhe Institute of Karlsruhe Institute of
Technology Technology

Karlsruhe, Germany Karlsruhe, Germany

@1]2‘

(bD &

@

Imtlal ‘
O . @

Figure 1: The multilevel scheme.

Abstract

We summarize recent developments in parallel libraries for balanced
graph partitioning, spanning contributions made over several re-
search papers [2-9] that have culminated in the two state-of-the-art
solvers for graphs and hypergraphs: KaMinPar and MtKaHyPar.
These works have closed a significant gap in solution quality be-
tween sequential solvers and fast parallel codes.

1 Introduction

Balanced graph partitioning is a well-established NP-hard problem
with the goal of partitioning the vertices of a graph G = (V, E) into
a fixed number k > 2 of disjoint blocks Vi, . . ., Vi with roughly
equal

size |V;| < (1 + ¢)|V|/k (the balance constraint) while minimizing
the number of cut edges Zf;j {(u,v) € E | u € Vi,v € V;}]| (the
objective). The term good solution quality refers to small edge cuts.
An archetypical application of graph partitioning is optimizing data
placement to minimize communication under load-balance.

All state-of-the-art solvers leverage the multilevel scheme (Fig. 1).
To coarsen G, small vertex clusters are contracted repeatedly to ob-
tain a hierarchy of smaller but structurally similar graphs. After
computing an initial partition on the smallest graph, the contrac-
tions are undone in reverse order, projecting the current partition
to the next finer graph and improving the partition by moving
vertices, using refinement algorithms. This approach is both faster

as we perform global optimization on the top-level graph through
local moves on the coarsened graphs. In order to achieve non-trivial
speedups, parallel refinement algorithms must move vertices in par-
allel. This introduces challenges such as guaranteeing the partition
is balanced, inaccurate gain values (difference in objective function)
due to adjacent vertices moving concurrently, and fine-grained de-
cision dependencies. For example, the Fiduccia-Mattheyses (FM)
algorithm repeatedly moves the vertex with highest gain (possibly
negative), which is challenging to parallelize.

2 Mt-KaHyPar

Mt-KaHyPar is a shared-memory parallel multilevel hypergraph
partitioning algorithm that comprises fast parallel versions of the
core techniques previously used in the state-of-the-art sequential
codes: flow-based refinement [4], n-level coarsening [5], FM re-
finement and pre-clustering [7]. As such, it is currently the fastest
hypergraph partitioning algorithm and offers the highest solution
quality. To parallelize FM, we follow a localized strategy, starting
independent searches in different regions that gradually expand
to neighbors of moved vertices. A recent improvement is uncon-
strained refinement [8], which achieves substantially better edge
cuts on irregular graphs by allowing temporary balance violations.
The framework is designed for high reliability. We offer balance
guarantees via a high-quality rebalancer [8] and atomic balance
checks, mitigate the effects of data races during refinement via the
attributed gains technique [7] and provide a deterministic mode for
reproducible results [2]. Furthermore, Mt-KaHyPar packs a variety
of ergonomic features for real-world application tasks. This includes
the ability to provide fixed vertices and non-uniform maximum
block weights as additional inputs for the partitioning, as well
as support for many different objectives and an API for custom
objectives. Specialized data structures achieve a 1.75x speedup when
partitioning graphs instead of hypergraphs [3]. Library interfaces
for C, C++ and Python allow easy integration into any codebase.

3 KaMinPar

KaMinPar is the fastest multilevel graph partitioning algorithm
available today. It supports both shared-memory and distributed-
memory parallelism. The biggest advantage over prior systems is
for large values of k (e.g., k > 1000), where our deep multilevel

Lars Gottesbiiren, Nikolai Maas, Peter Sanders, & Daniel Seemaier

— BiPart(2.297)

L 145 Zoltan
S 1.40 A
0
o 1357
2 1301 '
S 1.25- PaToH.D Mondriaan
B i hMetis-K
v 120
2 1.15 PaToH-Q ® x
< etis-
i‘? 1.10 1 Mt-KaHyPar-D KaHyPar-CA

1.05 Mt-KaHyPar-Q

1.00 Mt-KaHyPar-Q-F KaHyPar-K

1407 Sequential
1.35 A ;
ParMetis Scotch Shared-Memory
1.30
1251 Mt-Metis ParHIP Distributed-Memory
— ;
1201 ® KaMinPar MUS KaHiP-Fasts
1.151 Mt-KaHyPar-D
1.10 7 Mt-KaHIP Mt-KaHyPar-Q KaHiP-EcoS
1.05
1.00 Mt-KaHyPar-Q-F KaHiP-Strong$S

T T T T T
1 2! 22 23 24 2° 20 27 28 2°
Relative Running Time to Best

T T T T T T T T T
1 21 22 93 g4 95 96 o7 98 99 9l0 1
Relative Running Time to Best

Figure 2: Pareto plots comparing solution quality and running time relative to the best for each instance; aggregated with
harmonic mean; hypergraphs on the left, graphs on the right. Parallel codes are run on 10 cores. See [3] for setup details.

1.0 [r b
A pumemmmm— ﬁ/-‘-—
0.8 ' / :
-]]
S 0.6 -
*5' . .
= 041]
0.2 [1
0.0 Trrrrrrrr T T T T Trrrrrrrr T T T T
1.0 1.05 1.1 1.5 21010 x1.0 1.05 1.1 1.5 210'10%x
Ratio Ratio
=== Mt-KaHyPar-UFM === Jet === dKaMinPar-Jet ParMetis

=== Mt-KaHyPar-D = Mt-Metis dKaMinPar-LP

Figure 3: Performance profiles for unconstrained FM on ir-
regular graphs (left) and distributed Jet (right).

scheme [6] eliminates a significant bottleneck in initial partitioning,
leading to a larger than 5X speedup over competitors.

With deep multilevel we coarsen down to 2C vertices (instead
of kC) and fuse initial partitioning into the uncoarsening stage by
extending the current partition to a k” < k appropriate for the
current graph size. Overall we perform a single near-linear work
cycle of coarsening and uncoarsening instead of log(k) cycles.

For coarsening, we use label propagation clustering with addi-
tional two-hop matching to ensure coarsening progress on irregular
graphs. Starting from each vertex in its own cluster, label propa-
gation visits vertices in random order in parallel; a vertex joins a
cluster with the plurality of its neighbors subject to a size constraint.
In our contraction algorithm we use a two-level buffering data struc-
ture to avoid generating edges twice for the coarse graph’s CSR.
For initial bipartitioning, we implement a portfolio of 7 randomized
sequential greedy graph growing heuristics and 2-way FM. In the
refinement stage, we also utilize size-constrained label propagation,
starting with the given partition. As optional components, we offer
parallel localized k-way FM refinement in shared-memory mode
and a distributed version of Jet refinement [1].

4 Evaluation

In Fig. 2 we summarize the landscape of multilevel algorithms with
a Pareto plot comparing running time versus solution quality, lower
and to the left is better. For hypergraphs (left), Mt-KaHyPar configu-
rations occupy all spots on the Pareto front, with -D (default, log(n)
coarsening levels, parallel FM) being the fastest and -Q-F (= n coars-
ening levels, flow-based refinement) having the best quality. For
graphs (right), Mt-KaHyPar, KaMinPar and KaHiP (strong-social)
occupy the spots on the Pareto front, with KaMinPar opting for a

faster, but lower quality configuration. Respectively, Mt-KaHyPar
and KaMinPar achieve self-relative speedups of 22.3x and 27.9x on
64 cores. Distributed KaMinPar scales to at least 8192 cores [9].
Fig. 3 shows substantial quality improvements on irregular graphs
due to recent advances in unconstrained refinement. These plots
relate the fraction of instances (y) for which a specific algorithm
achieves a quality within factor x of the best found solution for
that instance, with x = 1 showing the fraction of best solutions con-
tributed. Mt-KaHyPar with U(nconstrained) FM beats Jet [1], which
beats Mt-KaHyPar-D [8]. Similarly, the distributed Jet refinement
integrated in dKaMinPar significantly outperforms the previous
LP-based dKaMinPar. The partitions computed by Mt-Metis and
ParMetis are largely imbalanced (marked with X) and thus invalid.

5 Outlook

We highlight two upcoming improvements. Leveraging compressed
data structures, KaMinPar will soon be able to partition graphs with
several hundred billion edges on a single machine, without using
external memory or streaming. Moreover, we are improving the
deterministic partitioning mode in Mt-KaHyPar to match the state-
of-the-art solution quality of the non-deterministic mode.

Acknowledgements. Parts of this work were performed on the
HoreKa supercomputer funded by the Ministry of Science, Research
and the Arts Baden-Wiirttemberg and by the Federal Ministry of
Education and Research. This project has received funding from
the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation program (grant agreement
No. 882500).

References

[1] Michael S. Gilbert, Kamesh Madduri, Erik G. Boman, and Sivasankaran Rajaman-
ickam. 2023. Jet: Multilevel Graph Partitioning on GPUs. arxiv (2023).

[2] Lars Gottesbiiren and Michael Hamann. 2022. Deterministic Parallel Hypergraph
Partitioning. In Euro-Par.

[3] L. Gottesbiiren, T. Heuer, N. Maas, P. Sanders, and S. Schlag. 2024. Scalable High-
Quality Hypergraph Partitioning. ACM Transactions on Algorithms (2024).

[4] Lars Gottesbiiren, Tobias Heuer, and Peter Sanders. 2022. Parallel Flow-Based
Hypergraph Partitioning. In SEA.

[5] Lars Gottesbiiren, Tobias Heuer, Peter Sanders, and Sebastian Schlag. 2022. Shared-
Memory n-level Hypergraph Partitioning. In ALENEX.

[6] Lars Gottesbiiren, Tobias Heuer, Peter Sanders, Christian Schulz, and Daniel
Seemaier. 2021. Deep Multilevel Graph Partitioning. In ESA.

[7] Lars Gottesbiiren, Tobias Heuer, Peter Sanders, and Sebastian Schlag. 2021. Scalable
Shared-Memory Hypergraph Partitioning. In ALENEX.

[8] Nikolai Maas, Lars Gottesbiiren, and Daniel Seemaier. 2024. Parallel Unconstrained
Local Search for Partitioning Irregular Graphs. In ALENEX.

[9] Peter Sanders and Daniel Seemaier. 2023. Distributed Deep Multilevel Graph
Partitioning. In Euro-Par.

	Abstract
	1 Introduction
	2 Mt-KaHyPar
	3 KaMinPar
	4 Evaluation
	5 Outlook
	References

