
Scalable and Efficient Uncertainty Estimation
and Reduction in Edge-AI Accelerators

Zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

von der KIT-Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation
von

Soyed Tuhin Ahmed
aus Sylhet (Bangladesh)

Tag der mündlichen Prüfung: 15 July 2024
1. Referent: Prof. Dr. Mehdi B. Tahoori,

Karlsruhe Institute für Technology (KIT)
2. Korreferent: Prof. Dr. Krishnendu Chakrabarty,

Arizona State University (ASU)

Acknowledgments

First and foremost, I would like to express my deepest gratitude to my advisor, Prof. Dr. Mehdi B. Tahoori. I
am grateful for allowing me to work on exciting projects, giving me enough freedom to explore and define
my own solutions, and for his guidance, insightful feedback, and constant availability for discussions. His
mentorship not only taught me how to conduct meaningful research but also helped steer my work in the
right direction.

I would also like to extend my sincere thanks to Prof. Dr. Lorena Anghel, Dr. Guillaume Prenat, and Kamal
Danouchi from the University Grenoble-Alpes, CEA, and Spintec Lab, France. Their involvement, scientific
expertise, and contributions to hardware implementation significantly enhanced the depth and practicality
of my research. I am particularly grateful for their continuous support beyond the projects, including their
invaluable assistance in preparing for my oral exams.

I am deeply appreciative of all my coauthors and colleagues for their collaboration and contributions. In
particular, I would like to thank Dr. Michael Hefenbrock and Dr. Christopher Münch, who mentored me
during the initial stages of my Ph.D. Their support and encouragement were instrumental in shaping my
research trajectory, and their mentorship has been a constant source of inspiration.

Finally, I want to thank my family. Their help goes beyond this thesis. Throughout my academic and
professional journey, I have been fortunate to receive support that ranges from financial assistance to life
advice. Their unwavering support has been the foundation of my academic and professional career. I am
deeply grateful for their love and support.

3

"Living on the edge is nice, but uncertainties come with it."

i

Abstract

In recent years, advancements in artificial intelligence (AI) have led to the widespread deployment of
neural networks (NNs) in various domains, such as computer vision, speech recognition, and natural
language processing. However, performance improvement comes at the cost of a substantial number of
parameters and computation requirements. Thus, the deployment of AI applications predominantly relies
on cloud computing. However, NN inference in the cloud is impractical for real-time and delay-sensitive
edge applications due to low latency, bandwidth limitations, and privacy concerns. Consequently, edge AI,
which involves deploying AI algorithms on edge devices, offers a solution by processing incoming data for
inference on-device, thus reducing data communication latency and improving privacy.

Nevertheless, on-device inference is challenging since the inference stage of NN is computationally
intensive, power-hungry, and has a high memory overhead. However, edge devices are typically resource-
constrained in terms of computational and memory resources and are battery-powered. Therefore, per-
forming inference on specialized AI accelerator architectures is an attractive solution that offers parallel
processing, low-power consumption, reduced latency, and, in some architectures, in-memory computa-
tion.

Despite the benefits of edge AI accelerators, due to their deployment in dynamic and real-world environ-
ments, they are susceptible to various sources of uncertainty. For example, data distribution shifts and
sensor noise can corrupt or perturb inference data. Despite the NN receiving such "out-of-distribution"
data, they tend to make overconfident predictions. Similarly, hardware non-idealities such as defects and
variations arising during the manufacturing process and online operation due to inherent device properties,
immature fabrication processes, and external environmental factors such as temperature and radiation
particles can also perturb parameters, activations, and outputs of edge AI accelerators. Consequently,
these non-idealities negatively impact inference accuracy, significantly affect reliability, and introduce
uncertainty in the functionality of the edge AI accelerator. Uncertain predictions are unacceptable for many
applications, including safety-critical applications, where the consequences of an incorrect prediction can
be catastrophic. Therefore, estimating uncertainty in both data and functionality, followed by uncertainty
reduction, is crucial for ensuring the highly reliable operation of edge AI accelerators.

Existing methods often focus on specific aspects, such as fault tolerance on AI accelerators with specific
memory technology or architecture, and suffer from resource scalability issues. Specifically, resources such
as the number of random number generators (RNGs), dropout modules, models, test vectors, and memory
increase with the size of the model, dataset, and other factors such as ensemble members. Therefore, they
are impractical for resource-constrained edge AI accelerators. Nevertheless, the efficient implementation of
certain methods, such as Bayesian Neural Networks, which are highly effective for predictive uncertainty
estimation, is itself challenging and requires holistic algorithm-hardware co-optimization.

To address the limitations, this thesis makes several contributions: a) predictive uncertainty estimation,
b) functional uncertainty estimation of edge AI accelerators, c) reducing uncertainty due to hardware
non-idealities, and d) continuous availability of AI accelerators using algorithm-hardware co-design-based
solutions. Specifically, problem-aware training algorithms, loss and penalty functions, model compression,
novel neural network topologies, normalization layers, dropout methods, hardware architectures, param-
eter mapping, approximation methods, compact automatic test vector generation methods, and several
online testing frameworks are proposed for our objective. The main goal is to improve the uncertainty
quantification, testability, reliability, performance, manufacturing yield, and efficiency of edge AI in a
resource-scalable manner. Extensive evaluations are performed for each method to demonstrate their

iii

Abstract

effectiveness. The contributions enhance the overall reliability and efficiency of Edge AI accelerators
from a holistic perspective. Consequently, it enables the wide-scale deployment of NN in real-world
applications.

iv

Zusammenfassung

In den letzten Jahren haben Fortschritte im Bereich der künstlichen Intelligenz (KI) zu einem weit verbrei-
teten Einsatz neuronaler Netze (NN) in verschiedenen Bereichen geführt, z. B. in der Computer Vision, der
Spracherkennung und der Verarbeitung natürlicher Sprache. Die Leistungsverbesserung geht jedoch auf
Kosten einer beträchtlichen Anzahl von Parametern und Berechnungsanforderungen. Daher werden KI-
Anwendungen überwiegend in der Cloud eingesetzt. Die NN-Inferenz in der Cloud ist jedoch für Echtzeit-
und verzögerungsempfindliche Edge-Anwendungen aufgrund geringer Latenzzeiten, Bandbreitenbeschrän-
kungen und Datenschutzbedenken unpraktisch. Folglich bietet die Edge-KI, bei der KI-Algorithmen auf
Edge-Geräten eingesetzt werden, eine Lösung, indem eingehende Daten für die Inferenz auf dem Gerät
verarbeitet werden, wodurch die Latenzzeit bei der Datenkommunikation verringert und der Datenschutz
verbessert wird.

Dennoch ist die Inferenz auf dem Gerät eine Herausforderung, da die Inferenzphase der NN rechenintensiv
und stromhungrig ist und einen hohen Speicherbedarf hat. Edge-Geräte verfügen jedoch in der Regel
nur über begrenzte Ressourcen in Form von Rechen- und Speicherressourcen und sind batteriebetrieben.
Daher ist die Durchführung von Schlussfolgerungen auf spezialisierten KI-Beschleunigerarchitekturen
eine attraktive Lösung, die parallele Verarbeitung, geringen Stromverbrauch, geringere Latenzzeiten und
bei einigen Architekturen auch In-Memory-Berechnungen bietet.

Trotz der Vorteile von Edge-KI-Beschleunigern sind diese aufgrund ihres Einsatzes in dynamischen und
realen Umgebungen anfällig für verschiedene Unsicherheitsfaktoren. So können beispielsweise Verschie-
bungen in der Datenverteilung und Sensorrauschen die Inferenzdaten verfälschen oder stören. Obwohl die
NN solche „verteilungsfremden“ Daten erhalten, neigen sie dazu, überhöhte Vorhersagen zu treffen. In
ähnlicher Weise können auch Hardware-Nicht-Idealitäten wie Defekte und Schwankungen, die während
des Herstellungsprozesses und des Online-Betriebs aufgrund von inhärenten Geräteeigenschaften, unaus-
gereiften Herstellungsprozessen und externen Umweltfaktoren wie Temperatur und Strahlungsteilchen
auftreten, die Parameter, Aktivierungen und Ausgaben von Edge-KI-Beschleunigern stören. Folglich wirken
sich diese Nicht-Idealitäten negativ auf die Genauigkeit der Schlussfolgerungen aus, beeinträchtigen die
Zuverlässigkeit erheblich und führen zu Unsicherheiten in der Funktionalität des Edge-KI-Beschleunigers.
Unsichere Vorhersagen sind für viele Anwendungen inakzeptabel, einschließlich sicherheitskritischer
Anwendungen, bei denen die Folgen einer falschen Vorhersage katastrophal sein können. Daher ist die
Abschätzung der Unsicherheit sowohl bei den Daten als auch bei der Funktionalität und die anschließende
Reduzierung der Unsicherheit entscheidend für die Gewährleistung eines äußerst zuverlässigen Betriebs
von Edge-KI-Beschleunigern.

BestehendeMethoden konzentrieren sich oft auf spezifischeAspekte, wie Fehlertoleranz auf KI-Beschleunigern
mit spezieller Speichertechnologie oder -architektur, und leiden unter Problemen der Skalierbarkeit von Res-
sourcen. Insbesondere nehmen Ressourcen wie die Anzahl der Zufallszahlengeneratoren (RNGs), Dropout-
Module, Modelle, Testvektoren und Speicher mit der Größe des Modells, des Datensatzes und anderer
Faktoren wie Ensemblemitglieder zu. Daher sind sie für ressourcenbeschränkte Edge-AI-Beschleuniger
unpraktisch. Nichtsdestotrotz ist die effiziente Implementierung bestimmterMethoden, wie Bayes’sche Neu-
ronale Netze, die für prädiktive Unsicherheitsabschätzungen sehr effektiv sind, selbst eine Herausforderung
und erfordert eine ganzheitliche Algorithmus-Hardware-Ko-Optimierung.

Um diese Einschränkungen zu beheben, leistet diese Arbeit mehrere Beiträge: a) prädiktive Unsicher-
heitsabschätzung, b) funktionale Unsicherheitsabschätzung von Edge-KI-Beschleunigern, c) Reduzierung
der Unsicherheit aufgrund von Hardware-Nicht-Idealitäten und d) kontinuierliche Verfügbarkeit von

v

Zusammenfassung

KI-Beschleunigern durch Algorithmus-Hardware-Co-Design-basierte Lösungen. Konkret werden problem-
orientierte Trainingsalgorithmen, Verlust- und Straffunktionen, Modellkomprimierung, neuartige neuro-
nale Netztopologien, Normalisierungsschichten, Dropout-Methoden, Hardwarearchitekturen, Parameter-
Mapping, Approximationsmethoden, kompakte automatische Testvektor-Generierungsmethoden und
verschiedene Online-Test-Frameworks für unser Ziel vorgeschlagen. Das Hauptziel besteht darin, die Quan-
tifizierung der Unsicherheit, die Testbarkeit, die Zuverlässigkeit, die Leistung, die Produktionsausbeute und
die Effizienz von Edge AI auf eine ressourcenskalierbare Weise zu verbessern. Für jede Methode werden
ausführliche Bewertungen durchgeführt, um ihre Wirksamkeit zu demonstrieren. Die Beiträge verbes-
sern die allgemeine Zuverlässigkeit und Effizienz von Edge-KI-Beschleunigern aus einer ganzheitlichen
Perspektive. Folglich ermöglichen sie den breiten Einsatz von NN in realen Anwendungen.

vi

List of Publications

The following list enumerates conference and journal papers by the author of this dissertation while
pursuing his doctorate.

First-author conference papers that are part of this thesis

[1] Soyed Tuhin Ahmed, Michael Hefenbrock, Christopher Münch and Mehdi B Tahoori. “NeuroScrub:
Mitigating retention failures using approximate scrubbing in Neuromorphic fabric based on resistive
memories”. In: 2021 IEEE European Test Symposium (ETS). IEEE. 2021, pp. 1–6.

[2] Soyed Tuhin Ahmed and Mehdi B Tahoori. “Fault-tolerant Neuromorphic Computing with Func-
tional ATPG for Post-manufacturing Re-calibration”. In: 2022 IEEE 40th VLSI Test Symposium (VTS).
IEEE. 2022, pp. 1–7.

[3] Soyed Tuhin Ahmed, Mahta Mayahinia, Michael Hefenbrock, Christopher Münch and Mehdi B
Tahoori. “Process and Runtime Variation Robustness for Spintronic-Based Neuromorphic Fabric”.
In: 2022 IEEE European Test Symposium (ETS). IEEE. 2022, pp. 1–2.

[4] Soyed Tuhin Ahmed and Mehdi B. Tahoori. “Compact Functional Test Generation for Memristive
Deep Learning Implementations using Approximate Gradient Ranking”. In: 2022 IEEE International
Test Conference (ITC). 2022, pp. 239–248. doi: 10.1109/ITC50671.2022.00032.

[5] Soyed Tuhin Ahmed, Kamal Danouchi, Christopher Münch, Guillaume Prenat, Anghel Lorena and
Mehdi B Tahoori. “Binary bayesian neural networks for efficient uncertainty estimation leveraging
inherent stochasticity of spintronic devices”. In: NANOARCH’22: 17th ACM International Symposium
on Nanoscale Architectures. ACM. 2022, pp. 1–6.

[6] Soyed Tuhin Ahmed, Kamal Danouchi, Michael Hefenbrock, Guillaume Prenat, Lorena Anghel and
Mehdi B Tahoori. “Scalable Spintronics-based Bayesian Neural Network for Uncertainty Estimation”.
In: 2023 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE. 2023, pp. 1–6.

[7] Soyed Tuhin Ahmed, Roman Rakhmatullin and Mehdi B Tahoori. “Online Fault-Tolerance for
Memristive Neuromorphic Fabric Based on Local Approximation”. In: 2023 IEEE European Test
Symposium (ETS). IEEE. 2023, pp. 1–4.

[8] Soyed Tuhin Ahmed, Kamal Danouchi, Michael Hefenbrock, Guillaume Prenat, Lorena Anghel and
Mehdi B. Tahoori. “Testing Spintronics Implemented Monte Carlo Dropout-Based Bayesian Neural
Networks”. In: 2022 IEEE European Test Symposium (ETS). IEEE. 2024, pp. 1–6.

[9] Soyed Tuhin Ahmed, Kamal Danouchi, Guillaume Prenat, Lorena Anghel and Mehdi B Tahoori.
“NeuSpin: Design of a Reliable Edge Neuromorphic System Based on Spintronics for Green AI”. In:
2024 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE. 2024, pp. 1–6.

[10] Soyed Tuhin Ahmed*, Surendra Hemaram* and Mehdi B Tahoori. “NN-ECC: Embedding Error
Correction Codes in Neural Network Weight Memories using Multi-task Learning”. In: 2024 IEEE
42th VLSI Test Symposium (VTS). IEEE. 2024, pp. 1–6.

[11] Soyed Tuhin Ahmed, Kamal Danouchi, Guillaume Prenat, Lorena Anghel and Mehdi B Tahoori.
“Enhancing Reliability of Neural Networks at the Edge: Inverted Normalization with Stochastic
Affine Transformations”. In: 2024 Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE. 2024, pp. 1–6.

vii

https://doi.org/10.1109/ITC50671.2022.00032

Zusammenfassung

[12] Soyed Tuhin Ahmed, Michael Hefenbrock and Mehdi B. Tahoori. “Tiny Deep Ensemble: Uncertainty
Estimation in Edge AI Accelerators via Ensembling Normalization Layers with Shared Weights”. In:
2024 IEEE/ACM International Conference on Computer Aided Design (ICCAD). IEEE. 2024, pp. 1–9.

[13] Soyed Tuhin Ahmed and Mehdi Tahoori. “Few-Shot Testing: Estimating Uncertainty of Memristive
Deep Neural Networks Using One Bayesian Test Vector”. In: (2024). arXiv: 2405.18894 [cs.LG].

First-author journal papers that are part of this thesis

[14] Soyed Tuhin Ahmed, Michael Hefenbrock, Christopher Münch and Mehdi B Tahoori. “Neuroscrub+:
Mitigating retention faults using flexible approximate scrubbing in neuromorphic fabric based
on resistive memories”. In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 42.5 (2022), pp. 1490–1503.

[15] Soyed Tuhin Ahmed, Mahta Mayahinia, Michael Hefenbrock, Christopher Münch and Mehdi B
Tahoori. “Design-time Reference Current Generation for Robust Spintronic-based Neuromorphic
Architecture”. In: ACM Journal on Emerging Technologies in Computing Systems 20.1 (2023).

[16] Soyed Tuhin Ahmed, Kamal Danouchi, Christopher Münch, Guillaume Prenat, Lorena Anghel and
Mehdi B. Tahoori. “SpinDrop: Dropout-Based Bayesian Binary Neural Networks With Spintronic
Implementation”. In: IEEE Journal on Emerging and Selected Topics in Circuits and Systems 13 (2023).
doi: 10.1109/JETCAS.2023.3242146.

[17] Soyed Tuhin Ahmed and Mehdi B Tahoori. “Fault-tolerant Neuromorphic Computing with Mem-
ristors Using Functional ATPG for Efficient Re-calibration”. In: IEEE Design & Test (2023).

[18] Soyed Tuhin Ahmed, Kamal Danouchi, Michael Hefenbrock, Guillaume Prenat, Lorena Anghel and
Mehdi B. Tahoori. “SpinBayes: Algorithm-Hardware Co-Design for Uncertainty Estimation Using
Bayesian In-Memory Approximation on Spintronic-Based Architectures”. In: ACM Transactions
on Embedded Computing Systems 22.5s (Sept. 2023), 131:1–131:25. issn: 1539-9087. doi: 10.1145/
3609116. url: https://doi.org/10.1145/3609116.

[19] Soyed Tuhin Ahmed, Kamal Danouchi, Michael Hefenbrock, Guillaume Prenat, Lorena Anghel and
Mehdi B Tahoori. “Spatial-SpinDrop: Spatial Dropout-based Binary Bayesian Neural Network with
Spintronics Implementation”. In: IEEE Transactions on Nanotechnology (2024).

[20] Soyed Tuhin Ahmed, Kamal Danouchi, Michael Hefenbrock, Guillaume Prenat, Lorena Anghel
and Mehdi B Tahoori. “Scale-Dropout: Estimating Uncertainty in Deep Neural Networks Using
Stochastic Scale”. In: arXiv preprint arXiv:2311.15816 (2024).

[21] Soyed Tuhin Ahmed and Mehdi B Tahoori. “One-shot online testing of deep neural networks
based on distribution shift detection”. In: IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (2024).

[22] Soyed Tuhin Ahmed and Mehdi B Tahoori. “Concurrent Self-testing and Uncertainty Estimation of
Neural Networks Using Uncertainty Fingerprint”. In: arXiv preprint arXiv:2401.01458 (2024).

Co-author papers that are not part of this thesis

The following list enumerates papers by the author of this dissertation that are not part of this thesis.

[23] Surendra Hemaram, Soyed Tuhin Ahmed, Mahta Mayahinia, Christopher Münch and Mehdi B
Tahoori. “A Low Overhead Checksum Technique for Error Correction in Memristive Crossbar for
Deep Learning Applications”. In: 2023 IEEE 41st VLSI Test Symposium (VTS). IEEE. 2023, pp. 1–7.

[24] Atousa Jafari, Mahta Mayahinia, Soyed Tuhin Ahmed, Christopher Münch and Mehdi B Tahoori.
“MVSTT: A Multi-Value Computation-in-Memory based on Spin-Transfer Torque Memories”. In:
2022 25th Euromicro Conference on Digital System Design (DSD). IEEE. 2022, pp. 332–339.

viii

https://arxiv.org/abs/2405.18894
https://doi.org/10.1109/JETCAS.2023.3242146
https://doi.org/10.1145/3609116
https://doi.org/10.1145/3609116
https://doi.org/10.1145/3609116

Zusammenfassung

Hiermit erkläre ich an Eides statt, dass ich die von mir vorgelegte Arbeit selbstständig verfasst habe, dass
ich die verwendeten Quellen, Internet-Quellen und Hilfsmittel vollständig angegeben haben und dass ich
die Stellen der Arbeit – einschließlich Tabellen, Karten und Abbildungen – die anderen Werken oder dem
Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als
Entlehnung kenntlich gemacht habe.

Karlsruhe, 1. June 2024

Soyed Tuhin Ahmed

ix

Contents

Acknowledgments . 3

Abstract . iii

Zusammenfassung . v

1. Introduction . 1
1.1. Edge AI . 2
1.2. Edge AI Accelerator . 2
1.3. Uncertainty In AI Accelerators . 3

1.3.1. Uncertainty In Predictions . 3
1.3.2. Functional Uncertainty In Edge AI Accelerators . 4
1.3.3. Uncertainty Due to Aging . 4

1.4. Reliability Requirements for Safety-Critical Applications 5
1.5. Challenges and Research Direction . 5

1.5.1. Predictive Uncertainty Estimation . 5
1.5.2. Quantification of Functional Uncertainty of The Edge AI Accelerators 6
1.5.3. Uncertainty Reduction . 8
1.5.4. Integration Challenges . 9

1.6. Summary of Contributions . 9
1.7. Overall Reliability Flow . 12

1.7.1. Runtime Monitoring and Reliability Improvement 13
1.7.2. Self-Healing Approaches . 14

1.8. Outline Of This Thesis . 14

2. Background . 17
2.1. Neural Network . 17
2.2. Binary Neural Network . 17

2.2.1. Scale Vector In BNN . 18
2.3. Normalization Approaches In Deep Learning . 18
2.4. Regularization Methods . 19

2.4.1. Drawbacks for Edge AI-Accelerators . 19
2.5. Expectation of Uncertainty Estimates In Edge AI Accelerator 19
2.6. Bayesian Neural Networks . 20

2.6.1. Variational Inference . 20
2.6.2. MC-Dropout as Bayesian Approximation Approximation 21

2.7. Model Ensemble For Uncertainty Estimation . 22
2.8. Memristor Technologies . 22

2.8.1. Spintronic Technology . 23
2.8.2. RRAM Technology . 23
2.8.3. PCM Technology . 24

2.9. AI Accelerator Architectures . 24
2.9.1. Memristor-based Computation-in-Memory Architectures 24
2.9.2. Digital AI Accelerators . 25

xi

Contents

2.10. Failure Mechanisms in Memristor-based CiM . 26
2.10.1. Permanent Faults . 26
2.10.2. Soft faults . 26
2.10.3. Variations . 28
2.10.4. Failure Mechanisms of Buffer Memories . 28
2.10.5. Failure Mechanisms of Dropout Modules of CiM 28
2.10.6. Linear Block Error Correction Coding . 28

3. Related Works . 31
3.1. Uncertainty Estimation . 31

3.1.1. Hardware Implementation of BayNN . 31
3.1.2. Variational Inference . 32
3.1.3. Monte Carlo Sampling-based Approaches . 32
3.1.4. Model Ensemble . 32

3.2. Testing NNs in Edge AI Accelerators . 33
3.2.1. Hardware-based Solutions . 33
3.2.2. Algorithm-based Testing Approaches . 33
3.2.3. Test Specific Modules of AI Accelerator . 34
3.2.4. Summary of the Gaps in the Existing Literature . 34

3.3. Uncertainty Reduction . 34
3.3.1. Variation Robustness . 34
3.3.2. Per-device Re-calibration For Variation-Tolerance 35
3.3.3. Memory Scrubbing . 35
3.3.4. Zero Overhead ECC . 36
3.3.5. Self-Healing Bayesian Neural Networks . 36
3.3.6. Online/offline Training and Re-training . 37

I. Methods for Resource Scalable Predictive Uncertainty Estimation 39

4. Monte-Carlo Dropout-Based Bayesian NNs . 43
4.1. Dropout-Based Bayesian Binary Neural Network . 43

4.1.1. Methodology . 43
4.1.2. Evaluation . 48
4.1.3. Scientific Impact of This Work . 59
4.1.4. Section Conclusion . 60

4.2. Grouped-Dropout as Bayesian Binary Neural Network . 61
4.2.1. Methodology . 61
4.2.2. Results . 66
4.2.3. Scientific Impact of This Work . 70
4.2.4. Section Conclusion . 71

4.3. Scale Dropout-Based Bayesian Binary Neural Network . 71
4.3.1. Scale Dropout . 71
4.3.2. Scale-Dropout as a Bayesian Approximation . 74
4.3.3. Hardware Implementation . 76
4.3.4. Evaluation . 78
4.3.5. Scientific Impact of This Work . 89
4.3.6. Section Conclusion . 90

5. Variational Inference-Based Bayesian NNs . 91
5.1. Bayesian In-Memory Approximation and CiM-Aware NN Architecture for Efficient Sampling 91

5.1.1. Methodology . 91
5.1.2. Hardware Implementation . 95

xii

Contents

5.1.3. Evaluation . 98
5.1.4. Simulation Setup . 98
5.1.5. Algorithmic Results . 100
5.1.6. Scientific Impact of This Work . 107
5.1.7. Section Conclusion . 108

5.2. Bayesian Subset Parameter Inference . 108
5.2.1. Observation and Motivation . 108
5.2.2. Bayesian Subset Parameter Inference . 109
5.2.3. Hardware implementation . 110
5.2.4. Experimental Result . 111
5.2.5. Scientific Impact of This Work . 114
5.2.6. Section Conclusion . 114

6. Model Ensemble-Based Uncertainty Estimation . 115
6.1. Motivation and Observation . 115
6.2. Methodology . 116

6.2.1. Core Idea . 116
6.2.2. Operation Modes . 116
6.2.3. Training . 119
6.2.4. Prediction and Uncertainty Estimation . 119
6.2.5. Diversity Improvement Among Ensemble Members 120

6.3. Results . 120
6.3.1. Experimental Setup . 120
6.3.2. Evaluation of Regression on Real-World UCI Datasets 121
6.3.3. Evaluation of Classification . 121
6.3.4. Evaluation of Time-Series Prediction . 122
6.3.5. Evaluation of Semantic Segmentation . 122
6.3.6. Comparison with Related Works . 123
6.3.7. Improving Diversity . 123
6.3.8. Hardware Overhead . 125

6.4. Scientific Impact of This Work . 127
6.4.1. Section Conclusion . 127

II. Methods for Quantifying Functional Uncertainty of Edge AI Accelerators 129

7. Explicit Testing of NNs . 133
7.1. Approximate Gradient Ranking . 133

7.1.1. Methodology . 133
7.1.2. Proposed Test Application Method . 136
7.1.3. Fault Modelling and Injection Framework . 138
7.1.4. Results . 139
7.1.5. Scientific Impact of This Work and Contributions 143
7.1.6. Section Conclusion . 143

7.2. Single-shot Testing Large-Scale Deep Neural Networks . 144
7.2.1. Methodology . 144
7.2.2. Relevance of Normalization Methods for Standardizing the Output Distribution . . 149
7.2.3. Simulation Results . 149
7.2.4. Discussion and Future Works . 155
7.2.5. Scientific Impact of This Work . 157
7.2.6. Section Conclusion . 158

7.3. Few-Shot Testing Using Bayesian Test Vectors . 158
7.3.1. Problem Statement and Motivation . 158

xiii

Contents

7.3.2. Methodology . 161
7.3.3. Evaluation . 163
7.3.4. Scientific Impact of This Work . 168
7.3.5. Section Conclusion . 168

8. Explicit Testing of Bayesian NNs . 169
8.1. Methodology . 169

8.1.1. Problem Statement . 169
8.1.2. Automatic Test Generation Framework . 170
8.1.3. Proposed Fault Detection Approach . 170
8.1.4. Reduction of False Positives Rate . 171

8.2. Evaluation . 171
8.2.1. Simulation Setup . 171
8.2.2. Fault Models For Spintronics-CiM-based BayNN 171
8.2.3. Fault Sensitivity Analysis of BayNN on Spintronics-CiM 172
8.2.4. Analysis of Fault Coverage . 172
8.2.5. Analysis of False Positive Rate (FPR) . 172
8.2.6. Analysis of Non-ideal Dropout Module . 174
8.2.7. Overhead Analysis and Comparison to Related Works 174

8.3. Scientific Impact of This Work . 175
8.4. Section Summary . 175

9. Concurrent Testing NNs . 177
9.1. Problem Statement . 177
9.2. Methodology . 178

9.2.1. Uncertainty Fingerprint . 178
9.2.2. Dual-Head Model . 178
9.2.3. Training Objective . 179
9.2.4. Online Concurrent Self-test . 179

9.3. Results . 180
9.3.1. Simulation Setup . 180
9.3.2. Inference Accuracy . 181
9.3.3. Analysis of Permanent and Soft Faults Coverage 181
9.3.4. Analysis of Faults in the Uncertainty Head . 183
9.3.5. Analysis of FPR and Comparison With Related Works 183
9.3.6. Discussion . 184
9.3.7. Scientific Impact of This Work . 185
9.3.8. Section Conclusion . 185

10. Disentanglement of Source of Uncertainty . 187
10.1. Problem Statement . 187

10.1.1. Methodology . 187
10.2. Results . 188

10.2.1. Evaluation Setup . 188
10.2.2. Analysis of Disentanglement of Source of Uncertainty 189

10.3. Scientific Impact of This Work and Contributions . 189
10.4. Chapter Summary . 189

xiv

Contents

III. Methods for Uncertainty Reduction 191

11. Self-Healing Approaches . 195
11.1. Self-Healing the Impact of Manufacturing and Infield Thermal Variations 195

11.1.1. Problem Definition . 195
11.1.2. Methodology . 197
11.1.3. Results . 201
11.1.4. Scientific Impact of This Work and Contributions 207
11.1.5. Section Summary . 207

11.2. Self-Healing Bayesian NNs . 208
11.2.1. Problem Statement . 208
11.2.2. Methodology . 209
11.2.3. Results . 211
11.2.4. Scientific Impact of This Work and Contributions 214
11.2.5. Section Conclusion . 215

12. Runtime Periodic Maintenance Approaches . 217
12.1. Runtime Re-Calibration For Fault-Tolerance . 217

12.1.1. Problem Statement and Motivation . 217
12.1.2. Approximate Batch Normalization (ApproxBN) . 218
12.1.3. Post-Manufacturing Functional ATPG . 219
12.1.4. Overall Re-Calibration Workflow . 220
12.1.5. Simulation Results . 220
12.1.6. Analysis of the per-device re-calibration with BatchNorm 221
12.1.7. Analysis of the per-device re-calibration with ApproxBN 224
12.1.8. Batch Normalization Parameter Collapsing . 225
12.1.9. Analysis of partial re-calibration . 225
12.1.10. Scientific Impact of This Work . 226
12.1.11. Section Conclusion . 226

12.2. Maintaining Retention Faults and Aging Induce Drifts . 227
12.2.1. Problem Statement . 227
12.2.2. Methodology . 227
12.2.3. Results . 231
12.2.4. Evaluation Setup . 231
12.2.5. Discussion . 240
12.2.6. Scientific Impact of This Work and Contributions 241
12.2.7. Section Summary . 242

12.3. Guaranteed Soft-Faults Correction for Digital AI Accelerators 243
12.3.1. Problem Definition . 243
12.3.2. methodology . 243
12.3.3. Evaluation . 246
12.3.4. Section Conclusion . 250

IV. Ensuring Continuous Availability of Edge AI Hardware Accelerator 251

13. Local Approximation-based Continuous Availability . 253
13.1. Problem Statement and Challenges . 253
13.2. Methodology . 253

13.2.1. Building Local Approximators . 253
13.2.2. Implementation of Approximators . 253

13.3. Evaluation . 254
13.3.1. Simulation Setup . 254

xv

Contents

13.3.2. Constructing of Approximators for Online Fault Tolerance 255
13.3.3. Multi-Block Fault Tolerance . 256
13.3.4. Hardware Overhead Analysis . 257

13.4. Scientific Impact of This Work . 257
13.5. Chapter Conclusion . 258

14. Conclusion and Perspective . 259
14.1. Future Works . 261
14.2. Perspective . 262

Bibliography . 263

V. Appendix 281

List of Figures . 289

List of Tables . 297

A. List of Abbreviations . 301

B. List of Symbols . 303

xvi

1. Introduction

In recent years, neural networks (NNs) have revolutionized the field of artificial intelligence (AI), driving
significant advancements in various domains such as image recognition, natural language processing, and
autonomous systems [1]. Their ability to learn from vast amounts of data and perform complex tasks
with high accuracy has led to widespread adoption in industry and academia. Applications of NNs span
from consumer electronics [2, 3] to healthcare [4, 5], where they assist in diagnostic procedures, and to
autonomous vehicles, where they enable safe navigation. It is forecasted that by 2030, AI could potentially
generate an additional $13 trillion in global economic activity, or approximately 16% higher cumulative
GDP in comparison to 2018. Furthermore, 70% of companies are expected to adopt at least one type of AI
technology [6].

Despite their recent popularity, the history of neural networks dates back to the 1940s, when neuro-
physiologist Warren McCulloch and mathematician Walter Pitts modeled a simple neural network using
electrical circuits to describe how neurons in the brain might work [7]. The recent advancement of NN
can be attributed to the availability of large-scale data [8], the improvement of NN algorithms that allow
the size (depth and width) of models to increase [9, 10, 11], the availability of cloud computing plat-
forms [12], and performing computation in parallel processing architectures such as graphics processing
units (GPUs) [13].

However, to deploy an NN for inference, it is first trained on a dataset for a specific task to obtain trained
parameters that are stored in conventional or emerging memory technologies for inference. Then, in
the inference phase, the trained model is put into action on novel data (expected to be from the same
distribution as training data) to make actionable predictions. The overall training-to-deployment flow is
depicted in Fig. 1.1.

Therefore, the large size of NN leads to a) a large number of model parameters that need to be stored in
memory, which can be 138 million for the VGG-16 topology [12] and b) substantial multiply and accumulate
(MAC) operations, the fundamental computation of NN, which can be 5112.78 million for the VGG-16
topology [14]. Therefore, the inference of an NN based on its inputs can be heavily demanding in terms of
memory, energy, and computation capability [1, 15].

Therefore, cloud servers, which provide very powerful computational and large storage capabilities, are a
natural fit for the inference stage of NNs. However, the cloud-based ecosystem has many limitations that
prevent the adoption of all AI applications. Specifically, for edge AI devices (see Fig. 1.2), sending data
to the cloud for inference and receiving the results is not practical due to prediction latency, bandwidth
constraints, and privacy concerns. Many delay-sensitive AI applications, such as autonomous driving,
industrial control systems, and robotics, require fast processing of the incoming data to produce real-time
results. Consequently, extremely high network bandwidth will be necessary for cloud-based processing

Dataset Preprocessing Train Neural
Networks

Trained Model Parameters
Stored in Memory

Edge AI
Accelerator

Figure 1.1.: The training flow of NNs.

1

CHAPTER 1. INTRODUCTION

Smartwatches and
Fitness Trackers

Edge AI empowers
security cameras Self-Driving Cars Industrial Predictive

Maintenance Smart-Glass Smart Phone

Figure 1.2.: A few examples of edge AI devices and applications, including safety-critical applications such as autonomous driving
and industrial predictive maintenance.

for edge AI, which is challenging due to varying network qualities (e.g., in remote locations). Therefore,
computation near or on the edge device is preferred.

1.1. Edge AI

Edge AI refers to the deployment of AI algorithms fully or partially on edge devices, such as smartphones,
IoT devices, and autonomous vehicles, rather than relying on centralized cloud servers for inference. This
paradigm shift aims to address the limitations of cloud-based AI by bringing computation closer to the
data source. Edge AI can be categorized into several types based on how computation tasks are partitioned:
server-based edge inference, device-edge joint inference, and fully on-device edge inference.

In server-based edge inference, the entire AI models are deployed on edge servers. For inference, edge
devices upload their input data to edge servers and receive inference results. However, data communication
latency and user data privacy are still a concern. Specifically, input data can be personal information or
the record of street-view video. Therefore, sending them to the cloud raises privacy issues.

On the other hand, in device-edge joint inference, AI models are partitioned into edge devices and servers.
Specifically, the first few layers are deployed locally on the edge device, producing a local output with
simpler processing, and transmitting the local output to an edge server. Afterward, the final inference
results are transferred back to the edge devices. Thus, user data privacy can be preserved, but latency is
still a concern.

Consequently, the most attractive solution is fully on-device inference, where computations are done
locally on the device without any data transmission to external servers. Therefore, concerns about user data
privacy and latency are mitigated. As a result, this thesis focuses on fully on-device inference. However,
edge devices are resource-constrained and battery-powered, making a fully on-device inference particularly
challenging.

Therefore, more specialized hardware for accelerating NN is necessary to overcome the challenges of
computation and power efficiency.

1.2. Edge AI Accelerator

Several AI accelerator architectures have been developed, from more generic hardware such as Graphic
Processing Units (GPUs) to highly specialized hardware such as Tensor Processing Units (TPUs) [16], and
Application Specific Integrated Circuits (ASICs). Those solutions are largely focused on accelerating the
MAC operations of NN models. However, since NNs are data-centric applications, the data movement
between the processing unit and the memory unit becomes the bottleneck of the entire task. This leads to
the well-known memory wall problem [17].

2

1.3. UNCERTAINTY IN AI ACCELERATORS

Dog

Bird

Cat

90%

01%

09%

In-Distribution
Input

Out-of-Distribution
Input

Input
Layer

Hidden Layers

Output
Layer

04%

06%

90%

ID
Prob.

OOD
Prob.

Figure 1.3.: Visualization of the uncertainty of 3-class (Cat, Dog, and Bird) NN when it receives in-distribution (ID) input of bird
and out-of-distribution (pure Gaussian) input. The model predicts Gaussian noise as a Dog with high confidence.

In order to overcome this problem, conventional parallel computing architectures typically employ multi-
threading to hide memory access latency [18]. However, latency cannot be easily hidden in AI computation,
and intelligent memory architecture needs to be considered.

Consequently, Computation in-Memory (CiM) architectures with emerging resistive non-volatile memory
technologies (referred to as memristors) promise to mitigate the data transfer overhead by performing
MAC where data already reside. Consequently, the inference speed is improved, and the energy con-
sumption is reduced. Furthermore, memristors offer many benefits, such as highly scalable designs,
non-volatility, and low power consumption, compared to CMOS-based conventional static and dynamic
memories. Furthermore, some memristor technology offers high writing speed (within a few nanoseconds),
exceptional endurance, and demonstrates compatibility with established semiconductor manufacturing
processes [19].

1.3. Uncertainty In AI Accelerators

Despite the computational and energy efficiency benefits that edge AI accelerators offer, reliability is still
a concern as they are often deployed in dynamic environments with varying conditions. Reliability is
especially critical for safety-critical applications such as autonomous vehicles, industrial control, aviation,
medical imaging, and surgical robots, where malfunctions could directly lead to severe consequences or
even loss of life. However, these systems are inherently susceptible to uncertainties stemming from various
sources, including inference data, model architecture, hardware architectures, memory technology, NN
computation, and external environmental factors.

1.3.1. Uncertainty In Predictions

During inference, the edge AI accelerator is not guaranteed to receive input from the same distribution as
the training data. For example, an NN model trained on MNIST (handwritten digits from zero to nine) can
receive input that does not resemble a handwritten digit. Such data are referred to as out-of-distribution
(OOD) data samples. OOD data can be due to: 1. Data distribution shifts, where the statistical properties
of the input data change due to factors such as sensor noise or environmental variations [20], 2. Domain
shifts, where changes in the operational environment cause the data to differ significantly from the training
domain, 3. Open-world classes, where new classes of data emerge during inference that were not defined
during training.

In the presence of OOD data, NNs can make inaccurate, unpredictable, and uncertain predictions with
high confidence, as shown in Fig. 1.3. Existing work has shown that when an MNIST-trained NN model
receives OOD input (pure Gaussian noise), the mean prediction probability of 10000 inputs is 91% [21],

3

CHAPTER 1. INTRODUCTION

indicating the model’s overconfidence despite not recognizing the input as belonging to any of the trained
classes. This overconfidence can be catastrophic for safety-critical AI applications. In fact, the first fatal
accident involving an autonomous vehicle that killed a Tesla driver was linked to the system’s inability to
correctly identify an OOD object (a white truck against a bright sky), highlighting the critical need for
OOD detection and mitigation in safety-critical edge AI [22].

Therefore, in safety-critical AI applications, providing predictive uncertainty estimates in addition to model
perdition is paramount to increasing confidence in prediction and improving overall reliability.

1.3.2. Functional Uncertainty In Edge AI Accelerators

Since edge AI accelerators are deployed in real-world environments, they are susceptible to single and
multiple permanent and soft faults and online variations that lead to errors [23] in weights, MAC results,
and activations. Specifically, online faults can be due to fluctuations in operating temperature, radiation
level, electromagnetic interference (EMI), and voltage and current fluctuations [24, 25, 26]. In addition,
some faults and defects occur during manufacturing, but they escape manufacturing testing, leading
to online faults. On the other hand, the conductance of emerging memory cells follows a distribution
rather than a single point value due to manufacturing variations, and it further fluctuates due to operating
temperature [27]. Consequently, noise is introduced in the MAC results.

These faults can occur in all layers or in any intermediate layer. However, their effect would ultimately
cause a mismatch in the output distribution from a fault-free one. This is because faults in any intermediate
layers are likely to flow to the output.

However, the impact of faults and variations usually depends on the amount, location, and type of faults.
Specifically, if the perturbations are minor, NN can tolerate them [28]. However, their accuracy decreases
significantly with a large-magnitude hardware error [29, 30] or when faults occur in more sensitive
locations, making edge AI accelerators non-functional and their prediction uncertain.

Consequently, the introduction of these non-idealities adds another layer of uncertainty to the system.
Specifically, uncertainties are introduced into the functionality of edge AI accelerators, e.g., fault-free
weight storage, MAC results computation, activations computation, and prediction computation. Therefore,
at a given time after post-mapping, it is uncertain whether the edge AI accelerators are functionally correct.
Although challenging, this form of uncertainty is important to quantify (explicitly or concurrently) using a
proper online testing methodology and mitigate using efficient reliability improvement methods, especially
in safety-critical applications.

1.3.3. Uncertainty Due to Aging

Edge AI accelerators, like any electronic system, are subject to time-dependent uncertainty stemming from
aging and wear-out. Specifically, data retention and endurance of memory cells are significant concerns.
In data retention faults, the stored data is not retained after a certain amount of time due to external
influence [29]. Also, in the multi-level memristors, the conductance value drifts due to external influence.
These faults accumulate over time after the initial write operation (weight mapping) and significantly
influence the performance of edge AI accelerators [29]. Specifically, the accuracy of an edge AI accelerator
drops drastically over its expected operating time or the expected time before the next weight matrix
update if retention faults are not mitigated [31].

On the other hand, certain memristor technologies, e.g., resistive random access memory (RRAM), have
limited endurance, typically ranging between 105 and 107 [32]. When the endurance limit is reached, the
memory cells may not be programmable [33], manifesting as permanent faults. Assuming that with age the
number of synaptic weight updates increases, the endurance of the memristor also introduces uncertainty
and is a reliability concern.

4

1.4. RELIABILITY REQUIREMENTS FOR SAFETY-CRITICAL APPLICATIONS

1.4. Reliability Requirements for Safety-Critical Applications

Several reliability requirements must be met, especially in safety-critical applications, in order to deploy AI
applications to edge AI accelerators that are susceptible to various uncertainties. These applications require
robust and consistent performance under unpredictable and challenging conditions. Consequently, edge AI
accelerators shouldmaintain acceptable performance in the presence of faults, either through error detection
and correction mechanisms or by self-healing mechanisms that allow graceful degradation in inference
accuracy. Moreover, ensuring consistent performance despite fluctuations in external environmental
factors, e.g., operating temperature and device aging, is paramount for functional safety and overall fault
tolerance. In addition, monitoring the fault status of AI accelerators through proper online testing and
adapting as needed to ensure reliability is important.

Furthermore, providing reliable uncertainty estimates related to each prediction allows informed decision-
making and evaluation of potential risks. Also, identifying OOD data is important, as it allows experts to
review these predictions before reaching end users.

Lastly, the ability to quickly and accurately identify the root causes of uncertainty allows for the facilitation
of proper mitigation strategies. For example, identifying sources of uncertainty can aid in targeted
uncertainty mitigation strategies, such as hardware maintenance in terms of fault removal, re-calibration,
or re-training.

Therefore, key reliability considerations that are relevant to this thesis include fault tolerance, predictive
uncertainty estimates, OOD data detection, robustness to environmental variations, root cause analysis,
and testability, which is periodic and concurrent monitoring of the fault status of AI accelerators.

1.5. Challenges and Research Direction

To ensure the reliable online operation of AI accelerators, lightweight yet effective uncertainty estimation
and reduction approaches suitable for implementation on resource-constrained and battery-powered
systems are required. However, several challenges are involved in uncertainty estimation, uncertainty
reduction, and testing of edge AI accelerators. In particular, conventional approaches are not resource-
scalable, and we elaborate on specific challenges.

1.5.1. Predictive Uncertainty Estimation

For uncertainty estimation, model ensembles and Bayesian neural networks (BayNNs) are inherently
suitable. However, these methods are more resource-intensive than conventional NNs, making them
challenging to implement in resource-constrained edge AI accelerators.

Specifically, the model ensemble method, although considered the gold standard for uncertainty estimation,
requires training, storing, and processing multiple models. Consequently, for𝑀 ensemble members, the
number of MAC operations, memory, latency, and power consumption is𝑀× compared to a single model.
If there are𝑀 AI accelerators available, then the inference latency can be reduced to the same as a single
model, but the MAC operation and power consumption still remain an issue.

On the other hand, obtaining the posterior distribution of BayNN is intractable analytically as it requires
integrating over the entire parameter space. Thus, approximation methods such as Variational Inference
(VI) [34] and Monte Carlo (MC) Dropout [35] are widely used. Nevertheless, computational resource
and memory requirements are still an issue. Implementing BayNN algorithms in CiM architectures can
mitigate some of their inherent costs, and the benefits of bayNN, in-memory computation, and memristor
can be obtained in a single package. Therefore, the target of this thesis is to implement BayNNs in the CiM
architecture. However, it presents several challenges.

5

CHAPTER 1. INTRODUCTION

a) BayNN with activation
as distribution c) Bayesian Inference with the required sampling

0.9 1.9

2.1 3.3
0.3

0.5
2.5

0.5 1.7 3.1 0.4

Sample 1

....

0.7 1.3

1.1 1.3
0.9

2.5
2.1

0.9 1.9 2.7 0.8

Sample T

b) BayNN with weights
as distribution

Figure 1.4.: BayNN with variational distribution in a) activation and b) weights. During each forward pass, c) element-wise
sampling results in a single-point value for weights/activation, on which computations are performed for a forward pass.

GPT-3 Small
~125M parameters

Transformer (BERT)
~100M parameters

ResNet-151
~60M parameters

DenseNet-121
~10M parameters

MobileNet
~4M parameters

NN Complexity with
larger models

One RNG per
activations

One RNG per
weights

of

 R
N

G
S

of parameters
/activations

Linear
relationship

Figure 1.5.: The resource scalability issue of BayNN implementations in CiM architectures. The number of RNGs increases with
the size of the model, which can lead to millions of RNGs in a larger model. It is recommended to view this figure in color.

In VI, weights or neurons are represented as distributions, as shown in Figs. 1.4 (a) and (b). During each
forward pass, sampling is required from these distributions, as shown in Fig. 1.4 (c). Subsequently, the
MAC operation or activation calculation is performed using the sampled value. Implementing weights or
neuron distributions in CiM and efficiently sampling from them for the inference step is a challenge. In a
conventional VI-based BayNN implementation in the CiM architecture, a random number generator (RNG)
is required for each weight or activation representation, as shown in Fig. 1.5. Consequently, the number of
RNGs required in an edge AI accelerator can be millions. Since each RNG requires a certain chip area and
has power consumption, overall overhead can be prohibitive. In other implementation methods, memory
consumption is an issue as parameters of the distribution, e.g., mean and variance, require storage.

On the other hand, MC-Dropout is particularly attractive because it has the same memory consumption
and single-value parameter representation as a conventional NN. However, it requires applying Dropout
to each neuron [35] or weights [36]. Consequently, the number of Dropout modules required in an edge
AI accelerator can be millions as the number of Dropout modules equals the total number of weights or
activations in the model. Similar to VI, it leads to huge overhead as each Dropout module requires a certain
chip area and has power consumption.

Consequently, implementing uncertainty estimation methods in edge AI accelerators leads to resource
scalability issues. Since the resources required to implement BayNNs grow significantly with the size of
the model, the scalability of large models in CiM architectures is hindered. This means that achieving the
desired performance with minimal energy consumption, memory usage, and latency at the same time is a
challenge for BayNNs.

1.5.2. Quantification of Functional Uncertainty of The Edge AI Accelerators

Similarly, testing edge AI accelerators presents several challenges. Since NN can have over 100 million
parameters, structural testing such as the March test, which requires reading and writing each individual
cell, is difficult or costly. Therefore, in this thesis, we focus on functional testing, which ensures that the
functionality of the model is as expected. However, there are still some challenges.

6

1.5. CHALLENGES AND RESEARCH DIRECTION

M
em

or
y

O
ve

rh
ea

d

of test vectors

Linear
relationship

a)

Si
ze

 o
f T

es
t

Ve
ct

or
s

Size of Dataset

Linear
relationship

c)

Te
st

 O
ve

rh
ea

d

of test queries

Linear
relationship

b)
Figure 1.6.:Resource scalability issue of testing edge AI accelerators in conventional methods, where a) storage overhead increases
linearly with the number of test vectors, b) testing overhead in terms of latency, the number of MAC operations, and power
consumption increases linearly with the number of the test queries (forward pass), and c) size of test vectors increases linearly
with the size dataset.

Specifically, test vector compaction and a small number of test queries (forward passes) are preferred in
explicit testing scenarios. This is because the test overhead in terms of storage increases linearly with a
number of test vectors, as shown conceptually in Fig. 1.6 (a). On the other hand, the number of MACs,
power consumption, and latency increase linearly with the number of test queries, as shown conceptually
in Fig. 1.6 (b). Furthermore, testing latency is critical since the system is non-functional while testing. This
is because real-time and always-on AI applications cannot tolerate long system downtime, and a shorter
testing latency is essential. However, in existing functional testing methods [37], all of the data points from
the validation dataset are utilized for testing the edge AI accelerators, which, even for a smaller CIFAR-10
dataset, involves 10000 images with a shape 32 × 32. Consequently, the testing overhead increases linearly
with the size of the dataset, as shown conceptually in Fig. 1.6 (c). Therefore, this again leads to the resource
scalability issue for larger NN datasets.

Furthermore, in terms of test vector generation, treating the entire NN as a black box without introducing
any back door to the model, fine-tuning the model, giving access to parameters or intermediate results,
and testing a pre-trained model is preferred. This is because many users consider pre-trained NNs to
be intellectual property (IP), particularly with pre-trained models from Machine Learning as a Service
(MLaaS). The global MLaaS market is expected to surpass 200 billion USD by 2028 [38]. In those scenarios,
introducing a back door to the model or fine-tuning the model, IP rights may be violated. On the other hand,
giving access to parameters or intermediate results may make the model susceptible to model extraction
attacks or fault attacks and can lead to potential IP theft.

On the other hand, the training process for complex NN models can be cumbersome and expensive.
However, many users do not have access to computational resources or larger datasets for such a complex
NN model. Thus, many industry-leading companies, such as Microsoft Azure and Amazon AWS, and
start-up companies, such as pretrained.ai, are offering pre-trained models for their users. Pre-trained
models allow the user to map the models to AI accelerators and make predictions on inference data right
away. Therefore, testing such a model is desirable. Consequently, no knowledge or modification of the
training process is desired, and the baseline accuracy of each model under test should remain unchanged
for test generation.

In addition, many of the existing testing methods propose to introduce additional hardware, such as
runtime monitoring of currents [39]. However, modifying the hardware architecture for testing is not
preferred as it allows testing off-the-shelf edge AI accelerators. In addition, additional hardware may
introduce additional hardware overhead.

Therefore, for explicit testing, the goal of this thesis is to online test the entire NN model implemented in
the edge AI accelerator by a) compacting test patterns, b) treating the NN as a "black box" with only model

7

CHAPTER 1. INTRODUCTION

outputs (or logits) requiring access, c) testing pre-trained models without changing any parameters or
activations, and d) not making any changes to the existing edge AI accelerator architecture.

On the other hand, for concurrent testing, traditional concurrent error detection (CED) methods, such as
error-correcting codes (ECC), are not suitable for detecting multiple, permanent, and logic faults, especially
in buffer memory storing activations. Additionally, testing methods that do not require fault injection
studies and have low false positive rates are preferred. This is because fault injection studies can be
computationally expensive, are targeted for specific scenarios, and may not accurately represent other
real-world fault scenarios. Also, high false positive rates can raise too many false alarms. Consequently,
for concurrent testing, the aim of this thesis is to test for multiple, permanent, memory, and logic faults in
edge AI accelerators with low false rates and high coverage.

Existing Spintronics-based BayNN methods focus on the implementation of BayNN, reducing power
consumption, circuit, and system design. However, proper testing to ensure the functional correctness
of BayNN computation and Dropout generation is ignored. Consequently, this thesis also aims to test
Spintronics-based BayNN.

In general, the proposed approaches act as the first line of defense and complement more sophisticated
testing that has a larger overhead, e.g., to find fault locations in a crossbar or a faulty unit. Therefore,
more sophisticated testing can be performed on demand. Specifically, low-cost testing is performed more
frequently, and sophisticated testing is performed on demand. Consequently, our approach can lead to
a form of "hybrid testing" based on testing overhead. Note that hybrid methods are used extensively in
industry to save energy, improve computational efficiency, and so on. For example, to optimize power
efficiency, modern computer architectures such as ARM big-little utilize high-performance cores (big)
with energy-efficient cores (little) in a single processor [40]. Extending this concept to the testing of AI
accelerators can optimize testing latency, memory overhead, and power consumption.

1.5.3. Uncertainty Reduction

For uncertainty reduction, methods such as ECC and redundancy are conventionally used. However, they
are challenging to implement in resource-constrained edge AI accelerators. For example, ECC typically
incurs a 7-15% overhead for parity bit storage, depending on the specific ECC scheme and data word size.
However, since NNs can have millions of parameters, this overhead is impractical for resource-constrained
edge AI applications. Similarly, conventional redundancy methods such as triple modular redundancy,
which involve triplicating hardware or computations to ensure reliability, can result in a threefold increase
in memory and computational requirements. They are also impractical for resource-constrained edge AI
accelerators. Therefore, low-cost reliability solutions must be considered for edge AI systems.

Furthermore, a memristor-based CiM architecture can introduce noise to the MAC results of a layer and
consequently change the distribution of a neuron from its trained one due to manufacturing and infield
variations. Reduction of such uncertainty is imperative for reliable performance.

In addition, the reliable operation of Bayesian NNs in CiM architectures is crucial. However, the primary
focus of existing CiM-implemented Bayesian NNs has largely been on uncertainty estimation rather than
improving inherent fault tolerance against non-idealities in CiM architectures. On the contrary, existing
fault tolerance studies that use the Bayesian approach have a) overlooked the uncertainty estimation
aspect, b) are targeted for a specific non-ideality type, and c) require computationally expensive neural
architecture search (NAS). Therefore, designing a BayNN that is self-immune to non-idealities of CiM
architecture without sacrificing the uncertainty estimation aspects is a challenge.

8

1.6. SUMMARY OF CONTRIBUTIONS

1.5.4. Integration Challenges

NN model is often developed and trained with full precision 32-bit. However, memristor devices have
limited stable states. Therefore, quantization-aware training or post-training quantization must be adopted.
However, the performance of NN can be reduced due to quantization error, especially in binary NN.
Therefore, keeping the performance close to the baseline is challenging. Furthermore, certain computations,
such as scaling of weights to reduce quantization error, are not feasible in certain edge AI accelerators such
as CiM. Therefore, training must be further adopted to overcome the constraint of edge AI accelerators
while still maintaining high performance.

1.6. Summary of Contributions

The objective of this thesis is to overcome the challenges mentioned using scalable and low-cost yet
effective methods. Specifically, we explore algorithm-hardware co-design-based solutions to improve the
uncertainty quantification, testability, reliability, performance, manufacturing yield, and efficiency of edge
AI accelerators.

The contributions of this thesis are categorized into methods for a) uncertainty estimation, b) testing, c)
uncertainty reduction, and d) ensuring continuous availability. The summary of contributions of this
dissertation are as follows:

Predictive Uncertainty Estimation

• Binary Bayesian Neural Networks: To overcome the limited stable states of Spintronics memory,
we proposed MC-Dropout on binary neural networks. Binary neural networks (BNN) use only
two states to represent weights and activation. Thus, proposed binary Bayesian neural networks
(BinBayNN) can be directly implemented in existing CiM architecture with any modifications to
their crossbar structure. However, direct implementation of MC-Dropout on BNN is not feasible.
Therefore, we propose a learning objective function that is mathematically equivalent to full precision
MC-Dropout.

• Spintronic Dropout Model: Due to the analog nature of the Spintronics-based Dropout module,
variation also affects the dropout rate. We propose to model and train the MC-Dropout method
with the dropout rate as a distribution rather than a single point value to account for variations.
Evaluation of our approach shows comparable performance with slight improvement in accuracy in
some cases.

• Reduce the number of Dropout modules: To reduce the number of Dropout modules and scale
our BinBayNNs to convolutional neural networks (CNNs), we first proposed to drop group neurons
concurrently. Dropping group neurons concurrently also simplifies circuit design for the Dropout
module, as knowledge about the spatial location of the kernels is not required. Furthermore, to
reduce the number of Dropout modules to one for the entire NN model, regardless of the size of
the model, in the following work, we proposed to drop another parameter group of BNN. Specifically,
instead of Dropping neurons or weights, we propose to drop the scale vector. However, instead
of dropping the scale vector element-wise or group-wise, we propose the vector dropout concept,
where the entire vector is dropped concurrently with a probability. To employ each of the Dropout
strategy, we also propose CiM architecture and parameter mapping strategy.

• Novel Dropout approach: We propose the concept of unitary Dropout. In a unitary Dropout,
instead of dropping an element to zero as done in a conventional dropout, we propose dropping it
to one. Consequently, our approach allows for the simultaneous dropping of all the elements of a
vector but still allows information flow through the NN. Otherwise, total loss of information occurs
as the activation of a layer becomes zero.

9

CHAPTER 1. INTRODUCTION

• In-Memory centric Bayesian approximation: To efficiently map the distributions of BayNNs
with VI approximation to CiM architecture, we proposed the Bayesian in-memory approximation
method. Our approach provides a memory-friendly distribution that can be efficiently mapped
and sampled in the CiM architectures. We empirically demonstrate that our approach performs
similarly to the original distribution of variational inference in terms of predictive performance and
uncertainty estimates.

• Novel Bayesian Neural Networks Topology: We propose a novel BayNN topology to allow
efficient sampling from CiM architectures. Our proposed topology is scalable to any existing NN
topology and requires only three RNGs for the entire model, regardless of the size of the model.
Furthermore, our approach requires only minor changes to the peripheral circuits of CiM architecture
and during activation computation. Thus, existing CiM architectures and NN topologies can be
employed.

• Bayesian Subset Parameter Inference: We introduce the Bayesian subset parameter inference
method, where both deterministic and stochastic treatments are applied to the parameter groups
of NN. Specifically, we propose treating the smallest parameter group of NN as Bayesian while
treating the rest of the parameter group as deterministic. Therefore, our approach allows the first
instance of BinBayNNs with VI, significantly reducing the memory overhead and allowing weight
mapping to existing spintronics-based memory arrays in the CiM architecture. In a naive approach,
discretizing the distributions to binary values will significantly reduce accuracy. We also proposed
a CiM architecture for our approach with two crossbars. In one crossbar, the MAC operation is
performed, and in another crossbar, a scale vector is stored. MAC results scaling is performed
stochastically in the peripheral circuits.

• Tiny-Deep Ensemble: We propose the tiny deep ensemble network for ensemble-based uncertainty
estimation in resource-constrained edge AI accelerators. In our approach, we only propose to
ensemble the normalization layers that consume 1 − 2% of the overall parameters. The rest of the
parameters are shared among the ensemble members, leading to approximately the same memory
overhead as a single model. Furthermore, we also propose a method that allows parallelizing the
training and inference to reduce the latency to the same as a single model. In addition, we propose a
CiM architecture for the implementation of our proposed approach.

Uncertainty Estimation of The Functionality Edge AI Accelerators

• Low-overhead Online Functional Testing: We proposed several test pattern compaction methods
and online testing methods to reduce the overall cost of online functional testing edge AI accelerators.
Here, ’online’ refers to post-mapping but pre-deployment testing as well as post-deployment testing,
e.g., infield testing.

– Approximate Gradient Ranking Method: We introduce the concept of the approximate
gradient ranking method. Our approach ranks training data points based on their approximated
overall accumulated gradient values for the entire training. Our approach does not make any
changes to the conventional training curve or AI accelerator architecture, is non-invasive, and
is a black-box testing method that can also test pre-trained models. Thus, baseline accuracy is
preserved, and a high test coverage can be achieved using only 15 to 63 test queries. We also
propose test application methods based on the severity of faults and can detect hard-to-detect
faults.

– Single-Shot testing: We introduce the single-shot testing method to further reduce test
overhead. Our approach requires a single test vector and forward pass on the edge AI accelerator
to test the entire model. We propose a learning algorithm that can generate the proposed
single-shot test vectors and an online test application method. Our approach has the added
benefit of not requiring access to the training data, as the training data is not always available
during inference, especially for a pre-trained model.

10

1.6. SUMMARY OF CONTRIBUTIONS

– Few-Shot Testing with Single Bayesian Test Vector: We proposed the concept of few-shot
testing that can test a large model, i.e., a model with a large number of classes, in a single shot
but can also test a small model with a few shots. In our approach, we introduce the concept of
the Bayesian test vector, where each element, e.g., pixels for an image, is a distribution rather
than a single point value. Therefore, infinite samples can be taken from a single Bayesian test
vector. We also proposed a learning algorithm to generate the proposed Bayesian test vector
and the online test application method.

• Testing Dropout-based BayNN Implemented in Spintronics-based CiM: We introduced the
repeatability ranking based automatic-test-pattern-generation (ATPG) method and online test appli-
cation method to test Spintronics implemented Dropout-based BayNNs. Our approach overcomes
the challenge of testing BayNN using only 100 test vectors with consistently high test coverage for
critical faults and low false-positive rates.

• Concurrent Testing of NNs: We propose an NN topology with dual heads where one head produces
model prediction, and another head gives the runtime fingerprint of fault status. The model can be
classified as faulty or fault-free by comparing the runtime fingerprint with the fault-free fingerprint.
A learning algorithm with an objective function is proposed for the proposed concurrent testing
that does not impact baseline accuracy.

• Disentangling Source of Uncertainty: We introduce a method for disentangling the source of
uncertainties during online operation. Our method effectively identifies whether the predictive
uncertainty is due to out-of-distribution data or hardware faults, which is overlooked in existing
works. It uses predefined disentanglement test vectors and compares the resulting model finger-
prints with fault-free fingerprints. The evaluation of the proposed method shows high accuracy in
distinguishing between different sources of uncertainty.

Uncertainty Reduction

• Self-Healing Approaches:

– Self-Healing Bayesian Neural Networks: We propose a novel normalization and Dropout
layer for inherently self-healing BayNN that a) does not require any implicit non-idealities
modeling, b) is generalizable across different memristor technologies and their non-idealities,
c) is easy to train, d) CiM implementation friendly, and e) is still able to provide uncertainty
estimates without reducing its accuracy. Our approach, instead of dropping individual neurons,
introduces implicit additive and multiplicative noise into the MAC results of each layer during
training for robustness during inference. Evaluation of various AI tasks, NN classes, and
benchmark datasets show significant improvement in accuracy.

– Self-Healing the Impact of Manufacturing and Infield Thermal Variations: We propose
to binarize each partial sum of a layer to increase the sensing margin. Consequently, it allows
self-healing from the impact of manufacturing variations. Furthermore, we proposed a design-
time reference current generation algorithm that allows the NN to self-heal from the impact of
in-field thermal variation for the entire operating temperature range (up to 125 ◦C).

• Periodic Maintenance Approaches:

– Runtime Re-Calibration For Fault-Tolerance: We proposed a low-cost re-calibration
approach that re-calibrates the batch normalization layer in the presence of non-idealities
and in a per-chip manner. The approach is grounded on the fact that the non-idealities of
memristors shift activation distributions of a neuron from training distributions, affecting
post-mapping inference accuracy. Therefore, to reduce the overall re-calibration overhead
that is not addressed in existing works, we propose the approximate batch normalization
method that completely removes the batch-normalization calculation during inference and
requires much simpler calculations for the in-field re-calibration step. Furthermore, we also

11

CHAPTER 1. INTRODUCTION

proposed an automatic test pattern generation method for compacting the re-calibration inputs.
Consequently, our approach requires only 0.2% of training data for re-calibration. Furthermore,
we proposed a "partial re-calibration" method that can reduce the overall overhead by re-
calibration only a part of the network. Therefore, our low-latency re-calibration allows the NN
to resume normal operation faster.

– Maintaining Retention Faults and Aging Induce Drifts: We introduced the concept of
approximate scrubbing in memristor-based CiM architecture. In our approach, a retention-
aware weight mapping is proposed, where stable weights are mapped to a predefined area called
the scrub region, and unstable weights are mapped to another region, the non-scrub region.
The scrub region is periodically scrubbed to restore the respective values. The scrubbing rate is
proposed to be adjusted based on the probability of retention faults and memristor technology.
We also proposed a retention-aware training algorithm and objective function that encourages
the weights to be grouped based on the scrubbing preference. Consequently, our approach can
maintain the baseline inference accuracy with virtually zero storage overhead.

• Guaranteed Soft-Faults Correction for Digital AI Accelerators: We propose a zero overhead
ECC scheme for guaranteed soft-fault correction in digital AI accelerators. Specifically, we proposed
an efficient and generalized method that embeds the ECC parity bits in the NN weight matrix
during NN training, using a multi-task learning method that keeps the same inference accuracy
as the baseline. Our approach completely eliminates the parity bit storage overhead for different
ECC schemes. Therefore, we provide multi-bit error correction guarantees, which is imperative for
safety-critical AI applications. The evaluation of the proposed method shows significantly improved
fault tolerance with single- and multi-bit ECC on different NN models and benchmark datasets.

Ensuring continuous availability Sophisticated testing and reliability improvement methods, such as
re-training, can be time-consuming. However, the NN is non-functional when such maintenance is done,
and always-on applications do not tolerate such system downtime. Therefore, we propose an online fault
tolerance method to ensure the availability of neural networks that are implemented in the memristive CiM
architecture. Instead of creating copies of the entire network, we propose protecting only the fault-sensitive
part of the NNs and applying compression methods to approximate those blocks as backups. In comparison
to a conventional global and local redundancy-based approach, our proposed method achieves accuracy
close to the original network while significantly reducing hardware overhead.

The contribution of this thesis is summarized in the tree diagram 1.7

1.7. Overall Reliability Flow

The uncertainty estimation and reduction methods proposed can be combined to improve the overall
reliability of edge AI accelerators. However, the overall reliability flow for the proposed approaches differs
depending on whether runtime monitoring and maintenance approaches or self-healing approaches are
used. In runtime monitoring, the overall flow can also differ depending on whether periodic or concurrent
monitoring is performed. Nevertheless, the reliability flow proposed in this thesis is end-to-end. That is,
we propose optimizing for reliability across the entire stack, from the algorithm design to the hardware
architecture.

However, regardless of the specific method used, the initial steps are the same. Specifically, baseline
(fault-free) performance metrics are established in a cloud-based architecture. Then, if the performance is
acceptable, the pre-trained model is mapped in the edge AI accelerator. The model can be trained using
the proposed non-idealities-aware or self-healing training methods or a pre-trained model from MLaaS.
Afterward, post-mapping testing is performed to detect faults and variations in the accelerator. If needed,
reliability improvement approaches such as re-calibration, re-training, or hardware module replacement

12

1.7. OVERALL RELIABILITY FLOW

PhD Research

SOLUTIONS FOR
PREDICTIVE UNCERTAINTY

ESTIMATION

Binary Bayesian Neural
Network

Monte Carlo Dropout (MC-dropout)-
based Bayesian approximation

Spatial-Dropout as
Bayesian approximation

Scale-Dropout as Bayesian
Approximation

Affine Dropout as Bayesian
Approximation

Variational Inference as Bayesian
approximation

Bayesian subset
parameter inference

Bayesian In-memory
approximation

SpinBayes neural
networks topology

Non-Bayesian Method Model Ensemble
Ensemble normalization
layers with shared weights

SOLUTIONS FOR
FUNCTIONAL UNCERTAINTY

ESTIMATION

Test pattern compression

Approximate gradient ranking method

A one-shot testing method

Bayesian test vector

Detect soft or transient faults concurrently
while the NN is computing

Self-testable neural network architecture
design

Uncertainty fingerprint

Testing Spintronics Device-based Bayesian
Binary Neural Networks

Online testing framework based on
uncertainty distribution shift

An automatic test generation (ATPG)
framework

SOLUTIONS FOR
UNCERTAINTY REDUCTION

Neural networks training optimization

Variation-aware neural networks training
algorithm

A multi-task neural networks learning algorithm
for embedding error correcting codes (ECC)

Inverted normalization with affine parameter
Dropout

Retention-aware neural network training

Neural networks Inference optimization

Retention-aware neural network mapping

Online approximate scrubbing

Post-manufacturing and in-field re-calibration

Design local approximations

SOLUTIONS FOR
CONTINUOUS

AVAILABILITY OF AI
ACCELERATORS

On-demand low-cost activation of system
back of only important parts

Design time analysis to compress local
approximators

local approximators for only critical parts of
NN

Design time analysis to find fault-sensitive
parts that need backup

Figure 1.7.: Summary of the contributions of this thesis.

are performed. In addition, new performance metrics are established and adjusted based on the current
state of the model. Once these steps are completed, the model is deployed for inference.

1.7.1. Runtime Monitoring and Reliability Improvement

With runtime periodic monitoring, key indicators such as accuracy [41] and logits distribution [42] of the
AI accelerator on test data are analyzed for fault detection. Specifically, the monitoring data are analyzed
to identify any deviations from the baseline or expected behavior that may indicate faults or variations in
the accelerator.

At first, the dataset for inference is applied to the AI accelerator, and predictive uncertainty is estimated. If
there is uncertainty, system backup is activated, and a root cause analysis is performed to determine the
underlying cause, i.e., whether the uncertainty is due to hardware faults or environmental factors.

In the case of functional uncertainty due to hardware faults, more sophisticated tests are done, e.g., for
fault localization. Afterward, a reliability enhancement method is applied that involves actions based on
the root cause analysis. Specifically, this could involve hardware-level maintenance such as replacing

13

CHAPTER 1. INTRODUCTION

Dataset
Uncertainty

Estimates

Re-

Deployment

AI

Accelerator

Root Cause

Analysis

Expert

Annotator
User

Uncertainty

reduction

Predictive

Uncertainty

Functional

Uncertainty

Human in the

loop

System Backup

• Re-training

• Re-calibration

• HW Replacement

Figure 1.8.: The overall reliability flow for the edge AI accelerator using the runtime monitoring and maintenance methods
proposed in this thesis.

Dataset
Fault-aware

Mapping DeploymentFault-aware
Training

Figure 1.9.: Self-healing-based reliability flow for the edge AI accelerator proposed in this thesis.

faulty components, re-calibration of normalization layers, or algorithm-hardware solutions such as re-
training and re-mapping the updated model parameters. After uncertainty reduction methods are applied,
the functional uncertainty of the edge AI accelerator is re-estimated for verification. If the functional
uncertainty is satisfactorily low, then the model resumes normal operation. Otherwise, a more sophisticated
uncertainty reduction method or full hardware replacement may be required before the model can resume
normal operation.

On the other hand, in the case of predictive uncertainty, input data is annotated by an expert annotator,
for example, in a human-in-the-loop scenario, and the annotated label reaches the end user.

Conversely, with concurrent monitoring, key indicators are monitored concurrently with model predic-
tions. In addition, the monitoring data is also analyzed concurrently. In the case of deviation from the
expected behavior, the model prediction is discarded, and the input is reviewed by an expert. Therefore, it
prevents a potentially harmful prediction from reaching the end user. Afterward, the application reliability
enhancement method is the same as that of periodic monitoring. The overall reliability flow for the runtime
monitoring and maintenance is shown in Fig. 1.8.

1.7.2. Self-Healing Approaches

Self-healing approaches, by design, allow for graceful degradation in accuracy. In self-healing approaches,
the NN trained using a fault-aware algorithm and AI accelerator is also designed to be fault-tolerant.
Therefore, the NN can be directly mapped for fault tolerance in the presence of faults. Therefore, runtime
monitoring is typically not needed. However, periodic monitoring and maintenance methods discussed in
the previous section can also be appended to a self-healing approach proposed in this thesis to improve
overall reliability. The overall reliability flow with self-healing approaches is shown in Fig. 1.9.

1.8. Outline Of This Thesis

The background and related contributions are discussed in chapter 2. Following this, in chapter 3, the
literature survey of related works and their drawbacks are discussed. Then, the proposed predictive
uncertainty estimation approaches are presented in chapters 4 to 6. Afterward, approaches for estimating
functional uncertainty of edge AI accelerators are presented in chapters 7 to 10. Subsequently, approaches

14

1.8. OUTLINE OF THIS THESIS

for uncertainty reduction are presented in chapters 11 to 12. Later, in Chapter 13, an approach for ensuring
the continuous availability of the AI accelerator is presented. Finally, chapter 14 concludes this dissertation
and discusses future research directions.

15

2. Background

2.1. Neural Network

Neural networks (NNs) are computational models inspired by the structure and operation of biological
neural networks. NNs consist of multiple layers of neurons organized into a sinarithmetic a single output,
and multiple hidden layers. The input layer does not perform any computation but only receives the
input data. However, the hidden layers compute intermediate activations z, and the output layer generates
the final results ŷ. The basic computation of a layer 𝑙 consists of the weighted sum of inputs x and the
element-wise addition of bias. Subsequently, a non-linear activation function 𝜙 (·) is applied. The overall
mathematical computation of the NNs is as follows:

z(0) = x, (2.1)

z(𝑙) = 𝜙 (𝑙)
(
W(𝑙)z(𝑙−1) + b(𝑙)

)
, 𝑙 = 1, 2, . . . , 𝐿 − 1, (2.2)

z𝐿 = W(𝐿)z(𝐿−1) + b(𝐿) , (2.3)

ŷ = 𝜙

(
z𝐿
)

(2.4)

where, W, b, 𝐿, and 𝜙 represent the weight matrix, bias vector, the total number of layers, and activation
function, respectively. The final output of the model 𝑧𝐿 is called the logits of a model. Logit values
represent un-normalized (row) outputs of a model before applying a task-specific final activation function
(𝜙) to convert them into probabilities, e.g., the SoftMax function in classification or Sigmoid for semantic
segmentation. The logit distribution of an NN is referred to as the distribution of these raw output values
across different classes for a given input or batch of inputs. A logit distribution of a model can be fitted to
a predefined distribution, such as Gaussian or uniform, with its specific parameters such as 𝜇 (mean) and 𝜎
(standard deviation).

Traditionally, NN topologies have a single "head," which refers to the last layer responsible for the final
output. However, in modern deep learning paradigms, it is increasingly common to have task-specific
heads [43].

2.2. Binary Neural Network

Usually, NNs have fixed-point weights and activations that require a larger memory size to store the
trained weights and are computationally expensive. Binary Neural Networks (BNNs) use binary (+1 or −1)
weights and activation functions during their inference by mapping positive values to +1 and negative
values to −1 [44]. Hence, it requires only one bit to store a single trained weight and replace MAC with
multiple XNOR and bit-counting operations [45]. By reducing the bit-width of the weights from a multi-bit
fixed point to a single bit per weight, an NN layer can be directly mapped to a memristor-based crossbar
that has only two stable states. Therefore, it effectively overcomes the limited stable state challenge of
memristors. In addition, this can greatly reduce both computational power and storage requirements for
memristor-based NN implementations with negligible performance penalties.

17

CHAPTER 2. BACKGROUND

Relevant Research Direction Related to Scale vector

Most of the works in this thesis are focused on binary NN because of the benefits discussed above.
Specifically, our goal is to estimate uncertainty, improve testability, and improve reliability in an efficient
and scalable way.

2.2.1. Scale Vector In BNN

The scale vector 𝜶 is a crucial aspect of BNN to alleviate the loss of accuracy due to binarization [45].
Here, a real-valued vector multiplies the weighted sum, weights, or activations of a layer. The scale vector
can be defined in two ways, such as analytically calculated values that scale the binarized weights and
activations for each layer in [45] or can be learned via backpropagation similar to other parameters of the
model [46].

In terms of the location of the scale vector, applying the scale to the weight matrix of each layer before the
XNOR operation (as done in [47]) is possible in a CPU or GPU implementation, but may not be as feasible
for a CIM architecture. This is because, depending on the shape of the scale vector, each neuron or channel
will have a different scale factor, leading to different mapping strategy requirements for each neuron or
channel. Similarly, input scaling is not feasible, as the inputs are directly converted to voltages and fed
into the crossbar for computation.

Relevant Research Direction Related to Scale vector

In this thesis, we specially design the scale vector for uncertainty estimation [48, 49] and its application so
that it can be implemented in the CIM architecture.

2.3. Normalization Approaches In Deep Learning

In modern deep learning topologies, normalization layers are essential to improve training stability,
speed, convergence, and performance [50]. In general, the normalization layers standardize its input z, as
follows:

BatchNorm𝛾,𝛽 (z) =
z − 𝝁
√
𝝈2 + 𝜖

×𝜸 + 𝜷 . (2.5)

where, the mean 𝝁 and the standard deviation 𝝈 are calculated across a specific dimension (batch, feature
map, channel groups) depending on the type of normalization method. For instance, batch normaliza-
tion [50] normalizes activations across a mini-batch, layer normalization [51] normalizes across all features
of a single example, Instance Normalization [52] normalizes independently within each channel of a single
example, and Group Normalization [53] normalizes across groups of channels. Furthermore, 𝜸 and 𝜷 are
learnable parameters, and 𝜖 is a small constant for numerical stability.

Relevant Research Direction Related to Scale vector

One of the goals of this thesis is to reduce the cost of normalization during inference, specifically when
the reliability of AI accelerators is centered around normalization layers. We also focused on a) modi-
fying the batch mean and variance calculations, b) incorporating Dropout into normalization layers, c)
efficiently re-calibrating the mean and standard deviation for fault tolerance, and d) approximating the
batch normalization during inference, which allows completely removing computations in equation 2.5
during inference.

18

2.4. REGULARIZATION METHODS

2.4. Regularization Methods

Overfitting is a typical problem in point estimate NNs, in which the neural network model performs
extremely well on training data but not on inference data. To improve the generalization of the NN model
to inference data, a regularization term is usually used, such as 𝐿2 (ridge regression), applied to each
parameter of the NNs. The overall learning objective of regularized NNs can be described as:

L =
1
𝑄

𝑄∑︁
𝑞=0

𝐸 (𝑦𝑞, 𝑦𝑞) + 𝜆
𝐿∑︁
𝑖=1
(| | W𝑖 | |22 + || b𝑖 | |22) . (2.6)

Where 𝜆 is the hyperparameter that controls the strength of regularization.

Stochastic regularization techniques such as Dropout [54] are also commonly used in NN models. Dropout
adopts the model’s output stochastically to perform regularization. Consequently, the loss becomes
stochastic as well. The Dropout approach produces an average of the predictions of large ensembles of
different neural networks in a computationally inexpensive way. During training, some neurons from the
hidden layers are randomly omitted with a predefined probability. Dropout is applied by sampling binary
vectorsMi, 𝑖 ∈ [1, · · · 𝐿 − 1] of the same dimension as the bias vector b. Each element ofM𝑖 is distributed
according to a Bernoulli distribution with a probability 𝑝 = [0, 1]. Therefore, Dropout can be described as
Mi ∼ Bernoulli(1 − 𝑝) and sets the given input z𝑖 for a layer to zero z𝑖 ⊙M with probability 𝑝 . Where ⊙
is the Hadamard product.

There have been other variants of Dropout that have different goals and capabilities. DropConnect [36],
for instance, modifies the Dropout technique to operate on weights. The Gaussian Dropout variant [55]
replaces dropped neurons with Gaussian noise, which can be interpreted as adding a measure of uncertainty
to the Dropout procedure. On the other hand, spatial Dropout [56] removes entire feature maps from the
convolutional layers, making the network resilient to loss of spatially correlated features.

2.4.1. Drawbacks for Edge AI-Accelerators

Although these methods are effective in their respective domains, they have drawbacks when it comes
to uncertainty estimation and reduction in resource-constrained edge AI accelerators. Specifically, they
a) offer limited inherent robustness to non-idealities of AI accelerators, b) they are not resource scalable,
b) conventional dropout may require design time exploration to find optimal location and dropout rate,
and c) conventional dropout is not applicable to certain parameter groups of a NN, e.g., scale vector and
weights (𝜸) of normalization layers. Otherwise, the loss of information occurs. That is, the signal flow
becomes zero.

Consequently, in this thesis, we propose several novel Dropout approaches and learning objectives,
uncertainty estimation, and reduction in resource-constrained edge AI accelerators.

2.5. Expectation of Uncertainty Estimates In Edge AI Accelerator

In deep learning, uncertainty estimation is crucial for evaluating the reliability and robustness of model
predictions. It offers vital information about confidence in these predictions. This is especially crucial
in supporting decision-making in safety-critical applications such as autonomous driving and automatic
medical diagnostics.

A reliable uncertainty estimation method should demonstrate low uncertainty in data similar to what it has
been trained on, in distribution (ID) data, and high uncertainty on unseen or OOD data. In a fine-grained
method, an incorrect prediction should show high uncertainty, and a correct prediction should show low
uncertainty.

19

CHAPTER 2. BACKGROUND

Note that there is a difference between generalizing on the same data, i.e., inference accuracy and OOD
data. Inference accuracy refers to prediction accuracy with data that have the same distribution as training
data but are unseen during training, e.g., validation data. An ideal uncertainty estimation method, during
inference, is expected to generalize well on the same data distribution and provide interpretable uncertainty
estimates on OOD data.

2.6. Bayesian Neural Networks

Bayesian Neural Networks (BayNNs) take a fundamentally different approach to conventional NNs. Instead
of finding a single best parameter vector 𝜽 , BayNNs consider a distribution of possible parameters,
represented as 𝜽 ∼ 𝑝 (𝜽). In this case, the learning process corresponds to estimating the posterior
distribution 𝑝 (𝜽 | D) given the data D.

This change in perspective provides a significant benefit: it enables us to estimate a distribution for our
predictions, given by

𝑝 (y∗ | x∗,D) =
∫

𝑝 (y∗ | x∗, 𝜽) 𝑝 (𝜽 | D) d𝜽 . (2.7)

Consequently, we are able to estimate not only the values of our predictions but also the associated
uncertainty, which is frequently essential for practical applications, such as safety-critical applications,
including autonomous driving, industrial robotics, and so on.

However, training a BNN is not as straightforward as training a conventional NN. This is because the
posterior distribution 𝑝 (𝜽 | D) cannot be computed directly.

In many scenarios, especially when dealing with high-dimensional and complex models like NNs, the exact
computation of the posterior distribution 𝑝 (𝜽 |D) is computationally intractable. This difficulty arises due
to the need to calculate the integral in the denominator of Bayes’ theorem, which is also known as the
evidence or the marginal likelihood:

𝑝 (D) =
∫

𝑝 (D|𝜽)𝑝 (𝜽) 𝑑𝜽 (2.8)

This integral is over all possible values of 𝜽 , and in high dimensions, direct computation becomes practically
impossible. That is why we usually cannot obtain the posterior distribution 𝑝 (𝜽 |D) in closed form, and
we resort to approximation techniques.

2.6.1. Variational Inference

Among the approximation techniques, Variational Inference (VI) is theoretically grounded, generally
applicable, and computationally efficient [57]. In VI, a more computationally convenient variational
distribution 𝑞𝝎 (𝜽) ≈ 𝑝 (𝜽 | D) with parameters 𝝎 is employed instead of the true posterior distribution.

Generally, the variational distribution 𝑞𝝎 (𝜽) is chosen to be a Gaussian with a diagonal covariance matrix,
characterized by the mean 𝝁𝜔 and variances 𝝈2

𝜔 . The variational parameters are found by minimizing the
Kullback-Leibler divergence KL (𝑞𝝎 (𝜽) ∥ 𝑝 (𝜽 | D)) with respect to 𝝎 [34]. Minimizing the KL divergence
encourages the variational distribution 𝑞𝝎 (𝜽) to be close to 𝑝 (𝜽 | D), leading to a good approximation of
the true posterior distribution.

20

2.6. BAYESIAN NEURAL NETWORKS

Once we have approximated 𝑞𝝎 (𝜽), we can then make predictions y∗ for given inputs x∗ using a Monte
Carlo approximation:

𝑝 (y∗ | x∗,D) ≈ 1
𝑇

𝑇∑︁
𝑡=1

𝑝

(
y∗ | x∗, 𝜽 (𝑡)

)
with 𝜽 (𝑡) ∼ 𝑞𝝎 (𝜽 | D). (2.9)

Research Direction Related to VI

This thesis focuses on realizing the VI-based BayNN paradigm in a hardware-friendly manner, with an
emphasis on devising a) a Compute-in-Memory (CiM) accelerator-friendly approximation for the posterior
inference of 𝑝 (y∗ | x∗,D), b) novel BayNN topology for efficient sampling in CiM, and c) VI in binary neural
networks, d) reducing memory and power consumption for resource-constrained edge AI applications,
without compromising inference accuracy and quality of uncertainty estimates.

2.6.2. MC-Dropout as Bayesian Approximation Approximation

Gal et al. [35] provided mathematical groundwork showing, in the case of a variational distribution,
that columns that are randomly set to zero with a probability 𝑝 can also act as an approximation of the
intractable posterior distribution. In addition, minimizing 𝐿2 regularization is similar to minimizing the KL
divergence.

The overall objective can be described as:

L ∝ 1
𝜏𝑄

𝐸
𝑝 (𝜃 |D) +

𝐿∑︁
𝑖=1
(𝑝𝑖ℓ

2

2𝜏𝑄 | | Ŵ𝑖 | |22 +
ℓ2

2𝜏𝑁 | | 𝑏𝑖 | |
2
2). (2.10)

The overall objective is similar to Equation 2.6 with ℓ as the prior length-scale that defines a more expressive
prior, 𝜏 model precision. Therefore, sampling stochastic parameters 𝜃 from the Bernoulli distribution is
equivalent to the binary variables of the Dropout. Here, 𝜃 summarizes the stochastic weight Ŵ and bias 𝑏
in Equation 2.10. Specifically, the Equation 2.10 is is approximated by

p(y∗ |x∗,D) ≈ 1
𝑇

𝑇∑︁
𝑡=1

p(y∗ |x∗, 𝜽 ,M𝑡) with M𝑡 ∼ Bernoulli(1 − 𝑝) . (2.11)

Here, the entries ofM𝑡 are independently sampled from a Bernoulli distribution with (dropout) probability
𝑝 .

Predictive performance can be determined by averaging the outputs of the 𝑇 samples, see Fig. 2.1. In
addition, the variance of the𝑇 samples can be used as a measure of uncertainty in the prediction. Therefore,
uncertainty for an NN can be easily obtained by using Dropout during inference for an NN with floating
point parameters 𝜃 , given that it was trained with Dropout and 𝐿2 regularization.

Relevant Research Direction Related to MC-Dropout

This thesis focuses on hardware-software co-design of the MC-Dropout-based BayNN in Spintronics-
based CiM architectures. Specifically, the emphasis is on devising a) MC-Dropout-based Bayesian binary
neural networks, b) reducing the number of dropout modules using grouped and vector Dropout, c) novel
Dropout-based Bayesian inference, d) reducing chip and power consumption related to Dropout modules,

21

CHAPTER 2. BACKGROUND

Hidden
Layer 1

Hidden
Layer 2

Output
Layer

Prediction

XX

XX

PredictionT
XX

XX

Prediction2

XX

XX

Prediction1

Dropout Configuration TDropout Configuration 2

...

Dropout Configuration 1Conventional Neural Network

Inputs

Monte Carlo Dropout

Approximate
Posterior Distribution

Uncertainty
.

Hidden Neurons
(Kept)Input Neuron X

Hidden Neurons
(Dropped)

X

Output
Neuron

Legend

Figure 2.1.: Bayesian inference with MC-Dropout NN in comparison with conventional NN. In MC-Dropout, multiple forward
passes are performed to obtain the posterior distribution. It is recommended to view this figure in color.

e) improving reliability via fault-tolerance of BayNN, and f) functionally online testing of such model,
without compromising inference accuracy and quality of uncertainty estimates.

2.7. Model Ensemble For Uncertainty Estimation

The model ensemble method is one of the most popular and highly successful approaches for uncertainty
estimation due to its high inference accuracy and quality uncertainty estimates.

The ensemble of models involves combining predictions from multiple individual models (see Fig. 6.1(a))
to improve overall performance and estimate uncertainty. During training, 𝑀 models are trained inde-
pendently or collaboratively using techniques such as bagging or boosting. These models can be trained
with different architectures, initializations, or subsets of data to encourage diversity. During inference,
predictions from different models are aggregated using methods such as averaging or weighted averaging
to obtain the final prediction. Since training, storage, and processing of𝑀 full models are required, the
hardware cost, e.g., memory, latency, and power consumption, is a concern for edge AI accelerators with
limited resources.

Relevant Research Direction Related to Model Ensembles

In this thesis, the aim is to reduce the cost of the model ensemble approach via designing a novel approach
that a) is suitable for existing AI accelerator architecture, b) is suitable for resource-constrained edge AI
devices, c) is scalable, d) is capable of single-shot training and inference, e) does not compromise inference
accuracy, and f) provides high-quality uncertainty estimates.

2.8. Memristor Technologies

Emerging resistive nonvolatile memories (NVMs) such as two-terminal phase change memory (PCM) [58],
resistive random access memory (RRAM) [59], and spin-transfer torque magnetic random access memory

22

2.8. MEMRISTOR TECHNOLOGIES

Figure 2.2.: Cross-section of a) RRAM cell, b) PCM cell with a programmable region (PR), top electrode (TE), bottom electrode
(BE), and phase change (PC) material, and c) the MTJ device in parallel (𝑃) state (both the reference (RL) and the free layers (FL)
are aligned). It is recommended to view this figure in color.

(STT-MRAM) [60] offer the benefit of high speed, low leakage power, scalability, acceptable endurance,
and CMOS compatibility. The cross sections of the RRAM and PCM cells are shown in Figs. 2.2(a) and (b),
respectively. They have two resistance states: Low-Resistance State (LRS) and a High-Resistance State
(HRS). The data is represented and stored as a resistance state, and the states can be changed by applying a
proper set/reset voltage.

2.8.1. Spintronic Technology

Magnetic random access memory (MRAM) has gained significant attention due to its potential use in
CiM architectures [61]. The Magnetic Tunnel Junction (MTJ) is composed of two ferromagnetic layers: a
reference (RL) and a free layer (FL). A thin oxide insulation layer is sandwiched between the two magnetic
layers, as shown in Figure 2.2 (c). The reference layer has its magnetic orientation fixed, but the free layer
can change its magnetic orientation according to the direction of the current applied through the MTJ.

The freely magnetized layer can be reversed mainly through two writing mechanisms: Spin Transfer
Torque (STT) and Spin-Orbit Torque (SOT). The resistance state of the MTJ depends on the magnetic
orientation of the two layers. It is in the LRS state when the magnetic orientation of the layers is aligned
(P) and is in the HRS state when the orientation is not aligned (AP).

STT-MRAM has common read and write paths, but SOT-MRAM has separate read and write paths. When
the reading current is increased, the stability of the STT-MRAM is degraded, e.g., due to read disturb error,
which leads to a higher error rate. In contrast, the reading reliability of SOT-MRAM is significantly better
due to separate read and write paths. SOT-MRAM is made up of an MTJ placed on a heavy metal layer.

2.8.2. RRAM Technology

An RRAM device consists of a resistive layer sandwiched between two electrodes. In addition, typically,
transition metal oxides, such as HfO𝑥 or NbO𝑥 , are used for the resistive layers. During programming, the
device conductance is increased with the “SET” operation, whereas the conductance is decreased with the
“RESET” operation. Generally, RRAM can be categorized into analog and digital types. In analog RRAM,
device resistances can be programmed to any value between the highest resistance state (HRS) and the
lowest resistance state (LRS). On the contrary, the binary RRAM has stable HRS and LRS and behaves as a
normal memory device.

23

CHAPTER 2. BACKGROUND

Table 2.1.: Showing XNOR operation for BNN implementation.
Input/Activation weight Bitwise XNOR Effective Resistance

+1 +1 +1 LRS−1 −1
+1 −1 -1 HRS−1 +1

2.8.3. PCM Technology

The PCM device is made of chalcogenide material and is placed between two electrodes. Initially, the
chalcogenide is in the crystalline state, but its state can be changed by a melt-quench process. The electrical
resistance of the material in the crystalline and amorphous states differs significantly, enabling the PCM
device to store information based on its phase. A high resistance state is achieved by applying a strong
current (RESET pulse) through a narrow bottom electrode, creating a mushroom-shaped amorphous region
that blocks the electrical pathway. This amorphous region can be gradually turned back into a crystalline
state by raising the temperature of the device using current pulses (SET pulses) of appropriate strength.
The ability to gradually modulate the conductance of the device allows PCM to store weights.

2.9. AI Accelerator Architectures

2.9.1. Memristor-based Computation-in-Memory Architectures

Weight Mapping Strategies A critical step in performing the computation inside the CiM architecture is
to map the different layers of the NN to crossbar arrays. Standard NNs contain mainly fully connected (FC)
layers and convolutional layers. Although the mapping of FC layers is straightforward in a crossbar array,
since the shape of the weight matrices is 2D (R𝑚×𝑛), the mapping of convolutional layers is challenging
due to their 4D shapes (R𝐾ℎ×𝐾𝑤×𝐶𝑖𝑛×𝐶𝑜𝑢𝑡). Here, 𝐾ℎ × 𝐾𝑤 denotes the shape of the kernels, 𝐶𝑖𝑛 , and 𝐶𝑜𝑢𝑡
represents the number of input and output channels, respectively. Implementing convolutional layers
requires the implementation of multiple kernels with different shapes and sizes.

There are two popular mapping strategies for mapping the convolutional layer. In the mapping strategy 1⃝,
each kernel of shape 𝐾ℎ × 𝐾𝑤 ×𝐶𝑖𝑛 is unrolled to a column of the crossbar [62]. On the other hand, in the
mapping strategy 2⃝, each kernel is mapped to 𝐾ℎ ×𝐾𝑤 smaller crossbars with a shape of𝐶𝑖𝑛 ×𝐶𝑜𝑢𝑡 [63].

The trained parameters 𝜃 of the NN are mapped to the memristor-based crossbar arrays by encoding each
bit as the memristor conductance. Each memristor cell in the crossbar array represents a single-bit (0 or 1)
by programming them to either a high or low conductance level (𝐺off or 𝐺on).

Computation in Memory Operation The memristor cells are arranged in a crossbar array as shown in
Fig. 2.3 to perform the MAC operation required for the inference stage of the multi-bit quantized NN.
The crossbar structure allows the weighted sum operation to be carried out directly in the memory at a
constant 𝑂 (1) time without any data movement between the processing element and the memory.

In BNN, the crossbar structure is designed differently. Specifically, the XNOR-bitcell design proposed
in [64] is used mainly for the implementation of BNN in this thesis. Due to its complementary bit-cell
design, the same effective resistance/conductance appears in the bit-line depending on input/activation
and weight combination. That is, +1 ⊕ +1 and −1 ⊕ −1 result in an LRS in the bit-line. Here, ⊕ represents
the XNOR operation, and the overall XNOR computation required for BNN is shown in Table 2.1.

The input vector x for the inference is converted into continuous voltages and streamed into the crossbar
array. Multiple word-lines𝑚𝑤𝑙 of the crossbar are activated at the same time in a single step (𝑠). The
resulting current that flows into the bit-line of the crossbar, referred to as the partial sum current (𝐼𝑠𝑝𝑠), is

24

2.9. AI ACCELERATOR ARCHITECTURES

Figure 2.3.: Graphical demonstration of the mapping of a fully-connected layer to a memristive crossbar array of size𝑚 × 𝑛.

sensed by a sensing circuit and digitizes them. The partial sum current represents the partial outcome
of the MAC operation, and it is accumulated to obtain the final MAC results of a layer after activating
all the word-lines. Therefore, even though the activation of BNN is binary, the partial sum current needs
to be sensed with high precision (error-free). The addition of bias, batch normalization, and non-linear
activation operations are performed following that.

Data converter circuits such as the digital-to-analog converter (DAC) and the analog-to-digital converter
(ADC) are used to apply the input vector x and sense the bit-line currents of the crossbar. However, in
BNN, 1-bit sense amplifiers (SA) can also be used to sense the bit-line currents using the input-splitting
approach proposed in [65]. Their approach splits the weight matrix into several crossbar arrays, which
are connected to an output crossbar array.

Note that the data converter circuits are also subject to variations. However, they can be designed so that
they are robust against variations [66].

Research Direction Related to CiM Architectures

This thesis offers an alternative method for using SA for sensing bit-line current in BNN that is proven to
be robust to manufacturing and runtime thermal variations of the memristive device (STT-MRAM) [67].

Furthermore, several novel CiM architectures are proposed.

2.9.2. Digital AI Accelerators

In digital AI accelerators, highly parallel computing paradigms are used very frequently, including both
temporal and spatial architectures. In central processing engines (CPUs) or graphics processing units
(GPUs), temporal architectures are mostly employed, but application-specific integrated circuit (ASIC) and
field programmable gate array (FPGA)-based designs commonly employ spatial architectures.

Specifically, temporal architectures use a variety of methods to improve parallelism, such as vectors
(single instruction, multiple data (SIMD)) or parallel threads (single instruction, multiple threads(SIMT)).
Furthermore, they use a large number of arithmetic logic units (ALUs) with centralized control. However,
although the ALUs cannot communicate directly with each other, they can fetch data from the memory
hierarchy.

25

CHAPTER 2. BACKGROUND

On the other hand, dataflow processing, i.e., the ALUs form a processing chain, is employed in spatial archi-
tectures as they can directly transfer data from one to another. In some cases, each ALU is equipped with
its own control logic and local memory, also called a processing engine (PE). To reduce the energy cost due
to data movement, several levels of local memory hierarchy are introduced in spatial architectures [68].

2.10. Failure Mechanisms in Memristor-based CiM

Memristive devices suffer from various defects, variations, and non-idealities [69, 70, 71, 72, 73, 74, 75, 76].
As a result, the post-mapping NN model parameters deviate from their original values. In this section, we
give details about some common defects of memristor devices and their respective fault modeling.

2.10.1. Permanent Faults

We refer to the faults that permanently change the conductance state of the memristor cells and cannot be
programmed to the desired resistance/ conductance state to encode NN parameters as permanent faults. A
cell with permanent faults can not be refreshed back to its original fault-free values. We discuss some of
the common permanent fault models.

In spintronic devices, the magnetic coupling phenomenon pertains to stray magnetic fields from the
ferromagnetic layers of neighboring MTJs or within an MTJ cell and affects the stability of magnetization
in the FL of MTJs.

Stuck-at faults The conductance of the memristor cell can be stuck at either high conductance stuck-at-
𝐺off or low conductance stuck-at-𝐺on due to repeated reading (limited endurance) and fabrication defects.
Therefore, it corresponds to the particular bit of the NN parameter being either stuck-at-0 (stuck-at-(-1)
in BNN) or stuck-at-1, depending on the weight encoding. In this thesis, stuck-at-𝐺off and stuck-at-𝐺on
correspond to stuck-at-0 (stuck-at-(-1) and stuck-at-1, respectively, based on the encoding discussed later.
Defects such as stuck-open or short can be modeled as opens and shots between different nodes in the
memristor cell. Stuck-open and stuck-short defects result in a change in the conductance of a memristor cell
from its normal range and imply that the memristor cell is either open or short. The effect of stuck-short
can cause a large current through the corresponding bit-line, and it can be harmful to the circuit. Therefore,
the parameters of the memristor-based NN implementation will change from their original values, and the
parameter bit change can be modeled the same as stuck-at-𝐺off and stuck-at-𝐺on.[69, 70]

Manufacturing defects in Spintronics devices include front-end-of-line (FEOL) defects such as semiconduc-
tor impurities, crystal imperfections, and pinholes in gate oxides, and back-end-of-line (BEOL) defects
such as pinholes in MgO barriers, sidewall re-depositions, and magnetic layer corrosion.

2.10.2. Soft faults

In this thesis, we refer to soft faults as faults that temporarily change the conductance state of memristor
cells but can still perturb the NN parameters. However, faulty memristor cells can be refreshed back to
their original values. We discuss some of the common soft fault models.

2.10.2.1. Read/write disturbance

During memristor reading (inference) and writing (parameter mapping), both read and write current can
affect other memristor cells sharing the same bit-line in the crossbar array. Such faults can cause accidental
switching of the conductance states of the memristors during the read operation (inference). Also, the
write disturbance fault affects the stored data (NN parameters) in memristor cells [70, 73].

26

2.10. FAILURE MECHANISMS IN MEMRISTOR-BASED CIM

Figure 2.4.: Demonstration of the low and high conductance regions of the Memristor with open/short and stuck-at defects.

Figure 2.5.: Conductance variations of MTJs showing device-to-device and thermal variations. It is recommended to view this
figure in color.

2.10.2.2. Slow-Write Fault

During the NN parameter mapping, the write delay of the defective memristor cells may be longer, which
is referred to as a slow-write fault. In RRAM, slow-write faults can arise from repeated write operations.
Switching in MTJ and PCM is inherently stochastic. STT-switching stochasticity is influenced by variability
in incubation delay and actual switching time, leading to transient faults during write operations.

Therefore, the write delay is also non-deterministic even when the environmental factor is the same. A
write failure can occur if the MTJ does not switch before a specified time or the switching pulse is truncated
before the switching operation is performed [72, 71].

2.10.2.3. Retention Failures

Retention faults are a major reliability issue. Ideally, after a memristor cell is written, its content is expected
to be stored until the next write operation or the expected operating time of the device (typically 10
years). However, due to external influences, the cell may lose its datum, or the written resistance drifts in
multi-level memristor cells. Additionally, most memristors have an asymmetrical flip behavior, making it
more probable for an NVM cell to change to a certain state over time [77, 78].

In the case of the MTJ, the energy barrier from the 𝐻𝑅𝑆 to the 𝐿𝑅𝑆 is lower than the barrier from 𝐿𝑅𝑆

to 𝐻𝑅𝑆 , making it more probable for an MTJ to switch from the 𝐻𝑅𝑆 to the 𝐿𝑅𝑆 than the other way
around [79]. Additionally, increasing the temperature lowers the effective energy barrier, which in turn
increases the possibility of retention faults [80].

Retention faults in STT-MRAM happen suddenly and are considered a stochastic process due to external
influences, e.g., thermal noise [81]. The probability of retention faults (𝑃𝑅𝐹) depends on the thermal stability
factor Δ of the MTJs and can be expressed by

𝑃𝑅𝐹 = 1 − exp
(
−𝑡

𝑡0 × expΔ

)
, (2.12)

where 𝑡0 is the time constant of value 1 ns, Δ is the thermal stability factor, exp is the exponential operation,
and 𝑡 is the observed time interval [82].

27

CHAPTER 2. BACKGROUND

In general, the lower the thermal stability factor Δ of the MTJs, the higher the uni-directional (𝐻𝑅𝑆 → 𝐿𝑅𝑆)
switching probability 𝑃𝑅𝐹 , and the more uni-directional faults are expected. Higher uni-directional fault
rates can lead to higher degradation in inference accuracy over the expected device operational time 𝑡𝑒𝑛𝑑 ,
or the expected time before the next weight matrix update [29].

2.10.3. Variations

Due to manufacturing variations, the conductance of the memristor device varies device-to-device, showing
a distribution rather than a fixed value as shown in Fig. 2.5 for the MTJ device. Therefore, the accumulated
current sum of the bit-line of the crossbar also varies and can be represented with a statistical distribution.
Furthermore, the conductance of the memristive device can dynamically fluctuate over time as a result of
temperature. As a result, the sensing margin of accumulated current reduces, and the overlapping region
between the conductance states grows. This can lead to sensing the wrong value.

In Spintronics devices, extreme process variations lead to significant deviations in key MTJ parameters
such as magnetic anisotropy, saturation magnetization, tunnel magnetoresistance (TMR) ratio, and cross-
sectional area, affecting both MTJs and transistors. Furthermore, thermal fluctuation as a result of online
temperature variations can significantly impact the magnetization reversal process in MTJs, causing
retention and read decision faults. Due to these faults, the conductance state of a Spintronics device can
suddenly switch to another state.

2.10.4. Failure Mechanisms of Buffer Memories

In memristor-based CiM, frequently updated results, such as intermediate activations, are stored in the
register, flip-flops, or SRAM memories. In SRAM, permanent open and short faults can occur due to
bridging defects that create an unwanted current that leads to a path between two nodes in the cell.
Similarly, resistive open defects lead to an increase in resistance of existing paths within the cell [83].
Furthermore, transient faults can occur as a result of temperature and voltage fluctuations, as well as
radiation particles that strike memory cells.

2.10.5. Failure Mechanisms of Dropout Modules of CiM

Several spintronics-based dropout modules are designed by our technology partners for the BayNNs
proposed in this thesis [84, 85, 86, 48]. Due to the permanent and transient faults in the Spintronics device
discussed before, the Dropout module can cause a word-line or a group of word-lines in the crossbar
to be constantly active or inactive, or change the number of inactive word-lines. Furthermore, Dropout
probability is highly sensitive to the switching current. Therefore, a small fluctuation in the switching
current can cause variations in the Dropout probability.

2.10.6. Linear Block Error Correction Coding

Error correction coding (ECC) findswidespread use in electronic systems to ensure the protection ofmemory
and computing elements [87, 88]. Linear block codes are a class of ECCs that operate on blocks of data [89,
88]. The linear block code can be defined as (𝑛, 𝑘) code, where 𝑘 is the length of data bits (𝑢), 𝑛 is the length
of the codeword (𝑐), and 𝑝 = 𝑛 − 𝑘 is a number of redundant parity bits. The 𝑘-bit data can be converted
into a 𝑛-bit codeword using the ECC-specific generator matrix �̄� as follows: [𝑐]1×𝑛 = [𝑢]1×𝑘 × [�̄�]𝑘×𝑛 .
Similarly, the syndrome (𝑠𝑦) computation can be done using the parity check matrix (𝐻) to locate and
correct the error in the received codeword (𝑟), as follows:[𝑠]1×𝑛−𝑘 = [𝑟]1×𝑛 × [𝐻]𝑇𝑛−𝑘×𝑛 .

28

2.10. FAILURE MECHANISMS IN MEMRISTOR-BASED CIM

2.10.6.1. Hamming Code

Hamming code [90] belongs to the class of single-bit error correction linear block codes. Hamming code
enables the error correction capability by padding 𝑝 parity bits to 𝑘 bits of the data word and satisfies
the following inequality: 2𝑝 ≥ 𝑘 + 𝑝 + 1. Additionally, Hamming code can also be used as single error
correction double error detection (SEC-DED) code by extending one extra parity bit.

2.10.6.2.BCH Code

The BCH codes [91] form a class of multi-bit error-correcting linear cyclic block codes. For any positive
integers𝑚 ≥ 3 and 𝑡 < 2𝑚−1, there exists a binary BCH code with codeword length 𝑛 = 2𝑚 − 1, number
of parity 𝑝 ≤ 𝑚𝑡 and 𝑑𝑚𝑖𝑛 ≥ 2𝑡 + 1, where 𝑑𝑚𝑖𝑛 is the minimum Hamming distance, and 𝑡 is the error
correction capability. The detection capability of the BCH code can also be increased by extending one
parity bit, thereby enabling them to correct up to 𝑡 errors and detect up to 𝑡 + 1 errors.

29

3. Related Works

The contributions made by this thesis are an attractive alternative to a range of previously published
literature, reaching from the theoretical research of uncertainty in deep learning and NN training to the
more hardware-oriented field of edge AI acceleration, CiM architectures, and reliability. The ways in which
we advanced the fields of uncertainty estimation and reduction of resource constraint edge AI accelerator
can be roughly categorized into two groups: algorithmic contributions and hardware centric contributions.
This chapter presents an overview of the most relevant literature.

3.1. Uncertainty Estimation

3.1.1. Hardware Implementation of BayNN

Prior to the work done in this thesis, several studies have been conducted on hardware solutions for
Bayesian and binary neural networks (separately). To the best of our knowledge, the combination of
Bayesian and binary neural networks was not performed for uncertainty estimation, especially in CiM
architectures.

Nevertheless, the general trend in existing prior works was to use implementations based on CMOS
technology, such as graphics processing unit (GPU) platforms, for inference and training [92]. Some other
studies favored the use of field programmable gate arrays (FPGAs) or application-specific integrated circuit
(ASIC) solutions [93, 94, 95, 96, 97]. However, these solutions suffer from excessive power consumption
due to data transfer between the memory and the core unit [98] and may be restricted when used with
larger datasets, i.e., not scalable.

There are also several CiM-based implementations that exist. Specifically, the technique described in [99]
involves a CIM implementation in which the crossbar arrays store the variance parameters and stochastic
resistive RRAM devices are used to sample the probability distribution at the input of the array. This
approach requires a single random element for each input, which is not very energy-efficient and scalable.
In contrast, work [100] takes advantage of the non-idealities of RRAM devices to apply Bayesian learning.
The research in [101] showed the application of a set of resistive crossbar arrays to store probabilistic
weights to execute BayNN. In [102], crossbar arrays were used to construct Bayesian neural networks with
the help of low-barrier MTJs, resulting in a significant decrease in energy consumption. Despite the fact
that memories with low-energy barriers are used, they have endurance limitations that can eventually have
an impact on the precision of the CIM engine. The paper in [103] presented an alternative implementation
with MRAM-based crossbar arrays that can represent mean and variance. However, this approach required
considerable pre-processing to encode the mean and variance in the crossbars.

In this thesis, the main aim related to Bayesian neural networks is to binarize them and implement them
in Spintronics-based CiM architectures. Therefore, the benefits of binary neural networks, Bayesian neural
networks, Spintronics devices, and the CiM architecture can be attained in a single package. Each of our
methods [49, 84, 85, 104, 86, 48] optimizes the device level up to the algorithmic level for a highly efficient
solution.

31

CHAPTER 3. RELATED WORKS

3.1.2. Variational Inference

Similarly, there are several variational inference-based approaches in the literature. Bayes by Backpropa-
gation (BB-BackProp) in [34] proposed a backpropagation-compatible algorithm and is one of the most
popular and efficient methods. This algorithm enables the learning of a probability distribution for the
weights of a NN.

However, implementing the probability distribution and sampling from it during forward propagation in
CiM hardware poses challenges. In this thesis, we aim to address this problem. Furthermore, since the
parameters or activations are a distribution, VI on binary neural networks is infeasible. In this thesis, we
also aim to address this problem.

3.1.3. Monte Carlo Sampling-based Approaches

On the algorithmic side, there are multiple approaches for estimating the uncertainty of NNs that extend
the concept of MC-Dropout [35]. For example, MC-DropConnect [36] applies dropout to weight elements
in a way that is impractical for CiM architectures. This because turning down individual memristor
element is challenging or requires novel crossbar structure that requires manufacturing. On the other hand,
work [105] proposed the MC-Batchnorm that uses the batch normalization layer for uncertainty estimation.
Their approach requires passing a randomly sampled mini-batch from the training data through the NN
and recalculating batch statistics. However, a drawback of this method is the requirement to store the
training datasets on the hardware.

To reiterate, this thesis also proposed several extensions of the MC-Dropout approaches [48, 84, 86, 85]
using the novel dropout approaches that act as an alternative to the original dropout in MC-Dropout.
The main focus has been on reducing hardware costs and improving fault tolerance without (noticeably)
compromising the accuracy or quality of uncertainty estimates.

3.1.4. Model Ensemble

The ensemble of models has been extensively studied to improve the performance of the model [106, 107,
108]. Even in this case, there are several methods to reduce the cost of inference. For example, the work
in [109] proposed a model compression technique to compress large and complex models into smaller
and faster ones. Similarly, work [110] introduced the knowledge distillation method, which distills model
ensembles into a single neural network.

Since ensembles require training𝑀 models, several studies aim to reduce their cost at training time. For
example, [111] proposed the Snapshot ensemble method, which encourages a single model to visit multiple
local minima by training it using cyclic learning rates [112]. This method encourages the exploration of
numerous local minima, which are then used as ensemble members.

Furthermore, to reduce inference time computational and memory overhead in ensemble methods, several
studies also exist. In the context of model ensembles, Monte Carlo dropout (MC-dropout) can be inter-
preted as "implicit" ensembles that can create an exponential number of weight-sharing sub-networks for
uncertainty estimates [35]. Although MC-dropout requires training and storage of a single model, inference
involves𝑀 forward passes through a dropout-enabled network. Here,𝑀 varies with tasks, and the topology
can be as large as 94 even on a small (six-layer) fully convolutional network [36]. Furthermore, MC-dropout
has sampling latency and chip area overhead for the dropout module implementation, as shown in other
contributions of this thesis [85, 86, 48]. To reduce inference latency, the work [113] proposed to ensemble
only deeper convolutional layers while the shared backbone is computed only once and cached. However,
in convolutional NNs (CNNs), deeper convolutional layers have significantly larger parameter counts than
other layers, as shown in Fig. 6.2 (a). Also, this approach only works if dropout is applied only to deeper
convolutional layers rather than to all layers. In contrast, the BatchEnsemble [114] approach also shares

32

3.2. TESTING NNS IN EDGE AI ACCELERATORS

weights but introduces two sets of𝑀 rank-1 matrices to generate𝑀 ensemble members. Their approach
is not scalable to the AI accelerator architecture, which does not allow batch processing. Additionally, it
introduces additional computation at the input and output of a layer, as shown in Fig. 6.1 (b).

In contrast, the low-cost and scalable ensemble approach proposed in this thesis [115] aims to optimize
performance, training, and inference costs collectively with AI accelerator architectures in mind while
providing quality uncertainty estimates.

3.2. Testing NNs in Edge AI Accelerators

There are hardware and algorithmic solutions to test AI edge accelerators that implement NNs. Some
works target specific modules of AI accelerators or spiking neural networks. They are discussed below.

3.2.1. Hardware-based Solutions

Conventional hardware-based solutions such as March-based algorithms have been proposed to test
memristor-based crossbar arrays [116]. March algorithms serially program and read the memristor cells
under test to a specified conductance level to detect faults. However, a march-based algorithm is not
practical for the memristor-mapped NN applications as they have a significantly large number of memory
cells and will require a large test time. Also, the memristive cells have to be set to all possible levels (for
multi-level cells), further exacerbating test time. Also, works propose to add sensors. Such as the work
presented in [39], which proposes monitoring the dynamic power consumption of crossbar arrays to
detect faults. To achieve this, an adder tree is implemented to monitor the dynamic power consumption
continuously. However, it has added hardware overhead in terms of chip area and power consumption as
well as security risk.

3.2.2. Algorithm-based Testing Approaches

Alternatively, several works focus on algorithmic methods to generate test vectors and online testing
methods for AI accelerators. Specifically, a few works have focused on a deviation in the inference accuracy
of either original training data or synthetic testing data in the presence of faults to detect faults [37, 117,
118]. Synthetic testing data are generated using adversarial examples in [117], watermarking the training
data and re-training the NN on the testing data to create a backdoor in [37]. On the other hand, the work
in [118] proposed back-propagating to the input image and utilising the gradient of the input image as the
standalone testing data or combining it with training data as a perturbation, similar to [117] that uses the
fast gradient sign method, an adversarial input generation method. Furthermore, Open Set Recognition
(OSR) methods have been studied in work [119] for detecting single permanent faults affecting memory
cells of NN accelerator architectures. However, they offer lower fault coverage, have higher false positive
cases, and are only suitable for image classifications. Also, its adaptability to BNNs, multiple faults, or
faults in the buffer memory that stores intermediate activations was not explored.

Although such methods are efficient at detecting deviation, they generally require a large amount of
testing data and on-chip storage (depending on the availability of on-chip retraining data), and some
methods require an invasive test generation procedure. Also, the performance of backdooring when
common data-augmentation techniques, such as corner padding and center-cropping, are used is not
established since data-augmentation can either partially or completely remove the watermarks. In addition,
watermarking relies on the translation invariance feature of CNN to achieve high accuracy on the test
dataset and similar performance on the original task. However, since MLPs are not translation invariant,
their method may not work for MLPs.

33

CHAPTER 3. RELATED WORKS

3.2.3. Test Specific Modules of AI Accelerator

Another group of work aims to test specific modules of AI accelerators. For example, work by A Ruospo et
al. [120] proposed testing floating-point multipliers of GPUs with image test libraries. Their experimental
evaluation shows that the two image test libraries developed for two different CNNs (ResNet20 and
DenseNet121), are able to find a 6-image image test libraries that could achieve about 95% coverage for
stuck-at-faults on the GPU’s multipliers.

In general, these kinds of approaches are more aligned with structural testing that targets specific hardware
units of specific AI accelerators (e.g., GPUs) than functional testing of the entire NN model that is AI
hardware-agnostic. Furthermore, some of these approaches are only targeted for soft faults [120], and are
not targeted at permanent fault detection. Thus, these approaches may not be applicable to faults that
occur in other locations of AI accelerators. For example, in the memory units that store MAC results or
Rectified Linear Unit (ReLU) activation, e.g., dead ReLU.

3.2.4. Summary of the Gaps in the Existing Literature

The drawbacks of existing works (not applicable to all studies at the same time) can be summarized as
follows: a) an invasive method of test generation, b)may not be scalable to different types of NN, c) targeted
for specific modules of an AI accelerator, d) may not be scalable to different AI hardware, that is, not AI
hardware agnostic e) requires large testing queries, f) has a significant storage overhead that sometimes
increases with dataset size, and g) cannot always achieve high fault coverage.

3.3. Uncertainty Reduction

3.3.1. Variation Robustness

Improving the robustness of CiM architectures against process and temperature variations is a growing
field of research. Several works have been proposed to mitigate the impact of process and temperature
variations from the algorithmic level to hardware realizations by considering various memristor-based NN
implementations.

For ReRAM and PCM eNVM technologies, works [24, 121, 122] have proposed runtime array-level column
swapping techniques to change the mapping scheme and deal with the temperature variation. These
methods swap important weights from areas with higher temperatures to those with lower temperatures.
However, monitoring the temperature of the memristor-based crossbar array at run-time is expensive and
requires additional hardware for fine-grained temperature sensing. When the temperature profile of the
crossbar changes, extra effort is required for the re-mapping. Furthermore, once all cells in the crossbar
reach an equivalent temperature, frequent and costly refreshing will be required.

The work in [123] shows a training algorithm that can deal with both the process and the temperature
variation for the operating temperature range of the ReRAM device. It models the impact of temperature
on the mean and standard deviation of the distribution of memristor cells and feeds them into the training
algorithm as noise. Their approach trains several batch normalization layers for different operating
temperature ranges. However, this method requires extra circuitry to switch between batch normalization
layers at run-time and online temperature sensing. Furthermore, additional normalization layers have
some memory overhead.

In [124] a temperature compensation technique is presented tomitigate the impact of temperature variations
for PCM technology. This method modifies the activation calculation in hardware and requires extra
processing during the activation calculation. Moreover, a compensation function is implemented as a

34

3.3. UNCERTAINTY REDUCTION

lookup table in hardware, which results in memory overhead. Moreover, the decoding process requires
additional circuitry.

Other methods proposed robustness against process variation only that cannot mitigate run-time tem-
perature variations. For example, the work in [125, 126, 127] proposed methods for process variation in
ReRAM and STT-MRAM technologies, but their method cannot mitigate run-time temperature variations.
Furthermore, the [125] change of the bit-cell design of STT-MRAM to 2T2R cells imposes a chip area
overhead for the additional transistor and memristor cell.

3.3.2. Per-device Re-calibration For Variation-Tolerance

To overcome process and thermal variations, two previous studies proposed the online re-calibration
of batch normalization. The authors of [30] proposed a generalized training algorithm to counteract
the process variations of PCM technology and an online batch normalization parameter re-calibration
technique similar to the work in [128] for ReRAM technology. However, their method requires large re-
calibration dataset storage, which has a significant memory overhead. Furthermore, existing solutions [30,
128] have only been assessed against variation and full-precision NN.

Instead, the focus of this thesis is to reduce the overall re-calibration overhead via compacting re-calibration
dataset using an automatic test generation method, approximating batch normalization, and partially
re-calibrating. Furthermore, we adopt this concept for permanent and soft fault tolerance in binary neural
networks.

3.3.3. Memory Scrubbing

Traditionally, memory scrubbing, periodic correction of corrupted data in memory, is done with an error
correcting code (ECC) [129, 130]. In ECC-based scrubbing, several check bits are added to each memory
word. Those words are periodically read, checked for errors, and written back with the corrected data
in case an error is detected [131]. Since ECCs have an error detection and correction limit, they require
frequent checks to prevent error accumulation, which interrupts the system’s regular operation. A high
storage overhead for the redundant check bits is needed to increase the correction capabilities. Specifically,
for in-memory computing for AI acceleration, ECC-based scrubbing is impractical, as data encoding and
memory access patterns with multiple rows at once do not benefit from word-line correction access.

In DRAM, memory cells are periodically refreshed to mitigate retention faults. Many works have been
proposed to address retention faults in DRRM technology [132, 133, 134]. However, employing DRAM-style
refresh to mitigate retention faults in memristors is challenging and not effective, where retention faults are
not decay-based in some memristor technology and are temperature dependent. Furthermore, DRAM-style
refresh will just result in reading the corrupted memory-cell content and writing it back [82].

Furthermore, some work has also been done for memristor technologies. Specifically, error correction
checksum-based error correction is proposed for RRAM-based crossbars in [135]. However, memory
overhead and power consumption do not scale well with the size of the crossbar. In [136], an ECC-based
scrubbing technique for STT-MRAM is proposed, which has a 12.5% storage overhead. An adaptive
scrubbing technique to mitigate retention faults in the cache based on STT-MRAM is proposed in [82].
They grouped the memory cells based on their retention time and adjusted the scrubbing interval with
respect to the operating temperature. A training adaptation to reduce the number of 𝐻𝑅𝑆 in the crossbar
so that the number of uni-directional switching can be reduced is proposed in [29]. They also proposed a
hybrid crossbar array with mixed retention cells to mitigate retention faults. Unfortunately, these crossbars
are difficult to manufacture.

35

CHAPTER 3. RELATED WORKS

On the other hand, the blind scrubbing technique does not require expensive checks for error detection.
Instead, it blindly overwrites the specified memory region at a pre-specified frequency. It has previously
been implemented in FPGA devices to mitigate single-event upset (SEU) errors [137].

In general, blind scrubbing requires the storage of information about the scrub region. The memory
scrubbing proposed in this thesis is also a blind scrubbing technique. However, our focus is on keeping the
scrubbing cost (memory, latency per scrub operation, and power consumption) to a minimum possible
while providing acceptable performance.

3.3.4. Zero Overhead ECC

There are couple of works that aim to reduce overhead of parity storage of ECC.

The work in [138, 139] proposed the method based on weight nulling, which detects errors based on even
or odd parity. The LSB bit of 𝑞-bit quantized weight is used as the parity. An error is detected when an
odd number of bit errors occur for a weight, and this erroneous weight is replaced with a zero value.
However, this corrective action results in information loss since the erroneous weights are replaced with
zeros, which may reduce the NN performance. This approach focuses primarily on error detection only
and lacks explicit error correction.

Similarly, the work in [140] relies on redundant bits for 8-bit quantized weight. A modified training is
proposed to ensure weight distribution in a specific range. This allows a second higher-order bit (𝑏6) of
each weight to store the parity bits of the SEC-DED ECC. However, this method lacks multi-bit error
correction capability and is not suitable for other types of ECCs. Moreover, this approach demands a large
number of modified training iterations to achieve the specific weight distribution, potentially resulting in
significant computational overhead. These challenges become even more pronounced when addressing
scenarios involving multi-bit error correction.

The authors in [141] presented a value-aware parity insertion ECC method that relies on a specific
symmetric weight distribution and the sign-magnitude representation of weights. They employed double
error correction coding per 64-bit weight. For weights |𝑤 | < 0.5, higher bits (𝑏6𝑏5), and conversely, for
weights |𝑤 | >= 0.5, the lower bits 𝑏1𝑏0 are guaranteed to be 0, making them suitable for parity storage.
The original weight value can be restored by overwriting the parity bits with 0. However, it is not always
possible to recover the original weight because these bits are not guaranteed to be 0, when the weight
distribution is more spread out, leading to a degradation in accuracy of up to ∼4%. This limitation further
constrains the approach from achieving zero memory overhead for ECCs requiring a larger number of
parity bits. Furthermore, the approach needs extra memory overhead to identify the parity location during
the decoding, and can only make corrections before the inference, as they do parity masking to recover
the original weights before the inference starts.

3.3.5. Self-Healing Bayesian Neural Networks

In Section 3.1, we have discussed several works on implementing Bayesian NNs to memristor-based
CiM architectures or to other AI architectures. The primary focus of those works has been largely on
uncertainty estimation rather than improving inherent fault tolerance against non-idealities in memristor-
based CiM architectures. On the other hand, several other studies focused on improving the reliability of
memristor-based CiM accelerators [142, 143, 144]. Those works utilize the Bayesian framework, exploit the
NVM device variation model during training to achieve resilience to device variation, or perform neural
architecture search to find a robust network. However, the uncertainty estimation aspect is overlooked.
Furthermore, a separate neural architecture search may potentially be a necessity in the case of other
non-idealities or NVM technology. This, in turn, can result in a significantly computationally intensive
approach.

36

3.3. UNCERTAINTY REDUCTION

This thesis proposed a self-immune Bayesian neural network [145] that is fault tolerant without compro-
mising the quality of uncertainty estimates.

3.3.6. Online/offline Training and Re-training

In the literature, several online and offline training approaches have been proposed to improve reliability.
In addition, some work proposes to retrain to improve accuracy. That is, the main objective is to improve
the accuracy close to the baseline.

Online training-based methods such as [146] perform training and inference on hardware, thus accounting
for hardware non-idealities. Another group of works proposes to map the trained model to edge AI
accelerators and perform partial optimizations on the chip [147, 148] before deployment. However, this
approach is not very practical as every neural network would have to be trained on each individual chip
before deployment. Additionally, their focus is solely on mitigating the effects of post-mapping faults and
variations, rather than addressing online fault tolerance. On the contrary, offline training-based methods
model hardware non-idealities and incorporate them during training, e.g., via fault injection in weights or
activations [30, 149]. Lastly, online retraining-based approaches such as [150] identify hardware faults,
after which retraining, and weight remapping are performed. Re-training of NN is a very costly operation.
Therefore, some works focused on reducing the cost of re-training via alternate layer re-training [151] and
partial re-training methods [152].

In general, these works are suitable for back-propagation-enabled AI accelerator including in CiM archi-
tectures, which require additional circuitry. Nevertheless, each NN must be trained on individual chips,
whereas self-healing approaches proposed in this thesis avoid fault localization, costly re-training, and
weight remapping. Furthermore, explicit non-idealities injection-based methods are impractical, as they
may not be generalizable across memristor technologies and chips. The reliability improvement approaches
proposed in this thesis are suitable AI accelerator architectures for inference.

37

Part I.

Methods for Resource Scalable Predictive
Uncertainty Estimation

To reiterate, in this thesis, we explore Monte Carlo Dropout, variational inference, and ensemble-
based approaches for uncertainty estimation in spintronics memory-based CiM architectures.

The work was done in collaboration with colleagues from the Grenoble Institute of Technology
(Grenoble INP), French Alternative Energies and Atomic Energy Commission (CEA), and Spintec
Laboratory, France, as the technology partner. Specifically, circuit design, hardware evaluation, and
specific module design, such as Spintronics-based Dropout modules and multi-bit memory cell design,
are contributed by our colleagues.

The general target is a) perform algorithm-hardware co-design for resource and energy efficient
implementation, b) reduce the number of stochastic modules to the ideal case which is one per model,
c) reduce resource utilization to close to the ideal case which is a single model NNs, d) detect OOD
data, and e) estimate uncertainty in prediction.

Overall, the methods presented for the first time the implementation of the In-Memory Bayesian
Binary Neural Network with Spintronics devices. For this purpose, several novel solutions are explored.
Specifically, in MC-Dropout implementation, the two modes of operation of the MTJ are explored,
respectively, the stochastic feature is used to implement in the Dropout module and the deterministic
behavior for the synapse storing in the crossbar array. This approach has the benefit of not requiring
changes in the bit-cell of the crossbar architecture, all design changes occur in the peripheral circuits.
Furthermore, since Spintronics devices operate at lower voltages (around 1V), they result in less power
consumption. On the contrary, the concept of Bayesian subset parameter inference is introduced that
treats only the smallest subset parameters of a NN as Bayesian. We utilize Spintronics memory as they
are highly attractive for BayNN implementation due to their nano-second latency, high endurance
(1012 cycles), and low switching energy (10fJ).

41

4. Monte-Carlo Dropout-Based Bayesian NNs

Using Dropout for Bayesian approximation provides a practical and computationally efficient way
to estimate model uncertainty. Unlike traditional dropout, which is typically used as a regularization
method during training to prevent overfitting [54], Monte Carlo Dropout (MC-Dropout) extends this
concept to the inference phase, as shown in Fig. 2.1.

In terms of hardware overhead, MC-Dropout typically has lower memory consumption compared to
other approximation methods, as it has the same number of parameters as a conventional NN. However,
it has its own challenges. In the next sections, we present the dropout-based BayNN approaches
considered in this thesis.

In this chapter, we consider binary neural networks in all our work to efficiently quantify uncertainty
and overcome the limited stable states of spintronics devices. Binary NNs [44] proposes a reduction of
the bit precision of weights and activations with the Sign(x) function that can be described as:

Sign(𝑥) =
{
+1, if 𝑥 ≥ 0
−1, otherwise.

4.1. Dropout-Based Bayesian Binary Neural Network

In this section, we consider Dropout applied element-wise to each neuron. However, implementing
a Dropout-based Bayesian binary neural network in the CiM architecture presents algorithmic and
hardware challenges. We perform full-stack optimization to overcome the challenges. The work is
based on the IEEE JETCAS and ACM NanoArch [84, 85] papers.

4.1.1. Methodology

4.1.1.1. Algorithmic Description and Optimization of BayBNNs

To reiterate, in the training phase of binary NNs, the real-valued weights and activations are binarized in
each forward pass using Sign(𝑥). Therefore, the overall learning objective of an NN L is computed based
on binary weights and activations. A regularized objective function for a dataset with a set of 𝑄 input and
target output pairs, {(𝑥1, 𝑦1), . . . , (𝑥𝑄 , 𝑦𝑄)}, can be described as:

L =
1
𝑄

𝑄∑︁
𝑞=0

𝐸 (𝑦𝑞, 𝑦𝑞) + 𝜆
𝐿∑︁
𝑖=1
(| | W𝑖 | |22 + || b𝑖 | |22) . (4.1)

Here, the 𝐿2 (ridge regression) regularization term (2nd part) complements the task-specific loss function
𝐸 (·, ·). The hyperparameter 𝜆 controls the strength of regularization. The 𝐿2 regularization term is
minimized as the weights approach zero, but applying it to the binary weights (+1 or −1) results in a
constant penalty term that cannot be optimized. Alternatively, the 𝐿2 regularization can be applied to the
real-valued proxy weights but can have no effect unless it changes the sign of the weights. For example,
when the algorithm proposed by [44] is augmented with 𝐿2 regularization, the training, loss, and error rate

43

CHAPTER 4. MONTE-CARLO DROPOUT-BASED BAYESIAN NNS

(a) (b)

Figure 4.1.: Training curve for 𝐿2 regularized MLP compared to un-regularized MLP on MNIST dataset. It is recommended to
view this figure in color.

are not affected, as shown in Figure 4.1. Since adding 𝐿2 only affects the numerical value of the weights
by encouraging them to become closer to zero, the sign of the weight is usually not affected. Therefore,
the dropout-based Bayesian approximation cannot be applied directly to those kinds of BNN training
algorithms.

Alternatively, since the weights of the BNN are either +1 or −1, a regularization term for binary NN
training should encourage the weights to be around those values. Many such regularization functions can
be designed for BNN, for example, 𝑅1 = (𝛼 − |𝑊 |)2, which has two minimums at ±𝛼 [153]. Where, 𝛼 can
be a scalar value, e.g., 0.5.

In most BNN algorithms, a learnable scale factor is introduced to reduce quantization error and improve
performance [45, 153]. In that case, 𝛼 ∈ R[𝐶𝑜𝑢𝑡 ,1,1,1] can be incorporated into the regularization term. This
will encourage the weights to be around the scale parameter. Therefore, the overall learning objective
becomes:

L𝐵𝑎𝑦𝐵𝑁𝑁 =
1
𝑄

𝑄∑︁
1=0

𝐸 (𝑦𝑞, 𝑦𝑞) + 𝜆
𝐿∑︁
𝑙=1
(𝛼 − |W𝑙 |)2 + (𝛼 − |bl |)2. (4.2)

It can be rewritten according to Equation 2.10 for Dropout-based Bayesian approximation, as:

L𝐵𝑎𝑦𝐵𝑁𝑁 =
1
𝑄

𝑄∑︁
𝑞=0

𝐸 (𝑦𝑞, 𝑦𝑞) +
𝐿∑︁
𝑙=1

𝑝𝑙 ℓ
2

2𝜏𝑄 (𝛼 − |W𝑙 |)2. (4.3)

The bias term can be removed for simplicity. Furthermore, the 𝑅1 regularization term can be optimized as
follows:

𝜆
∑︁
(𝛼 − |W𝑙 |)2 = 𝜆

∑︁
(𝛼2 − 2𝛼 |𝑊 | + |𝑊 |2) (4.4)

For a large NN model, the third term of Equation 4.4 will numerically dominate the first term. Therefore,
𝛼2 + |𝑊 |2 ≈ |𝑊 |2 and Equation 4.4 can be further approximated as:

≈ 𝜆
∑︁
(|𝑊 |2 − 2𝛼 |𝑊 |)

≈ 𝜆
∑︁
|𝑊 | (|𝑊 | − 2𝛼)

(4.5)

Let, 𝜛 = |𝑊 | − 2𝛼 and substitute it with the overall objective BNN gives:

L𝐵𝑎𝑦𝐵𝑁𝑁 ≈
1
𝑄

𝑄∑︁
𝑞=0

𝐸 (𝑦𝑞, 𝑦𝑞) +
𝐿∑︁
𝑙=1

𝑝𝑙𝜛ℓ
2

2𝜏𝑄 (|W𝑙 |), (4.6)

44

4.1. DROPOUT-BASED BAYESIAN BINARY NEURAL NETWORK

and it is equivalent to the learning objective of BayNN (Equation 2.10). Specifically, when the scale factor 𝛼
is very small, i.e., close to zero, Equation 4.6 becomes exactly equal to Equation 2.10Therefore, minimizing
the 𝑅1 regularization term is equivalent to minimizing the KL divergence. As a result, a BNN trained with
Dropout and 𝑅1 is also a Bayesian approximation (BayBNN). This demonstration encouraged us to look
forward to the hardware implementation of the concept.

4.1.1.2. Spintronic-based Dropout Model Description

This section describes the Spintronic-based Dropout (called in the following SpinDrop) neural network
model. As mentioned in Section 2.4, in a normal Dropout, a random Bernoulli mask is sampled with a
fixed dropout probability 𝑝 = [0, 1]. As the dropout is usually implemented at the software level or in a
digital fashion, the dropout probability itself is deterministic.

On the other hand, implementing the SpinDrop module with stochastic and analog components will result
in a dropout probability 𝑝 , which can vary due to manufacturing variations, and external environmental
factors such as temperature and voltage fluctuations. Therefore, it can be considered stochastic.

With SpinDrop, the feed-forward operation of a layer 𝑙 becomes:

𝑝𝑙 = 𝑝𝑙 + 𝜖, 𝜖 ∼ N(𝜇, 𝜎2)
M̂𝑙 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (1 − 𝑝𝑙)

z𝑏
𝑙−1 = Sign(z𝑙−1)
ẑ𝑏
𝑙−1 = z𝑏

𝑙−1 ∗ M̂𝑙

W𝑏
𝑙
= 𝛼 ∗ Sign(W𝑙)

z𝑙 = 𝜙𝑙 (W𝑏
𝑙
ẑ𝑏
𝑙−1 + b𝑙)

(4.7)

Here, the mean 𝜇 and standard deviation 𝜎 come from device technology, M̂ denotes dropout mask
with process variation, ∗ denotes elementwise product, 𝑝 is the dropout probability with variations, 𝜙
is the non-linear activation function and the superscript 𝑏 denotes binary matrix or vector. We show
later that using the SpinDrop during training can sometimes outperform regular Dropout-based Bayesian
inference.

4.1.1.3. SpinDrop Implementation

The intrinsic MTJ stochasticity due to magnetization fluctuations has a strong impact on the MRAM
memory writing time. In standard MRAM memory applications, this effect is not desired.

This study implements a binary crossbar array with STT-MRAM technology to specifically allow parallel
reading during inference.This allows efficiently performing one-step in-memory computing operations,
which in turn is used to accelerate our proposed Bayesian binary NNs. In this array, the stochasticity
of MTJs will be used in the periphery of the crossbar to allow random dropout mask generation. Thus,
one or more rows of the crossbar are dropped at a time, while the MTJs used for weight storage and in-
memory computation are operated in a deterministic way. We then propose to combine the stochastic and
deterministic aspects of the STT-MRAM to implement the Dropout-based BayNNs approach, as explained
in the previous section.

45

CHAPTER 4. MONTE-CARLO DROPOUT-BASED BAYESIAN NNS

GND VDD

GND

VDD

SET
RESET

+

-REF

Dropout

WLE

WL dropout

Q<1> Q<2> Q<3> Q<4>

Time(s)

S
ta

te
 o

f
th

e
M

TJ

P

AP

GND VDD

GND

VDD

SET
RESET

+

-REF

Dropout

WLE

WL dropout

Q<1> Q<2> Q<3> Q<4>

Time(s)

S
ta

te
 o

f
th

e
 M

T
J

P

AP

GND VDD

GND

VDD

SET
RESET

+

-REF

Dropout

WLE

WL dropout

Q<1> Q<2> Q<3> Q<4>

Time(s)

S
ta

te
 o

f
th

e
M

TJ

P

AP

GND VDD

GND

VDD

SET
RESET

+

-REF

Dropout

WLE

WL dropout

Q<1> Q<2> Q<3> Q<4>

Time(s)

S
ta

te
 o

f
th

e
 M

T
J

P

AP

(a) (b)

Figure 4.2.: a) Spindrop module schematic and b) the generated probability as a function of the word Q.

4.1.1.4. Magnetic Tunnel Junction as a Tuneable Bitstream for Dropout Generation

To allow the control of the current and thus of the resulting probability, a current generator is used that
is driven by a digital value Q. In this case, it is obtained by five PMOS transistors connected in parallel.
The first four transistors are controlled in the digital value Q = Q4Q3Q2Q1 (Figure 4.2), allowing a linear
increase in current and the resulting probability. The fifth one (not shown) is grounded and ensures a
minimum current flowing through the structure. The number of transistors can be extended or reduced
depending on the chosen digital resolution. Nevertheless, it must be able to cover the entire probability
range of the STT-MRAM. A bitstream with a given probability is generated through SET and RESET several
alternate operations. After a “SET” write operation, the state of the MTJ is read using a sense amplifier
[154] to check if the switching has occurred. The read result is the Dropout signal. Further to the reading
operation, the MTJ is “RESET” to the P state to anticipate the next generation of Dropout signals.

Figure 4.2 (b) shows the evolution of the probability of MTJ switching according to the value of Q. We
distinguish two regions: the first is the linear region corresponding to the transistors in the sub-threshold
regime, and the second is the plateau zone that corresponds to the saturated region for the transistors.

Both MTJs and CMOS transistors from the peripheral circuits could be subject to manufacturing variations
that can impact the quality of the generated bitstream, thus introducing a deviation from the target
probability. To mitigate manufacturing issues, some studies proposed the use of multiple (N) MTJs [155],
since the random sequences generated by several MTJs have a lower standard deviation (divided by N). To
compensate for the probability deviation, another solution consists of adding a feedback loop to increase the
accuracy of the generated probability [156, 157]. However, note that in our particular case, the probability
deviation related to manufacturing defects is not necessarily a concern. In fact, instead of trying to target
an accurate probability, these variations could be useful within Bayesian Neural Networks.

4.1.1.5. Architecture Design

To perform bitwise Bayesian inference computation within the memory, the typical classic STT-MRAM
crossbar architecture needs to be modified.

In classic BNNs, the conventional matrix-vector multiplications are reduced to XNOR operations for higher
efficiency. It is thus necessary to design the spintronic-based bit-cell that allows performing this particular
operation. Several digital [158] and analog implementations have been presented in the literature. Also,
analog solutions could be used, that take advantage of the summation of currents according to Kirchhoff’s
law.

46

4.1. DROPOUT-BASED BAYESIAN BINARY NEURAL NETWORK

The proposed architecture is organized around the crossbar MTJ array, in which each trained weight
is stored in a unit represented by two 1T-1MTJ cells, as in conventional BNN crossbars. One SpinDrop
module, described in the previous section, is connected to each wordline pair to implement the Dropout
concept described earlier. A bitline conditioning circuit is used to set the bitline according to the inputs.
An ADC per sensed bitline and a sourceline conditioning circuit are connected to the output, to sense
and convert the state of the enabled cells. In addition to that, they are provided with a CMOS-based
Accumulator-Adder module to sum up the partial Matrix-Vector product results according to Equation 2.2.
Finally, a comparator and a running average CMOS circuit complete the schematic, ensuring that the
computation achieves the predictive mean needed for the Bayesian inference. The sourceline periphery
(ADC, accumulator-adder, and so on) can be shared by multiple sourcelines using MUXes to save chip area
by reusing temporary un-useful components. The output of the CMOS periphery of the crossbar can then
be provided to input to the next crossbar that also respects the same architectural design.

Moreover, as Bayesian inference with Dropout approximation requires spatial and temporal independence,
the probability that a neuron is dropped is independent of one another and also from one input to another.
To achieve temporal independence, the proposed SpinDrop module randomly activates and inactivates
each word-line with probability 𝑝 and 1− 𝑝 , respectively, during each forward path. In addition, to achieve
spatial independence, a separate SpinDrop module is used for each word-line of the crossbar. Figure 4.4 (b)
describes the Bayesian inference systematically for a linear layer with 10 Monte Carlo samples (T=10).

As mentioned before, the presented architecture produces a weighted sum calculation of a single layer.
The output of a layer is then used as the input to the next layer. Each input neuron is mapped to two rows,
and each output neuron is mapped to one column, that is to say, two word-lines feed one input neuron
while a column line feeds one output neuron. Each pair of cells thus represent the connection between an
input neuron and an output neuron. To evaluate the output of a neuron, the following steps have to be
performed serially for each layer of the BayBNN.

At the beginning of the inference operation, each of the SpinDropmodules randomly drops its corresponding
neuron with the Dropout probability, which is implemented by enabling or disabling the respective
wordlines. As only a limited number of cells per bitline can be reliably sensed at once [159], our architecture
supports the computation of group-wise CiM operations. Based on parallel measurable cells zCiM, the
array with z𝑙−1 inputs (stored in 2 × z𝑙−1 rows) is split into groups of zgroups = z𝑙−1/zCiM. Each group is
selected one by one via the wordline decoder, and SpinDrop modules are used to dropout an input by
disabling the wordline of the respective input neuron. The implementation of the SpinDrop module is
performed by adding a pass-gate that allows access either to the classical decoder or to the stochastic
wordline (WL). Here, one SpinDrop module is used per wordline, but this can be reduced down to four
(depending on the maximal CiM operation group size) and thus multiplexed among the different group
operations. The ADC is used to calculate the result of the XNOR operations, which is then summed up in
the accumulator-adder module. After all the groups have been summed up, the comparator performs a
threshold function. The threshold function chosen here is the Sign(𝑥) function, which is used to binarize
the weights and the activation in a typical BNN. The MUXes can be used to map multiple layers in the
same crossbar and evaluate them one by one.

To get the predictive performance of a Dropout based BayNN, the average result of all individual Monte-
Carlo inferences with SpinDrop enabled has to be calculated. The results of the neurons of the output
layer are used in a running average to evaluate the predictive performance and uncertainty of BayNN.
Therefore, the calculated mean value is the Bayesian Inference result, and variation is the corresponding
confidence (uncertainty) in this result.

47

CHAPTER 4. MONTE-CARLO DROPOUT-BASED BAYESIAN NNS

Figure 4.3.: Inference architecture for BayBNN inference

Figure 4.4.: Depicting temporal independence in Dropped neurons with proposed SpinDrop. It is recommended to view this
figure in color.

4.1.2. Evaluation

4.1.2.1. Evaluation Setup

For the architectural simulation, we first obtained the circuit characteristics of the peripheral blocks
described in Section 4.1.1.3. The Acumulator-Adder, Comparator, and Averaging circuits were synthesized
with the Synopsys Design Compiler using the TSMC 40 nm low-power PDK-based standard IP libraries.
The decoding and sensing for the CiM operation were evaluated in the circuit-level array using NVsim
[160]. To do that, we adjusted the NVsim simulation with the data presented in Section 4.1.2.2 to account
for four active cells, thus modeling the CiM operation. We have also replaced the single-bit sense amplifiers
with multi-bit ADCs. The results for each individual component are shown in Table 4.1.

To evaluate both predictive performance and uncertainty estimations, we trained a) an MLP with four
layers on the MNIST dataset, b) a LeNet-5 topology on the MNIST dataset, c) a VGG topology (nine layers)
on the CIFAR-10 dataset, and d) ResNet-18 (eighteen layers) on the CIFAR-10 and CIFAR-100 datasets.
Specifically, the MLP has 256 neurons per layer for three hidden layers, and the last one being dependent
on the dataset has 10 neurons.

48

4.1. DROPOUT-BASED BAYESIAN BINARY NEURAL NETWORK

For training the models, we used the Adam optimization algorithm with default settings in PyTorch to
minimize the cross-entropy loss function with 𝜆 = 1× 10−5. The model precision 𝜏 can be derived from the
value of 𝜆. We trained the MNIST dataset for longer (400 epochs) than the CIFAR-10 and CIFAR-100 datasets
(100 epochs) due to the network sizes. We have applied RandomHorizontalFlip and RandomResizedCrop
type data augmentation to CIFAR-10 datasets to improve accuracy. However, no data augmentation is
applied to the MNIST dataset.

Moreover, to show the scalability of our proposed approach to even larger topologies and harder tasks,
several real-world biomedical image segmentation and classification datasets are evaluated on state-of-the-
art topologies. For biomedical image classification, we have trained DenseNet-121 (121 layers) topology on
pneumonia detection (from the chest X-Rays) dataset.

On the other hand, for biomedical image segmentation, Digital Retinal Images for Vessel Extraction
(DRIVE) [161], breast ultrasound scans (for breast cancer) [162], andMitochondrial ElectronMicroscopy [163]
datasets are evaluated on U-Net [164], Bayesian SegNet [165], and Feature Pyramid Network (FPN) [166]
with ResNet-50 (50 layers) as feature extractor, respectively. The DRIVE dataset comprises 40 images
with a size of 584 by 565 pixels, 20 of which are used for training and the other 20 for testing. The Breast
Ultrasound Scan dataset (breast cancer) is used for the early detection of breast cancer, which is one of the
most common causes of death among women worldwide. The dataset is categorized into three classes:
normal, benign, and malignant images. There are a total of 780 images, with an average image size of 500
by 500 pixels. The Electron Microscopy Dataset depicts a 5 × 5 × 5𝑛𝑚 section of the CA1 hippocampal area
of the brain, which corresponds to a 1065 × 2048 × 1536 volume. Since the size of each image is too large
to fit in NN topologies, we have patched each image and its corresponding mask into 256 × 256 masks for
training.

The metrics used to determine the performance of segmentation tasks are pixel-wise accuracy, Intersection-
Over-Union (IoU), Sensitivity, Specificity, Area Under the ROC Curve (AUC), F1 Score, and precision. IoU
is one of the most commonly used metrics in segmentation tasks and is the ratio of the area of overlap and
the area of union. The pixel-wise accuracy states the percentage of pixels in the predicted image that are
classified correctly. The specificity represents the proportion of actual negative cases accurately recognized
by the model. Sensitivity represents the proportion of actual positive cases correctly identified by the
model. AUC summarizes the true positive and false positive rates into a single number, with a higher value
indicating better performance. The F1 score measures the accuracy of a model in a dataset by integrating
precision and recalls into one metric. Lastly, precision is the proportion of positive predictions that are
actually correct.

To show the application of BayBNN in detecting out-of-distribution data and noisy input (aleatoric
uncertainty), we have used the validation subset Fashion-MNIST dataset and randomly generated five
datasets:

1. Inverted MNIST (Dataset 𝐷1). Each pixel of the input image is inverted, i.e., dark becomes white,

2. Unit Gaussian noise N(0, 1) (Dataset 𝐷2). Each pixel of the input image is Gaussian noise,

3. Continuous uniformly distributed noise (Dataset 𝐷3). Similar to Gaussian noise, each pixel of the
input image is uniform noise,

4. Randomly rotated (±90) MNIST images (Dataset 𝐷4),

5. MNIST with random Gaussian noisy background (Dataset 𝐷5), and

6. Fashion-MNIST dataset (Dataset 𝐷6).

In total, 10000 input data for each dataset were used and each of the data has the same shape (28 × 28) as
needed for the MNIST dataset. The random noise in each dataset changes for each Monte-Carlo sample for
Bayesian NN.

49

CHAPTER 4. MONTE-CARLO DROPOUT-BASED BAYESIAN NNS

Figure 4.5.: Datasets to measure the detection capability of out-of-distribution data. It is recommended to view this figure in
color.

Figure 4.6.: Evaluation of 4 bit-cells. It is recommended to view this figure in color.

To evaluate the robustness to thermal fluctuation (epistemic uncertainty) of the proposed SpinDrop BayBNN,
we inject random Gaussian noise N(0, 𝐼) into the weighted sum of each layer. Furthermore, we have
explored different implementations of the SpinDrop in terms of dropout probability and location of the
Dropout layer to check their impact on inference accuracy. For our hardware analysis, the SpinDrop
module was used in all layers and crossbars.

4.1.2.2. Cell-level Simulation

To evaluate and understand the global effects of stochasticity at the bit cell level, an initial study of the
crossbar output current variability, taking into account various MTJ states, was conducted. An example of
which is shown on the map in Figure 4.6. Our objective was to determine the range of operation (best-case;
worst-case) for the currents and the impact of the MTJ states on the output current. Moreover, this study
will also allow us to determine the maximum size of the crossbar that is still functional for the proposed
SpinDrop BayBNN architecture. The simulation has been performed through several Monte Carlo samples
(i.e., 30) on the Bit-cell, considering both MTJ and (selecting) CMOS device variations. We extracted 15
different crossbar sensing states, as shown in Figure 4.6. We notice that when the current is higher, that is,
when the number of MTJ active in the crossbar is important, the deviation of the output current related to
device variability also increases. Our evaluation shows that the same values of currents are obtained for
different bit-line and word-line activations. We also observe a peak current of 140𝜇A. These current levels
will also be used for power consumption estimates in Section 4.1.2.4.

For the SpinDropmodule, a second evaluation was performed. In order to control the switching probabilities
of the MTJs, the current flowing through it is adjusted thanks to the value of Q, as shown in Section 4.1.1.4.
The current varies from 80 to 150 µA for a duration of 10 ns for the SET signal. For the RESET signal, an
amplitude of 300 µA for a duration of 4 ns was used. This current has to be high enough to ensure that the
MTJ is reliably switched.

50

4.1. DROPOUT-BASED BAYESIAN BINARY NEURAL NETWORK

(a) Impact of process variations on the Dropout rate (SpinDrop mod-
ule).

(b) Impact of Dropout on accuracy (crossbar).

Figure 4.7.: Dropout non-idealities. It is recommended to view this figure in color.

The evaluation of the SpinDrop module aims to assess how accurately it generates the dropout mask with
the predefined probability. This allows us to quantify the effects of variability and stochasticity on dropout
probability.

To do this, we performed several Monte Carlo analyses (i.e., 100 switchings of the MTJ within 20 Monte
Carlo runs, which is equivalent to 2000 Monte Carlo simulations on an MTJ). Note that the Monte Carlo
simulations performed here are different from the Monte Carlo sampling required for Bayesian inference.
The probability of dropping the neuron from the crossbar output will be equal to:

𝑃𝐷𝑟𝑜𝑝𝑜𝑢𝑡 = 1 − 𝑃𝑆𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔 (4.8)

As we can see in Figure 4.7, the generated probability is not fixed but follows a Gaussian distribution.
In fact, when the probability of switching the MTJ approaches 100%, it becomes difficult to generate an
accurate probability because we are limited by the saturation regime of the transistors (as explained in
Section 4.1.1.4). As we can see in Figure 4.2, the SpinDrop module is no longer linear and the values are
quite close to each other. These cell-level evaluation results will be used in circuit-level simulation.

4.1.2.3. Circuit-level simulation

A 20 × 10 crossbar array is implemented according to the architecture presented in Figure 4.3. With this
implementation, we intend to illustrate the Dropout concept impact on a larger crossbar with accurate
Spice-level simulation. For this validation, the crossbar outputs are connected to a winner-takes-all (WTA)
circuit [167]. WTA circuits inhibit all its inputs except the one corresponding to the highest current at
the output of the crossbar. Therefore, the ArgMax prediction is directly implemented in the crossbar. To
implement the proposed SpinDrop module, another peripheral circuit is added that selectively allows the
activation of the previous layer to stochastically activate the wordline of the current layer. In Figure 4.7,
the impact of the Dropout rate on the overall accuracy is depicted. Firstly, we noticed that the overall
accuracy is slightly affected. In fact, when a wordline is dropped, all output currents are impacted in the
same way, and the output with the highest current will still be declared the winner by the WTA circuit.
However, dropout certainly has an impact on accuracy, especially around 20%. Starting with this rate, the
probability of dropping all the word-lines of the crossbar is increased, leading to potential classification
errors. In addition, when coupling with the Monte Carlo process variation simulations, the loss of accuracy
could be even higher.

51

CHAPTER 4. MONTE-CARLO DROPOUT-BASED BAYESIAN NNS

Table 4.1.: Circuit-level characteristics
circuit delay [ns] dynamic energy [pJ]

Memory (+Decoding/Sensing) 1.87 42.839
Accumulator-adder 2.77 0.0621

Comparator 2.87 0.0106
Average 22.15 18.4243

(a) Total Delay (b) Total energy consumption

Figure 4.8.: Energy and Delay for MLP and CNN inferences evaluated for BNN and SpinDrop-based BayBNN with 10 MC samples
taken to achieve similar accuracy.

4.1.2.4. Architecture Simulation

Data from Table 4.1 were used to approximate the delay and inference energy of a single forward pass of
an image from the MNIST dataset. Figure 4.8 shows the delay and energy consumption of both the MLP
and CNN topologies, implemented with conventional binary NN and Bayesian binary NN. In each graph,
we compare the BNN with the proposed SpinDrop BayBNN with 10 MC samples taken for the predictive
performance and a CiM group size of z𝐶𝑖𝑀 = 4. Taking more MC samples does not improve predictive
performance, as shown in Figure 4.12.

Note that BayNN implementation tends to bemore computationally expensive in contrast with conventional
BNN implementation since one must compute the expectation (average) of many inference results. To
perform a single inference with the BayBNN, each layer is evaluated using multiple CiM operations to
calculate the results of the matrix-vector multiplication between the input to the layer and its weights. Each
of these CiM operations gives a partial sum of the final neuron output, which is generated by adding up the
partial sums in the accumulator-adder module. After all partial sums are added up, the comparator is used
to implement the threshold activation (Sign(.)) function. This is done for all layers to get a prediction for a
single inference. During BayNN inference, this procedure has to be performed multiple times, depending
on the number of Monte Carlo samples, in which the SpinDrop module is used to randomly drop the
neurons during the CiM operation. To get the final result, the average circuit computes the running
average of the MC runs. However, the main contributions to energy and delay are extra the individual
forward passes occurring during the predictive mean computation. Therefore, the total delay and energy
consumption scale linearly with the number of Monte Carlo samples for Bayesian inference.

In Table 4.2, the proposed approach is compared with SOTA implementations in terms of energy consump-
tion, all based on the MNIST dataset. Compared to the NVM implementation in work [99], the proposed
approach with STT-MRAM technology is ×4.65 less energy-consuming. It should be noted that their
RRAM implementation is done only with 2 hidden layers, whereas our implementation is realized on a
Lenet-5 topology. When considering the FPGA implementation, the energy consumption is ×10 times

52

4.1. DROPOUT-BASED BAYESIAN BINARY NEURAL NETWORK

Table 4.2.: Hardware comparison with other implementation

Related works Implementation Bit resolution Energy (µJ/Image)
R.Cai et al.[168] FPGA 8-bit 18.97
X.Jia et al.[169] FPGA 8-bit 46.00
H.Awano et al. [95] FPGA 7-bit 21.09
A. Malhotra et al. [99] RRAM 4-bit 9.30
Proposed implementation STT-MRAM 1-bit 2.00

lower compared to an implementation with two hidden layers in works [168, 95]. With the same Lenet-5
topology as ours, the energy evaluated is ×20 better compared to [169].

4.1.2.5. Uncertainty Estimation

The evaluation in this section is performed with a Dropout probability of 20%. In addition, the dropout is
applied to all layers and crossbar arrays.

Ood Analysis and Detection In critical applications, any NN results must be correct and trustworthy,
otherwise an error flag should be raised. Such kinds of NNs should only predict an answer when the
input distribution matches the trained one, 𝐷𝑡𝑟𝑎𝑖𝑛 . Point Estimate NNs cannot infer "Undecided" if they
receive out-of-distribution data. We found that when a BNN model trained on the MNIST dataset receives
out-of-distribution data, it predicts random MNIST labels. For example, it mostly predicts MNIST labels 0
(with a frequency of 28.28%) and 8 (with a frequency of 62.17%) when the dataset 𝐷2 (random Gaussian
noise) is applied as input. In fact, our evaluated point-estimate NN predicts 66.13% of the random Gaussian
𝐷2 and 97.77% of uniform 𝐷3 inputs with 100% confidence that the input is a handwritten digit.

If a fail-safe NN model receives in-training distribution data, it should confidently predict the correct
label (that is, the prediction probability should be close to 100%) and for each of the MC samples to
have low variance in the prediction probability. In contrast, the variance in prediction probability for
out-of-distribution data is expected to be high. We have utilized the expected behavior of a fail-safe system
to introduce two metrics to detect out-of-distribution data. Specifically, NN only predicts when it is highly
confident (prediction probability ≥ 95%) and has low uncertainty (that means highly certain) in prediction
(quantile score of 10%). A quantile score of 10% has 90% of the confidence score of all MC samples above
that value, that is, low variance. Consequently, the proposed SpinDrop BayBNN can detect up to 100% of
out-of-distribution data from the dataset 𝐷1 · · ·𝐷6, as shown in Figure 4.10.

To further emphasize the significance of uncertainty in detecting out-of-distribution data, we have also
assessed the situation in which the model predicts when uncertainty is moderate (or moderately certain)
or high (that means not certain). Nonetheless, the prediction confidence is still considered high. A quantile
score of 50% (median of theMC samples) and 90% is considered for a moderate and high uncertainty analysis,
respectively. If the model predicts despite moderate uncertainty, its ability to detect out-of-distribution
data could decrease by as much as 61.68%. However, the model cannot detect any out-of-distribution
data for most of the datasets when it predicts despite a high uncertainty, as shown in Figure 4.10. This
demonstrates the significance of uncertainty estimation in the detection of out-of-distribution data.

Additionally, our proposed method is also robust against random data poisoning. When 20% of the MNIST
validation data is poisoned with random Gaussian noise (dataset 𝐷2) with random labels, our proposed
Dropout based Bayesian BNN can detect 84.45% of poisoned data and achieves an accuracy of 96.28%
on predicted inputs. On the contrary, the accuracy of the point-estimate NN decreases from 98.83% to
81.19%. Consequently, our proposed SpinDrop BayBNN improves inference accuracy by 15%, in addition to
obtaining fail-safe properties. Data poisoning in our context is considered to occur when 1. An adversary

53

CHAPTER 4. MONTE-CARLO DROPOUT-BASED BAYESIAN NNS

Table 4.3.: Predictive performance comparison with SOTA methods on CIFAR-10 data. Results for related works reported based
on [47].

Topology Method Bit-width (W/A) Acc.(%)

ResNet-18

FP 32/32 93.0
RAD [170] 1/1 90.0
IRNet [47] 1/1 91.05
BNN+ [153] 1/1 88.51
DIR-Net [171] 1/1 92.8
SpinDrop BayBNN 1/1 90.48

VGG Small

FP 32/32 91.7
LAD [172] 1/1 87.7
XNOR [45] 1/1 89.8
BNN [44] 1/1 89.9
RAD [170] 1/1 90.0
IRNet [47] 1/1 90.4
DIR-Net [171] 1/1 91.1
SpinDrop BayBNN 1/1 91.5

Table 4.4.: Predictive performance comparison with SOTA methods on CIFAR-100 data.
Topology Method Bit-width (W/A) Acc.(%)

ResNet-18

FP 32/32 70
IRNet [47] 1/1 61.03
BNN+ [153] 1/1 64.37
SpinDrop BayBNN 1/1 67.97

is aware of the inference data of the model, and has the power to alter a small fraction of the inference
data in order to degrade the trained model’s overall accuracy, or 2. The data generation process is noisy.

We have also conducted an experiment similar to [35] with a continuously rotated image of digit 1 in the
LeNet-5 topology, as shown in Figure 4.11. We performed 100 stochastic forward passes to obtain the
softmax input, the output of the final fully connected layer, and the softmax output. Recall that the softmax
output is the class probability based on the output of the NN. For the 12 images, the point estimate BNN
predicts classes [1 1 1 0 0 5 3 3 5 2 5 7]. The figure shows, initially, that the majority of the stochastic
softmax output for level one (correct level) is close to one (100% confident) and there is very low variance
in the predictions. However, as the rotation increases, the softmax output for level one reduces, and other
(incorrect) levels increase. Nevertheless, the point estimate model predicts, even though the uncertainty
in the prediction is very high. In this scenario, it is reasonable for the model to reject the prediction and
request a label from an external annotator for this input. The uncertainty of the model can be obtained
from the entropy or variation across stochastic runs.

Hardware Uncertainty Due to the non-idealities of spintronic technologies, the on-chip model introduces
additional in-field uncertainty. For example, dynamic thermal fluctuations cause noisy weighted sums in the

Table 4.5.: The analysis of the proposed SpinDrop BayBNN on three biomedical segmentation datasets trained on three SOTA
topologies. A Dropout probability of 20% is used with 20 Monte Carlo samples for the Bayesian inference.

Topology Dataset Method Bit-width (W/A) Pixel-Acc IoU AUC F1 Sensitivity Specificity Precision

U-Net DRIVE MC-Dropout 32/32 96.35% 66.35% 98.22% 80.17% 84.39% 97.50% 76.35%
SpinDrop BayBNN 1/4 96.49% 67.44% 98.26% 80.90% 84.96% 97.60% 77.21%

Bayesian SegNet Breast Cancer MC-Dropout 32/32 97.83% 71.82% 96.40% 83.21% 78.23% 99.28% 88.86%
SpinDrop BayBNN 1/4 97.47% 68.17% 95.48% 80.13% 74.25% 99.18% 87.02%

FPN (ResNet-50) Mitochondrial EC MC-Dropout 32/32 98.68% 77.89% 96.49% 87.29% 85.55% 99.41% 89.12%
SpinDrop BayBNN 1/4 98.61% 77.63% 97.19% 86.61% 84.59% 99.40% 88.72%

54

4.1. DROPOUT-BASED BAYESIAN BINARY NEURAL NETWORK

Table 4.6.: Test the prediction accuracy (%) of the proposed SpinDrop BayBNN in comparison to the 32-bit MC-Dropout method.
The proposed approach employs Sign(.) activation. Accuracy is reported following 20 Monte Carlo samples for Bayesian inference.

Topology Dataset Method Bit-width
(W/A) Inference Accuracy

DenseNet-121 CXR Pneumonia

MC-Dropout (HTanh) 32/32 85.00%
MC-Dropout (ReLU) 32/32 86.66%

BNN+ 1/1 88.14%
SpinDrop BayBNN 1/1 91.19%

SpinDrop BayBNNMC-Dropout

D
R

IV
E

B
re

as
t-

C
an

ce
r

M
ito

ch
on

dr
ia

l E
C

Input image Ground truth label Prediction mask Correctness masks Uncertainty maks Prediction masks Correctness masks Uncertainty maks

Figure 4.9.: Results of semantic segmentation and estimations of uncertainty for the DRIVE, Breast Cancer, and Mitochondrial
Electron Microscopy datasets. Each row represents a single sample and contains the input image along with the ground truth,
prediction, correctness, and uncertainty maps for both the MC-Dropout and SpinDrop BayBNN methods. The correctness map is
a binary representation of correct and incorrect predictions. The uncertainty map is the normalized [0,1] map of uncertainty
values derived after 20 Monte Carlo samples. For prediction masks, a threshold of 0.5 is applied. Correct and certain regions are
displayed in white on the correctness and confidence maps, respectively. Similarly, an incorrect or uncertain region is shown in
black. It is recommended to view this figure in color.

crossbar array. The proposed SpinDrop BayBNN can be leveraged to handle model uncertainty and attain
robustness to dynamic thermal fluctuations. In our analysis of thermal fluctuations, inference accuracy
of the BNN reduces to 90.16%, 76.41%, and 69.89% respectively for noise strength of N(0, 𝐼), 𝐼 ∈ (3, 4, 5).
However, the inference accuracy of the proposed SpinDrop BayBNN does not reduce when 50% or fewer
MC-samples are noisy due to thermal fluctuations, as shown in Figure 4.12 (a).

55

CHAPTER 4. MONTE-CARLO DROPOUT-BASED BAYESIAN NNS

Figure 4.10.: Capability of the proposed method in detecting out-of-distribution (OOD) datasets 𝐷1 to 𝐷6. Evaluated on a model
trained for MNIST dataset with a Dropout probability of 15%. It is recommended to view this figure in color.

(a) (b)

Figure 4.11.:Twelve continuously rotated images of the digit 1. Point estimate BNN classifies inputs as digits [1 1 1 0 0 5 3 3 5 2 5 7],
even though model uncertainty is extremely large as the rotation is increased. It is recommended to view this figure in color.

Epistemic Uncertainty The model uncertainty results for the biomedical segmentation tasks are qualita-
tively depicted in Figure 4.9. The uncertainty masks show the pixel-wise uncertainty for each prediction.
It can be observed that the proposed SpinDrop BayBNN method generates model uncertainty similar
to the MC-Dropout method. Ideally, uncertainty is expected to be high around misclassified pixels and
low around correctly classified pixels. Overall, it can be observed in Figure 4.9 that the uncertainty is
high around the misclassified pixels, but correctly classified pixels have a low uncertainty. In general,
MC-Dropout produces slightly stronger uncertainty masks as a higher Dropout probability (50%) is used.

4.1.2.6. Analysis of the Predictive Performance

Here, we thoroughly analyze the predictive performance of the proposed approach and compare it with
related works.

56

4.1. DROPOUT-BASED BAYESIAN BINARY NEURAL NETWORK

(a) (b)

Figure 4.12.: a) Impact of thermal variations on the inference accuracy. Evaluated on MNIST dataset with 15% spintronic-Dropout,
b) Impact of the number of MC samples taken on accuracy. It is recommended to view this figure in color.

Table 4.7.: Predictive performance of BayNN, point estimate NN (Pe. NN), and proposed SpinDrop BayBNN with spintronic-based
Dropout with (w/) and without (w/o) variations in the SpinDrop module. Evaluated for MNIST dataset with different non-linearity
functions.

BayNN [35] SpinDrop BayBNN
Variations w/o w/o w/
Activation ReLU HTanh Sign Sign
Pe. NN 97.17 97.2 99.09 99.09
T=50 99.47 99.13 99.22 99.28
T=100 99.48 99.09 99.21 99.28
T=1000 99.42 99.1 99.22 99.31

Comparison With State-of-the-Art Algorithms The predictive performance of our BayBNN, assuming
that there are no variations in the SpinDrop module, is comparable to the full precision BayNN [35] as
shown in Table 4.7 for the MNIST dataset on LeNet-5 CNN topology. For a fair comparison, we have
used the same network size used in [35]. They use MaxPool as the activation for the convolution layers,
whereas our proposed SpinDrop BayBNN uses the Sign(.) activation function for all the layers where
activations are applied. When hyperbolic tangent (Htanh) is used as the activation function, our proposed
SpinDrop BayBNN achieves a slight improvement in accuracy for up to 1000 MC samples. However,
the predictive performance of [35] with ReLU activation is slightly better than that of the others. This
analysis shows that binarizing BayNN can still achieve predictive performance comparable to full-precision
BayNNs. However, the hardware implementation for our solution may lead to a smaller area and better
power-performance product thanks to simpler activation functions and binary weights. As mentioned, a
smaller dropout probability of 20% is used in our analysis. Additionally, we have explored many different
kinds of implementations with different locations for the Dropout layer and dropout rates. They are
discussed further in the following Sections.

Furthermore, our proposed BayBNN achieves an inference accuracy comparable to the SOTA point estimate
BNN algorithm for VGG, and the ResNet-18 CNN topology with CIFAR-10. However, in the CIFAR-100
datasets, our method outperforms the SOTA point estimate BNN algorithm by 3.6%, as summarized in
Tables 4.3 and 4.4. In the worst-case scenario, performance is only 0.57% and 2.3% worse than SOTA
IR-Net [47], and DIR-Net [171], respectively, in ResNet-18 topology. In general, we have found that taking
𝑇 Monte-Carlo samples and averaging them increases the inference accuracy of the NN model trained
with and without Dropout.

For the biomedical image classification task, our proposed method outperforms both full precision and
binarized NNs by up to 3.04%, as shown in Table 4.6. Our method is trained with a lower dropout probability
(10%) compared to the MC-Dropout method. When a higher dropout probability is used, e.g., 20%, the
performance of our method is reduced by 3%. Similar to other datasets, we have found that using Monte

57

CHAPTER 4. MONTE-CARLO DROPOUT-BASED BAYESIAN NNS

Table 4.8.:Predictive performance of BNN and BayBNN for MNIST dataset on LeNet-5 and CIFAR-10 on VGG topology, considering
with and without variations 𝜎 of the SpinDrop module.

Variations w/o w/
Inference Trained

𝜎 0x 1x 2x 3x 1x
MNIST

BNN 99.09 99.09 99.09 99.09 98.98
SpinDrop BayBNN 99.22 99.28 99.27 99.27 99.13

CIFAR-10
BNN 88.86 88.86 88.86 88.86 88.33

SpinDrop BayBNN 89.49 89.52 89.48 89.51 89.22

Carlo sampling for Bayesian inference improves the predictive performance. We have used 20 (𝑇 = 20)
samples for Bayesian inference.

Moreover, for biomedical image segmentation tasks, the proposedmethod performs similarly on all matrices
to the 32-bit full-precision MC-Dropout method, with up to a 1.09% improvement in IoU score. In the
worst case, our method achieves a 3.65% lower IoU score. The results are summarized in Table 4.5. Similar
to other datasets, we have taken 20 (𝑇 = 20) samples for Bayesian inference. We used higher-precision
4-bit activation for segmentation tasks, as they are much more difficult than classification tasks. We have
used the algorithm proposed in [173] for activation quantization. Since weights are still kept at 1-bit, no
changes to the crossbar structure are required. Only peripheral changes, such as a higher bit-resolution
ADC, are required.

Two examples of predictive performance for each dataset are shown in Figure 4.9. In addition, the
performance of SpinDrop BayBNN is compared qualitatively to the full-precision MC-Dropout method.
Our observations show that the proposed SpinDrop BayBNN performs similarly to MC-Dropout, that is,
predicts similar segmentation masks. In general, most of the miss-classified pixels are on the boundary of
ground truth masks.

Performance of BayBNN with SpinDrop Although the predictive performance of BayBNN (algorithmic,
i.e., no variations in the SpinDrop module) is comparable to the full precision implementation, it should
also be robust to the variations of the Spintronic-based implementation, SpinDrop.

The evaluations show that the predictive performance of the proposed BayNN with SpinDrop considering
variations is also comparable to algorithmic Dropout, as shown in Table 4.8 for MNIST and CIFAR-10
datasets on LeNet-5 and VGG topologies, respectively. We have performed two experiments to evaluate
the robustness of the proposed approach to variations in the SpinDrop module. In one case, we trained an
NN with normal Dropout, but during Bayesian inference, we evaluated the model against our proposed
SpinDrop Dropout with up to 3× the standard deviation 𝜎 of the manufacturing variations. In this case,
the predictive performance of both MNIST and CIFAR-10 datasets improves slightly (+0.66%) compared to
the original algorithmic Dropout BayBNN. Here, the 𝜎 of the SpinDrop module is as high as 3.3% (3×).
That means the Dropout probability of each neuron can fluctuate by ±10% from the trained value, without
any impact on performance. In our experiments, SpinDrop with a dropout probability of 20% is used for all
layers and all crossbars.

In the other case, when the NN is trained with the SpinDrop techniques instead of the original Dropout, it
would expect Dropout probability 𝑝 = 𝑝 + 𝜖, 𝜖 ∼ N(𝜇, 𝜎2). In this case, the prediction performance also is
slightly better in comparison, e.g., the accuracy improvement of 1% achieved. Variation in the dropout
probability leads to more sparsity during Bayesian inference, and as a result, accuracy improves slightly.

Analysis of Dropout Rate and Location We have used a smaller Dropout rate of 20% in our analysis for
both MNIST and CIFAR-10 datasets. The results for other smaller dropout rates, e.g., from 10% to 20% are

58

4.1. DROPOUT-BASED BAYESIAN BINARY NEURAL NETWORK

Table 4.9.: Predictive performance of proposed SpinDrop BayBNN with different Dropout rates.
Dropout probability 10% 15% 20%

MNIST
BNN 98.54 98.91 99.09

SpinDrop BayBNN 99.17 99.12 99.27
CIFAR-10

BNN 87.18 89.08 88.33
SpinDrop BayBNN 88.77 89.74 89.22

Figure 4.13.: Validation inference accuracy and Cross-entropy loss for 20% and 50% Dropout probability for MNIST on MLP. It is
recommended to view this figure in color.

summarized in Table 4.9. Here, for each Dropout probability 𝑝 , we have taken up to 50 MC samples for the
Bayesian inference. Our results show that the predictive performance improved for all the Dropout rates
by up to 1.7% compared to BNNs.

Usually, the default Dropout probability of 50% is used during training. Although this improves the
predictive performance of full-precision NNs, it does not improve the performance of binary NNs, as
shown in Figure 4.13. Using 50% Dropout probability achieves lower validation accuracy compared to 20%
Dropout probability and no Dropout model. Therefore, we used lower dropout rates in our evaluation for
predictive performance.

In all NN topologies and classes, the location of the Dropout layer is very important. In all cases in our
analysis, The Dropout layer is applied after Batch Normalization and Sign(.) layers. Otherwise, the dropout
effect is canceled. In MLP topology, Dropout was applied in all hidden layers. On the contrary, the location
of Dropout in CNN depends on a specific topology. In our experiment with ResNet-18 topology, Dropout
is applied to only the last few layers with a large number of parameters. In ResNet-18, applying Dropout
to all hidden layers was found to decrease performance. Similar to MLP, Dropout was applied to all hidden
layers in the VGG and LeNet-5 topologies.

4.1.3. Scientific Impact of This Work

The scientific impact and contributions of this work can be summarized as follows:

1. Binary Bayesian Neural Network: This work introduces Binary Bayesian Neural Networks
with an end-to-end approach. Our work demonstrates that binarizing BayNNs can be effectively
implemented in a CiM architecture, achieving the benefits of both Bayesian, Binary Neural Networks,
and in-memory computation in a single package. Furthermore, the limited stable states challenge of
Spintronics has also been overcome. Therefore, research in this direction is highly attractive, making
BayNNs more suitable for embedded devices and high-performance applications.

59

CHAPTER 4. MONTE-CARLO DROPOUT-BASED BAYESIAN NNS

2. Using Non-Ideality as a Feature: Our work shows that for unconventional NN, such as stochastic
BayNN, non-idealities of memristors can be used as a feature rather than a drawback. Specifically,
the inherent stochastic properties of MTJs are leveraged as a feature rather than a drawback. This
concept can also be utilized in other memristor technologies for BayNN implementation.

3. Full Stack Optimization: Our proposed methods optimize from the algorithmic level to the
device level, providing a holistic evaluation and optimization of the BinBayNN. Research in the
direction of this approach ensures that all aspects, from training algorithms to circuit-level hardware
implementation, are considered and optimized for performance and reliability.

4. Robustness Of Bayesian Neural Networks: Our work demonstrates that the proposed BinBayNN
can detect out-of-distribution data and is robust against variability and thermal fluctuations that
affect MAC results. Our approach shows robustness until 60% of the MC samples. Therefore, research
in the direction of BinBayNNs is an attractive solution for reliable predictions. Consequently, such
robustness enhances the reliability and safety of BayNN and makes them suitable for safety-critical
applications.

5. Overconfident Predictions of NN: Our work reinforces the danger of overconfident prediction and
shows that even when the data is OOD, a conventional NN makes prediction with high confidence.
However, our work addresses the issue of overconfident predictions by incorporating uncertainty
estimation into predictions. Therefore, it allows systems to make more informed decisions and avoid
blind predictions, thereby increasing the overall reliability and trustworthiness of predictions.

6. Spintronics Implementation For Low-power BayNN:We show that by using STT-MRAM, a
type of Spintronic memory, a BayNN implementation can achieve high performance and low power
consumption. Therefore, the proposed BinBayNN is particularly suitable for resource-constrained
and battery-powered devices where power efficiency is critical.

7. Spintronics Dropout Model: The proposed model for the Spintronics-based Dropout represents
the dropout rate as a distribution to account for process and infield thermal variations. We show
that such stochasticity can improve performance. This hardware-based Dropout model contributes
to the broader field of deep learning and BayNN implementation.

4.1.4. Section Conclusion

In this section, we introduce the algorithmic groundwork for the Dropout-based Bayesian binary neural
network for the first time and the corresponding CiM-based implementation in STT-MRAM. For this
purpose, the stochastic and deterministic aspects of STT-MRAM have been combined in a crossbar array-
based architecture. The stochastic behavior of the STT-MRAM is leveraged for the implementation
of Dropout in hardware required for Bayesian NNs, while the deterministic behavior of STT-MRAM
is exploited for the NN weight storage. The results show up to 100% detection capabilities for out-of-
distribution data, and up to 15% improvement in accuracy for poisoned data. Furthermore, our results show
the high resilience of the proposed concept to process and thermal variations. The combination of the
algorithmic Bayesian approach with the cost-effective and energy-efficient implementation of CiM-based
Binary NNs allows reliable and also more accurate architectures implementations for deep learning and
their usage in critical applications.

60

4.2. GROUPED-DROPOUT AS BAYESIAN BINARY NEURAL NETWORK

• IF à Input Feature
• Cin à Input Channels
• K à Size of kernel
• à Nth Cycle of Input

…
…

…
…

…
…

…
…

……

H

W

𝐈𝐅1 𝐈𝐅2 𝐈𝐅Cin

K
K

K
K

K
K

Kx
K

……

…
…

a)

b)

1 1 1

1234N

Kx
Kx

C i
n C i

n…
…

c)
KxK

…
…

…
… ..C i

n…
…

N

KxK
…

…
…

…

......

N

1

2

Figure 4.14.: a) Input feature map of a convolutional layer. Moving windows from all the input feature maps are b) flattened and c)
parallelized across 𝑘 × 𝐾 crossbars for the conventional mapping. The number circle shows the cycle in which input is applied to
the Spintronics crossbar. It is recommended to view this figure in color.

4.2. Grouped-Dropout as Bayesian Binary Neural Network

In the last section, although the method based on our papers [84, 85] is highly efficient, it has
drawbacks when it comes to convolutional neural networks and the hardware overhead (area and
power consumption) related to the Dropout modules. Specifically, integrating the SpinDrop module
(proposed in previous work) into CNN requires spatial information to drop certain elements, which
complicates circuit design.

In this work, our aim is to address the above-mentioned challenges in an efficient way using the
algorithm-hardware co-design approach. This section is based on our journal publication in IEEE
TNANO 2024 [86].

4.2.1. Methodology

4.2.1.1. Problem Statement

The convolution operation is performed differently in CiM architectures compared to GPUs. In CiM
architectures, moving windows (MWs) with a shape of 𝐾 × 𝐾 are applied to each input feature map (IFM)
in one cycle (see Fig. 4.14(a)). In the next cycle, the MWs will "slide over" the IFMs with a topology-defined
stride 𝑆 for 𝑁 cycles. Assuming 𝐾 > 𝑆 , some of the elements in the MWs for the next 𝐾 − 𝑆 cycles will be
the same as in the previous cycles, a concept known as weight sharing. This is illustrated by the green
input feature (IF) in Fig. 4.14(a). The NN topology and the task determine the size of the stride and the

61

CHAPTER 4. MONTE-CARLO DROPOUT-BASED BAYESIAN NNS

moving windows, which are hyperparameters that the user cannot modify online, i.e., during mapping.
On the other hand, the problem can be mitigated by training the CNN with stride 𝑆 ≥ 𝐾 , but it can reduce
performance as a trade-off.

The SpinDrop module designed in the previous work [84, 85] drops each element of the MWs with a
probability 𝑃 in each cycle. Therefore, integrating it into convolutional layers implemented in CiM results
in essentially re-sampling the dropout mask of each MW of IFMs in each cycle. Consequently, the dropout
masks of the shared elements in the MWs will change in each input cycle, leading to inconsistency. An
ideal Dropout module should only generate dropout masks for new elements of the MWs. Designing
a Dropout module that drops each element of the MWs depending on the spatial location of the MWs
in the IFMs is challenging and may lead to complex circuit design. Additionally, the number of rows in
crossbars typically increases from one layer to another due to the larger 𝐶𝑖𝑛 . Consequently, the number of
Dropout modules required will be significantly higher as the SpinDrop module is applied to each row of
the crossbar.

Furthermore, the MWs are reshaped depending on the weight mapping discussed in Section 2.9.1. For the
mapping strategy 1⃝, the MWs of the IFMs are flattened into a vector of length 𝐾 × 𝐾 ×𝐶𝑖𝑛 . However, for
the mapping strategy 2⃝, IFMs are flattened into 𝐾 ×𝐾 vectors of length𝐶𝑖𝑛 , as depicted in Fig. 4.14(a) and
(b). As a result, designing a generalizable Dropout model is challenging.

Furthermore, in terms of computational costs and performance requirements of BayNNs on edge devices,
real-world applications require high throughput, low area, and energy consumption. The dropout module
introduces additional power consumption and area, which increase linearly with the number of dropout
modules. Consequently, this makes it challenging to deploy BayNNs on edge devices with limited resources
and introduces the resource scalability issue.

4.2.1.2. MC-SpatialDropout as Bayesian Approximation

In an effort to improve the efficiency and accuracy of Bayesian approximation techniques in CiM, we
propose to drop groups of word-lines in the crossbar together. In the literature several group-wise dropouts
are proposed, such as Spatial-Dropout [56]. However, instead of proposing a new Dropout method, we
chose to use spatial Dropout and propose binary MC-SpatialDropout method. However, it should be noted
that our approach is not tied to Spatial-Dropout. Since our objective is to drop a group of word-lines
together, any group-wise application of Dropout would work in this context.

Therefore, the proposed binary MC-SpatialDropout technique extends on the MC-Dropout [35], MC-
SpatialDropout [113], and MC-SpinDrop [84, 85] methods by utilizing spatial dropout as a Bayesian
approximation in binary NNs and Spintronics implementation. Our approach drops an entire feature with
a probability 𝑝 . This means that all the elements of a feature map in Fig. 4.14(a) are dropped together.
However, each feature map is dropped independently of the others. As a result, the number of Dropout
modules required for a layer will be significantly reduced, and the design effort of the dropout module will
also be lessened.

The primary objective of this approach is to address the shortcomings of MC-SpinDrop [84, 85] that arise
from its independent treatment of elements of the features. In contrast, MC-SpatialDropout exploits the
spatial correlation of IFs, which is particularly advantageous for tasks that involve image or spatial data. In
doing so, it facilitates a more robust and contextually accurate approximation of the posterior distribution.
This enables the model to capture more sophisticated representations and account for dependencies
between features.

In terms of the objective function for the MC-SpatialDropout, our previous work [84, 85] showed that
minimizing the objective function of MC-Dropout (see Equation equation 2.10) is not beneficial for BNNs

62

4.2. GROUPED-DROPOUT AS BAYESIAN BINARY NEURAL NETWORK

and suggested a BNN-specific regularization term. In this paper, instead of defining a separate loss function
for MC-SpatialDropout, we define the objective function as:

L(𝜽)MC-SpatialDropout = L(𝜽 ,D) + 𝜆
𝐿∑︁
𝑙=1
| |W𝑙 | |22. (4.9)

Therefore, the objective function is equivalent to Equation equation 2.10 for MC-Dropout. However, the
second part of the objective function is the regularization term applied to the (real-valued) "proxy" weights
(W) of BNN instead of binary weights. It encourages W to be close to zero. By keeping a small value for
the 𝜆, it implicitly ensures that the distribution of weights is centered around zero. Also, we normalize the
weights by

W̄𝑙 =
W𝑙 − 𝜇W

𝑙

𝜎W
𝑙

, (4.10)

to ensure, the weight matrix has zero mean and unit variance before binarization. Where 𝜇W and 𝜎W are
the mean and variance of the weight matrix of the layer 𝑙 . This process allows applying L2 regularization in
BNN training and existing work [47] showed that it improves inference accuracy by reducing quantization
error. Since our work is targeted for BNN, regularization is only applied to the weight matrixes.

The difference is that our method approximate Equation 2.8 by:

𝑝 (y|x,D) ≈ 1
𝑇

𝑇∑︁
𝑡=1

𝑝 (y|x, 𝜽 , M̂𝑡) with M̂𝑡 ∼ B(𝑝) . (4.11)

Here, during training and Bayesian inference, the dropout mask M̂𝑡 sampled spatially correlated manner
for the output feature maps (OFMs) of each layer from a Bernoulli distribution with (dropout) probability
𝑝 . The dropout masks correspond to whether a certain spatial location in the OFMs (i.e., a certain unit) is
dropped or not.

Proper arrangement of layers is important for the MC-SpatialDropout-based Bayesian inference. The
Spatial Dropout layer can be applied before each convolutional layer in a layerwise MC-SpatialDropout
method. Additionally, the Spatial Dropout layer can be applied to the extracted features (of the last
convolutional layer) of a CNN topology in a topology-wise MC-SpatialDropout method. For Bayesian
inference and uncertainty, we perform 𝑇 Monte Carlo sampling similar to [35].

4.2.1.3. Designing Spatial-SpinDrop Module

As mentioned earlier, in the proposed MC-SpatialDropout implementation, feature maps can independently
be dropped with a probability 𝑝 . Due to the nature of input application in CiM architectures, this implicitly
means dropping different regions of crossbars depending on the mapping strategy. These challenges
are associated with designing the Dropout module for the proposed MC-SpatialDropout based BayNN.
Consequently, we propose four different Dropout module designs.

For the mapping strategy 1⃝, as depicted in Fig. 4.14(b), each 𝐾 × 𝐾 subset of input comes from a feature
map. This means that if an input feature is dropped, the corresponding 𝐾 × 𝐾 subset of the input should
also be dropped for all𝐶𝑜𝑢𝑡 and 𝑁 cycles of inputs. This implies that dropping each 𝐾 ×𝐾 row of a crossbar
together for 𝑁 cycles is equivalent to applying spatial dropout. However, each group of rows should be
dropped independently of one another. Additionally, their dropout mask should be sampled only in the
first cycle. For the remaining 𝑁 − 1 cycles of input, the dropout mask should remain consistent.

In contrast, in the mapping strategy 2⃝ (see Fig. 4.14(c)), the elements of a MW are applied in parallel to
each 𝐾 × 𝐾 crossbar at the same index. As a result, dropping an IF would lead to dropping each index of
rows in all the 𝐾 ×𝐾 crossbars together. Similarly, each row of a crossbar is dropped independently of one

63

CHAPTER 4. MONTE-CARLO DROPOUT-BASED BAYESIAN NNS

another, and the dropout mask is sampled at the first input cycle and remains consistent for the remaining
𝑁 − 1 cycles of input.

Furthermore, if the spatial dropout is applied to the extracted feature maps of a CNN, then depending on the
usage of the adaptive average pool layer, the design of the Spin-SpatialDrop will differ. If a CNN topology
does not use an adaptive average pool layer but the spatial Dropout is applied to the last convolutional
layer, then 𝐻 ×𝑊 groups of rows are dropped together. This is because the flattening operation essentially
flattens each IF into a vector. These vectors are combined into a larger vector representing the input for
the classifier layer. However, since input for the FC layer is applied in one cycle only, there is no need to
hold the dropout mask. The Spin-SpatialDrop module for the mapping strategy 1⃝ can be adjusted for this
condition.

Lastly, if a CNN topology does use an adaptive average pool layer, then the SpinDrop module proposed
by [84, 85] can be used. This is because the adaptive average pool layer averages each IF to a single point,
giving a vector with a total of 𝐶𝑜𝑢𝑡 elements.

Therefore, the Dropout module for the proposed MC-SpatialDropout should be able to work in four
different configurations. Consequently, we propose a novel spintronic-based spatial Dropout design, called
Spatial-SpinDrop.

The Spatial-SpinDrop module leverages the stochastic behavior of the MTJ for spatial dropout. The
proposed scheme is depicted in Fig. 4.15. In order to generate a stochastic bitstream using the MTJ, the
first step involves a writing scheme that enables the generation of a bidirectional current through the
device. This writing circuit consists of four transistors, allocated to a "SET" and a "RESET" modules. The
"SET" operation facilitates the stochastic writing of the MTJ, with a probability corresponding to the
required dropout probability. On the other hand, the "RESET" operation restores the MTJ to its original
state. During the reading operation of the MTJ, the resistance of the device is compared to a reference
element to determine its state. The reference resistance value is chosen such as it falls between the parallel
and anti-parallel resistances of the MTJ.

For the reading phase, a two-stage architecture is employed for better flexibility and better control of the
reading phase for the different configurations discussed earlier. The module operates as follows: after a
writing step in the MTJ, the signal 𝑉𝑝𝑜𝑙 allows a small current to flow through the MTJ and the reference
cell (REF), if and only if the signal ℎ𝑜𝑙𝑑 is activated. Thus, the difference in resistance is translated into
a difference in voltages (𝑉𝑀𝑇 𝐽 and 𝑉𝑟𝑒 𝑓). The second stage of the amplifier utilizes a StrongARM latch
structure [174] to provide a digital representation of the MTJ state. The Ctrl signal works in two phases.
When Ctrl = 0,𝑂𝑢𝑡 and𝑂𝑢𝑡 are precharged at VDD. Later, when Ctrl = 1, the discharge begins, resulting in
a differential current proportional to the gate voltages (𝑉𝑀𝑇 𝐽 and𝑉𝑟𝑒 𝑓). The latch converts the difference of
voltage into two opposite logic states in 𝑂𝑢𝑡 and 𝑂𝑢𝑡 . Once the information from the MTJ is captured and
available at the output, the signal ℎ𝑜𝑙𝑑 is deactivated to anticipate the next writing operation. To enable
the dropout, a series of AND gates and transmission gates are added, allowing access to either the classical
decoder or to the stochastic word-line (WL).

As long as the ℎ𝑜𝑙𝑑 signal is deactivated, no further reading operation is permitted. Such a mechanism
allows the structure to maintain the same dropout configuration for a given time and will be used during
𝑁 − 1 cycles of inputs to allow the dropping of the IF in strategies 1⃝ and 2⃝. In the first strategy, the AND
gate receives as input 𝐾 × 𝐾 WLs from the same decoder, see Fig. 4.16(a). While in strategy 2⃝, the AND
gate receives one row per decoder, as presented in Fig. 4.16(b).

For the last two configurations, the ℎ𝑜𝑙𝑑 signal is activated for each reading operation, eliminating the
need to maintain the dropout mask for 𝑁 − 1 cycles.

64

4.2. GROUPED-DROPOUT AS BAYESIAN BINARY NEURAL NETWORK

GND VDD

GNDVDD

SET RESET

(a)

VDD

Vpol

hold

hold

Vref

GND

VDD

GND

Vref
VMTJ

VMTJ

Out
Out

WLDecoder

Dropped

Dropout

Enable

WLn
Path enable

Out

Ctrl

Ctrl Ctrl

MTJ REF

(b)

Figure 4.15.: (a) Writing and (b) reading schemes for the MTJ.

BL1 I1

G11

G21 G22

G12

Gm1 Gm2

I2

G2n

G1n

In
...

...

...

...

SL2

SLm

BL2 BLn

WL1

WL2

WLm

...

Shift-Add

Comparator

Average

Shift-Add

Comparator

Average

Shift-Add

Comparator

Average

...

ADCADCADC

W
L

D
ec

od
er

MUX

SL
 D

riv
er

Gmn

K
xK

 D
ro

po
ut

 M
od

ul
e

1
K

xK
 D

ro
po

ut
M

od
ul

e
C
in

WL Decoder 1

Dropout
Module 1

Dropout
Module 2

Dropout
Module Cin

...

Xbar 1 Xbar 2 Xbar KxK

WL Decoder 2 WL Decoder KxK

a)

b)

...

...

Figure 4.16.: Crossbar design for the MC-SpatialDropout based on mapping strategy (a) 1⃝ and (b) strategy 2⃝. In (b), only the
Dropout module and WL decoder are shown. Everything else is abstracted.

4.2.1.4. MC-SpatialDropout-Based Bayesian Inference in CiM

The proposedMC-Spatial Dropout-Based Bayesian inference can be leveraged on the twomapping strategies
discussed in Section 2.9.1. In both strategies, one or more crossbar arrays with MTJs at each cross point
are employed in order to encode the binary weights into the resistive states of the MTJs.

65

CHAPTER 4. MONTE-CARLO DROPOUT-BASED BAYESIAN NNS

Specifically, for the mapping strategy 1⃝, we divide the WLs of the crossbar into 𝐾 ×𝐾 groups and connect
one dropout module to each group, as shown in Fig.4.16(a). In Fig. 4.15(b), this strategy involves connecting
𝐾 × 𝐾 WLs to an AND gate. The AND gate receives the signal delivered by the decoder as its input.
This configuration allows for the selective activation or deactivation of a group of WLs. To facilitate the
activation of multiple consecutive addresses in the array, an adapted WL decoder is utilized. The bit-line
and source-line drivers were used to manage the analog input and output for MVM operation. Also, a
group-wise selection of WLs is performed concurrently, and the intermediate result for MVM operation is
accumulated into an accumulator block until all the WLs are selected for each layer. We utilized MUXes to
select the different bit-lines that are sensed and converted by ADC. The shift-adder modules are used to
shift and accumulate the partial sums coming from the array. Finally, a digital comparator and averaging
block are used to implement the activation function. For the last layer, the average operation is performed
with an averaging block.

For the mapping strategy 2⃝, a similar architecture to the strategy 1⃝ is employed. The key distinction
relies upon the utilization of 𝐾 × 𝐾 crossbars in parallel to map the binary weights of a layer. Also, the
dropout modules are connected to a similar WL index in each of the crossbar arrays, as shown in Fig. 4.16(b).
Here, the same AND gate in the Dropout module receives signals from different decoders and the result is
sent to each row of the 𝐾 × 𝐾 crossbars. For instance, the first WL of each crossbar of a layer connects
the same Dropout module. All the WLs decoders are connected to a dropout block in gray in Fig. 4.16(b)
comprising𝐶𝑖𝑛 dropout modules. It is worth mentioning that the dropout is used during the reading phase
only, therefore, the dropout module is deactivated during the writing operation and WL decoders are used
normally.

4.2.2. Results

4.2.2.1. Evaluation Setup

We evaluated the proposed MC-SpatialDropout on predictive performance in a) image classification
task using VGG, ResNet-18, and ResNet-20 topologies in the CIFAR-10 dataset, b) biomedical semantic
segmentation task using a more complex U-Net topology in digital retinal images for vessel extraction
(DRIVE) dataset. All models were trained with the SGD optimization algorithm, minimizing the proposed
learning objective equation 4.9 with 𝜆 chosen between 1×10−5 and 1×10−7, and the binarization algorithm
from [47] was used. Furthermore, all models are trained with 𝑝 = 15% dropout probability. We have
used SGD due to its proven effectiveness in training, particularly for large-scale data, and its ability
to efficiently converge to optimal solutions. Other optimization algorithms, such as ADAM and the
binarization algorithm that uses weight normalization, as discussed in the methodology section of this
work, would also work for our approach.

To assess the effectiveness of our method in handling uncertainty, we generated six additional OOD
datasets: 1. Gaussian noise (D̂1), 2. Uniform noise (D̂2), 3. CIFAR-10 with Gaussian noise (D̂3), 4. CIFAR-10
with uniform noise (D̂4), 5. SVHN: Google street view house numbers dataset, and 6. STL10: a dataset
containing images from the popular ImageNet dataset. Each of these OOD datasets contains 8000 images,
and the images have the same dimensions as the original CIFAR-10 dataset. During the evaluation phase,{

OOD, if max
(
G
(

1
𝑇

∑𝑇
𝑡=1 y𝑡

))
< 0.9

ID, otherwise.
(4.12)

Here, y𝑡 is the softmax output of the stochastic forward pass on the MC run 𝑡 with 𝑇 overall MC runs, the
function G(·) calculates the 10th percentile across a set of values, and the function max(·) determines the
maximum confidence score across output classes. In general, OOD or ID is determined by whether the
maximum value from the 10th percentile of the averaged outputs is less than 0.9 (for OOD) or not (for ID).
The intuition behind our OOD detection is that the majority of confidence scores of the 𝑇 MC runs are

66

4.2. GROUPED-DROPOUT AS BAYESIAN BINARY NEURAL NETWORK

Table 4.10.: Predictive Performance of the proposed MC-SparialDropout method in comparison with SOTA methods on CIFAR-10.

Topology Method Bit-width (W/A) Bayesian Inference Accuracy

ResNet-18

FP 32/32 No 93.0%
RAD [175] 1/1 No 90.5%
IR-Net [47] 1/1 No 91.5%

SpinDrop [84, 85] 1/1 Yes 90.48%
Proposed 1/1 Yes 91.34%

ResNet-20

FP 32/32 No 91.7%
DoReFa [176] 1/1 No 79.3%
DSQ [177] 1/1 No 84.1%
IR-Net [47] 1/1 No 85.4%
Proposed 1/1 Yes 84.71%

VGG

FP 32/32 No 91.7%
LAB [178] 1/1 No 87.7%
XNOR [45] 1/1 No 89.8%
BNN [44] 1/1 No 89.9%
RAD [175] 1/1 No 90.0%
IR-Net [47] 1/1 No 90.4%

SpinDrop [84, 85] 1/1 Yes 91.95%
Proposed 1/1 Yes 90.34%

expected to be high and close to each other (low variance) for ID data and vice versa for OOD data, as
discussed in the previous work and depicted by [35]. On the other hand, for hardware-level simulation, the
28nm FDSOI ST-Microelectronics technology was used to perform simulations on the Cadence Virtuoso
simulator.

4.2.2.2. Predictive Performance and Uncertainty Estimation

The predictive performance of the approach is comparable to the existing conventional BNNs, as shown in
Table 4.10. Furthermore, compared to Bayesian approaches [84, 85], our proposed approach is within 1%
inference accuracy. Furthermore, the application of Spatial-SpinDrop before the convolutional layer and in
the extracted featuremaps can also achieve comparable performance (∼ 0.2%). Also, for biomedical semantic
segmentation, the prediction mask for the proposed method roughly resembles the ground truth label and
is similar to full precision MC-Dropout [35]. In terms of intersection over union (IOU) score and pixel
accuracy, our approach can achieve a 64.60% IOU score and a pixel accuracy of 95.97%. In comparison, the
SpinDrop [85] method has 96.49% pixel accuracy and 67.44% IOU, which is comparable. This demonstrates
the capability of the proposed approach to achieve high predictive performance. However, note that
applying Spatial-SpinDrop before all the convolutional layers can drastically reduce the performance;
e.g., the accuracy reduces to 75% on VGG. This is because at shallower layers, the number of OFMs is
lower compared to that at deeper layers, leading to a high chance that most OFMs are being omitted
(dropped). Furthermore, as shown by [84, 85], BNNs are more sensitive to the dropout rate. Therefore, a
lower Dropout probability between 10 − 20% is suggested.

In terms of OOD detection, our proposed method can achieve up to 100% OOD detection rate across various
model architectures and six different OOD datasets (D̂1 through D̂6), as depicted in Table 4.11. There are
some variations across different architectures and OOD datasets. However, even in these cases, our method
can consistently achieve a high OOD detection rate, with the lowest detection rate being 64.39% on the

67

CHAPTER 4. MONTE-CARLO DROPOUT-BASED BAYESIAN NNS

M
C

-D
ro

p
o

u
t

D
R

IV
E

Uncertainty masks

S
p

atial-S
p

in
D

ro
p

 B
ay

B
N

N

Correctness masksPrediction maskGround truth labelInput image

Figure 4.17.: Results of semantic segmentation and estimations of uncertainty for the DRIVE. The correctness map is a binary
representation of correct and incorrect predictions. The uncertainty map is the normalized [0, 1] map of uncertainty values
derived after 20 Monte Carlo samples.

Table 4.11.: Evaluation of the proposed MC-SpatialDropout method in detecting OOD.
Topologie D̂1 D̂2 D̂3 D̂4 D̂5 D̂6
ResNet-18 99.56% 99.94% 96.1% 81.68% 83.02% 64.39%
ResNet-18i 100% 100% 100% 92.26% 99.98% 97.39%
ResNet-20 97.2% 100% 90.79% 87.94% 99.03% 99.81%

VGG 99.99% 100% 92.9% 78.91% 99.81% 100%
i Spatial-Dropout applied to the final two convolutional layers.

ResNet-18 model with the D̂4 dataset and Spatial-SpinDrop applied to extracted feature maps. However,
when Spatial-SpinDrop is applied to the convolutional layers of the last residual block, the OOD detection
rate on the D̂4 dataset improved to 97.39%, a 33.00% improvement. This is because Bayesian treatments
are applied to more parameters (i.e., weights are probabilistic rather than fixed) and the model regularizes
more layers. Thus, stronger uncertainty estimates can be obtained. Therefore, we suggest applying
Spatial-SpinDrop to the last convolutional layers to achieve a higher OOD detection rate at the cost of a
small accuracy reduction. In terms of biomedical semantic segmentation, our approach provides an ideal
or close-to-ideal uncertainty mask. Specifically, the uncertainty is high around incorrectly predicted pixels
and low around correctly predicted pixels. Consequently, the result suggests that the MC-SpatialDropout
method is a robust and reliable approach to OOD detection in various model architectures and datasets.

4.2.2.3. Overhead Analysis

The proposed Spatial-SpinDrop modules were evaluated for area, power consumption, and latency as
shown in Table 4.12 and compared with the SpinDrop approach presented in [84, 85]. These evaluations
were performed using a crossbar array with dimensions of 64 × 32 and scaled for the larger VGG topology
from LeNet-5. In the layer-wise application of spatial Dropout, the Dropout modules were applied to the
convolutional layers of the last VGG block. Also, for topology-wise application of spatial Dropout, Dropout

68

4.2. GROUPED-DROPOUT AS BAYESIAN BINARY NEURAL NETWORK

Table 4.12.: Layer-wise Overhead Analysis of the Proposed Method in Comparison to SpinDrop [84, 85].
Layer-wise application of spatial Dropout

Method Mapping
Strategy

of Dropout
Modules Area Power

Consumption
Sampling
Latency

SpinDrop 1⃝ 𝐾 ∗ 𝐾 ∗𝐶𝑖𝑛 79833.6𝜇𝑚2 51.84𝑚𝑊
2⃝ 𝐾 ∗ 𝐾 ∗𝐶𝑖𝑛 79833.6𝜇𝑚2 51.84𝑚𝑊 15𝑛𝑠

Proposed
1⃝ 𝐶𝑖𝑛 8870.4𝜇𝑚2 5.76𝑚𝑊
2⃝ 𝐶𝑖𝑛 8870.4𝜇𝑚2 5.76𝑚𝑊
Topology-wise application of spatial Dropout

Method Adaptive
Avg. Pool

of Dropout
Modules Area Power

Consumption
Sampling
Latency

SpinDrop Used 𝐶𝑜𝑢𝑡 17740.8𝜇𝑚2 11.52𝑚𝑊
Not Used 𝐾 ∗ 𝐾 ∗𝐶𝑜𝑢𝑡 159667.2𝜇𝑚2 103.68𝑚𝑊 15𝑛𝑠

Proposed Used 𝐶𝑜𝑢𝑡 17740.8𝜇𝑚2 11.52𝑚𝑊
Not Used 𝐶𝑜𝑢𝑡 17740.8𝜇𝑚2 11.52𝑚𝑊

Table 4.13.: Energy Efficiency Comparison of Hardware Implementations
Related works Technology Dataset Topology Bit resolution Energy
H. Fan et al.[96] FPGA CIFAR-10 ResNet18 8-bit 0.014 J/Image
R.Cai et al.[168] FPGA MNIST 3-FC 8-bit 18.97 µJ/Image
X.Jia et al.[169] FPGA MNIST 3-FC 8-bit 46.00 µJ/Image
H.Awano et al. [95] FPGA MNIST 3-FC 7-bit 21.09 µJ/Image
A. Malhotra et al. [99] RRAM MNIST 3-FC 4-bit 9.30 µJ/Image
S.T.Ahmed et al.[84] STT-MRAM MNIST LeNet-5 1-bit 2.00 µJ/Image
K.Yang et al.[102] Domain wall-MTJ MNIST 3-FC 4-bit 0.79 µJ/Image
Proposed implementation STT-MRAM MNIST 3-FC 1-bit 0.12 µJ/Image
Proposed implementation STT-MRAM MNIST LeNet-5 1-bit 0.68 µJ/Image
Proposed implementation STT-MRAM CIFAR-10 VGG 1-bit 1.31 µJ/Image

modules are applied to the extracted feature maps. In our evaluation, a configuration of 𝐶𝑖𝑛 = 256, 𝐾 = 3
and 𝐶𝑜𝑢𝑡 = 512 is used.

At first, in terms of area, the SpinDrop method requires one dropout module per row in the crossbar
structure, while our method only requires one dropout module per 𝐾 × 𝐾 group of rows. Therefore, the
area and the power consumption of the dropout modules are reduced by a factor of 𝐾2, which for VGG is 9.
In terms of latency for the dropout modules, we achieve 15𝑛𝑠 in all cases. Indeed, to generate 1 bit, for
a given number of rows, the dropout module needs to be written. However, such latency can be further
reduced by increasing the writing voltages of the MTJ, but at the cost of higher power consumption.
Furthermore, when the adaptive average pool layer is not used, the power consumption and the area of the
SpinDrop approach increase greatly (×9). However, in the proposed approach, the adaptive average pool
layer does not impact total energy and area, as mentioned in Section 4.2.1.3 and shown in Table 4.12.

Table 4.13 compares the energy consumption of the proposed approach with the state-of-the-art imple-
mentation based on the MNIST and CIFAR-10 datasets. For the evaluation, we used NVSIM and estimated
the total energy of a 3-FC, LeNet-5, and VGG architectures. To scale our approach, we also estimate the
energy consumption for the CIFAR-10 dataset. Compared to existing spintronic implementations, we
achieve savings of 6.58× compared to [102], and 2.94× savings compared to the SpinDrop approach in [84],
with respect to the architecture. Furthermore, compared to RRAM technology, our solution is 77.5× more
efficient. Finally, compared to the classic FPGA implementation, the proposed approach achieves up to
300× more energy savings.

69

CHAPTER 4. MONTE-CARLO DROPOUT-BASED BAYESIAN NNS

4.2.2.4. Discussion

This work focuses on the implementation of binary Bayesian neural networks with Spintronic technology.
However, stochastic and deterministic features also exist in other technologies, such as PCM [179] or
RRAM [99]. Compared to RRAM and PCM, for which stochasticity is due to filament creation and the
random nature of the phase change process, the stochastic behavior of STT is obtained for low voltage,
and thus allows us to save more energy [84, 85].

Hardware-level simulations, conducted with the Cadence simulator, evaluate the performance of the
proposed MC-SpatialDropout method. The results show an improvement in both area efficiency and
energy consumption, emphasizing the resilience of the approach. However, for practical deployment, it is
crucial to carefully consider design factors and challenges. A critical consideration is the impact of the
IR drop on the size of the array. Indeed, adjusting the array size to match the specific requirements of
the application is essential, and the design may be influenced by the phenomenon of IR drop. Variability
presents another significant concern that requires a thorough evaluation, as it affects not only hardware
design, but also system-level development and algorithmic implementation.

The impact of process variations and mismatches for different dropout rates has been evaluated, and
the approach demonstrates robustness and resilience in the face of variability [84, 85]. Furthermore, the
variability of the crossbar was examined to illustrate the influence of stochasticity and device variability.
These assessments validate the effectiveness of our approach and enable scalability to larger architectures.

Moving to the system level, appropriately resizing the array to minimize the effects of variability and IR drop
for efficient computation enables complete digitalization of the system. This transforms it into a mapping
problem for a larger neural network architecture. The mapping of neural network layers is discussed
in Sections 4.2.1.1 and 4.2.1.3. Indeed, in our work, effective implementation techniques were shown to
integrate the dropout method for both FC and convolutional layers into CiM architectures. Regarding
scalability in the context of dropout application, there is a discernible linear relationship between metrics
such as area and power consumption and the depth of layers. This relationship is specifically related to the
number of output channels (𝐶𝑜𝑢𝑡) of the last convolutional layers in the topology-wise application and the
input channels (𝐶𝑖𝑛) of the convolutional layers in the layer-wise application of spatial Dropout.

To achieve improved accuracy regardless of our hardware setup, it is necessary to use more advanced
neural network architectures with a larger number of neurons and layers. For CIFAR-10, the VGG
topology was preferred. However, selecting a simpler architecture, such as LeNet-5, would improve energy
efficiency but reduce accuracy as a trade-off. Conversely, a more complex architecture, e.g., ResNet, would
greatly enhance accuracy but reduce energy efficiency. In edge applications with limited power budgets,
maximizing accuracy isn’t the main priority; a balance between accuracy and energy efficiency is crucial.
Therefore, it is essential to carefully select the most suitable model to achieve the highest accuracy within
a limited power budget.

In this work, we introduce a novel method for implementing convolutional layers within the Bayesian
framework, irrespective of the chosen architecture. Our approach efficiently incorporates dropout on
convolutional layers, enhancing power efficiency across various architectures. However, it is important to
note that the choice of architecture for a given application must be made, given the trade-offs discussed
earlier.

4.2.3. Scientific Impact of This Work

We outline the scientific impact of this work and our main contributions:

1. Group-wise Dropout and Resource Scalability: This work propose to apply Dropout in a group-
wise manned in CiM architecture. Consequently, the energy consumption and chip area can be
reduced by 𝑘2× when Dropout is applied to 𝑘 × 𝑘 groups of wordlines together. Therefore, research
in the direction of group-wise can improve resource scalability.

70

4.3. SCALE DROPOUT-BASED BAYESIAN BINARY NEURAL NETWORK

2. Bayesian Treatment of Parameters: The more parameters are treated as Bayesian or probabilistic,
the better the uncertainty estimates. However, the accuracy can be reduced as a trade-off.

3. Adaptive Dropout In CiM Architecture: Four different Dropout configurations and their respec-
tive CiM architecture depending on the weight mapping method are proposed.

4. Real-World Applications: The work showed improvements in energy efficiency and performance
metrics while reducing the chip area and achieving a high detection capability of the OOD data. Thus,
making it suitable for real-world applications, especially in domains requiring real-time processing
and decision-making under uncertainty.

4.2.4. Section Conclusion

In this section, we present grouped Dropout for Bayesian inference in CiM architecture. We implement the
grouped Dropout concept using spatial Dropout, which drops each spatial feature map with a probability.
Furthermore, we propose the MC-SpatialDropout is an efficient spatial dropout-based approximation for
Bayesian neural networks in CiM architecture. The proposed method exploits the probabilistic nature of
spintronics technology to enable Bayesian inference. Implemented on a spintronics-based Computation-in-
Memory fabric with STT-MRAM, MC-SpatialDropout achieves improved computational efficiency and
power consumption while maintaining performance and quality of uncertainty estimates.

4.3. Scale Dropout-Based Bayesian Binary Neural Network

In the previous section that is based on our publication [86], we realized that applying Dropout in a
group-wise manner can improve resource scalability. Resource scalability is important for deploying
BayNNs in a resource-constrained device for edge AI applications.

When it comes to improving resource scalability with group-wise dropout, the extreme end of
this is when all the word lines of a crossbar are dropped together. Consequently, a single Dropout
module is required per layer of BayNN in a CiM architecture. It leads to a reduction in the number
of Dropout modules and associated chip area and power by a factor of up to 𝐶𝑜𝑢𝑡 ×𝐶𝑖𝑛 × 𝐾ℎ × 𝐾𝑤 for
a single layer compared to our previous works [85, 84, 86]. This further reduces by up to 𝐿× when
Dropout is applied to 𝐿 layers. However, in this case, this results in total loss of information, as it is
equivalent to performing MAC operations in a layer 𝑙 with zero inputs.

Therefore, a different strategy is required, compared to the conventional dropout or group-wise
dropout. In this work, we propose a novel dropout method in which a specific parameter group
of binary NNs, the scale vector, is dropped for uncertainty estimation. The work is based on our
publication [49].

4.3.1. Scale Dropout

4.3.1.1. Scale Vector

To reiterate Section 2.2.1, the scale vector is crucial in BNN to reduce the quantization error, but in CiM,
scaling of the weight matrix is not feasible due to the limited stable states of the Spintronic device. Therefore,
we propose a hardware-software co-design approach for the scaling factor in BNN that is suitable for CiM
architecture. Specifically, we design our scale factor (denoted as 𝜶) to be learnable through a gradient
descent algorithm and the same shape as the bias vector of a layer, 𝜶 ∈ RCout×1×1×1. Here, Cout represents
the number of output channels in the convolutional layers and the number of neurons in the linear layers.
This choice is motivated by the desire to reduce memory overhead while ensuring compatibility with
the CiM architecture. By making the scale factor learnable, we allow the training process to determine

71

CHAPTER 4. MONTE-CARLO DROPOUT-BASED BAYESIAN NNS

Present with a probability 𝒑 Dropped with a probability 𝟏 − 𝒑

a) During training and Bayesian inference b) During inference for point estimate
prediction

Always present

Figure 4.18.: Several nodes (neurons) a) at training time that are scaled with a probability of 𝑝 and dropped (ignored) with a
probability of 1 − 𝑝 , b). At test time, if point estimate prediction is preferred, all the nodes are always scaled. However, for
Bayesian inference, all nodes behave similarly to train time. Here, all the nodes are connected to the weights of the next layer
after non-linear activation and Batch normalization, and their shapes represent scaling factors. All the dropped nodes have the
same shape, indicating no scaling factor.

the optimal scale factor, making the model more adaptive and possibly improving its performance [46].
Note that the learnable parameters and the two variables (𝜇 and 𝜎) of the batch normalization layer have
the same shape as the bias vector of a layer. Therefore, choosing the same shape of scale vector as those
vectors leads to simplified computation and storage in the CiM architecture.

4.3.1.2. Scale Dropout Model Description

Let a BNN with 𝐿 hidden layers and z(𝑙−1) denote the input vector, z(𝑙) denotes the output vector, 𝜶 (𝑙)
denotes the scale vector, W(𝑙) denotes the weights and b(𝑙) denotes the biases of the layer 𝑙 . The feed-
forward operation (for 𝑙 = 1, · · · , 𝐿 − 1) of BNN can be described as

z(𝑙) = (sign(W(𝑙))⊤ ⊗ sign(z(𝑙−1)) + b(𝑙)) ⊙ 𝜶 (𝑙) (4.13)
ẑ(𝑙) = BatchNorm𝛾,𝛽 (z(𝑙)) (4.14)
z̄(𝑙) = 𝜙 (ẑ(𝑙)) (4.15)

Where 𝜙 denotes the element-wise nonlinear activation function for BNN, e.g., the Tanh(·) function
(hyperbolic Tangent), ⊤ denotes the matrix transpose operation and BatchNorm𝛾,𝛽 (·) denotes the bach
normalization [50] with a learnable parameter 𝛾 and 𝛽 . In addition, ⊙ denotes element-wise multiplication,
and ⊗ denotes binary convolution. With Scale-Dropout, the feed-forward operation becomes :

M (𝑙) ∼ Bernoulli(𝑝) (4.16)
�̂� (𝑙) = 𝜶 (𝑙) · M (𝑙) (4.17)
z(𝑙) = (sign(W(𝑙))⊤ ⊗ sign(z(𝑙−1)) + b(𝑙)) ⊙ �̂� (𝑙) (4.18)
ẑ(𝑙) = BatchNorm𝛾,𝛽 (z(𝑙)) (4.19)
z̄(𝑙) = 𝜙 (ẑ(𝑙)) (4.20)

Here, the Dropout mask for the scale Dropout is defined as a scalarM ∈ {0, 1} and is independently
sampled from a Bernoulli distribution with a probability parameter 𝑝 for each layer.

The scale vector multiplies the weighted sum of each layer. Therefore, setting the scale values to zero
(similar to traditional Dropout) would lead to a complete loss of information in that layer. To address this
problem, we introduce an alternative approach called Unitary Dropout. In this method, when the randomly
generated Dropout mask is zero, all elements associated with the scale vector are set to one.

As a result, during forward propagation, the network ignores the scale factors that correspond to the
Dropout mask being zero, while the scaling factor retains its original value when the randomly generated
Dropout mask is set to one. Fig. 4.18 shows the scale Dropout concept during the train and inference
time.

72

4.3. SCALE DROPOUT-BASED BAYESIAN BINARY NEURAL NETWORK

Although we have focused on Unitary Dropout in this paper due to their simple implementation in the CiM
architecture, other alternatives can also be considered. For instance, Average Scale Dropout and Random
Scale Dropout. In Average Scale Dropout, instead of setting the scale vector to one, it involves dropping to
the average of the scale vector, �̄� = 1

Cout

∑Cout
𝑖=1 𝜶 𝑖 . On the other hand, the Random Scale-Dropout method

involves replacing the dropped scale with a random value sampled from a predefined distribution, for
example, a uniform distribution.

Additionally, to reduce the number of Dropout modules to one per layer in the CiM architecture, the entire
scale vector is dropped at the same time, which is referred to as "vector dropout." Furthermore, since each
layer in an NN sequentially processes an input for inference, the scale dropout module can be shared
across layers. Consequently, only one Dropout module is required per layer. Note that, if needed, the
proposed scale Dropout can be applied to the scale vector element-wise at the cost of a large number of
Dropout modules.

4.3.1.3. Co-adaptation Mitigation

The introduction of the proposed scale Dropout imposes randomness in the scale vector and, in turn, the
activation of a layer. Thereby, it can potentially reduce co-adaptation between the scale vector and the
binary weights. When 𝜶 is treated as a random variable during training, the model is less dependent on
specific scale values, promoting a more diverse range of features in the BNN. This phenomenon can be
expressed mathematically as increased variance in the learned representations across the network, thus
reducing co-adaptation.

4.3.1.4. Choosing Dropout Probability

To choose a Dropout probability of the scale Dropout, we propose a layer-dependent adaptive scale Dropout
method. Specifically, a Dropout probability of 10% or 20% is used on layers with a comparably smaller
number of parameters, but a larger Dropout probability, e.g., 50%, is used on layers with a larger number
of parameters. Consequently, unlike works [84, 86], where many different kinds of implementation
with different locations for the Dropout layer need to be explored, our approach does not require such
exploration, as the Scale-Dropout is applied to all the binary layers. Also, it is not necessary to explore
the various Dropout rates. Consequently, our approach stands out as a more deployment-ready solution
compared to related works.

4.3.1.5. Learning with Scale-Dropout

The proposed BayNN with Scale-Dropout can be trained using stochastic gradient descent, similar to
standard BNN using existing algorithms such as [44, 45]. The only difference is that for each forward
pass during training, we sample a random scaled network by applying Scale-Dropout. The forward and
backward propagation for each iteration is performed only on this scaled network. The gradients for each
parameter are averaged over the training instances of each mini-batch. The training objective combining a
Bayesian approximation and Scale-Dropout is discussed in Section 4.3.2.

Although Scale-Dropout alone offers several benefits, using Scale-Dropout in conjunction with common
regularization techniques such as L2 regularization, learning rate scheduling, data augmentation, and
momentum for the gradient descent algorithm further improves accuracy.

73

CHAPTER 4. MONTE-CARLO DROPOUT-BASED BAYESIAN NNS

4.3.2. Scale-Dropout as a Bayesian Approximation

To reiterate, an NN with standard Dropout can be used as an approximate method of Bayesian inference.
Gal et al. [35] showed that learning an NN with Dropout and L2 regularization is equivalent to a Gaussian
process. The optimization objective of their approach, named MC-Dropout, is given by

L(𝜽)MC-Dropout = L(𝜽 ,D) + 𝜆
𝐿∑︁
𝑙=1
(| |W𝑙 | |22 + ||b𝑙 | |22) . (4.21)

In this paper, we propose Monte Calo (MC)-Scale Dropout based Bayesian approximation that uses Scale-
Dropout in place of the standard Dropout for Bayesian inference. Our approach expands the MC-Dropout
approaches [84, 35], for BNN and better efficiency with specific learning objectives. In the following
section, the learning objective and how to obtain the model uncertainty for the (MC)-Scale Dropout are
discussed in detail.

4.3.2.1. Learning Objective

For the proposed Monte Calo (MC)-Scale Dropout objective, we introduce a regularization function for the
scales 𝜶 . Specifically, we design a regularization function that encourages the scale factor to be positive
to preserve the sign of the computed z(𝑙) of a layer 𝑙 . Also, it encourages the scale factor to be centered
around one, so it scales up or down the element of z based on their contribution to the loss.

To achieve a Bayesian approximation, we use a similar approach to MC-Dropout. However, in MC-Dropout,
activations are dropped to zero, which inspires the L2 regularization to push the weights towards zero.
On the contrary, in our Unitary Dropout approach, the scale factors are dropped to one. This promotes a
regularization effect that encourages the scale vector to center around one, a key distinction that aligns
better with the nature of binary networks where weights are binarized to −1 or 1. The regularization
function can be mathematically described by

𝜑

𝐿∑︁
𝑙=1
(1 − 𝜇𝑙𝜶)2. (4.22)

Here, 𝜇𝑙𝜶 is the mean of the scale vector of a layer 𝑙 and 𝜑 is the hyperparameter for controlling the strength
of the regularization.

Despite the regularization of the scales, we also optionally apply the L2 regularization to the weights.
Applying L2 regularization is a challenge in BNN. In BNN, real-valued proxy weights are binarized to +1
or −1, therefore, applying L2 regularization to either of them may not be beneficial [84].

However, L2 regularization can be implemented in the actual real-valued weights, with binarization
applied to the normalized weights within the output channel dimensions [86]. Opting for channel-wise
normalization also proves advantageous in reducing binarization errors [47]. To achieve this, the channel-
wise mean is first computed:

𝜇𝑐 =
1

𝑘ℎ × 𝐾𝑤

∑︁
𝐾ℎ

∑︁
𝐾𝑤

W. (4.23)

Here, 𝑘ℎ and 𝑘𝑤 represent the height and width of the kernels in the weight matrix, the last two dimensions
of W. Subsequently, the channel-wise mean 𝜇𝑐 is subtracted from the proxy weights (real-valued):

Ŵ = W − 𝜇𝑐 . (4.24)

74

4.3. SCALE DROPOUT-BASED BAYESIAN BINARY NEURAL NETWORK

Following that, the channel-wise standard deviation is calculated on zero-centered weights.

𝜎2
𝑐 =

1
𝑘ℎ × 𝑘𝑤

∑︁
𝑘ℎ

∑︁
𝑘𝑤

W2 − Ŵ2. (4.25)

Note that 𝜎2
𝑐 calculation is simplified for efficiency reasons. Lastly, the channel-wise standard deviation

divides the zero centered weight for channel-wise normalization as:

W̃ =
Ŵ
𝜎𝑐
. (4.26)

Consequently, binarization on the channel-wise normalized weights can be defined as:

W∗ =

{
+1 if W̃ ≥ 0
−1 otherwise

(4.27)

Note that channel-wise weight normalization has become standard practice in modern BNN models.

The overall objective of the MC-Scale Dropout with both scales and weight Dropout is defined as:

L(𝜽)MC-Scale Dropout = L(𝜽 ,D) + 𝜆
𝐿∑︁
𝑙=1
| |W𝑙 | |22 + 𝜑

𝐿∑︁
𝑙=1
(1 − 𝜇𝑙𝜶)2. (4.28)

Here, 𝜆 is the weight decay hyperparameter of the weight regularization.

4.3.2.2. Obtaining Model Uncertainty

To obtain the uncertainty of the model, we perform 𝑇 forward passes with the proposed Scale-Dropout en-
abled during Bayesian inference. During each of the𝑇 forward passes, we sample an independent and identi-
cally distributed random Dropout mask from the Bernoulli distribution for each layer {M (𝑙)

𝑡 , · · · ,M (𝐿)
𝑡 }𝑇𝑡=1,

giving𝑇 stochastic scale vectors {�̂� (𝑙)𝑡 , · · · , �̂� (𝐿)𝑡 }𝑇𝑡=1 and ultimately stochastic weighted sums {z(𝑙)𝑡 , · · · , z(𝐿)𝑡 }𝑇𝑡=1.
The predictive mean is given by:

𝐸𝑞 (𝑦∗ |𝑥∗,D) (𝑦∗) ≈
1
𝑇

𝑇∑︁
𝑡=1

𝑦∗𝑡 (𝑥∗, z
(𝑙)
𝑡 , · · · , z(𝐿)𝑡) (4.29)

Here, 𝑥∗ is the inferece input, 𝑞(𝑦∗ | 𝑥∗,D) is the posterior distribution, 𝑦 is the stochastic prediction, and
𝑦∗ is the final prediction. We refer to this Monte Carlo estimate as the MC-Scale Dropout. In practice, this
is equivalent to performing 𝑇 stochastic forward passes through the network and averaging the results. In
the literature, this is known as model averaging [35].

In terms of the posterior distribution of the output, equations 4.16 can be modified as

z(𝑙) = 𝑆 (𝑙) ⊙ diag(𝑑) (4.30)
𝑑 (𝑙) ∼ Bernoulli(𝑝) for 𝑙 = 1, · · · , 𝐿 (4.31)

Here, 𝑆 represents the weighted sum of a layer. Batch normalization is applied to z(𝑙) . Thus, the sampling
process of the Dropout mask is the same as that of the MC-Dropout. In an empirical evaluation (shown
later in the 4.3.4.6), we observed that the distribution of the output for each class approaches a Gaussian
distribution as the number of stochastic forward passes (T) through the network increases. This is due to
the aggregate effect of the scalar dropout mask over many forward passes, which can be seen as introducing
a form of multiplicative noise.

75

CHAPTER 4. MONTE-CARLO DROPOUT-BASED BAYESIAN NNS

Uncertainty estimates of the prediction can be obtained from the variance of the 𝑇 forward passes as

Var𝑞 (𝑦∗ |𝑥∗,D) (𝑦∗) ≈ 1
𝑇

𝑇∑︁
𝑡=1
(𝑦∗𝑡 (𝑥∗, z

(𝑙)
𝑡 , · · · , z(𝐿)𝑡) − 𝐸𝑞 (𝑦∗ |𝑥∗,D) (𝑦∗))2 (4.32)

In addition, the K% confidence interval (CI) can also be used as an uncertainty estimate of the MC-Scale
Dropout model. According to the central limit Theorem, for sufficiently large𝑇 , {𝑦∗1 · · ·𝑦∗𝑇 } follow a normal
distribution. For a 𝐾% confidence interval, we use the percentiles of the predictions. Let G𝜗/2 be the 𝜗/2-th
quantile of the predictions. Where 𝜗 = 1 − 𝐾/100. Consequently, the 𝐾% confidence interval is given by

CI =
[
𝜇𝑦 − G𝜗/2

𝜎𝑦√
𝑇
, 𝜇𝑦 + G𝜗/2

𝜎𝑦√
𝑇

]
. (4.33)

Here, 𝜇𝑌 and 𝜎𝑌 represent predictive mean 𝐸𝑞 (𝑦∗ |𝑥∗,D) (𝑦∗), and variance Var𝑞 (𝑦∗ |𝑥∗,D) (𝑦∗) from formulas
4.29 and 4.32, respectively. For sufficiently large𝑇 , the confidence interval can be approximated by directly
calculating the 100−𝑘

2 and 100+𝑘
2 quantile (for a 𝐾% CI) of the predictions as

CI ≈
[
percentile

(
100 − 𝑘

2

)
, percentile

(
100 + 𝑘

2

)]
. (4.34)

4.3.3. Hardware Implementation

4.3.3.1. Modelling Spintronic-based Scale Dropout

In our design, only one spintronic-based Dropout (namd here Spin-ScaleDrop) module is designed and
implemented for the entire neural network. Thus, the proposed Spin-ScaleDrop module is reused for all
layers of the CiM architecture. After the computation of a layer is performed, a new Dropout mask from
the Spin-ScaleDrop Module module is sampled for the next layer.

However, due to the manufacturing and infield variation of the MTJs in the Spin-ScaleDrop, the Dropout
probability itself becomes a stochastic variable. Similar to our previous works, we model the Spintronic-
implemented dropout probability in CiM as a Gaussian distribution, themean of the distribution 𝜇 represents
the expected Dropout probability, and 𝜎 represents the device variations. Therefore, the probability of
Dropout 𝑝 of a layer 𝑙 can be modeled as

𝑝𝑙 = 𝑝𝑙 + 𝜖 with 𝜖 ∼ N(𝜇, 𝜎2) . (4.35)

Here, 𝑝𝑙 denotes the probability of Dropout with process variation. The feed-forward operation expressed
in equation 4.16 remains the same, with only 𝑝𝑙 used as the Dropout probability. Note that a probability
has to be in [0, 1], as 𝑝 is usually chosen between 0.1 and 0.5, and it is unlikely that 𝑝 crosses this range
due to variation. The Dropout probability typically varies from 3% to 10% from the trained one.

4.3.3.2. Designing Spintronic-Based Scale Dropout Module

The Spin-ScaleDrop module is designed by harnessing the stochastic regime of an MTJ and is utilized as
a random number generator. The probability density function governing the switching of the SOT-MTJ
follows an exponential distribution and is expressed as [180]:

𝑝sw = 1 − exp
(𝑡
𝜏

)
(4.36a)

76

4.3. SCALE DROPOUT-BASED BAYESIAN BINARY NEURAL NETWORK

Figure 4.19.: Spin Scale-Dropout Module based on SOT MTJ.

R
e

ad
 d

e
co

d
e

r

SL conditioning circuit
ADC

W
ri

te
 d

e
co

d
e

r
B

L
co

n
d

it
io

n
in

g
ci

rc
u

it

BL

RWL

WWL

SL

Figure 4.20.: Binary SOT crossbar array for the Bayesian inference.

𝜏 = 𝜏0 exp
[

Δ

𝑘𝐵T

(
1 − 2 𝐼

𝐼𝑐0
(𝜋2 −

𝐼

𝐼𝑐0
)
)]

(4.36b)

Here, Δ is the thermal stability factor, 𝐼 is the applied current through the SOT-track, 𝑡 is the pulse duration,
𝜏0 is the attempt time, 𝐼𝑐0 is the critical current at 0 K, 𝑘𝐵 is the Boltzmann constant and T is the temperature.
𝐼𝑐0 represents the minimum current required to switch the MTJ. The equation equation 4.36 is used to
model the switching behavior of the SOT-MTJ for different switching currents while keeping the pulse
width fixed at 10 ns. To generate the bidirectional current across the SOT track, four transistors are added,
as shown in Fig. 4.19. The desired switching probability of, for example, 50%, is achieved by programming
the MTJs through successive "SET" and "RESET" operations.

To ensure reliable MTJ switching, the write duration is set to 10 ns for the SET operation and to 5 ns for
the RESET operation. The state of the MTJ is read using a Sense Amplifier (SA, in Fig.4.19). The SET and
RESET cycles are repeated to generate a stochastic sequence. The Scale Dropout Module allows for the
stochastic activation of the Scale vector that is stored in the neighboring memory.

4.3.3.3. Proposed Spintronics-based CiM Architecture

In spintronic-based CiM architectures, the SOT-MRAM devices are arranged in a crossbar fashion, with an
MRAM device at each crosspoint (see Fig. 4.20). For inference, the mapping of the trained binary weights to

77

CHAPTER 4. MONTE-CARLO DROPOUT-BASED BAYESIAN NNS

Analog SOT-MRAM
Crossbar

Column decoder

Scale Memory (32-bit)

Scale
vectors

R
ow

 d
ec

od
er

R
ow

 d
ec

od
er

ADC
Accumulator-Adder Peripheral circuits

Sense Amplifiers (SA)Register

0

Multiplier

10

Binary Weights

BatchNorm

Sign

Scale Dropout module
32

32

SRAM

8 Register

Next Layer

Figure 4.21.: Proposed inference architecture for Scale-Dropout.

the array is performed with a one-time write operation. To reiterate, in BNN, XNOR and the bit-counting
operation are performed instead of the weighted sum operation [44]. The XNOR operation in CiM is
shown in Table 2.1 and the encoding of the respective +1 and −1 weights with the complementary bit cell
is shown in Fig. 4.20.

The mapping of the weight matrix of various NN layers to the crossbar arrays are done using the mapping
strategy employed as discussed in Section 2.9.1.

During Bayesian inference (online operation), each element of the binary input vector 𝑥 for a layer is
converted into a (0, 1) or (1, 0) signal and fed into the crossbar array for inference. This architecture allows
for parallel computation and outputs the weighted sum results as currents flow through each source line.
Finally, the analog currents are converted to digital signals using Analog-to-Digital Converters (ADCs) and
passed on to the Accumulator-Adder module to sum up the partial matrix-vectors multiplication. These
partial multiplications are then stored in registers and multiplied with the Scale memory.

Regarding the scale vectors, they are stored in a nearby 32-bit SRAM memory. In the scale memory, each
row stores a scale vector of a layer. The column dimension of the SRAMmemory depends on the maximum
number of neurons or channels within the NN layers, and the row dimension depends on the number of
layers in the model. This scale vector is subsequently applied, depending on the stochastic activation by
the Scale Dropout module, using a multiplexer.

Recent state-of-the-art CNN topologies, e.g., ResNet and DenseNet, use skip connections. In CiM architec-
tures, skip-connection can be implemented by selectively routing the output signals through the crossbars
and summing them with digital circuits. Since layer-by-layer computations are sequential, signals for these
connections can be stored in a buffer memory until the computation of the following layers is completed.

4.3.4. Evaluation

4.3.4.1. Evaluation Setup

In distribution (ID) Dataset To evaluate both predictive performance and uncertainty estimation, we
have used several challenging benchmark and real-world biomedical in-distribution datasets on various

78

4.3. SCALE DROPOUT-BASED BAYESIAN BINARY NEURAL NETWORK

learning paradigms (classification and semantic segmentation) in the context of Bayesian deep learning.
An in-distribution dataset refers to a set of data samples that come from the same distribution as the data
the model was trained on. For example, if a model is trained on images of an aircraft, automobile, bird, cat,
deer, dog, frog, horse, ship, and truck from CIFAR-10, then, during inference, more images of CIFAR-10
(although not seen during training) would be considered an in-distribution dataset.

Specifically, for classification, we have used the CIFAR-10. Furthermore, for biomedical semantic segmen-
tation, breast ultrasound scans (for breast cancer)[162], COVID-19 lung computed tomography (CT) [181],
and skin cancer [182]. The breast cancer dataset containing ultrasound scans is a vital resource used for
the early detection of breast cancer, one of the leading causes of death among women worldwide. The
dataset is classified into three classes, normal, benign, and malignant images, and has a total of 780 images
with a size of 500 × 500 pixels on average. On the other hand, the Skin Cancer dataset for Biomedical
Segmentation contains 200 dermoscopic images of shape 572 × 765 pixels with their corresponding label
masks. Accurate prediction of skin cancer allows computer-aided diagnostic systems to assist medical
professionals in the early detection and precise delineation of skin lesions. Lastly, the COVID-19 lung CT
dataset contains anonymized human lung CT scans with different levels of severity in COVID disease.

Evaluating the proposed method on various datasets shows its scalability and generality. Note that semantic
segmentation, which involves segmenting an image into multiple sections and labeling each pixel with its
corresponding class label, is regarded as more difficult than classification tasks due to its finer granularity.

To improve accuracy, we applied random data augmentation and dataset normalization to all the datasets
during training. For example, for CIFAR-10 datasets, we have applied RandomHorizontalFlip and Random-
ResizedCrop type random data augmentation.

OOD Dataset We used six additional OOD datasets to evaluate the efficacy of our method in dealing
with data uncertainty: 1. Gaussian noise (D̂1): Each pixel of the image is generated by sampling random
noise from a unit Gaussian distribution, x ∼ N(0, 1), 2. Uniform noise (D̂2): Each pixel of the image is
generated by sampling random noise from a uniform distribution, x ∼ U(0, 1), 3. CIFAR-10 with Gaussian
noise (D̂3): Each pixel of the CIFAR-10 images is corrupted with Gaussian noise, 4. CIFAR-10 with uniform
noise (D̂4): Each pixel of the CIFAR-10 images is corrupted with uniform noise, 5. SVHN: Google street
view house numbers dataset [183], and 6. STL10: a dataset containing images from the popular ImageNet
dataset [184]. Each of these OOD datasets contains 8000 images, and the images have the same dimensions
as the original CIFAR-10 dataset (32 × 32 pixels).

Evaluated Topologies and Training setting The proposed Scale-Dropout is evaluated for its predictive
performance and uncertainty estimation in state-of-the-art convolutional NN (CNN) topologies, including
ResNet [9], and VGG [185] for benchmark classification tasks. In the case of biomedical image segmentation
tasks, U-Net [164], and Bayesian SegNet [165], topologies are used. The U-Net topology consists of a
contracting path and an expansive path with skip connections, which gives it the U-shaped architecture.
On the other hand, Bayesian SegNet is a deep convolutional encoder-decoder architecture for semantic
image segmentation.

All models are trainedwith theAdamoptimization algorithmwith default settings in the PyTorch framework
to minimize the proposed objective function with a weight decay rate of 𝜆 = 1 × 10−5 and 𝜑 = 1 × 10−5.
Classification and segmentation tasks are trained for 300 epochs.

All weights and activations of models for classification tasks are binarized (1-bit model). The activations of
biomedical semantic segmentation models are quantized to 4 bits, but their weights are kept binary. As
stated previously, semantic segmentation tasks are more difficult, and therefore, they require slightly more
bit precision at the activation for accurate predictions. We have used the activation quantization algorithm
proposed in [173] to quantize the activations to 4 bits. Since 1-bit weights are still maintained, the crossbar
structure does not need to be modified. In fact, only peripheral modifications, such as ADC with increased
bit resolution, are required.

79

CHAPTER 4. MONTE-CARLO DROPOUT-BASED BAYESIAN NNS

Table 4.14.: Energy estimation for the different elements of the architecture for one reading operation.
Circuit Energy Circuit Energy

Memory (Decoding/Sensing) 4.76 pJ Adder-Accumulator 0.12 pJ
Spintronic RNG 3.80 pJ Comparator 0.01 pJ
Averaging block 18.42 pJ Crossbar array 0.65 pJ

We have used the recently proposed IrNet [47] binarization algorithm to implement the proposed learnable
scale and Scale-Dropout. Note that (to our knowledge) any binarization algorithm can be extended with
our method with slight modification, i.e., add a learnable scale vector and scale Dropout.

Evaluation Metrics For segmentation tasks, the same metrics as in our SpinDrop work [85] are used.
Specifically, pixel-wise accuracy, intersection-over-union (IoU), sensitivity, specificity, area under the
ROC curve (AUC), F1 score, and precision. On the other hand, classification tasks are evaluated for their
inference accuracy.

(Epistemic) Uncertainty estimation of the models is evaluated on predictive variations, entropy, and
confidence interval with 𝐾 = 95% based on Equations 4.32 and 4.34, respectively. Out-of-distribution data
is detected similar to our grouped Dropout work [86]. Specifically, the classification as ID or OOD depends
on whether the maximum value from the 10th percentile of the outputs is less than the 0.95 SoftMax
score (for OOD) or not (for ID). The underlying idea of our OOD detection is based on our SpinDrop
work [85]. That is, for in-distribution data, most confidence scores of the 𝑇 MC runs are high and close to
one another, resulting in low variance. In contrast, for out-of-distribution data, confidence scores exhibit
higher variance.

Architectural Simulation To carry out the architectural simulation, we first obtained the circuit speci-
fications for the peripheral blocks, as outlined in Section 4.3.3. We then independently simulated each
component of the architecture to gauge its energy utilization. Both the crossbar array and the Spin Scale-
Dropout module were analyzed using an electrical simulator, such as the Simulation Program for Integrated
Circuit (SPICE), to assess their energy consumption. The use of high-resistance SOT devices [186], in
conjunction with the binary nature of the network, serves to reduce the overhead related to peripheral
elements.

The Accumulator-Adder, Comparator, and Averaging circuits were synthesized using the Synopsys Design
Compiler, leveraging the TSMC 40 nm low-power Process Design Kit (PDK). For the CiM operation, decod-
ing and sensing were assessed at the circuit-array level using NVsim (NonVolatile memory simulator) [160].
To achieve this, we modified the NVsim simulator to accommodate multiple active cells, thus simulating
CiM operation accurately. Additionally, we substituted the single-bit sense amplifiers with multi-bit ADCs.
Performance metrics for each discrete component are shown in Table 4.14.

4.3.4.2. Evaluation

4.3.4.3. Predictive Performance

Comparison With State-of-the-Art Algorithms The predictive performance of our method is comparable to
the SOTA binary Bayesian NN methods, as shown in Table 4.15 on a range of CNN architectures, including
VGG, ResNet-18, and ResNet-20, evaluated on the CIFAR-10 dataset. In the worst case, the predictive
performance is 1.45% below the SpinDrop [84] method for the VGG topology. Here, we assumed that there
are no device variations in the spintronics-based scale Dropout module. For a fair comparison, we used the
same network size as those used in their work. However, the hardware implementation of our solution
may lead to a smaller area and a better power-performance product owing to a simpler spintronics-based
Dropout module design. In our analysis, we have used layer-dependent adaptive Dropout rates (See

80

4.3. SCALE DROPOUT-BASED BAYESIAN BINARY NEURAL NETWORK

Table 4.15.: Predictive performance of the proposed MC-SparialDropout method in comparison with SOTA methods on CIFAR-10.
The accuracy closest to the MC-Dropout is in bold, and the number in the bracket shows the standard deviations of the accuracy
after different repetitions.

Topology Method Bit-width (W/A) Bayesian Inference Accuracy

ResNet-18

FP 32/32 No 93.0%
RAD [175] 1/1 No 90.5%
IR-Net [47] 1/1 No 91.5%

MC-Dropout(HTanh) [35] 32/32 Yes 90.56%
SpinDrop [84] 1/1 Yes 90.48%

Spatial-SpinDrop [86] 1/1 Yes 91.34%
Proposed 1/1 Yes 91.52%(±0.047)

ResNet-20

FP 32/32 No 91.7%
DoReFa [176] 1/1 No 79.3%
DSQ [177] 1/1 No 84.1%
IR-Net [47] 1/1 No 85.4%

MC-Dropout(HTanh) [35] 32/32 Yes 86.94%
Spatial-SpinDrop [86] 1/1 Yes 84.71%

Proposed 1/1 Yes 86.04%(±0.039)

VGG

FP 32/32 No 91.7%
LAB [178] 1/1 No 87.7%
XNOR [45] 1/1 No 89.8%
BNN [44] 1/1 No 89.9%
RAD [175] 1/1 No 90.0%
IR-Net [47] 1/1 No 90.4%

MC-Dropout (HTanH) [35] 32/32 Yes 89.49%
MC-Dropout (ReLU) [35] 32/32 Yes 91.64%
MC-DropConnect [36] 32/32 Yes 91.36%

SpinDrop [84] 1/1 Yes 91.95%
Spatial-SpinDrop [86] 1/1 Yes 90.34%

Proposed 1/1 Yes 90.45%(±0.052)

Section 4.3.1.4) for scale Dropout. The low variance in inference accuracy (numbers in parentheses) shows
the stability of the proposed approach.

In terms of the activation function, the proposed binary BayNN uses the Sig · (.) function, which is an
approximation of the hard Tanh function. In this case, the proposed method performs similarly to the
MC-Dropout method. However, in the case of the ReLU activation function in the MC-Dropout model, the
accuracy of the MC-Dropout model increases. Thus, the difference between the proposed method and the
MC-Dropout increases to about ∼ 1%.

Furthermore, our proposed method improves inference accuracy by up to 6.74 compared to the SOTA point
estimate BNN algorithm. However, since our method is built on top of the IR-Net BNN algorithm [47],
predictive performance should be comparable to their approach. As depicted in Table 4.15, the predictive
performance is, in the worst case, 0.18% lower, which is negligible. Similarly, accuracy is comparable to the
full precision model, depicting that our method, in general, does not increase quantization error. Note that
in the full precision model, the ReLU function is used as the activation for the convolution layers, while
our proposed method uses the activation function sign(𝑥) for all layers where activations are applied.

For biomedical image segmentation tasks, the proposed method outperforms the full-precisionMC-Dropout
method by up to 6.4% in terms of IoU score. In the worst scenario, our method results in a 69.69% reduction
in the IoU score for the breast cancer dataset. Additionally, our approach outperforms the MC-Dropout
method in most other metrics. Table 4.17 presents a summary of the results.

81

CHAPTER 4. MONTE-CARLO DROPOUT-BASED BAYESIAN NNS

Table 4.16.: Evaluation of the inference accuracy of the proposed Spintronics-based Scale-Dropout with variations in the Dropout
module. Variations in the probability of Dropout 𝑝 increased from 1× to 3×, and the baseline model is the ideal scenario without
variation.

Topologie Baseline Trained w/ Variations Trained w/o Variations
Var. 1× Var. 2× Var. 3× Var. 1× Var. 2× Var. 3×

ResNet-18 91.52% 91.78% 91.77% 91.71% 91.65% 91.59% 91.58%
VGG 90.45% 90.52% 90.52% 90.55% 90.28% 90.26% 90.30%

The predictive performance is qualitatively shown in Figure 4.25 for each dataset (with two examples).
The sixth and third columns show the prediction mask for MC-Dropout and our method, respectively. It
can be observed that the segmentation masks for the proposed method are similar to MC-Dropout and
ground truth. In general, misclassified pixels are around the boundary of ground-truth masks.

Impact of MC Runs on Inference Accuracy We observed that using Monte Carlo sampling (𝑇 forward pass)
for Bayesian inference generally enhances predictive performance across all datasets. For example, the
inference accuracy of the ResNet-20 model increases from 84.63% to 86.05%. In our evaluation, twenty
samples (T = 20) for the larger model and fifty samples (T = 50) for the smaller model were used for
Bayesian inference. Fig. 4.24 (a) shows that the proposed method requires a smaller number of samples,
with inference accuracy plateaus around 𝑇 = 20 to 50. In comparison, MC-Dropout and MC-DropConnect
methods require 100, and 90 Monte Carlo sampling, respectively, to achieve the maximum inference
accuracy, as reported in [36] for CIFAR-10. In our experiment (see Fig. 4.24 (b)), we observed that the
MC-DropConnect method plateaus at 100 Monte Carlo runs, and the MC-Dropout method plateaus at
200 Monte Carlo runs on the same model (VGG) and dataset. Therefore, our method requires up to 180
less Monte Carlo sampling, leading to 10× less XNOR and bit-counting operation, energy consumption,
and latency for each Bayesian inference result. For a fair comparison, we assume the same NN topology,
hardware architecture, and memory device technology. However, it should be noted that 𝑇 at which
accuracy plateaus can vary from task to task and from model to model.

Performance of BayBNN with Spin-ScaleDrop We have shown that the predictive performance of our
method is comparable to that of the full precision and binary implementations, assuming that the Spintronics
Dropout module remains unchanged. However, it should also be tolerant to manufacturing and thermal
variations in the Spintronic-based Dropout module.

To this end, we performed a small ablation study on the CIFAR-10 dataset with ResNet-18 and VGG
topologies with models trained with and without variations in the Dropout module. Specifically, in one
study, we trained both models with no variation in the probability of Dropout, but during Bayesian
inference, we evaluated the model against our proposed Spintronic-based Dropout with up to 3× the
standard deviation 𝜎 of the manufacturing variations. This means that the Dropout probability of each
neuron can fluctuate by ±10% from the trained value. In this case, a slight improvement (+0.13%) in
predictive performance is observed for the ResNet-18 model, but for the VGG model, a slight reduction in
inference accuracy (−0.19%) is observed. Nevertheless, the inference accuracy for both models remains
close to the baseline accuracy. Furthermore, increasing the variation of a model from 0× to 3× has a
negligible effect on the inference accuracy.

In the other case, the NN is trained considering the variation in the Dropout module (see Section 4.3.3.1). In
this case, unlike in the previous case, there is a slight improvement in predictive performance (up to +0.26%)
for both models compared to the baseline. Variation in the Dropout probability leads to more stochastically
during Bayesian inference, and as a result, accuracy improves slightly. The results are summarized in
Table 4.16.

82

4.3. SCALE DROPOUT-BASED BAYESIAN BINARY NEURAL NETWORK

Images: Images:

Pred: 8 8 8 8 9 9 9 3 3 3 3 3 Pred: 8 8 8 8 9 9 9 3 3 3 3 3

Pred: 8 8 8 8 9 9 9 3 3 3 3 3 Pred: 8 8 8 8 9 9 9 3 3 3 3 3

Images: Images:

SoftMax Input (Logit) scatter SoftMax output scatter

SoftMax Input (Logit) scatter SoftMax output scatter

b) Uncertainty Estimation using CI

a) Uncertainty estimation using variance of MC samples

Figure 4.22.: Detecting Distribution Shift on CIFAR-10: a) A scatter and b) 95% confidence interval of 100 forward passes
of the softmax input (logits) and output for Scale-Dropout VGG topology. Uniform noise of increasing strength is added to a
randomly sampled image of a ship (leveled as 8). The uncertainty of the prediction increases with the data distribution shift, as
shown by the high SoftMax scatter and the confidence interval. Although the model uncertainty is extremely high (best observed
in color), the input for images 5 through 12 is classified as either a truck (leveled as 9) or a bird (leveled as 3). It is recommended
to view this figure in color.

4.3.4.4. Uncertainty Estimation

Detecting Distribution Shift To show the effectiveness of the proposed Scale-Dropout method in detecting
distribution shifts in the data, we conducted two experiments. In one experiment, we continuously added
random noise from a uniform distribution to the input data with increasing strength. As shown in Fig. 4.22,
the variance and confidence interval in the model logits (SoftMax input) and the predicted probability
of the output classes (SoftMax output) increases as the strength of noise increases. In other words, the
uncertainty in the prediction increases as the distribution dataset shifts away from the original distribution.
However, despite the high uncertainty, the model predicts a truck or a bird.

On the other hand, we have performed another experiment with all images of the CIFAR-10 dataset on
the VGG model continuously rotated up to 90◦. It can be seen in Fig. 4.23 that as the images are rotated,
the inference accuracy decreases, and the predictive entropy increases from the starting entropy. Our
method is compared with deterministic as well as common uncertainty estimation techniques, namely
MC-Dropout [35] and Deep Ensemble [187] with five randomly initialized models. The trend of decrease
in inference accuracy is similar for all models. However, the Deep Ensemble slightly outperforms the
proposed and other methods in terms of accuracy. Regardless, our proposed MC Scale-Dropout method
produces significantly more predictive entropy compared to other methods, including the Deep Ensemble

83

CHAPTER 4. MONTE-CARLO DROPOUT-BASED BAYESIAN NNS

Figure 4.23.: The effect of distribution shift of inference images on inference accuracy (left y-axis) and predictive entropy
(uncertainty estimate on right y-axis). Images are continuously rotated to introduce distribution shifts. The inference accuracy
of all methods is reduced with the same trend, and the uncertainty of prediction increases with the data distribution shift. The
uncertainty estimates of the proposed method outperform those of other methods, but the accuracy of the Ensemble method is
higher in comparison. It is recommended to view this figure in color.

0 200 400 600 800 1000
84
85
86
87
88
89
90
91
92

In
fe

re
nc

e
Ac

cu
ra

cy
 (%

)

ResNet-18
ResNet-20
VGG

0 200 400 600 800 1000
84
85
86
87
88
89
90
91
92

Deterministic (FP)
MC-Dropout
MC-DropConnect
Proposed

Figure 4.24.: Evaluation of the effect of Monte Carlo runs on the inference accuracy of the CIFAR-10 dataset on various topologies.
It is recommended to view this figure in color.

method. This is because the proposed MC Scale-Dropout method effectively turns a single model into
numerous ensembles by enabling Dropout during inference, allowing it to generate multiple predictions
from a single model. Also, the proposed Scale Dropout can be interpreted as the addition of learnable
multiplicative noise to the weighted sum of each binary layer. Whereas, the Deep Ensemble has limited
models in the ensemble, e.g., five models. However, we believe that adversarial training with the deep
ensemble may improve its uncertainty estimates. Consequently, our method can produce better uncertainty
estimates compared to related works, even with a 1-bit model in this experiment.

Table 4.17.: The analysis of the proposed Scale-Dropout BayBNN on three biomedical segmentation datasets on SOTA topologies.
A Dropout probability of 20% is used with 20 Monte Carlo samples for Bayesian inference. The best-performing matrices are in
bold.
Topology Dataset Method Bit-width (W/A) Pixel-Acc IoU AUC F1 Sensitivity Specificity Precision

U-Net Skin
Cancer

FP 32/32 95.10% 82.55% 98.81% 90.44% 89.04% 97.23% 91.88%
MC-Dropout [35] 32/32 95.05% 81.67% 98.86% 89.91% 84.74% 98.67% 95.74%

Proposed 1/4 96.75% 88.07% 99.4% 93.66% 92.31% 98.31% 95.04%

Bayesian
SegNet Breast

Cancer

FP 32/32 97.47% 67.65% 96.60% 80.71% 76.95% 98.99% 84.84%
MC-Dropout [35] 32/32 97.83% 71.82% 96.40% 83.21% 78.23% 99.28% 88.86%

Spatial-SpinDrop [86] 1/4 96.32% 56.12% 94.31% 71.90% 68.50% 98.37% 75.64%
SpinDrop [84, 85] 1/4 97.47% 68.17% 95.48% 80.13% 74.25% 99.18% 87.02%

Proposed 1/4 97.69% 69.69% 96.69% 82.14% 77.19% 99.21% 87.76%
Bayesian
SegNet

COVID-19
Lung CT

FP 32/32 99.53% 72.86% 99.11% 84.30% 83.17% 99.78% 85.46%
MC-Dropout [35] 32/32 99.51% 72.88% 99.39% 84.32% 86.99% 99.7% 81.8%

Proposed 1/4 99.55% 74.43% 99.69% 85.34% 85.84% 99.76% 84.85%

84

4.3. SCALE DROPOUT-BASED BAYESIAN BINARY NEURAL NETWORK

Input Image Ground Truth Level Prediction Mask Correctness Mask Unccertainty Mask Prediction Mask Correctness Mask Unccertainty Mask

MC-Dropout MC-ScaleDropout
Sk

in
-C

an
ce

r
C

O
VI

D
19

 L
un

g
C

T
B

re
as

t-C
an

ce
r

Figure 4.25.: The outcomes of semantic segmentation and uncertainty estimations for the Skin-Cancer, COVID-19 Lung-CT, and
Breast Cancer datasets. Each row comprises the input image followed by the ground truth, prediction mask, correctness mask,
and uncertainty mask for both the MC-Dropout and proposed MC-Scale Dropout methods. The correctness mask is a binary
representation of accurate and inaccurate predictions. The uncertainty mask is the normalized [0, 1] uncertainty mask derived
from twenty Monte Carlo samples. For prediction masks, a 0.5 threshold is used. On the correctness and uncertainty masks, the
correct and certain regions are depicted in white. Similarly, a region that is incorrect or uncertain is displayed in black. It is
recommended to view this figure in color.

Note that our scale Dropout method treats all the layers as probabilistic, but in MC-Dropout, only a few
are created as such. As shown previously in our grouped Dropout [86] work, treating more layers as
probabilistic can improve uncertainty estimates. However, in the MC-Dropout model, Dropout is applied
to the extracted features from the convolutional layers to achieve similar inference accuracy. If Dropout
is applied to all layers, the predictive entropy increases, but inference accuracy decreases significantly,
e.g., by more than 3%. Our approach provides a good balance between uncertainty estimates without any
noticeable degradation in accuracy.

Detecting Out-of-distribution Data We show that the model uncertainty increases as the distribution
of the data shifts from the original distribution. Here, we perform an ablation study with six (definitive)
out-of-distribution datasets.

As depicted in Table 4.18, our proposed method can achieve a detection rate of OOD of up to 100% across
various model architectures and six different OOD datasets (D̂1 through D̂6). There are some variations in
OOD detection rates across different architectures for the same OOD dataset. However, even in these cases,
our method can consistently achieve a high OOD detection rate, with the lowest detection rate being 77.77%

85

CHAPTER 4. MONTE-CARLO DROPOUT-BASED BAYESIAN NNS

Table 4.18.: Evaluation of the proposed MC-Scale Dropout method in detecting OOD across various topologies. All the models are
trained on the CIFAR-10 dataset.

Topology Method D̂1 D̂2 D̂3 D̂4 D̂5 D̂6

VGG
Proposed 95.36% 95.40% 96.19% 88.73% 98.02% 85.24%

Spatial-SpinDrop [86] 99.99% 100% 92.9% 78.91% 99.81% 100%
SpinBayes [104] 99.86% − 94.35% − 80.33% 89.31%

ResNet-18 Proposed 100% 100% 97.49% 77.77% 91.53% 78.61%
Spatial-SpinDrop [86] 100% 100% 100% 92.26% 99.98% 97.39%

ResNet-20 Proposed 96.51% 100% 90.34% 93.55% 100% 99.8%
Spatial-SpinDrop [86] 97.2% 100% 90.79% 87.94% 99.03% 99.81%

Table 4.19.:Layer-wise and topology-wise overhead analysis of the proposedmethod in comparison to existingworks SpinDrop [84]
and Spatial-SpinDrop [86].

Layer-wise application of scale Dropout

Method Mapping
Strategy

of Dropout
Modules Area Power

Consumption
Sampling
Latency

SpinDrop [84] 1 𝐾 ∗ 𝐾 ∗𝐶𝑖𝑛 79833.6𝜇𝑚2 51.84𝑚𝑊 15𝑛𝑠
2 𝐾 ∗ 𝐾 ∗𝐶𝑖𝑛 79833.6𝜇𝑚2 51.84𝑚𝑊 15𝑛𝑠

Spatial-SpinDrop [86] 1 𝐶𝑖𝑛 8870.4𝜇𝑚2 5.76𝑚𝑊 15𝑛𝑠
2 𝐶𝑖𝑛 8870.4𝜇𝑚2 5.76𝑚𝑊 15𝑛𝑠

Proposed 1 1 34.65𝜇m2 0.0225 mW 15𝑛𝑠
2 1 34.65𝜇m2 0.0225 mW 15𝑛𝑠

Topology-wise application of scale Dropout

Method Adaptive
Avg. Pool

of Dropout
Modules Area Power

Consumption
Sampling
Latency

SpinDrop [84] Used 𝐶𝑜𝑢𝑡 17740.8𝜇𝑚2 11.52𝑚𝑊 15𝑛𝑠
Not Used 𝐾 ∗ 𝐾 ∗𝐶𝑜𝑢𝑡 159667.2𝜇𝑚2 103.68𝑚𝑊 15𝑛𝑠

Spatial-SpinDrop [86] Used 𝐶𝑜𝑢𝑡 17740.8𝜇𝑚2 11.52𝑚𝑊 15𝑛𝑠
Not Used 𝐶𝑜𝑢𝑡 17740.8𝜇𝑚2 11.52𝑚𝑊 15𝑛𝑠

Proposed Used 1 34.65𝜇m2 0.0225 mW 15𝑛𝑠
Not Used 1 34.65𝜇m2 0.0225 mW 15𝑛𝑠

on the ResNet-18 model with D̂4 dataset. However, when the threshold for SoftMax confidence increases
from 95% to 99%, the OOD detection rate in the dataset D̂4 improved to 81.78%, an ∼ 4% improvement.
Compared to MC-Spatial Dropout and SpinBayes methods, the OOD detection rates are generally similar. In
the worst case, the OOD detection rate is ∼ 14% lower for the VGG topology on the D̂6 dataset. Therefore,
the results indicate that the proposed MC-Scale Dropout method is a robust and reliable solution to OOD
detection across diverse model architectures and datasets.

Epistemic Uncertainty of Semantic Segmentaion For biomedical segmentation tasks, the epistemic uncer-
tainty is calculated for each pixel. The fifth and eighth columns of Fig. 4.25 depict the pixel-wise uncertainty
masks (qualitatively) for the MC-Dropout and the proposed MC-Scale Dropout method. In segmentation
tasks, an ideal model would produce high uncertainty around misclassified pixels and low uncertainty
around correctly classified pixels. Overall, as depicted in Fig. 4.25, the uncertainty is high around the
misclassified pixels for the proposed method, but correctly classified pixels have low uncertainty. In general,
the uncertainty masks for MC-Dropout are darker, depicting slightly stronger uncertainty estimates due to
their higher model precision (32 bits) and a higher Dropout probability (50%). However, in some cases,
the uncertainty mask is also stronger in the region of correctly classified pixels. However, our proposed
method produces uncertainty only around miss-classified pixels.

86

4.3. SCALE DROPOUT-BASED BAYESIAN BINARY NEURAL NETWORK

Table 4.20.: Energy Efficiency Comparison of Hardware Implementations
Related works Technology Topology Bit resolution Energy
H. Fan et al.[96] FPGA ResNet18 8-bit 0.014 J/Image
R.Cai et al.[168] FPGA 3-FC 8-bit 18.97 µJ/Image
X.Jia et al.[169] FPGA 3-FC 8-bit 46.00 µJ/Image
H.Awano et al. [95] FPGA 3-FC 7-bit 21.09 µJ/Image
A. Malhotra et al. [99] RRAM 3-FC 4-bit 9.30 µJ/Image
S.T.Ahmed et al.[84] STT-MRAM LeNet-5 1-bit 2.00 µJ/Image
S.T.Ahmed et al.[86] STT-MRAM LeNet-5 1-bit 0.68 µJ/Image
K.Yang et al.[102] Domain wall-MTJ 3-FC 4-bit 0.79 µJ/Image
Proposed implementation (MNIST) SOT-MRAM LeNet-5 1-bit 0.18 µJ/Image
Proposed implementation (CIFAR-10) SOT-MRAM VGG 1-bit 0.29 µJ/Image

4.3.4.5. Hardware Overhead Analysis

To assess the energy consumption of the proposed approach, we estimated the required resources for
implementing a network of five layers with the Scale-Dropout method, and we assumed using 10 crossbar
arrays of 256 × 256 and 10 Spin-ScaleDrop modules to implement a LeNet-5 network. The total area
needed for the implementation of the LeNet-5 topology is 0.401mm2, comprising the crossbar arrays and
the memories. The area estimation is based on the NVSim and layout measurement. Given the energy
consumption of the different components of our architecture shown in Table 4.14. We used the NVSim
simulator to estimate the total energy consumption for an inference run and multiplied this value by the
number of forward passes (MC run). The analysis is carried out for ten forward passes (𝑇 = 10). The energy
consumption of an inference run is shown in Table 4.20 compared to other FPGA and CiM implementations.
We evaluated two topologies, LeNet-5 for the MNIST dataset and VGG-9 (9 layers) for CIFAR-10. For a
consistent benchmark, the same metrics as in previous studies were used. The Scale-Dropout approach
significantly improves energy efficiency, reaching up to 100× higher efficiency compared to the method
presented in [95]. Compared to the implementation in [99], our approach is 51× better. Furthermore,
compared to the implementation based on STT-MRAM [86], the proposed approach exhibits 3.77× better
efficiency. Finally, compared to reference [102], our approach demonstrates 4.38× greater energy efficiency.
To scale up the approach, we have performed an energy consumption estimation with a VGG-9 (9-layers)
topology, and we report 0.29 𝜇𝐽/𝐼𝑚𝑎𝑔𝑒 . Thus, energy consumption remains notably low even when
considering a larger dataset such as CIFAR-10 and the VGG topology.

Furthermore, Scale-Dropout requires only one RNG per layer compared to similar approaches [84, 85, 86],
as shown in Table 4.19. An RNG can be shared for all layers to reduce the number of RNGs for the entire
model to one. Consequently, a reduction in dropout modules by 𝐾 ∗ 𝐾 ∗𝐶𝑖𝑛× compared to SpinDrop [85]
and 𝐶𝑖𝑛× compared to Spatial-SpinDrop [86] work, assuming 𝐶𝑖𝑛 = 𝐶𝑜𝑢𝑡 . This significantly contributes to
a reduction in energy consumption and chip area. Specifically, the chip area for a layer is reduced by up to
229×, and power consumption is reduced by up to 2304×.

4.3.4.6. Discussion

In Distribution Uncertainty Analysis We thoroughly analyzed the performance of the proposed method
in data distribution shift and out-of-distribution data in Section 4.3.4.4. However, it is equally important to
perform well when it receives in-distribution data. This means that correct predictions should have low
uncertainty, and a model should accept most of them.

In our in-distribution data analysis (Table 4.21), we present the accepted, rejected, TPR, TNR, and AR
percentages. TPR indicates the rate of correct and accepted predictions, while TNR refers to rejected and
incorrect predictions. High TPR and TNR rates are desired as they suggest that most of the accepted

87

CHAPTER 4. MONTE-CARLO DROPOUT-BASED BAYESIAN NNS

Table 4.21.: Analysis of the proposed method using in-distribution data, showing True Positive Rate (TPR), True Negative Rate
(TNR), and Acceptance Rate (AR) for various topologies.

Topology Accept Reject TPR TNR AR
VGG 77.43% 22.57% 84.29% 81.67% 97.45%

ResNet-18 77.48% 22.52% 84.00% 81.83% 97.67%
ResNet-20 41.00% 58.98% 59.24% 95.83% 99.12%

predictions have low uncertainty, and incorrect predictions have high uncertainty. A high AR rate also
indicates that most of the correct predictions are accepted.

The VGG and ResNet-18 models, with their larger size, effectively handle the complexity of the CIFAR-10
task, showing acceptance of approximately 80% and more than 80% in both TPR and TNR, plus more than
97% in AR, confirming the efficacy of our method.

On the contrary, the smaller ResNet-20 model is not optimal for handling the complexity of CIFAR-10,
leading to ’uncertainty in model architecture’ [188] and consequently to greater uncertainty in prediction.
To be specific, its inference accuracy is comparatively lower ∼ 86% compared to ∼ 91% for the other
model, since it only has 16, 32, and 64 neurons in the residual blocks. Thus, it has a lower acceptance rate
(41%). That means that most predictions are uncertain, and our method is also effective in quantifying
’uncertainty in the model architecture.’

Note that our classification of the predictions (OOD or ID) with our approach is conservative and prioritizes
certainty, i.e., only certain predictions reach the end user. Adjusting quantile and confidence scores can
increase acceptance rates closer to inference accuracy but may decrease OOD detection rates.

Corruption Robustness Analysis The proposed method is evaluated on 15 common corruptions reported
in the work (CIFAR-10-C) [20] with various topologies with and without pre-processing, as shown in
Table 4.22. Our approach can achieve an OOD detection rate of on average 87.06%, 86.10% and 97.64% for
VGG, ResNet-18, and ResNet-20 topologies, respectively, when no pre-processing is applied.

On the other hand, when the corruption robustness dataset is pre-processed by channel-wise normalizing
them, i.e., they have the same channel-wise distribution as the clean CIFAR-10 data the model expects,
the corruption error drastically reduces. For example, the mean corruption error for VGG was reduced
from 82.84% to 49.95%. Consequently, the uncertainty of the predictions also reduces. Specifically, our
approach achieves OOD detection rates of 58.48%, 56.21%, and 87.73%, respectively, for VGG, ResNet-18,
and ResNet-20 topologies. Therefore, pre-processing the dataset standardizes the data and improves the
corruption robustness similar to the histogram equalization method as discussed in [20].

In terms of topology, in larger networks, e.g., ResNet-18, the corruption error is relatively lower. For
example, in the case of Gaussian noise, the corruption error is reduced from 86.85% in VGG to 83.52% in
ResNet-18. A similar trend is observed for other datasets. However, despite the fact that the ResNet-20
model is smaller than ResNet-18, it has a relatively higher corruption error because the smaller model
introduces “uncertainty in model architecture” as mentioned in the previous section.

Nevertheless, there is a direct relationship between corruption error, uncertainty, and, in turn, the OOD
detection rate. In cases where the accuracy is reduced by a small margin, the model uncertainty is low, and
the OOD detection rate with our approach is also low. For example, the worst-case OOD detection rate for
the VGG topology is 29.53%. This is achieved when the accuracy is reduced by only 6.89% for brightness
corruption. On the other hand, the highest OOD detection rate is achieved when the accuracy is reduced
by 78.88% for VGG topologies.

88

4.3. SCALE DROPOUT-BASED BAYESIAN BINARY NEURAL NETWORK

8 10 12 14 16
0

20

40

60

80
De

ns
ity

10 15 20 25
0

50

100

22 20 18 16 14 12
0

25

50

75

100

17.5 15.0 12.5 10.0 7.5 5.0
0

25

50

75

100

20 18 16 14 12 10
0

25

50

75

100

22 20 18 16 14
0

20

40

60

80

De
ns

ity

17.5 15.0 12.5 10.0 7.5
0

20

40

60

26 24 22 20 18 16
0

25

50

75

100

50 55 60
0

20

40

60

80

4 2 0 2 4
0

20

40

60

80

Model Output (Ten Classes)

Figure 4.26.: Per class posterior distribution of ResNet-18 topology with a Monte Carlo sample size of 1000.

Table 4.22.: Analysis of mean corruption errors (mCE) and mean out-of-distribution detection (mOOD) detection values of
different topologies when various corruptions applied CIFAR-10 with and without pre-processing (PP). All numbers represent
percentages.

Noise Blur Weather Digital
Topo-
logy PP Error mCEmOOD Gauss. Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG

VGG No 9.55 82.84 87.06 80.57 (86.85) 80.08 (86.27) 71.6 (61.07) 91.41 (86.91) 89.99 (86.41) 88.95 (86.03) 95.24 (86.45) 76.38 (82.33) 87.52 (85.51) 97.42 (88.43) 86.23 (70.71) 84.98 (90.16) 95.26 (82.59) 87.47 (81.12) 92.85 (81.83)
Yes 49.95 58.48 68.39 (70.45) 67.96 (66.54) 78.78 (87.85) 62.75 (50.72) 59.96 (50.8) 55.78 (43.25) 58.97 (46.06) 47.0 (34.86) 56.7 (46.96) 58.09 (41.78) 29.53 (16.44) 89.84 (78.31) 48.13 (30.07) 47.38 (55.28) 47.95 (29.93)

ResNet
-18

No 8.48 79.49 86.10 84.38 (83.52) 83.57 (82.03) 82.66 (84.26) 95.89 (82.13) 89.60 (83.06) 93.37 (79.46) 94.48 (81.61) 80.01 (72.81) 89.97 (80.81) 98.64 (82.34) 73.90 (61.02) 82.66 (84.26) 86.98 (78.20) 74.18 (81.28) 81.25 (75.56)
Yes 47.32 56.21 66.53 (66.71) 60.42 (65.96) 73.73 (59.13) 62.75 (50.72) 58.90 (49.82) 59.54 (44.34) 61.11 (47.05) 47.7 (32.58) 53.78 (59.25) 58.09 (41.78) 28.79 (14.61) 65.71 (74.63) 47.98 (26.66) 55.15 (53.48) 42.98 (23.02)

ResNet
-20

No 13.96 74.38 97.64 99.57 (85.75) 99.44 (84.97) 84.38 (16.48) 100.0 (83.23) 99.96 (85.86) 100.0 (82.70) 100.0 (83.13) 82.66 (15.74) 99.98 (84.45) 100.0 (87.63) 99.73 (73.72) 100.0 (85.62) 100.0 (83.22) 99.05 (82.67) 99.88 (80.53)
Yes 55.61 87.73 77.74 (84.34) 81.80 (82.06) 88.09 (76.32) 96.03 (57.51) 88.46 (61.83) 94.31 (50.03) 94.50 (50.95) 85.51 (41.56) 89.11 (53.56) 93.78 (47.58) 69.94 (20.31) 99.95 (78.39) 90.30 (36.82) 83.92 (60.79) 82.46 (32.16)

Variability and scalability This study builds on previous research demonstrating the robustness of the
dropout approach against device variability [85]. It highlights the impact of dropout module variations on
network accuracy as shown in Table 4.16. Moreover, we propose to utilize SOT-MRAM, capable of achieving
resistance levels up to several MΩ, which aligns with previous simulations emphasizing resistance’s crucial
role in constructing large arrays [189], validating the scalability and energy efficiency of this approach. In
the work [190], different non-idealities of Spintronics devices were evaluated to assess their impact on
uncertainty estimates and accuracy. Our proposed Scale-Dropout approach shows good resilience against
different faults compared to other binary BayNN [85].

Empirical Analysis of the Posterior Distribution We have performed an empirical evaluation of our method
on the CIFAR-10 dataset and the ResNet-18 topology. We have observed that as the number of Monte Carlo
samples increases, the histogram of the posterior distribution for each of the 10 classes indeed approaches
a Gaussian distribution and can be considered as an approximate Gaussian distribution similar to the
MC-Dropout method [35].

4.3.5. Scientific Impact of This Work

We outline the scientific impact of this work and our main contributions:

1. Vector Dropout and Resource Scalability: This work aims to reduce the number of Dropout
modules in hardware to only one regardless of the model size, the lowest one can get for Dropout-
based BayNNs. Consequently, the energy consumption and chip area for the Dropout modules can
be reduced by 2304× and 229×, respectively, compared to our previous works [84, 86, 85]. Therefore,
to improve resource scalability in edge devices, research in the direction of vector-wise Dropout is a
viable candidate.

2. Signal Flow Consideration: The signal flow through the NN should be carefully considered when it
comes to vector Dropout. A naive vector dropout will lead to total information loss for the following
layers. In this work, a novel approach, called "Unitary Dropout", is proposed which effectively drops
the desired vector, scale vector, to ones instead of zero. Consequently, the scale vector is ignored
when dropped, but still allows the signal to flow through the NN.

89

CHAPTER 4. MONTE-CARLO DROPOUT-BASED BAYESIAN NNS

3. Alternate Dropout for Bayesian Inference: The work proposed Scale-Dropout-based Bayesian
Inference for efficient uncertainty estimation in BNNs. The evaluation shows highly effective
uncertainty estimates when in uncertain conditions. Therefore, alternative Dropout methods are
also a viable solution for uncertainty estimation.

4. Adaptive Dropout Rates: Instead of applying the same dropout rates to all layers, a layer-wise
adaptive dropout rate allows a Dropout to be applied to all layers in the NN. As a general rule, a low
dropout rate should be applied to layers with low parameter counts. For larger layers, the dropout
rate should be relatively higher.

5. Real-World Applications: The work further improved in energy efficiency and performance
metrics of our previous works [85, 84, 86] and related works. Therefore, the applicability of BayNNs
to edge devices with limited resources or to real-time applications is further reduced. Nevertheless,
it allows effective decision-making under uncertainty.

4.3.6. Section Conclusion

In this section, we propose a novel Dropout approach, Scale-Dropout, which drops the entire scale vector
of a layer stochastically with a probability 𝑝 . Our approach required only one Dropout module in the
hardware, regardless of the model size. Additionally, we propose scale-Dropout-based Bayesian inference,
MC-Scale Dropout, for efficient uncertainty estimation. Furthermore, we propose a novel SOT-MRAM-
based CiM implementation for accelerating Bayesian NNs. In our CiM architecture, the stochastic and
deterministic aspects of SOT-MRAM have been combined in a crossbar array-based architecture, with only
changes made in peripheral circuitry, and achieve up to 100× of energy savings. In terms of uncertainty
estimation, our approach can detect up to 100% out-of-distribution data, significantly higher uncertainty
estimates compared to popular uncertainty estimation approaches. Additionally, predictive performance is
improved by up to 1.33% compared to SOTA binary BayNN and improved by up to 0.26% compared to
conventional BNN approaches. Our approach combines the algorithmic approach with the cost-effective
and energy-efficient SOT-MRAM-based CiM implementation for reliable prediction.

90

5. Variational Inference-Based Bayesian NNs

In terms of inference accuracy and quality of uncertainty, Variational Inference (VI) typically
offers a more precise inference and a more accurate representation of uncertainty. However, the
challenges lie in their implementation in the CiM architecture due to their distributional parameters
and on-the-fly sampling requirements. Another drawback of conventional VI applications is their
memory consumption. In this chapter, we present several approaches proposed in this thesis with
full-stack optimization for VI-based BayNN.

5.1. Bayesian In-Memory Approximation and CiM-Aware NN Architecture for
Efficient Sampling

In this section, we first address the limitations of BNNs in terms of computing cost and CiM imple-
mentation and discuss our proposed method at the algorithm level. Finally, the approach for hardware
implementation and CiM-based Bayesian inference are described. We propose a novel BayNN topology,
memory-centric approximation of BayNN, BayNN inference method, mapping strategy, and CiM
architecture.
This section is based on our journal publication in ACM TECS, 2023 [104].

5.1.1. Methodology

5.1.1.1. Bayesian In-Memory Approximation

A memory-centric approximation is desired to enable efficient mapping of the posterior distribution in
the CiM architecture. Therefore, we propose an approach called Bayesian in-memory approximation. Our
proposed Bayesian in-memory approximation method provides a memory-friendly posterior distribution
𝑞𝝎 (𝜽) that can be efficiently mapped and sampled by the CiM hardware that implements BayNN. We
empirically demonstrate later that the proposed approximate posterior distribution 𝑞𝝎 (𝜽) is similar to the
original variational distribution 𝑞𝝎 (𝜽) in terms of predictive performance and uncertainty estimation.

In the proposed in-memory approximation, we first discretize the variational distribution 𝑞𝝎 (𝜽) into 𝐽
possible samples. We refer to this discretized version as 𝑞𝝎 (𝜽). Each element of 𝑞𝝎 (𝜽) represents a
full-precision value from 𝑞𝝎 (𝜽) without replacement. This discretization is performed before deploying
the proposed BNN to CiM. It is important to note that this approximation only allows the representation
of 𝑞𝝎 (𝜽) with independent parameters. The consequence of this approximation is that, during Bayesian
inference, more frequent sampling from 𝑞𝝎 (𝜽) is possible. However, this is a common modeling choice in
practice.

Afterward, each value of the discrete distribution 𝑞𝝎 (𝜽) is quantized to fit the limited stable states of
the spintronic device used for storage. This is a common practice in hardware implementations of NN;
otherwise, inference accuracy could degrade due to quantization error [191]. To achieve this, we propose a
post-training and pre-mapping quantization method that quantizes 𝑞𝝎 (𝜽) into 𝜐-bit values, as follows:

91

CHAPTER 5. VARIATIONAL INFERENCE-BASED BAYESIAN NNS

Train BNN Obtain !𝒒𝝎(𝜽)
Take 𝑱

Elementwise
Samples

𝑱 Weight a
Metrices/layer

Quantize
Each Weight

Metrix

Update
BatchNorm

Map 𝑱 Weight
Matrixes to 𝑵

Crossbars

Online
Operation

Figure 5.1.: Overall flow of the proposed Bayesian in-memory approximation for efficient mapping of Bayesian distributions to
CiM architectures.

𝑞𝝎 (𝜽) = round
(
clip(𝑞𝝎 (𝜽),−1, 1) ×

(
2𝜐−1 − 1

))
, (5.1)

where clip(.,min,max) clamps all elements of the input it receives within the range [min,max], and
round(.) rounds each element to the closest integer. Alternatively, other quantization functions, such as
DoReFa [192], can also be used. However, it is important to note that during training, a small prior for 𝝈2

𝜔

must be chosen, since we use clip(.,min,max) in the post-training quantization process. Otherwise, this
clamping function should be applied during training as a regularizer.

Our quantization approach quantized all the sampled parameters into fixed-point values. Otherwise,
mapping quantized values to spintronic conductance states would require a look-up table (LUT) for each
parameter. This is because the distribution of the parameters differs from each other, meaning that the
mean and variance of weights vary between the parameters, resulting in different value ranges for different
parameters. However, with our quantization approach, only one LUT is required.

Usually, normalization layers standardize the neuron distribution during training. However, the proposed
quantization can significantly alter the neuron output distributions relative to the trained distributions. In
our evaluation, we have found that this mismatch can result in drastic accuracy degradation. Thus, we
propose a re-calibration method to bring the post-quantized neuron distributions closer to the training
distributions. Specifically, we adjust the variables, the mean and variance, in the normalization layers,
such as batch normalization. This adjustment is made by estimating the variables based on several mini-
batches of training data using the quantized parameters 𝜽 . The resulting distribution 𝑞(𝜽) is considered an
approximation of the variational distributions 𝑞(𝜽).

Lastly, each of the quantized samples is mapped to 𝐽 parallel crossbars for a layer, resulting in each layer
being represented by 𝐽 parallel crossbars. Since the overall approximation aims to implement the Bayesian
neural network in in-memory architectures, we refer to it as the Bayesian in-memory approximation. The
overall flow of the proposed Bayesian in-memory approximation is depicted in Fig. 5.1.

5.1.1.2. Design Space Exploration Optimizing Bit-precision

There is a trade-off between the quantization level, which influences the design of the bit-cell, and the
resulting performance. Using a large quantization level, e.g., 8-bit, can lead to better performance because
it has better representation capabilities. However, it leads to a large number of memory cells, power
consumption for inference (as more memory cells require reading), and chip area. Our collaborator has
designed multi-bit Spintronic-based memory cells to represent 𝑞(𝜽). The design of memory cells also
becomes challenging with larger quantization level.

Therefore, to determine the optimal quantization levels, a design-to-technology space exploration was
performed. Based on the analysis, the multi-bit memory cells were designed.

92

5.1. BAYESIAN IN-MEMORY APPROXIMATION AND CIM-AWARE NN ARCHITECTURE FOR EFFICIENT SAMPLING

Crossbar 1 Crossbar 1

Crossbar 2 Crossbar 2

Crossbar 1

Crossbar 2

Crossbar N Crossbar N Crossbar N

...
...

.

Arbiter 1 Arbiter 2Input Arbiter L...

...

...

Output

...
...

.

...
...

.

Crossbars selected (n)

Crossbars not selected

Legend

Layer 1 Layer 2 Layer L...

Figure 5.2.: General SpinBayes topology. An arbiter is utilized in each layer to determine in which crossbar the MAC operation is
performed.

5.1.1.3. Efficient Sampling from CiM Architectures

Although our proposed Bayesian in-memory approximation allows mapping the posterior distribution
to the CiM hardware, sampling from the distribution remains a challenge. To address this, we propose a
novel network topology called SpinBayes. The general topology of SpinBayes is depicted in Fig. 5.2. In the
SpinBayes topology, an Arbiter is utilized for each layer to select 𝑛 (where 𝑛 = 1 to 𝐽 − 1) out of the total
𝐽 crossbars for 𝑛-way Bayesian inference. During each forward pass of Bayesian inference, the Arbiter
generates a random binary one-hot vector of length 𝐽 , where "0" represents an unselected crossbar and "1"
represents the selected crossbar. Each selected crossbar for layer 𝑙 receives the same input 𝑧𝑙−1, which is
the activation of the previous layer, for the MAC operation. If 𝑛 ≥ 2, the results of the MAC operations for
the selected crossbars are averaged. For example, in the case of the 𝑛 = 2 way Bayesian inference where
crossbars at index 1 and 3 are selected by the Arbiter at random, the MAC operations for a layer can be
depicted as:

𝑧𝑙 =
1
𝑛
(𝑧𝑙−1W⊤

1,𝑙 + 𝑧𝑙−1W⊤
3,𝑙) . (5.2)

Where 𝑤𝑇1,𝑙 and 𝑤
𝑇
3,𝑙 represent the weight matrices at index 1 and 3, respectively, 𝑧𝑙 is the resulting

intermediate activation of layer 𝑙 , and (.)⊤ represent matrix transpose operation. Afterward, 𝑧𝑙 is processed
by subsequent layers such as pooling, Batch normalization, and non-linear activation to produce the final
activation of layer 𝑙 . The overall computational flow for a layer is depicted in Fig. 5.3. However, for a
1-way Bayesian inference (𝑛 = 1), averaging is not required, as the MAC operation is performed on only
one crossbar array. In this case, assuming the crossbar at index 1 is selected by the Arbiter at random, the
MAC operation can be depicted as:

𝑧𝑙 = 𝑧𝑙−1W⊤
1,𝑙 . (5.3)

Ultimately, the Bayesian inference with our proposed SpinBayes topology for obtaining final network
predictions y∗ given the input x∗ is expressed as:

𝑝 (y∗ | x∗,D) ≈ 1
𝑇

𝑇∑︁
𝑡=1

𝑝

(
y∗ | x∗, 𝜽 (𝑡)

)

93

CHAPTER 5. VARIATIONAL INFERENCE-BASED BAYESIAN NNS

Input Arbiter Sample 𝒏
Crossbar

MAC on 𝒏
Crossbar Average

BatchNormNon-linear
Activation

Intermediate
Activation

Figure 5.3.: The flow depicting computation carried out in a layer of the proposed SpinBayes implemented on CiM architectures.

with 𝜽 (𝑡) ∼ 𝑞(𝜽) = Choose(S) . (5.4)

Here, the given x∗ is passed through the SpinBayes network 𝑇 times, and the final network predictions are
averaged to give the prediction y∗. In each forward pass, the Arbiter randomly samples 𝑛 crossbar arrays
(weight matrices) layer-wise for the MAC operation (as described earlier) to produce a stochastic output
each time.

In addition, the resulting distribution for the parameters of the proposed BNN can be represented as
𝑞(𝜽) := Choose(S), where the set S denotes the set of all parameter combinations that can be drawn this
way, and Choose(·) denotes a uniform selection from S. Specifically, S = {𝜽 (𝑠) ∼ 𝑞𝝎 (𝜽) | 𝑠 = 1, . . . , 𝑆}.

Furthermore, the proposed SpinBayes topology can be generalized to all existing CNN topologies by
making minor modifications to the network topologies. For popular topologies such as ResNet and VGG,
an Arbiter and an averaging block can be inserted before and after the convolutional layer, as shown in
Fig. 5.4. The MAC is performed concurrently on all selected convolutional layers.

Note that 𝑛-way inference with 𝑛 ≥ 2 may lead to an underestimation of uncertainty due to averaging, but
it has been empirically shown to improve inference accuracy, as demonstrated in Section 5.1.3. In the case
of 𝑛-way inference, the effective size of S depends on the number of crossbars 𝑛 chosen in the forward
pass. Generally, for 𝑛-way inference and 𝐿 layers of crossbars, there are

(
𝐽
𝑛

)𝐿 possible combinations in S.
In Section 5.1.5.5, we discuss the overhead associated with 𝑛 ≥ 2-way inference.

5.1.1.4. Bayesian Inference on CiM Architecture

To implement the proposed Bayesian posterior distribution, we propose a novel spintronic-based CiM
architecture. The architectural design is shown in Fig. 5.5. The spintronic architecture is designed around
a multi-value bit-cell crossbar array. The quantized weights are stored in the multi-value cell made with
four MTJs, as shown in Fig. 5.8(a). The number of conductance levels depends on the number of MTJs,
and in our design, we limit the number of MTJs to four for reliable reading and writing. Each multi-level
device has five reliable levels of conductance: 4AP, 3AP-1P, 2AP-2P, 1AP-3P, and 4P. To achieve more
conductance levels, it is possible to use multiple multi-level cells jointly for the storage of quantized weights
(𝜐-bit) [195].

The next section describes the circuit-level behavior of the multi-value implementation. In our architecture,
the arbiter, as described earlier, is implemented in the periphery of crossbars within a layer, and utilizes
the stochastic behavior of the spintronic devices. The arbiter randomly selects 𝑛 crossbars per layer that
receive the same input. The choice of 𝑛 determines the architectural implementation. In our case, we have
chosen 𝑛 = 1. Each crossbar has two decoders, one for the reading operation and the other for the writing
operation, which enable the activation of multiple addresses. The spintronic arbiter is connected to the
enable signal of the reading decoder of the different crossbar arrays.

The MAC operation in each crossbar is performed by activating multiple wordlines in the array. This
allows the current in the bit-line of each crossbar to be sensed by a flash analog-to-digital converter. To sum
up and accumulate the contributions from different crossbars, a CMOS-based Adder-Accumulator (AAC)

94

5.1. BAYESIAN IN-MEMORY APPROXIMATION AND CIM-AWARE NN ARCHITECTURE FOR EFFICIENT SAMPLING

3x3

3x3

+

3x3

3x3

+

1x1

stride=2 3x3

3x3

+

3x3

3x3

+

1x1

stride=2 3x3 3x3...

3x3 3x3...

3x3 3x3...

3x3 3x3...

3x3

3x3

3x3

3x3

3x3

3x3

3x3

3x3

3x3 3x3...

3x3 3x3...

3x3 3x3...

3x3 3x3...

a) ResNet b) SpinBayes-ResNet c) VGG c) SpinBayes-VGG

Conv BatchNorm Identity ReLu Arbiter Average Pool No Information
Flow

Figure 5.4.: Sketch of proposed SpinBayes based on popular CNN topologies ResNet [193] and VGG [194]. Here, we only show
the first four layers of a specific topology. Our proposed SpinBayes topology is generalizable across most existing topologies,
with only the addition of arbiter and average blocks required. MAC operation on 𝑛-way inference with 𝑛 > 1 parallelized in each
layer. It is recommended to view this figure in color.

is utilized. At the output of the crossbar, a CMOS circuit computes layer-wise average weighted sums
as described in Section 5.1.1. The activation functions, although not shown in Fig. 5.5, are implemented
with comparators to obtain the overall activation of the layer before passing it to the subsequent layers.
Similarly, the same averaging circuits are used at the final layer of the SpinBayes network to estimate the
prediction based on the 𝑇 stochastic forward passes, as expressed in equation equation 5.4.

Each of the 𝐽 crossbars contains a unique configuration of weights. Consequently, the resulting current at
the output of the crossbar varies depending on the specific crossbar selected. Therefore, the required mean
and variance are translated through the distribution of current at the output of the crossbar.

5.1.2. Hardware Implementation

5.1.2.1. Spintronic Arbiter

One spintronic-based Arbiter is implemented for each neural network layer to enable 𝑛 = 1 selection in the
𝑛-way crossbar selection for each layer in the SpinBayes topology. In this implementation, the stochastic
regime of an MTJ is utilized as a random number generator. The probability density function for switching
the SOT-MTJ follows an exponential distribution and is expressed as [180]:

𝑝𝑠𝑤 = 1 − exp
(𝑡
𝜏

)
(5.5a)

𝜏 = 𝜏0 exp
[

Δ

𝑘𝐵T

(
1 − 2 𝐼

𝐼𝑐0
(𝜋2 −

𝐼

𝐼𝑐0
)
)]

(5.5b)

Here, Δ is the thermal stability factor, 𝐼 is the applied current through the SOT-track, 𝑡 is the pulse
duration, 𝜏0 is the attempt time, 𝐼𝑐0 is the critical current at 0 K, 𝑘𝐵 is the Boltzmann constant, and T is the
temperature. 𝐼𝑐0 represents the minimum current required to switch the MTJ. The equation equation 5.5 is

95

CHAPTER 5. VARIATIONAL INFERENCE-BASED BAYESIAN NNS

…

BL conditioning circuit
ADC

BL conditioning circuit
ADC

RWL

WWL

BL

…
SL

Log2 N

1 : N
DEMUXIN

E

RWL

WWL

BL

…
SL

S
L

c
o

n
d

it
io

n
in

g
c
ir

c
u

it

RWL

WWL

BL

…
SL

W
ri

te
 D

e
c
o

d
e

r

R
e

a
d

 D
e

c
o

d
e

r
R

e
a

d
 D

e
c
o

d
e

r

OUT

VDD GND

VDDGND

SET RESET

ref SA

N-CrossbarsSpintronic
 Arbiter

A
d
d
er

-A
cc

u
m

u
la

to
r

A
ve

ra
g
in

g
 B

lo
ck

R
e

a
d

 D
e

c
o

d
e

r

E

W
ri

te
 D

e
c
o

d
e

r
S

L
c
o

n
d

it
io

n
in

g
c
ir

c
u

it
Figure 5.5.: Proposed layer architecture

VDD GND

VDDGND

SET RESET

ref SA

Figure 5.6.: Spin-Orbit Torque random number generator

used to model and evaluate the switching behavior of the SOT-MTJ for different switching currents, while
keeping the pulse width fixed at 10 ns. The results of this evaluation are shown in Fig. 5.7. It is important
to note that in order to achieve a switching probability of 50% for the MTJ, a current of 230 µA is required.
To generate the bidirectional current across the SOT track, four transistors are added, as shown in Fig. 5.6.
The desired switching probability of 50% is achieved by programming the MTJs through successive "SET"
and "RESET" operations using a current of 230 µA.

To ensure reliable switching of the MTJ, the write duration is set to 10 ns for the SET operation and 5 ns for
the RESET operation. The state of the MTJ is read using a sense amplifier. The SET and RESET cycles are

96

5.1. BAYESIAN IN-MEMORY APPROXIMATION AND CIM-AWARE NN ARCHITECTURE FOR EFFICIENT SAMPLING

0 50 100 150 200 250 300 350 400
Input current (µA)

0.0

0.2

0.4

0.6

0.8

1.0

Sw
itc

hi
ng

 p
ro

ba
bi

lit
y

Figure 5.7.: The probability of switching the stochastic device of the spintronic Arbiter

RWL

WWL

BL

SL

Δ𝐸

En
er
gy

AP P

AP P

VCMA

𝑴𝟒𝑴𝟑𝑴𝟐𝑴𝟏

(a) Multi-value cell with 4 MTJs

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time(ns)

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
re

sis
ta

nc
e M4

M3
M2
M1

(b) Multi-value cell switching

Figure 5.8.: Proposed multi-value SOT bit-cell. It is recommended to view this figure in color.

repeated to generate a stochastic sequence, which is then passed through a DEMUX (1-to-J) circuit to enable
the selection of the read word-lines in the crossbar array. For the selection of crossbars, log2 𝐽 stochastic
spintronic selection circuits are utilized to control the DEMUX. The stochastic behavior of the MTJ serves
as a random switch selector for the DEMUX, ensuring the random selection of the 𝐽 crossbars.

5.1.2.2. SOT multi-value cell design for Quantized Weights

The design of the multi-value cell for representing the quantized parameter values is inspired by [196].
Multiple MTJs are implemented in parallel to emulate a multi-level spintronic memristor utilizing the
VCMA and SOT effects (see Section 2.8.1). The overall cell design is depicted in Fig. 5.8 (a). The VCMA
effect, which depends on the voltage across the MTJ, reduces the switching barrier and facilitates the
writing for a given SOT current. In conventional MRAM devices, the energy barrier is typically set high to
prevent thermal noise and accidental writing during reading. However, a high energy barrier requires
a higher current to switch the MTJ. The VCMA effect can be utilized to lower the barrier and reduce
the writing current [197]. It is worth noting that the multi-value cell design requires only two access
transistors for read and write operations, compared to the traditional MTJ implementation where each
MTJ would require two transistors. This leads to more efficient utilization of hardware resources and
a denser cell structure. The access transistors are controlled by a Write Word-Line (WWL) and a Read
Word-Line (RWL). By adjusting the RWL voltage, individual MTJs or multiple MTJs can be programmed
simultaneously, increasing the versatility of the cell utilization.

In this structure, each MTJ experiences a different voltage drop depending on its position on the SOT track.
For example, M4 experiences a higher voltage drop than M1, resulting in a reduced switching time for
this specific MTJ, as shown in Fig. 5.8 (b). To increase the number of levels considered for computation, a

97

CHAPTER 5. VARIATIONAL INFERENCE-BASED BAYESIAN NNS

differential conductance pair scheme is employed, enabling the representation of 9 levels as demonstrated
in [196] for ternary implementation. However, for the required 𝜐 = 4-bit quantization range, multiple
multi-value cells need to be used in conjunction [195].

In the proposed crossbar design, both the stochastic and deterministic behaviors of the SOT-MRAM are
exploited. Fig. 5.7 illustrates the relationship between the probability of device switching and the applied
current. To utilize the device as a stochastic element, a programming current of approximately 230 µA is
required, resulting in a 50% probability of switching. However, for weight storage purposes, the writing
current must exceed 300 µA. By increasing the current beyond 300 µA, the probability of switching the
device approaches 1, minimizing the likelihood of write failure in the CiM architecture.

In the design simulation, a writing current of 500 µA is used to program the MTJ. The Read Word-Line
(RWL) voltage is varied from 0 to 1 V with a period of 10 ns. Fig. 5.8(b) illustrates the switching times of the
different MTJs (represented as M𝑥) for an RWL voltage of 1 V. It is noteworthy that all the MTJs exhibit
switching behavior at this specific voltage.

The resistance values (𝑅𝑃 and 𝑅𝐴𝑃) are calibrated within the range of 2.5 MΩ to 5.5 MΩ to achieve low
output current. To ensure reliable sensing of the cells at the output of the crossbar, we activate four cells at
a time and perform the current sum. This allows for parallel sensing of a limited number of cells in the
crossbar arrays.

5.1.3. Evaluation

Here, we thoroughly evaluate our proposed approach from both an algorithmic and hardware implementa-
tion perspective. However, it is important to note that BNNs are fundamentally different from conventional
NNs and that they inherently require more resources to perform the Bayesian inference with the additional
benefit of uncertainty information. Therefore, the proposed method is only compared with the related
BNN methods.

Additionally, the proposed approach deals with the implementation of emerging technology for the imple-
mentation of BNNs. Thus, no real hardware is available and software-based simulations are employed.
For algorithmic results, training and evaluations are conducted using the PyTorch framework. For the
hardware-related results, only electrical simulations are performed for this approach. Specifically, the cross-
bar simulations were carried out on Spice, incorporating the concepts presented earlier in Section 5.1.2.1
and Section 5.1.2.2. Both models, the stochastic and the multi-value cell, have similar physical parameters,
and we exploit the different mechanisms of spintronic devices for our implementation. However, parameters
such as values and shapes of weights were transferred from the algorithmic level. Weight transfer on the
crossbar enables us to evaluate accuracy at the hardware level and assess any potential drop in accuracy
that may occur.

5.1.4. Simulation Setup

The proposed method is evaluated on both classification tasks with up to 100 classes and semantic
segmentation tasks, including binary and multi-class segmentation. Semantic segmentation, which involves
segmenting an image into multiple sections and assigning each pixel with its corresponding class label, is
known to be more challenging than classification tasks due to its finer granularity.

For the classification tasks, we evaluate the proposed method using LeNet, VGG (based on [36]), MobileNet,
and ResNet topologies. These topologies have up to 34 layers and 21.79 × 106 parameters. The models are
trained on MNIST, CIFAR-10, and CIFAR-100 datasets as the in-distribution datasets (D𝑖𝑛).

MNIST is a well-known dataset for handwritten digit recognition, while CIFAR-10 and CIFAR-100 present
more challenging classification tasks. CIFAR-10 contains images from 10 classes, while CIFAR-100 expands
this to 100 classes, significantly increasing the difficulty of the classification assignments. Despite the

98

5.1. BAYESIAN IN-MEMORY APPROXIMATION AND CIM-AWARE NN ARCHITECTURE FOR EFFICIENT SAMPLING

relative ease of classifying the MNIST dataset, evaluating our method on it is necessary for appropriate
comparison with related works.

For the semantic segmentation tasks, we evaluated the proposed method on two safety-critical tasks:
real-world medical image diagnosis using Kvasir-SEG [198] and skin lesion segmentation [182], as well as
automotive scene understanding using the CamVid [199] dataset. Kvasir-SEG contains medically obtained
gastrointestinal polyps, while the skin lesion dataset contains microscopic skin lesions. Both medical
datasets have two classes, and the task is to segment the regions of interest within the images. The CamVid
dataset consists of road scene images and involves segmenting each pixel into one of 12 classes, making it
a significantly more challenging task. For all semantic segmentation tasks, we used the Feature Pyramid
Network (FPN) architecture with ResNet-18 as the encoder. The BNN parameters were quantized to 4 bits
(Q=4) across the entire topology for all tasks.

To evaluate the uncertainty of the model, we use the correct-certain ratio (𝑅𝑐𝑐), incorrect-uncertain ratio
(𝑅𝑖𝑢), and Uncertainty Accuracy (UA) metrics, as proposed in [36].

The uncertainty (𝐼) of the model is calculated using the following formula:

𝐼 = 𝐻 (y∗ |x∗,D) +
∑︁
𝑐

1
𝑇

𝑇∑︁
𝑡=1

𝑝 (y∗ = 𝑐 |x∗, 𝜽𝑡) log𝑝 (y∗ = 𝑐 |x∗, 𝜽𝑡) (5.6)

Here, 𝐻 (y∗ |x∗,D) represents the predictive entropy, which measures the amount of information in the
predictive distribution. 𝑝 (y∗ = 𝑐 |x∗, 𝜽𝑡) represents the probability of input x∗ belonging to class 𝑐 based
on the crossbar (weight matrices) 𝜽𝑡 sampled by the arbiter. The formula considers multiple Monte Carlo
runs (𝑇) and sums them up to calculate the uncertainty. The uncertainty value (𝐼) is then normalized to
obtain 𝐼𝑛𝑜𝑟𝑚 =

𝐼−𝐼𝑚𝑖𝑛

𝐼𝑚𝑎𝑥−𝐼𝑚𝑖𝑛
. By applying a threshold 𝐼𝑇 on the normalized uncertainty estimation values, the

predictions are categorized into certain (𝐼𝑛𝑜𝑟𝑚 < 𝐼𝑇) and uncertain (𝐼𝑛𝑜𝑟𝑚 > 𝐼𝑇) groups. This categorization
leads to four scenarios commonly encountered in Bayesian inference: incorrect-uncertain (iu), correct-
uncertain (cu), correct-certain (cc), and incorrect-certain (ic) predictions. The 𝑅𝑐𝑐 , 𝑅𝑖𝑢 , and UA metrics
can then be calculated based on the number of predictions falling into each of these scenarios, providing
insights into the model’s performance and uncertainty estimation. The uncertainty estimation metrics are
calculated as follows:

𝑅𝑐𝑐 This metric measures the probability of a correct prediction given that the model is certain about its
prediction. It can be calculated using the formula:

𝑃 (correct|certain) = 𝑃 (correct, certain)
𝑃 (certain) =

𝑁𝑐𝑐

𝑁𝑐𝑐 + 𝑁𝑖𝑐
(5.7)

where 𝑁𝑐𝑐 and 𝑁𝑖𝑐 represent the counts of correct-certain and incorrect-certain predictions, respectively.

𝑅𝑖𝑢 This metric evaluates the probability of the model being uncertain when it makes an incorrect
prediction. It can be calculated as:

𝑃 (uncertain|incorrect) = 𝑃 (uncertain, incorrect)
𝑃 (incorrect) =

𝑁𝑖𝑢

𝑁𝑖𝑢 + 𝑁𝑖𝑐
(5.8)

where 𝑁𝑖𝑢 and 𝑁𝑖𝑐 represent the counts of incorrect-uncertain and incorrect-certain predictions, respec-
tively.

99

CHAPTER 5. VARIATIONAL INFERENCE-BASED BAYESIAN NNS

UA This metric represents the overall accuracy of the uncertainty estimation. It is calculated as the ratio
of the desired cases (correct-certain and incorrect-uncertain) to all possible cases:

𝑁𝑐𝑐 + 𝑁𝑖𝑢
𝑁𝑐𝑐 + 𝑁𝑖𝑢 + 𝑁𝑐𝑢 + 𝑁𝑖𝑐

(5.9)

where 𝑁𝑐𝑢 represents the count of correct-uncertain predictions.

These metrics provide insights into the model’s performance and the effectiveness of its uncertainty
estimation.

On the other hand, the pixel-wise confidence mask for semantic segmentation is calculated by finding the
class-wise sum of the normalized variance of 𝑇 forward passes. The Intersection Over Union (IoU) metric
is the ratio between the area where the predicted and ground-truth masks overlap and their union.

For uncertainty estimation, the Out-of-distribution (OOD) detection capability of the models is evaluated
on six datasets that came with PyTorch’s vision (TorchVision) framework, e.g.,

1. Gaussian: random Gaussian noise,

2. Noisy D𝑖𝑛 : random Gaussian noise added to the test set of in-distribution data,

3. SVHN: Google street view house numbers,

4. FakeData: fake data of randomly generated images,

5. STL10: a dataset containing images from the popular ImageNet dataset,

6. and FashionMNIST: grayscale images of 10 clothing classes.

MC-Dropout [35] showed that the prediction probability for OOD data spreads out more compared to
D𝑖𝑛 . Therefore, an OOD is detected if the quantile score of the 𝑇 forward passes is below 1% and the
prediction probability is below 90%. That is to say, an input is rejected if the 99% prediction probabilities
for 𝑇 sub-inferences are below 90%.

5.1.5. Algorithmic Results

In this section, we present predictive performance, uncertainty estimation, and hardware evaluation results
of our SpinBayes network on a range of tasks.

5.1.5.1. Predictive Performance

For both semantic segmentation and classification tasks, the experimental results in Table 5.1 (4th column)
and 5.2 show that the proposed SpinBayes network performs comparablely to the state-of-the-art (SOTA)
methods MC-Dropout [35], MC-Dropconnect [36], and Bayes by Backpropagation (BB-BackProp) [34].
Specifically, relative to the SOTA, performances are generally comparable, with up to 1.14% improvement.
This results in up to ∼ 114 correct predictions for 10000 validation data. For semantic segmentation tasks,
the predicted masks are inaccurate around the boundaries of object classes and obscure classes, such as
a cyclist in the CamVid dataset, as shown in Figure 5.9. For our analysis, we have used 2-way (𝑛 = 2)
inference. However, we have evaluated higher and lower 𝑛-way inferences. In both cases, the inference
accuracies are comparable. Specifically, for 𝑛 = 1, the pixel-wise accuracy of Kvasir biomedical semantic
segmentation tasks goes from 94.93% to 94.56%. Similarly, for 𝑛 = 3, the pixel-wise accuracy does not
change. In general, we have found that choosing 𝑛 > 1 can improve the accuracy. However, this affects the
performance of uncertainty estimates, which will be explored in the following section. Note that because
the BNN is a stochastic approach, inference accuracy changes slightly with each evaluation.

100

5.1. BAYESIAN IN-MEMORY APPROXIMATION AND CIM-AWARE NN ARCHITECTURE FOR EFFICIENT SAMPLING

ProposedBB-BackProp

C
am

V
id

S
ki

n
Le

si
on

 S
eg

Kv
S

ir-
S

eg

Input image Ground truth label Prediction map Correctness map Confidence map Prediction map Correctness map Confidence map

Figure 5.9.:Qualitative analysis of semantic segmentation tasks. The correctness map shows pixel-by-pixel correctness, with white
representing correct predictions and black representing incorrect ones. The confidence map shows pixel-by-pixel uncertainty
(white regions are correct and certain). It is recommended to view this figure in color.

Table 5.1.: Analysis of test prediction error and uncertainty estimation performance for MNIST, CIFAR-10, and CIFAR-100 on
popular NN topologies.

Uncertainty metrics (%)Dataset Method Topology Prediction
error (%) Riu Rcc UA

MC-Dropout[35] 0.77 31.24 98.77 97.48
MC-DropConnect[36] 0.57 41.67 99.57 98.87
BB-BackProp[34] 0.75 94.94 99.95 91.99MNIST

Proposed

LeNet-5

0.77 96.81 99.96 85.10
MC-Dropout[35] 10.57 38.24 92.12 82.89

MC-DropConnect[36] 10.15 40.29 94.31 87.27
BB-BackProp[34] 10.17 62.43 95.50 88.22

Proposed

VGG Small

10.12 82.59 97.47 83.00
BB-BackProp[34] 7.41 78.40 98.03 82.25

Proposed ResNet-34 7.43 80.82 98.17 84.00
BB-BackProp[34] 9.20 83.86 97.88 78.31

CIFAR-10

Proposed MobileNetV2 9.26 95.44 99.22 67.79
BB-BackProp[34] 30.10 53.50 0.98 53.43

Proposed ResNet-18 31.06 59.54 0.91 59.33
BB-BackProp[34] 27.48 46.29 0.86 59.48CIFAR-100

Proposed ResNet-34 27.91 54.22 1.05 54.17

101

CHAPTER 5. VARIATIONAL INFERENCE-BASED BAYESIAN NNS

Table 5.2.: The quantitative prediction and uncertainty estimate performances of the proposed method and state-of-the-art
methods.

Prediction Performance (%) Uncertainty metrics (%)Data Method Pixel acc. Mean acc. IOU Riu Rcc UA
MC-Dropout[35] 80.99 65.46 47.31 17.23 82.48 80.18

MC-DropConnect[36] 82.92 67.47 49.53 21.63 86.54 82.78
BB-BackProp[34] 88.07 73.39 49.17 12.36 92.08 82.17CamVid

Proposed 89.21 74.33 52.12 27.84 99.99 92.52
BB-BackProp[34] 96.37 96.37 92.05 56.32 83.26 29.24Skin Lesion Proposed 96.16 96.16 91.53 50.46 98.95 32.46
BB-BackProp[34] 94.64 94.64 80.39 58.54 90.19 20.55KvaSir Proposed 94.93 94.93 81.49 48.85 99.50 20.27

Table 5.3.: Analysis of the Proposed Method for Detecting Out-of-Distribution Data (OOD).

D𝑖𝑛 Topology OOD Detection (%)
Gaussian Noisy D𝑖𝑛 SVHN FakeData STL10 FashionMNIST

MNIST LeNet-5 100.0 99.21 100.0 100.0 100.0 100.0

CIFAR-10
VGG-Small 99.86 94.35 80.33 86.89 89.31 -
ResNet-34 99.99 98.14 99.99 100.0 99.94 -

MobileNetV2 98.40 95.31 98.80 97.54 98.06 -

CIFAR-100 ResNet-18 99.99 91.17 98.96 99.45 99.31 -
ResNet-34 94.45 86.29 68.18 70.01 79.6 -

5.1.5.2. Uncertainty Estimation

In terms of uncertainty estimation, the performance of our approach on the uncertainty estimation matrices
𝑅𝑖𝑢 , 𝑅𝑐𝑐 , and UA are significantly better compared to MC-Dropout and DropConnect in the same dataset.
The proposed method performs, in general, comparable to the BB-BackProp approach. For example, in the
best case, the proposed method improves the uncertainty estimation matrices by 20.16%, as demonstrated
in Table 5.1. Furthermore, as shown in Table 5.3, the proposed method can detect up to 100% of the samples
from the out-of-distribution dataset.

However, for uncertainty estimation, the 1-way inference (𝑛 = 1) should be used. Otherwise, more than 40%
of the OOD detection capability is reduced. This is because when 𝑛 > 1, the variance for Bayesian inference
is reduced due to the local averaging performed at each layer, resulting in a decrease in uncertainty. Please
note that since Fashion-MNIST has a single input channel, it is only evaluated on the MNIST model.

Similarly, for semantic segmentation tasks, the proposed method performs significantly better compared
to MC-Dropout and DropConnect. Additionally, our results show similar uncertainty estimation matrices
compared to BB-Backprop. Specifically, our method can achieve up to 15.69% better uncertainty estimation
matrices, as depicted in Table 5.2.

Quantitative observations for semantic segmentation tasks are depicted in Figure 5.9. Ideally, the uncertainty
around incorrectly predicted pixels should be higher. That is, the uncertainty should be higher around
the black pixels in the correctness mask. Our results show a higher uncertainty around incorrect pixels
compared to that of the BB-Backprop approach, indicating that our method produces a better uncertainty
mask.

5.1.5.3. Energy Consumption Analysis

The energy consumption of different elements of the proposed architecture is presented in Table 5.4. The
AAC, the comparator, and the averaging circuits were synthesized with Synopsys Design Compiler, using

102

5.1. BAYESIAN IN-MEMORY APPROXIMATION AND CIM-AWARE NN ARCHITECTURE FOR EFFICIENT SAMPLING

Table 5.4.: Architecture level estimations
Circuit Dynamic energy Circuit Dynamic energy

Memory (Decoding/Sensing) 4.71 pJ Adder-Accumulator 0.06 pJ
spintronic RNG 3.80 pJ Comparator 0.01 pJ
Averaging block 18.42 pJ

TSMC 40 nm PDK. The spintronic Arbiter and the memory operations were evaluated at the circuit level.
Furthermore, to assess the energy consumption of a BNN given a LeNet-5 topology, we estimated the
number of computational operations required for each layer (e.g., convolution, pooling, and so on). Given
the number of operations performed in parallel in the crossbar architecture, along with the dynamic energy
evaluation presented in Table 5.4, we utilized a modified NVSim simulator for CiM to scale the architecture
and estimate the overall energy consumption for one inference.

In Table 5.6, the energy consumption with 10 forward passes (MC run with 𝑇 = 10) is compared against
other FPGA and CiM implementations. For a fair comparison, we used the same metrics and dataset
(MNIST) as existing works. The only difference lies in terms of the topology (LeNet-5 CNN topology). We
achieve an energy efficiency of 80× better when compared to FPGA implementation [95], 35× better when
compared to RRAM [99], and 3× better when compared to an MTJ-based crossbar [102]. Note that the
above-referenced implementations involved a smaller network consisting of two linear layers with 200
neurons.

Also, the proposed implementation requires fewer RNGs. For instance, work in [99] encodes all the inputs
of the crossbar with a Gaussian RNG based on RRAM variability. Work in [95] implemented a Gaussian
RNG that requires a large number of digital circuits (e.g., registers, LUT, etc.). Work in [102] used an array
of 4 devices interfaced with an accumulator to implement the Gaussian RNG. Work in [85, 84] also used
several stochastic STT-MRAM devices per word-line to implement dropout[35].

For our approach, the total area needed for the implementation of the LeNet-5 topology is 0.508mm2,
and the delay for 10 forward passes (MC runs with 𝑇 = 10) on an MNIST dataset is 0.512 ms. The study
in [85] reports a delay of 2.0 ms, while the study in [95] shows a delay of 0.003 ms. Thus, the delay in
the proposed approach is 4× better than that reported in [85]. However, when comparing with [95], the
delay for our approach is much higher. This is because the delay reported by the study in [95] utilizes a
much simpler topology with only two linear layers, whereas our approach uses the more complex LeNet-5
topology with convolutional layers, which naturally requires more execution time. In a convolutional
layer, a small filter/kernel, e.g., a 3 × 3 kernel, slides over the input data, resulting in more operations and,
consequently, longer latency. Also, a pooling layer such as max pooling or average pooling follows one
or more convolutional layers in a CNN, which requires additional computations and consequently adds
to the latency. Note that the related studies did not report the area associated with their methods. For
a fair comparison, we estimated the delay given their topology and for 2 linear layers, and we obtained
0.001 79 ms. Thus, the delay is 1.74× compared to their approach.

As a result, the SpinBayes approach has a much smaller computational overhead associated with the
generation of random numbers by using only a single Arbiter with three RNGs for each neural network
layer. The proposed approach, in terms of topology and circuit implementation, has the advantage of being
much simpler. Thus, only the Averaging block and one Arbiter contribute to the critical path of the circuit
in terms of delay and power consumption.

To further evaluate the approach, we implemented the first layer of the topology presented in Table 5.5
with the SpinBayes approach to evaluate the loss in accuracy. Thus, we evaluated 5 different crossbars of a
size of 25 × 6 each. We use the scheme presented in [62] to map the convolutional layer. The traditional
mapping consists in unrolling all the kernels in 1D and arranging them in each column of the crossbar
array. For the inference, only one writing operation of all weights is required, since they do not change
with time. To estimate the loss in accuracy only reading operations are performed. The crossbar takes as

103

CHAPTER 5. VARIATIONAL INFERENCE-BASED BAYESIAN NNS

Table 5.5.: LeNet-5 configuration for MNIST dataset
Layer name Size
Convolution-1 1×6×5×5
Convolution-2 6×16×5×5
Fully Connected-3 3136×120
Fully Connected-4 120×84
Fully Connected-5 84×10

input the MNIST dataset and we evaluate the successful reading operation. An accuracy drop of 0.32% is
reported for the first layer compared to the baseline.

Table 5.6.: Comparison of energy consumption with respect to the state of the art
Method Implementation Number of RNG Energy (µJ/Image)
H.Awano et al. [95] FPGA - * 21.09
A. Malhotra et al. [99] RRAM 64* 9.30
S.T Ahmed. et al. [85] STT-MRAM 20* 2.00
K.Yang et al.[102] Domain wall-MTJ Array (2 × 2)* 0.79
Proposed implementation SOT-MRAM 3 0.26

*The number of RNGs increases with the width and depth of the network.

5.1.5.4. Memory Overhead Analysis

Resource requirements are an inherent drawback of most BNNs and ensemble methods. Therefore, the
scalability of BNNs to larger topologies is challenging. Since we have used low-bit precision quantization
(4-bit), a common model compression technique, our overall memory overhead and consumption are
significantly lower.

Indeed, with respect to existing BNN implementations, it requires 8×, 1.6×, and 6.39× less memory
compared to the ensemble method [187] with 5 ensembles, MC methods [35, 36], and BB-BackProp [34],
respectively, on the topologies we have evaluated (see Table 5.1 and 5.2). We assumed state-of-the-art
methods are full-precision 32-bits and require a single cell to store each bit.

Similarly, our proposed approach is scalable for even larger topologies. As can be seen in Figure 5.10, the
proposed method achieves the smallest model size for all the CNN topologies. The topologies evaluated
here can be found in PyTorch’s vision library.

5.1.5.5. Discussion

Here, we discuss the corner cases of our approach.

𝑛-ways Inference In our proposed design, only one crossbar (𝑛 = 1) is randomly selected for an 𝑛-way
inference. First, selecting one crossbar reduces run-time power consumption since only one crossbar
array is used at a time. Additionally, activating and accessing multiple crossbars simultaneously increases
periphery overhead and complexity. Moreover, this choice is also motivated algorithmically and by
the Bayesian paradigm. Although (𝑛 > 1) slightly increases accuracy, the reduction in OOD detection
capabilities is significant. Therefore, 𝑛 = 1 is recommended as the main goal of our approach is to provide
low-cost uncertainty estimates without sacrificing performance.

104

5.1. BAYESIAN IN-MEMORY APPROXIMATION AND CIM-AWARE NN ARCHITECTURE FOR EFFICIENT SAMPLING

Figure 5.10.: The scalability of the proposed method is evaluated in terms of model size (in MB) for different large CNN topologies.
The model size for each of the topologies is compared to SOTA BNN methods, namely MC-Dropout [35] & MC-Dropconnect [36],
BB-BackProp [34], and Deep Ensemble [187]. The proposed method achieves a significantly smaller model size compared to the
other BNN methods across all CNN topologies. It is recommended to view this figure in color.

Figure 5.11.: The relationship between inference accuracy and the number of samples (𝑆) for biomedical segmentation task on the
KVSir dataset (top) and classification task on the MNIST dataset (bottom). It is recommended to view this figure in color.

105

CHAPTER 5. VARIATIONAL INFERENCE-BASED BAYESIAN NNS

Figure 5.12.: Inference accuracy for different numbers of Monte Carlo (MC) runs for biomedical image semantic segmentation
(left) on the KVSir dataset and image classification (right) on the MNIST dataset. It is recommended to view this figure in
color.

Model Compression When it comes to choosing the bit precision for the parameters, there is a trade-off
between accuracy and hardware overhead. A higher bit precision for the parameters would improve
accuracy, but implementing a high bit precision would require challenging sensing schemes and result in
hardware overhead due to complex ADCs. Furthermore, most non-volatile memory devices achieve only
a few stable conductance levels [200]. Thus, for an efficient CiM implementation, sufficiently lower bit
quantization is required. In our analysis and circuit design, we have chosen 4-bit precision to represent the
parameters, as it offers the best trade-off between accuracy and hardware overhead.

Although we have shown that our method has significantly smaller memory requirements, if further
compression is required, unimportant neurons can be removed through pruning [201]. However, such
a method usually requires sensitivity analysis. Additionally, since the size of the memory array is fixed,
pruning may not be beneficial as it can lead to underutilized memory cells. CiM architecture-aware pruning
can be performed [202], but evaluating such an approach is beyond the scope of this paper.

Number of Samples Required for the Bayesian In-Memory Approximation The number of samples 𝐽 taken
for the proposed In-Memory Approximation directly reflects the number of crossbars per layer required.
Although in our case, we have taken only five samples (𝐽 = 5), we have found that taking more samples
is not beneficial in terms of performance, as shown in Figure 5.11. As the number of samples increases,
the accuracy reaches saturation beyond a certain number of samples (𝐽 = 2 for both MNIST and Kvasir
datasets). A further increase in the number of samples only leads to marginal improvements in accuracy
(and Intersection over Unions (IoUs) for the semantic segmentation task) but incurs significant hardware
overhead. This suggests the possibility of reducing the number of spintronics crossbar arrays required
to implement the proposed SpinBayes network. Therefore, this further underscores the efficiency and
scalability of the proposed In-Memory Approximation method for cost-effective BNN implementation with
large-scale neural network models.

Reducing the number of samples per layer reduces the number of crossbars and also the complexity of
the circuit. Indeed, with the increase in crossbars, the required periphery must be adapted to handle the
implementation of multiple crossbars. Thus, for 𝐽 = 2, only one RNG is required for two crossbars, allowing
energy, power, and area savings.

Compatibility with CMOS fabric and other non-volatile memories The proposed approach investigates
the benefits and challenges of spintronic technology in the context of implementing BNNs on CiM-based

106

5.1. BAYESIAN IN-MEMORY APPROXIMATION AND CIM-AWARE NN ARCHITECTURE FOR EFFICIENT SAMPLING

hardware accelerators. The specific advantages offered by spintronic technologies, such as their memory-
like behavior and stochastic characteristics, are crucial for Bayesian inference. However, it is important to
note that the proposed SpinBayes topology is not limited to spintronic implementations alone. It can also be
implemented using alternative technologies, such as non-volatile memory solutions [200], or even through
a fully CMOS-based approach for CiM architecture. The main considerations for such implementation are
the addition of the stochastic arbiter and the utilization of an Averaging block in case 𝑛 > 1.

Number of Monte-Carlo Runs for the Bayesian Inference The number of Monte Carlo runs (forward
passes) required for a BNN inference can significantly increase runtime power consumption and latency
per inference result. We have found that increasing the number of Monte Carlo runs beyond a certain point
does not increase accuracy (as shown in Figure 5.12), but only increases runtime power and latency. In
both the cases of biomedical semantic segmentation and classification tasks, the accuracy of the proposed
SpinBayes network saturates after a small number of Monte Carlo runs, e.g., 5 for the MNIST dataset
and 2 for the KvSir dataset, respectively. The proposed SpinBayes network is effective in achieving high
accuracy with a small number of Monte Carlo runs, which can significantly reduce the computational cost
of inference. In comparison, as reported in the work by Mobiny et al. [36], the MC-Dropconnect approach
achieves an inference accuracy that is within one standard deviation from its best performance (obtained
at 90 Monte Carlo runs) after 18 Monte Carlo runs, while for the MC-Dropout method, 54 Monte Carlo
runs are required to reach its best performance (obtained at 94 Monte Carlo runs).

5.1.6. Scientific Impact of This Work

The scientific impact and contributions of this work can be summarized as follows:

1. AIAcceleratorCentricApproximation: We introduce a novel Bayesian in-memory approximation
method that enables the efficient mapping of learned probabilistic distributions of BayNNs to
spintronic-based CiM architectures. Our approach significantly reduces the memory overhead and
energy consumption compared to traditional methods. Therefore, our work allows more practical
VI-based BayNN implementations for real-world applications. Therefore, research in the direction
of AI accelerator-centric BayNN approximation should be considered for highly efficient BayNN
implementation.

2. Novel AI Accelerator Suitable BayNN Topology: The proposed SpinBayes network topology
leverages the stochastic and deterministic properties of Spintronic devices for efficient on-the-fly
sampling during Bayesian inference. Consequently, the proposed topology reduces the number of
required RNGs and requires a fixed number of RNGs irrespective of the size of the topology. Thereby
lowering power consumption and enhancing the scalability of BNN implementations on edge AI
hardware accelerators. Consequently, research in the direction of an AI accelerator with suitable
BayNN topology should be considered.

3. Scalability: Our proposed topology is also scalable for other AI accelerator architectures and various
NN topologies, including existing CNN, RNN, and MLP topologies.

4. Energy and Performance Efficiency: The proposed implementation of BayNN spintronic-based
CiM architecture results in a substantial reduction in energy consumption and computational latency.
Compared to state-of-the-art implementations, the SpinBayes network achieves significantly lower
energy consumption and significant improvements in latency. Therefore, making it highly suitable
for resource-constrained edge AI accelerators.

5. Post Training Quantization For Efficient Resource Utilization: Our work also proposes a
post-training quantization method that allows overcoming the limited stable states of memory cells
and reduces mismatches between parameter bit-width and memory cells. The proposed method can
be modified for other bit-with requirements of an edge AI accelerator. Therefore, it ensures that the
model parameters fit the constraints of memory cells in an edge AI accelerator.

107

CHAPTER 5. VARIATIONAL INFERENCE-BASED BAYESIAN NNS

6. BayNN for Real-time Applications: The overall reduction in energy consumption and improve-
ment in computational efficiencymake the proposedmethod highly suitable for real-time applications
where low latency and highly reliable predictions are critical.

5.1.7. Section Conclusion

In this section, we propose SpinBayes, a Bayesian inference approach suitable for multi-value Spin-Orbit
Torque-based Computing-in-Memory hardware accelerators, from a holistic perspective. We propose
a multilevel SOT-based bitcell to map quantized parameters for Bayesian inference. Additionally, we
develop a spintronics-based Arbiter that utilizes the inherent stochasticity of SOT devices to randomly
select crossbar arrays for each forward pass. Our proposed architecture has been rigorously examined
on various classification and semantic segmentation tasks for prediction performance and uncertainty
quantification. It enhances prediction performance by up to approximately 1%, can detect up to 100% of
various out-of-distribution data, and generates superior uncertainty masks for semantic segmentation
tasks. Furthermore, it exhibits a memory overhead that is 8× smaller and energy consumption that is 80×
lower compared to state-of-the-art CMOS implementations.

5.2. Bayesian Subset Parameter Inference

In our previous work, we overcome the challenges of mapping the variational distribution and
sampling it on the fly during Bayesian inference with several contributions. However, there are still
some research questions and challenges: (a) Is it possible to implement variational Inference in binary
NNs? It can effectively overcome the limited stable states of the Spintronics devices and allow the
reuse of existing crossbar arrays. (b) Can memory consumption and power be further reduced for the
extreme edge AI applications? Although we showed that our previous work significantly reduced the
memory consumption, the resources in extreme edge AI devices are severely limited. (c) Can other
parameter groups in an NN other than weights or activation be treated as Bayesian?

This work aims to address these research questions and is based on our publication at the IEEE
DATE 2023 [49].

5.2.1. Observation and Motivation

In NN, the weight matrices of the fully connected and convolutional layers consume the most storage
memory, as they are utilized to calculate the weighted sum of the input. For example, in ResNet-18 topology,
weight matrices consume 98.6% of total parameters while biases 0.3% and other parameters consume 1.05%.
In Bayesian NNs, since the variational distribution 𝑞𝝎 (𝜽) with parameters 𝝎 is applied to the weight
matrices, memory consumption increases significantly.

The higher computational complexity comes from the need for sampling from 𝑞𝝎 (𝜽) during Bayesian
inference. In addition, as stated in the previous work, the implementation of the variational distribution
𝑝 (y∗ | x∗,D) with CiM-based hardware accelerators can be challenging and may require changes to
the normal memory structure. Furthermore, because of the limited stable states of Spintronics devices,
conventional hardware implementations may not be efficient. This is because the mapping of parameters
of the distribution, e.g., mean and variance, to a crossbar array, may change the overall distribution due
to quantization error. Consequently, the distributions can differ considerably from the trained model. In
earlier work [104], a novel network topology, crossbar structure, multi-bit memory cells, and a Bayesian
approximation method were developed to overcome the challenges mentioned above. Here, we take
another approach. Our approach allows for Binary Bayesian neural networks with the variational inference
approximation with significantly lower memory consumption.

108

5.2. BAYESIAN SUBSET PARAMETER INFERENCE

5.2.2. Bayesian Subset Parameter Inference

In this work, we propose an efficient Bayesian NN framework with both deterministic and stochastic
parameters. In particular, the larger group of parameters, such as the weights and biases of linear and
convolutional layers, are kept deterministic. This allows us to implement variational inference in Bayesian
binary neural networks. On the other hand, the scale parameters of binary NN, which is one of the smallest
groups of parameters, are treated as a random variable with a probability distribution. Consequently, this
allows a) direct implementation to Spintronis-based crossbar arrays, b) to overcome the limited stable
state challenge of Spintronics memory, c) reuse the existing crossbar structure, and d) to reduce memory
overhead by 32×. As a result, the memory and computational complexity are drastically reduced compared
to conventional BayNNs, and the adaptation is CiM-hardware-friendly.

For our approach, we consider the following approximation of the signature weighted sum computation of
an input vector z(𝑙−1) with a weight matrix W(𝑙) of a layer 𝑙 as

z(𝑙−1)W(𝑙) ≈ sign(z(𝑙−1)) sign(W(𝑙)) ⊙ 𝜶 (𝑙) , (5.10)

where 𝜶 is a vector of learnable parameters representing scale and sign(·) is to be considered elementwise.
Since we consider Bayesian binary neural networks, the activations x and weights W are binarized {+1,−1}
with the sign function. In contrast, the entries of the scaling vector 𝜶 are typically considered 32-bit (float)
values, but we apply a further approximation for the CiM implementation.

For learning, a distinct treatment is applied to the two-parameter groups. Specifically, we apply a Bayesian
treatment to learning 𝜶 via variational inference and learn a distribution 𝑞𝝎 (𝜶), while the rest of the
parameters, which we denote by 𝜽 in the following (e.g., the weights W for each layer), are learned via a
(classical) maximum likelihood approach. The overall training objective is defined as

max
𝜽 ,𝝎

𝑝 (D | 𝜽) − 𝜆 · KL (𝑞𝝎 (𝜶) ∥ 𝑝 (𝜶 | D)) , (5.11)

where 𝜆 denotes a hyper-parameter that is to be set. Note that this objective cannot be directly optimized
since the KL term is intractable and therefore replacedwith the evidence lower bound (ELBO) approximation,
which provides a lower bound on the KL [203].

Due to the hardware constraints, we consider several approximations. Specifically, the parameters 𝜽 need
to be binarized, while samples from 𝑞𝝎 (𝜶) are also quantized to low bit-precision. To enable gradient-based
learning, quantizations are only considered in forward passes (during training and inference), whereas
they are disregarded while computing gradients. This is generally known as the straight-through (gradient)
estimator [44].

To efficiently implement the Bayesian NN in a CiM-architecture, we take a set S = {𝜶 (𝑛) ∼ 𝑞𝝎 (𝜶) | 𝑗 =
1, · · · , 𝐽 } of 𝐽 samples from 𝑞𝝎 (𝜶). These samples are then mapped to a specific crossbar array. During
the online operation, a stochastic sampler is used to sample one of the crossbars in each forward pass.
Consequently, the distribution 𝑞(𝜶) = Choose(S) that selects samples from S uniformly, approximates
the distribution of the (quantized) samples from the variational distribution 𝑞𝝎 (𝜶).

Hence, through the CiM-hardware, the distribution of y∗ given x∗ is approximated as

𝑝 (y∗ | x∗,D) ≈ 1
𝑇

∑︁
𝑡

𝑝

(
y∗ | x∗, 𝜽 ,𝜶 (𝑡)

)
with 𝜶 (𝑡) ∼ 𝑞(𝜶) = Choose(S) . (5.12)

Note that the parameters 𝜽 (e.g., weights) are considered deterministic, while the learned distribution of
the scales 𝜶 is used to express the uncertainty in the predictions.

109

CHAPTER 5. VARIATIONAL INFERENCE-BASED BAYESIAN NNS

R
e

ad
d

e
co

d
e

r

W
ri

te
d

e
co

d
e

r

BL conditioning circuit
ADC

SL
co

n
d

it
io

n
in

g
ci

rc
u

itRWL

WWL

BL

…
SL

VDD GND

VDDGND

SET RESET

SA
re

f

VDD GND

VDDGND

SET RESET

SA

re
f

…

Scale crossbar

Average

ADC

RNG

R
e

ad
d

e
co

d
e

r

W
ri

te
d

e
co

d
e

r

BL conditioning circuit
ADC

SL
co

n
d

it
io

n
in

g
ci

rc
u

itRWL

WWL

BL

…
SL

Weights crossbar

Digital comparator

Figure 5.13.: Proposed spintronic architecture.

RWL

WWL

BL

SL

Δ𝐸

En
er
gy

AP P

AP P

VCMA

𝑴𝟒𝑴𝟑𝑴𝟐𝑴𝟏

(a) Multi-value cells with 4 MTJs

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time(ns)

0.0

0.2

0.4

0.6

0.8

1.0
No

rm
al

ize
d

re
sis

ta
nc

e M4
M3
M2
M1

(b) Multi-value cell switching

Figure 5.14.: Proposed multi-value SOT bit-cell. It is recommended to view this figure in color.

5.2.3. Hardware implementation

5.2.3.1. Bayesian Inference Architecture

To implement the proposed Bayesian inference, a new CiM architecture is proposed according to the
functionality of equation equation 5.10. The architecture consists of two crossbars per layer, one maps the
Bayesian scale, and the other the weights. The scale crossbar is implemented using a multi-level device that
stores the quantized parameters. In addition, a stochastic spintronics device is used to allow the random
selection of the different scales in each forward pass based on the equation equation 5.12. Each crossbar is
equipped with two decoders, one for reading and the other for writing. Decoders allow for the selection of
multiple devices for reading and writing operations. The stochastic sampler is connected to the different
signals of the reading decoder of the scale crossbar. The MVM operation in a crossbar array is achieved by
activating multiple wordlines in parallel. At the output of the crossbar, the current is sensed and converted
to a digital signal with a flash ADC. As shown in Figure 5.13, we multiply the results of the in-memory
computation on a crossbar by the randomly selected scale and apply a sign function with comparators in
each layer. The model predictions are accumulated for 𝑇 Monte-Carlo runs with the Adder ACcumulator
(AAC) module.

110

5.2. BAYESIAN SUBSET PARAMETER INFERENCE

5.2.3.2. Scale crossbar

To quantitatively represent the parameters required for our proposed BayNN approach, we have imple-
mented a multi-level device composed of multiple MTJs placed on a single SOT track. We used four MTJs
to ensure reliable reading and writing of the cell. Each multi-level device is able to store up to five levels
of conductance (e.g., 4AP, 3AP-1P, 2AP-2P, 1AP-3P, 4P). To achieve a wider range of conductance levels
and parameter representation, several of these multi-value cells can be used in tandem. As mentioned
earlier, this device exploits both the VCMA and SOT effects for the writing process. The parallel MTJs
share the same top and bottom electrodes. Thus, only two access transistors are needed for read and write
operations, as in the conventional SOT device, see Figure 5.14. Consequently, the cell becomes denser, and
hardware resource efficiency improves. The access transistors are controlled by a Write Word-Line (WWL)
and a Read Word-Line (RWL). At a given SOT current, the RWL signal can vary to program individual
MTJs or multiple MTJs at a time.

5.2.3.3. Weights crossbar

For the crossbar that encodes weights, we decided to implement binary synapses with SOT technology,
where the resistance state of the device (𝑅P and 𝑅AP) represents the binary value (+1, −1). The current
sum due to the activation of multiple cells will be compared to a reference. The reference serves as an
activation function and batch normalization via approximation proposed [204, 205] for the deterministic
crossbar array.

5.2.3.4. Stochastic SOT device

By utilizing the stochastic behavior of SOT devices as a random number generator (RNG), we were able
to introduce the desired random sampling. Two CMOS drivers were used to generate the bidirectional
current across the heavy metal to switch between 𝑅𝑃 and 𝑅𝐴𝑃 states. To attain a given probability with
the stochastic device, "SET" and "RESET" operations were repeated to program the MTJ. After a "SET"
operation, the MTJ is sensed to evaluate its state, and then "RESET". As a result, the successive "SET" and
"RESET" operations generate a stochastic bitstream.

5.2.4. Experimental Result

5.2.4.1. Simulation Setup

The predictive performance of the proposed method is evaluated on MNIST, Fashion-MINST, and CIFAR-10
benchmark in-distribution datasets on MLP, LeNet, and VGG based on [36] topologies. Weights and
activation BayNNs are binarized according to [47] and the proposed Bayesian scale is quantized to 4-bit
using the algorithm proposed in [173]. A value of 0.001 is used for the hyperparameter 𝜆 in Equation
5.11.

5.2.4.2. Predictive Performance

For MLP on MNIST, our results depicted in Table 5.7 show that the proposed subset parameter inference
performs comparably to SOTA full-precision Bayesian methods with only a 0.51% difference in accuracy.
Similarly, inference accuracy is comparable, i.e., within 0.68% of full-precision and binary point estimate
NNs. Generally, point estimate methods outperform Bayesian methods. Therefore, the difference is slightly
greater in comparison.

111

CHAPTER 5. VARIATIONAL INFERENCE-BASED BAYESIAN NNS

Table 5.7.: Predictive Performance of MNIST dataset on four-layer MLP in comparison to related Bayesian and point estimate
methods. The superscript ∗ represents methods that are point estimates.

Method Bit-width (W/A) Inference Accuracy
FP (ReLU)∗ 32/32 98.78%
FP (Tanh)∗ 32/32 98.39%
MC-Dropout 32/32 98.61%

IR-Net∗ 1/1 98.26%
Proposed 1/1 98.10%

Table 5.8.: Illustration of the proposed method’s prediction performance on the Fashion-MNIST dataset using the LeNet-5 CNN
topology, compared to Bayesian and point estimate approaches with varied bit-widths of weights and activation (W/A). The
superscript ∗ denotes point estimates methods.

Method Bit-width (W/A) Inference Accuracy
FP (ReLU)∗ 32/32 92.01%
FP (Tanh)∗ 32/32 91.78%
MC-Dropout 32/32 91.71%

Deep Ensemble 32/32 91.68%
IR-Net∗ 1/1 91.71%

Proposed 1/1 92.0%

Furthermore, the inference accuracy of the proposed method on CNN topologies on Fashion-MNIST and
CIFAR-10 is still comparable to SOTA Bayesian methods as depicted in Tables 5.8 and 5.9. Specifically,
the inference accuracy of Fashion-MNIST is 0.01% and CIFAR-10 is 2.54% lower in the worst case. Since
CIFAR-10 is a much harder dataset, the difference is larger for our proposed method. However, when our
proposed method is compared with SOTA binary method, our method slightly can improve the accuracy,
e.g., by 0.62% for VGG. Due to the fact that binary activation is an approximation of Tanh activation, the
performance of our proposed method is closer to a full-precision model with Tanh activation, but with
ReLU activation, the difference is slightly greater.

5.2.4.3. Uncertainty Estimation

To reiterate, typically, we assume that the distributions of training and test data are identical. However,
when the distributions of training and test data differ, e.g., when the test data is rotated or corrupted with
noise, we expect the uncertainty of the model or of the prediction to be high. We have performed two
experiments with varying intensity for dataset shift. In one case, we continuously rotated the image by 7
degrees in 12 steps, and in the other case, we added random uniform noise with increasing intensity. It
can be seen in Figure 5.15 that the inference accuracy decreases, and the negative log-likelihood (NLL)
increases. NLL is a standard method for estimating uncertainty, and a well-trained model typically has a
low NLL score. A higher NLL score than a predefined threshold, e.g., mean NLL on test data, indicates
OOD data. We can detect up to 64.34% of OOD data with this approach.

5.2.4.4. Analysis of Hardware Implementation

The energy consumption of the proposed architecture is presented in Table 5.10 and is compared to related
works. The multiplier, the AAC block, and the comparators were synthesized with Synopsys Design
Compiler using the TSMC 40nm PDK. The crossbar and the stochastic device were then simulated in Spice.
Furthermore, the design was scaled up using the CiM version of NVSIM, and we evaluated the energy
consumption on a LeNet-5 and small VGG topology. For each topology, we performed T=10 forward passes
on the MNIST dataset. The energy consumption of 0.30 µJ is reported with the LeNet-5 topology and
2.00 µJ with the small VGG topology (9-layers). The proposed architecture is 70× more energy efficient

112

5.2. BAYESIAN SUBSET PARAMETER INFERENCE

Figure 5.15.: Evaluation of out-of-distribution performance on Fashion-MNIST dataset. The images are rotated by 7◦, and uniform
noise is added to shift the distribution. It is recommended to view this figure in color.

Table 5.9.: Prediction performance of our method is compared to Bayesian and point estimate approaches utilizing the CIFAR-10
dataset and different bit-widths of weights and activation (W/A). ∗ denotes point estimation methods.

Topology Method Bit-width (W/A) Inference Accuracy

VGG

FP (Tanh)∗ 32/32 91.23%
FP (ReLU)∗ 32/32 93.31%
MC-Dropout 32/32 92.79%

IR-Net∗ 1/1 89.96%
Proposed 1/1 90.62%

ResNet-18

FP (Tanh)∗ 32/32 91.33%
FP (ReLU)∗ 32/32 93.77%
MC-Dropout 32/32 93.44%

IR-Net∗ 1/1 91.5%
Proposed 1/1 90.5%

when compared with FPGA implementation [95], 31× better when compared to RRAM [99], and 2.63×
better when compared to an MTJ-based crossbar [102]. All studies were evaluated on the MNIST dataset
but on different topologies, LeNet-5 in our case, while other studies were only evaluated on two linear
layers.

In terms of memory consumption, compared to SOTA methods for uncertainty estimation, our proposed
method requires 63.49× lower storage memory compared to variation inference approximation [34],
158.78× lower storage memory compared to the ensemble approach (with 5 ensembles) [187], and 31.76×
lower storage memory compared to Dropout-based [35] approximation. Furthermore, even compared
to 1-bit binary NNs with point estimate parameters, our proposed BayNN requires ∼ 1% lower storage.
Since we quantize the scale, our method is even lower than SOTA binary NNs which have 32-bit scales.
Furthermore, we assumed that one-bit cell is required for each bit of parameter storage. The variables of
the model are not taken into account.

Table 5.10.: Energy comparison with SOTA implementation
Method Implementation Energy (µJ/Image)
H.Awano et al. [95] FPGA 21.09
A. Malhotra et al. [99] RRAM 9.30
K.Yang et al.[102] Domain wall-MTJ 0.79
Proposed implementation SOT-MRAM 0.30

113

CHAPTER 5. VARIATIONAL INFERENCE-BASED BAYESIAN NNS

5.2.5. Scientific Impact of This Work

The scientific impact and contributions of this work can be summarized as follows:

1. Subset-Parameter Inference: This work introduces a novel approach, where only the smallest
subset of a network parameters group are defined as probabilistic, while the rest are kept deterministic.
The subset parameter is strategically selected for low-cost Bayesian inference. As a result, the
overhead associated with Bayesian inference in the CiM architecture is drastically reduced without
compromising the quality of uncertainty estimates.

2. Resource-Efficient Variational Inference: Our proposed approach enhances the feasibility of
deploying complex Bayesian neural networks with variational inference in resource-constrained
edge devices.

3. Efficient Hardware Utilization: Our proposed approach allows variational inference in binary neu-
ral networks. Consequently, existing CiM architectures, without needing significant modifications,
can be utilized for Bayesian inference.

4. Faster Sampling FromPosteriorDistribution: Wepropose a design space exploration that enables
low-cost and fast sampling from the posterior distribution for Bayesian inference. Specifically, the
inherent stochastic behavior of SOT-MRAM devices is utilized.

5. Robust Uncertainty Estimation: Our work paves the way for reliable and hardware-efficient AI
in critical applications in an uncertain or dynamic environment.

5.2.6. Section Conclusion

In this section, we present a low-cost and scalable Bayesian neural network framework suitable for CiM
hardware. Our method deals with larger groups of parameters in a deterministic method, and Bayesian
processing is only applied to a specific group of parameters, scale. A novel CiM architecture with two
separate crossbars per layer is presented for the Bayesian inference. One crossbar stores deterministic
weights, while the second array stores the Bayesian scale. A multilevel SOT-based bitcell is designed to
map quantized Bayesian scale parameters. Furthermore, the stochastic behavior of the MTJ is harnessed to
implement sampling from the posterior distribution of the variational distribution. Our proposed Bayesian
NN is rigorously examined for its prediction performance and uncertainty quantification. We show that
the prediction performance is comparable to SOTA methods with different bit widths. Furthermore, the
energy consumption and memory requirement were evaluated on large topologies. Compared to the
SOTA Bayesian implementation, the energy consumption is 70× smaller than that of a CMOS-based
implementation and 31× smaller than that of an RRAM-based implementation. The Storage Memory
requirement is up to 158.78× lower.

114

6. Model Ensemble-Based Uncertainty Estimation

This thesis made several contributions in the area of variational inference and Monte Carlo-Dropout
as a Bayesian approximation. Another alternative option for uncertainty estimation is the model
ensemble approach. The model ensemble, such as the Deep Ensemble [187], is considered a “gold
standard” for uncertainty estimation [206]. In the Deep Ensemble,𝑀 ensemble members 1, · · · , 𝑀 are
trained independently and stored in hardware. During inference in edge AI accelerators, each model
processes the input in 𝑀 forward passes (see Fig. 6.1 (a)). Subsequently, the outputs of all models
are combined to obtain the predictive distribution. Therefore, the cost in terms of latency, power,
and memory for training, storage, and processing of 𝑀 ensemble members is challenging for edge AI
accelerators with limited resources.

Therefore, this work aims to address challenges by proposing the Tiny Deep Ensemble approach, a
low-cost ensemble method for uncertainty estimation in deep neural networks. The work is based on
our paper [115].

6.1. Motivation and Observation

We observed that parameters other than weights and biases in an NN consume only ∼ 1 − 2% of all
parameters, as shown in Fig. 6.2. Therefore, we propose the Tiny-Deep Ensemble (Tiny-DE) method, in
which only normalization layers are ensembled 𝑀 times, with all ensemble members sharing common
weights and biases. Recall that the normalization layer is commonly used in NNs, as it speeds up training
and improves performance [50]. Our approach is scalable 1) in any AI accelerator architecture, 2) in any

Conv

BN
ReLU

Conv

BN
ReLU

Conv

BN
ReLU

...

a) Deep Ensemble

Conv

ReLU
...

Router
BN2 BNMBN1

c) Tiny-DE (Serial)

Input (d) Input (d) Input (d)

Input (d)

y1 y2 yM

y1

Conv

ReLU
Vectorized-BN

d) Tiny-DE (Parallel)

y1..M

Batched
Output

Batched Input (M x d)

Conv

d) BatchEnsemble

In
pu

t (
M

 x
 d

)

Ve
ct

or
iz

ed
 R

x

x

ReLU
BN

y1..M

Batched
Output

Ve
ct

or
iz

ed
 S

Figure 6.1.: a) Deep Ensemble [187] with 𝑀 ensemble members , b) BatchEnsemble [114], proposed Tiny-DE model with 𝑀
normalization layers with a single shared convolutional layer in c) serial mode, and d) parallel mode.

115

CHAPTER 6. MODEL ENSEMBLE-BASED UNCERTAINTY ESTIMATION

ResNet-20 VGG-19 ShuffleNet

Figure 6.2.: Share of parameter groups with respect to the total number of parameters in different CNN topologies.

NN topologies, such as CNNs and recurrent neural networks (RNNs), 3) in tasks, and 4) in datasets. Further-
more, our approach is parallelizable during training and inference within an AI accelerator architecture.
Consequently, all ensemble members can be updated concurrently for a given mini-batch, and inference
requires a single forward pass, allowing for single-shot training and inference.

6.2. Methodology

6.2.1. Core Idea

In Tiny-DE, only the normalization layers are ensembled, which overall have the smallest amount of
parameters in the network, while all other parameters are shared. We denote the normalization layers
of a layer index 𝑙 by BatchNorm𝑙

𝛾0,𝛽0
, . . . ,BatchNorm𝑙

𝛾𝑀−1,𝛽𝑀−1
in the following. in the following. The

normalization layers can be Batch Normalization, Layer Normalization, Instance Normalization, and Group
Normalization with learnable parameters 𝛽 ∈ R𝐶𝑜𝑢𝑡 and 𝛾 ∈ R𝐶𝑜𝑢𝑡 . Therefore, compared to the deep
ensemble approach [187] and BatchEnsemble [114], our approach requires a 𝑀× lower weight matrix
storage and a 2𝑀× lower rank-1 matrix computation (see Figs.6.1 (a) and (b)).

6.2.2. Operation Modes

Depending on the batch processing capabilities of the hardware architecture, Tiny-DE can operate in either
sequential or parallel modes. In hardware architectures where batch processing is challenging, such as
the memristor-based CiM architecture [207, 208, 209], a sequential processing NN architecture should be
used. Here, "sequential" refers to sequential in time rather than signal flow through the ensembles. In
contrast, in parallel mode, single-shot uncertainty estimation can be done using vectorization in hardware
architectures such as edge tensor processing units (TPUs), field-programmable gate arrays (FPGAs), and
graphics processing units (GPUs) [16, 210]. Both methods are described in detail in the following.

6.2.2.1. Sequential Inference

The sequential inference of Tiny-DE utilizes a counter variable 𝑐 and router to dynamically select a
normalization layer for each forward pass. Depending on the state of the counter 𝑐 , the output of the
𝑙-th layer z𝑙 is directed through one of the𝑀 normalization layers, as shown in Fig. 6.1 c). The activation
function, such as the ReLU function, is applied to the processed output as is normally done.

The counter 𝑐 is an unsigned integer and it is updated cyclically in each layer as follows:

𝑐 ← (𝑐 + 1) mod 𝑀, (6.1)

where 𝑐 is initialized to 0 at the start of the inference process. The mechanism ensures that the output of
each layer sequentially passes through each normalization layer in a cyclic order. For example, if 𝑐 = 0,

116

6.2. METHODOLOGY

3x3

3x3

+

3x3

3x3

+

1x1

st
rid

e=
2 3x3

3x3

+

3x3

3x3

+

1x1

st
rid

e=
2

...

...

3x3

3x3

3x3

3x3

3x3

3x3

3x3

3x3

...

a) ResNet b) Tiny DE-ResNet c) VGG c) Tiny DE-VGG

Conv BatchNorm Identity ReLU Router

BN2 BNkBN1

BN2 BNkBN1

...BN2 BNkBN1

...BN2 BNkBN1

BN2 BNkBN1

...BN2 BNkBN1

...BN2 BNkBN1

...BN2 BNkBN1

Pool No Information Flow

Figure 6.3.: Sketch of proposed Tiny-DE architecture based on popular CNN architectures ResNet [9] and VGG [185]. We only
show the four signature layers of a specific topology. Our proposed topology is generalizable across existing topologies, with
only the addition of a router before the normalization layers. In the case of our proposed approach in batch mode, no change is
required in the topology. It is recommended to view this figure in color.

the output z𝑙 is processed by BatchNorm𝑙
𝛾0,𝛽0

. In the next forward pass, 𝑐 becomes 1, routing the output z𝑙

through BatchNorm𝑙
𝛾1,𝛽1

, and this process is repeated until the𝑀-th forward pass. After that, 𝑐 resets to 0.
Note that, due to the global signal routing and synchronization challenge, the counter variable is updated
locally in each layer.

This cyclic routing mechanism allows each input of the NN to experience every normalization setting,
providing diverse internal-statemanipulationswithin a single inference cycle, which is crucial for enhancing
the ensemble’s ability to generalize and generate output distribution for uncertainty estimation.

Furthermore, the proposed Tiny-DE can be generalized to all existing NN architectures by making minor
modifications, as shown in Fig. 6.3. For popular architectures, such as ResNet and VGG, a router can be
inserted after the convolutional layer.

Router Implementation In CiM architectures, the router can be implemented digitally in the periphery
using a demultiplexer (DeMux). The DeMux takes the 𝜐-bit unsigned counter 𝑐 as the control signal,
allowing for up to 2𝜐 possible routing paths, each corresponding to one of the normalization layers
(ensemble members). Since a typical DeMux expects a bit-wise control signal, the DeMux for our purpose
is designed to interpret the control signal 𝑐 in binary representation. This can be expressed as:

binary(𝑐) = 𝑏𝜐−1𝑏𝜐−2 · · ·𝑏0, (6.2)

where 𝑏𝜐−1 to 𝑏0 are the bits of the binary sequence representing 𝑐 .

Our approach requires only changes to the CiM periphery, since the router is implemented in the digital
domain with some logic hardware. Specifically, the weight matrix is mapped to the memristor-based
crossbar arrays with mapping techniques described in 2.9.1. The MAC operation of a layer is computed in
memristor-based crossbar structures (analog domain), and the result is digitized by an analog-to-digital

117

CHAPTER 6. MODEL ENSEMBLE-BASED UNCERTAINTY ESTIMATION

CONV

M

CONV Zl

zl

Batched
output

a) Single inference

a) Batched inference

Input

Batched Input

OutputH

W

Figure 6.4.: a) Single input processing, and b) batched processing in a convolutional layer. The input is repeated𝑀 times to create
a batch.

converter (ADC) operation. An accumulator-adder module to sum up the results of all crossbars in a layer
(partial matrix multiplication). Following that, the router selects the parameter for normalization, and the
normalization is performed. In the following, non-linear activation is performed, and a digital-to-analog
(DAC) converts the results of the activation function for MAC operation (in the analog domain) of the
subsequent layer. The overall algorithm for our proposed approach in sequential inference mode is depicted
in Algorithm 1.

Algorithm 1 Sequential inference mode of Tiny-DE in CiM
1: Input: Controller 𝑐 , number of ensembles𝑀 , input to the network 𝒙 , number of layers 𝐿
2: for𝑚 = 1, . . . , 𝑀 do ⊲ sequential inference
3: for 𝑙 = 1, . . . , 𝐿 do ⊲ single forward pass
4: Digital-to-analog conversion
5: MAC operation in memristor-based crossbar array
6: Analog-to-digital conversion
7: Router selects parameters of normalization layer
8: Perform normalization
9: Non-linear activation
10: end for
11: Increment counter
12: end for

6.2.2.2. Single-Shot Uncertainty Estimation

By manipulating the computations for a mini-batch, the computations of the Tiny-DE approach are
parallelizable within a hardware architecture that allows batched processing such as CPUs, GPUs, TPUs,
and some cases FPGAs [210]. Therefore, only a single forward pass with respect to multiple ensemble
members in parallel is required to estimate uncertainty. Here, an input to the convolution or linear layer is
repeated𝑀 times to generate a mini-batch of size𝑀 to obtain the batched output Z𝑙 . However, if the batch
size of the inference inputs is more than one, e.g., 𝐵, by repeating the input similarly𝑀 times, an effective
batch size of𝑀 · 𝐵 can be created. Therefore, a single forward pass is required for the convolution or linear
layer.

However, to still allow a single forward pass through all ensemble members, we propose EnsembleNorm.

118

6.2. METHODOLOGY

In EnsembleNorm, the input dimension and the parameters are modified across the batch dimension
so that they independently apply normalization to each input of the batch. Specifically, the input of
the shape [𝑀 ∗ 𝐵,𝐶𝑖𝑛, 𝐻,𝑊] is reshaped as [𝑀, 𝐵,𝐶𝑖𝑛, 𝐻,𝑊]. Here, 𝐶𝑖𝑛 , 𝐻 , and𝑊 represent the input
channels, height, and width of the input, respectively. Similarly, the learnable parameters expanded to
𝛽 ∈ R𝑀×𝐶𝑜𝑢𝑡 and 𝛾 ∈ R𝑀×𝐶𝑖𝑛 . That means that the parameters are not only channel-specific, but also
unique to each ensemble member. The mean and variance are also calculated in the respective dimensions.
That means that each ensemble member𝑚 = 0, · · · , 𝑀 − 1 can have its own specific mean 𝝁𝑚 and variance
𝝈2
𝑚 . Furthermore, each ensemble member can be scaled and shifted by its own unique parameters, 𝜸𝑚 and

𝜷𝑚 .

Subsequently, the normalized output Z̄𝑙 is reshaped again to [𝑀 ∗𝐵,𝐶, 𝐻,𝑊] before applying the non-linear
activation function.

Consequently, all ensemble members can compute the output in a single forward pass, eliminating the
need to calculate the output of each ensemble member sequentially. Therefore, the computational latency
is reduced to a minimum.

6.2.3. Training

The training procedure of Tiny-DE also depends on the operating mode. The sequential mode involves
two main phases, but the parallel mode allows single-shot training. Both methods are described in detail
in the following.

Sequential Mode As stated earlier, the overall training of the 𝑀 ensembles requires two main phases.
Initially, the full model is trained with all parameters (weights and biases) being updated. After this, the
parameters of the model, e.g., weights and biases are frozen, and the normalization layers are re-initialized.
Here, "frozen" means that they are not updated using backpropagation. In each subsequent training, only
the normalization layers are updated. The training is stopped once a comparable accuracy to the full
model is achieved. All trained parameters of the normalization layer are accumulated in a list to allow for
ensemble learning as described earlier.

Since the full model is only trained once, the training overhead and complexity are significantly lower
compared to [187] and [114], respectively. The decoupling of parameters allows for effective ensemble
learning without the overhead of training multiple distinct models from scratch. In addition, it allows one
to obtain𝑀 ensemble members from a single pre-trained model.

Single-Shot Training In the batched processing mode, replacing the normalization layer with the proposed
EnsembleNorm layers along with manipulating the dimension as discussed in the earlier section, all the
ensemble members can be trained together.

Here, the effective batch size for training may need to be reduced due to the memory overflow issue in
GPUs. However, since training is typically done in the cloud, it is not an issue for edge inference.

6.2.4. Prediction and Uncertainty Estimation

The input for inference is forward-passed through the Tiny-DE to get the predictive distribution. The final
prediction of Tiny-DE is obtained from the average predictions of all ensemble members.

To obtain uncertainty in the prediction, we explore different methods depending on the task. For classifica-
tion tasks, the predictive entropy is commonly used, but we also measure the maximum disagreement
among the outputs, as shown in Algorithm 2.

119

CHAPTER 6. MODEL ENSEMBLE-BASED UNCERTAINTY ESTIMATION

Algorithm 2Maximum Disagreement
1: Input: output samples of 𝒚 of shape (𝑀, 𝐵, 𝐾)
2: Initialize Max Disagreement (MD) with zeros of shape (𝐵, 𝐾)
3: for𝑚 = 1, . . . , 𝑀 − 1 do
4: for𝑚′ =𝑚 + 1, . . . 𝑀 do
5: Calculate absolute difference𝑚′ and𝑚 output
6: Calculate the maximum across the class dimension
7: Update Max Disagreement
8: end for
9: end for

The Maximum Disagreement metric quantifies uncertainty by calculating the maximum absolute difference
in output distributions for each class, across all models in the ensemble. Since it is computed directly from
SoftMax output, this metric ranges from 0 to 1. A low maximum disagreement value (closer to 0) indicates
low uncertainty, and a high value (closer to 1) indicates high uncertainty.

Furthermore, in semantic segmentation and time series prediction tasks, uncertainty is quantified by the
variance in predictions of different ensemble members. Lastly, for regression tasks, the uncertainty is
estimated using the negative log-likelihood (NLL) of the prediction.

6.2.5. Diversity Improvement Among Ensemble Members

Diverse predictions among ensemble members are advantageous as they offer complementary perspectives,
potentially improving performance and enhancing uncertainty estimates. For our approach, diversity can
be improved by a) using different kinds of normalization layers in each member, b) training each ensemble
member with different data augmentations, and c) creating multiple bootstrap samples (random samples
with replacement) from the training data and training each ensemble member on each sample.

6.3. Results

6.3.1. Experimental Setup

To show scalability on deep learning tasks, we have evaluated our method on four different tasks: image
classification, regression, autoregressive time series forecast, and semantic segmentation. To further show
scalability on datasets and NN topologies, we have evaluated each task on several state-of-the-art (SOTA)
NN topologies (including CNN and RNN) and datasets.

For image classification, we used the CIFAR-10 and CIFAR-100 benchmark datasets on the VGG-19, ResNet-
56, ShuffleNet-V2, RepVGG-A1, and TinyML compatible MobileNet-V2 CNN topologies. Furthermore, for
the regression task, we have used 10 UCI datasets with a topology and setting as [35]. Specifically, each
dataset except for the protein and Year Prediction MSD, is split into 20 train-test folds. Five train-test splits
were used for the protein dataset, and a single train-test split was used for the Year Prediction MSD dataset.
The NN has 2-hidden layers with ReLU6 nonlinearity followed by a 1D batch normalization layer. The
number of neurons is 50 for the smaller datasets and 100 for the larger protein and Year Prediction MSD
datasets, making the network compatible with edge AI accelerators. All the dataset was trained for 40
epochs and we have used 5 ensemble members (M=5).

On the other hand, for the time-series forecast, an NNwith an LSTM layer and a classifier layer was used for
the Mauna Loa CO2 concentrations dataset. Lastly, for Semantic segmentation tasks, we have considered
binary as well as multi-class segmentation datasets and two safety-critical scenarios, for biomedical and
automotive. For biomedical image segmentation, we have used the Kvasir-SEG [198] dataset, which

120

6.3. RESULTS

Table 6.1.: Results on regression benchmark datasets of the proposed approach and related works Probabilistic back-propagation
(PBP) [212], MC-Dropout [35], Deep Ensembles [187] comparing RMSE and NLL. Dataset size (𝑁) and input dimensionality (𝑄)
are also given.

Avg. Test RMSE and Std. Errors ↓ Avg. Test LL and Std. Errors ↓
Dataset 𝑁 𝑄 PBP MC-Dropout Deep Ensemble Proposed PBP MC-Dropout Deep Ensemble Proposed
Boston Housing 506 13 3.01 ± 0.18 2.97 ± 0.85 3.28 ± 1.00 2.97 ±0.46 2.57 ± 0.09 2.46 ± 0.25 2.41 ± 0.25 4.92 ±1.03
Concrete Strength 1,030 8 5.67 ± 0.09 5.23 ± 0.53 6.03 ± 0.58 5.51 ±0.41 3.16 ± 0.02 3.04 ± 0.09 3.06 ± 0.18 5.02 ±0.62
Energy Efficiency 768 8 1.80 ± 0.05 1.66 ± 0.19 2.09 ± 0.29 1.53 ±0.38 2.04 ± 0.02 1.99 ± 0.09 1.38 ± 0.22 1.41 ±0.46
Kin8nm 8,192 8 0.10 ± 0.00 0.10 ± 0.00 0.09 ± 0.00 0.07 ±0.00 -0.90 ± 0.01 -0.95 ± 0.03 -1.20 ± 0.02 -0.95 ±0.01
Naval Propulsion 11,934 16 0.01 ± 0.00 0.01 ± 0.00 0.00 ± 0.00 0.00 ±0.00 -3.73 ± 0.01 -3.80 ± 0.05 -5.63 ± 0.05 -3.81 ±0.08
Power Plant 9,568 4 4.12 ± 0.03 4.02 ± 0.18 4.11 ± 0.17 4.48 ±0.18 2.84 ± 0.01 2.80 ± 0.05 2.79 ± 0.04 2.95 ±0.05
Protein Structure 45,730 9 4.73 ± 0.01 4.36 ± 0.04 4.71 ± 0.06 3.92 ±0.03 2.97 ± 0.00 2.89 ± 0.01 2.83 ± 0.02 5.05 ±0.52
Wine Quality Red 1,599 11 0.64 ± 0.01 0.62 ± 0.04 0.64 ± 0.04 0.64 ±0.05 0.97 ± 0.01 0.93 ± 0.06 0.94 ± 0.12 1.28 ±0.33
Yacht Hydrodynamics 308 6 1.02 ± 0.05 1.11 ± 0.38 1.58 ± 0.48 3.22 ±1.59 1.63 ± 0.02 1.55 ± 0.12 1.18 ± 0.21 1.37 ±0.43
Year Prediction MSD 515,345 90 8.88 ± NA 8.85 ± NA 8.89 ± NA 8.53 ±NA 3.60 ± NA 3.59 ± NA 3.35 ± NA 7.63 ± NA

contains medically obtained gastrointestinal polyps images on the Feature Pyramid Network (FPN) [166].
For automotive scene understanding we used the CamVid [199] dataset, which consists of road scene
images and involves segmenting each pixel into one of the 12 classes on the UNet++ topology [211]. We
have further evaluated the generalized scene understanding task with the Pascal VOC dataset with the fully
convolutional network (FCN). The encoder network for each topology is shown in brackets in Table. 6.3.

Note that the semantic segmentation task is known to be more challenging than other tasks due to its finer
granularity. That is, it involves segmenting an image into multiple sections and assigning each pixel with
its corresponding class label.

The performance of the classification task is evaluated on inference accuracy, time series, and regression
on root-mean-square-error (RMSE), and semantic segmentation on pixel accuracy and mean intersection-
over-union (mIoU) metrics.

In terms of uncertainty estimation, classification tasks are evaluated on data distribution shift and out-of-
domain data as OOD data. Specifically, for data distribution shift, images are corrupted by 90◦ rotation and
Gaussian noise, a subset of the CIFAR-C dataset [20]. Furthermore, SVHN (Street View House Numbers)
and STL-10 datasets are used for out-of-domain data, which refers to data that significantly deviate from
the distribution of the training data. The predictive entropy distribution is calculated from the mean of 250
batch samples and is subsequently modeled as a normal distribution.

6.3.2. Evaluation of Regression on Real-World UCI Datasets

The result of the regression task is depicted in Table 6.1. Our approach is compared with Bayesian [212],
implicit ensemble (MC-Dropout) [35], and ensemble [187]methods. As can be seen, ourmethod outperforms
or is competitive with existing methods in terms of RMSE and NLL. Specifically, our method outperforms
other methods in 8 out of the 10 datasets in terms of RMSE. In some datasets, we observe that our method
is slightly worse in terms of NLL. We believe that this is due to the fact that our method optimizes for
RMSE instead of NLL (which captures predictive uncertainty). We found that there is a trade-off between
RMSE and NLL. Optimizing for NLL instead reduces RMSE. Also, we did not perform hyperparameters
optimization, unlike [35] which performed grid search.

6.3.3. Evaluation of Classification

In classification tasks with various topologies, it can be observed that our method improves inference
accuracy by up to 0.81% or is comparable with the single model, as shown in Table 6.2.

In terms of uncertainty estimates in the OOD data, Fig. 6.5 shows the predictive uncertainty of the ResNet-
32 model trained on clean CIFAR-10. It can be observed that the predictive entropy is low in clean CIFAR-10,

121

CHAPTER 6. MODEL ENSEMBLE-BASED UNCERTAINTY ESTIMATION

Table 6.2.: Performance of Tiny-DE with CIFAR-10 and CIFAR-100 dataset trained on various topologies with up to 15 ensemble
members.

Topology Dataset Number of ensembles
1 5 10 15

VGG-19

CIFAR-10

93.91 93.86 93.79 93.80
ResNet-56 94.37 94.28 94.14 94.38

ShuffleNet-V2 93.3 93.27 93.44 93.67
RepVGG-A1 94.93 94.56 94.84 94.62
MobileNet-V2 94.05 93.67 93.92 94.01

VGG-19

CIFAR-100

73.87 74.21 74.56 74.68
ResNet-56 72.63 72.64 72.85 72.82

ShuffleNet-V2 72.58 72.75 73.54 73.11
RepVGG-A1 76.44 75.77 74.67 75.21
MobileNet-V2 74.29 74.41 74.67 75.21

that is, ID data. However, if the model receives OOD data, e.g., rotated, SVHN, or STL-10 data, the predictive
entropy increases from baseline. Importantly, the relative change in the predictive entropy is significantly
higher for our proposed Tiny-DE approach. Here, the relative change in the uncertainty estimates signifies
better capabilities in the uncertainty estimates. Furthermore, the change in predictive entropy becomes
greater as the number of ensembles increases, which is an ideal behavior.

In contrast, the CIFAR-100 model is evaluated on the max disagreement metric, as shown in Fig. 6.6. In
ID data, our approach shows finer granularity in uncertainty estimates. Specifically, the uncertainty is
low for correctly classified images and high for incorrectly classified images. On corrupted (rotated and
noisy) images, OOD data, the model can still predict some images correctly. Our approach shows a similar
uncertainty distribution for correctly and incorrectly predicted images. In addition, the relative change
from the baseline distribution is also high. In domain-changed data (SVHN and STL-10), our approach
shows high uncertainty with distributions concentrated toward the right. Furthermore, the distributions
shift more toward the right as the number of ensembles increases.

6.3.4. Evaluation of Time-Series Prediction

The performance of our proposed approach on autoregressive time series prediction is shown in Fig. 6.7.
As can be seen, the prediction curve is closer to the ground truth for our approach compared to the single
model. Furthermore, the curve approaches ground truth as the number of ensemble members increases.
Specifically, the single model achieves an RMSE score of 0.1119. In contrast, our proposed Tiny-DE method
achieves an RMSE score of 0.0943 for 5 ensemble members, which is reduced to 0.0921 for 10 members.
That translates into a 17.7% reduction in the RMSE score. In general, all models follow the same trend as
the ground truth.

6.3.5. Evaluation of Semantic Segmentation

Similarly, in semantic segmentation tasks with several challenging datasets and SOTAmodels, our approach
performs comparably or outperforms the baseline model, as shown in Table 6.3. Two qualitative examples
of each dataset are shown in Fig. 6.8. As can be seen, the predictions are close to the ground truth, with
only incorrect predictions around the edges of segments or in uncommon classes. Here, uncommon classes
refer to classes that occur infrequently or are less represented in the dataset.

In terms of uncertainty estimates, our proposed approach can estimate uncertainty accurately. In an ideal
case, misclassified pixels should have high uncertainty around them, and correctly classified pixels should
have low uncertainty. As shown in Fig. 6.8 our approach captured this behavior effectively.

122

6.3. RESULTS

D
en

si
ty

D
en

si
ty

Figure 6.5.: Uncertainty distributions for the Tiny-DE approach on CIFAR-10, including ID CIFAR-10, and OOD datasets such as
rotated CIFAR-10, SVHN, and STL. Notably, larger ensembles show increased relative change of uncertainty distribution from ID
compared to a single model (M = 1). It is recommended to view this figure in color.

Table 6.3.: Pixel accuracy and mean intersection over union (IoU) of the single model and our proposed Tiny-DE (M = 5) with
different datasets and SOTA models.

Topology Dataset Single Model Proposed (M=5)
Pixel Acc mIoU Pixel Acc mIoU

UNet++ (ResNet-34) CamVid 91.65 63.95 91.52 63.99
FPN (ResNet-18) KvaSir 95.95 74.62 95.89 74.57
FCN (ResNet-50) CIFAR-10 87.78 69.63 87.71 68.58

6.3.6. Comparison with Related Works

In the presence of OOD data, the higher the relative change in predictive entropy with respect to ID
distribution, the better the method. Compared to related uncertainty estimation methods with model
ensemble [187, 35, 114], the relative predictive entropy of our Tiny-DE approach is much higher, as shown
in Fig. 6.9. This further underscores the robustness of our approach. Here, the validation is done on the
ResNet-32 topology on the CIFAR-10 dataset, but we found that this translates to other topologies and
datasets.

6.3.7. Improving Diversity

As mentioned in Section 6.2.5, more diversity among the prediction of the ensembling members can lead
to better performance and uncertainty estimates. Therefore, we performed another set of experiments in
which each ensemble member was trained on different data augmentations. We found that by improving
diversity with different random data augmentations to train each ensemble member, the uncertainty
estimates increase in OOD data. For example, as shown in Fig. 6.10, the uncertainty maps around incorrect

123

CHAPTER 6. MODEL ENSEMBLE-BASED UNCERTAINTY ESTIMATION

a) Max-Disagreement on ID and OoD data with data distribution shift

b) Max-Disagreement on OoD domain shift

Figure 6.6.: ID and OOD Max Disagreement distributions for the Tiny-DE approach trained on clean CIFAR-100 (ID). Notably,
larger ensembles show increased relative change of uncertainty distribution from ID. It is recommended to view this figure in
color.

Figure 6.7.: Auto-regressive time series prediction of atmospheric CO2 of a single model and our proposed Tiny-DE model with
up to 10 ensemble members. The shaded region shows the uncertainty around prediction. It is recommended to view this
figure in color.

124

6.3. RESULTS

C
am

Vi
d

K
vS

ir
Pa

sc
al

 V
O

C
Input Image Ground Truth Prediction Correctness Map Uncertainty Map

Figure 6.8.: Qualitative results for several semantic segmentation tasks and associated uncertainty estimates. The correctness
map is a binary diagram indicating correct and incorrect predictions in white and black, respectively. It is recommended to
view this figure in color.

pixels become stronger compared to Fig. 6.8 when each ensemble member is trained using different data
augmentations. Furthermore, pixel accuracy and mIoU increased to 88.67% and 72.48%, respectively.

6.3.8. Hardware Overhead

Figs. 6.11 shows the relative cost in terms of memory and latency of our approach and related approaches
for the ResNet-32 topology. In terms of memory overhead, our approach has approximately the same
overhead as the BatchEnsemble [114] and MC-Dropout [35] methods but significantly outperforms branch
ensemble [113] and Deep Ensemble [187] methods. The memory overhead of the deep ensemble increases

125

CHAPTER 6. MODEL ENSEMBLE-BASED UNCERTAINTY ESTIMATION

Figure 6.9.: Relative change in predictive entropy on OOD data of Tiny-DE (ours) in comparison to Deep Ensemble [187],
MC-Dropout [35], and BatchEnsemble [114]. It is recommended to view this figure in color.

Figure 6.10.: Results for Pascal VOC with improved diversity in ensemble members using different random data augmentation. It
is recommended to view this figure in color.

linearly with the size of the ensemble. In the branch ensemble method, the last two convolutional and
final classifier layers are ensembled. Since the last two layers consume ∼ 75% of the total parameters,
ensembling them leads to a high memory overhead. Specifically, if batch normalization is used, our method
has slightly more overhead compared to BatchEnsemble due to the requirements of running mean and

0 5 10 15 20 25 30
Ensemble size

0

10

20

30

Re
la

tiv
e

M
em

or
y

0 5 10 15 20 25 30
Ensemble size

0

10

20

30

Re
la

tiv
e

La
te

nc
y Deep Ensemble

MC-Dropout
BatchEnsemble
Branch Ensemble
Tiny-DE (Ours)

Figure 6.11.: The inference cost in terms of memory and latency of our and related approaches w.r.t the ensemble size. The
results are relative to a single model cost. The testing time cost and memory cost of the naive ensemble are plotted in blue. It is
recommended to view this figure in color.

126

6.4. SCIENTIFIC IMPACT OF THIS WORK

variance vector storage. However, for other normalization layers that do not calculate running mean and
variance, the memory overhead is the same.

In terms of latency, our approach has the same latency as the single model, as no additional computation
is required relative to the single model. Therefore, the latency is the same as the branch ensemble
method. However, BatchEnsemble has additional computation requirements in the input and output of
convolutional layers, leading to as much as 2× latency as our method. The latency of the deep ensemble
and the MC-dropout increases linearly with the size of the ensembles.

In general, our approach provides a good balance between memory and latency. In parallel mode, our
approach requires one forward-passes and has approximately the same memory overhead relative to a single
model (an ideal case). Consequently, our approach has up to ∼ 𝑀× reduction in overhead.

6.4. Scientific Impact of This Work

We outline the scientific impact of this work and the main contributions can be summarized as follows:

• Ensembling normalization layer: For resource constraint edge AI accelerators, ensembling
where it does not hurts, that is normalization layers, while sharing other parameters is an attractive
approach for low-cost uncertainty estimation.

• Vectorized Processing for Single-Shot Uncertainty Estimation In edge AI accelerator archi-
tecture that allows batch processing, e.g., GPUs, TPUs, and so on, vectorizing input can lead to
single-shot uncertainty estimation. To this end, this work proposed amethodwith the EnsembleNorm.
EnsembleNorm layer allows normalizing all ensemble members in a single shot.

• Scalability The proposed Tiny-DE network topology is scalable to existing NN topologies, AI
accelerator architectures, NN tasks, and datasets. For a scalable solution, considering edge AI
accelerator architecture is an effective approach.

• Potential for Real-World Applications Our evaluation shows our approach lead to substantial
reduction in computational and storage requirements without sacrificing accuracy and quality of
uncertainty estimates. Therefore, it is an attractive option for real-world safety-critical applications,
where real-time decision-making under uncertainty is paramount.

6.4.1. Section Conclusion

In this section, we present a cost-effective ensembling method for edge AI accelerators. We introduce the
Tiny-DE topology, where only normalization layers are ensembles, and all ensemble members share the
weights and biases. Our approach is scalable in terms of AI accelerators, datasets, NN topologies, and tasks.
With an expensive evaluation, we show that our approach can estimate uncertainty effectively with up to
∼ 1% improvement in accuracy, and a 17.7% reduction in RMSE score on various tasks. Furthermore, our
approach has up to ∼ 𝑀× reduction in hardware overhead.

127

Part II.

Methods for Quantifying Functional
Uncertainty of Edge AI Accelerators

While uncertainty estimation in prediction is important in increasing confidence in predictions and
detecting OOD, it is also crucial to detect faults and variations in computational elements, memory
storing weight, and activations for functional safety. This is because edge AI accelerators are prone
to non-idealities such as manufacturing and in-field defects and variations, as well as environmental
factors such as temperature fluctuations. Such factors introduce uncertainty in the parameters,
activations, and overall predictions of edge AI accelerators, which can significantly impact their
accuracy and reliability.

In safety-critical applications, where incorrect predictions can have catastrophic consequences, it is
imperative to rigorously test and validate the functionality of edge AI accelerators. Therefore, proper
in-field functional testing is required to ensure functional safety and reliability. Functional testing can
quantify the uncertainty of core operations in Edge AI Accelerators.

This thesis targets testing for hardware non-idealities in edge AI accelerators using explicit and
concurrent testing methods. Explicit testing methods are designed to identify faults and variations
during the development phase using the "pause-and-test" method. Where the system is non-functional
while testing. Therefore, reducing testing costs, specifically testing latency via test vector compression,
is crucial as many AI applications do not tolerate long system downtime. Wemade several contributions
in this regard to reduce the testing overhead to the absolute minimum possible. Furthermore, we
target testing edge AI accelerators implementing stochastic BayNN. Testing stochastic BayNNs is
challenging due to their stochastic output for the same input. We aim to address this problem.

We also target concurrent testing methods, which can test the edge AI system concurrently without
system downtime. Concurrent testing enables runtime monitoring and fault detection during the
operation of the AI accelerator, ensuring continuous and reliable operation. However, it is challenging
to test an edge AI accelerator concurrently while still achieving a high true positive rate (fault coverage)
and low false positive rates. This thesis proposed a concurrent testing method to address this.

Lastly, disentangling the source of uncertainty is important to perform root cause analysis and
apply a targeted uncertainty mitigation strategy. For example, uncertainty due to OOD data requires
reviewing the input by an expert annotator, but uncertainty due to hardware non-idealities requires
either re-training, re-calibration, or hardware replacement. Therefore, this also targets to address this
issue.

This part presents all our solutions to the above-mentioned challenges.

131

7. Explicit Testing of NNs

This chapter presents the explicit testing methods considered in this thesis. To reiterate, the main
aim is to reduce the number of test vectors stored on the chip to reduce the storage overheated. In
addition, our aim is to reduce test queries that reduce overall testing overhead, such as the number of
MAC operations, testing latency, and power consumption.

7.1. Approximate Gradient Ranking

In this section, we consider using training images to test edge AI accelerators and compress test
vectors. However, achieving high coverage with low test queries and finding test vectors that are
most sensitive to parameter changes is a challenge. In addition, it is significantly challenging to test
"hard-to-detect" faults. We offer several solutions to overcome the challenges. The section is based on
our IEEE ITC paper [41].

7.1.1. Methodology

In this section, we first provide details and the overall flow for generating functional test vectors with the
proposed approximate gradient ranking (Method 1). Following this, we present a further approximated
method (Method 2) for the functional test generation targeting pre-trained NN models.

7.1.1.1. Approximate Gradient Ranking

During NN training, the mini-batch stochastic gradient descent algorithm is usually used for learning due
to its benefits, such as easier fitting of the training data to memory, computational efficiency, vectorization,
and so on. A gradient 𝛿 of a parameter W is calculated with respect to lossL for a mini-batchD𝐵 (⊂ D𝑡𝑟𝑎𝑖𝑛)
of size 𝐵 in each step, where, D𝑡𝑟𝑎𝑖𝑛 is the total training dataset. However, some training inputs are harder
to predict than others and will require more tuning of the NN parameters than others. We hypothesize that
the training input that requires more tuning of the NN parameters than others throughout the training will
be more sensitive to changes in the NN parameters than others. This property can be utilized to identify
training data that can be used as functional test vectors.

Our goal is to generate functional test vectors that will result in a large change in NN predictions with a
small perturbation or faults in NN parameters when the testing dataset is applied. Therefore, it will be
easier to detect subtle faults in the memristive-mapped NN. In this paper, we use our hypothesis to rank
each of the training data to generate functional test vectors (Method 1) to test the memristor-based NN.
The overall algorithm for the training steps is shown in Algorithm 3. To implement the proposed gradient
ranking, we first label each of the training data 1 · · ·𝑄 so that their respective gradient accumulation
can be tracked (line 2). To calculate gradient ranking, we need to calculate and accumulate the sum of
absolute gradients

∑|𝛿 | of all of the NN parameters 𝜃 for all the data points of D𝑡𝑟𝑎𝑖𝑛 throughout the
training. However, such calculations are computationally inefficient and will require a significantly larger
memory size for training. The inefficiency comes from the creation of 𝐵 gradient matrices for each of
the NN parameters for a mini-batch of size 𝐵 instead of one, as done normally in a single training step.

133

CHAPTER 7. EXPLICIT TESTING OF NNS

Although back-propagation can be done for each training data point serially to build one gradient matrix
per NN parameters, it will lead to a longer training time as 𝐵 back-propagations will be required. Also, the
benefits of mini-batch stochastic gradient descent mentioned earlier are not maintained.

Therefore, we approximate the required gradient calculation with the change in loss L value in each
training step for each data point of D𝑡𝑟𝑎𝑖𝑛 (lines 9-11). The suggested change in L value in each training
step for a single training example can be described as

ΔL = |L − L̃|. (7.1)

Here, L̃ is the loss after each optimization step (parameter update) (line 10). This adds only a few steps to
normal NN training (lines 9-11) and is much more efficient in finding the desired functional test data using
our proposed approach. The computation graphs that are usually created for back-propagation are not
required.

The intuition behind our proposed approximation is that ΔL is proportional to 𝛿 , since 𝛿 is calculated with
respect to loss L. Therefore, a higher 𝛿 value will lead to a higher ΔL value. In turn, the higher the ΔL
for training data, the higher the NN parameter tuned for those data.

Algorithm 3 Proposed Functional Test Generation Algorithm
1: Require: initial NN parameters 𝜃0, loss functionL, mini-batch size 𝐵, training datasetD𝑡𝑟𝑎𝑖𝑛 ⊂ (𝑋,𝑌),

learning rate 𝜂.
2: Results test dataset D𝑡𝑒𝑠𝑡 , trained parameters 𝜃
3: label training dataset 𝑋𝑛, 𝑛 = 1 · · ·𝑁
4: Initialize 𝛿L of each training data to zero
5: for epoch in epochs do
6: Sample minibatch D𝑘 (⊂ D𝑡𝑟𝑎𝑖𝑛) of size 𝐵
7: Forward pass D𝑘 on F with parameter 𝜃
8: Calculate elementwise loss L for each 𝑥𝐵 , 𝐵 = (1 · · ·𝐵)
9: Backpropagate and update parameters 𝜃 based on average loss
10: Forward pass on D𝐵 on F with updated parameter 𝜃
11: Re-calculate elemntwise loss L̃ on updated parameters 𝜃
12: Calculate and accumulate element wise change in loss ΔL
13: end for
14: Sort the training data 𝑎𝑟𝑔𝑠𝑜𝑟𝑡 (D𝑡𝑟𝑎𝑖𝑛) based on ΔL to get ranking
15: Sample 𝑆 (⊂ D𝑡𝑟𝑎𝑖𝑛) data point with maximum ΔL values

We accumulate ΔL throughout the training (line 12). After training, we rank each training data point
based on the accumulated ΔL value (line 14). We sample a small subset of the training data as the test data
D𝑡𝑒𝑠𝑡 ⊂ D𝑡𝑟𝑎𝑖𝑛 (line 15). Please note that for our objective, the gradient 𝛿 of each NN parameter for each
input is needed, as opposed to 𝛿 of input with respect toL that are usually required for adversarial examples
generation. As shown in Figure 7.1, the top-ranked NN prediction does not change at all (completely
overlaps) when an input with the lowest ΔL is used for testing the NN, while the NN prediction changes
from label ’6’ to label ’2’ by using an input with the highest ΔL. This shows similar behavior to the method
proposed in [37, 117] with synthetic test data.

Our proposed functional test generation procedure treats the NN as a black box and is non-invasive. The
NN training procedure is similar to typical DNN training, except that a few additional simple steps are
added that do not hinder normal NN training and can be considered as a validation step on the training
dataset. The training curve for the NN training with and without the proposed additional step is shown in
Figure 7.2. The training curve for the proposed method is the same as that for normal training.

134

7.1. APPROXIMATE GRADIENT RANKING

Figure 7.1.: The change in NN prediction probability of NN on a faulty and ideal model (fault-free) when the input is (a) test input
(images with highest (ΔL)), (b) normal input (images with lowest (ΔL)). NN prediction probability changes significantly on test
inputs compared to normal input. It is recommended to view this figure in color.

Figure 7.2.: The training curve of baseline (typical DNN training) and proposed approximate gradient ranking method. It is
recommended to view this figure in color.

7.1.1.2. Regularization with Data Augmentation

To reiterate, data augmentation can help NN training to achieve better generalization. Although our
proposed method works quite well without data augmentation, we propose to use data augmentation
during training and functional test generation, as we show later that using data augmentation makes test
data more sensitive to changes in NN parameters. However, our proposed method does not rely on data
augmentation, since it is generally not used in MLP training and tasks such as regression.

7.1.1.3. Global Approximation

Although the generation of the functional test patterns using the proposed approximate gradient ranking
method is simple and effective (shown later in Section 7.1.4) it can not generate test patterns for a pre-
trained model. We, therefore, propose to apply further approximation to our proposed gradient ranking
method (Method 1) discussed earlier. Instead of tracking the change in gradient for each input precisely
throughout the training, it can be approximated with a single step. The change in gradient between a
NN with randomly generated parameters and a pre-trained NN can also be utilized to rank training data
points that can be used as functional test vectors. We define this method as the global approximate method
(Method 2) for test generation.

Generating test vectors with the global approximation method is similar to Method 1 and Algorithm 3.
The back-propagation (line 8), parameter update (line 8), and the accumulation of change in loss (line 11)

135

CHAPTER 7. EXPLICIT TESTING OF NNS

are not required as the NN is already trained. The ΔL is calculated in a single step and can be described
as:

ΔL = |LI − L̃I |. (7.2)

Here, LI and L̃I are the loss of randomly initialized and pre-trained NN, respectively. Therefore, this
method still considers the NN as a black-box, non-invasive, and model-agnostic. No knowledge about the
pre-trained model is required for test vector generation. The losses LI and L̃I can be easily calculated by
downloading a pre-trained model and resetting its parameters.

However, this method has its own limitations. Specifically, it is limited to larger NNs and normalized
models, i.e., normalization layers and data normalization are used. Data normalization makes sure that
the input features have a zero mean and a unit variance. These methods reduce the sensitivity of random
weight initialization and typically lead to similar performance. In addition, this approach requires access
to the training data of the pre-trained model.

7.1.2. Proposed Test Application Method

In this section, we provide details about the proposed test application method for fault detection. We show
how the proposed approach works to detect two categories of faults: important faults (Method 1⃝) as well
as hard-to-detect faults (Method 2⃝). Following this, we present a test time label generation method to
achieve 100% accuracy on the test dataset without overfitting them. Furthermore, the overall flow for the
fault detection framework that can detect important and hard-to-detect faults is also presented.

7.1.2.1. Categorizing Fault Induced Accuracy deviations

Due to the non-idealities of memristors, the inference accuracy of the implemented NN can change to a
varying degree of severity. Observable faults that cause noticeable degradation in inference accuracy are
more important to detect as they violate acceptable accuracy margin and hence should be detected as a
part of manufacturing testing. We define such faults as important faults. If such faults are undetected,
and they can accumulate and become catastrophic. Catastrophic faults can cause drastic degradation in
the accuracy of deep learning applications. For periodic in-system testing, we want to detect faults early
enough before they become catastrophic. Therefore, our fault detection method primarily depends on
the detection of faults that cause task-related accuracy to drop below the accuracy margin Δ𝐴𝑖𝑛𝑓 𝑒𝑟 due to
defects, variations, and non-idealities of memristors.

Conversely, in certain safety-critical applications such as autonomous driving and medical image analysis,
even a small accuracy fluctuation, e.g., Δ𝐴𝑖𝑛𝑓 𝑒𝑟 = 0.1%, is considered catastrophic and unacceptable. This
type of fault is defined as the hard-to-detect fault. However, detecting such small changes in NN is more
expensive and is hard in comparison, analogous to small delay defects in digital circuits [213]. We, therefore,
propose a specialized method that can detect even a tiny change in NN accuracy.

7.1.2.2. Detection method for important faults

In this work, the accuracy of the test dataset is used as the output response analysis for fault detection.
That is, we determine the change in the accuracy of the test dataset to detect memristive faults (Method 1⃝).
A fault is detected if the accuracy of the test dataset deviates from the ideal fault-free accuracy. However,
the accuracy of the test dataset is not guaranteed to achieve 100%, especially when regularization is used
during training which does not allow overfitting of the training data. We, therefore, propose to substitute
miss-predicted test vectors with the NN predicted label for a classification task to bring the accuracy of the
test data set to 100% without overfitting them as done in [37]. For manufacturing testing, the labels should

136

7.1. APPROXIMATE GRADIENT RANKING

DNN
Under Test

a) Detection Flow for Important Faults

Test Data
D𝑡𝑒𝑠𝑡

Applied Serially

A𝑡𝑒𝑠𝑡 <
100%

Fault
Detected

Test Non-
Catastrophic Faults No Yes

Predictions
for D𝑡𝑒𝑠𝑡

Calculate
loss L𝑃

b) Detection Flow for Hard-to-detect Faults

L𝜏 ≠ L𝑃
Fault

Detected
Normal

Operation No Yes

Figure 7.3.: Fault detection flow for a) Important faults and b) Hard-to-detect faults. Test quarries are applied only once for both
fault detection methods. Detection of hard-to-detect faults is carried out conditionally after an important fault detection step.

be generated pre-mapping the NN on the memristive accelerator, i.e., on the trained model. For periodic
in-system testing applications, labels should be generated post-mapping after manufacturing defects are
mitigated.

Finding the optimal size of the testing dataset is challenging since that depends on many factors, including
fault severity, fault type, and NN task, as discussed in Section 7.1.4. During fault detection, normal device
operation is paused. Hence, it is of paramount importance to reduce the testing time. In CiM architecture,
typically only one test input can be applied to the memristive accelerator at a time. We refer to each
test input as test queries. Since our goal is to determine accuracy deviation on the test dataset, a fault is
detected when even one test query is miss-predicted, and the testing procedure of the memristive NN
stops similar to digital IC testing. This can significantly reduce the required test queries and testing time.
Furthermore, this solves the challenge of finding the optimal size of the test dataset. The upper end of
the allowed test data can be stored but the number of test queries required will be automatically adjusted
based on factors such as fault severity, fault type, and NN task.

7.1.2.3. Detection method for hard-to-detect faults

The proposed fault detection method can achieve high test coverage if the faults cause noticeable degra-
dation in inference accuracy, e.g., Δ𝐴𝑖𝑛𝑓 𝑒𝑟 = 2%. However, when the accuracy degradation is tiny, e.g.,
Δ𝐴𝑖𝑛𝑓 𝑒𝑟 = 0.1%, the proposed important fault detection method fails to detect all of the faults (as shown
later in Section 7.1.4), leading to fault escapes that are not tolerated in safety-critical applications. Also, if
the number of test vectors stored in the hardware is small, e.g., 16 − 32, there are more test escapes for the
proposed important fault detection method (Method 1⃝).

We, therefore, propose to store the average loss L̂𝜏 of the testing dataset and compare the loss L𝑃 of the
faulty NN to detect faults (Method 2⃝). Hence, it requires a single value storage in addition to storing
test data, which adds negligible storage overhead. Please note that this method does not require full
access to device outputs but only the predicted score, e.g., the confidence score of the predicted label in a
classification task. Therefore, this method can not be applied to a device that only outputs the predicted
label of a classification task, but just one stage before that output.

137

CHAPTER 7. EXPLICIT TESTING OF NNS

Table 7.1.: Shows the inference accuracy and data augmentation setting of different datasets used in this work.
Dataset Topology Data Augmentation Accuracy

Fashion-MNIST MLP No 89.36%

CIFAR-10 ResNet-18 Yes 92.94%
ResNet-18 No 86.08%

CIFAR-100 ResNet-110 No 73.75%

7.1.3. Fault Modelling and Injection Framework

7.1.3.1. Modelling Conductance Variations

The conductance variations depend on the type of memristor device and environmental factors such as
temperature. In this paper, the variation model proposed in [75] is used. Variation in the memristor device
is therefore modelled into two types: multiplicative and additive Gaussian and can be described as:

𝐺𝑟𝑒𝑎𝑙 = 𝐺𝑙𝑑𝑒𝑎𝑙 + V(𝐺𝑟𝑒𝑎𝑙 , 𝑋), 𝑋 ∼ N(𝜇, 𝜎2) (7.3)

Where, 𝐺𝑟𝑒𝑎𝑙 and 𝐺𝑖𝑑𝑒𝑎𝑙 are the deviated and ideal conductance of the memristive cells, respectively. Also,
the functionV(.) models the variations and N is the probability density function representing normal
distribution. The weights of the pre-trained model are encoded as the conductance of the memristor
cells 𝐺𝑖𝑑𝑒𝑎𝑙 . Therefore, the 𝐺𝑖𝑑𝑒𝑎𝑙 is considered as the weights of pre-trained model𝑊𝑜𝑟𝑖𝑔 and 𝐺𝑟𝑒𝑎𝑙 as the
variation injected weight𝑊𝑛𝑜𝑖𝑠𝑦 and can be described as

𝑊𝑛𝑜𝑖𝑠𝑦 =𝑊𝑜𝑟𝑖𝑔 + V(𝑊𝑜𝑟𝑖𝑔, 𝑋), 𝑋 ∼ N(𝜇, 𝜎2) . (7.4)

The conductance fluctuations due to additive and multiplicative type variations are further modeled as two
factors: device-to-device manufacturing variations (spatial fluctuation)N𝑆 ∼ (1, 𝜎2

𝑆
) and thermal variations

(temporal fluctuation) N𝑇 ∼ (𝜂0, 𝜎
2
𝑇
) [74]. Where, 𝜂0 is the noise scale that is used to control the severity

of noise. The overall fault model for multiplicative and additive variations can be defined according to
[128] as:

𝑊𝑀𝑈𝐿
𝑛𝑜𝑖𝑠𝑦 =𝑊𝑜𝑟𝑖𝑔 +𝑊𝑜𝑟𝑖𝑔 · N𝑇 · N𝑆 (7.5)

𝑊 𝐴𝐷𝐷
𝑛𝑜𝑖𝑠𝑦 =𝑊𝑜𝑟𝑖𝑔 + N𝑇 · N𝑆 (7.6)

Based on Equations 7.6 and 7.5 the variations are injected into the weight matrix of all layers as random
noise. For each fault run, we randomly sample from the Gaussian distribution of N𝑇 and N𝑆 .

7.1.3.2. Modelling Permanent Faults

Permanent faults such as Stuck-on/off, Stuck-open/short, Slow-write, and Read/Write disturbance can be
modelled as:

𝑊𝑠𝑡𝑢𝑐𝑘 = 𝑓 (P𝑠𝑡𝑢𝑐𝑘 ,𝑊𝑜𝑟𝑖𝑔) (7.7)

where, P𝑠𝑡𝑢𝑐𝑘 is the percentage of permanent faults injected and function 𝑓 (·) is the fault model. In this
paper, we model 𝑓 (·) by randomly sampling P𝑠𝑡𝑢𝑐𝑘% bits of weights and randomly setting them to either 1
or 0. However, for Read/write disturbance, we flip random P𝑠𝑡𝑢𝑐𝑘% bits of weights.

138

7.1. APPROXIMATE GRADIENT RANKING

Figure 7.4.: Test coverage of Fashion-MNIST dataset considering a) additive, and b) multiplicative variations. It is recommended
to view this figure in color.

7.1.4. Results

7.1.4.1. Evaluation Setup

We have trained an MLP with four layers (256 neurons per hidden layer) on the Fashion-MNIST and
ResNet-18 CNN topology on the CIFAR-10 benchmark datasets. We have used a cross-entropy loss function
for the classification task and optimized the NNs with the ADAM optimization algorithm with the default
setting in Pytorch. The best accuracy achieved on the validation dataset is used for simulation. For each
dataset, we have trained three models (𝑀1, 𝑀2, 𝑀3) from scratch with a different random seed. We used an
already trained ResNet-110 model on the CIFAR-100 dataset to evaluate the global approximation method.
Specifically, the model parameters are downloaded from [214] without knowledge of training.

We have not applied any pre-processing to the Fashion-MNIST and CIFAR-100 datasets. However, we
have augmented the CIFAR-10 training dataset with RandomHorizontalFlip and RandomResizedCrop type
data augmentation methods due to their benefits mentioned earlier. Furthermore, as shown in Table 7.1,
applying data augmentation improves the inference accuracy of the CIFAR-10 dataset by ∼ 7%. We also
discuss the effect of data augmentation on testing coverage. Augmentation is not applied to the inference
datasets.

In this paper, we quantize the NN to 8-bit precision that represents 256 quantization levels and encoded
them to eight memristor cells. The trained weights of the linear layers are mapped to a crossbar with a
dimension (m and n) of 256× 512, and the fully unrolled weight matrixes of the convolution layers are split
across multiple different crossbars of the same dimension as the linear layers. We have used the weight
matrix splitting and current accumulation as proposed in [64].

In this paper, we define the accuracy margin of important fault as Δ𝐴𝑖𝑛𝑓 𝑒𝑟 = 2%, i.e., the fault that
causes inference degradation of more than 2%. We refer to the catastrophic accuracy degradation as
Δ𝐴𝑖𝑛𝑓 𝑒𝑟 > 5%.

Without losing generality across different memristor technology, we have simulated our method on 1000
memristive crossbars instances to simulate the effect of per-chip variations and permanent defects. The
same amount of simulations are performed for both CNN and MLP with all the benchmark datasets, models
(𝑀1, 𝑀2, 𝑀3), and test queries. The strength of conductance variation is increased by changing the 𝜂0
value of Equations 7.6 and 7.5 for multiplication and addition type variations to analyze the impact of
different inference accuracy deviation scenarios. We have normalized the noise strength by choosing 𝜂0
such that inference accuracy degrades to ∼ 2%, ∼ 4%, and ∼ 10%. We refer to those cases 𝑁∼2%, 𝑁∼4%,
and 𝑁∼10%, respectively, in this paper. Furthermore, for the read/write disturbance and stuck-at/slow
write faults, we randomly inject P𝑠𝑡𝑢𝑐𝑘 = 0.2% faults based on Equation 7.7 defined in Section 7.1.3.2. We

139

CHAPTER 7. EXPLICIT TESTING OF NNS

Figure 7.5.: Test coverage of CIFAR-10 dataset considering a) additive, b) multiplicative variations. It is recommended to view
this figure in color.

report test coverage as the ratio between detected faults (𝐴𝑡𝑒𝑠𝑡 < 100%) and overall faults (𝐴𝑁
𝑖𝑛𝑓 𝑒𝑟

< 𝐴𝑖𝑛𝑓 𝑒𝑟 ,
𝑁 ⊂ 𝑁∼2%, 𝑁∼4%, 𝑁∼10%) and can be described as

𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =
#𝑜 𝑓 (𝐴𝑡𝑒𝑠𝑡 < 100%)

#𝑜 𝑓 (𝐴𝑁
𝑖𝑛𝑓 𝑒𝑟

< 𝐴𝑖𝑛𝑓 𝑒𝑟)
× 100. (7.8)

Here, 𝐴𝑁
𝑖𝑛𝑓 𝑒𝑟

refers to the inference accuracy of a faulty NN and 𝐴𝑖𝑛𝑓 𝑒𝑟 is the inference accuracy of a
fault-free NN. In this paper, we refer to the sensitivity of the testing dataset as a qualitative measure of the
ability to detect parameter deviations of memristive deep learning applications.

7.1.4.2. Analysis of Test Performance of Important Fault Detection

Analysis of Variation Detection When a sufficiently large number of functional test data is stored, that
is, D𝑡𝑒𝑠𝑡 ≥ 16, the proposed method achieves 100% test coverage (see Equation 7.8) in both the Fashion-
MNIST and CIFAR-10 datasets under both multiplicative and additive variation, as shown in Figures 7.4
and 7.5. Also, we have found that the testing dataset is more sensitive to additive variations compared
to multiplicative variations in both datasets. For example, the coverage of Fashion-MNIST with only
two stored test vectors can reach 100% when the accuracy degradation is sufficiently higher (>= 4%).
Furthermore, the test vectors are also more sensitive to MLPs on the Fashion-MNIST dataset compared to
CNN with CIFAR-10 datasets. Specifically, the test coverage of CIFAR-10 with multiplicative variations is
0%, but the Fashion-MNIST dataset achieves up to 92.47% coverage when only two test vectors are stored
on the hardware.

The number of test queries required is generally small, e.g., only 4 maximum number of queries are required
for the Fashion-MNIST dataset (as shown in the Figure 7.7 (a)) to achieve 100% coverage, therefore, the
coverage reaches 100% at 16 test vectors stored. Similarly, the CIFAR-10 dataset requires a maximum of
31 test queries (as shown in the Figure 7.7 (b)) to achieve 100% coverage and with only 19 test vectors,
coverage can reach 99.97%. CNNs require more test queries compared to MLPs because it has considerably
more parameters and the topology is deeper.

Permanent Faults The proposed test pattern generation method can achieve a test coverage of 100%
under permanent faults when the stored test vectors are sufficiently large, i.e.,D𝑡𝑒𝑠𝑡 ≥ 64 for the CIFAR-10
dataset as shown in Figure 7.6 (a). However, MLP with Fashion-MNIST dataset requires only 16 test vectors
stored to achieve 100% coverage as shown in the Figure 7.6 (b).

The number of test queries required is again generally small, but they are relatively higher compared to the
case when testing conductance variations, e.g., only 27 maximum number of queries required (as shown

140

7.1. APPROXIMATE GRADIENT RANKING

Figure 7.6.: Test coverage of permanent faults with a) CIFAR-10, and b) Fashion-MNIST dataset considering both read/write
disturbance and stuck-at/slow write faults. It is recommended to view this figure in color.

Figure 7.7.: Number of test queries required in relation to the number of test vectors stored for a) Fashion-MNIST dataset, b)
CIFAR-10 dataset. Analyses were performed on all the permanent faults and both variations types. It is recommended to view
this figure in color.

in Figure 7.7 a)) for the Fashion-MNIST dataset to achieve 100% coverage. As a result, the coverage of
Fashion-MNIST reaches 100% when 32 test vectors are stored. In addition, with only 15 test queries, 99.99%
test coverage can be achieved. Similarly, the CIFAR-10 dataset requires a maximum of 63 test queries (as
shown in Figure 7.7 b)) and with only 18 test queries the coverage can reach 99.04%. The proposed test
vectors are again more sensitive when testing MLPs with the Fashion-MNIST dataset compared to CNNs
with CIFAR-10 datasets.

7.1.4.3. Analysis of Test Performance of Hard-To-Detect Faults

Our proposed important fault detection method with 64 generated test vectors can achieve 100% even when
accuracy is degraded due to faults is 0.27% for both CNN and MLP with CIFAR-10 and Fashion-MNIST
datasets as shown in the Figure 7.8. However, when the accuracy degradation is significantly lower.
For example, when the average accuracy degradation due to multiplicative variations is only 0.08%, the
proposed important fault detection method (Method 1⃝) only achieves 65% coverage, but the proposed
hard-to-detect method (Method 2⃝) can achieve 100% coverage for the CIFAR-10 dataset. Furthermore, the
proposed hard-to-detect method produces results similar to the Fashion-MNIST dataset.

The maximum number of test queries required increases to detect important faults when the accuracy
degradation due to the deviation of the NN parameter is low (< 0.5%). For example, 55 test queries are
required when the inference accuracy degradation of the Fashion-MNIST dataset is 0.21% compared to 5
for an accuracy degradation of 25.6%. At higher accuracy degradation, only one maximum test query is
required to achieve 100% coverage. However, the full number of stored test vectors is used as test queries
for hard-to-detect faults.

141

CHAPTER 7. EXPLICIT TESTING OF NNS

Figure 7.8.: Analysis of test coverage when the accuracy degradation of a) fashion-MNIST dataset, b) CIFAR-10 dataset is varied
up to 0.27%. Here, the size of the test vector stored is 64, and multiplicative type fault injection is performed.

Figure 7.9.: Analysis of test coverage of global approximation method on pre-trained CIFAR-100 dataset. It is recommended to
view this figure in color.

When random data augmentation is not applied to the CIFAR-10 training, the sensitivity of the test data
decreases. For example, the coverage of permanent faults decreases to 91.4%, and the lower end of detectable
accuracy due to faults increases to ∼ 4%. Therefore, we recommend augmenting the data during training.

7.1.4.4. Analysis of the Global Approximate Ranking

Our proposed global approximation method (Method 2) to generate test vectors can still achieve a test
coverage of 100%, as shown in Figure 7.9 for memristive defects and variation on the pre-trained CIFAR-100
dataset. Similarly, the coverage results are comparable to the test vector generated with a more precise
approximate gradient ranking (Method 1) in the CIFAR-10 dataset.

7.1.4.5. Comparison with State of the Art and Overhead Analysis

We have evaluated our work with related work [37], [117], and [118] that uses the functional test generation
method. The analysis is done based on the numbers reported in their paper. We have used the same
bit-width to store the images and test labels as in [37]. There is a negligible difference between the size
of test vectors and the storage overhead of our work and work in [118], but our method achieved up to
16% more test coverage. On top of that, our method has significantly lower storage overhead and test
vector size compared to [37, 117] but still manages to outperform them and achieve 100% test coverage, as
summarized in Table 7.2. We have normalized the number of test queries required to achieve test coverage
similar to [37].

142

7.1. APPROXIMATE GRADIENT RANKING

Table 7.2.: Comparison of the proposed method with the related work in terms of test coverage, memory storage overhead (when
re-training data is and is not available), number of test queries required, and fault-detection resolution. The analysis is done on
CNN with the CIFAR-10 dataset.

[37] [117] [118] Proposed
Size of 10000 1024 10-50 16-64test vectors

of test queries 10000 1024 10-50 17(normalized)
Memory 0.0151 0.0002561

overhead (MB) 245.7752 234.422 0.1542 0.19662

Fault detection ~3 ∼ 0.27
resolution (%) ∼ 0.01
Coverage (%) 99.273 983 763/ 844 1004

1 Re-training data is stored in hardware.
2 Re-training data is not stored in hardware.
3 Synthetic testing data
4 Original training data used as testing data

7.1.5. Scientific Impact of This Work and Contributions

We outline the scientific impact of this work as follows:

• Compact Test Pattern Generation: The work presented in this section showed that test pattern
compaction and non-invasive testing method is an attractive research direction to reduce overall
testing and can benefit pre-trained models that are treated as intellectual property. Thus, the
testability of resource-constrained edge AI accelerators can be improved.

• Secure Testing: The method proposed in this technique does not require full access to NN output
but only final prediction or image label, which increases security against adversarial attacks [215].

• Scalability of Testing Methods: To improve the applicability of a testing method, it is important
that the testing method is scalable across various NN topologies, datasets, and non-idealities types.
Our evaluation showed that it is a viable option in this research direction.

• Practicality: A practical test generation method is one that is easy to implement and requires
minor modifications to the training and inference of the NN. The proposed approach requires only
one additional step during training that does not alter the original training process. Thus, it is an
attractive option in this regard.

7.1.6. Section Conclusion

In this section, we propose a comprehensive test generation flow that ranks and selects a small subset of
input data from the training dataset for the functional test with significantly lower overhead compared to
previous solutions [37, 117, 118] to test the memristive NN implementations. Furthermore, we also propose
test application methods based on the severity of faults. Our method requires only a few additional steps
to generate the functional test pattern and can achieve up-to 100% test coverage with only 0.128% of the
training data. Consequently, it reduces the complexity of the test patterns generation and has a negligible
memory requirement for testing regardless of the types of faults. Our work allows for easier and faster
detection of faults before they negatively affect the accuracy of deep learning applications.

143

CHAPTER 7. EXPLICIT TESTING OF NNS

7.2. Single-shot Testing Large-Scale Deep Neural Networks

While we were able to significantly reduce the number of test vectors and test queries compared
to related works, in this section, we aim further to reduce the testing cost to the absolute minimum.
We aim to test the whole NN model in an AI accelerator using one test vector and one forward pass,
which is the extreme end of test compression. However, there are challenges in generating such a test
vector and defining an online testing method for this purpose. In this section, we propose solutions to
overcome the challenges of single-shot testing.
The section is based on our journal paper from IEEE TCAD [42]

7.2.1. Methodology

7.2.1.1. Motivation and hypothesis of our approach

To reiterate, in the presence of faults or variations in the parameters of memristor-mapped NNs, their rep-
resentation changes from the expected (trained) parameters, resulting in degradation of their performance.
According to Equation 2.1, non-ideal parameters will directly affect the weighted sum and, in turn, the
activation of a layer. Since activation of a layer becomes the input to the following layer, the cascading
effect of non-ideal parameters is likely to ultimately flow to the overall output 𝑦 of the NNs. Therefore, the
distribution logits z𝐿 are also expected to change, as shown in Fig. 7.10(c).

Figure 7.10.: a) Change in output distribution depicted for different NN models but on the same test vector, b) comparison of the
change in the output distribution for two different test vectors but on the same NN model (ResNet-18). While the conventional
method reveals a change in output distribution across different models and test vectors, our approach ensures standardized
output distributions (distributions overlap) irrespective of models or test vectors. c) We compared the relative change in output
distribution for the same noise level between the proposed and conventional test vectors. The output distribution is more sensitive
to noise for our proposed one-shot test vector. In the conventional method, the test vectors are randomly sampled from the
ImageNet validation dataset. It is recommended to view this figure in color.

Therefore, we introduce a novel one-shot testing method based on the observation and hypothesis that
faults and variations in the memristive NN parameters influence the distribution of z𝐿 . Our approach aims
to detect distribution shifts in the logits of the model using a single test vector that is specifically designed
to produce a distinct output distribution for fault-free cases. Consequently, faults and variations can be
easily detected by evaluating the output distribution of a memristive NN after applying the one-shot test
vector.

144

7.2. SINGLE-SHOT TESTING LARGE-SCALE DEEP NEURAL NETWORKS

However, there are several challenges associated with this approach. The primary challenges include
standardizing the output distribution using one test vector, estimating the change in distribution for
pre-trained models, and designing an effective one-shot test vector for various model architectures. We
discuss them in the following section with their respective solutions.

7.2.1.2. Proposed deviation detection method

Since the expected distribution of a model is unknown and likely varies from one model to another and from
one test vector to another (as shown in the upper half of Fig. 7.10(a) and (b)), it is difficult to estimate the
change in distribution for a pre-trained model. Therefore, we propose standardizing the logits distribution
of each model under test (MUT) to a unit Gaussian distribution, z𝐿 ∼ N(𝜇 ≈ 0, 𝜎2 ≈ 1) , which means zero
mean 𝜇 ≈ 0 and unit variance 𝜎2 ≈ 1. Standardizing the output distribution is crucial for the one-shot
testing method, as it ensures a consistent and comparable metric across various models and test vectors.
Also, it reduces the likelihood of false-positive deviation detection and enhances the sensitivity to non-ideal
parameters.

Let z𝐿 ∼ N̂ (𝜇, 𝜎2) be the output distribution of a memristive NN model. Here, output distribution refers
to the row distribution of an NN (logits distribution) before applying any final activation function, such
as SoftMax or Sigmoid. Faults and variations in the parameters of memristive NNs can be detected by
evaluating the Kullback–Leibler (KL) divergence between the expected output distribution N and the
output distribution of memristive NNs as:

𝐷KL(N̂ ∥ N) =
𝑛∑︁
𝑖=1
N̂ (𝑖) log N̂ (𝑖)N (𝑖) (7.9)

which can be simplified for two normal distributions as:

𝐷KL(N̂ ∥ N) = log 𝜎N
𝜎N̂
+
𝜎2
N̂
+ (𝜇N̂ − 𝜇N)2

2𝜎2
N

− 1
2 . (7.10)

We assumed that the distributions N̂ and N were discrete, since we quantized the parameters of the
memristive NN. Here, we denote the mean and standard deviation of the output distribution N̂ of the
memristive NN as 𝜇N̂ and 𝜎N̂ , respectively. Similarly, 𝜇N and 𝜎N represent the mean and standard deviation
of the expected output distribution N . Since 𝜇N and 𝜎N are defined as 0 and 1, respectively, the above
equation can be further simplified as:

𝐷KL(N̂ ∥ N) = log 1
𝜎N̂
+
𝜎2
N̂
+ 𝜇2
N̂

2 − 1
2 . (7.11)

The KL divergence measures how one probability distribution differs from another. A larger value of
𝐷KL(N̂ ∥ N) indicates that the output distribution of the memristive NN is different from the expected
distribution due to non-idealities in the parameters. Specifically, a threshold 𝑡ℎ can be defined, where
𝐷KL(N̂ ∥ N) ≥ 𝑡ℎ indicates non-ideal parameters in the memristive NN. The specific choice of 𝑡ℎ depends
on several factors, which will be discussed later in Section 7.2.3.

Please note that other distance functions, such as the Jensen-Shannon divergence (which is a symmetrized
version of the KL divergence), can also be used. Alternatively, for simplicity, evaluating only the 𝜇N̂ and
𝜎N̂ values is also sufficient for detecting faults and variations.

145

CHAPTER 7. EXPLICIT TESTING OF NNS

Memristive
NN (MUT) 𝑫𝑲𝑳

> 𝒕

≈ t
One-shot
Test vector

Forward-pass
Output (#𝒚)

Calculate
KL-divergence

Faults/variation
detected

Fault-free

Figure 7.11.: Flow diagram of our proposed one-shot testing approach. A KL-divergence value greater than a predefined threshold
indicates faults or variation in the memristive NN.

The test vector (stored in the hardware) can be applied periodically during the online operation, and
the deviation from the expected distribution can be used as an indicator for faults and variation in the
memristive NN. The general flow diagram of our one-shot testing approach is depicted in Fig. 7.11.

7.2.1.3. Hardware Needed to Compute The KL Divergence

The computation of the KL divergence involves a series of arithmetic operations, including logarithm,
mean and standard deviation calculations, square root, addition, and subtraction (see Equation 7.11).

It is important to note that hardware acceleration for the KL divergence computation is not essential. This
calculation can be effectively performed using software, as it is applied to the output of the neural network
(following a black-box approach).

Alternatively, if the primary objective is to minimize the computational overhead associated with moni-
toring the status of the neural network, a simpler approach could be adopted. In this case, the mean and
standard deviation (or variance) of the logit distribution can be observed. Therefore, the computational
requirements can be significantly reduced. This approach would primarily involve summation, subtraction,
multiplication, and division operations, all of which are typically supported by most AI accelerators.

7.2.1.4. Proposed test vector generation method

In order to make the proposed one-shot testing method possible, the distribution of logits z𝐿 of a model
should not only be standardized, but also be done with a single test vector and one forward-pass, i.e.,
one-shot. We generate a special test vector for this purpose with a specific learning objective that is
unrelated to the original learning objective of the model. The original learning objective of the model
remains unchanged, and no knowledge about the original learning process is required for the test vector
generation process. In our approach, gradient descent is applied to the input (test vector) of a model
rather than to the model parameters and variables. Therefore, the model parameters and variables remain
unchanged. Consequently, the baseline accuracy of the model in the original task remained unchanged.

Learning objective Since our learning objective is to produce a standard Gaussian distribution for z𝐿

by optimizing only the input to the model, several loss functions can be designed to encourage the z𝐿

distribution N̂ to have a mean of 0 and a standard deviation of 1. For example:

arg min
𝜇N→0,𝜎N→1

1
𝑁

𝑁∑︁
𝑖=1

z𝐿𝑖 log
z𝐿𝑖
ẑ𝐿
𝑖

, (7.12)

146

7.2. SINGLE-SHOT TESTING LARGE-SCALE DEEP NEURAL NETWORKS

minimizes pointwise KL-divergence loss between the logits z𝐿 model and ground truth value ẑ𝐿 . Alterna-
tively,

arg min
𝜇N̂→0,𝜎N̂→1

(𝜇N̂)
2 + (1 − 𝜎N̂)

2, (7.13)

encourages 𝜇N̂ and 𝜎N̂ to be close to 0, and 1, respectively. Regression loss, such as

arg min
𝜇N̂→0,𝜎N̂→1

1
C

C∑︁
𝑖=1
(z𝐿𝑖 − ẑ𝐿𝑖)2, (7.14)

can also be used. Here, C denotes the number of output classes in the NN.

The ground truth ẑ𝐿 for the training can be defined as

ẑ𝐿 =
z𝐿 − 𝜇N̂
𝜎N̂

, (7.15)

or can be sampled from a unit Gaussian distribution. The number of samples should be the same as the
number of output classes of an NN model. Our learning objective can be considered supervised learning,
as we have target value ẑ𝐿 for the objective.

The proposed one-shot test vector produces a standardized output distribution across different models
and generated test vectors, as shown in the bottom half of Fig. 7.10(a) and (b). Furthermore, the relative
deviation of the output distribution for the one-shot test vector is significantly higher, as demonstrated in
Fig. 7.10(c). As a result, our one-shot test vector is considerably more sensitive to non-ideal parameters.

Initialization Let x̄ be the learnable one-shot testing vector with shape [𝐻 ,𝑊 , 𝐶𝑖𝑛] (assuming a colored
image for image related tasks) that is optimized based on the loss function (7.11). Here,𝐻 ,𝑊 , and𝐶𝑖𝑛 denote
height, width, and number of channels, respectively. The correct initialization of x̄ is crucial to proper
learning, where the initial values are assigned to each pixel of x̄ before training. The convergence speed
and the final loss value depend greatly on proper initialization. Additionally, appropriate initialization is
essential for deeper networks, as the gradient is propagated all the way back to the input.

We initialize x̄ element-wise with random values drawn from a unit Gaussian distribution as follows:

x̄𝐻,𝑊 ,𝐶 ∼ N(0, 1) (7.16)

Element-wise initialization enables fine-grained control over the initialization process and is commonly
used in deep learning.

Alternatively, initialization from out-of-distribution data, i.e., data that does not belong to the training
set, also works well. This means that stock images from the Internet can also be used for initialization.
Therefore, access to training data is still not necessary. Fig. 7.12 shows some examples of test vectors
generated with their initial images. Our optimization procedure makes minute adjustments to the stock
photos. Therefore, they are visually indistinguishable.

The overall algorithm for the proposed one-shot test vector generation is summarized in Algorithm 4. To
accelerate the learning process, we propose optimizing the test vector with an exponential decay learning
rate for every K iteration.

147

CHAPTER 7. EXPLICIT TESTING OF NNS

Figure 7.12.: Some examples of the proposed one-shot test vector for the DenseNet-121 topology. To the naked eye, optimized
stock images appear identical to their original images. Nevertheless, they differ marginally.

Algorithm 4One-shot test vector generation using gradient descent with an exponential decaying learning
rate
1: Require: Pre-trained network F , loss function L(.), initial learning rate 𝛼0, number

of iterations E, Decay rate K , and shape of the test vector x̄ [𝐻 ,𝑊 , 𝐶𝑖𝑛].
2: Ensure: One-shot test vector x̄
3: Initialize x̄ element-wise with random values from a
4: unit Gaussian distribution
5: for 𝑒 = 1 . . . E do
6: Perform forward pass through F with input x̄ to obtain logits z𝐿

7: Compute loss L(z𝐿, ẑ𝐿)
8: Calculate gradient ∇L with respect to x̄
9: Compute the current learning rate 𝛼𝑡 :

𝛼𝑡 =

{
𝛼0 if 𝑡 mod K ≠ 0
𝛼𝑡−1/10 if 𝑡 mod K = 0

10: Update x̄ using gradient descent with the current learning rate: x̄← x̄ − 𝛼𝑡∇L
11: end for

148

7.2. SINGLE-SHOT TESTING LARGE-SCALE DEEP NEURAL NETWORKS

7.2.2. Relevance of Normalization Methods for Standardizing the Output Distribution

To reiterate, normalization methods such as batch normalization standardize neuron activations before
applying affine transformations. However, they are not suitable for our proposed one-shot testing method
due to the following reasons:

a) Conventional normalization methods are typically applied to intermediate activations of a NN and are
not designed to directly standardize the output distribution, which is the primary goal of our one-shot
testing method. b) Batch normalization, as an example, requires multiple test vectors (batch of inputs) to
estimate the mean and variance of the distribution, conflicting with the one-shot nature of our method,
which relies on a single test vector for output distribution standardization. Although other normalization
techniques, such as group normalization [53], have been proposed for small batch sizes, they are designed
for specific tasks such as sequence-to-sequence learning, recurrent neural networks (RNNs), or style
transfer, and may not be directly applicable or easily adaptable to all deep learning tasks. c) Finally,
normalizing the model output may necessitate retraining the model using the entire training dataset, which
could be computationally expensive, require access to the training data, and potentially negatively impact
the model’s performance, as it may not generalize well to unseen data.

In general, the normalization method, in this case, would process the output of the MUT to produce the
standardized output. Due to this processing, there is a risk that some fault-masking may occur. Thus, our
unique approach to standardizing the output distribution aligns well with the requirements and objectives
of our one-shot testing method.

7.2.3. Simulation Results

7.2.3.1. Fault Modelling and Injection Framework

Modelling Conductance Variations Conductance variations are only subject to memristive devices. Mem-
ristive technology and external environmental conditions influence conductance variation during online
operations and in the manufacturing process. In this section, we employ the conductance variation model
proposed in [41] that considers both the device-to-device manufacturing process variations (spatial fluctu-
ation) and the thermal variations (temporal fluctuation during online operation). Since the distribution of
memristive variations changes from one memristor technology to another, the variation model injects two
types of variations into NN weights: multiplicative and additive Gaussian noise. Both types of variation
are injected into the weight matrix of all layers as random noise, with a noise scale of 𝜂0 used to control
the severity of the variations. For each fault run, a different random sample is taken from the variation
model. Furthermore, since various noise scales of 𝜂0 are used, our evaluation considers the various degrees
of process and thermal variations of the memristive cells.

For variations in the MAC results, we have modeled process and run-time variations of memristors affecting
the MAC results as Gaussian noise. Thus, we inject Gaussian noise (with varying 𝜎) into the MAC results
of hidden layers.

Modelling Online and Manufacturing Faults In terms of online and manufacturing faults, we consider
the fault model 𝑓 (·), which takes into account all the common faults discussed in Section 2.10. Since the
ultimate effect of various types of fault is to flip the affected memory cell from its desired level to another,
the fault model 𝑓 (·) considers the flipping fault model. Note that although in stuck-at faults, a memory
cell is stuck at either a low or high state, its effect is seen only if the faulty cell is stuck at a level opposite
to the desired level. Therefore, flipping fault models are relevant for stuck-at-faults as well.

Also, we consider two different kinds of flipping fault models depending on the mapping employed or
hardware accelerator architecture: bit-wise and level-wise. NN parameters can be encoded bit-wise, with

149

CHAPTER 7. EXPLICIT TESTING OF NNS

eight memory cells representing a single parameter. Our bit-wise fault model targets this kind of parameter
encoding and can be expressed as:

𝑊𝑓 𝑙𝑖𝑝 = 𝑓 (P𝑓 𝑙𝑖𝑝 ,𝑊𝑜𝑟𝑖𝑔) (7.17)

Here, P𝑓 𝑙𝑖𝑝 and 𝑓 (·) represent the percentage of injected bit-flip faults and the fault model function,
respectively. Specifically, the fault model 𝑓 (·) randomly samples P𝑓 𝑙𝑖𝑝% of the bits of weights in each
layer and flips their bits from 1 to 0 and vice versa. On the other hand, for parameter mapping with
multi-level memristive cells in a memristive NN accelerator, the (level-wise) fault model 𝑓 (·) randomly
sets the weights to a value between −127 and 127.

Furthermore, as previously stated, the activations of NNs are also susceptible to permanent and soft faults.
We model them as stuck-at low/high faults and random flips. For stuck-at-low/high, we define defective
ReLU (dReLU), where the ReLU activation output can be stuck at a zero value simulating stuck-at-low
faults and a high value such as 102 for stuck-at-high faults. On the other hand, we define random-flip
ReLU (rfReLU) to simulate soft faults modeled as random-flips. In rfReLU, the ReLU activation output is
randomly set to a value between 0 and 102 in each forward pass.

Note that multiple faults are considered in a single memory array. However, single and multiple faults are
considered in the intermediate activations of the NN. Additionally, the distribution of faults in the memory
array is randomly chosen for each Monte Carlo fault simulation run. Therefore, an evaluation of various
possible faults that occur during both the online and manufacturing processes is performed.

7.2.3.2. Simulation Setup

In this section, we have abstracted circuit-level details and evaluated our proposed one-shot approach using
PyTorch-based simulation. We target hard-to-detect deviations in NN accelerators. As the name suggests,
detecting these kinds of deviations is difficult, as they cause subtle changes in the output distribution
and, in turn, inference accuracy. In contrast, we have found that a large change in accuracy correlates
with a large relative shift in the output distribution and is easier to detect with our approach compared to
others.

Furthermore, instead of a simpler dataset like MNIST, we evaluated our method on larger scale pre-
trained topologies, with up to 201 layers, trained on the more challenging ImageNet dataset [8],
which is a large-scale image recognition dataset with 1000 classes, approximately 13 million training
data points, and 50,000 validation data points. Furthermore, we tested our approach on popular semantic
segmentation topologies trained on real-world brain MRI datasets and Microsoft’s COCO benchmark
dataset [216, 217]. Semantic segmentation is considerably more challenging than image classification since
it involves assigning labels to individual pixels in an image. Table 7.3 summarizes all pre-trained models
evaluated, their accuracy, and the number of parameters. All pre-trained models are accessible through
the PyTorch Hub. Also, parameters and variables of the models were not modified for the proposed test
vector generation process or during online operation, as our test vector generation process is a black-box
approach. Furthermore, no knowledge or modification of the training process for the models is required.
Therefore, the original task and the accuracy of each model under test remain unchanged, and the accuracy
of each mode is shown in Table 7.3.

For the fault coverage analysis, we have done the Monte Carlo simulation to simulate the effect of per-chip
and online variations, as well as various faults modeled as bit-flip. Specifically, 1000 chip instances are
evaluated for each noise level for variations and fault percentages. For the evaluation of each chip instance,
the single-shot test vector is forward-passed through the model once. One and only one test vector is
generated using the loss function equation 7.9 for each of the models shown in Table 7.3. The choice of
this loss function was driven by its ability to provide a clear indication of the KL divergence value of the
fault-free NN. Monitoring the loss value during training offers a transparent view of the trend in the KL

150

7.2. SINGLE-SHOT TESTING LARGE-SCALE DEEP NEURAL NETWORKS

Table 7.3.: Showing the evaluated (pre-trained) models for classification and semantic segmentation tasks, along with their
respective information such as inference accuracy, number of parameters, layers, and dataset used for training.

Model Classification
Inference Acc. Parameters Layers Dataset

ResNet-18 [9] 69.76% 11.7×106 18

Imagenet [8]

ResNet-50 [9] 76.13% 25.6×106 50
ResNet-101 [9] 81.89% 44.5×106 101

DenseNet-121 [218] 74.43% 8×106 121
DenseNet-201 [218] 76.89% 20×106 201
MobileNet-V2 [219] 71.87% 3.5×106 52

Semantic Segmentation
Pixelwise Acc. Parameters Layers Dataset

U-Net [164] 98.75% 7.76×106 23 Brain MRI [216]
DeepLab-V3 [220] 91.2% 11.03×106 72 COCO [217]

divergence, facilitating an efficient training process. One of the key advantages of using the Gaussian KL
Loss is its utility in early stopping the training process. That is, once we have obtained a KL-divergence
value that is sufficiently close to zero, the training can be stopped.

Note that each NN accelerator is evaluated using the proposed single-shot test, and the respective output
distribution for evaluation is generated using a single forward pass. Monte Carlo simulation is performed
only for the evaluation of different crossbars, faults, and variation distributions. In a real-world scenario,
only a single forward-pass on the hardware is required.

We report fault coverage as the ratio between detected faults (𝐷KL(N̂ ∥ N) ≥ th) and overall fault runs
(R) and can be described as

fault coverage = # of 𝐷KL(N̂ ∥ N) ≥ th
R × 100. (7.18)

Here, R refers to the number of fault runs for our Monte Carlo fault simulation. We specifically target
non-benign faults in neural networks, which noticeably degrade accuracy. However, the fault and variation
rates are chosen in such a way that the accuracy degradation is marginal for the lowest fault rate, and with
increasing fault rate, the accuracy deteriorates gradually.

As a result, all the reported fault coverages are true positive rates (TPR) which states the number of
non-benign faults impacting the accuracy that are correctly detected. On the other hand, the false negative
rate (FNR) can be obtained from equation 100 − fault coverage. FNR tells the number of instances that NN
is classified as not faulty (having performance degradation), but in reality, they are faulty. Ideally, FNR
should be 0% and TPR or fault coverage should be 100%.

Single or multiple faults that do not degrade accuracy are defined as benign faults. This is because NN is
inherently fault-tolerant up to a certain degree and does not significantly influence the logit distribution
or inference accuracy of the model. Benign faults are not the target of this section.

Note that although we inject variation and faults into all parameters, ReLU activations, and MAC results,
our fault coverage does not necessarily imply the detection of all possible faults that may occur.

151

CHAPTER 7. EXPLICIT TESTING OF NNS

Figure 7.13.: (Left) Receiver operating curve (ROC) of proposed fault detection method and (Right) change in accuracy and
KL-Divergence value with fault rates for the Movilenet-V2 model and Imagenet dataset. It is recommended to view this figure
in color.

7.2.3.3. Detecting Variations in a One-Shot

For classification tasks using the ImageNet dataset, Table 7.4 evaluates the fault coverage achieved by a
proposed one-shot method on multiplicative and additive variations. The six SOTA models consistently
achieve 100% fault coverage across various noise scales (𝜂0). Our results indicate the robustness of the
one-shot method in adapting to diverse levels of noise.

Similarly, for semantic segmentation tasks, as shown in Table 7.5, the proposed one-shot method on
multiplicative and additive variations with a range of noise scales (𝜂0) consistently achieves 100% fault
coverage. This further underscores the robustness of our one-shot method across different tasks.

Table 7.4.: The fault coverage (%) achieved by the proposed one-shot method on multiplicative and additive variations with
different noise scales 𝜂0. All the models are trained on the ImageNet dataset.

Model Multiplicative Variations Additive Variations
𝜂0 = 0.01 𝜂0 = 0.02 𝜂0 = 0.04 𝜂0 = 0.06 𝜂0 = 0.08 𝜂0 = 0.10 𝜂0 = 0.0001 𝜂0 = 0.0002 𝜂0 = 0.00025 𝜂0 = 0.0003 𝜂0 = 0.00035

ResNet-18 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
ResNet-50 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
ResNet-101 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

DenseNet-121 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
DenseNet-201 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
MobileNet-V2 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

7.2.3.4. Detecting Faults in a One-Shot

For ImageNet classification in various SOTA topologies, Table 7.8 demonstrates a similarly high level of
fault coverage under both bit-flip and level-flip fault conditions. For each model, as the fault rate increases,
the percentage of fault coverage generally improves. At higher fault rates, such as 0.05% and 0.1%, most
models achieved 100% fault coverage. At lower fault rates, the shift in the output distribution is very low,
resulting in a few false-negative cases. However, by reducing the threshold to a value closer to the KL
divergence value in a fault-free model, the number of false negative cases can be reduced (see Table 7.6).
Nevertheless, our results indicate the resilience of our one-shot approach to various types of faults at
different rates.

152

7.2. SINGLE-SHOT TESTING LARGE-SCALE DEEP NEURAL NETWORKS

Table 7.5.: Fault coverage of semantic segmentation models utilizing the proposed one-shot testing method. The models are
evaluated under multiplicative and additive variations with different noise scales 𝜂0 to underscore the robustness of the models
across different scenarios.

Model Additive Variations
𝜂0 = 0.00002 𝜂0 = 0.00004 𝜂0 = 0.00006 𝜂0 = 0.00008 𝜂0 = 0.00010 𝜂0 = 0.00012

U-Net 100% 100% 100% 100% 100% 100%
𝜂0 = 0.02 𝜂0 = 0.04 𝜂0 = 0.06 𝜂0 = 0.08 𝜂0 = 0.1 𝜂0 = 0.12

DeepLab-V3 100% 100% 100% 100% 100% 100%
Multiplicative Variations

𝜂0 = 0.01 𝜂0 = 0.02 𝜂0 = 0.04 𝜂0 = 0.06 𝜂0 = 0.08 𝜂0 = 0.08
U-Net 100% 99.9% 100% 100% 100% 100%

𝜂0 = 0.01 𝜂0 = 0.02 𝜂0 = 0.04 𝜂0 = 0.06 𝜂0 = 0.08 𝜂0 = 0.08
DeepLab-V3 100% 100% 100% 100% 100% 100%

7.2.3.5. Detecting Faults and Variations at Activation in a One-Shot

Similarly, our method demonstrates remarkable efficacy in identifying both single and multiple faults,
including stuck-at-low, stuck-at-high, and bit-flip faults, in NN activations, as detailed in Table 7.10. As
can be seen, on a range of SOTA ImageNet models, it consistently achieves a fault coverage of 100%.
Furthermore, our method is equally effective in detecting manufacturing variations affecting MAC values
in hidden layers, maintaining a 100% fault coverage. This uniform success across various models and fault
types underscores the robustness and reliability of our proposed method for detecting faults and variations
in NNs.

7.2.3.6. Analysis of False Positives

While the true positive rate, or fault coverage, is important, the false positive rate (FPR) is also important to
assess the effectiveness of a testing approach. FPR reports instances where the NN is incorrectly identified
as faulty, when, in reality, there is no fault in the NN, that is, a false alarm. Since our approach is an
explicit or pause-and-test method of testing with a specifically generated single test vector, classification
is always binary (0, 1). Consequently, the FPR for all models is summarized in Table 7.7. As can be seen,
our approach has an FPR of zero, which means that false alarms are never raised. However, there is a
relationship between FPR, TPR, and the chosen threshold for fault detection. The receiver characteristic
curve (ROC) for the MobileNet-V2 topology is shown in Figure 7.13. It can be depicted that our approach
is exceptionally effective at detecting faults/variations with increasing fault rates when the threshold is set
correctly. Since the baseline KL divergence value is 1.56182795763015753 × 10−6 (see Table 7.12), if the
threshold is below the baseline KL divergence value, then both the TPR and the FPR become one. This
suggests that the proposed method can identify all fault instances correctly and raise false alarms at these
thresholds. On the other hand, the proposed method achieves a perfect fault classification with a TPR of 1
and an FPR of 0 when the chosen threshold is above the baseline. This point is considered the optimal
point on an ROC curve, representing 100% sensibility (no false negatives) and 100% specificity (no false
positives). We observed the same for other models.

Thus, the general relationship between TPR and FPR is given by the threshold value chosen for faults/variations
detection. As shown in Table 7.6 as the threshold is reduced coverage or the TPR increases, but the ROC
curve suggests that it also increases the FPR. As a result, a threshold should be chosen that is greater
than or equal to the baseline KL divergence value. It should never be below the baseline, as it
will raise false-positive alarms.

Similarly, our proposedmethod can achieve high fault coverage in both bit-flip and level-flip fault conditions
for semantic segmentation tasks on two SOTA topologies, as demonstrated in Table 7.9. The trend in

153

CHAPTER 7. EXPLICIT TESTING OF NNS

Table 7.6.: The effect of threshold 𝑡 on false-negative test cases. As the threshold is reduced, the fault coverage increases.

Threshold % of faults
𝜂0 = 0.02 𝜂0 = 0.025 𝜂0 = 0.33

1 × 10−4 98.7% 99.2% 99.1%
1 × 10−5 99.4% 99.8% 99.8%
1 × 10−6 99.9% 99.8% 100%
1 × 10−7 100% 100% 100%

Table 7.7.:Evaluation of false positive rate (FPR) of the proposed approach on different topologies when NN is fault or variation-free.
Since FPR is evaluated on a single test vector, it is represented as a binary (0, 1) value with 0 representing no false positive (ideal
scenario) and 1 representing a false positive classification.

Topologies
ResNet-18 ResNet-50 ResNet-101 DenseNet-121 DenseNet-201 MobileNet-V2 U-Net DeepLab-V3

FPR 0 0 0 0 0 0 0 0

fault coverage percentage for each model is similar to that of the models used for ImageNet classification.
We also found that lowering the threshold can have a similar effect on fault coverage, as observed in the
ImageNet classification models.

Table 7.8.: Evaluation of the fault coverage of SOTA ImageNet classification models under different fault scenarios, including
Bit-flip and Level-flip faults, and varying fault rates.

Model
Bit-flip Level-flip

% of faults % of faults
0.02% 0.025% 0.033% 0.05% 0.1% 0.02% 0.025% 0.033% 0.05% 0.1%

ResNet-18 98.6% 99.3% 99.6% 100% 100% 99.9% 99.9% 100% 100% 100%
ResNet-50 99.6% 99.9% 100% 99.9% 100% 100% 100% 100% 100% 100%
ResNet-101 98.9% 99.6% 99.5% 99.9% 100% 99.7% 100% 100% 100% 100%

DenseNet-121 99.9% 99.6% 100% 100% 100% 99.9% 100% 99.9% 100% 100%
DenseNet-201 99.1% 99.7% 99.8% 100% 100% 99.1% 100% 100% 100% 100%
MobileNet-V2 99.8% 99.8% 100% 100% 100% 99.4% 99.8% 99.8% 100% 100%

Table 7.9.: Fault coverage performance of semantic segmentation models U-Net and DeepLab-V3 under Bit-flip and Level-flip fault
scenarios with varying fault rates.

Model
Bit-flip Level-flip

% of faults % of faults
0.02% 0.025% 0.033% 0.05% 0.1% 0.02% 0.025% 0.033% 0.05% 0.1%

U-Net 100% 100% 100% 100% 100% 99.9% 99.9% 100% 100% 100%
DeepLab-V3 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

7.2.3.7. Comparison with State of the Art and Overhead Analysis

Our proposed method is compared against the related works that uses the functional test generation
method and focuses on the compaction of the test pattern. With only one test vector and test query,
the proposed one-shot testing method outperforms existing methods [37], [117], [118], and [41] in all
metrics listed in Table 7.11. Therefore, the proposed method requires significantly fewer test vectors and
queries compared to other methods. Furthermore, the proposed approach consistently achieves 100% fault
coverage, outperforming methods [37, 117, 118] that range from 76% to 99.27% coverage. Additionally, the
proposed method is the most memory efficient, requiring only 0.012288 MB, which is much lower than the

154

7.2. SINGLE-SHOT TESTING LARGE-SCALE DEEP NEURAL NETWORKS

Table 7.10.: The analysis of the effectiveness of our method in detecting single and multiple faults (stuck-at low/high) and bit-flip
faults in ReLU activations, and manufacturing variations affecting the MAC values of the hidden layer, for state-of-the-art
ImageNet classification models.

Topology
of Stuck-At Low

/High Faults on ReLU # of Bit-flip Faults on ReLU Manufacturing Variation (𝜎𝑣𝑎𝑟)

1 2 3 4 5 1 2 3 4 5 0.001 0.002 0.002 0.004 0.005
ResNet-18 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
ResNet-50 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
ResNet-101 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

DenseNet-121 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
DenseNet-201 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
MobileNet-V2 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

other methods, regardless of whether re-training data is stored in hardware or not. Moreover, our method
does not rely on storing re-training data in hardware to reduce memory consumption, unlike the methods
proposed by [37], and [41].

The test application time (latency) and test energy are directly proportional to the number of test vectors
used for testing. For example, the testing method [117] requires 1024 test vectors. Therefore, their method
requires 1024× more MAC operations and power consumption. In our comparisons, we assume that the
hardware implementation, NN topology, and NVM technology are the same.

The analysis presented in Table 7.11 is based on the numbers reported in related works. To calculate
memory consumption, we utilized the bit-width reported in [37] for images and test labels. Note that our
approach does not require the storage of any labels.

Table 7.11.: Compares the proposed approach with the existing methods using four performance metrics: fault coverage, memory
storage overhead (with and without re-training data), number of test queries required, and fault-detection resolution. To ensure a
fair comparison, the analysis of our approach is conducted on the CIFAR-10 dataset.

[37] [117] [118] [41] Proposed
Size of 10000 1024 10-50 16-64 1test vectors

of test queries 10000 1024 10-50 17 1(normalized)
Memory 0.0151 234.421 0.1541 0.0002561 0.0122881

overhead (MB) 245.7752 234.422 0.1542 0.19662 0.0122882

Coverage (%) 99.273 983 763/ 844 1004 1003

1 Re-training data is stored in hardware.
2 Re-training data is not stored in hardware.
3 Synthetic testing data
4 Original training data used as testing data

7.2.4. Discussion and Future Works

Guaranteed Single Shot Test Vector The proposed one-shot test method determines the logit distribution
of a model by fitting it to a Gaussian distribution. The population size of the logit distribution is determined
by the number of neurons in the last layer (output classes) of the NN. In cases where the number of
neurons in the last layer of the NN is greater than 20, we can consistently find many test vectors for
each model that produce a logit distribution closely resembling a unit Gaussian. Thus, for an NN with
a large enough number of classes, our method guarantees that there exists a test vector that produces a
standardized normal distribution for the NN logits. Table 7.12 summarizes the mean, standard deviation,
and KL divergence value of the logit distribution of the generated test vectors for each model that was
evaluated. We consider the mean and standard deviation obtained to be sufficiently close to zero and one,
respectively. Also, the KL divergence value can be considered sufficiently close to zero, such that the logit
distributions of the model are approximately unit Gaussian.

155

CHAPTER 7. EXPLICIT TESTING OF NNS

Approach for smaller number of classes in the last layer To avoid biased estimation of mean and standard
deviation, it is important to have a sufficiently large number of output classes, such as 20 or more. For
cases with fewer output classes, such as 2 or 5, our approach may not work well, as it becomes harder to
obtain a unit Gaussian logit distribution. For these models, alternative statistical methods, such as Bayesian
approaches, could be considered, but they are beyond the scope of this section. Additionally, the number
of classes in the last layer can be increased by adding proxy neurons at the expense of a higher memory
overhead. However, in this case, the method becomes an invasive method and may not be applicable to
a pre-trained model. Alternatively, a best-case scenario is in which the test vector is optimized for a KL
divergence value as close to zero as possible. Then, by storing this KL divergence value along with the test
vector, even a model with a smaller number of classes can be tested.

Even though we have standardized the logit distribution of each model to a unit Gaussian, it is not necessary
to do so. In future work, we would like to explore other Gaussian or non-Gaussian distributions that may
be more generalizable across a range of output classes of a model.

Precision of The Test Vector Input of the NN, such as an image or video, is typically in the 32-bit floating-
point format during inference. Although inference data does not require storage, test vectors, which are
crucial in our methodology, do. Hence, their storage overhead, although negligible, can be further reduced
by reducing their bit precision.

The proposed one-shot testing vectors consider full precision as bit precision (32-bit floating point) for
two reasons: optimization accuracy and quantization impact. Since we perform gradient descent on a
single input image, keeping it at 32-bit full precision helps in fine-grained optimization during the gradient
descent process of the test vector. On the other hand, reducing the bit-precision of the test vector can
lead to an increased KL divergence value from the baseline due to quantization errors. Such errors can
adversely affect our fault coverage, as they can mask or mimic the effects of actual faults.

Fault Propagation and Their Impact In terms of memristive AI accelerators, the weight matrices of each
layer are mapped to different crossbar arrays with memristive devices at each crosspoint. In the event of
faults or variations in the crossbar of a layer, these faults would indeed affect subsequent layers, as they
receive faulty values as input. This is because the MAC result of the faulty layer will be incorrect, resulting
in the following layers receiving incorrect input. However, the location of these faults would vary between
crossbars and layers, which can be referred to as device-to-device variation. Additionally, for different
chips that map the same neural network topology, the fault locations on the crossbars are expected to
vary, reflecting chip-to-chip variations. Note that in terms of conductance variation, this means that the
conductance value of each memristive device varies from device to device and chip to chip.

We have modeled both of these scenarios in our fault model and fault injection runs. We randomly assigned
fault locations for each layer and for different runs to simulate these variations. That is, fault locations
vary across different layers in a single fault run to simulate device-to-device variations. For each fault run,
the fault locations are randomly chosen to simulate chip-to-chip variations.

To simulate the impact of different crossbars of different dimensions and manufacturing processes, we
have considered different fault rates. Fault rates range from marginal to large, simulating precise and
imprecise fabrication processes.

In systolic arrays and FPGA-based accelerators, permanent faults that affect the MAC unit likely affect all
layers. However, this is not the case for memristive AI accelerators, as weights are mapped to different
crossbars. In general, the issue of shared fault impacts across layers is not considered in our experiments.
However, for these types of fault, our approach is equally efficient in detecting them. We have performed a
small ablation study on the MobileNet-V2 topology, where the fault location for the level-flip of each layer
remains the same to simulate the shared fault issue. We have found that in this case, our approach can
indeed achieve 100% fault coverage.

156

7.2. SINGLE-SHOT TESTING LARGE-SCALE DEEP NEURAL NETWORKS

Table 7.12.: Summary KL-Divergence, mean, and standard deviation of the logit distributions of the respective test vectors on
evaluated topologies.

Topology KL-Divergence Mean Standard Deviation
ResNet-18 5.721813067793846 × 10−7 0.0010 1.0001
ResNet-50 1.0050367563962936 × 10−5 0.0014 1.0030
ResNet-101 1.466134563088417 × 10−6 0.0009 1.0009

DenseNet-121 3.338936949148774 × 10−7 0.0008 1.0001
DenseNet-201 1.5618279576301575 × 10−6 0.0016 1.0003
MobileNet-V2 1.5618279576301575 × 10−6 0.0004 0.9997
DeepLab-V3 1.0870280675590038 × 10−8 0.0001 0.9999

UNet 3.8781 × 10−9 0.00002 0.9999

Table 7.13.: Impact of faults and variation on the accuracy of the ImageNet models. Here, the precision shows the impact in
relation to the smallest fault and variation rates.

Topology
Non-idealities Insertion Locations and Types

Weights ReLU Activations MACs
Additive
Variations

Multiplicative
Variations Bit-flips Level-flips # of Stuck-at

Low/High Faults
of Bit-
flip Faults Variation (𝜎𝑣𝑎𝑟)

ResNet-18 69.50% 69.48% 68.88% 67.452% 67.80% 67.98% 68.74%
ResNet-50 75.83% 75.79% 72.36% 73.20% 72.33% 73.47% 75.03%
ResNet-101 77.21% 76.86% 76.22% 74.55% 67.70% 70.45% 71.00%

DenseNet-121 74.24% 73.93% 72.00% 71.41% 55.68% 55.05% 72.60%
DenseNet-201 76.59% 76.51% 59.924% 75.45% 46.38% 44.33% 71.35%
MobileNet-V2 71.14% 69.90% 70.378% 68.694% 65.65% 65.62% 70.14%

Fault Detection Granularity Our method does not need a considerable number of faults or varia-
tions to be able to detect. Thus, our approach can detect faults or variations with a graceful degradation
in accuracy. As stated in Section 7.2.3.2, the fault rate is carefully chosen so that the accuracy degradation
is marginal. For example, we have chosen bit flips and level flip rates of 0.02% to 0.1%. This means that
99.98% to 99.9% of the memories that store NN weights are fault-free.

We have performed our evaluation on large models with up to 201 layers and 44.5 × 106 parameters, and
for each fault rate and model, we have performed 1000 Monte Carlo runs on Nvidia RTX 3080 GPUs. In
total, we have conducted 260000 fault injection campaigns. Due to computational budget issues, we report
an estimate of accuracy degradation on ImageNet models with the lowest fault/variation rates. Table 7.13
summarized the drop in accuracy due to various faults and variations that affect the weights and activation
of ImageNet models. With an increasing fault rate, the accuracy gradually degrades from that point. As
can be seen, in most cases, the drop in accuracy is marginal. For example, ResNet-18 has an accuracy
drop of only 0.26%. In Figure 7.13 (right), we show a gradual change in accuracy and their respective
KL-divergence values for the MobileNet-V2 model. Note that although the KL divergence value fluctuates
due to the stochastic nature of the fault locations and magnitudes, the overall trend shows an increase in
the KL divergence with increasing fault rate.

Testing Spinking Neural Netwroks We hypothesize that our approach can be extended to test spiking
neural networks, as it is a black-box approach and a hardware-agnostic approach with a specifically
designed test vector for each model. We consider that the fault models of SNNs are different compared to
our fault model used in this section.

7.2.5. Scientific Impact of This Work

We outline the scientific impact of this work as follows:

157

CHAPTER 7. EXPLICIT TESTING OF NNS

1. Single-Shot Testing: Testing edge AI accelerator in single-shot allows for the efficient detection of
faults and variations. Our approach significantly reduces the testing time and computational overhead
compared to traditional methods, making it practical for real-time applications and continuous
monitoring.

2. Scalability: Our approach can test even extreme-edge AI applications since the cost of testing
is significantly low. Also, our approach is scalable to any edge AI accelerator architectures, NN
topology, dataset, and tasks. Making it significantly attractive for diverse tasks.

3. Distribution Monitoring: Our work proposed to monitor the distribution of the output rather than
model prediction, label, or accuracy. Consequently, our approach leads to a significant reduction in
testing costs. Therefore, research in this direction is attractive for reducing testing costs.

7.2.6. Section Conclusion

In this section, we have introduced one-shot testing and a respective test generation method to test
hardware accelerators for deep learning models based on memristor crossbars with a single test vector. Our
method hypothesizes that memristive non-idealities correlate to changes in output distribution, and our
testing method aims to detect this distribution shift with a single testing vector. The proposed approach
demonstrates superior performance in fault coverage, memory storage overhead, and the number of test
queries required, highlighting its effectiveness and efficiency compared to existing methods. Therefore,
the method proposed in this section allows for significantly faster detection of faults and variations at a
negligible overhead.

7.3. Few-Shot Testing Using Bayesian Test Vectors

Although the single-shot testing method proposed in the previous section is proven to be highly
effective and low-cost, it has a drawback when it comes to testing NN with a low number of classes,
e.g., a binary classifier. This is because they only produce a few elements in a single forward pass,
which is insufficient to create a distribution.

This addresses this drawback with a Bayesian test vector approach and is based on our paper [221].

7.3.1. Problem Statement and Motivation

An NN with parameters 𝜃 gives the output 𝑦 based on the input. Parameters 𝜃 are learned so that the
predicted output 𝑦 is close to ground truth 𝑦. Therefore, even though one has access to in-distribution
data, e.g., training or validation data, their respective output 1. would change from one input to the next,
2. one model to the next, and 3. uncertainty may not be minimum, see Fig. 7.14.

On the other hand, we have observed that the spread between logits of a NN (in general) increases as faults
and variations in its parameter increase, as depicted in Fig. 7.15. Based on this observation, we propose
to measure the standard deviation 𝜎𝑦 of the logits of a model under test (MUT) to estimate the functional
uncertainty of edge AI accelerator.

To achieve the desired 𝜎𝑦 , we proposed a single Bayesian test vector generation framework. In a Bayesian
test vector, each element of the input, e.g., pixels for classification tasks, is a distribution rather than a
single-point estimate value, as shown in Fig. 7.17. As a result, one test vector can be learned, and𝑇 = 1 · · ·𝑇
Monte Carlo samples (MC samples) can be taken from it. In each MC sampling step, element-wise sampling
is performed, resulting in an input vector with a single value element. Each of the MC samples is forward
passed𝑇 times through theMUT to create an output distribution for the calculation of uncertainty estimates
𝜎𝑦 (see Fig. 7.18). Here, 𝑇 depends on the number of neurons 𝐶 in the final layers. A MUT with a large

158

7.3. FEW-SHOT TESTING USING BAYESIAN TEST VECTORS

Figure 7.14.: Distribution of logits on the fault- and variation-free RepVGG [222] model trained on the CIFAR-10 dataset when
several randomly sampled inputs from training and validation are applied. The distribution logits change from one input to
another. It is recommended to view this figure in color.

Figure 7.15.: Change in output distribution of logits of RepVGG [222] model on the CIFAR-10 dataset due to a) variations and b)
faults. The spread among logits increases as the noise scale of variations and fault rate increases. It is recommended to view
this figure in color.

𝐶 , for example, 𝐶 ≥ 100, has enough elements in the output vector to calculate the uncertainty with one
sample and a forward pass. However, a model under test with a small C, for example, a regression or binary
classification task with C = 1, will require multiple MC samples from the distribution of the Bayesian test
vector and forward passes to calculate the functional uncertainty of the edge AI accelerator.

Our proposed Bayesian test vector can give a distinguished output in the case of functional uncertainty of
the edge AI accelerator. In the case of a memristive NN that is fault-free and variation-free, in an ideal
scenario, the uncertainty 𝜎𝑦 is minimum. Consequently, the uncertainty measures 𝜎𝑦 of a model given
our proposed Bayesian test vector is much more sensitive compared to training and validation data, as
demonstrated by Fig. 7.16. Therefore, our Bayesian test vector can potentially estimate uncertainty at low
fault rates or variations.

159

CHAPTER 7. EXPLICIT TESTING OF NNS

Figure 7.16.: Relative sensitivity of uncertainty estimates given proposed Bayesian test vector input as well as randomly sampled
training and validation. The change in uncertainty estimates is much higher for our proposed Bayesian test vector. It is
recommended to view this figure in color.

a) Conventional Test Vector

[R, G, B]

b) Proposed Bayesian Test Vector

[(1
.2, 0

.3), (
1.1, 0

.1), (
0.2, 0

.1)]

[(𝝁
𝑹
, 𝝈 𝑹

), (
𝝁 𝑮
, 𝝈 𝑮

), (
𝝁 𝑩
, 𝝈 𝑩

)]

[213, 60, 67]

[90, 0, 53]

[249, 215, 203]

Figure 7.17.: An example of a) conventional test vector with each pixel representing single point value for the Red, Green, and
Blue (RGB) channels, and b) proposed Bayesian test vector with each pixel representing an independent distribution for the RGB
channels.

Memristive NN
(MUT)

Draw N Monte-Carlo
samples

… 𝝈𝒚

Highly
Uncertain

> 𝒕𝒉

≈ 𝒕𝒉
Forward-pass

𝒚𝟏

𝒚𝑵
'𝒙𝑵

…

'𝒙𝟏

variation/
Fault-free

Output Vectors

Calculate SD
of y

Single-
point Input

Single-
point Input

Figure 7.18.: Flowchart of the proposed uncertainty estimation method for a model under test (MUT). If the standard deviation
(SD) of the output of MUT 𝜎𝑦 is higher than a pre-defined threshold 𝑡ℎ, then MUT is highly uncertain.

160

7.3. FEW-SHOT TESTING USING BAYESIAN TEST VECTORS

Although for a certain MUT, a few forward passes𝑇 are required to estimate the uncertainty, the overhead
is still minimal. This is because, in deep learning, one of the factors that determines the difficulty of a task
is the number of classes in it. A difficult task, for example, ImageNet-1k classification [8], usually requires
a larger NN model, while an easier task requires a smaller NN model. In our approach, we take several
samples 𝑇 and forward-pass them through only on a small MUT. However, for a large MUT, we only take
a single sample and forward-pass it through the MUT.

7.3.2. Methodology

7.3.2.1. Optimization Process of The Bayesian Test Vector

To obtain the test vector 𝑥 , we employ Bayesian inference. It uses Bayes’ theorem to update our belief
about the parameter of interest (in this case, the test vector 𝑥) given some observed data (in this case, the
output 𝑦). It can be written as:

𝑃 (𝑥 |𝑦) = 𝑃 (𝑦 |𝑥)𝑃 (𝑥)
𝑃 (𝑦) . (7.19)

Where, 𝑃 (𝑥 |𝑦) is the posterior distribution of the test vector given the output, 𝑃 (𝑦 |𝑥) is the likelihood of
the output given the test vector, 𝑃 (𝑥) is the prior distribution over the test vector, and 𝑃 (𝑦) is the evidence
or marginal likelihood of the output.

In our Bayesian optimization setting, the primary objective is to find the configuration of the test vector, 𝑥 ,
thatmaximizes the posterior distribution, 𝑃 (𝑥 |𝑦), given the output,𝑦. However, since the direct computation
of the posterior is often intractable, we resort to variational inference techniques to approximate our true
posterior with a variational distribution, 𝑞(𝑥 |𝑦), that comes from a simpler or more tractable family of
distributions. Hence, we choose a Gaussian distribution as the variational distribution that is parameterized
by mean 𝜇𝑥 and standard deviation 𝜎𝑥 .

Our objective can therefore be rephrased as finding the 𝑥 that maximizes 𝑞(𝑥 |𝑦), which can be considered
as an approximation of the expected lower bound (ELBO). This is because, in the context of variational
inference, the ELBO is the objective function that we aim to maximize. Hence, its negative can be seen as a
loss function that needs to be minimized. The ELBO is defined as:

ELBO = E𝑞 (𝑥 |𝑦) [log 𝑃 (𝑦 |𝑥)] − KL(𝑞(𝑥 |𝑦) | |𝑃 (𝑥)) (7.20)

Where the first term, E𝑞 (𝑥 |𝑦) [log 𝑃 (𝑦 |𝑥)], is the expected log-likelihood of the data to observe the desired
output 𝑦, and the second term, KL(𝑞(𝑥 |𝑦) | |𝑃 (𝑥)), is the Kullback-Leibler (KL) divergence between the
variational distribution and the prior, which can be thought of as a regularization term that makes sure
that the variational distribution is close to the prior.

We have rephrased the objective function for our need as follows:

Loss = −ELBO =

√︄∑ (𝑦 − 𝜇𝑦)2
C + 𝛼 × KL(𝑞(𝑥 |𝑦) | |𝑃 (𝑥)) (7.21)

Here, the term
√︃∑ (𝑦−𝜇𝑦)2

C serves as a proxy for the likelihood term. It is designed to encourage the
optimization process to find an 𝑥 that results in 𝑦 with as low a standard deviation as possible. This term
essentially computes the root mean squared deviation of the outputs from their mean, reflecting our goal
of minimizing output uncertainty. Furthermore, we introduce a hyperparameter 𝛼 that can control the
strength of the regularization term, KL(𝑞(𝑥 |𝑦) | |𝑃 (𝑥)).

161

CHAPTER 7. EXPLICIT TESTING OF NNS

Ex situ training

Transfer the
weights to CIM

Draw elementwise
samples from 𝒒(#𝒙 ∣ 𝒚)

Uncertainty
Reduction

a)
Verify
Uncertainty

Expected Device Operational time

Normal
Operation

Normal
Operation

Normal
Operation ….

Single-point Input Forward-pass
through MUT

Append logits y Calculate standard
deviation of y

Compare with the
threshold t

Uncertainty Estimation Step

b)

N Monte-Calo Sampling

Figure 7.19.: Flowchart of the application of the proposed uncertainty estimation method during a) post-mapping but pre-
deployment, b) post-deployment (online) operation.

The optimization process involves iterative adjustment of 𝜇𝑥 and 𝜎𝑥 of 𝑞(𝑥 |𝑦) elementwise to minimize
the loss function. This can be achieved using a gradient-based optimization algorithm, such as stochastic
gradient descent (SGD). At each step, we evaluate the loss and adjust the parameters of 𝑞(𝑥 |𝑦) elementwise
in the direction that reduces the loss.

The outcome of the proposed optimization process is a test vector 𝑥 that, when used with a MUT, produces
an output vector with minimized uncertainty 𝜎𝑦 , thereby achieving our goal of a distinguished output in
the presence of functional uncertainty of the edge AI accelerator.

7.3.2.2. Application of Proposed Uncertainty Estimation Method

Our proposed method can estimate the functional uncertainty of the memristor-based edge AI accelerator
at a given time during post-mapping, but before deployment of the NN and during online operation. If
the model is uncertain, that is, the uncertainty estimates 𝜎𝑦 is more than a pre-defined threshold 𝑡ℎ, the
uncertainty reduction method can be used. Common uncertainty reduction methods are re-training [151]
and re-calibration [205]. After uncertainty reduction methods are applied, the functional uncertainty of
the edge AI accelerator is re-estimated for verification. If the functional uncertainty is satisfactorily low,
then the model resumes normal operation. Otherwise, a more sophisticated uncertainty reduction method
or hardware replacement may be required before the model can resume normal operation.

The overall flow for the application of our memristive uncertainty estimation approach is depicted in
Fig. 7.19. Latency for uncertainty estimation during pre-deployment may not be important as NN is not in
operation. However, it is highly important during the online operation, as normal NN operation is paused
while the uncertainty estimation process is carried out. Our uncertainty estimation approach is designed
to keep this latency to a minimum. Consequently, our method improves the confidence and reliability of
the prediction.

162

7.3. FEW-SHOT TESTING USING BAYESIAN TEST VECTORS

Table 7.14.: Summary of the evaluated models.
Model Accuracy # of Params. Layers Dataset Input Shape

Classification (Supervised Learning)
ResNet-20 [9] 92.60% 0.27 × 106 20 CIFAR-10 [223] 32 × 32RepVGG-A0 [222] 94.39% 7.84 × 106 22
ResNet-56 [9] 72.63% 0.86 × 106 56 CIFAR-100 [223] 32 × 32MobileNet-V2 [219] 74.20% 2.35 × 106 53

Inception-V3 [224] 77.29% 27.2 × 106 48 ImageNet-1k [8] 224 × 224DenseNet-201 [218] 76.89% 20.0 × 106 201
Semantic Segmentation (Supervised Learning)

UNnet [164] 98.75% 7.76 × 106 23 Brain-MRI [216] 224 × 224
FCN [225] 91.40% 35.3 × 106 57 MS COCO [217] 224 × 224

Generative Method (Unsupervised Learning)
DCGAN-G [226] - 3.74 × 106 5 FASHIONGEN [227] 1 × 120
DCGAN-D [226] - 2.93 × 106 5 64 × 64

7.3.2.3. Sampling From Bayesian Test Vector

We store element-wise 𝜇𝑥 and 𝜎𝑥 of the Gaussian distribution (variational distribution) in the hardware.
Element-wise sampling during the training and uncertainty estimation step is performed as follows:

samples = N(0, 1) ×
√︁

exp(𝜎𝑥) + 𝜇𝑥 . (7.22)

Where N(0, 1) is a unit Gaussian distribution that can be implemented in software or hardware. The
expression

√︁
exp(𝜎𝑥) calculates the standard deviation from the logarithm of the variance. It ensures

numerical stability and avoids numerical underflow issues. The proposed element-wise sampling is inspired
by the re-parameterization trick proposed by Kingma and Welling [203].

7.3.3. Evaluation

7.3.3.1. Simulation Setup

Evaluated Models Our method is evaluated on models from different deep learning paradigms, specifically
classification, semantic segmentation, and generative methods with different state-of-the-art (SOTA)
models [9, 222, 219, 224, 218, 164, 225, 226] with up to 201 layers. The number of classes in the benchmark
datasets [223, 8] varies from 10 to 1000 for the classification tasks. The generator and discriminator models
of the Convolutional Generative Adversarial Network (DCGAN) [226] are evaluated separately.

All pre-trained models were downloaded from the PyTorch Hub library and the GitHub repository [228].
Therefore, no changes to the training procedure are made. Our Bayesian test vector generation process did
not alter the model parameters. Thus, the black-box nature of our method remains consistent. For the
hyperparameter 𝛼 , a value between 103 − 108 is chosen.

Furthermore, we evaluated our approach on a range of input shapes, from 1 × 120 to 224 × 224. Table 7.14
summarized all models, their baseline accuracy, the number of parameters, layers, and the shape of the
input image. All models in Table 7.14 are evaluated with a single MC sample and forward pass, 𝑇 = 1.
Therefore, the uncertainty estimation is done in a single shot.

163

CHAPTER 7. EXPLICIT TESTING OF NNS

Table 7.15.: Uncertainty estimation coverage for different NN models and datasets under varying noise strengths for both
multiplicative and additive variations.

Model Dataset Multiplicative Variations Additive Variations
𝜂1

0 𝜂2
0 𝜂3

0 𝜂4
0 𝜂5

0 𝜂1
0 𝜂2

0 𝜂3
0 𝜂4

0 𝜂5
0

Classification (Supervised Learning)
ResNet-20 CIFAR-10 98.2% 100% 100% 100% 100% 98.1% 100% 100% 100% 100%
RepVGG-A0 99.7% 100% 100% 100% 100% 98.6% 100% 100% 100% 100%
ResNet-56 CIFAR-100 99.7% 100% 100% 100% 100% 97.5% 100% 100% 100% 100%

MobileNet-V2 99.7% 100% 100% 100% 100% 99.6% 100% 100% 100% 100%
InceptionV3 ImageNet-1k 98.2% 100% 100% 100% 100% 100% 100% 100% 100% 100%
DenseNet-201 98.7% 100% 100% 100% 100% 99.4% 100% 100% 100% 100%

Semantic Segmentation (Supervised Learning)
U-net Brain-MRI 98.9% 100% 100% 100% 100% 99.2% 100% 100% 100% 100%

FCN (ResNet-101) COCO 98.8% 100% 100% 100% 100% 99.7% 100% 100% 100% 100%
Generative Method (Unsupervised Learning)

DCGAN-D FASHIONGEN 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Fault and Variation-injection Framework Several studies have proposed a mathematical model of the
non-idealities of the memristor. We use the variation model used in work [41, 128] that considers spatial
and temporal variations and injects random additive and multiplicative Gaussian noise into the weights
of pre-trained NNs. To control the severity of the variation, a noise scale 𝜂0 is used. Similarly, we inject
P𝑓 𝑙𝑖𝑝% of bit- and level-flip-type faults into the weights of pre-trained NNs.

Uncertainty estimation coverage is calculated as:

coverage =
of 𝜎𝑦 ≥ 𝑡
R × 100. (7.23)

Essentially, it calculates the ratio between the number of times the uncertainty of the model 𝜎𝑦 is less than
a predefined threshold 𝑡ℎ and the total fault runs R. Also, each injected variation and fault is assumed to
impact inference accuracy. We specifically choose noise scales 𝜂1

0 · · ·𝜂5
0 and fault rates P1

𝑓 𝑙𝑖𝑝
· · · P5

𝑓 𝑙𝑖𝑝
for

each model that leads to a degradation of inference accuracy. Specifically, the values of 𝜂0 and P𝑓 𝑙𝑖𝑝 are
chosen between 0.01 − 0.4 and 0.02 − 1.8%, respectively. However, subtle accuracy degradation is targeted
because the uncertainty in these scenarios is much harder to detect. A Monte Carlo simulation is carried
out for each scenario with R = 1000 fault runs. For the 𝑡ℎ value, the uncertainty estimation value 𝜎𝑦 of the
ideal NN is offset by a small constant 0 − 0.3. Therefore, it is stored on the hardware alongside the test
vector.

7.3.3.2. Estimating Uncertainty of Variations

Table 7.15 demonstrates the comprehensive evaluation of the coverage of our uncertainty estimation
method across a spectrum of NN models under both multiplicative and additive variations with varying
noise strengths, denoted by 𝜂0. Remarkably, our method can consistently achieve 100% coverage or close
to it under most of these diverse conditions. Furthermore, the high coverage percentage across diverse
learning paradigms, specifically classification, semantic segmentation, and generative methods, emphasizes
the applicability of our method in post-manufacturing and online operations of the CiM architecture.
Therefore, reliability can be maintained under various noise conditions to improve confidence in the
prediction.

The input (latent space) of GANs is Gaussian noise. It is equivalent to training an NN with Gaussian noise.
As a consequence, the Generator of DCGAN is robust to both types of variation and has low uncertainty.

164

7.3. FEW-SHOT TESTING USING BAYESIAN TEST VECTORS

Table 7.16.: The evaluation of the proposed method in terms of coverage for estimating uncertainty due to both bit- and level-flip
faults.

Model Dataset Bit-flip Faults Level-flip Faults
P1
𝑓 𝑙𝑖𝑝

P𝑓 𝑙𝑖𝑝2 P3
𝑓 𝑙𝑖𝑝

P4
𝑓 𝑙𝑖𝑝

P5
𝑓 𝑙𝑖𝑝

P1
𝑓 𝑙𝑖𝑝

P2
𝑓 𝑙𝑖𝑝

P3
𝑓 𝑙𝑖𝑝

P4
𝑓 𝑙𝑖𝑝

P5
𝑓 𝑙𝑖𝑝

Classification (Supervised Learning)
ResNet-20 CIFAR-10 97.2% 99.0% 99.7% 100% 100% 98.7% 99.6% 99.8% 99.9% 100%
RepVGG-A0 98.9% 99.6% 100% 100% 99.9% 99.4% 99.8% 100% 100% 100%
ResNet-56 CIFAR-100 96.8% 99.4% 100% 100% 100% 98.7% 99.8% 100% 100% 100%

MobileNet-V2 99.2% 99.8% 100% 100% 100% 99.9% 100% 100% 100% 100%
InceptionV3 ImageNet-1k 99.6% 99.9% 100% 100% 100% 99.9% 99.9% 100% 100% 100%
DenseNet-201 99.5% 99.9% 100% 100% 100% 99.8% 100% 100% 100% 100%

Semantic Segmentation (Supervised Learning)
U-net Brain-MRI 98.3% 99.8% 100% 100% 100% 99.9% 99.9% 100% 100% 100%

FCN (ResNet-101) COCO 99.0% 99.3% 100% 100% 100% 100% 99.4% 99.7% 100% 100%
Generative Method (Unsupervised Learning)

DCGAN-Generator FASHIONGEN 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
DCGAN-Discriminator 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Estimating the uncertainty of a variation robust NN model is unnecessary. Thus, we have not evaluated
the uncertainty for this model.

7.3.3.3. Estimating Uncertainty of Bit- and Level-flip

Similar to uncertainty due to variations, our method can estimate uncertainty due to bit- and level-flip
with consistently 100% coverage or close to it, as shown in Table 7.16.

Even though, the Generator of DCGAN is robust to variations, it is susceptible to bit- and level-flip-type
faults. Therefore, we have evaluated its uncertainty.

7.3.3.4. True Positive Rates

We have shown that the out approach can achieve an ideal (or close to it) fault coverage based on injected
faults. However, to further increase the confidence in the uncertainty estimates, we have modified
equation 7.23 into:

coverage =
of (𝜎𝑦 ≥ 𝑡ℎ and 𝐴𝑡𝑒𝑠𝑡 < 𝐴𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒)

R × 100. (7.24)

This allows us to calculate true positive rates (TPR), which are verifiable coverage for uncertainty estimates.
Here,𝐴𝑡𝑒𝑠𝑡 represents the inference accuracy after a fault or variation injection, and𝐴𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 is the baseline
inference accuracy. However, due to computational limitations, we have only evaluated this approach on a
subset of the overall models shown in Table 7.14.

As depicted in Table 7.17, our uncertainty estimation approach can still achieve 100% coverage (most of
the time) for uncertainty estimates in different fault rates and variations. This further underscores the
robustness of our approach.

165

CHAPTER 7. EXPLICIT TESTING OF NNS

Table 7.17.: Evaluation of the uncertainty estimation coverage (true positive rates) with accuracy degradation verified in each step.
The same noise scales 𝜂0 and fault rates P𝑓 𝑙𝑖𝑝 are used as in Tables 7.15 and 7.16.

Model Dataset Multiplicative Variations Additive Variations
𝜂1

0 𝜂2
0 𝜂3

0 𝜂4
0 𝜂5

0 𝜂1
0 𝜂2

0 𝜂3
0 𝜂4

0 𝜂5
0

ResNet-20 CIFAR-10 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
RepVGG-A0 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
ResNet-56 CIFAR-100 99.1% 100% 100% 100% 100% 99.9% 100% 100% 100% 100%

MobileNet-V2 99.7% 100% 100% 100% 100% 99.1% 100% 100% 100% 100%

Model Dataset Bit-flip Faults Level-flip Faults
P1
𝑓 𝑙𝑖𝑝

P2
𝑓 𝑙𝑖𝑝

P3
𝑓 𝑙𝑖𝑝

P4
𝑓 𝑙𝑖𝑝

P5
𝑓 𝑙𝑖𝑝

P1
𝑓 𝑙𝑖𝑝

P2
𝑓 𝑙𝑖𝑝

P3
𝑓 𝑙𝑖𝑝

P4
𝑓 𝑙𝑖𝑝

P5
𝑓 𝑙𝑖𝑝

ResNet-20 CIFAR-10 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
RepVGG-A0 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
ResNet-56 CIFAR-100 96.8% 99.4% 100% 100% 100% 99.4% 100% 100% 100% 100%

MobileNet-V2 98.2% 99.8% 100% 100% 100% 99.7% 100% 100% 100% 100%

Table 7.18.: Evaluation of the coverage of the proposed uncertainty estimate approach with faults and variations injected into a
random subset (10-50%) of all layers. Here, the fault rate and the noise scale 𝜂0 are kept constant.

Model Dataset Multiplicative Variations Additive Variations
10% 20% 30% 40% 50% 10% 20% 30% 40% 50%

ResNet-20 CIFAR-10 97.8% 100% 100% 100% 100% 88.8% 99.7% 100% 100% 100%
RepVGG-A0 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
ResNet-56 CIFAR-100 96.9% 100% 100% 100% 100% 96.3% 99.8% 100% 100% 100%

MobileNet-V2 100% 100% 100% 100% 100% 99.7% 100% 100% 100% 100%
Bit-flip Faults Level-flip Faults

ResNet-20 CIFAR-10 95.2% 99.7% 100% 100% 100% 96.2% 97.0% 96.7% 96.4% 97.6%
RepVGG-A0 97.3% 100% 100% 100% 100% 100% 100% 100% 100% 100%
ResNet-56 CIFAR-100 98.0% 99.6% 100% 100% 100% 100% 100% 100% 100% 100%

MobileNet-V2 99.8% 100% 100% 100% 100% 100% 100% 100% 100% 100%

7.3.3.5. Layer-wise Uncertainty Estimation

We have extensively evaluated our approach when all the parameters of NN are affected by the memristive
non-idealities. However, it is likely that not all the layers in an NN are affected by those non-idealities.
Therefore, we have conducted further evaluations of our approach by randomly injecting faults and
variations into 10 − 50% of the layers of the CIFAR-10 and CIFAR-100 models. As demonstrated in
Table 7.18, our method can achieve 100% uncertainty estimation coverage when ≥ 20% of the layers of the
NN are affected by variations or faults. Even when only 10% of the layers are affected, the uncertainty due
to faults or variations that lead to ≥ 1 − 2% accuracy degradation can be estimated with our approach.

7.3.3.6. Analysis of the Impact of Threshold Value on Coverage

Choosing the right value for the threshold 𝑡ℎ is important to achieve a high uncertainty estimation coverage.
It implicitly reduces the risk of false positive or negative uncertainty estimates. We perform a series of
analyses with different offsets for 𝑡ℎ. As demonstrated in Table 7.19, as the offset increases, the coverage
gradually decreases to a close value 0%. Therefore, it is beneficial to use the threshold 𝑡ℎ as the baseline
standard deviation of the ideal MUT. However, 𝑡ℎ should never be chosen below the SD of the ideal MUT.
In this case, coverage could be high due to false-positive uncertainty estimation.

166

7.3. FEW-SHOT TESTING USING BAYESIAN TEST VECTORS

Table 7.19.: The effect of offset value of 𝑡ℎ on uncertainty estimation coverage. Evaluated on multiplicative variations with the
same noise scale 𝜂0 as Table 7.15.

Offset of
Threshold 𝑡ℎ

Model Offset of
Threshold 𝑡ℎ

Model Offset of
Threshold 𝑡ℎ

Model
RepVGG ResNet-56 DenseNet-201

0.0 100% 0.0 100% 0.000 100%
0.40 100% 0.140 100% 0.040 100%
0.42 99.9% 0.150 99.7% 0.050 93.5%
0.43 97.0% 0.155 94.4% 0.051 77.9%
0.44 66.2% 0.160 74.0% 0.052 50.3%
0.45 18.6% 0.165 42.8% 0.053 22.2%
0.46 1.8% 0.170 17.1% 0.054 5.8%

Table 7.20.: Comparison of the proposed approach with the existing methods using different performance metrics. To ensure a
fair comparison, the analysis of all approaches is conducted on the CIFAR-10 dataset. The memory consumptions for the test
vectors and their labels are calculated based on the bit width reported by [37].

Methods [37] [117] [118] [41] [229] Proposed
Size of 10000 1024 10-50 16-64 9v/1vi 1test vectors

of test queries 10000 1024 10-50 17 9v/1vi 1(normalized)

Memory 0.015i 234.42i 0.154i 0.0003i 0.1105v
/0.0123vi 0.02455i

overhead (MB) 245.775ii 234.42ii 0.154ii 0.1966ii 0.1105v
/0.0123vi 0.02455ii

Coverage (%) 99.27 98 76 / 84 100 86.7v/30vi 100
i Re-training data is stored in hardware.
ii Re-training data is not stored in hardware.
V 32-bit floating-point, Re-training data is stored in hardware.
Vi 16-bit floating-point, Re-training data is not stored in hardware.

7.3.3.7. Resolution of Uncertainty Estimation

As mentioned previously, we have used a minuscule noise scale 𝜂0 and 𝑃𝑓 𝑙𝑖𝑝 , leading to negligible inference
accuracy loss. Although our method can achieve 100% coverage for uncertainty estimates in those scenarios,
it is important to find the boundary of coverage to determine the risk of false positive uncertainty estimates.
Therefore, we have conducted several experiments on the CIFAR-10 and CIFAR-100 datasets, with even
lower 𝑃𝑓 𝑙𝑖𝑝 and noise scales. We have found that our method can estimate uncertainty with 100% coverage,
even with 1 − 2% accuracy degradation. However, when the accuracy degradation is very low, e.g., ≤ 0.5%,
the number of false-negative uncertainty estimates can be as high as 5%.

7.3.3.8. Comparison With Related Works

We compare our approach to the related works with point estimate test vectors and Bayesian optimized test
vectors, which employ a functional approach. Our single Bayesian test vector outperforms the methods
proposed by Chen et al. [37], Li et al. [117], Luo et al. [118], and Ahmed et al. [41] on all metrics, as
displayed in Table 7.20, even though we use only a single test vector, test query and forward pass. This
implies that our method significantly reduces latency and energy consumption for uncertainty estimation
compared to the other methods. The latency and the energy consumption are directly proportional to the
number of test vectors used for estimating uncertainty. For instance, the testing method of Li et al. [117]
requires 1024 test vectors, thereby necessitating 1024 times more matrix-vector multiplication operations
and power consumption. In our comparisons, we assume that all the methods employ identical hardware
implementation, NN topology, and memristor technology.

167

CHAPTER 7. EXPLICIT TESTING OF NNS

Moreover, our proposed approach consistently achieves 100% coverage in various fault and variation
scenarios, exceeding the coverage rates of 30% to 99.27% achieved by the methods proposed by Chen et
al. [37], Li et al. [117], Luo et al. [118], and A. Chaudhuri et al. [229].

In terms of the storage overhead of the Bayesian test vector, our method requires only 0.0245 MB to store
the test vector, which is equivalent to storing only two (point estimate) test vectors. This is because our
method requires the storage of mean and variance elementwise. Nevertheless, the memory requirement of
our method is substantially lower than the other methods, regardless of whether re-training data is stored
in hardware. Importantly, our method does not depend on storing re-training data in hardware to reduce
memory consumption, unlike the methods proposed by Chen et al. [37] and Ahmed et al. [41].

In terms of sampling overhead for uncertainty estimation, there is a trade-off between the number of MC
samples required 𝑇 , the number of neurons in the penultimate layer of MUT C, and the storage overhead.
For an MUT with a larger C, e.g., C ≥ 10, only one sample is required, 𝑇 = 1. In this instance, it is
beneficial to take one MC sample before NN is deployed to CiM and store the sample on the hardware.
Consequently, the number of MC samplings is reduced to one for the entire device operation, and the
storage requirement for the Bayesian test vector is reduced to 0.0123 MB, a reduction of 2×. Overall, the
overhead is the same as that of one test run for related methods. On the other hand, for an MUT with
a small C, e.g., C = 1 or 2, sampling overhead can be reduced by taking multiple samples and storing
them. In this case, the sampling overhead is reduced by𝑇× in each of the following uncertainty estimation
steps, but the storage overhead increases by 𝑇×. For an edge device with limited memory, storing the
parameters of a Bayesian test vector and taking samples in each uncertainty estimation step is more
beneficial. In addition, the number of elements in an input determines how many E-samples are required
in an uncertainty estimation step. Nevertheless, Elementwise sampling can be done in parallel since the
input, e.g., an image, is a 3-D matrix.

7.3.4. Scientific Impact of This Work

The scientific impact of this work is summarized as follows:

1. Bayesian Test Vector: We introduce the concept of the Bayesian test vector, which has its element
represented as a distribution rather than a single point. Therefore, it allows for more generalized
low-cost testing that is scalable to any NN topology.

2. Few Shot Testing: We introduced a number of class-based NN tests. That is, a model with a smaller
number of classes requires a few shots for testing, but a model with a large number of classes requires
a single shot for testing. Therefore, our method is scalable to an NN in various classes.

3. Gaussian Noise Injection for Fault-tolerance: We show that when a model is trained with
Gaussian noise injected into the input, it becomes variation tolerant. This concept can be further
developed for variation tolerance in edge AI accelerators.

7.3.5. Section Conclusion

In this section, we propose a single Bayesian test vector generation framework to estimate the functional
uncertainty of the memristor-based edge AI accelerator. The proposed Bayesian test vector is specifi-
cally optimized to provide low-uncertainty output for fault- and variation-free memristor-based edge
AI accelerator. Our method requires only single (element-wise) sampling from the distribution of the
Bayesian test vector and a single forward pass on a larger model. Thus, the overhead associated with our
approach is minimal. In addition, we proposed an application of our uncertainty estimation approach in the
pre-deployment and post-deployment scenarios of an NN to MHA.We have consistently demonstrated high
uncertainty estimation coverage of our approach on various NN topologies, tasks, fault rates, and noise
scales related to variations. Our work improves confidence in the predictions made by memristor-based
edge AI accelerator.

168

8. Explicit Testing of Bayesian NNs

BayNNs offer substantial benefits over conventional NNs and can inherently capture and estimate
the uncertainty of their predictions. As mentioned before, Spintronics-based CiM architectures are
a promising solution for the hardware realization of BayNNs as they mitigate some of the inherent
computational costs, balancing high-performance demands with the constraints of resource-limited
devices. However, Spintronics-based CiM-implemented BayNN suffers from various non-idealities
that impact their accuracy and violate functional safety. Addressing these reliability issues with proper
periodic in-field testing is critical to ensuring the reliability of BayNNs in real-world safety-critical
applications.

However, testing Dropout-based BayNN in Spintronics-CiM presents unique challenges, primarily
due to the stochastic nature of its output. This section aims to address this and is based on our IEEE
ETS24 [190] paper.

8.1. Methodology

8.1.1. Problem Statement

Dropout-based BayNNs and their Spintronics implementation represent a distribution of output over
possible models, rather than a single model. Thus, the Spintronics-CiM outputs are different for the same
input, as shown in Fig. 8.1 (a). We refer to this characteristic as the repeatability or high-variance problem.
Consequently, functionally testing BayNNs in Spintronics-CiM introduces several unique challenges due
to the non-deterministic nature of their output due to the application Dropout. Due to the repeatability
problem, traditional functional testing-based approaches for testing Spintronics-CiM can lead to too many
false positives or low true positive rates. This is because traditional approaches compare the expected
output, label, or distribution of Spintronics-CiM to a pre-defined deterministic one without considering the
stochasticity of BayNNs. Therefore, our previous works [41, 221, 42] targeted for testing conventional NN
is not applicable here, and a novel approach should be devised. Also, unlike the ensemble-based approach
in [230], the uncertainty estimates of BayNN in Spintronics-CiM are also stochastic, even for the same
input, as shown in Fig. 8.1 (b). This creates an additional challenge in testing BayNNs in Spintronics-CiM
based on their uncertainty.

0 25 50 75 100 125 150 175 200
a) Prediction Runs on Spintronics-CIM

34

32

30

28

Sp
in

tro
ni

cs
-C

IM
 O

ut
pu

t

0 25 50 75 100 125 150 175 200
b) Inference Runs on Spintronics-CIM

2

3

4

5

Un
ce

rta
itn

y
Es

tia
m

te
s

Figure 8.1.: Stochasticity of a) Spintronics-CiM output (logits values) and b) uncertainty estimates for the same input for 200
different predictions and inference runs, respectively.

169

CHAPTER 8. EXPLICIT TESTING OF BAYESIAN NNS

Additionally, the input space of BayNNs can be very large, especially for models with many hidden layers.
This is because Dropout-based BayNNs in Spintronics-CiM effectively create a separate sparse model for
each forward pass. Therefore, there are many possible inputs that the BayNN in Spintronics-CiM could be
tested with. Exhaustively testing the model on all possible inputs would be computationally infeasible.

Furthermore, the test cost of BayNN in terms of latency and power presents a significant challenge for
resource-constrained devices or real-time applications. In these applications, the availability of the device
is an important factor and cannot be unavailable for too long while a test operation is performed. However,
Bayesian inference requires numerous forward passes to obtain a prediction for the input sample. Therefore,
the number of test vectors should be minimal.

8.1.2. Automatic Test Generation Framework

To address the challenges mentioned before, we propose a novel sample-based automatic test vector
generation framework to test BayNNs in Spintronics-CiM. In our approach, a small subset of training data
is sampled based on their variance in the output. Here, variance is treated as a measure of the repeatability
of the predictions. We hypothesized and observed that, despite the stochastic output of the model, the
variance of inputs varies from one to another. Inputs with low variance are close to the deterministic
model and are thus more suitable for testing BayNN in Spintronics-CiM, as they yield more interpretable
outputs and uncertainties.

Our approach involves performing statistically significant repetitive inference runs for each training data
sample. Subsequently, the variance in the uncertainty is calculated for each input. Additionally, training
data is ranked based on their variance, with lower-variance samples receiving higher priority for selection.
Lastly, several lower-variance training data points are stored in the hardware as test vectors.

In our approach, test vectors are sampled from the training dataset because we observed that the uncertainty
of the distribution of training and validation data overlaps when no random data augmentations are applied.
Therefore, it can be stated that the uncertainty of the prediction is the same regardless of the input data
seen during the training, as long as they are of the same distribution. Therefore, no holdout data are
required, which could otherwise reduce the available data for model training or validation. Consequently,
our approach is particularly advantageous in scenarios with limited data.

8.1.3. Proposed Fault Detection Approach

For fault detection, we hypothesize that as the Spintronics device deviates from its initial state or is
faulty, the uncertainty of the prediction increases. Our hypothesis is grounded in the fact that as the
distribution of input to the Spintronics-CiM shifts away from the training distribution, e.g., due to random
noise introduced by the sensor or by dynamic environmental conditions such as rain, snow, or fog, the
uncertainty of prediction increases as demonstrated in several existing works [231, 49, 86, 85]. In scenarios
where faults and variations occur on the Spintronics cells storing BayNN weights and buffer memories
storing activations of hidden layers, inputs to subsequent layers will also change from their expected values,
effectively creating intermediate out-of-distribution data, even though initial input to the Spintronics-CiM
remains within the in-distribution range. Therefore, the uncertainty of the prediction is expected to
increase.

Our objective is to detect these changes in prediction uncertainty as a means of testing the BayNN
implemented in Spintronics-CiM. We define a predefined range for the uncertainty of the BayNN given
the test vectors. The BayNN model is classified as faulty if the uncertainty distribution changes from the
predefined distribution. Otherwise, it is not faulty.

We fit the uncertainty distribution of the test vectors to a Gaussian distribution, as they are mathematically
well-defined and easy to work with. Afterward, we evaluate the mean 𝜇 and standard deviation 𝜎 of the

170

8.2. EVALUATION

uncertainty distribution to estimate the baseline (fault-free) range of the prediction uncertainty. Specifically,
we define the two bounds, 𝑏1 and 𝑏1, representing the upper and lower bounds of the distribution based on
the empirical rule of probability. The rule states that 99.7% of the values of a Gaussian distribution are
within three standard deviations of the mean. Therefore, B1 and 𝑏1 are defined as 𝜇 + 3 × 𝜎 and 𝜇 − 3 × 𝜎 ,
respectively.

Lastly, during each online testing phase of Spintronics-CiM, the test vectors are applied sequentially to the
model as test queries. If the uncertainty of the prediction is above or below the boundaries, the model is
classified as faulty. Therefore, in our approach, only lightweight checks are required in the model output.
Afterward, thorough testing is required, for example, to localize the faults and perform re-training [151] or
re-calibration [205, 204] to mitigate the impact of faults and variations.

8.1.4. Reduction of False Positives Rate

A theoretically sound approach to address the repeatability problem and reduce the false-positive rate
would be to test BayNNs based on expected output. Specifically, predictions and uncertainties are derived
from the mean of multiple inference results, with each inference result obtained after multiple forward
passes, as described earlier. However, this approach is impractical. For example, if the expected uncertainty
is determined after 10 inferences, each requiring 20 forward passes, the total computation for a single test
vector reaches 200 forward passes, which is prohibitively expensive.

Therefore, we propose a low-cost vote-based approach. Specifically, unlike in work [41], multiple test
queries contribute to the fault identification process. However, to minimize test costs in terms of latency
and power, we limit the length of the query sequence to the minimum when a close-to-ideal (less than
10%) false positive rate is achieved.

8.2. Evaluation

8.2.1. Simulation Setup

The proposed method is evaluated across three state-of-the-art Spintronics-CiM-implemented dropout-
based BayNN methods: SpinDrop [85], SpatialSpinDrop [86], and ScaleDrop [48]. All methods are imple-
mented with the widely used ResNet-18 topology and the CIFAR-10 benchmark dataset.

The test vector is generated after performing 200 repetitions of inference, and with each inference, 20
Monte Carlo samples of the Dropout mask were performed. For fault detection, a positive test query length
of four was used, and 100 test vectors were used. We have performed the Monte Carlo fault simulation
with a 1000 fault injection for each fault or variation rate. In total, we have performed 60, 000 fault injection
campaigns at different locations of Spintronics-CiM as mentioned in Section 2.10.

The proposed method evaluates fault coverage, which states how many injected faults are detected. Faults
are treated as benign if the accuracy does not degrade noticeably. Otherwise, they are critical faults. Fault
coverage for critical faults represents true positive rates (TPR), and without faults represents false positive
rates (TPR).

8.2.2. Fault Models For Spintronics-CiM-based BayNN

Permanent faults in Spintronics cells and buffer memory are modeled as stuck-at faults, as is usually
done, with logic values always fixed at ’0’ or ’1’ [232]. In binary BayNNs, these translate to weights and
activations being persistently stuck at ’-1’ or ’1’. In the Dropout module, the permanent fault results in a
constant Dropout mask of ’0’ or ’1’. Thus, a word-line in the crossbar can always be inactive or active.
Similarly, the widely used bit-flip fault model is used for transient faults. In the bit-flip fault model, the

171

CHAPTER 8. EXPLICIT TESTING OF BAYESIAN NNS

logic value in the Spintronics cells and the buffer memory randomly shift from ’0’ to ’1’ or vice versa. For
binary BayNNs, this means random flipping of logic values between ’-1’ and ’1’. In the Dropout module,
this manifests itself as random bit flips in the Dropout mask. Thus, a word-line that was originally inactive
can be active, and vice versa.

Furthermore, existingwork shows that conductance variations can bemodeled as additive andmultiplicative
Gaussian variations [75] and variations in the resistive states of MRAM devices lead to variations in the
current sum [67]. Thus, based on these works, conductance variations in Spintronics devices are modeled
as additive and multiplicative Gaussian variations in the MAC result.

Lastly, due to fluctuations in the switching current of the Dropout module, the Dropout probability can
vary. Based on works [85], variation in the Dropout probability is represented with a Gaussian distribution,
the mean representing the original Dropout probability.

8.2.3. Fault Sensitivity Analysis of BayNN on Spintronics-CiM

BayNNs implemented in Spintronics-CiM can withstand up to 5% of stuck-at and bit-flip faults in MTJs
and buffer memories, as shown in Fig. 8.2. In particular, BayNNs are more fault-tolerant in the case of
stuck-at faults compared to bit-flip faults. Specifically, they can withstand up to 10% of stuck-at-faults in
buffer memories that store binary activations. In terms of BayNN methods, scale dropout-based BayNNs
are more fault-tolerant and can tolerate up to 15% of stuck-at-faults in buffer memories. In contrast, the
inference accuracy gradually decreases with the additive and multiplicative types of MTJ conductance
variations, as shown in Fig. 8.3. Nevertheless, all BayNN methods show an overall trend of a reduction in
accuracy as the fault rate increases. Therefore, this emphasizes the necessity for fault detection to ensure
the functional safety and reliability of BayNNs.

8.2.4. Analysis of Fault Coverage

As shown in Figs.8.4 (a) and (b), our proposed approach can predominantly achieve 100% fault coverage
for critical faults on MTJs and buffer memories of Spintronics-CiM. Similarly, our proposed approach can
consistently achieve 100% fault coverage for conductance variations of Spintronics devices, as depicted
in Fig.8.4 (c). In the worst case, our approach can achieve a fault coverage of 89.10%. Consequently,
our approach is more effective in detecting faults in the buffer memories and conductance variations.
Specifically, even when the accuracy drop is marginal, i.e., 0.30%, our proposed approach can achieve 100%
fault coverage. In terms of BayNN methods, our approach is particularly effective with the SpinDrop and
SpatialSpinDrop methods, which are more fault-sensitive compared to the ScaleDrop method. Note that
the fault coverages mentioned here are TPR and our approach can consistently achieve an ideal 100% TPR
value.

Furthermore, our approach can also achieve up to 100% fault coverage for benign faults. Detecting benign
faults before they catastrophically degrade accuracy is beneficial, especially for faults, such as retention
faults, that accumulate over time.

8.2.5. Analysis of False Positive Rate (FPR)

Although achieving high fault coverage is important in the case of critical faults and conductance variations,
achieving a low FPR is equally important in reducing false alarms. As shown in Fig. 8.5, our approach
gradually reduces the FPR to an ideal value of 0% with a positive test query length of 5. As mentioned in
Sec. 8.2.1, evaluation of test coverage performed with a positive test query length of 4, which results in an
acceptable FPR of 10% and less.

172

8.2. EVALUATION

Fault Location: MTJ Cells Fault Location: Buffer Memory

Fault Rate
(%):

Figure 8.2.: Impact of Inference accuracy of BayNNs implemented in Spintronics-CiM with different bit-flip and stuck-at-fault
rates, compared to a baseline without faults. It is recommended to view this figure in color.

0,5 0,55 0,65 0,75 0,85 0,95 0,5 0,55 0,65 0,75 0,85 0,95 0,5 0,55 0,65 0,75 0,85 0,95

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0,35 0,45 0,55 0,65 0,75 0,85 0,35 0,45 0,55 0,65 0,75 0,85 0,35 0,45 0,55 0,65 0,75 0,85
SpinDrop SpatialSpinDrop ScaleDrop

In
fe

re
nc

e
A

cc
ur

ac
y

(%
)

Baseline Additive Variations Multiplicative Variations

Figure 8.3.: Comparison of the impact of inference accuracy of BayNNs implemented in Spintronics-CiM with conductance
variations relative to a fault-free baseline. It is recommended to view this figure in color.

1% 3% 5% 10% 15% 20% 1% 3% 5% 10% 15% 20%

Bit- Flip Faults (%) Stuck-at-Faults (%)

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1% 3% 5% 10% 15% 20% 1% 3% 5% 10% 15% 20%

Bit- Flip Faults (%) Stuck-at-Faults (%)

a) Faults In MTJ Cells c) Faults In Buffer Memories c) Conductance Variations MTJ Cells

Fault Rate
(%):

Benign Faults Critical Faults Critical Faults Critical Faults Critical Faults Critical Faults Critical FaultsBenign Faults Benign Faults Benign Faults

Legend

Bit-Flip Faults (%)Bit-Flip Faults (%) Bit-Flip Faults (%)Stuck-at-Faults (%) Stuck-at-Faults (%) Additive Variations (σ) Multiplicative Variations (σ)

Fa
ul

t C
ov

er
ag

e
(%

)

Benign
Faults

Benign
Faults

Figure 8.4.: Fault coverage of proposed approach on various Spintronics implemented BayNN methods under varying bit-flip and
stuck-at faults rate a) affecting Spintronics cells that store weights, b) buffer memories that store intermediate activation, and c)
different conductance variations in Spintronics. It is recommended to view this figure in color.

a) Voting-based (Proposed) b) Statistical Estimation based

Test Query Length Count of Inferences for Expected Output

Figure 8.5.: False positive rate (lower the better) of a) proposed voting-based approach, and b) theoretically grounded estimation-
based approach. It is recommended to view this figure in color.

173

CHAPTER 8. EXPLICIT TESTING OF BAYESIAN NNS

0 20 40 60 80 100
False Positive Rate (%)

0

20

40

60

80

100

Fa
ul

t C
ov

er
ag

e
(%

)

ROC Curve

Benign Faults
Critical Faults

Figure 8.6.: ROC curves for benign and critical faults with varying positive test query lengths. It is recommended to view this
figure in color.

There is a trade-off between fault coverage and FPR given by the positive test query length, as shown
in the Receiver Operating Characteristic (ROC) curve in Fig. 8.6 for the SpinDrop method. In an ROC
curve, the closer a curve is to the top-left corner, the better the performance. With our proposed approach,
both the curves for benign and critical faults perform well because they are above the random diagonal
line. Specifically, the curve for critical faults does not change with FPR. This suggests that our approach
can achieve 100% fault coverage even with a positive test query length of 1 and is better at detecting
critical faults than benign ones. In contrast, the coverage of the benign fault is highly dependent on the
positive test query length. In practice, we suggest using a positive test query length of 4 as it can detect a
sufficiently large number of benign faults and the majority of critical faults at low FPR.

8.2.6. Analysis of Non-ideal Dropout Module

We found that BayNNs [85, 48, 86] are robust to faults (stuck-at and bit-flip) and variation in the switching
current of the Dropout modules and do not impact the inference accuracy with up to a 20% fault rate.
Similarly, uncertainty estimates of BayNNs are generally not affected. However, in the SpinDrop and
ScaleDrop methods, bit-flip and stuck-at-0 faults lower the uncertainty, that is, making the BayNN overcon-
fident. In these scenarios, the faults are considered critical, and our approach can achieve 100% coverage.
Furthermore, if the Dropout modules are shared within a layer and all the other layers, then a fault in the
Dropout module affects all the neurons of a layer and other layers. In this case, stuck-at faults make all the
word-lines of Spintronics-CiM always inactive or active and make the uncertainty estimates zero, i.e., the
same as conventional NNs. In this case, our approach can also achieve 100% coverage.

8.2.7. Overhead Analysis and Comparison to Related Works

Regarding memory overhead, our approach requires 0.31 MB of memory to store test vectors. Furthermore,
for a single test query, our approach consumes energy of 12.09, 3.88, and 1.15 𝜇𝐽 for the SpinDrop, Spatial-
SpinDrop, and ScaleDrop methods on ResNet-18, respectively. Here, the energy consumption depends
on the specific implementation of BayNN. For a BayNN status check, the overall energy consumption
required depends on the number of test queries. In the worst case, our method requires 1209, 388, and 115
𝜇𝐽 energy, respectively, for the 100 test queries. In comparison, the statistical estimation-based approach
requires 10× energy consumption for a test query to achieve 10% FPR.

To the best of our knowledge, this paper proposes the first work on testing BayNN on Spintronics-CiM.
The other related work [230], although not directly comparable, estimates the uncertainty of the model
due to process variations using an ensemble-based approach. They do not report fault coverage, but an
80.4% reduction in calibration error (a measure of uncertainty) is reported. Also, their work has a memory
overhead of 0.45 MB and an energy consumption of 6.02 𝜇𝐽 per test query. This results in 602 𝜇𝐽 for the
100 test vectors in an explicit testing scenario.

174

8.3. SCIENTIFIC IMPACT OF THIS WORK

8.3. Scientific Impact of This Work

The scientific impact of this work can be summarized in the following:

1. Testing Stochastic NNs in Edge AI: We propose a comprehensive testing method that addresses
the unique challenges posed by the stochastic nature of BayNN outputs, which traditional testing
methods cannot efficiently handle.

2. ATPG for BayNN: We proposed a repeatability ranking-based automatic test pattern generation
method that achieves high fault coverage while using only 0.2% of training data as test vectors.

3. Scalability: Our testing methodology is highly scalable and can be applied to other memristor
technology-based CiM, other edge AI accelerator architectures, neural network topologies, datasets,
and tasks. The relatively low testing cost makes it particularly suitable for real-time application,
ensuring broad applicability and versatility.

4. Monitoring Uncertainty Estimates as a Means to Detect Fault: Many of the existing BayNN
show high uncertainty due to OOD data. In this work, we show that uncertainty distribution also
changes due to faults or variations. We utilized this aspect to detect faults and variations in BayNN
effectively.

8.4. Section Summary

In this section, we propose for the first time a test generation and online testing framework for Dropout-
based BayNN implemented in Spintronics-CiM. We also present fault analysis of different non-idealities of
Spintronics-CiM. Our approach can consistently detect 100% of the critical faults at different locations.
Furthermore, our approach requires only 0.2% training data as test vectors and a simple check at the
BayNN output.

175

9. Concurrent Testing NNs

In this section, we focus on the challenge of concurrently self-testing BNNs. Due to their lower
bit-precision and computation cost, they are particularly suited for resource-constrained edge AI
accelerators. Concurrent testing is particularly suitable for always-on safety-critical applications that
do not tolerate any system downtime and expect continuous operation. However, keeping a low false
positive rate and high fault coverage is challenging. We address these challenges in this section. This
section is based on our paper [233].

9.1. Problem Statement

Concurrent self-testing of BNNs is a challenging task. As demonstrated in Figure 9.1, the learned represen-
tations of the backbone network of a ResNet-18 BNN exhibit minimal changes and overlap even at a 20%
soft fault rate. Afterward, these learned representations are received by the classification head. Therefore,
the output distribution can change marginally from the fault-free one.

The primary objective is to devise a concurrent self-testing method that meets the following criteria:
a) Requires no additional forward pass through the network. b) Achieves a low False Positive Rate (FPR),
minimizing the number of false alarms. c) Attains a high True Positive Rate (TPR), ensuring that faults in
CiM architectures are accurately identified, d) is suitable for BNNs, and requires lightweight checks online
for testing.

Figure 9.1.:Change in the distribution of the feature maps due to soft-faults modeled as bit-flips of memory cells that store weights
(see 9.3.1) on binary ResNet-18 trained on CIFAR-10. It is recommended to view this figure in color.

177

CHAPTER 9. CONCURRENT TESTING NNS

Shared Backbone
Network

Input
Feature Maps

Prediction
Head

Uncertainty
Head

Final
Activation

Prediction

Uncertainty
Fingerprint

Uncertainty
computation

Baseline
Fingerprint

Fingerprint
Matching

Figure 9.2.: Two-Headed model with point estimate parameters for concurrent self-testing and uncertainty estimation. The model
is generalizable with existing NN topologies.

9.2. Methodology

9.2.1. Uncertainty Fingerprint

In this chapter, we introduce the uncertainty fingerprint (U) concept, a specialized metric for concurrent
fault detection in CiM architectures, especially in always-on safety-critical applications. The uncertainty
fingerprint is specifically designed to be the output of a dedicated head in a dual-head NN topology as a
form of alternative prediction. We refer to that head as the "uncertainty head." Fig. 9.2 shows the block
diagram of the proposed topology.

In this work, the uncertainty fingerprint is defined as the maximum value (max()) produced by the
uncertainty head. We proposed a tailored learning objective for this outcome. During the training phase,
the uncertainty head is explicitly tuned with the proposed objective of bringing the maximum output value
to one for each input during inference. However, the exact value of the uncertainty fingerprint, even in
the fault-free state of the CiM architecture, can vary from one input to another and is itself a distribution.
Consequently, the optimization objective ensures that the uncertainty fingerprint distribution is centered
around one. The main goal of the optimization is to establish a "signature" or "fingerprint" based on the
CiM architecture’s fault-free state. Note that optimization does not require any faulty behavior of CiM
architectures or explicit fault injection.

We hypothesize that as the memory cells or buffer memory of CiM architectures change due to permanent
or soft faults, the distribution of uncertainty fingerprints can change, i.e., the distribution shifts to the left
or right, thus, making it distinguishable from the pre-defined fault-free distribution. This is because the
output of the uncertainty head is a linear transformation of its input, which is the output of the backbone
network. To reiterate, faults in the memory elements and intermediate results of a layer would lead to the
input of the following layer being faulty. The cascading effect of this will propagate the output backbone
network and, ultimately, the CiM architecture. That means that both the prediction and the uncertainty
head will receive input that is different from the fault-free one. Consequently, the output of the prediction
head will be incorrect, and the uncertainty head will be different from its baseline.

Therefore, by matching the expected uncertainty fingerprint value online in real-time for each prediction,
we propose to concurrently self-test the CiM architecture. If the uncertainty fingerprint of the CiM
architecture matches, then a prediction is classified as fault-free, otherwise, it is classified as faulty.

9.2.2. Dual-Head Model

To reiterate, in modern NN topologies design, task-specific heads are increasingly used [43]. To obtain the
proposed uncertainty fingerprint of the model in a single shot without reducing the accuracy, we introduce

178

9.2. METHODOLOGY

an additional head to the NN, uncertainty head. The uncertainty head is typically a linear layer with a
predefined number of neurons that is independent of the number of classes in the dataset. The specific
number of neurons is a hyperparameter that should be optimized to improve fault detection accuracy.
Unlike conventional NN topologies, our proposed topology can be self-tested. Both the uncertainty and
the prediction heads share the same (unchanged) backbone network.

If the prediction head is also a linear layer, the input that both the uncertainty and prediction heads receive
can be the same. Otherwise, an additional pre-processing layer, such as adaptive average pooling, can be
applied before the uncertainty head. The adaptive average pooling layer reduces the spatial dimensions
of the feature maps to a single value. Thus, it significantly reduces the size of the weight matrix of the
uncertainty head. Hence, our proposed approach can potentially be applied to various NN topologies, such
as fully convolutional NN (FCN), in which the prediction head is a convolutional layer.

9.2.3. Training Objective

We propose a two-step training approach for our objective. In the first step, the NN is trained using the
gradient descent algorithm, minimizing task-specific loss, such as cross-entropy. In this step, only the
output of the prediction head is taken into account.

In the second step, we freeze the rest of the model, including the prediction head, and train only the
uncertainty head. The term "freeze" here means that the gradient is not calculated with respect to the loss
value, and the associated parameters and variables will not be updated.

We propose a fingerprint loss function for this step of the training. It is defined as:

L = 𝛼 × 1
𝐵

𝐵∑︁
𝑏=1
(1 −max(F𝜃 ′ (x𝑏)))2 (9.1)

Here, 𝛼 is a hyperparameter that controls the strength of the loss function, x is the NN input, F (.) denotes
the NN with 𝜃 ′ summarizing all the parameters of the NN excluding the parameters of the prediction
head, and 𝐵 is the batch size. The loss function encourages the uncertainty fingerprint for each input to
be close to one. Consequently, it encourages the distribution of uncertainty fingerprints to be centered
around one. It can be considered similar to the conventional mean squared error (MSE), but is applied to
the uncertainty head.

For training and baseline uncertainty fingerprint estimation, we divide both the training and validation
datasets with an 80:20 split, where 80% of the training data trains the functional task and 20%(fingerprint
data) trains the uncertainty head to encourage its maximum output close to one. Since the NN was not
trained on fingerprint data, the inputs to the uncertainty head from the backbone network resemble those
during inference. Consequently, this enables the uncertainty head to learn outputs akin to those expected
during inference, aligning its learned representations closer to the inference scenario. Note that random
data augmentations and stochastic regularization approaches, such as Dropout, should be avoided during
uncertainty head training. Otherwise, the uncertainty head might learn to be robust to input variations,
leading to a lower fault detection rate.

9.2.4. Online Concurrent Self-test

We propose boundary-based online testing, which is a lightweight and effective way to detect faults in an
online, resource-constrained edge devices. We pre-compute the boundary values, 𝑙 and ℎ, offline. This
range suggests that most of the uncertainty fingerprints of the fault-free model fall within this range. Then,
during the online operation, if an uncertainty fingerprint is observed outside this range, it suggests that

179

CHAPTER 9. CONCURRENT TESTING NNS

the data on the memory cells storing weights or buffer memory storing intermediate activations of CiM
architectures have changed due to fault occurrence.

The main idea behind this approach is to establish a "normal operating range" for the CiM architecture’s
uncertainty fingerprint. To do this, we compute the 𝑙 = 2.5% and ℎ = 9.5% quantiles of the uncertainty
fingerprint for the fault-free model. During the online operation, two scenarios can arise regarding the
distribution of uncertainty fingerprint score. If the score is less than 𝑙 , it may indicate a leftward drift in
the distribution. In contrast, a score greater than ℎ could suggest a rightward drift. In both cases, these
shifts signal that the uncertainty fingerprint score is different from what was observed in the fault-free
model and the faults in the CiM architecture. Therefore, a fault is detected if it satisfies this condition:

Status of the model =
{
Faulty ifU < 𝑙 orU > ℎ,

Fault-Free otherwise.

As a result, our approach requires only lightweight checks to detect faults. The < (less than) and > (greater
than) operations can be implemented in software or even hardware using comparators available in existing
hardware accelerators.

Our approach, similar to the work of Gavarini et al. [119], may result in false positives or negatives, which
need to be minimized. However, unlike [119], we propose two strategies to reduce them. The number
of false positives or negatives is influenced by the boundaries of the uncertainty fingerprint. Therefore,
it is crucial to tune the boundaries for each dataset or task to maximize coverage and minimize false
positives.

Initially, we obtain the boundary values from the fault-free model using a dataset that closely represents the
expected real-world data distribution that the model will encounter during inference. Thus, the quantiles
are determined on 20% of the validation data, providing an unbiased estimate of the uncertainty fingerprint
distribution. The remaining 80% of the validation dataset is used for evaluating performance and fault
coverage.

Since we choose boundaries as 2.5% and 95% quantile values, it effectively ignores the tails of the uncertainty
fingerprint distribution, treating them as anomalies. In some datasets and models, these anomalies can
skew the values of 𝑙 and ℎ. Therefore, we compute the Z-score of the uncertainty fingerprint distribution
and adjust 𝑙 and ℎ on data with a Z-score of less than two. Z-scores help identify anomalies in a distribution,
with scores above two indicating an anomaly.

Note that the boundaries can be adjusted online if necessary, especially when false positives are encountered.
The proposed concurrent detection method serves as an initial line of defense. It can trigger more rigorous
(explicit) tests, e.g., to find the location of faults, followed by appropriate mitigation approaches, such as
retraining [151].

9.3. Results

9.3.1. Simulation Setup

Fault Modeling and Injection We model permanent faults using the widely used "Stuck-at" fault model,
where the memory cells appear to be held exclusively high or low. This translates to stuck-at-one or
stuck-at-zero in memory cells and buffer memory of CiM architectures that store weights and activation,
respectively. In the case of multi-bit (K-bit) weights and activation, faults can cause stored weights and
activation to be stuck in any of the 2𝑘 states. On the other hand, soft faults are modeled as "random bit
flips", implying that the memory element contains random but inaccurate values. This translates into
memory cells in high states randomly switching to low states, and vice versa. At the algorithmic level, this

180

9.3. RESULTS

Table 9.1.: Comparison of the proposed method with the baseline method with different topologies.

Method Topology
ResNet-18 PreActResNet VGG-9 SegNet

Baseline 90.60 95.40 82.98 93.65
Proposed 90.68 95.54 83.0 93.53

means that the BNN weights and activations randomly switch to −1 from +1, and vice versa. However, for
multi-bit weights and activations, this means that they can flip to any of the 2𝑘 − 1 other states.

Furthermore,We perform theMonte Carlo fault simulationwith 100 fault runs. Monte Carlo fault simulation
is widely used to evaluate NN performance. Faults are injected into memory cells that store weights and
activations of pre-trained NN at random locations given by Bernoulli’s distribution. Specifically, bit-flip
faults are injected into the NN activation (after the sensing circuit digitizes the weighted sum) during each
forward pass to simulate faults that occur while CiM architectures compute inference results.

Each layer of the NN is mapped to several CiM memory arrays of dimension 64×64 and their weighted sum
is accumulated to obtain the final MAC results. We have abstracted circuit-level details of emerging memory
technology and performed the evaluation of our approach in the widely used PyTorch framework.

Evaluated Models and Dataset The proposed method is evaluated across four state-of-the-art CNN topolo-
gies: ResNet-18, PreActResNet-34, VGG-9, and SegNet (a FCN topology), trained in the CIFAR-10, SVHN,
Flowers-102 (classification tasks), and breast cancer segmentation (biomedical semantic segmentation)
datasets, respectively. These topologies diverge not only in architectural depth, spanning 11 to 34 layers,
but also in the number of target classes, ranging from 2 to 102. All models have binary (+1 and −1) weights
and activations using the IRNet algorithm [47], but the bit width of the SegNet activation is increased to
4-bit as the task is much harder.

Evaluation Metrics In terms of evaluation metrics, we report fault coverage, which is defined as the
percentage of validation data flagged as "faulty". In a fault-free model, fault coverage represents FPR, and
in a faulty model, it represents TRP. In the case of FPR, the lower the better, but for TPR, the higher the
better. In the ideal case, FPR is 0% and TPR is 100% are desired at the same time, as they would result in
fewer false alarms and prevent potentially incorrect predictions from reaching users.

9.3.2. Inference Accuracy

The proposed dual-head model maintains comparable performance across various NN topologies, as
illustrated in Table 9.1. This shows that the proposed approach does not have an impact on inference
accuracy. In particular, both the proposed and baseline models were trained using 80% of the training data
(see Section 9.2.3). A slight improvement in accuracy, estimated between 0.1 and 1%, could be observed if
the baseline NNs were trained with 100% of the training dataset.

9.3.3. Analysis of Permanent and Soft Faults Coverage

Figs. 9.3(a) and (b) show the effect of permanent and soft faults at different rates (occurring in the memory
cells of the CiM architecture that stores weights) on the inference accuracy in different datasets. It can be
observed that as the fault rate increases, the inference accuracy decreases across all datasets. However, the
effect of faults can be considered on a case-by-case basis.

The inference accuracy of the classification models shows a noticeable decline beyond the fault rate of 5%
and 10%, for permanent and soft faults, respectively. However, for the Flower-102 model, it shows greater

181

CHAPTER 9. CONCURRENT TESTING NNS

Figure 9.3.: Impact of inference accuracy due to (a) permanent faults and (b) soft faults impacting memory cells of CiM architectures
that store weights. Shaded regions indicate the one standard deviation variation around the mean inference accuracy or AUC
scores. It is recommended to view this figure in color.

Benign Faults Critical Faults
Benign
Faults Critical Faults Benign Faults Critical FaultsBenign Faults Critical Faults

Figure 9.4.: Distribution of fault coverage when dealing with permanent faults in CiM architectures that affect memory cells
storing weights and buffer memory storing activations across different datasets. It is recommended to view this figure in
color.

sensitivity to permanent faults compared to other classification models. Specifically, the accuracy drops
noticeably beyond the 5% fault rate. Therefore, faults at these fault rates are considered critical.

On the other hand, in the case of the segmentation task, there is a noticeable decrease in the area under
the ROC curce (AUC) score around the 5% fault rate for both permanent and soft faults. Therefore, from
5% faults onward, faults are considered critical.

Similar accuracy drop patterns are observed for permanent and soft faults in the buffer memory of the
CiM architectures that store activations. Also, we consider the CiM architecture as nonfunctional when
the accuracy drops more than 20% below its baseline fault-free accuracy.

In the case of permanent faults of critical nature in memory cells and buffer memory that stores weights
and activations, respectively, fault coverage consistently approaches 100% for all datasets, as shown in
Fig. 9.4. In this scenario, the worst-case median of the fault coverage distribution is ∼ 85% at the 15% fault
rate for the CIFAR-10 dataset.

Similarly, in the case of multiple soft faults in the memory cells and buffer memory of the CiM architecture,
it can be observed in Fig. 9.5 that the proposed method can consistently achieve 100% fault coverage in the
presence of critical faults.

Although detecting critical faults is important, in some scenarios, detecting benign faults before they
catastrophically impact the performance of the CiM architecture is also important. This is because many
faults, such as retention faults, accumulate over time and can catastrophically impact accuracy in the
future. As can be seen in Figs. 9.4 and 9.5, even for benign faults, our proposed method can achieve up to
a 100% median of the fault coverage distribution.

182

9.3. RESULTS

Benign
Faults Critical Faults Benign

Faults Critical Faults Benign
Faults Critical Faults Benign

Faults Critical Faults

Figure 9.5.: Box plots depicting the distribution of fault coverage of the proposed method under soft faults on memory cells and
buffer memory of CiM architectures. It is recommended to view this figure in color.

The change in the uncertainty fingerprint distribution depends on the fault rate and its impact on the
performance of the CiM architecture. As shown in Fig. 9.7 (left), as the soft fault rate increases, the
uncertainty fingerprint distribution moves further away from its baseline. The amount and direction of
drift depend on the dataset, the NN topology, the location of the fault, and the type of fault. Therefore,
even at the same fault rate, the fault coverage varies across NN topologies, datasets, and fault types. Also,
since the accuracy loss at low fault rates is marginal at low fault rates (benign faults), coverage is also low.
For instance, with a 5% permanent fault, the mean accuracy loss in CIFAR-10 is merely 2%, resulting in a
coverage of around 20% at this fault rate. Given the minimal accuracy drop, such faults are deemed benign,
rendering the low coverage relatively harmless.

In summary, on both permanent and soft faults affecting memory cells and buffer memories of
CiM architectures, the proposed method can achieve a fault coverage distribution with a median
of more than ∼ 85% for critical faults. In the event that the CiM architecture is not functional, a
consistent 100% coverage can be obtained. Furthermore, relatively high fault coverage can be achieved
in the case of marginal degradation in accuracy due to benign faults. Note that the outliers in the box plots
of Figs. 9.4 and 9.5 are also rare instances, and the fault coverage represents true positive cases. As the
true positive rate is consistently high at 100%, our method can detect most critical faults accurately with
rare false negative instances.

9.3.4. Analysis of Faults in the Uncertainty Head

Since the faults in the uncertainty head directly affect the uncertainty fingerprint, our approach can detect
faults in the uncertainty effectively. Specifically, our approach can consistently achieve fault coverage
of 98% to 100%. As shown in Fig. 9.6. Here, noise is injected into the memory cells that store weights of
uncertainty head with increasing perpetuation rates.

9.3.5. Analysis of FPR and Comparison With Related Works

Earlier, we showed that the proposed method attains high fault coverage for both permanent and soft
faults. However, maintaining low fault coverage in fault-free scenarios is also important to minimize false
positive alarms. Specifically, our method exhibits a false positive rate of 11.17%, 9.72%, 7.25%, and 12.5%
for the SVHN, CIFAR-10, Flowers-102, and Breast cancer segmentation datasets, respectively.

There is a trade-off between the true positive rate and the false positive rate. Calculating the boundaries 𝑙
and ℎ in the 1.5% and 97% quantiles of the uncertainty fingerprint distribution reduces the false positive
rate to 8.65%, 6.8%, 5.75%, and 6.25%, respectively, but the true positive rate is reduced by ∼ 2%. Regardless,
our proposed method requires a 62.2% and 89.35% lower false positive rate to achieve a 100% true positive
rate compared to open-set recognition-based fault detection [119]. Specifically, their work requires a
false positive rate of 45 − 69% and 97 − 98% for CIFAR-10 and SVHN, which is unacceptable for many

183

CHAPTER 9. CONCURRENT TESTING NNS

0.1 0.2 0.3 0.4 0.5
Perterbation Rates

90

92

94

96

98

100

TP
R

(%
)

Figure 9.6.: Distribution of fault coverage due to faults in the uncertainty head. Random noise with increasing fault intensity is
injected into the memory cells that store the weights of the uncertainty head.

Figure 9.7.: Change in the distribution of the proposed uncertainty fingerprint and maximum logit score [234] method due to soft
faults on the memory cells of CiM architectures. It is recommended to view this figure in color.

applications, as it would raise too many false alarms about the state of the model. Also, as shown in
Fig. 9.7, the distribution of the maximum logit score [234], an open set recognition method studied in [119],
overlaps at most fault rates, complicating fault detection.

9.3.6. Discussion

9.3.6.1. Detecting Faults in the Prediction Head

Although our method has been shown to be effective in detecting different types of faults in different
locations of the CiM architecture, it cannot detect faults in the prediction head. Faults in the prediction
head are equally likely as in other layers of the NN. However, their impact can be more significant, as their
output directly becomes the model prediction.

Therefore, to detect faults in the prediction head, we propose optional feedback from the prediction head
to the uncertainty head. This allows us to test the faults in the main head. The uncertainty fingerprint can
be defined in this case as:

Uncertainty Fingerprint = 1
2 × (U +max(ŷ) (9.2)

184

9.3. RESULTS

Here, ŷ represents the softmax score from the prediction head, and thus max(ŷ) represents the predicted
class probability. In addition, U represents the maximum value of the uncertainty head, as described
earlier.

With the updated uncertainty fingerprint, we have found that our approach is able to detect faults in the
prediction head with up to 100% coverage. Also, fault coverage for faults in the backbone of the model can
also be improved by as much as 2% to 5%. For example, the mean coverage of ResNet-18 topology on a 5%
bit-flip faults (benign) increases to 46.87% from 44.15%. However, the false positive rates can increase. For
example, for ResNet-18 topology, the false positive rate increases to 12.95% from 9.25%.

9.3.6.2. Improving Fault Coverage Further

While occasional false positives are not severely harmful, a lack of coverage is. Therefore, the bounds 𝑙 and
ℎ can be adjusted to favor the detection coverage, even if it slightly increases the FPR, balancing between
detection coverage and false positive rate.

9.3.7. Scientific Impact of This Work

The scientific impact of this work is summarized as follows:

1. Uncertainty Fingerprint Approach: We introduce the uncertainty fingerprint approach, which
allows for runtime status checking of AI accelerators by matching offline fault-free fingerprints
during online operation. Such fingerprinting is an attractive research direction for fault detection.

2. Dual-Head Neural Network Topology: The proposed dual-head NN topology allows simultaneous
monitoring of the fault status of the edge AI accelerators, eliminating the need for extra forward
passes. Our proposed topology can be extended for other applications where concurrent monitoring
of NN status is required.

3. Scalability: Although our approach is demonstrated using CiM architectures, the methodologies
are applicable to any AI accelerator architecture and NN topologies.

4. Applicability in Real-Time AI: Our proposed approach allows concurrent self-testing without
interruption, making it suitable for real-time applications where system interruption is impractical.

9.3.8. Section Conclusion

In this section, we propose a novel approach to the concurrent self-test of NNs using the dual-head model
and uncertainty fingerprint. Our approach enables continuous fault monitoring without necessitating the
cessation of the primary task, thus fulfilling a critical gap in most of the current research. The proposed
dual-head NN topology is specifically designed to produce uncertainty fingerprints and primary predictions
in a single shot. During online operation, our approach can concurrently self-test CiM architectures with
up to 100% coverage while maintaining the performance of the primary task in the benchmark datasets
and topologies.

185

10. Disentanglement of Source of Uncertainty

Conventional fault detection and uncertainty estimation approaches cannot disentangle the sources
of uncertainty, e.g., the uncertainty of the prediction is due to data distribution shifts or faults in the
edge AI accelerator. Knowledge of sources of uncertainty can aid in targeted uncertainty mitigation
strategies, such as hardware maintenance in terms of fault removal, data augmentation, or re-training.
This section proposes a solution for disentangling the source of uncertainty. Our approach complements
the method from the previous chapter and is based on our paper [233].

10.1. Problem Statement

In dynamic real-world deployment of NNs, various sources of uncertainties at the input, e.g., sensor noise,
and hardware faults, e.g., soft or permanent faults, are feasible. In runtime (concurrent) testing of AI
accelerators that monitor or analyze the NN output or intermediate results, it is usually assumed that
the data are from the same distribution as training data. Therefore, it is assumed that the change in the
NN output or intermediate results is caused by faults and variations. However, the change can be caused
by out-of-distribution data. In this case, a concurrent testing method cannot disentangle the source of
uncertainty. For example, in our previous work that was presented in Chapter 9, if the runtime fingerprint
of the proposed dual head model does not match, it could be because of out-of-distribution data or faults in
the CiM architectures. To further improve the reliability and robustness of NNs, it is crucial to disentangle
the sources of uncertainty so that targeted uncertainty mitigation techniques can be applied. Knowledge
about the sources of uncertainty aids in targeted uncertainty mitigation strategies, whether that involves
hardware maintenance, data augmentation, or re-training followed by re-deployment.

Therefore, we propose a methodology to disentangle the sources of uncertainty. Our approach complements
our previous work that was presented in Chapter 9 to improve the overall reliability.

10.1.1. Methodology

In our approach, once the uncertainty fingerprint does not match, we perform explicit testing with a
predefined single disentanglement test vector. The disentanglement test vector is carefully selected from
the training data with a known fault-free fingerprint that matches the ideal fingerprint (maximum value of
one) described in our work in Chapter 9.

For explicit testing, the disentanglement test vector is forward passed through themodel, and the fingerprint
of the model is compared to the known fingerprint. If they match, it suggests that the original uncertainty
is due to out-of-distribution data or soft faults lasting only one cycle, e.g., faults that are no longer present
in the system. Following that, an expert, e.g., a human or a more sophisticated model, such as a Bayesian
NN, further classifies the original input as in-distribution or out-of-distribution and provides the correct
label for the input. Identification of in-distribution data can indicate the presence of soft faults, assuming
the model did not make a false alarm. Nonetheless, if the expert confirms OOD classification, this validates
the uncertainty detection of the proposed method while still suggesting potential soft faults.

However, if the fingerprint of the model given the test vector does not match the known fingerprint,
it implies the presence of permanent faults or soft faults lasting several cycles. Once again, an expert

187

CHAPTER 10. DISENTANGLEMENT OF SOURCE OF UNCERTAINTY

Input for
Prediction Dual Head Model Uncertain

Prediction
User

No

Disentanglement
Test Vector

Yes

Fingerprint
Match ?

Annotated
Label

Expert
Annotation

No

Yes

Permanent Faults

ID

Expert
Annotation

Permanent Faults
and Data

Distribution Shift
OOD

Soft Faults/ False
Alarm

ID

Data Distribution
Shift and Possibly

Soft Faults

OOD

User

Annotated
Label

Figure 10.1.: Flow diagram for the disentanglement of the sources of uncertainty. In the case of permanent faults, an uncertainty
reduction approach should be applied.

annotator classifies the input as in-distribution or out-of-distribution. An in-distribution classification
confirms permanent faults in the CiM architectures, while an out-of-distribution classification indicates
both permanent faults and out-of-distribution input at the same time.

Our method effectively disentangles most of the uncertainty sources. However, it is limited to permanent
faults and soft faults lasting several cycles. It is difficult to isolate soft faults of extremely short duration, as
they do not persist in the CiM architecture long enough to be detected by our test vector approach. The
overall flow diagram of our approach is depicted in Fig. 10.1.

10.2. Results

10.2.1. Evaluation Setup

To evaluate the capability of the proposed approach in disentangling the source of uncertainty, we performed
five scenarios. Specifically,

1. Input Noise (Case 1): Gaussian noise is injected into the input with 50% probability. That is, each
input is either Gaussian noise or a clean input with a probability of 50%.

2. Short-Duration Soft Faults (Case 2): Faults are injected into the buffer memories that store interme-
diate activation of the NNs while performing the prediction.

3. Permanent Faults (Case 3): Faults are injected into the memory cells that store the weights of the
NNs.

4. Input noise + permanent faults (Case 4): Gaussian noise is injected into the input with a probability
of 50%, and stuck-at faults are injected into the memory cells that store the weights of the NN.

5. Input noise + Soft Faults (Case 5): Gaussian noise is injected into the input with a probability of 50%,
and faults are injected into the buffer memories that store the intermediate activation of the NN.

All out-of-distribution data are labeled for evaluation, and we present the percentage of disentanglement
with our proposed approach.

188

10.3. SCIENTIFIC IMPACT OF THIS WORK AND CONTRIBUTIONS

Table 10.1.: Evaluation of the disentanglement of the sources of uncertainties. Five scenarios with isolated and a combination of
sources of uncertainties are explored.

Topology Dataset Average
Disentanglement Scenarios

Case 1 Case 2 Case 3 Case 4 Case 5

Input Permanent
Faults

Soft
Faults Input Permanent

Faults Input Soft
Faults

VGG Flower-102 100% 100% 100% 100% 100% 100% 100% 100%
ResNet-18 CIFAR-10 99.85% 100% 100% 100% 99.33% 100% 99.67% 100%

PreActResNet-34 SVHN 99.72% 100% 100% 100% 98.07% 100% 100% 100%
U-Net Brest Cancer Seg. 98.57% 100% 100% 100% 90% 100% 100% 100%

10.2.2. Analysis of Disentanglement of Source of Uncertainty

As shown in Table 10.1, our proposed method shows a high degree of accuracy in disentangling sources
of uncertainty in all the topologies and uncertainty scenarios evaluated. In most cases, our approach
achieves 100% accuracy in disentangling uncertainty sources. Specifically, for Cases 1, 2, and 3 (isolated
sources of uncertainty), our approach demonstrates perfect disentanglement for input noise, permanent
faults, and short-duration soft faults. However, in case 4 where input noise and permanent faults are
combined, it leads to a minor reduction in accuracy, e.g., 98.07% on PreActResnet. Similarly, for case 5,
minor reductions in accuracy are observed. The reductions are attributed to the compounding effects of
multiple sources of uncertainty and the fact that some of the inputs escape the model even though they
are out of distribution.

Therefore, the proposed method consistently demonstrates its ability to accurately disentangle various
sources of uncertainty. This significantly enhances the reliability of the CiM architecture and highlights its
potential for deployment in complex and dynamic environments.

10.3. Scientific Impact of This Work and Contributions

The contributions of this paper are summarized as follows:

1. Disentanglement of Uncertainty Sources: Our work underscores the need for disentangling the
source of uncertainty. This capability is crucial for root cause analysis, e.g., distinguishing whether
prediction uncertainty arises from data distribution shifts or hardware faults, enabling targeted
mitigation strategies.

2. Integration with Concurrent Testing: The proposed methodology can be integrated seamlessly
with any concurrent testing frameworks and predictive uncertainty estimation method. It ensures
that AI accelerators can be continuously monitored and faults can be detected without interrupting
their primary tasks.

3. Scalability and Adaptability: The proposed methodology is designed to be scalable across various
edge AI accelerator architectures, neural network topologies, datasets, and tasks. This scalability
makes the approach broadly applicable and adaptable to diverse AI applications and hardware
configurations.

10.4. Chapter Summary

This chapter proposes a methodology to disentangle the sources of uncertainty. Our approach complements
the work presented in the previous section to improve the overall reliability. Our method effectively
identifies whether the predictive uncertainty is due to out-of-distribution data or hardware faults by

189

CHAPTER 10. DISENTANGLEMENT OF SOURCE OF UNCERTAINTY

using predefined disentanglement test vectors and comparing the resulting fingerprints with the fault-free
fingerprints. The evaluation of the proposed method shows high accuracy in distinguishing between
different sources of uncertainty. Therefore, it significantly enhances the reliability of AI systems in complex
and dynamic environments.

190

Part III.

Methods for Uncertainty Reduction

To reiterate, AI accelerators are prone to non-idealities such as manufacturing and in-field defects
and variations, as well as environmental factors such as temperature fluctuations. We have presented
several scalable and efficient methods for estimating uncertainties in edge AI accelerators using online
functional testing. However, reducing uncertainties due to hardware non-idealities via fault tolerance
for functional safety is crucial, especially in safety-critical applications. Specifically, since the inference
accuracy of NNs on edge AI accelerators is negatively impacted, we aim to increase the accuracy
despite faults or variations in weights or activation. However, our aim is to propose methods that
have low hardware overhead so as not to increase the burden on already resource-constrained edge AI
accelerators.

This thesis targets uncertainty reduction with self-healing and runtime periodic maintenance
approaches. Self-healing approaches, also called implicit fault tolerance, are designed to be inherently
fault-tolerant without needing any run-time maintenance. Specifically, it performs training and design
time optimizing for graceful degradation in accuracy due to faults and variations. That means the rate
of accuracy degradation is significantly lower in comparison to baseline. Also, self-healing approaches
by design do not need to pause the operation of the system for uncertainty reduction. On the other
hand, runtime maintenance approaches require run-time intervention, which can be periodic or can
be triggered by an online testing approach.

This part presents all our solutions to the above-mentioned challenges.

193

11. Self-Healing Approaches

Self-healing allows the edge AI accelerator to continue operating without interruption to reduce
uncertainty. It ensures that edge AI accelerators can maintain high performance and reliability in
dynamic environments without the need for frequent maintenance or system pauses, making them
ideal for critical applications where continuous operation is essential.

This Chapter presents a self-healing approach for manufacturing and run-time variations for the
entire operating temperature range (up to 120◦C). Then, we present a self-healing approach for a
Bayesian neural network where we designed a normalization and Dropout layer for implicit fault
tolerance.

11.1. Self-Healing the Impact of Manufacturing and Infield Thermal Variations

This section proposes a self-healing approach for memristor-based CiM architectures. To reiterate,
CiM architectures mitigate the data flow between processing and memory units. However, the
manufacturing process and temperature fluctuations at runtime have a huge impact on the calculation
of the activations of a layer and reduce the overall post-mapping inference accuracy of the NN.

To deal with the process and runtime variations, existing solutions either only mitigate process
variations and cannot deal with run-time variations [125, 126, 127], or require costly (on-the-fly)
re-mapping and re-training based on sensed temperature [24, 121, 122].

In this section, we propose a self-healing solution to mitigate the impact of process and temperature
(runtime) variations on the inference accuracy of NNs mapped to STT-MRAM-based CiM architectures.
However, our approach is applicable to other memristor technologies, such as Redox-based Random
Access Memory (ReRAM) and Phase Change Memory (PCM).

We targeted STT-MRAM because, among memristor technologies, STT-MRAM has reached a
comparable mature state as indicated by many industrial adaptions [235, 236, 237]. Furthermore,
the switching speed and the endurance of STT-MRAM are higher than those of other eNVM tech-
nologies [238]. Although STT-MRAM offers many benefits, their ON/OFF ratio is significantly lower
than that of other memristor technology and has a comparably smaller sense margin. This is further
exacerbated by temperature fluctuations at runtime. Even small variations in the conductance of the
cells can lead to incorrect neuron activations.

This section aims to address this and is based on our conference and journal papers IEEE ETS23 [239]
and ACM JETC [67].

11.1.1. Problem Definition

Due to the non-idealities of STT-MRAM, such as process and temperature variations, the partial sum
current 𝐼𝑝𝑠 in the bit-line of the crossbar is also subject to variation and can be represented by a distribution
rather than a fixed value as shown in Fig. 11.1(a). The distribution of the partial sum current 𝐼𝑝𝑠 and
the sense margin of each partial sum state depends on the number of word-lines activated concurrently
(𝑚𝑤𝑙) and the process variation (static variation). The sensing margin of 𝐼𝑝𝑠 is reduced, and the size of
the overlapping region between states increases when more word-lines are concurrently activated (as
shown in Fig. 11.1(b)) or the process variation is high. Due to the small ON/OFF ratio in STT-MRAM, the

195

CHAPTER 11. SELF-HEALING APPROACHES

reduction of the sense margin is more severe in this technology compared to other NVM technologies. As
a result, the miss-quantization rate of the sensing circuits will also be higher.

Figure 11.1.: (a) The distribution of possible partial sum currents (𝐼𝑝𝑠) depending on cell state combinations (−4,−2, · · · , 4) when
four word-lines are activated concurrently. Since weights and activations are binary, values such as −3 are not possible, (b) when
more (𝑚𝑤𝑙=8) word-lines are activated concurrently, the sensing margin of ADC (ADC SM) becomes smaller. It is recommended
to view this figure in color.

Furthermore, the distribution of 𝐼𝑝𝑠 can dynamically change with the temperature (dynamic variation),
and hence, the size of the overlapping region increases further with temperature as shown in Fig. 11.2
(a). Because of the low ON/OFF ratio of the MTJs, even a small change in the conductance distribution
can increase the bit-line current miss-quantization rate. As a result, the post-mapping inference accuracy
can still degrade significantly even with a larger average sense margin, for instance, with a single 𝐼𝑟𝑒 𝑓 as
shown later in Section 11.1.3.

Figure 11.2.: a) Distribution shift of partial sum current (𝐼𝑝𝑠) for states −2 and 0 due to temperature variations (TV). The operating
temperature increased from 25◦𝐶 to 125◦𝐶 . b) quantized 𝐼𝑝𝑠 with a larger sense margin (SM) for some states. Partial sum currents
more than 𝐼𝑟𝑒 𝑓 are quantized to +1, while lower currents are quantized to −1. It is recommended to view this figure in color.

In practice, the process variations also affect the reference circuit. In other words, 𝐼𝑟𝑒 𝑓 itself is subject to
variations. The effect of 𝐼𝑟𝑒 𝑓 variations should also be considered, as it can lead to degradation in inference
accuracy.

196

11.1. SELF-HEALING THE IMPACT OF MANUFACTURING AND INFIELD THERMAL VARIATIONS

Moreover, the training dataset can contain anywhere from a few thousand to millions of samples. For
instance, the CIFAR-10 dataset has 50k samples. Finding 𝑇𝑏 using all samples in the dataset will be too
costly.

11.1.2. Methodology

For efficient inference of the NN with the STT-MRAM-based CiM architecture, referred to as STT-CiM in
the following, each partial sum current 𝐼𝑝𝑠 can be quantized to +1 or −1 [65]. This allows sensing each
partial sum with a comparator instead of a much more expensive ADC [240].

We have found that this quantization can implicitly increase the sense margin, as shown in Fig. 11.2(b).
Therefore, this method can provide robustness against static process variation. However, it is not sufficient
for dynamic temperature variation. Since the ON/OFF ratio of the MTJ decreases even further with a higher
temperature, this will lead to the miss-quantization of partial current sum 𝐼𝑝𝑠 , as shown in Fig. 11.2(a).
Figs. 11.1 and 11.2, are generated according to the simulation setup described later in Section 11.1.3.1 and
the MTJ parameters reported in Table 11.1.

Therefore, we propose a temperature-aware design-time approach for generating the optimum 𝐼𝑟𝑒 𝑓 , which
can self-heal the effects of temperature-induced partial sum current distribution on the inference accu-
racy.

Generally, there are𝑚𝑤𝑙 + 1 possible partial sum states,

−𝑚𝑤𝑙 ,−𝑚𝑤𝑙 + 2, · · · , 0, · · · ,𝑚𝑤𝑙 − 2,𝑚𝑤𝑙

, separated by 2 when𝑚𝑤𝑙 number of word-lines are activated concurrently. Quantizing the partial sum
without any training modification will lead to a significant degradation in the inference accuracy, due to
the loss of information that the next layer receives. The post-training network reconstruction approach
proposed in [65] introduces additional neurons for the quantization, which results in a memory overhead
and requires retraining to regain the accuracy loss due to the quantization.

Hence, we propose a training algorithm to consider the quantization of each partial sum during training
with a straight-through estimator (STE) [241] that does not introduce any extra runtime overhead or
requires re-training.

Our proposed method first quantizes each partial sum during offline training, as discussed in Section 11.1.2.1.
Then we generate the optimal reference current ˆ𝐼𝑟𝑒 𝑓 (one time only) for the entire operating temperature
range, as discussed in Section 11.1.2.2. The NN is deployed for the inference with the optimal ˆ𝐼𝑟𝑒 𝑓 , which
does not require re-mapping or re-training.

11.1.2.1. NN Training Modification for 𝐼𝑝𝑠 Quantization

Our modified training algorithm applies the quantization operation in two stages. First, the weight matrix
is binarized as follows:

sign𝑊 (W) =
{

1
𝑚𝑤𝑙

, if 𝑥 ≥ 1
−1
𝑚𝑤𝑙

, otherwise.

197

CHAPTER 11. SELF-HEALING APPROACHES

Therefore, each partial sum 𝑎𝑠 for a step 𝑠 , before binarization, has a value between −1 and +1, 𝑎 ⊂ [−1, 1].
Then, to implement the quantization of each partial sum, the sign(·) function is applied to each partial sum
during the inference (in the forward pass). The calculation of a partial activation can be expressed as

z𝑠
𝑙
← sign

(
z𝑚𝑤𝑙 ,𝑠

𝑙−1 ⊕W𝑚𝑤𝑙 ,𝑠

𝑙

)
,

where W𝑚𝑤𝑙 ,𝑠

𝑙
is the weight sub-matrix, z𝑚𝑤𝑙 ,𝑠

𝑙−1 is the input sub-vector, and z𝑠
𝑙
is the resulting partial

activation for a single step 𝑠 with the activated word-lines𝑚𝑤𝑙 and layer 𝑙 . The modified sign𝑤 (·) function
for binarizing the weight matrix combined with binarizing each partial activation adds a small noise to
each neuron, for instance, 0.9→ +1.

The gradients required for the back-propagation algorithm [242] cannot flow through the sign(𝑥) function,
since the derivation of the sign(·)) function is zero. Therefore, the traditional gradient descent-based
learning algorithm [243] cannot be applied during backward propagation to update NN parameters. To
still obtain gradients for learning, an STE is used [241]. In STE, the gradient of the quantization sign𝑤 (·)
function is treated as an identity in the backward pass and can be expressed as:

𝛿𝑆𝑇𝐸 (z) =
𝛿 sign𝑤 (z)

𝛿z
=

{
+1, if z ≥ −1 𝑎𝑛𝑑 z ≤ 1
0, otherwise.

Fig. 11.3 graphically illustrates the process of learning quantized partial sums. Hence, (nonzero) gradients

Figure 11.3.: a) Forward pass of sign𝑤 function, b) illustrate the zero-derivative problem of sign𝑤 , c) learning of quantized partial
sum with STE, and d) gradient of STE during backward pass.

can be obtained during the back-propagation. Furthermore, real-valued activations and weights are used
during back-propagation and gradient calculation.

In a single step 𝑠 , a group of𝑚𝑤𝑙 word-lines are activated concurrently, and a partial sum is calculated for
this step. It takes total 𝑆 = 𝑚

𝑚𝑤𝑙
steps to calculate the final activation of a layer, which becomes the input

for the next layer. The overall training algorithm is described in Algorithm 5.

198

11.1. SELF-HEALING THE IMPACT OF MANUFACTURING AND INFIELD THERMAL VARIATIONS

Algorithm 5 Proposed training algorithm for binarizing each partial sum
Require input x, number of steps 𝑆 , number of layers 𝐿, and BatchNorm(·) parameters 𝛽 , and 𝛾

z1 ← x
1. first and hidden layers
for 𝑙 = 1 to 𝐿 − 1 do

z𝑠
𝑙
← 0

for 𝑠 = 1 to 𝑆 do
Ŵ𝑙 ← sign𝑊 (W𝑙) ⊲ Binarize weight matrix
z𝑠
𝑙
← z𝑠

𝑙−1 + sign
(
z𝑚𝑤𝑙 ,𝑠

𝑙
⊕ Ŵ𝑚𝑤𝑙 ,𝑠

𝑙

)
⊲ MAC operation for a single step s

end for
z𝑙 ← sign(BatchNorm(z𝑠

𝑙
, 𝛽𝑙 , 𝛾𝑙))

end for
2. Output Layer
𝑎𝑠
𝐿
← 0

for 𝑠 = 1 to 𝑆 do
�̂�𝐿 ← sign𝑊 (𝑊𝐿) ⊲ Binarize weight matrix
𝑎𝑠
𝐿
← 𝑎𝑠

𝐿
+ sign

(
𝑎
𝑚𝑤𝑙 ,𝑠

𝐿−1 ⊕ �̂�
𝑚𝑤𝑙 ,𝑠

𝐿

)
⊲ MAC operation for a single step s

end for
𝑎𝐿 ← BatchNorm(𝑎𝑠

𝐿
, 𝛽𝐿, 𝛾𝐿)

11.1.2.2. Design-time Reference Current Generation

In STT-CiM operation, the reference current 𝐼𝑟𝑒 𝑓 for the sensing circuitry needs to be calculated based
on the conductance distribution of the LRS and HRS of the MTJ device. However, if 𝐼𝑟𝑒 𝑓 is generated at
one temperature, for example, at room temperature (25◦𝐶), it is not optimized for the possible operating
temperature range. Consequently, the size of the overlapping region of the 𝐼𝑝𝑠 distribution can increase.

To allow self-healing of CiM architectures , we propose a one-time generation of a temperature-aware
reference current at the design time ˆ𝐼𝑟𝑒 𝑓 , which can deal with the variations due to temperature throughout
the operating temperature range of the device. The proposed method first performs a design time analysis
to find the temperature to which the inference accuracy does not fall below a predefined threshold with a
binary search algorithm with lower worst-case search cost O(log 2𝐻). We refer to this temperature as the
boundary temperature (𝑇𝑏), and 𝐻 is the number of steps or upper bound of the search space. Since 𝑇𝑏
is likely to be in the mid-region of the overall operating temperature range rather than at extreme ends,
the overall search cost will be lowered due to the lower initial search space. Note that as the temperature
increases from low to high, sorting the search array, which is generally necessary for the binary search
algorithm, is not necessary.

The boundary temperature is estimated based on training data. Therefore, as mentioned earlier, this can
lead to significant overhead if all samples in the dataset are used. To reduce this overhead, we propose a
small subset of the training or validation dataset, e.g., 20%, to be used to find𝑇𝑏 . Once𝑇𝑏 is determined, the
reference current ˆ𝐼𝑟𝑒 𝑓 is generated at the boundary temperature 𝑇𝑏 .

In addition, it can be very costly to perform the proposed method throughout the operating temperature
range. Therefore, we propose increasing the operating temperature in steps (𝑅) of 5◦𝐶 , 10◦𝐶 , or 20◦𝐶 since
our goal is to find 𝑇𝑏 approximately rather than exactly. However, it is not required to consider the integer
temperature or the larger temperature steps to find 𝑇𝑏 . A regression plot, as shown in Fig. 11.4, can be
used to determine the conductance (reciprocal of resistance) distribution of the MTJ device with P and AP
states at non-integer temperatures.

199

CHAPTER 11. SELF-HEALING APPROACHES

-40 -20 0 20 40 60 80 100 120 140
Temperature	(C)

0.4

0.6

0.8

1

1.2

1.4

1.6

C
on
du
ct
an
ce
	(
1/
+
)

#10-4

P-mu
AP-mu

-40 -20 0 20 40 60 80 100 120 140
Temperature	(C)

0.5

1

1.5

2

2.5

3

3.5

C
on
du
ct
an
ce
	(
1/
+
)

#10-3

P-sigma
AP-sigma

Figure 11.4.: Regression plot showing the distribution of P and AP states of MTJ at various temperatures. It is recommended to
view this figure in color.

The intuition behind our approach is that generating ˆ𝐼𝑟𝑒 𝑓 at 𝑇𝑏 will lead to fewer miss-quantizations
of 𝐼𝑝𝑠 and, in turn, self-healing the impact of variations. Consequently, a graceful degradation of the
inference accuracy. Furthermore, the offset of ˆ𝐼𝑟𝑒 𝑓 at high temperature (125◦𝐶) is significantly lower. The
overall algorithm for the generation of ˆ𝐼𝑟𝑒 𝑓 is shown in Algorithm 6. The function F (.) represents the
forward propagation of the NN. Our proposed method assumes that all STT cells are at the same high
temperature. Please note that our proposed method generates 𝐼𝑟𝑒 𝑓 using modeled device distributions
at different temperatures during the design time, and therefore, no post-mapping hardware retraining is
performed.

In Algorithm 6, the reference current for the proposed temperature search must be initialized at the
beginning. The temperature at which the initial 𝐼𝑟𝑒 𝑓 needs to be generated in the Algorithm 6 is determined
according to the equation 𝑇 ← 𝑀 × 𝑅 +𝑇𝑖𝑛𝑖𝑡 . However, note that the initial 𝐼𝑟𝑒 𝑓 can be generated at other
temperatures according to the lower end of the expected operating temperatures. A different value can
be chosen for the lower 𝑇𝑖𝑛𝑖𝑡 , upper 𝑇𝑚𝑎𝑥 , and temperature search step 𝑅 rather than the one used in the
Algorithm 6.

Note that the proposed Algorithm 6 for finding the boundary temperature does not require gradient
information for temperature search, e.g., backpropagate based on a cost function, since it is evaluated on
a pre-trained model and in the inference state. Furthermore, the determined 𝑇𝑏 will vary depending on
parameters of the Algorithm 6, e.g., the value chosen for 𝑅. To this end, it can be said that there are multiple
minima of the Algorithm 6. However, this phenomenon is common for any optimization algorithm. For
example, the minima for the loss function in NN optimization depends on various aspects such as the
learning rate and the number of iterations.

200

11.1. SELF-HEALING THE IMPACT OF MANUFACTURING AND INFIELD THERMAL VARIATIONS

Algorithm 6 Proposed algorithm for temperature-aware 𝐼𝑟𝑒 𝑓 generation at design time
Require pre-trained NN from Algorithm 5,𝑚𝑤𝑙 , Dataset D, Threshold 𝑡ℎ, predicted label 𝑦, correct
label 𝑦′, mean 𝜇0 and 𝜇−2 of z𝑠 = −2 and 0 state’s distribution if WL is even else z𝑠 = −1 and 1 state’s
distribution
D𝑘 ⊂ 𝑑 ⊲ Select a subset of the dataset to find the boundary temperature
𝑇𝑏, 𝑅,𝑇𝑖𝑛𝑖𝑡 ,𝑇𝑚𝑎𝑥 ← 0, 20, 25, 125 ⊲ Set boundary temperature and other variables
𝐿,𝐻 ← 0, 𝑇𝑚𝑎𝑥−𝑇𝑖𝑛𝑖𝑡

𝑅
⊲ Set lower-bound (𝐿) and upper-bound (𝐻)

while 𝐻 >= 𝐿 do
𝑀 ← 𝐿 + ceil(�̄�−𝐿2) ⊲ Compute midpoint (Mid)
𝑇 ← Mid × 𝑅 +𝑇𝑖𝑛𝑖𝑡 ⊲ Compute temperature for reference generation
𝑦 ← F (D𝑘) ⊲ Compute predicted label
𝐴← (∑𝑦 == 𝑦′)/𝑠𝑖𝑧𝑒 (F) ⊲ Compute inference accuracy, A
if 𝐴 >= 𝑡ℎ then

𝑇𝑏 ← 𝑇

𝐿 ← Mid ⊲ Update lower bound
else

ˆ𝐼𝑟𝑒 𝑓 ← 0.5 × (𝜇−2 + 𝜇0) ⊲ Generate ˆ𝐼𝑟𝑒 𝑓 at 𝑇𝑏
end if

end while

Figure 11.5.: a) Overview of analytical fault modelling, and b) fault injection flow.

11.1.3. Results

11.1.3.1. Evaluation Setup and Imperfection Injection Framework

We have used a PyTorch [244] based custom build simulation framework to analyze the impact of non-ideal
circuit and device properties on the inference accuracy of the STT-CiM operation. The overall analytical
fault model and the fault injection flow are shown in Figs. 11.5 (a) and (b), respectively.

Initially, for static process variation, the conductance mean (𝜇STT) and the standard deviation (𝜎STT) of the
MTJ devices are obtained by performing the electrical level simulation with SPICE under room temperature
conditions (25◦𝐶). Then, to get the possible probability density function (PDF) of each possible 𝐼𝑝𝑠 state,
the 𝑟 PDFs of LRS and the𝑚𝑤𝑙 − 𝑟 PDFs of HRS are summed up, where 𝑟 = 0, 1, · · · ,𝑚𝑤𝑙 . However, for

201

CHAPTER 11. SELF-HEALING APPROACHES

Figure 11.6.: Impact of process variation on the inference accuracy of theMNIST, Fashion-MNIST and CIFAR-10 datasets considering
process variation only for different concurrently activated word-lines. Here, linear layers of the quantized 𝑎𝑠𝑞𝑢𝑎𝑛𝑡 [65] and un-
quantized 𝑎𝑠 [126] partial sum NN model are considered. It is recommended to view this figure in color.

dynamic temperature variation, the mean (𝜇) and the standard deviation (𝜎) of the conductance of the MTJ
device are obtained for each operating temperature by SPICE simulation. Then, the PDF of each possible
𝐼𝑝𝑠 is calculated. The electrical simulation set-up shown in Table 11.1 is based on work in [245].

Table 11.1.: MTJ parameters and simulation setup. The MTJ parameters are based on work [245]

.

Parameter Value Parameter Value
VDD 0.8V MTJ radius 20nm

Nominal Temperature 25◦C to 125◦C RA 7.5Ω𝜇𝑚2

CMOS Library Globalfoundries
22FDX

TMR @ 0V 220%

Free/Oxide layer
thickness

1.3/1.48 nm ’AP’/’P’
resistance

19 kΩ / 6 kΩ

Process var. (AP/P) 4.7% / 4.05%

The references 𝐼𝐴𝐷𝐶
𝑟𝑒𝑓

of the flash-type ADC [126] are generated by dividing the possible current range
(𝐼𝑒𝑛𝑑 − 𝐼𝑠𝑡𝑎𝑟𝑡) by the number of possible partial sum states, and the ˆ𝐼𝑟𝑒 𝑓 of the 1-bit sense amplifier [65] is
calculated using Algorithm 6 with 20% of the training data. To simulate dynamic temperature variations,
the reference current of the baseline ADC and the 1-bit sense amplifier [65] are generated at 25◦𝐶 , as in
a conventional design. Subsequently, the 𝐼𝑟𝑒 𝑓 was not optimized for the entire operating temperatures
as opposed to the proposed approach. For our approach, the reference current is generated according to
Algorithm 6. Therefore, to distinguish between the baseline method for the generation of 𝐼𝑟𝑒 𝑓 and the
proposed method, we have simulated them with two reference currents. For our proposed methods, the
reference current is optimized for the entire operating temperature, but in the baseline method, it was not
optimized for other operating temperatures before deployment.

We inject faults during the inference accuracy simulation and to each partial sum of the binary layers. A
partial sum is generated after activating each group of𝑚𝑤𝑙 word lines. Accumulating all the 𝑎𝑠 will give
the overall activation of a layer.

We have trained a four-layer (256 neurons per layer) densely connected BNN with MNIST and Fashion-
MNIST benchmark datasets and a nine-layer CNN with the same VGG topology as [246] for the CIFAR-10
dataset, with the difference that the number of neurons is kept at 256 in the linear layers. We have used a
constant learning rate of 6 × 10−3, the ADAM optimizer with the default setting, and the cross-entropy
loss function.

We have quantized the MNIST and Fashion-MNIST datasets to +1 and −1 as a pre-processing step, so
the input of all the layers including the first layer’s inputs are binary and require one cycle to apply the

202

11.1. SELF-HEALING THE IMPACT OF MANUFACTURING AND INFIELD THERMAL VARIATIONS

input to the crossbar without any degradation in inference accuracy. For CIFAR-10, we have used random
horizontal flip and cropping types of data augmentation.

NN with quantized partial sums is trained with Algorithm 5, whereas NN with full precision partial sums
is trained with the algorithm from [246]. The trained weights of the linear layers are mapped directly, but
the convolution layers are fully unrolled (each kernel is flattened to a column vector) and then mapped
to different crossbars with dimension𝑚 × 𝑛, where𝑚 is 2× the row size of the transposed weight matrix
of the linear layers and the unrolled weight matrix of the convolution layers. In case the row size of the
weight matrix is larger than the row dimension of the crossbar, the weight matrix can be split across
multiple crossbars as proposed in [64]. During inference, multiple word-lines are activated concurrently in
a single step 𝑠 and the resulting partial sum current 𝐼𝑝𝑠 is sensed by the respective sensing technique, for
example, the ADC for the un-quantized (𝑎𝑠) [126] and the 1-bit sense amplifiers for the quantized partial
sum (𝑎𝑠𝑞𝑢𝑎𝑛𝑡) [65]. The resulting sensed value is aggregated to obtain the overall activation of the layer.

For the Monte Carlo simulation to represent different chip instances with process variations, we have
performed 100 inference runs for the evaluation of multi-level perceptron (MLP) for each dataset, but we
have performed 10 evaluation runs for CNN as convolution operations are computationally expensive. In
this paper, we present the mean (𝜇𝑎𝑐𝑐) and standard deviation (𝜎𝑎𝑐𝑐) of the inference accuracy.

11.1.3.2. Pre-deployment Performance and Comparison With Related Works

Here, an ideal reference current is considered for both ADC and 1-bit sense amplifiers to isolate the
effect of device non-idealities. We discuss the effect of variations in the reference current circuits in
Section 11.1.3.2.

Table 11.2.: Pre-deployment: Depicts change in the training accuracy from the baseline training algorithm to the proposed training
algorithm and related works [65] and [121]. Here, ideal accuracy is reported before deployment. Static manufacturing and
dynamic thermal variations are not considered. Post-deployment: Comparison of the change in post-mapping inference accuracy
from the training accuracy under process (PV) and temperature variations (TV). The column "↔ ˆ𝐼𝑟𝑒 𝑓 " elaborates the inference
accuracy of the proposed and related method methods at temperatures below and above 85◦C.

Method Variations ↔ ˆ𝐼𝑟𝑒 𝑓 MNIST CIFAR-10
Pre-deployment

[65] None −0.1% (retrain) −1.1% (retrain)
−0.4% (mapping) −78.7% (mapping)

[121] None −1.96% −3.47%
Proposed None −0.82% −3.68%

Post-deployment
[122] TV T ≤ 85◦C −20%→ −45% at 37◦ → 67◦C -
[121] TV - -18.28% -14.5%

[123]
TV at fixed temp. T≤ 85◦C - −8.78% at 25→ 85◦

T> 85◦C - −23% at 85→ 125◦
TV with temporal
temp. change T<=85 °C - −1% at 25→ 55◦C

- −23% at 55→ 85◦C

Proposed PV + TV T≤ 85◦C −0.98% at 25→ 85◦ C −0.19% at 25→ 85◦ C
T > 85◦C −3.56% at 85→ 125◦ C −1.42% at 85→ 125◦ C

Pre-deployment section of Table 11.2 compares the performance of the proposed training algorithm
(without considering variations) with the related works where the training algorithm is modified and uses
similar datasets as ours. Compared to the original BNN [246], our proposed training algorithm achieves
a similar inference accuracy with an accuracy difference of only ±0.82, 0.1, and 3.68% for the MNIST,
Fashion-MNIST, and CIFAR-10 datasets, respectively. The change in inference accuracy is also similar
to related works [65, 121]. Furthermore, the training curve of the proposed training algorithm is similar
to the original BNN [246] as shown in Fig. 11.7. We found that the MNIST is more sensitive to partial
sum quantization in this instance. Therefore, the discrepancy between the baseline training curve and the
proposed technique for MNIST is greater than that for Fashion-MNIST. However, the difference can still be
considered insignificant. For example, accuracy degradation is 2.74% reported for MNIST in Table 11.3

203

CHAPTER 11. SELF-HEALING APPROACHES

Figure 11.7.: Training curves of an MLP on MNIST and Fashion-MNIST. The training trend of the proposed modified quantization
algorithm is similar to the original BNN [246]. The lower the validation error rate, the better the performance. It is recommended
to view this figure in color.

Figure 11.8.: Impact of activating more word-lines concurrently on the inference accuracy of the MNIST, Fashion-MNIST, and
CIFAR-10 dataset with both process and temperature variations for baseline 𝐼𝑟𝑒 𝑓 with quantized activations. Inference accuracy
decreases with more word-lines activations and increasing operating temperature. It is recommended to view this figure in
color.

but for Fashion-MNIST it is 1.76%. In addition, the overall trend of the training curve for the original
BNN and the proposed method is similar. Nevertheless, our proposed training algorithm achieves an
inference accuracy comparable to [246] and [65] even at a significantly smaller number of parameters (8×
for the linear and 3× for the convolutional layers). Furthermore, when the size of the NN increases, our
proposed method achieves a similar accuracy compared to [246], as shown in Table 11.3 for the MNIST and
Fashion-MNIST datasets. Similarly, for CIFAR-10, the change in accuracy decreases from 3.68% to 3.06%.
In addition, [65] does not quantize the partial sum of the first and last layers, as opposed to our method. In
general, the effectiveness of the proposed training Algorithm 5 can be deduced from the pre-deployment
inference accuracies of Table 11.2.

Table 11.3.: Difference between inference accuracy of the proposed training algorithm and original BNN as the number of neurons
increased for MNIST and Fashion-MNIST datasets. As the width of the model increases, the accuracy difference becomes negligible.

Neurons MNIST Fashion-MNIST
256 -2.74% -1.76%
512 -1.87% -0.45%
1024 -1.28% +0.15%
2048 -0.82% +0.06%

204

11.1. SELF-HEALING THE IMPACT OF MANUFACTURING AND INFIELD THERMAL VARIATIONS

Figure 11.9.: Effect of activating more word-lines concurrently on the inference accuracy of MNIST and Fashion-MNIST dataset
with process and temperature variations for the proposed method for generating optimal 𝐼𝑟𝑒 𝑓 . Inference accuracy remains stable
with more number of word-lines activations and increasing operating temperature. It is recommended to view this figure in
color.

Process Variation

When only static process variation is considered, the mean inference accuracy of un-quantized partial sum
𝑎𝑠 [126] sensed with an ADC decreases to 68.4%, 72.63%, and 42.71% for the MNIST, Fashion-MNIST, and
CIFAR-10 datasets, respectively. However, the inference accuracy of the quantized partial sum 𝑎𝑠𝑞𝑢𝑎𝑛𝑡 [65]
sensed with a comparator remains stable, as shown in Fig. 11.6. The CNN model trained for CIFAR-10
is more sensitive to variation compared to the MLP with the same number of word-lines activated. The
accuracy of CIFAR-10 decreases by ≈ 36% with 𝑎𝑠 [126] and ≈ 2% with 𝑎𝑠𝑞𝑢𝑎𝑛𝑡 [65].

Activating more word-lines concurrently, such as𝑚𝑤𝑙 = 64, will lead to a higher miss-quantization rate
for 𝑎𝑠 [126], but it takes a smaller number of total steps 𝑆 to calculate the final activations of a layer,
which leads to less overall accumulated errors. Therefore, the inference accuracy is higher when more
word-lines are activated. Although 𝑎𝑠 [126] can match the inference accuracy of 𝑎𝑠𝑞𝑢𝑎𝑛𝑡 [65] at a higher
𝑚𝑤𝑙 , it will also require a higher precision of the ADC, which is very costly [240]. Also, at higher process
variation, inference accuracy will decrease, for example, at a variation of ≈ 9.3%, the inference accuracy of
Fashion-MNIST decreases to 56.26% and CIFAR-10 decreases to 18.62%.

Although the inference accuracy of 𝑎𝑠𝑞𝑢𝑎𝑛𝑡 [65] remains stable under static process variation, it decreases
to 73.97%, 56.7%, and 66.91% for the MNIST, Fashion-MNIST, and CIFAR-10 datasets, respectively, as the
dynamic temperature variation of the device increases as shown in Fig. 11.10. This shows that quantizing
𝑎𝑠 alone cannot mitigate temperature variations and is not optimal for the overall operating temperature
of the device.

Dynamic Thermal Variations

The inference accuracy of the MNIST, Fashion-MNIST, and CIFAR-10 datasets remains stable up to 85◦𝐶 ,
as shown in Fig. 11.10. Therefore, we have chosen the boundary temperature 𝑇𝑏 as 85◦𝐶 . However, note
that𝑇𝑏 could be generated at ±2◦𝐶 from the temperature𝑇𝑏 to achieve a comparable inference accuracy, as
Fig. 11.10 shows that the inference accuracy is comparable around the temperature 85◦𝐶 . The proposed
Algorithm 6 was able to find that in one constant step, therefore, it reduces the time complexity of the
search step to O(1) (the best possible case) from O(𝐻) as done in [239].

As a result, with our proposed self-healing approach, that is, calculating ˆ𝐼𝑟𝑒 𝑓 at 𝑇𝑏 = 85◦𝐶 improves
the inference accuracy by up to 16%, 20%, and 12% for the MNIST, Fashion-MNIST, CIFAR-10 datasets,
respectively. Note that calculating ˆ𝐼𝑟𝑒 𝑓 at the highest operating temperature (125◦𝐶) will not provide

205

CHAPTER 11. SELF-HEALING APPROACHES

an acceptable inference accuracy at room temperature, even though it provides better accuracy at high
operating temperatures. For example, the inference accuracy of MNIST is reduced to 68%, but the proposed
method provides 92.94% inference accuracy.

The post-deployment section of Table 11.2 reports the inference accuracy of the proposed method compared
to related works [122, 121, 123] considering both static manufacturing and dynamic thermal variations
during the run-time. Compared to related works, our proposed method is significantly robust to both
static manufacturing and dynamic thermal variations. For example, in the worst case, the accuracy is
degraded by 3.56% for MNIST and 1.42% for the CIFAR-10 dataset. Whereas, accuracy degrades by as much
as 23% for related works. To further underscore the robustness of our approach, we have broken down the
inference accuracy at < 85◦C and > 85◦C operating temperatures since we have generated ˆ𝐼𝑟𝑒 𝑓 at 85◦C. In
general, post-deployment inference accuracies highlight how efficient our proposed reference generation
approach is for robustness to static manufacturing and dynamic thermal variations.

Although calculating ˆ𝐼𝑟𝑒 𝑓 at 𝑇𝑏 = 85◦𝐶 improves the overall accuracy, the inference accuracy degrades at
high and low temperatures. In the case of MNIST and CIFAR-10, the accuracy degradation is insignificant
and outperforms the baseline method for all the simulated temperatures. However, for Fashion-MNIST, the
accuracy degradation is slightly higher in comparison. Consequently, at the temperature 25◦𝐶 , the inference
accuracy of our proposed method is ∼ 1% below the baseline. However, please note that, compared to the
entire operating temperature range and all datasets, our approach is significantly robust to both static
manufacturing and dynamic thermal variations.

Impact of Number of Concurrent World-lines Activation

When only static process variation is considered,𝑚𝑤𝑙 does not affect the inference accuracy with 𝑎𝑠𝑞𝑢𝑎𝑛𝑡 , as
depicted in Fig. 11.10. However, when both static process variations and dynamic temperature variations are
considered, the inference accuracy decreases with more concurrently activated word-lines and increasing
temperatures for the baseline (𝐼𝑟𝑒 𝑓 generated at 25◦C), as shown in Fig. 11.8. Our proposed method allows
activation of up to 64 word-lines concurrently for the MNIST and Fashion-MNIST datasets, as depicted
in Fig. 11.9. Also, for the CIFAR-10 dataset, up to 9 word-lines can be activated. Since CIFAR-10 is very
sensitive to more word-line activation at higher temperatures (see Fig. 11.8), a comparatively smaller
number of word-lines can be activated. We find that the accuracy degrades by more than 10% for CIFAR-10
at higher word-line activation at higher temperatures, e.g., > 85◦C. Therefore, only a limited number of
word-lines can be activated for CIFAR-10.

Figure 11.10.:The inference accuracy of a) MNIST, b) Fashion-MNIST, and c) CIFAR-10 datasets under both process and temperature
variation. The operating temperature of the device is increased from 25◦𝐶 to 125◦𝐶 . The green curve shows, for a reference
current generated at 25◦𝐶 , temperature-induced shifts in MTJ resistance for the operating temperature from 25◦𝐶 to 125◦𝐶 and
the corresponding change in inference accuracy. It is recommended to view this figure in color.

206

11.1. SELF-HEALING THE IMPACT OF MANUFACTURING AND INFIELD THERMAL VARIATIONS

Analysis of the Inference Accuracy under ˆ𝐼𝑟𝑒 𝑓 variation

We consider the variation of ˆ𝐼𝑟𝑒 𝑓 , based on [247] (≈ 2%). There was no noticeable change in the inference
accuracy (accuracy change ≤ 2%) of the proposed method compared to the accuracy with an ideal ˆ𝐼𝑟𝑒 𝑓 , as
shown in Table 11.4 when both process and temperature variations are considered. Therefore, this further
underscores the robustness of our approach to variations in both the crossbar array and the reference
generation circuits.

Table 11.4.: Analysis of the inference accuracy for Fashion-MNIST under 𝐼𝑟𝑒 𝑓 variations when process and temperature variation
is also considered.

Mean Inference Accuracy
25°C 45°C 85°C 105°C 125°C

No Variation 85.06%
Ideal 𝐼𝑟𝑒 𝑓 82.02% 83.012% 83.76% 83.184% 77.13%
𝐼𝑟𝑒 𝑓 ± ∼ 2% 81.69% 82.3% 82.658% 81.46% 75.41%

11.1.4. Scientific Impact of This Work and Contributions

The major contributions and their broad impacts are summarized as follows:

• Robust Design-Time Reference Current Generation: We introduced a design-time method
for generating reference currents that are robust against both process and temperature variations.
Therefore, our approach improves the reliability and accuracy of STT-CiM NN accelerators without
additional runtime overhead.

• Scalability Across Memristor Technologies: The proposed algorithm-hardware co-design meth-
ods are adaptable to other emerging resistive memory technologies, even though the evaluation is
performed for STT-MRAM.

• Implicit Variation Aware NN Training: We proposed a quantization-aware NN training algorithm
using STE to improve the sensing margin of comparator. Improvement in the sensing margin has
been shown to be robust to process variation of STT-MRAMs. Therefore, research in the direction of
increasing the sensing margin is a viable option for improving robustness against process variation
of STT-MRAM.

• Computational Efficiency: We propose to integrate the proposed reference current generation
into the design phase. Therefore, expensive runtime adaptations such as dynamic remapping or
frequent recalibrations is eliminated, significantly reducing the computational overhead and energy
consumption.

• Deployment of CiM Architectures in Dynamic Environments: The ability of the proposed
method to handle different operational temperatures and process variations makes it a viable option
for the deployment of NN in STT-CiM-based AI accelerators in an uncertain environment. Our
approach ensures that CiM-based AI accelerators can adapt to environmental changes without
manual intervention, which is crucial for edge computing applications.

11.1.5. Section Summary

In summary, this section has analyzed the impact of device-to-device variations and runtime temperature
fluctuations on the inference accuracy of BNNs mapped onto STT-MRAM-based crossbars. The baseline
inference accuracy degraded significantly due to the process and temperature variations of the MTJ devices.
We proposed a training algorithm and a hardware co-design technique to mitigate this degradation of
the inference accuracy of the STT-CiM NN accelerators. Specifically, our proposed method finds the

207

CHAPTER 11. SELF-HEALING APPROACHES

150 100 50 0 50 100 150 200
Activation Values

0.000

0.002

0.004

0.006

0.008

0.010

0.012

De
ns

ity

Fault-Free
10% Bit Flips
20% Bit Flips

Figure 11.11.: Change in activation distribution due to faults. It is recommended to view this figure in color.

optimal reference current for the entire operating temperature range of the device during the design
time. In contrast to the existing works, our proposed method does not require any per-chip or runtime
adaptation to deal with process and temperature variations. Thus, it eliminates the need for costly per-chip
re-training, runtime re-mapping, circuitry for temperature sensing, STT bit-cell modification, or network
reconstruction. Consequently, our proposed technique improves the inference accuracy by up to 20.51%.
In addition, our proposed training algorithm can quantize each partial sum without needing any extra
intermediate neurons. It enables higher parallel computation and is significantly more robust against both
process and temperature variations.

11.2. Self-Healing Bayesian NNs

BayNNs are a natural fit for memristor-based CiM architectures as they offer to reduce some of
their inherent costs. Additionally, one can leverage NVM non-idealities such as resistance variation
and stochastic switching for efficient BayNN inference computations [84].

Although memristor-based CiM offers several advantages for BayNN implementations, mitigating
the reliability challenges associated with these devices is of utmost importance. To reiterate, non-
idealities such as manufacturing and runtime variations, defects, and failures can significantly reduce
the accuracy of inference [128, 144]. In safety-critical applications, it is essential not only to give
uncertainty in prediction but also to maintain high accuracy even in the presence of these non-idealities.
The primary focus of existing works is either uncertainty estimation or fault tolerance. Therefore,
either fault tolerance or uncertainty estimation aspect is overlooked. Furthermore, they sometimes
require expensive fault modeling, variation injection, and NAS.

In this section, our aim is to close this gap by offering inherently self-immune BayNN that 1. does
not require any implicit non-idealities modeling, 2. is generalizable across different NVM technologies
and non-idealities 3. easier to train, 4. CiM implementation friendly, and 5. is still able to provide
uncertainty estimates without reducing its accuracy. These properties are of critical importance to
ensure the reliable deployment of BayNNs implemented with CiM in safety-critical applications.

This section is based on our conference and journal papers IEEE DATE24 [145].

11.2.1. Problem Statement

In existing work [128, 30], it has been shown that due to the non-idealities of the NVMs, the distribution of
weighted sum shifts from the trained distribution. Figure 11.11 shows the distribution change due to 10%
and 20% bit-flip faults. Based on this observation, it can be stated that non-idealities of NVMs adds additive
or multiplicative noise to the weighted sum of a layer. Existing work [75] also supported this statement
based on their NVM variation model.

208

11.2. SELF-HEALING BAYESIAN NNS

Therefore, we hypothesize that adding stochastic additive and multiplicative components to the weighted
sum of a layer would increase the robustness of an NN against these types of noise. This is because such
stochasticity at the weighted sum of a layer adds implicit additive and multiplicative noise, and the model
learns to be robust to such noise during the Bayesian inference.

11.2.2. Methodology

In this section, we introduce inverted normalization and affine Dropout for a self-healing BayNN. In
our approach, the order of the affine transformation in the normalization layer is reversed, with the
affine parameters randomly dropped. Furthermore, as mentioned in [144], the scaling factors (𝛾) of the
normalization layers amplify the drift of the parameters and, in turn, reduce the accuracy of the network.
Thus, treating them as random parameters can potentially improve robustness.

In addition, in our approach, normalization is done for each output instance or group of neurons in a
layer. This adds another layer of robustness by standardizing the weighted sum of each layer in the case of
distribution shifts (see Fig. 11.11) due to non-idealities. This approach has been proven to be effective in
improving robustness in works [30] and [205, 204].

11.2.2.1. Inverted Normalization

To reiterate 11.2.2, normalization techniques such as batch normalization or layer normalization adjust the
input to zero mean and unit variance in different dimensions. Subsequently, an optional affine transforma-
tion is carried out using learnable parameters. The main aim was to give the NN the freedom to reverse
the normalization if it is beneficial. However, in practice, it is unlikely that the affine parameters will learn
to reverse the normalization rather than participate in the optimization process. We have observed the
distribution before and after the affine transformation of the normalization layers of several topologies
and found that they are different.

Based on this observation, we propose the inverted normalization layer. In our approach, we treat the affine
parameters of the normalization as parameters similar to the weights and biases of the NN. That is, their
learning objective only is to minimize the loss using the gradient descent algorithm. For simplicity, in the
following, the affine parameters 𝛾 and 𝛽 are referred to as weights and biases of the inverted normalization
layer.

Also, unlike traditional normalization methods, the affine transformation in our approach is necessary and
is performed before normalization. Since normalization is still performed on the transformed input, the
learning process remains stable. The supporting results are shown in Section 11.2.3. Figure 11.12 shows
the flow diagram for the conventional and proposed inverted normalization layers.

Normalization Affine
Transformationinput Output

Affine
Transformation Normalizationinput Output

a) Conventional normalization layer

b) Inverted normalization layer

Figure 11.12.: Computation flow of the proposed and conventional normalization layers.

209

CHAPTER 11. SELF-HEALING APPROACHES

Sample Dropout
Mask

Multiply with
Weights

Add
(1-Dropout Mask)

Stochastic
Weight

Sample Dropout
Mask

Multiply with
Bias Stochastic Bias

a) Weight Dropout of Inverted normalization layer

b) Bias Dropout of Inverted normalization layer

Figure 11.13.: Operation flow for the proposed affine parameters (weight and biases) Dropout.

11.2.2.2. Affine Dropout

To add stochasticity to the weighted sum, we randomly drop the weight and bias of the inverted normal-
ization layer independently with probability 𝑝 . Unlike traditional Dropout techniques, the weight and
bias of the inverted layer normalization are dropped to ones and zeros, respectively. Since the weights of
the inverted normalization layer multiply the weighted sum, it cannot be dropped to zero. Dropping the
weights to ones and zeros effectively ignores the weights and biases.

To implement the proposed affine Dropout, two binary ([0, 1]) Dropout masks are sampled from the
Bernoulli distribution with Dropout probability 𝑝 . Subsequently, the masks are multiplied by the weights
and biases of the inverted normalization layer. This will set the dropped weights and biases to zero. Lastly,
a (1-Dropout mask) is added to the masked weights to ensure that the dropped weights are one. The flow
diagram of the proposed affine Dropout is shown in Fig. 11.13. Subsequently, the affine transformation and
normalization are performed as shown in Fig. 11.12 (b).

11.2.2.3. Proposed Dropout Implementation

Individual components of the weights and biases can be dropped independently, referred to as the element-
wise Dropout. Alternatively, the entire weight and bias vector can be dropped at the same time, referred to
as the vector-wise Dropout. Vector-wise Dropout is more efficient as it only needs to sample one Dropout
mask for the entire weights or bias vector, irrespective of their length. In addition, it only needs one random
number generator per layer to implement Dropout in the CiM architecture. Therefore, in this work, we
employ vector-wise Dropout. Reusing the Dropout module among all layers, number of Dropout module
can be reduced to only one for the entire model.

11.2.2.4. Initialization of Affine Parameters

Initialization of weights and biases is important to achieve not only comparable accuracy but also to allow
the proper learning of the affine parameters. Traditional normalization methods initialize 𝛾 and 𝛽 as ones
and zeros, respectively. However, our inverted normalization initializes its weight and biases randomly.
Otherwise, the initial weights and biases can produce the same gradient and update in the same way
throughout the training. In addition, random initialization allows for more randomness in the weighted
sum, which can potentially improve robustness.

Specifically, the weights are initialized from a normal distribution with a mean and variance of 1 and 𝜎𝛾 ,
N(1, 𝜎𝛾). Initially, this either scales up or down the weighted sum randomly. Similarly, biases are sampled
from a normal distribution N(0, 𝜎𝛽). Alternatively, weights and biases can be initialized from uniform

210

11.2. SELF-HEALING BAYESIAN NNS

distributions Ū(0, 𝑘𝛾) and Ū(−𝐾𝛽 , 𝐾𝛽), respectively. Where 𝐾𝛽 and 𝑘𝛾 are positive integers that define
the range of uniform distribution.

11.2.2.5. Bayesian Inference and Uncertainty Estimation

In the Bayesian paradigm, every weight in the network is modeled as a probability distribution, which
allows us to capture model uncertainty. As shown by Gal. et al. [35], a NN trained with conventional
Dropout and weight decay (L2 regularization) is an approximation of a Gaussian process. During inference,
multiple forward passes through the network, each time sampling different Dropout masks, will give a
stochastic output distribution. The average of all of these outputs gives the final prediction.

Our proposed affine Dropout acts as an alternative to the conventional Dropout in a Bayesian setting.
Multiple forward passes can be made through the network, with each time independently sampling weight
and bias masks for each layer, giving an output distribution. The final prediction is obtained from the
average of those outputs. Uncertainty in prediction can be obtained from the variance of outputs or by
calculating the NLL for a classification task.

By integrating Bayesian inference with our inverted normalization and affine Dropout techniques, we
present a model that is not only robust to various forms of noise and non-idealities, but is also capable
of quantifying the uncertainty associated with its predictions. This makes it particularly suitable for
deployment in safety-critical applications where both performance and reliability are crucial.

11.2.3. Results

11.2.3.1. Simulation Setup

Evaluated Models and Training Settings To show generalizability, we have evaluated our method on four
different deep-learning tasks: image classification, audio classification, autoregressive time series forecast,
and semantic segmentation. For image classification, we used the CIFAR-10 benchmark dataset on the
ResNet-18 2D-convolutional NN (CNN) topology. The Google speech command dataset is evaluated on a
five-layer 1D-CNN model, referred to as M5, for the audio classification task. In addition, an NN with two
LSTM layers and a classifier layer was used for the time-series forecast. Lastly, the DRIVE (digital retinal
images for vessel extraction) dataset is trained on the popular U-Net topology for biomedical semantic
segmentation tasks.

In terms of bit-precision, ResNet-18 is binarized using the algorithm [47]. Semantic segmentation is a much
harder task, thus activations of the U-net model are quantized to 4 bits using [173], but their weights are
binarized. On the other hand, the LSTM and M5 models are quantized to 8 bits to show the generalizability
of our approach in a range of bit precision.

The proposed inverted normalization layer is applied following all the convolutional layers as a drop-in
replacement for conventional normalization layers. A Dropout probability of 0.3 is used for all our models.
In U-Net, we have normalized across groups of 𝐶𝑜𝑢𝑡

8 channels together with the same train-time and
test-time behavior as Group Normalization. Here, 𝐶𝑜𝑢𝑡 refers to the output channels. In other models, we
have normalized each input instance, the same as the Layer Normalization method.

NVM Non-idealities Model In this work, we have abstracted the circuit-level details into an algorithmic
model in the Pytorch framework. We modeled both the manufacturing and thermal conductance variation
as an additive and multiplication noise, as suggested by [75]. Additive variation is modeled as N(0, 𝜎)
and multiplicative variation is modeled as N(0, 𝜎). As in the works [75, 143], those noises are injected
into weights for 8-bit weights, but in the case of binary NNs, they are injected into normalized activations
before applying the Sign(.) function.

211

CHAPTER 11. SELF-HEALING APPROACHES

Other post-manufacturing and infield non-idealities of NVMs, such as programming errors, and retention
faults, are modeled as bit-flips. For binary and quantized parameters, the random bits are flipped in each
simulation run. We also conducted a different experiment on the LSTM model, where we injected (random)
uniform noise with varying strength.

We perform 100 Monte Carlo fault simulation runs, simulating 100 chip instances, for each variation and
bit-flip scenario, and report the mean and standard deviation of accuracy. It is recommended to view
this figure in color.

a) b)

Figure 11.14.: Examples of non-idealities: (a) Stochastic switching in magnetic memories under different voltages and (b) influence
of temperature on the resistance distributions (Monte Carlo simulations).

11.2.3.2. Baseline Inference Accuracy

Although our aim is to improve robustness against the non-idealities of the NVMs, it is equally important to
achieve an accuracy comparable to the baseline NN and SOTA Dropout-based bayNNs [85, 86]. As shown
in Table 11.5, the inference accuracy of our method is comparable to the baseline on all the datasets and
topologies evaluated. In the worst case, the accuracy of CIFAR-10 is 0.66% below the SpatialSpinDrop [86]
method. However, using a smaller Dropout probability, such as 0.1 or 0.2 can improve accuracy, but may
be less robust to NVM non-idealities. However, the proposed approach outperforms the conventional NN
in all metrics.

Table 11.5.: Summary of inference accuracy of the proposed method and related works evaluated on different datasets, bit-precision,
metrics, and topologies. Here, W/A refers to the bit-precision of weights and activation.
Topology Dataset metrics W/A NN SpinDrop SpatialSpinDrop Proposed
ResNet-18 CIFAR-10 Accuracy ↑ 1/1 89.01% 89.82% 90.5% 89.82%

M5 Google Speech
Commands Accuracy ↑ 8/8 83.97% 84.83% - 85.28%

U-Net DRIVE mIoU ↑ 1/4 66.87% 67.93% 64.6% 67.54%
LSTM Atmospheric CO2 RMSE ↓ 8/8 0.1264 0.1534 - 0.1219

11.2.3.3. Analysis of Variation Robustness

We only compare our work with related Dropout-based BayNNs targeting CiM architecture. Variational
inference-based works [49, 104] represent completely different learning and network topologies. Therefore,
they are ignored for comparison.

In terms of robustness to NVM conductance variations, our proposed approach is robust to additive and
multiplicative variations on all datasets with varying degrees of variation. As shown in Figs. 11.15 and

212

11.2. SELF-HEALING BAYESIAN NNS

11.16, our approach leads to a graceful degradation in accuracy or other metrics evaluated. Specifically,
our approach improves inference accuracy by up to 55.62% compared to other Dropout-based BayNN
approaches and 53.55% compared to conventional NN. In the case of semantic segmentation, there is a
marginal improvement in accuracy. In LSTM-based time series prediction, the RMSE score is reduced by
up to 30.2% and 46.7% for additive and multiplicative variations, respectively.

We have performed a detailed evaluation of additive variations, but only in the LSTM model was an
evaluation of multiplicative variations performed. Nevertheless, our results translate to multiplicative
variations on other datasets.

(a) CIFAR-10 dataset on ResNet-18 (b) DRIVE dataset on U-Net

Figure 11.15.: Evaluation of robustness of ResNet-18 and U-Net topologies on CIFAR-10 and DRIVE datasets. The shaded region
shows ± one standard deviation variation from the mean. The left and right figures of both datasets illustrate the evaluation of
bit-flips and additive conductance variations, respectively. It is recommended to view this figure in color.

(a) Googe speech commands dataset on M5 (b) Atmospheric CO2 forecast with LSTM-based autoregressive model

Figure 11.16.: Evaluation of conductance and bit-flip robustness of ResNet-18 and U-Net topologies on CIFAR-10 and DRIVE
datasets. The shaded region shows ± one standard deviation variation from the mean. Here, the first and second figures of
both datasets show the evaluation of bit-flips and additive conductance variations, respectively. In (b), the last figure shows
multiplicative conductance variations. It is recommended to view this figure in color.

11.2.3.4. Analysis of Bit-flip faults Robustness

Similarly to conductance variations, our method shows significant robustness to bit-flip faults in all datasets.
Our approach can improve accuracy by up to 42.06% compared to other Dropout-based BayNN approaches
and 58.11% compared to conventional NN. In addition, the standard deviation in accuracy is smaller for
our approach compared to other approaches, as shown by the narrower band in Figs. 11.15 and 11.16. In
the LSTM model, our approach reduces the RSME score by up to 51.84%.

11.2.3.5. Uncertainty Estimation

To reiterate, typically, it is assumed that the training data and test data are derived from the same distribution
(ID). However, when these distributions are not aligned, such as when the test images are corrupted, e.g.,
via rotation, or contaminated with measurement noise, the model’s predictive uncertainty should increase,
indicating that the model’s prediction is dubious.

To evaluate this feature of the proposed BayNN, we conducted two identical experiments to [49] to
investigate the effect of shifting the dataset in various ways. In the first experiment, images were gradually
rotated in 7-degree increments in 12 stages. In the second scenario, escalating random uniform noise levels

213

CHAPTER 11. SELF-HEALING APPROACHES

were introduced. As depicted in Fig. 11.17, as a consequence of these shifts in the data distribution, the
accuracy of the inference decreases, and the NLL score increases. We use NLL as an uncertainty estimation
metric, similar to the work [49]. In general, a lower NLL score is desired for ID data and a higher NLL
score for OOD data.

Figure 11.17.: Evaluation of the proposed method on OOD data. (Left) Uniform noise is added to images and (right) images are
rotated to shift the distribution. It is recommended to view this figure in color.

The NLL score can be utilised to detect OOD data. A value greater than a predetermined threshold, such as
the average NLL score on the test dataset, indicates the presence of OOD data. Using this methodology, we
can identify up to 55.03% and 78.95% of OOD instances for uniform and random rotation experiments, an
improvement of 14.61% compared to [49].

11.2.3.6. Impact of Initialization on Inference Accuracy

Asmentioned, initialization of the weights and biases of the proposed inverted normalization is important to
improve not only the accuracy of fault-free inference but also the robustness against NVM non-idealities.

The weights and biases of the proposed inverted normalization are initialized from normal distributions
with a value of 0.3 for 𝜎𝛾 and 𝜎𝛽 . We have found that initializing with larger 𝜎𝛾 and 𝜎𝛽 can improve
robustness to variations and bit-flip faults, as it introduces more randomness to the weighted sum. However,
it can reduce the accuracy of the baseline by 1-2%.

11.2.4. Scientific Impact of This Work and Contributions

This work builds on the knowledge and insight gained from our previous work on vector dropout [48] in
designing and implementing the proposed Dropout. Specifically, this work reinforces that research in the
direction of vector Dropout and Dropout layer design, considering the information flow, is an effective
method for BayNN implementation.

Other scientific impacts of this work are summarized as follows:

• Randomness in theWeighted Sum: The showed that by introducing randomness into theweighted
sum of a layer fault-tolerance can improve fault-tolerance. Therefore, research in the direction of
non-zero randomness is an intriguing option for fault tolerance.

• Scalability to Other Noise Model: In the case of memristor-based CiM architecture, non-idealities
introduce additive and multiplicative noise to the weighted sum. Therefore, our aim was to introduce
this kind of randomness. Our approach can be adopted for other kinds of noise models of other AI
accelerators, e.g., by modifying affine transformations.

214

11.2. SELF-HEALING BAYESIAN NNS

• Fault Tolerance In BayNN: The work motivates the need for fault tolerance in addition to providing
uncertainty estimates in safety-critical AI applications. Existing works ignore one aspect or the
other. Research in this direction is important to improve the overall reliability of safety-critical edge
AI applications.

• Implicit Noise Injection: This work showed that implicit noise is highly attractive for scalable
(different memristor technologies, non-ideality types, NN tasks, topologies, and datasets) fault
tolerance. Whereas, explicit noise injection may not be scalable as it is usually targeted for specific
use cases. In our approach, we introduce implicit noise via the proposed inverted normalization and
stochastic affine transformation. However, the general concept can be adopted via other methods.

• Applicability: The applicability of any approach is important when it comes to research adaptations.
Our proposed approach is easy to implement as it replaces only the traditional normalization and
dropout layers with the proposed stochastic normalization layer. Therefore, it can be considered a
plug-and-play method, which is highly attractive.

11.2.5. Section Conclusion

In this section, we present a self-immuned Bayesian neural networkmethod for reliable CiM implementation
in safety-critical applications. We introduce an inverted normalization layer that performs the affine
transformation first, then normalization. In addition, we propose the affine dropout, which introduces
randomness and, in turn, introduces implicit noise into the weighted sum of each layer where it is applied.
Consequently, the combined effect of those leads to inherent robustness to NVM non-idealities in their
IMC implementation. We show that the fault-free prediction performance is comparable to that of SOTA
BayNN and conventional NN with various parameter precisions and deep learning tasks to show scalability.
Furthermore, in various tasks and non-ideality scenarios, our approach can improve inference accuracy by
up to 58.11% and RMSE by up to 51.84%. Nevertheless, our approach does not compromise the uncertainty
estimation capabilities of BayNN, with up to 78.95% detection of OOD instances.

215

12. Runtime Periodic Maintenance Approaches

Although self-healing approaches offer fault tolerance without system intervention, runtime
maintenance approaches, in contrast, can maintain accuracy close to the baseline and even offer
guaranteed error correction. Runtime maintenance approaches considered in this thesis involve active
runtime interventions to manage faults and uncertainties in edge AI accelerators. The interventions can
be scheduled periodically or triggered by online testingmechanisms that detect anomalies, performance
drops, or when the accuracy is below a predefined threshold. Runtime maintenance ensures that the
system can promptly address and correct issues as they arise, maintaining optimal performance and
reliability.

This chapter presents several runtime periodic maintenance approaches that are significantly
low-cost, such as run-time re-calibration, and virtually zero overhead methods, such as approximate
scrubbing and zero overhead head ECC.

12.1. Runtime Re-Calibration For Fault-Tolerance

Due to immature and non-deterministic manufacturing processes of memristors, runtime variations,
and faults such as thermal fluctuations and retention faults, the activation distributions of neurons can
shift from their trained distribution [128].

During training, BatchNorm normalizes activation distributions, and during inference, trained
statistics are employed. Existing works have proposed re-calibrating trained statistics parameters of
normalization layers in the presence of variations [128]. However, such re-calibration incurs high
hardware overhead as the re-calibration needs to be performed for each layer of NN, a large number
of calibration inputs is required, and large buffer memory is required to store intermediate results for
the re-calibration.

In this section, we present an efficient re-calibration method that allows post-mapping and in-field
re-calibration with significantly reduced overhead compared to existing solutions. We introduce
approximate batch normalization (ApproxBN), which approximates running mean and variance
computation to reduce re-calibration complexity and requires constant memory irrespective of batch
size. ApproxBN encapsulates and completely removes batch normalization during hardware inference.
We also introduce a functional ATPG approach for compacting re-calibration inputs. The overall effect
minimizes computing, memory, and parameters needed for re-calibration and inference. Our method
improves manufacturing yields, the in-field chip failure rate, and, consequently, inference accuracy.

This section is based on our publications IEEE VTS22 [204] and IEEE D&T [205].

12.1.1. Problem Statement and Motivation

To reiterate, the batch normalization layer standardizes each activation of NN to approximately zero
mean and unit variance. In BatchNorm, the element-wise mean (𝜇 = 1

𝐵
× ∑𝐵

𝑏=0 z𝑖) and variance (𝜎2 =
1
𝐵
×∑𝐵

𝑏=0(z𝑖 − 𝜇)2) is precisely calculated for a mini-batch size of 𝐵.

Such a precise calculation has 𝑂 (𝑘) memory overhead (assuming that a two-pass algorithm is used for
numerical stability, which first computes mini-batch 𝜇 then 𝜎2) in hardware and is computationally
expensive as it requires 𝐵 iterative addition, subtraction, and square operation.

217

CHAPTER 12. RUNTIME PERIODIC MAINTENANCE APPROACHES

Our goal is to bring the activation distribution approximately closer to the fault-free (ideal) distribution
with low overhead.

In neuromorphic hardware, only one input can typically be applied at a time. Hence, the test inputs for
the re-calibration and inference are applied serially. In addition, training data (inputs) can range from a
few thousand to roughly over a million [8]. Therefore, storing the images on-device and re-calibrating is
infeasible.

12.1.2. Approximate Batch Normalization (ApproxBN)

12.1.2.1. During Training and Post-mapping Re-calibration

We propose the approximate batch normalization method, which approximately calculates the running
mean (𝜇) and variance (𝜎2) of a mini-batch of size 𝐵 with the formula proposed by work in [248]. The
estimation uses the median (𝑀𝑒), approximate batch normalization, which approximates the running
mean (𝜇) and variance (𝜎2) of a mini-batch of size 𝑘 . We adopt the method proposed in [248] for the
approximation, but our method is not intended as a standalone mean and variance estimation technique as
in [248]. Our method is integrated into a larger re-calibration framework for efficient re-calibration of
NNs. The estimation employs the median (𝑀𝑒), minimum (𝑙), and maximum (ℎ) values of a mini-batch to
calculate 𝜇 and 𝜎2:

𝜇 =

{
𝑙+𝑀𝑒+ℎ

4 if 𝐾 < 25
𝑀 if 𝐾 ≥ 25

(12.1)

𝜎2 =

(𝑙−2𝑀𝑒+ℎ)2

36 + (ℎ−𝑙)
2

12 if 𝐾 < 25
ℎ−𝑙

4 if 15 < 𝐾 < 70
ℎ−𝑙

6 if 𝐾 > 70.
(12.2)

For larger batch sizes, estimating 𝜇 and 𝜎 becomes simpler. However, smaller mini-batches result in lower
overhead and more re-calibration steps.

The proposed modifications have constant O(1) memory overhead, irrespective of the mini-batch size,
as it requires only three variable storage. In addition, the computation required to calculate the running
mean and variance is much simpler and requires fewer numbers of addition, subtraction, and division
operations.

A comparator can be utilized for the calculation of the minimum and maximum value in hardware. Also,
binary NN has predefined possible activations, e.g., when𝑊𝐿 word-lines are activated concurrently for a
crossbar of row size m, and possible activation values are −𝜛, . . . , 𝜛. Where, 𝜛 is 𝑚

𝑊𝐿
. Hence, the unique

activation list does not need to be stored and sorted for the median calculation. Instead, a counter 𝑐
is used to count the number of unique activations of each neuron of NN for a mini-batch, and a 32-bit
integer𝜓 is utilized to keep track of the unique activation values for a mini-batch. Each bit position of𝜓
represents whether a certain activation is present or absent, i.e., the most significant bit of𝜓 represents
the 𝜛 activation value. During re-calibration, a bit position of 𝜓 is set when an intermediate activation
is present, and the median value is evaluated by finding the activation that corresponds to the ⌈𝑐2⌉-th
set position of 𝜓 after activating all the word lines. After each re-calibration step, 𝜓 is reset. Therefore,
the proposed modification has the memory overhead of only one variable for the median calculation in
hardware.

218

12.1. RUNTIME RE-CALIBRATION FOR FAULT-TOLERANCE

12.1.2.2. During Inference

To reiterate, during inference, the population mean and variance are used. However, batch normalization
still requires the storage of two variables (𝜇 and 𝜎2) and the learned parameters (𝛾 and 𝛽) per neuron.
Therefore, it has a 4𝐶𝑜𝑢𝑡 memory requirement for inference, where, 𝐶𝑜𝑢𝑡 is the number of neurons of a
linear layer and output channel of convolutional layers. In addition, after each proposed re-calibration
step, those variables need to be written in hardware. Furthermore, batch normalization calculations have
some power and latency overhead during inference, even with approximate batch normalization, since
batch normalization is performed per neuron.

Consequently, we propose a method that removes not only the storage requirements but also the batch
normalization calculation during inference by reducing all the variables and learned parameters of batch
normalization to a bias (𝑏′). It is based on the fact that the original batch normalization equation 2.5 can be
mathematically simplified as:

𝒚 =
z − 𝝁
√
�̄�2 + 𝜖

×𝜸 + 𝜷

𝒚 ×
√
�̄�2 + 𝜖 = (z − 𝝁) ×𝜸 + 𝜷 ×

√
�̄�2 + 𝜖

𝒚 ×
√
�̄�2 + 𝜖
𝜸

= z − 𝝁 + 𝜷 ×
√
�̄�2 + 𝜖
𝜸

.

(12.3)

Since all of the variables and parameters of batch normalization are constant during inference, they can be
squashed to a constant 𝜶 such as

𝒚 ×
√
�̄�2 + 𝜖
𝜸

= z + 𝜶 . (12.4)

where, 𝜶 represents 𝜷×
√
�̄�2+𝜖
𝜸 − 𝝁. Since BNN binarizes each intermediate activation after batch normaliza-

tion using the sign(x), the constant term
√
�̄�2+𝜖
𝜸 can be removed as it only scales the numerical value of

the activation and is not expected to change the sign of the activation, i.e., −1→ 1. Therefore, the batch
normalization can be further reduced to

𝒚 ≈ z + 𝜶 . (12.5)

The 𝛼 term can be combined with the original bias 𝒃 to give 𝒃′ = 𝒃 + 𝜶 , which replaces the bias in
equation 2.2.

12.1.3. Post-Manufacturing Functional ATPG

We propose a post-manufacturing functional ATPG method that selects a small subset of the validation
dataset as re-calibration inputs for the post-manufacturing re-calibration instead of selecting them randomly
as done in [30]. Since the NN is not trained on the validation dataset, the performance of NN on validation
datasets is close to that of the testing dataset. As a result, we hypothesize that the activation shift due to
non-idealities of the NVM memories on validation datasets will be close to that of testing datasets. Hence,
test inputs from the validation dataset are a better candidate for the re-calibration instead of training
datasets as used by work in [30] and [128].

In our approach, we initially select one random test input per class, ensuring each class is represented
during re-calibration and maintaining dataset balance. An imbalanced re-calibration dataset could result
in biased mean and variance estimates towards the dominant class, negatively impacting re-calibration.

Our objective is to track distribution changes caused by hardware non-idealities by identifying similar
inputs, ensuring that the majority of activation shifts result from non-idealities. Various similarity mea-
surement methods exist, with L1 distance, which calculates the sum of the absolute differences between

219

CHAPTER 12. RUNTIME PERIODIC MAINTENANCE APPROACHES

two vectors, being popular. We sample (without replacement) the most similar inputs to random inputs per
class in each step based on L1 distance. The dataset selection process ends after size of the total re-calibration data

number of classes in the dataset
sampling steps to ensure adequate data coverage. The combined effect of our functional ATPG significantly
reduces re-calibration test inputs compared to [30] and [128], as demonstrated later in Table 12.2.

Algorithm 7 Post-manufacturing re-calibration with approximate batch normalization and functional
ATPG algorithm. Here, D is the dataset, xclass is the per-class random test input, 𝐷class is all the inputs of a
class, Ω is the momentum, and x is the ATPG generated test inputs.

⊲ 1. Functional ATPG
for class = 1 to classes do

⊲ 1.1 select one random test input per class
xclass ← 𝑟𝑎𝑛𝑑 (D)

⊲ 1.2 calculate L1 distance i.e., similarity score
𝑑 ← ∑ |xclass − 𝐷class |

⊲ 1.2 select inputs with lowest L1 distance, i.e., most similar test inputs
x←⊆ 𝑠𝑜𝑟𝑡 (𝑑)

end for
⊲ 2. post manufacturing re-calibration

Ω ← 0.9 ⊲ set default momentum value
for mini-batch re-calibration input x in x do

for 𝐿 in binary layer with batch normalization do
⊲ 2.1 calculate approximate mini-batch 𝜇 and 𝜎2

𝜇 = 𝑙+𝑀+ℎ
4

𝜎2 = (𝑙−2𝑀+ℎ)2
36 + (ℎ−𝑙)

2

12
⊲ 2.2 Update running mean and variance

𝜇𝑐 ← (1 − Ω) × 𝜇𝐶 + Ω × 𝜇
𝜎2
𝑐 ← (1 − Ω) × 𝜎2

𝐶
+ Ω × 𝜎2

end for
end for

12.1.4. Overall Re-Calibration Workflow

Initially, our proposed ATPG method samples a re-calibration dataset stored in hardware. During post-
mapping re-calibration, mean and variance estimates are calculated using Formulas 12.1 and 12.2 for each
mini-batch. The running means and variances of the batch normalization layer are then updated. This
process continues until all batches are re-calibrated. In-field re-calibrations are done periodically in the
CiM architecture during the in-field operation.

The proposed post-mapping and in-field re-calibration, considered in hardware to account for device-to-
device variation non-idealities and their effects, necessitate individual device re-calibration.

12.1.5. Simulation Results

12.1.5.1. Simulation Setup and Fault Injection Framework

In this work, we focus on permanent defects that are modeled as stuck-at faults and manufacturing
variation in MTJ-based crossbars, but the proposed methods can be applied to other emerging NVM-based
crossbars. Multiple stuck-at faults are assumed to occur on the crossbar.

The variation of MTJ-based cells depends on the operating temperature and device characteristics, while
the stuck-at faults depend on manufacturing processes [69, 82]. The device properties and operating

220

12.1. RUNTIME RE-CALIBRATION FOR FAULT-TOLERANCE

temperature for the simulation are summarized in Table 12.1. The stuck-at-fault model is based on [31],
and the faults are injected into the weight matrix of all layers at random locations by setting them to
either LRS or HRS. Due to the complementary bitcell design of XNOR cells [64], faults are injected into the
active word lines only, as injecting faults into the inactive cells has no impact on the overall current sum.
However, for the manufacturing variation, we have built a custom PyTorch-based simulation framework
to evaluate the inference accuracy of the MTJ under per-crossbar and device-to-device manufacturing
variation. At first, Monte-Carlo spice simulations based on statistical models of MTJs are performed to
generate the conductance distribution of LRS and HRS states of MTJs. Then, a random conductance value
for each cell is drawn from their distribution and converted to per-cell current with the knowledge of
bit-line voltage. The per-cell currents are accumulated to obtain the partial current sum (𝐼𝑝𝑠) for the
number of activated word-lines. A linear ADC compares the 𝐼𝑝𝑠 with 𝐼𝑟𝑒 𝑓 to inject a fault into each partial
activation of binary layers, which is accumulated to get the overall activation of a layer after activating
all the word-lines. The overall analytical fault model and fault injection flow are shown in Figs. 12.1 (a)
and (b). Due to manufacturing variation, 𝐼𝑟𝑒 𝑓 of ADC is also subject to variation, but their variation is not
considered in this paper to isolate the effect of device non-idealities only.

We have trained a four-layer binary MLP (256 neurons per hidden layer) on MNIST and Fashion-MNIST
and a nine-layer CNN with the same topology as [246] on the CIFAR-10 datasets, with the difference that
the number of neurons is kept at 256 in the linear layers. We have used the ADAM optimization algorithm
with the default setting in Pytorch, a constant learning rate of 6 × 10−3, and a cross-entropy loss function.
We have used 20% of training data as validation data without training NNs on them. The model that
achieved the best accuracy on the validation dataset is used for simulation.

Table 12.1.: MTJ parameters and simulation setup
Parameter Value Parameter Value
VDD 0.8V MTJ radius 20nm

Nominal Temperature 27◦C Ra 7.5Ω𝜇𝑚2

CMOS Library Globalfoundries
22FDX

TMR @ 0V 220%

Free/Oxide layer
thickness

1.3/1.48 nm ’AP’/’P’
resistance

19 kΩ/6 kΩ

Both MLP and CNN are trained with the original BNN Algorithm [246]. The trained weights of the linear
layers mapped to a crossbar with a dimension (rows × columns) of 512× 256, and the fully unrolled weight
matrix of the convolution layers are split across multiple different crossbars of the same dimension as the
linear layers. We have used weight matrix splitting and current accumulation as proposed in [64].

We have simulated our method on 100 crossbars networks for both CNN and MLP with all the benchmark
datasets, to simulate the effect of per-chip variations and defects. The manufacturing variation is increased
up to 13.95% (3𝜎MRAM), and the stuck-at-fault rate is increased up to 10% of the overall weights of linear
layers and fully unrolled convolutional layers to evaluate the impact of different fault scenarios. The
proposed post-manufacturing re-calibration is done for the proposed method according to Algorithm 7,
but no re-calibration is done for the baseline model. Here, 𝜎MRAM represents manufacturing variations of
STT-MRAM cell.

12.1.6. Analysis of the per-device re-calibration with BatchNorm

An optimal momentum value for BatchNorm is crucial. Values too low or high, e.g., 0.1 or 0.9, may decrease
mean accuracy to 30−40% from the reported accuracies. The best results are obtained with a value between
0.2 and 0.3.

221

CHAPTER 12. RUNTIME PERIODIC MAINTENANCE APPROACHES

Figure 12.1.: Overview of analytical fault modeling for a) manufacturing variation and b) stuck-at faults. Faults are injected into
intermediate activation for manufacturing variation and weights for stuck-at faults.

a) b) c)

Figure 12.2.: Impact of thermal variations on the inference accuracy of the MNIST, Fashion-MNIST, and CIFAR-10 datasets when
runtime temperature increases from 25 to 125◦C. Also presented is the influence of various manufacturing variations (man. var.).
The horizontal lines show the training (ideal) inference accuracy. It is recommended to view this figure in color.

12.1.6.1. Manufacturing Variation

As the variation increased, the mean accuracy of the baseline decreased to 45.09%, 27.54%, and 10.07%
for MNIST, Fashion-MNIST, and CIFAR-10 datasets, respectively. Fig. 12.2 shows the overall inference
accuracy distributions at room temperature (25◦C) with violin plots (first plot in each graph).

However, re-calibrating BatchNorm with 100 − 200 ATPG-generated test input increases the worst-case
mean inference accuracy to 93.41%, 82.71%, and 81.52% for the MNIST, Fashion-MNIST, and CIFAR-10
datasets, respectively. Re-calibrated accuracy is within 3 − 4% of the training accuracy. Furthermore, the
violin plots in Fig. 12.2 exhibit low variation, indicating the robustness of our approach. For each ∼ 4 − 5%

222

12.1. RUNTIME RE-CALIBRATION FOR FAULT-TOLERANCE

Figure 12.3.: Impact of stuck-at faults on the inference accuracy of the MNIST, Fashion-MNIST on MLP and CIFAR-10 datasets.
The horizontal lines show the baseline (ideal) inference accuracy. It is recommended to view this figure in color.

increase in NVM cell variation, 50 additional ATPG inputs are required to prevent up to 10% degradation
in accuracy. Consequently, the proposed method improves the manufacturing yield up to 100% (97% in
the worst case), assuming that a chip fails when post-mapping accuracy drops below 80% of the training
accuracy.

12.1.6.2. Thermal Variations

As the temperature increases from room temperature, baseline inference accuracy drops to 32.04%, 48.79%,
and 10.24% for MNIST, Fashion-MNIST, and CIFAR-10 datasets, respectively, as shown in Fig. 12.2.

However, re-calibrating BatchNorm with 300 ATPG generated inputs achieves a worst-case mean inference
accuracy of 94.04%, 83.08%, and 82.60% for the MNIST, Fashion-MNIST, and CIFAR-10 datasets at the 4.65%
manufacturing variation. This brings the accuracy within ∼3% of the ideal training accuracy. At high
manufacturing and thermal variations, the worst-case mean inference accuracy is reduced by up to 4.97%.
Moreover, the variance in accuracy from the mean is significantly low, as demonstrated by the flattened
shape of the violin plots. Consequently, the proposed method has up to 100% lower in-field chip failure
rate.

The CIFAR-10 dataset on CNN is highly sensitive to thermal variations and requires all 300 re-calibration
inputs. On the contrary, MLPs with MNIST and Fashion-MNIST require more inputs only at higher
temperatures. Similarly to manufacturing variations, the number of re-calibration inputs needs to be
increased as thermal variations increase.

12.1.6.3. Stuck-at-faults

For stuck-at-faults, as the fault rate increased from 5% to 10%, the mean baseline inference accuracy
decreased to 69.26%, 46.2%, and 30.3% for MNIST, Fashion-MNIST, and CIFAR-10 datasets, respectively, as
shown in the Fig. 12.3. Post-mapping re-calibration improved worst-case mean inference to 93.35%, 78.13%,
and 70.56% for the same datasets, respectively. Furthermore, the median, first, and third quartiles of the
proposed method are much closer to the baseline accuracy (as shown in Fig. 12.3). Ultimately, the proposed
method can improve the yield by up to 100% (61% in the worst case) under the same assumptions.

223

CHAPTER 12. RUNTIME PERIODIC MAINTENANCE APPROACHES

Figure 12.4.: Training curve for the validation accuracy of ApproxBN compared to BatchNorm on different datasets. It is
recommended to view this figure in color.

12.1.7. Analysis of the per-device re-calibration with ApproxBN

Similar to BatchNorm, optimizing the momentum is critical. Otherwise, a drastic degradation in accuracy
can be observed. We found that a mid-range momentum value (0.5 to 0.6) is optimal for ApproxBN.

12.1.7.1. Training

Training BNN with ApproxBN from random initialization achieves similar performance, as shown in
Fig. 12.4. Consequently, inference accuracy of NN with ApproxBN is within +0.06%, +0.4%, and −1.59%
of NN with BatchNorm for MNIST, Fashion-MNIST, and CIFAR-10, respectively. ApproxBN can also be
initialized from a pre-trained BNN with BatchNorm.

When using ApproxBN for re-calibration, a similar mini-batch size to the training mini-batch size is
necessary to prevent a significant drop in mean inference accuracy (≤10%). Therefore, training with
smaller mini-batches is advantageous.

12.1.7.2. Manufacturing Variation

ApproxBN reduces the number of ATPG-generated re-calibration inputs to 100 for up to 13.95% (3𝜎MRAM)
manufacturing variation. Compared to BatchNorm, it requires up to 50% fewer test inputs and 90% fewer
re-calibration mini-batches (see Table 12.3). Nevertheless, the accuracy distribution of ApproxBN overlaps
with BatchNorm for other datasets, as shown in Fig. 12.2. Furthermore, ApproxBN has a yield improvement
similar to BatchNorm, with a slightly better worst-case yield of 99%.

It is worth noting that the best-case scenario for BatchNorm is identical to the ApproxBN approach.
Thus, in terms of overhead, approxBN and BatchNorm can be similar in some cases, such as with low
manufacturing variations. However, this may not hold true for higher manufacturing variations, even if
the number of mini-batches and their sizes are merged, as BatchNorm requires more re-calibration inputs
when manufacturing variation increases.

12.1.7.3. Thermal Variations

In-field re-calibration with ApproxBN requires only 150 ATPG-generated test inputs, resulting in 50%
fewer re-calibration inputs and 77% fewer mini-batches than BatchNorm. Fig. 12.2 shows violin plots for
ApproxBN similar to BatchNorm across all datasets, thermal, and manufacturing variations.

224

12.1. RUNTIME RE-CALIBRATION FOR FAULT-TOLERANCE

Table 12.2.: Comparison of the proposed method with the related work in terms of inference accuracy, buffer memory overhead,
number of re-calibration steps performed, and re-calibration test inputs. CNN is benchmarked on CIFAR-10, and the same
mini-batch size and calibration test inputs as [30] are assumed for [128].

Proposed [30] [128]
Test inputs

(% of training data) MLP 25(0.04%) - -

CNN 100(0.2%) 2600(5%) 100%

of mini-batches MLP 1 - -
CNN 5 13 13

Memory overhead
(per neuron) 12 Bytes 800 Bytes 800 Byte

Inference accuracy CNN 80.95% 83.6% 83.57%

Table 12.3.: Comparison of re-calibration batch size, number of mini-batches applied, and test inputs for the BatchNorm and
proposed ApproxBN. The number in the brackets represents in-field re-calibration settings.

ApproxBN (Proposed) BatchNorm
Test inputs 100 (150) 100-200 (300)

of mini-batch 4 (5) 20-40 (15)
Mini-batch size 25 (30) 5 (20)

In MNIST, ApproxBN has a slightly flattened inference accuracy distribution due to lower variations
compared to BatchNorm. However, for other datasets, the accuracy distribution overlaps with BatchNorm
(see Fig. 12.2). Consequently, it achieves up to 100% lower in-field chip failure rate.

12.1.7.4. Stuck-at-faults

Similarly, inference accuracy distributions of ApproxBN under stuck-at faults overlap that of BatchNorm
for Fashion-MNIST and CIFAR-10 datasets. Achieving a similar median, first, and third quartiles. However,
for MNIST, the inference accuracy distribution is slightly lower (1 − 2%), as demonstrated in Fig. 12.3.
Additionally, ApproxBN has the same yield improvement as BatchNorm.

12.1.8. Batch Normalization Parameter Collapsing

ApproxBN does not require batch normalization computation as well as parameters and variables storage
for inference, but there is a negligible inference accuracy difference of −0.3%, −1.87%, and +0.18% for the
MNIST, Fashion-MNIST and CIFAR-10 datasets, respectively, as shown in Table 12.4. Furthermore, the
memory and computation required for the inference of NN can be reduced significantly as no parameters
and variables are required to be stored and no calculations need to be performed for the batch normalization
in hardware. In terms of memory, ApproxBN reduces the memory requirement by 12.448 KiloBytes and
37.024 KiloBytes, respectively, for the MLP and CNN architectures used in this paper, assuming that each
parameter is stored in a 32-bit floating-point value. Additionally, it reduces calculations performed on the
hardware by 5.446 kFLOPS for MLP and 16.198 kFLOPS for CNN, assuming that each operation takes one
instruction in hardware.

12.1.9. Analysis of partial re-calibration

We have calibrated each layer BNN separately but injected faults into all the layers to find the most
important layers for the re-calibration. We have found that in CNN, re-calibrating only the convolution
layers and in MLP, re-calibrating only the first 2 − 3 hidden layers is enough to achieve a mean accuracy

225

CHAPTER 12. RUNTIME PERIODIC MAINTENANCE APPROACHES

Table 12.4.: The effect of removing batch normalization parameters and computation during inference in hardware. Evaluated on
testing datasets and without any fault injection.

Compute BN MNIST Fashion- CIFAR-10during inference MNIST

ApproxBN Yes 96.39% 85.6 % 83.88%
No 96.09% 83.73% 84.06%

Table 12.5.:Comparison of mean inference accuracy of partial re-calibration with full re-calibration on 13.95% (3𝜎MRAM) variation.
MNIST Fashion-MNIST CIFAR-10

Full calibration 92.22% 81.6% 80.95%
Partial calibration 92.15% 81.87% 80.31%

of layers calibrated 3\4 2\4 6\9

0.07 − 1% lower than full re-calibration, as shown in Table 12.5 when evaluated on 13.95% (3𝜎MRAM)
variation, as at that variation rate the inference accuracy degrades the most for the baseline. Therefore,
partial re-calibration reduces the number of layers that need to be calibrated by 33.33% for CNN and
25 − 50% for MLP.

12.1.10. Scientific Impact of This Work

The scientific impact of this work and the main contributions can be summarized as follows:

• Online Re-calibration for Variation-tolerance in BNN: We show that online re-calibration can
improve manufacturing and thermal variation tolerance for binary neural networks. By recalculating
the statistics of the batch normalization layers post-mapping and post-deployment, our approach
enhances the robustness of BNNs against shifts in activation distributions due to manufacturing and
online thermal variations, thereby improving overall inference accuracy.

• Re-calibration for Retention Fault-tolerance: We show that the proposed re-calibration method
is effective in mitigating retention faults in CiM architectures for the first time. Our approach ensures
that the NNs retain their performance over time despite the inherent retention faults, which can
otherwise lead to significant accuracy degradation.

• Partial Re-calibration for Fault-tolerance: We introduce the partial re-calibration strategy that
selectively re-calibrates the sub-set of the layers of a neural network. With partial re-calibration, our
method reduces the computational and memory overhead associated with the re-calibration while
still maintaining high fault tolerance and accuracy levels.

• Approximate Normalization: We introduce the approximate batch normalization method, which
reduces the overhead of precise normalization calculations during re-calibration. Specifically, Ap-
proxBN uses simplified statistics to approximate the running mean and variance calculation, signifi-
cantly lowering the memory and computational requirements without compromising the effective-
ness of re-calibration. Furthermore, it allows for the complete removal of normalization calculation
during inference, significantly improving the inference efficiency.

• Scalability: Our approach, although demonstrated for STT-MRAM-based CiM architectures, is
scalable to other memristor technology and edge AI accelerator architectures. Furthermore, our
approach is scalable to any NN task, topology, and dataset that uses batch normalization layers.

12.1.11. Section Conclusion

In this section, we have introduced functional ATPG, which selects only up to 0.2% of training data as the
re-calibration test inputs. Also, proposed approximate batch normalization, which during re-calibration

226

12.2. MAINTAINING RETENTION FAULTS AND AGING INDUCE DRIFTS

approximately calculates the mean and variance and, during inference, completely removes the batch
normalization layer. Our proposed technique can improve inference accuracy by up to 72.32%, bringing
it within 2.4% of training accuracy, with up to 13.95% (3𝜎) manufacturing variation and 10% stuck-at
faults rate. Compared to existing studies, our proposed technique achieves comparable baseline fault-free
inference accuracy on significantly lower overhead.

12.2. Maintaining Retention Faults and Aging Induce Drifts

12.2.1. Problem Statement

The direction of the uni-directional state change of memristive devices is technology-dependent. Assuming
MTJ-based crossbars are used, the state changes from +1→ −1 are far more common than retention faults
in the other direction, −1→ +1. Consequently, these uni-directional retention faults accumulate over time
and severely impact the inference accuracy after a certain period, as shown in Fig. 12.7.

12.2.2. Methodology

12.2.2.1. Core Idea

To mitigate retention faults, we propose an approximate scrubbing technique to prevent the accumulation of
uni- directional faults. The main idea behind this approach is to define a scrub region SA and a non-scrubbing
region nSA where most unstable and stable weights are stored, respectively. The scrub region can then be
periodically scrubbed to restore the respective values. In contrast, since the weights in the non-scrubbing
region nSA mainly contain stable weights, they are not scrubbed. As a result, the overall cost and latency
associated with our approach are further reduced.

We propose two ways to define the scrubbing area: 1) predefined and 2) learnable. In the pre-defined
scrub area approach, a pre-specified region of the crossbar is chosen as the scrub area before training the
NN model, and defining this region requires a hyperparameter (that defines the scrub area) search. The
advantage of this approach is that it has negligible memory overhead, but the drawback is that it does not
give the NN the freedom to choose the optimum scrub area for the task, which can lead to comparatively
low accuracy. To address this, we introduced the learnable scrub area approach. This approach gives the
NN the freedom to adjust the scrub area during training, producing optimal accuracy for the task, given
some constraints that are discussed later. However, in comparison to the predefined scrub area approach,
it has a slightly higher memory overhead.

During the online operation of the NN, the scrub area need to be frequently scrubbed to restore their
respective values. The frequency of scrubbing (scrubbing rate) is important. This is because a too-low
scrubbing rate can lead to incorrect prediction between the scrubbing window, and a too-high scrubbing
rate can lead to energy consumption due to unnecessary scrubbing. Therefore, we propose to optimize the
scrubbing rate based on the memristor technology used, device parameters, environmental factors such as
operating temperature since the retention fault rate depends on those factors, scrubbing technique, e.g.,
hybrid scrub (see Section 12.2.2.5). For example, less frequent scrubbing is performed for ReRAM-based
crossbars due to their limited endurance and gradual state change. In addition, the type of scrub can
be chosen based on the complexity of the NN task and the size of the NN topology. For instance, for a
relatively easier task, a smaller NN topology scrub area can be pre-defined as it has negligible overhead.
The scrub area can be learned during training for a harder NN task or bigger NN topology.

To perform scrubbing, a scrub controller is implemented that receives information about the scrub region’s
shape (irrespective of scrub area definition method), scrub frequency, and scrubbing technique. It performs
a write operation on each of the memristor cells in the scrub region (row/column-wise) to restore the
respective weight value (+1). As a result, the accumulation of errors can be prevented, and the degradation

227

CHAPTER 12. RUNTIME PERIODIC MAINTENANCE APPROACHES

Figure 12.5.: (a) A Crossbar (𝑚 = 𝑛) showing different possible scrub and non-scrub areas with different diagonals 𝑑 , (b) A Crossbar
(𝑚 < 𝑛) showing rectangular shaped (𝑅1 and 𝑅2) scrub area. Each scrub area requires storing two points (P1 and P2), (c) A
Crossbar (𝑚 > 𝑛) showing staircase shaped (𝑟𝑎𝑖𝑠𝑒 and 𝑟𝑢𝑛) scrub area for Conv layers of CNN.

of the inference accuracy can be mitigated either completely or partially. However, the scrub controller
does not modify the state of the memristor cells in the non-scrubbing region nSA as they are not considered
stable.

12.2.2.2. Scalability Challenges

There are some key challenges associated with our proposed technique. One challenge is to define the
shape of the scrub region, depending on the difficulty of the NN tasks and NN topology, while maintaining
low scrubbing costs. In particular, the scrubbing cost should be low enough to make it scalable for resource-
constrained devices. Each scrub area requires the storage of information about the size of the scrub region
SA. To avoid significant memory overhead, the space complexity of the definition of SA should ideally be
kept constant for a pre-defined scrub area, i.e., 𝑂 (1). However, for a learnable scrub area, a more complex
scrub area definition is preferred, which gives the learning algorithm more freedom to adjust the scrub
area and achieve high accuracy. Therefore, the scrubbing overhead is relatively higher. However, ideally,
overhead should be relatively lower compared to the size of the weight matrix or NN topology.

12.2.2.3. Proposed Scrubbing Technique

As described before, our objective is to divide the crossbar array into scrub area SA and non-scrub area
nSA for both pre-defined and learnable scrub areas, which contain most of the unstable +1 and stable −1
weights, respectively, while keeping the cost of scrubbing to a minimum. Hence, different shapes can
define the scrub areas. A few examples of pre-defined scrub area descriptions with constant overhead𝑂 (1)
can be seen in Fig. 12.5(a) and (b). In a diagonal scrubbing region, a diagonal 𝑑 is defined in the crossbar
array, which separates the scrub area SA from the nonscrub area nSA as shown in Fig. 12.5(a). The value
of 𝑑 is considered an additional hyperparameter for NN training. Alternatively, the learnable scrub area
creates clusters of scrub and non-scrub areas that dynamically change during training. It produces a much
more complex scrub area by trading off storage overhead and has no hyperparameter but only learnable
parameters.

Since the definition of the triangle-shaped scrub region depends only on a single integer 𝑑 , the storage
overhead is constant𝑂 (1). The top-right area above 𝑑 thus defines the scrub area SA, while the bottom-left
defines nSA. Increasing or decreasing 𝑑 can be visualized as the diagonal moving towards the top-right
or bottom-left, as depicted in Fig. 12.5(a). The diagonal-shaped scrubbing region leads to more unique

228

12.2. MAINTAINING RETENTION FAULTS AND AGING INDUCE DRIFTS

neurons compared to the rectangular scrubbing region depicted in Fig. 12.5 (b). Here, a unique neuron
refers to a neuron whose weight vector is different from the weight vector of another neuron in the same
layer. Although the number of rectangles can be increased to increase unique neurons, but it will require
more storage. Note that storage overhead for the rectangular shape scrubbing still remains 𝑂 (1) when the
number of rectangles increases.

In most CNN topologies, the number of output channels 𝑐𝑜𝑢𝑡 increases with the depth of the topology. As a
result, the flattened weight matrix has a shape of rows (𝑚) >> columns (𝑛). The simpler diagonal-shaped
scrub region will lead to a significantly lower number of unique filters and will degrade the initial (𝑡0)
inference accuracy. Similar to a unique neuron, a unique filter refers to the filter that is not replicated in
the weight matrix of a layer at the same exact location, e.g., when 𝑑 = 40 in Fig. 12.5(a), then the area
below the diagonal will have the same filters replicated across all 𝑐𝑜𝑢𝑡 .

Hence, we propose a more flexible staircase-shaped scrub area that is pre-defined for a comparatively
simpler NN task or smaller CNN topology, as shown in Fig. 12.5(c) for the Conv layers of CNNs. The
shape can be defined by choosing 𝑑1 = raise and 𝑑2 = run, and has a 𝑂 (1) storage overhead. The training
hyperparameter and storage overhead can be reduced by choosing raise = run. Please note that when
run > 1, neurons (output channels) are repeated. Repeated neurons refer to the fact that when 𝑟𝑢𝑛 > 1,
e.g., 𝑟𝑢𝑛 = 2, then the weights of both neurons in that region are the same.

Furthermore, for a difficult NN task or a larger CNN topology, the scrub area can be learned during training.
Therefore, the shape of the scrub area is not needed to be pre-defined, instead, the overhead of the scrub
area should be defined, as discussed in Section 12.2.2.4. Consequently, this allows selecting appropriate
scrub-areas based on the type of layers (Conv or fully-connected), the shape of layers, the size of NN
topology, the difficulty of NN tasks, and where they appear in the network, e.g„ the type of the subsequent
layers.

12.2.2.4. Proposed Training Technique

Due to the employed scrubbing, we prefer solutions with +1 and −1 in the respective regions (e.g., +1 in
the scrub area and −1 in the non-scrubbing area), as these entries will be less affected by retention faults.
As mentioned previously, we propose two types of scrub area definition: 1) pre-defined, and 2) learnable
scrub area. The training procedure for each technique is different. This section describes the training
procedure for each technique.

Pre-defined Scrub Area In NN training, the loss function expresses the preference for solutions. For the
pre-defined scrub area, a penalty function augmenting the original training objective (loss function) can be
designed to express our scrubbing preference. In this section, this method is referred to as 1⃝.

As NN training is most commonly described as a minimization problem, the penalty function should
exhibit its minimum value at the most preferred configuration, i.e., where all +1 and −1 weights are in the
correct region. Consequently, the more weights are placed outside the respective region, the higher the
penalty. Note that many of such penalty functions can be designed to satisfy this property. For example

Penalty1(W) =
1

𝑚 × 𝑛
∑︁
𝑤∈SA
(1 −𝑤) + 1

𝑚 × 𝑛
∑︁
𝑤∈nSA

(1 +𝑤), (12.6)

and

Penalty2(W) =
1

𝑚 × 𝑛
∑︁
𝑤∈SA
(1 −𝑤)2 + 1

𝑚 × 𝑛
∑︁
𝑤∈nSA

(1 +𝑤)2. (12.7)

229

CHAPTER 12. RUNTIME PERIODIC MAINTENANCE APPROACHES

The penalty function (12.6) and (12.7) penalizes based on weight value. Therefore, we propose

Penalty3(W) =
1

𝑚 × 𝑛
∑︁
𝑤∈SA
(ReLU(−𝑤))2 + 1

𝑚 × 𝑛
∑︁
𝑤∈nSA

(ReLU(𝑤))2. (12.8)

which penalizes based on the sign of the weight value. As a result, it allows the learning algorithm more
degrees of freedom (since the magnitude of weights can be any value between 0 and 1 or −1 and 0 before
the sign(𝑥) function is applied) and faster training.

Each penalty term is normalized for the size of the weight matrix (𝑚 × 𝑛). For convolutional layers,
the penalty function is applied to the semi-unrolled weight matrix W′. Please note that the proposed
loss function changes the spatial distribution of the weights, as opposed to the widely used 𝐿1 and 𝐿2
regularization, which are typically used to reduce overfitting by changing the distribution weights value.

The penalty function can now be combined with the original training objective, i.e., the loss function, to
form the new training objective. It can be described as follows:

Loss′(𝜽 ,D) = Loss(𝜽 ,D) + 𝜆
𝐿

𝐿∑︁
𝑙=1

Penalty(W𝑙) . (12.9)

where the scalar value 𝜆 ∈ R+ is the penalty rate and 𝐿 is the number of penalized layers. The contribution
of the penalty to the overall loss can be tuned by increasing or decreasing 𝜆.

The definition of the loss function can be dynamically adjusted during training to influence the training
target. For example, the loss function can be augmented by the penalty (as described in Algorithm 8)
when the network starts to store weights of undesired values in the non-scrub and the scrub area else the
weight update can be frozen. Such modification can reduce training time and is especially beneficial in
CNN training, as the convolution operation is computationally more expensive compared to matrix-vector
multiplication employed in MLP.

Algorithm 8 Algorithm for dynamically adjusting the loss function during training. (Non-) Scrub Area
Coverage 𝑆𝐴𝐶 (𝑛𝑆𝐴𝐶) is given as a percentage of the desired weights in SA (nSA). The parameter 𝑡ℎ is
the corresponding augmentation threshold in percent, and 𝜂 represents the learning rate of the gradient
descent algorithm. For brevity, 𝜽 represents the other parameters besides the weights, e.g., b, 𝜸 , and 𝜷 .

for epoch = 1 to epochs𝑠 do
if 𝑆𝐴𝐶 < 𝑇 or 𝑛𝑆𝐴𝐶 < 𝑇 then

Loss′(𝜽 ,D) ← Loss(𝜽 ,D) + 𝜆
𝐿

∑𝐿
𝑙=1 Penalty(W𝑙)

w’← w − 𝜂 𝜕 Loss′
𝜕w // update weights

�̂�
′ ← �̂� − 𝜂 𝜕 Loss′

𝜕𝜽
// update other parameters

else
Loss′(𝜽 ,D) ← Loss(𝜽 ,D)
w’← w // frozen weights
�̂�
′ ← �̂� − 𝜂 𝜕 Loss′

𝜕�̂�
// other parameters update

end if
end for

Alternatively, the hyperparameter 𝜆 can be chosen before training to get desired 𝑆𝐴𝐶 and 𝑛𝑆𝐴𝐶 coverage.
Choosing a too high value of 𝜆 can overwhelm the loss and can lead to a lower initial 𝑡0 accuracy. Similarly,
smaller 𝜆 will lead to lower 𝑆𝐴𝐶 and 𝑛𝑆𝐴𝐶 but higher 𝑡0 accuracy.

In extreme cases, for example, 𝜆 → ∞ or 𝑡ℎ = 100, scrub and non-scrub have only +1 or −1 weights.
Therefore, in those cases, scrubbing is exact as it fully restores the intended weight matrices in the
memristor crossbar array.

230

12.2. MAINTAINING RETENTION FAULTS AND AGING INDUCE DRIFTS

Self Learnable Scrub Area In the pre-defined scrub area method, we decide on the shape of the scrub area
based on respective hyperparameters. Although, this method has negligible memory overhead, it gives
NNs less freedom to choose the best scrub area for the task. In addition, it adds additional hyperparameters
that need optimization. This can be problematic and too restrictive for larger networks on harder tasks.
We, therefore, propose to let the NN define the position of the scrub area during training for CNNs.

To implement our approach, we re-parameterize the weight matrix W into W̃, which is a constant ones
matrix of shape [𝐶𝑖𝑛 × 𝐾ℎ × 𝐾𝑤 ×𝐶𝑜𝑢𝑡], and smaller matrix Γ. Here, the Γ multiplies the W̃ before each
forward pass to obtain proxy weights, based on which the computation of a layer is calculated. The shape
of the Γ matrix can be constructed in various ways, depending on the acceptable memory overhead and
NN tasks. For example, a shape of [𝐶𝑖𝑛 × 1 ×𝐶𝑜𝑢𝑡] will have learnable filters of 1s and −1s and memory
overhead of 𝐶𝑜𝑢𝑡 ×𝐶𝑖𝑛 . Therefore, the computation of a convolutional layer can be reformulated as:

ConvolutionLayer(x) = (W̃Γ)x + b. (12.10)

In an extreme case, Γ will have a shape of [𝐶𝑖𝑛 × 𝐾ℎ × 𝐾𝑤 ×𝐶𝑜𝑢𝑡], the same as the original weight matrix,
leading to high scrub overhead. Therefore, we do not recommend such a shape.

For efficient learning, Γ needs to be initialized properly. We propose to initialize it as:

Γ =𝑚𝑒𝑎𝑛(|W|). (12.11)

Here, the mean for the initialization should be calculated in the same dimension as Γ, e.g., for Γ with a shape
[𝐶𝑖𝑛×1×𝐶𝑜𝑢𝑡], the mean should be calculated for each filter. Also, W is the original initialized (real-valued)
weight matrix (before the proposed re-parameterization) with the state-of-the-art initialization method,
e.g., Kaiming [249], initialization method. During training, Γ is binarized with the state-through-estimation
technique (STE) [250] using the sign(x) function during the forward pass. STE is heavily used in the binary
neural network to binarize both the weights and the activation values [44].

12.2.2.5. Hybrid Scrubbing: Boosting Scrubbing Accuracy At Initial Device Operational Time

If the scrub-prepared model (trained with either proposed method 1⃝ or 2⃝) is mapped directly to the
memristor-based crossbar arrays initially at time 𝑡0, the inference accuracy can slightly reduce from the
baseline accuracy at the same operational time, as shown in Section 12.2.3. In order to achieve high accuracy
at both the initial and end of the expected device operational time, we proposed a hybrid scrubbing method
that is used when the scrubbing is performed for the first time. In the naive approach, the complete NN
needs to be stored in either the cloud or hardware and switched during the first scrubbing event, which is
very costly. Alternatively, we proposed that the NN is trained with either the proposed method 1⃝ or 2⃝
then the layers not intended to scrub, e.g., first and last layers, are frozen and only the layers intended to
scrub are freely trained. That way, the weight matrix of the layers need not be stored in either the cloud or
hardware, and normal scrubbing can fully restore the scrub-prepared model. However, the mean 𝜇 and the
variance 𝝈 of BatchNorm also have to be updated for proper normalization.

12.2.3. Results

12.2.4. Evaluation Setup

We have used MTJs as the memristor technology for detailed evaluations of our proposed scrubbing
technique and uni-directional faults in the crossbar array. However, to reiterate, the proposed methods
can be applied to mitigate retention faults in other memristor-based crossbar arrays. Compared to other

231

CHAPTER 12. RUNTIME PERIODIC MAINTENANCE APPROACHES

memristors, STT-MRAM has reached a comparably mature technology state, as demonstrated in industrial
studies [251, 252].

Our training, fault-injection, and scrubbing simulation flow are shown in Figure 12.6. Faults are modeled as
described in [29]. We have trained an MLP (six fully connected layers, 2048 neurons each) and a CNN (three
Conv and three fully connected layers) with three different datasets: MNIST, Fashion-MNIST, and CIFAR-3.
Our CNN topology is summarized in Table 12.6 and is based on the popular LeNet-5 topology. We have
used an inflation ratio of three for MNIST, and five for Fashion-MNIST, which scales the output channels
by that amount. In this section, we refer to the topology as LeNet-6. However, for the CIFAR-10 benchmark
datasets, we use a nine-layer VGG based CNN with the same topology as [44], with the difference that the
number of neurons is kept at 256 in the linear layers and an inflation ratio of one is used. We have used
a Cosine Annealing learning scheduler [112], the ADAM optimizer with default settings [253], and the
cross-entropy loss function.

Table 12.6.: Summary of MLP and CNN topology.
MLP Neurons 2048

CNN

Convolution

Filters LeNet-6 5, 2, 5
VGG Block 2, 3

Out Channel LeNet-6 8, 16, 150
VGG Block 128, 256, 512

Stride 1
Padding 1

Fully-Connected Neurons LeNet-6 128
VGG 256

Avg-Pooling Filters 2
Stride 2

MNIST (handwritten digits) and Fashion-MNIST [254] have 28 × 28 gray-scale images representing
handwritten digits ranging from 0 to 9 (10 classes), and 10 classes of clothes. Both datasets have 60K
training images and 10K test images. We did not use any data-augmentation or pre-processing for these
datasets. We use the CIFAR-10 dataset and additionally use also use a subset of the CIFAR-10 dataset with
only three output classes (CIFAR-3). It has a 15K training set and a 3K test set, but CIFAR-10 has a 50k
training and 10k test dataset. Each image of both the CIFAR-10 and CIFAR-3 consists of 32× 32 RGB pixels.
CIFAR-10 datasets are normalized and augmented with RandomHorizontalFlip with 50% probability and
RandomCrop with a padding length of four on each border.

We have binarized our NN with the algorithm from [44], but initialized it with a pre-trained floating-point
NN. The proposed cost function described in Section 12.2.2.4 is used during floating-point and BNN
training. We have defined the shape of Γ as [𝐶𝑖𝑛 × 1× 1×𝐶𝑜𝑢𝑡] because it provides a good balance between
memory overhead and scalable scrub area.

The trained weight of the binary NN is mapped to different MTJ-based crossbars (H0 toH8 depending on
the depth of the NN) for inference. The shape of all hidden layers is 2024 × 2024 for the MLP, and they
are mapped to several MTJ-based crossbars with a dimension (m and n) of 256 × 256. The weight matrix
splitting and current accumulation, as proposed in [64], is used in this section. In the evaluated CNNs, the
shape of the weight matrices is different for different layers. Hence, they are mapped to either 64 × 64 or
128 × 128 crossbars. When the size of the weight matrix is bigger than the crossbar, they are split into
several crossbars.

Due to hardware constraints, only a limited number of word-lines are activated concurrently for a larger
crossbar, and the partial current sum is accumulated to get the total current sum of a layer. We activate
either 32 or 64 word-lines concurrently, depending on the array size. The current sum of each post-synaptic
neuron is scaled and shifted by pre-trained BatchNorm parameters. Those parameters are stored in the
off-chip memory for reliability.

232

12.2. MAINTAINING RETENTION FAULTS AND AGING INDUCE DRIFTS

Figure 12.6.: Overview of NN training and evaluation flow.

The hidden layers have more parameters compared to the first and the last layer. The first layer’s input
and the last layer’s activation are non-binary. As a result, this work is focused on retention faults in all
Conv and hidden fully-connected layers only. For both MLP and CNN, we assume that the first and last
fully connected layer’s weights are mapped to a crossbar array (H0 andH5) with a high thermal stability
factor Δ = 60. Here, Δ represents the thermal stability factor.

Our system-level evaluationwas performed using NVSim [160]. We parametrized the individually simulated
STT-MRAMs for a 64×64 cell sub-array size, a 128×128 cell sub-array size, and a 2048×2048 cell subdivided
into 256 × 256 matrix sub-arrays to reflect the shape of our evaluated neural network layers. The results
are then used to evaluate the impact of different scrubbing rates. The MTJ device properties, operating
temperature and other parameters for the evaluation are summarized in Table 12.7. For our evaluation, we
have changed the thickness of the free layer to change the thermal stability of the MTJ device.

Table 12.7.: MTJ parameters and simulation setup
Parameter Value

VDD 0.25V
Nominal Temperature 27◦C

CMOS library Globalfoundries 22FDX
MTJ radius 20 nm

RA 7.5 Ω𝜇𝑚2

TMR @ 0V 220%
’AP’/’P’ resistance 19 kΩ/6 kΩ

12.2.4.1. Analysing Inference Accuracy with Scrubbing

We conducted two sets of experiments: baseline and proposed for each dataset. The retention faults are
simulated in ten steps, each corresponding to 10% of the expected device operational time. The training
algorithm of the baseline model is unaltered, and it is not scrubbed during the simulation. The proposed
model is trained with Algorithm 8 for both CNN and MLP and is scrubbed frequently during the simulation
so that faults do not accumulate over time. However, the effect of a faster or slower scrubbing frequency is
analyzed in Section 12.2.4.5.

We experimentally show the benefits of the diagonal-shaped scrub area compared to the rectangular-shaped
scrub area. In the case of a rectangular-shaped scrub area, the initial inference accuracy is significantly
below (26.2%) the baseline accuracy, but the proposed diagonal-shaped scrub achieves an inference accuracy
only below ∼ 3% of the baseline accuracy as shown in Table 12.8. Furthermore, the rectangular-shaped
scrub area has significantly more (4×) memory overhead, even for only two rectangles.

233

CHAPTER 12. RUNTIME PERIODIC MAINTENANCE APPROACHES

Table 12.8.: Comparison of the proposed diagonal and rectangular shaped scrub area for MNIST dataset with penalty function
Penalty3 (W). Evaluation is performed on a four-layer NN with 256 neurons per layer.

Scrub Shape Inference accuracy (𝑡0) Memory overhead\layer
None (Baseline) 97.38% -

Diagonal 94.39% 1 point
Rectangular 71.1% 4 points

Table 12.9.: Evaluation of MNIST and Fashion-MNIST datasets with a smaller MLP model (four layers NN with 256 neurons
layer). The thermal stability factor Δ = 30 is chosen, and the evaluation is performed on both baseline and proposed model.

Dataset Crossbar accuracy at t0 accuracy at tend
Proposed Baseline Proposed Baseline

MNIST H1 94.65% 97.35% 94.54% 7.52%
H2 94.71% 13.81%

Fashion- H1 85.11% 87.47% 85.01% 9.08%
MNIST H2 85.06% 11.31%

MLP For the MLP, a value of the threshold 𝑡ℎ = 100 and diagonal 𝑑 = 9 are chosen before training to
define the scrub area, and the results are summarized in Table 12.10. After training the proposed model,
the scrub and the non-scrub area contain only the weights that are preferred by the proposed penalty
function. Therefore, the initial inference accuracy (𝑡0) remains stable throughout the useful life of the
device (𝑡0 = 𝑡𝑒𝑛𝑑). Our proposed scrubbing technique improves the inference accuracy by more than 82.89%,
74.46%, and 30.80% in MNIST, Fashion-MNIST, and CIFAR-3 datasets, respectively, over the expected device
operational time.

When the number of neurons in the hidden layers is reduced to 256, and the number of layers is reduced
to 4, the initial and the final inference accuracy of the proposed model still remains close to the baseline
(fault-free) accuracy (2.81% in the worst case), as shown in the Table 12.9. Although the initial inference
accuracy of the baseline model reduces, the proposed model still maintains similar inference accuracy
compared to the 2048 neurons model (shown in Table 12.10). Therefore, our proposed approach is scalable
to various MLP sizes and depths.

Figure 12.7.: Impact of different thermal stability factors on inference accuracy with MNIST dataset on MLP when the scrub
prepared model is directly mapped to the initial time 𝑡0. The uncertainty band shows ±3𝜎𝑎𝑐𝑐 , where 𝜎𝑎𝑐𝑐 is the standard deviation
of accuracy. It is recommended to view this figure in color.

234

12.2. MAINTAINING RETENTION FAULTS AND AGING INDUCE DRIFTS

Table 12.10.: Evaluation of different crossbars (one at a time) with our proposed scrubbing technique and the baseline model for
MNIST, Fashion-MNIST, and CIFAR-3 datasets. Δ = 30 is chosen, and the evaluation is performed on MLP.

accuracy at 𝑡0 accuracy at 𝑡𝑒𝑛𝑑
Dataset Crossbar Proposed Baseline Proposed Baseline

MNIST

H1

94.08% 98.35% 94.08%

9.20%
H2 10.81%
H2 10.83%
H2 11.3%
H1

84.46% 90.68% 84.46%

7.48%
Fashion- H2 10.34%
MNIST H2 8.91%

H2 10.00%

CIFAR-3

H1

64.2% 69.27% 64.2%

33.4%
H2 32.27%
H2 33.33%
H2 31.8%

Although the initial inference accuracy at 𝑡0 is slightly better for the baseline model compared to our
proposed technique, the inference accuracy is significantly better for our proposed scrubbing technique
until the end of the expected device operational time (𝑡𝑒𝑛𝑑). Please note that CIFAR-3 has only three output
classes, and the probability that the output is correct at random is 33%, which is more than three times
that of MNIST and Fashion-MNIST (10%). As a result, the inference accuracy degrades to around 33% from
69.27% under retention faults.

CNN For CNNs with the pre-defined scrub area (proposed method 1⃝), a value of the threshold 𝑡ℎ = 99
is chosen before training, but raise = 𝑑1 is selected depending on the shape and type of the layer. The
hyperparameter 𝑑1 for the Conv layer is calculated using rows

cols =
𝐶𝑖𝑛×𝐾ℎ×𝐹𝑤

𝐶𝑜𝑢𝑡
. The parameter run = 𝑑2 is kept

1 to avoid repeated neurons. Furthermore, the diagonal 𝑑 = 1 is chosen for the fully-connected layer. In the
CIFAR-10 dataset, only the convolutional layers with more than 0.5 million parameters are scrubbed, as
they have many parameters compared to other layers. Our proposed scrubbing technique achieves similar
initial accuracy (∼ 1 − 2% below the training accuracy for the baseline model) but archives significantly
higher inference accuracy at the end of the expected device lifetime, as summarized in Table 12.12. Our
proposed method improves the inference accuracy by more than 87.76%, 78.02%, 60.46%, and 59.74% in the
MNIST, Fashion-MNIST, and CIFAR-3 datasets, respectively, over the expected device operational time.

Table 12.11.: Approximate operational time of proposed Proposed and baseline model Baseline when the inference accuracy drops
below the scrub prepared model. Here,H1 crossbar is evaluated with Δ = 30 on CIFAR-10 dataset.

Delta Baseline 𝑡𝑝

40 1.2 years 1.5 years
37 20 days 24 days
35 3 days 4 days
30 30 minutes 50 minutes

There are a few weights with undesired values in SA and nSA after training the proposed model. Undesired
weights in SA and nSA refer to the weights that are not preferred by the proposed penalty function in the
following. Hence, the scrubbing approximately restores the initial (𝑡0) inference accuracy.

For a harder task, e.g., the CIFAR-10, a more complex and freely expressible scrub area is required.
We, therefore, used our self-learnable scrub area method 2⃝. The results are summarized in Table 12.13.
Similarly, our proposedmethod archives comparable accuracy initially at 𝑡0 and significantly better accuracy
compared to the baseline at the end of the expected device lifetime. Consequently, our method improves

235

CHAPTER 12. RUNTIME PERIODIC MAINTENANCE APPROACHES

accuracy by 70.97%. Since the learnable scrub area has a relatively higher scrub memory overhead, we
recommend using this method for larger NN topologies and complex NN tasks. Otherwise, the scrub area
can be predefined (proposed method 1⃝).

Table 12.12.: Evaluation of different crossbars (one at a time) with our proposed scrubbing technique 1⃝ (pre-defined scrub area)
in comparison to the baseline model. Δ = 30 is chosen for the evaluation. Accuracy in the bracket shows the accuracy if the scrub
prepared model is mapped at time 𝑡0 (see Section 12.2.2.5).

accuracy at 𝑡0 accuracy at 𝑡𝑒𝑛𝑑
Dataset Crossbar Proposed Baseline Proposed Baseline

MNIST
H1

99.2%
96.0% 12.48%

H2 98.97% 94.94% 10.43%
H3 (96.14%) 95.91% 8.75%
H1

90.24%
84.47% 10.25%

Fashion- H2 89.72% 84.33% 6.31%
MNIST H3 (84.71%) 84.58% 11.25%

CIFAR-3

H1 91.73%
93.7%

89.03% 33.3%
H2 89.1% 35.2%
H3 (89.0%) 89.03% 35.03%
H4 88.93% 28.47%

Table 12.13.: Evaluation of our proposed learnable scrub area method 2⃝ in comparison to the baseline model for the CIFAR-10
dataset on CNN topology. The evaluation is performed with a thermal stability factor Δ = 30. Accuracy in the bracket represents
the accuracy of the scrub-prepared model mapped at time 𝑡0.

accuracy at 𝑡0 accuracy at 𝑡𝑒𝑛𝑑
Dataset Crossbar Proposed Baseline Proposed Baseline

CIFAR-10

H1 83.3%
86.6%

78.44% 10.62%
H2 78.44% 7.93%
H2 (78.44%) 78.44% 8.38%
H2 78.44% 7.47%

Impact of Variation in Thermal StabilityΔ In a crossbar array, the Δ of MTJs can vary due to manufacturing
variation, non-zero current during the read and write operation, and when the dimension of the device is
scaled down. The Δ of the MTJs can be varied to evaluate the robustness of our proposed approach under
different Δ.

The inference accuracy of the proposed method does not change with Δ as opposed to the baseline model
given that the proposed method is scrubbed with a sufficiently high frequency, as shown in Fig. 12.7 for the
MLP when the scrub prepared model is mapped to the crossbar, initially at 𝑡0 time. In that case, when the
thermal stability factor Δ is greater than 40, the baseline model performs slightly better, but our proposed
scrubbing method performs significantly better in the long run when the thermal stability is below 40. We
have observed the same behavior of the CNN when the thermal stability of the crossbar is varied.

On the contrary, if the hybrid scrub area model (as described in Section 12.2.2.5) is utilized initially 𝑡0 and
the NN is switched to the scrub prepared model at the first scrub event, a comparable inference accuracy
can be achieved at all thermal stability (i.e., above or below the thermal stability value 40) by performing
the first scrub event slower in comparison. In that case, when the first scrub event is performed, it is quite
important to experience the benefit of high accuracy at the initial time 𝑡0. The time when the first scrub
event is performed should be chosen based on the retention capabilities of the memristor cells. For example,
it takes around 1.2 to 1.5 years for the inference accuracy of the baseline and hybrid scrub area model to
drop below the scrub prepared model, as shown in Table 12.11. However, at lower Δ, the inference accuracy
can drop within 30 minutes. Therefore, a slightly higher accuracy of the baseline can be experienced for a
shorter device operational time.

236

12.2. MAINTAINING RETENTION FAULTS AND AGING INDUCE DRIFTS

12.2.4.2. Analyzing the Effect of Frozen Layers During Training

In the case a threshold of 𝑡ℎ = 100 is chosen before training for the predefined scrub method, the scrub area
and non-scrub contain only +1 and −1 weights, respectively. Consequently, the weights of the intended
layers can be initialized with only +1 and −1 in the scrub and the non-scrub area, respectively, and then
can be trained with Algorithm 8. NN only trains the biases 𝑏, weight scale Γ (optionally), and BatchNorm
parameters 𝜷 and 𝜸 of the frozen layers. This can significantly reduce the training time by reducing
back-propagation calculations. Therefore, the training gets faster, and the hyperparameter search becomes
less costly. We have found that comparable inference accuracy can be achieved with this method. In CNN,
the accuracy at time 𝑡0 of 96.9%, 83.85%, and 88.23% can be achieved for the MNIST, Fashion-MNIST, and
CIFAR-3 datasets, respectively, with this method.

12.2.4.3. Analyzing Inference Accuracy with Different Scrub Areas

In the previous section, a fixed scrub area was evaluated for the pre-defined scrub area, but this can be
changed before and after training by choosing a different value of 𝑑 . If 𝑑1 ≠ 𝑑2 for the Conv layers, then
those values can be individually changed to define a different scrub area. A smaller scrub area is desirable
in terms of scrubbing cost, as the content of fewer memristor cells must be restored.

Increasing or decreasing the diagonal 𝑑 ′ from the value specified before training 𝑑 will make the scrub area
smaller or bigger. The smaller the scrub area (𝑑 ′ > 𝑑), the less synaptic +1 weights are corrected through
scrubbing. On the other hand, with a larger scrub area (𝑑 ′ < 𝑑), more synaptic −1 weights are written over
synaptic +1 weights due to scrubbing, as shown in Table 12.14 for both the MLP and the CNN with LeNet
topology.

Due to the approximate nature of the NN, the inference accuracy only degrades noticeably after the
scrub area is made significantly bigger (𝑑 ′ ≪ 𝑑) or smaller (𝑑 ′ ≫ 𝑑) compared to the original scrub area
defined before training. This shows the robustness of the proposed approach. Due to parameter sharing,
Conv layers have a significantly lower number of parameters and smaller crossbar shapes. Changing
𝑑 → 𝑑 ′ slightly after training causes a higher percentage of retention faults or −1 in the scrub area, which
are scrubbed to +1 weights, as shown in Table 12.14. As a result, inference accuracy at 𝑡𝑒𝑛𝑑 is degraded
significantly.

Choosing a too high value for the NN training hyperparameter 𝑑 before training for the pre-defined scrub
area will lead to a weaker scrub area SA and massive 𝑡0 inference accuracy degradation. The inference
accuracy drops to 75.76%, and 93.10% for MNIST when a value 𝑑 = 1000 and 𝑑 = 100 were chosen,
respectively, for the MLP with a 2048 × 2048 crossbar shape. The hyperparameter 𝑑 should be chosen such
that the size of the scrub and the non-scrub area are approximately equal to one another SA ≈ .nSA.

Table 12.14.: The effect of changing the diagonal scrubbing parameter on inference accuracy after training. Evaluated for MNIST
dataset andH1 crossbar with Δ = 30.

Diagonal % of % of -1 weights Accuracy
Retention Faults Scrubbed at 𝑡𝑒𝑛𝑑

MLP

100 8.73% 0% 90.01%
50 3.98% 0% 93.73%

9(original) 0% 0% 94.08%
-50 0% 5.44% 91.78%
-100 0% 9.51% 83.72%

CNN
4 28.27% 0% 11.66%

3(original) 0% 0% 90.36%
2 0% 33.33% 37.78%

237

CHAPTER 12. RUNTIME PERIODIC MAINTENANCE APPROACHES

Figure 12.8.: The impact of scrubbing when scrub and non-scrub areas have undesired −1 and +1 weights, respectively. The
crossbarH3 is scrubbed with a scrubbing period 𝑓 = 1y on the Fashion-MNIST dataset. It is recommended to view this figure
in color.

12.2.4.4.Relaxing the Requirement of Scrub and Non-Scrub Areas

We analyzed the inference accuracy when the scrub and the non-scrub area only contain +1 and −1 synaptic
weights, respectively, in Section 12.2.4.1 and 12.2.4.2. However, this requirement can be relaxed for the
pre-defined scrub area without severely impacting the inference accuracy up to a certain point, as shown
in Tables 12.15 and 12.16 for the MLP and the CNN, respectively.

When only the non-scrub area contains some undesired weights, the inference accuracy at the end of
the expected device operational time degrades slightly for the MLP. We found that a higher number of
undesired weights (0.80%→ 2.65%) in the non-scrub area does not always lead to a lower final inference
accuracy. In the case of CNN, allowing a smaller number of undesired weights in the scrub and the
non-scrub area does not always lead to higher initial 𝑡0 inference accuracy.

Allowing some undesired weights in both non-scrub and scrub areas does not guarantee a higher initial
inference than allowing only undesired weights in the non-scrub area. In our case, we obtain slightly
lower initial inference accuracy (87.16%→ 85.81%) with MLP and similar initial inference accuracy with
the CNN when evaluated on the Fashion-MNIST dataset and LeNet topology. In addition, the inference
accuracy can degrade more at 𝑡𝑒𝑛𝑑 compared to the case of only undesired weights in the non-scrub area,
as shown in Table 12.15 for the MLP. This is due to the combined effect of not protecting synaptic +1 in
the non-scrub and writing −1 weights in the scrub area to +1. However, in both cases, scrubbing will not
restore the initial 𝑡0 inference accuracy, as shown in Fig. 12.8 for different thermal stability factors Δ.

Table 12.15.: The result for the Fashion-MNIST dataset with thermal stability factor (Δ) = 30 when only non-scrub and both areas
contain undesired weights. The evaluation is performed on MLP.

Crossbar % of +1 weights % of −1 Accuracy Accuracy
in 𝑆 ′ in 𝑆 𝑡0 𝑡𝑒𝑛𝑑

Relaxed in Non-Scrub Area Only
H1 1.21% 0% 87.16% 86.37%
H2 2.65% 0% 87.16% 87.03%
H2 0.80% 0% 87.16% 86.91%
H2 1.99% 0% 87.16% 87.13%

Relaxed in Scrub and Non-Scrub Area
H1 0.45% 1.54% 85.81% 80.61%
H2 0.04% 2.81% 85.81% 85.67%
H2 1.23% 3.16% 85.81% 75.58%
H2 2.34% 4.52% 85.81% 75.95%

238

12.2. MAINTAINING RETENTION FAULTS AND AGING INDUCE DRIFTS

Table 12.16.: The result for the Fashion-MNIST dataset with thermal stability factor (Δ) = 30 when both scrub and non-scrub areas
contain undesired weights. The evaluation is performed on CNN.

Crossbar % of +1 weights % of -1 Accuracy Accuracy
in S’ in S 𝑡0 𝑡𝑒𝑛𝑑

Relaxed in Scrub and Non-Scrub Area
H1 0.93% 3.26% 77.48% 72.74%
H2 2.94% 2.92% 77.48% 76.04%
H2 0.63% 0.51% 77.48% 76.64%
H2 0.10% 0.06% 77.48% 77.43%

Figure 12.9.: The effect of penalty rate 𝜆 on Scrub Area Coverage 𝑆𝐴𝐶 during training. The line with 𝜆 →∞ shows the case when
the scrub and non-scrub areas are initialized with +1 and −1 weights, respectively. It is recommended to view this figure in
color.

There is a trade-off between the initial 𝑡0 inference accuracy and the final 𝑡𝑒𝑛𝑑 inference accuracy. Although
allowing some undesired weights in the scrub or non-scrub areas increases the initial 𝑡0 inference accuracy,
it can reduce the inference accuracy at the end of the expected device operational time (unless hybrid
scrubbing is performed), especially when both scrub and non-scrub areas have undesired weights. For
example, the inference accuracy of H2 (75.58%) and H2 (75.95%) at the end of the expected device
operational time is lower in comparison (84.46%) to the result from Section 12.2.4.1 for the Fashion-MNIST
dataset. The results suggest that the scrub and the non-scrub areas should not be relaxed at the same time
and should not contain more than 3% of undesired weights, i.e., training the NN with Algorithm 8 and
threshold 𝑡ℎ = 97 if the scrub prepared model is mapped at 𝑡0 for the pre-defined scrub area.

Generally, initial inference accuracy can be increased by relaxing the requirement of the non-scrub area.
We achieve a similar initial 𝑡0 inference accuracy compared to the fixed scrubbing accuracy shown in
Table 12.12 when the non-scrubbing area contains 25% to ∼ 40% undesired (+1) weights. This shows the
trade-off between the number of layers scrubbed and inference accuracy.

As mentioned in Section 12.2.2.4, the requirement of the scrub and the non-scrub area can also be relaxed
by choosing a small value of the penalty rate 𝜆 before training. Fig. 12.9 shows how the coverage of the
scrub area changes during CNN training with different 𝜆 with the CIFAR-3 dataset. Table 12.17 shows
how the trade-off between the initial 𝑡0 and the final 𝑡𝑒𝑛𝑑 inference accuracy was achieved with different 𝜆
values.

12.2.4.5. Analyzing Scrubbing Cost

To reiterate, the scrubbing is performed by re-writing the memristor cells in the scrub-area. Consequently,
each scrubbing operation will consume some energy due to the write operation and have a certain delay.
The cost of scrubbing in terms of total write energy and latency depends on the scrubbing period, the

239

CHAPTER 12. RUNTIME PERIODIC MAINTENANCE APPROACHES

Table 12.17.: The result for the CIFAR-3 dataset with thermal stability factor (Δ) = 30 when CNN trained with different penalty
rate 𝜆.

Lambda SAC Accuracy Accuracy
t0 tend

1 50.0% 74.97% 33.6%
100 87.04% 64.13% 53.87%
1000 99.69% 63.9% 63.8%

number of memristor cells in the scrub region (crossbar size), memristor technology, and some design
specification.

Choosing the right scrubbing frequency f is important to mitigate retention faults and reduce total write
energy during scrubbing. Increasing the scrubbing frequency makes the crossbar more robust against
retention faults, as shown in Fig. 12.11(a). When the scrubbing frequency is higher than the fault rate, a
further increase in the scrub frequency f will not yield better fault tolerance but will only increase the
total write energy, as shown in Fig. 12.10. Please note that we kept the write energy per cell constant to
analyze the scrubbing cost in faster or slower scrubbing. However, when the thermal stability of the device
is reduced, write energy also becomes lower.

Recall that, as mentioned in Section 2.10.2.3, retention time has an exponential relationship with tem-
perature. Therefore, at high temperatures, the retention failure rate will increase. Hence, an MTJ-based
crossbar with a low thermal stability factor or at a higher operation temperature will require more frequent
scrubbing, as shown in Fig. 12.11(b) and (c). When the thermal stability of the crossbar decrease from 40 to
38, the inference accuracy decrease by about 5%, even though scrubbing is performed 2× faster.

The scrubbing latency depends only on the size of the scrub area, i.e., the number of cells to scrub. For our
case, it takes 21.29𝜇s to scrub one layer of the MLP with 2048 neurons. Here, the weight matrix of shape
2048 × 2048 is mapped into multiple smaller 256 × 256 crossbar arrays when 𝑑 = 9.

Other memristor technologies, such as ReRAM have limited endurance and retention faults occur gradually
depending on the rate of conductivity drift. Therefore, less frequent scrubbing needs to be performed.

Figure 12.10.: a) Shows the relationship between scrub frequency and worst-case inference accuracy. When the scrub frequency is
high, inference accuracy does not degrade from the initial 𝑡0 inference accuracy (the worst case inference accuracy = initial 𝑡0
inference accuracy), b) Shows the relationship between scrub frequency and total energy µJ/24h. Scrub energy increases with
scrub frequency as more scrubbing is performed. It is recommended to view this figure in color.

12.2.5. Discussion

We have experimentally observed that the scrub area SA and the non-scrub area nSA of the crossbar
have ∼ 40 − 60% +1 and ∼ 40 − 60% −1 weights, respectively. Hence, 40 − 60% of +1 weights in the
non-scrub area nSA are subject to faults, and the same amount of −1 weights in the scrub area SA are

240

12.2. MAINTAINING RETENTION FAULTS AND AGING INDUCE DRIFTS

Figure 12.11.: a) Impact of two different scrubbing periods (f) and not scrubbing on inference accuracy with MNIST dataset with a
thermal stability factor Δ = 40. b) & c) shows the relationship between the thermal stability factor, scrubbing period, and inference
accuracy. Fault injected into the third convolution (Conv3) layer of CNN. Evaluation is performed on the proposed model with
the MNIST dataset. It is recommended to view this figure in color.

overwritten to +1 through scrubbing. The combined effect of this will lead to a massive inference accuracy
degradation. Hence, another challenge is to ensure the scrub SA and non-scrub nSA area of the crossbar
predominantly contain +1 and −1 weights, respectively. While some −1 weights that may have been stored
in the scrubbing region SA will be overwritten to +1s, we hypothesize that having only a few of these faults
will not significantly impair the inference accuracy. Therefore, we propose the use of a penalty function
(see Section 12.2.2.4) during training to encourage the NN to respect the scrubbing and non-scrubbing
regions, respectively.

In a common crossbar structure, interconnects are fixed, and the output of a layer 𝐿𝑖 is the input of the
next layer 𝐿𝑖+1. Hence, the rearrangement of weights post-training to map all +1 and −1 to the scrub SA
and the non-scrub nSA region, respectively, is impractical for a common crossbar architecture, because the
relationship between the output of a layer and the input of the following layer cannot be maintained for
all the layers.

Our approach is generalizable to mitigate retention faults in any memristor-based crossbar. However,
MTJ-based crossbars are used as the case study. In the case of other memristive technologies, the mapping
of +1 and −1 weights in the crossbar can be adjusted depending on the direction of the uni-directional
state change.

12.2.6. Scientific Impact of This Work and Contributions

The scientific impact of this work and the main contributions can be summarized as follows:

• Aging and Thermal Stability Induced Uncertainty: This work analyzed and showed the uncer-
tainty in weights of an NN mapped to memristor-based CiM architectures. Specifically, the state of a
memristor cell can suddenly change at a given time, leading to uncertainty in weight storage.

• Novel Scrubbing Technique: A novel approximate scrubbing method specifically designed to
mitigate retention faults in memristor-based CiM architectures. A thorough evaluation of the
proposed method showed a significant improvement in the reliability of CiM architectures by
restoring the intended weight matrices with virtually no storage overhead.

• Retention Aware Training: A novel NN training technique is proposed that adjusts the weight
matrix to our scrubbing requirement during training. Several optimization objectives are proposed
depending on the scrubbing techniques and task difficulty.

• Retention Aware Parameter Mapping: A novel NN parameter mapping technique or weight
organization is proposed. Specifically, all the stable and unstable memristor cells are proposed to
map to predefined regions of the crossbar, respectively.

241

CHAPTER 12. RUNTIME PERIODIC MAINTENANCE APPROACHES

• Scalability in Memristor Technologies: The proposed approach is applicable to any memristor
technology, i.e., potentially a memristor technology-agnostic. Technology-dependent scrubbing is
discussed, including weight mapping to the crossbar array and mortifying the rate of scrubbing.
However, retention faults in STT-MRAM occur suddenly, which is more relevant for this approach.

• Algorithm-Hardware Co-Optimization: Several algorithmic optimizations are done for minimal
impact on computational, performance, and memory overhead in hardware, such as reduction
scrubbing cost and latency. Also, hardware optimization, such as scrubbing controller design, is
performed to meet the scrubbing need.

• Environmental Impact: The proposed approach improves longevity NN acceleration in CiM architec-
tures efficiently. Specifically, memristive cells with an extremely short retention time can be reused
instead of discarded. Therefore, our approach indirectly contributes to sustainability by encouraging
less wasteful practices, i.e., in electronic device usage and management.

• Broader Applicability in AI Accelerator: Although the focus of this work is on CiM architectures,
the proposed approach can be adapted for other types of AI systems where retention faults are a
concern.

12.2.7. Section Summary

In this section, we proposed an approximate scrubbing technique to mitigate retention faults caused by
aging or external environmental factors in resistive memristor-based NN accelerators. Our proposed
technique divides the crossbar into a scrub and non-scrub area. Different shapes of the scrub area are
proposed depending on the type of NN and the difficulty of the task. Specifically, unstable cells are mapped
to the scrubbing region, and a scrubbing controller re-writes the scrubbing region periodically with an
optimal scrubbing period to mitigate retention faults. We introduced an optimization technique during NN
training to minimize the number of unstable and stable cells in the scrubbing and non-scrubbing regions,
respectively. Our proposed scrubbing technique improves the inference accuracy over the expected device
lifetime up to 85.51% for MLP and 87.77% for CNN with virtually zero memory overhead. It enables higher
memory density of the crossbar by reducing the size of the memory cells and a reduction in write latency
and energy of certain memristors without trading off retention time.

242

12.3. GUARANTEED SOFT-FAULTS CORRECTION FOR DIGITAL AI ACCELERATORS

12.3. Guaranteed Soft-Faults Correction for Digital AI Accelerators

Error correction codes (ECCs) are widely used in conventional memories to guarantee fault-free
operation up to a certain fault rate. However, this comes with considerable storage overhead as well as
encoding and decoding overhead (area, power, and latency). Since NNs can have millions of parameters,
the use of ECC can lead to substantial memory overhead, which can make it impractical for many
resource-constrained edge AI accelerators.

In this section, we propose the NN-ECC method, a generalized way to eliminate the ECC parity
storage overhead (zero memory overhead) of different linear block ECC schemes for the memories
storing NN model parameters. The proposed method takes advantage of the fact that the memories in
NN accelerators are used to store the model parameters. This provides the opportunity to embed the
ECC parity bits alongside the data bits without extending the memory size. Therefore, we proposed
to embed ECC parity bits directly into the NN weight during training using a multi-task learning
algorithmwithout increasing the size of the original weight matrices while achieving baseline accuracy.
As a result, both the data and the parity bits are integral parts of the weight matrices and actively
contribute to learning and inference tasks. In our approach, ECC encoding is done off-chip and during
training. Thus, no encoding operation is required during inference, and the decoding process is the
same as ECC for conventional memories. This paper specifically addresses the correction of weights
stored in the memory of digital hardware-based NN accelerators (GPUs, TPUs, FPGAs, and digital
ASICs) to prevent performance degradation.

The overall contribution of our approach is summarized as follows: 1. incorporating ECC parity
bits into the weight matrix without increasing its size so that the size of memories storing NN model
parameters remains the same, 2. a multi-task learning algorithm that eliminates the need for specific
weight distribution and higher quantization levels for embedding ECC parity into the weight matrix,
3. provision for both the single and multi-bit error correction with zero memory overhead for ECC
parity bits, 4. elimination of extra memory overhead required to identify the parity location during
decoding, and 5. capability to perform error detection and correction not only before the inference but
also during the inference.

This section is based on our publications IEEE VTS24 [255]. However, the contributions related to
the proposed ECC design for zero overhead are not a contribution of this thesis.

12.3.1. Problem Definition

In this section, we directly embed the ECC parity bits into the NN weight matrix instead of using extra
memory bits to store them. Unlike traditional ECC for memory applications, encoding of weight bits is not
done in hardware, but in software during training. The decoding follows traditional ECC logic, but with a
smaller code size ((𝑛𝑝 = 𝑘, 𝑘𝑝)) than traditional code size ((𝑛, 𝑘)). Consider a weight matrix𝑊𝑑1×𝑑2 where
𝑑2 represents the size of the data word or the number of data columns in the memory array that stores the
weight parameters. A key constraint is that the size of the weight matrix, i.e., the size of memory, remains
the same after ECC encoding.

12.3.2. methodology

12.3.2.1. Encoding of Weight matrix using ECC

In a typical ECC design for fault-tolerant NN applications, the weight bits of the NN serve as a data word
as done in [141], and the computation of parity information involves performing modulo-2 multiplication
between the weight bits and the generator matrix of the ECC scheme. The output of the weighted sum
operation of NN is taken column-wise, so the redundant-parity bits can be added as extra columns in
a weight matrix. The number of columns in the weight matrix decides the size of the data word, and

243

CHAPTER 12. RUNTIME PERIODIC MAINTENANCE APPROACHES

accordingly, the coding dimension can be chosen for error detection and correction. Let us have a weight
matrix𝑊 of linear layer 𝑙 with shape 𝑑1 × 𝑑2. The encoded weight matrix, [𝑾𝒄]𝑑1×𝑛 = [𝑊 |𝑊𝑝] with the
code (𝑛, 𝑘), is defined as:

𝑾𝒄 =

𝑤11 𝑤12 ... 𝑤1𝑑2 𝑤𝑝11 ... 𝑤𝑝1,𝑛−𝑘
𝑤21 𝑤22 ... 𝑤2𝑑2 𝑤𝑝21 ... 𝑤𝑝2,𝑛−𝑘
...

...
...

...
...

...

𝑤𝑑11 𝑤𝑑12 ... 𝑤𝑑1𝑑2 𝑤𝑝𝑑11 ... 𝑤𝑝𝑑1,𝑛−𝑘

(12.12)

Where, [𝑊𝑝]𝑑1×(𝑛−𝑘) contains the parity information, 𝑘 = 𝑑2 is the length of the data word, [𝑊𝑐]𝑑1×𝑛 is
the encoded weight matrix with 𝑛 >> 𝑑2.

We designed a new ECC with dimensions (𝑛𝑝 , 𝑘𝑝) to satisfy the given requirement of maintaining the size
of memory even after ECC encoding. The generator matrix (�̄�) of the newly obtained ECC (𝑛𝑝 , 𝑘𝑝) is used
to encode the weight matrix [𝑊]𝑑1×𝑑2 to give an encoded weight matrix [𝑊 ′

𝑐]𝑑1×𝑛𝑝 whose shape is equal
to the original weight matrix𝑊 . The newly encoded weight matrix, [𝑊 ′

𝑐]𝑑1×𝑛𝑝 = [𝑊 ′

𝑘
|𝑊 ′
𝑝
]𝑑1×𝑛𝑝 , contains

both data and parity information, where 𝑛𝑝 = 𝑑2.

𝑾
′

𝒄 =

𝑤11 𝑤12 ... 𝑤1𝑘𝑝 𝑤𝑝11 ... 𝑤𝑝1,𝑛𝑝 −𝑘𝑝

𝑤21 𝑤22 ... 𝑤2𝑘𝑝 𝑤𝑝21 ... 𝑤𝑝2,𝑛𝑝 −𝑘𝑝
...

...
...

...
...

...

𝑤𝑑11 𝑤𝑑12 ... 𝑤𝑑1𝑘𝑝 𝑤𝑝𝑑11 ... 𝑤𝑝
𝑑1,𝑛𝑝 −𝑘𝑝

(12.13)

To ensure that the ECC covers the entire weight matrix, the shape of𝑊 ′
𝑐 is kept equal to the original weight

matrix𝑊 . The computation of𝑊 ′
𝑐 is done by first selecting a 𝑘𝑝 number of columns from𝑊 , defined as

𝑊
′

𝑘
. Then the parity matrix𝑊 ′

𝑝
is computed by modulo-2 matrix multiplication of𝑊 ′

𝑘
and the generator

matrix (�̄�) of the ECC code (𝑛𝑝 , 𝑘𝑝).

In this section, we apply ECC per 64 weight bits, i.e., equivalent to 64 columns, as demonstrated in previous
research work [140, 141]. However, our method also applies to other data sizes, such as 128 bits, 256
bits, etc. We employ two widely used linear block ECC schemes: Hamming and BCH codes. The new
code dimension can be computed according to the discussion in Section 2.10.6. Figure 12.12 illustrates
the proposed NN-ECC encoding process using the Hamming code to protect 64-bit weights. In the case
of conventional ECC encoding, (𝑛=72, 𝑘=64) code is used to protect 64-bit weight requiring additional 8
parity bits. However, our proposed approach uses a more compact code size of (𝑛=64, 𝑘=57). This ensures
that the encoded weight bit size remains unchanged from the original, eliminating the memory overhead
for ECC parity bits.

1 1 0 1 1 0 0 1 1 1 0 1 1

64-bit weights (i.e. d2=64)

Encoding using ECC (n=72, k=64)

1 1 0 1 1 0 0 1 1 1 0 1 1 0 1 1 1 1 0 1 0

Parity (p): 8-bitsData (k):64-bits

Encoded weight bits: n=k+p=72-bits

(a) Conventional ECC Encoding

1 1 0 1 1 0 0 1 1 1 0 1 1

64-bit weights (i.e. d2=64)

Encoding using ECC (n=64, k=57)

1 1 0 1 1 0 1 0 0 1 0 1 1 0

Data (k):57-bits Parity (p): 7-bits

Encoded weight bits: n=k+p=64-bits

(b) Proposed ECC Encoding

Figure 12.12.:Example of proposed NN-ECC encoding process showing the size of original weights and encoded weights are equal.

244

12.3. GUARANTEED SOFT-FAULTS CORRECTION FOR DIGITAL AI ACCELERATORS

12.3.2.2. Decoding Process for Error Correction

The decoding process of the proposed NN-ECC follows an error detection and correction approach similar
to conventional ECC methods used for memory applications [90, 91], and is consistent with existing
strategies used for ECC parity overhead reduction [140, 141]. However, the proposed NN-ECC uses smaller
code size, such as (𝑛𝑝 = 64, 𝑘𝑝 = 57) rather than (𝑛 = 72, 𝑘 = 64) SEC-DED Hamming code, as illustrated
in Fig. 12.12. This reduced code size might result in slightly reduced decoding complexity. The decoding
process involves modulo-2 matrix multiplication between the encoded weight bits and the ECC parity
check matrix 𝐻 to calculate the syndrome vector. Subsequently, error localization and correction can be
carried out based on the value of the syndrome vectors. The decoding overhead trends would be similar to
the conventional ECC used for the memory applications [90, 91, 256, 257, 258].

The existing approach [140, 141] performs the error correction before inference, as they need to mask
the parity bits before inference starts to restore the original weight bits occupied by the parity bits. In
contrast to the existing method [140, 141], there is no need for parity masking before inference starts in
our approach because both the data bits and the parity bits are inherent components of the weight matrix
and actively contribute to the inference process. Due to this, the proposed method offers the advantage of
concurrently performing error detection and correction during the inference process also.

12.3.2.3. In-training ECC embedding using multi-task learning

NN learns its parameter 𝜃 for a functional task defined by the dataset D by minimizing a loss function L.
However, for the proposed NN-ECC, the NN should learn not only functional tasks but also fault-tolerant
tasks, such as incorporating the ECC parity information directly into the weight matrix without increasing
the size. The fault-tolerant task can be defined as optimizing a subset of the 𝜃 that fulfills the requirement
of ECC encoding without needing any additional data. The overall parameter for both tasks is defined as 𝜃 .
In the proposed multi-task learning, we ensure that the NN learns the function task and the fault-tolerant
task without performance degradation. To achieve this, we update 𝜃 , which involves both the ECC parity
and the data parts during NN training. As a result, our method jointly learns the shared parameters 𝜃
using the same data.

To obtain the encoded weight matrix, the generator matrix must be multiplied (using the modulo-2
operation) with each row of the weight matrix. However, the weight matrix of the convolutional layers is
4D in shape [𝐶𝑜𝑢𝑡 ×𝐶𝑜𝑢𝑡 × 𝐾𝐻 × 𝐾𝑊]. Here, 𝐶𝑖𝑛 , 𝐶𝑜𝑢𝑡 , 𝐹𝐻 , and 𝐹𝑊 refer to the input channels, the output
channels, the height, and the width of the kernels. To satisfy the matrix-vector multiplication (MVM)
rule, the four-dimensional weight matrix is reshaped into a two-dimensional weight matrix of shape
[𝐶𝑜𝑢𝑡 × (𝐶𝑖𝑛 · 𝐹𝐻 · 𝐹𝑊)]. Here, · denotes arithmetic multiplication. However, the computational cost of
such an MVM can be expensive as the number of rows is significantly high. To solve this problem, we have
reshaped the weight matrix again by inserting an additional dimension of size one into the row position
to give a new shape [𝐶𝑜𝑢𝑡 × 1 × (𝐶𝑖𝑛 · 𝐹𝐻 · 𝐹𝑊)]. This replaces MVM with matrix-matrix multiplication
between the generator and the weight matrix. Note that, this does not effect computation during inference
and MVM represent a vectorized version of MAC operation.

We have used common loss functions, e.g., cross-entropy for classification, to learn both tasks. At the
initialization of the weight, parity is embedded in the weight matrix, and it can be described as �̂� =

𝑓𝐸𝐶𝐶 (W, �̄�). Here, the function 𝑓𝐸𝐶𝐶 (.) describes the encoding of the weight matrix as described in
Section 12.3.2.1. The weighted sum is performed on the encoded weight matrix during the forward pass.
Since the loss is calculated with respect to the encoded weight matrix, NN optimizes both tasks.

During backpropagation, the NN parameters are updated with the gradient descent algorithm for the
functional task. Subsequently, the NN parameter is updated deterministically using 𝑓𝐸𝐶𝐶 (.). Since the ECC
embedding preserves the data part of the weight matrix and the gradient is not used in weight update, their
gradient should not affect the backpropagation for the functional task. As a result, the straight-through
estimator (STE) [250] is used during forward and backward propagation.

245

CHAPTER 12. RUNTIME PERIODIC MAINTENANCE APPROACHES

With STE, during weight update, ECC embedded weights are computed by applying the 𝑓𝐸𝐶𝐶 (.) function
to their corresponding functional weight proxies. During backpropagation, a gradient is an estimation of
functional weight proxies, i.e., the STE simply treats the gradient of the function 𝑓𝐸𝐶𝐶 (.) with respect to
functional weight proxies as an identity and can be defined as 𝛿W

𝛿𝑊 ′=1. Therefore, STE allows us to estimate
the gradient of the loss with respect to the function 𝑓𝐸𝐶𝐶 (.) and update the proxies:

𝛿L
𝛿𝑊 ′

=
𝛿L
𝛿𝑊

(12.14)

The overall algorithm for training is described in Algo. 9.

Algorithm 9 Proposed Multi-task learning algorithm
Require: initial 𝜃 , loss function L, total number of layers 𝐿, NN model F , Code dimension (𝑛𝑝 , 𝑘𝑝),
Generator matrix �̄� , training dataset D𝑡𝑟𝑎𝑖𝑛 ⊂ (𝑋,𝑌).
Result: trained parameters 𝜃 for (𝑛𝑝 , 𝑘𝑝) ECC code
Initialization of NN parameters
Initialize parity subset of NN parameters using 𝑓𝐸𝐶𝐶 (.)
for epoch in epochs do

Sample random minibatch D𝑑
Forward pass D𝑑 on NN with the ECC embedded parameter 𝜃
Calculate the loss L on the embedded ECC parameter 𝜃
Backpropagate and update parameters 𝜃
Flatten the weight matrix of the convolutional layers into a matrix of shape [𝐶𝑜𝑢𝑡 × (𝐶𝑖𝑛 · 𝐹𝐻 · 𝐹𝑊)]
Reshape flattened weight matrix into shape [𝐶𝑜𝑢𝑡 × 1 × (𝐶𝑖𝑛 · 𝐹𝐻 · 𝐹𝑊)]
Update the reshaped weight matrix𝑾 ′

𝒍 ,∀𝑙 ∈ [0, · · · 𝐿] using 𝑓𝐸𝐶𝐶 (.)
Reshape update weight matrix to its original shape [𝐶𝑜𝑢𝑡 ×𝐶𝑖𝑛 × 𝐹𝐻 × 𝐹𝑊]

end for

12.3.3. Evaluation

12.3.3.1. Simulation Setup

To enable the fault-tolerance in NN using by mean of error correction using ECCs, we explore the
effectiveness of two widely used linear block ECCs: Hamming code and BCH code, both having 𝑡 error
correction capability and 𝑡 + 1 error detection capability. We consider the BCH code with various error
correction capabilities, including 𝑡 = 2, 𝑡 = 3, and 𝑡 = 4, to highlight the versatility and ability of the
proposed NN-ECC to accommodate a higher number of parity bits to enable multi-bit error correction
capability. The proposed NN-ECC is evaluated using state-of-the-art NN models with 8-bit quantized
weights on the CIFAR-10 and CIFAR-100 datasets. These models, along with their number of parameters,
are detailed in Table 12.18.

Table 12.18.: NN Models and Their Respective Parameter Counts.
NN Model ResNet-18 EfficientNet-B0 MobileNet-V2 ResNet-34
#Parameters 89.3 × 106 43.7 × 106 17.1 × 106 17.9 × 106

We train each model once without embedding any ECC during training and four times to embed different
ECC schemes with different error correction capabilities (𝑡 = 1 to 4) using the proposed Algorithm 9. We
have used ADAM optimization with the default setting in PyTorch and a cross-entropy loss function. The
model that achieved the best accuracy in the validation dataset is used for the simulation.

246

12.3. GUARANTEED SOFT-FAULTS CORRECTION FOR DIGITAL AI ACCELERATORS

In the context of fault injection, bit-flip faults are introduced into the weights of NN models by randomly
sampling from a uniform distribution before inference. Following the fault injection phase, error correction
is executed based on ECC schemes. The fault tolerance is evaluated by observing the improvement in
the NN inference accuracy with the proposed NN-ECC solution. We have performed 100 Monte Carlo
simulations and reported the mean accuracy.

12.3.3.2. ECC dimension (𝑛𝑝 , 𝑘𝑝)

The possible code dimensions (𝑛𝑝 , 𝑘𝑝) for the Hamming code (𝑡 = 1) and the BCH code (𝑡 = 2, 3, 4) with
different column shapes (𝑑2) of the weight matrix are presented in Table 12.19. In this paper, we have
used the (𝑛𝑝 = 64, 𝑘𝑝 = 57) code for the Hamming code and (𝑛𝑝 = 64, 𝑘𝑝 = 51), (𝑛𝑝 = 64, 𝑘𝑝 = 45), and
(𝑛𝑝 = 64, 𝑘𝑝 = 39) for the BCH code with 𝑡 = 2, 3, 4 error correction capability, respectively, to ensure
error correction per 64-bit weights. In this way, the proposed approach ensures that the dimension of
the encoded weight matrix perfectly matches that of the original weight matrix, resulting in a complete
elimination of the additional memory cells required to store the ECC parity bits, representing a 100%
memory overhead reduction.

Table 12.19.: The possible Code Dimension (𝑛𝑝 , 𝑘𝑝) for Different Column size (𝑑2) of the Weight Matrix for Proposed NN-ECC
.

ECC Hamming
(𝑡=1)

BCH (𝑡=2) BCH (𝑡=3) BCH (𝑡=4)

𝑑2 (𝑛𝑝 , 𝑘𝑝) (𝑛𝑝 , 𝑘𝑝) (𝑛𝑝 , 𝑘𝑝) (𝑛𝑝 , 𝑘𝑝)
64 (64, 57) (64, 51) (64, 45) (64,39)
128 (128, 120) (128, 113) (128, 106) (128, 99)
256 (256, 247) (256, 239) (256, 231) (256, 223)

12.3.3.3. Impact on Baseline Accuracy due to ECC Encoding

It is essential to assess how our proposed ECC encoding techniques based on multi-task learning impact
NN baseline accuracy. Table 12.20 and 12.21 show the impact of the proposed ECC encoding techniques
based on multi-task learning on NN baseline accuracy. Our method achieves accuracy comparable to the
baseline across diverse NN topologies and various ECC configurations in CIFAR-10 and CIFAR-100 datasets.
Furthermore, the encoding using the multi-bit ECC such as BCH code with 𝑡 = 4 also shows a negligible
drop in accuracy, less than 1% for the CIFAR-10 dataset and up to ∼ 2% for the CIFAR-100 dataset. This
is achieved despite the fact that BCH code requires a large number of parity bits, posing challenges in
simultaneously meeting functional tasks and embedding ECC parity bits into the weight matrix without
increasing the size of the weight matrix.

Table 12.20.: Impact on Baseline accuracy due to ECC Encoding (CIFAR-10).

Topology
NN Inference Accuracy (%)

Baseline Proposed NN-ECC
Hamming

(𝑡=1)
BCH
(𝑡=2)

BCH
(𝑡=3)

BCH
(𝑡=4)

ResNet-18 92.05% 92.03% 92.27% 92.44% 92.50%
EfficientNet-B0 90.19% 89.95% 90.30% 89.44% 89.20%

12.3.3.4. Fault-tolerant Analysis with Proposed NN-ECC

Fig. 12.13 and Fig. 12.14 show the result of random fault simulation for different NN models with CIFAR-10
and CIFAR-100 datasets. The baseline accuracy drops very sharply, even at a very low fault rate. However,
the accuracy remains stable up to a certain fault rate when the error is corrected using Hamming and

247

CHAPTER 12. RUNTIME PERIODIC MAINTENANCE APPROACHES

Table 12.21.: Impact on Baseline accuracy due to ECC Encoding (CIFAR-100).

Topology
NN Inference Accuracy (Top-1 %, Top-5%)

Baseline Proposed NN-ECC
Hamming

(𝑡=1)
BCH
(𝑡=2)

BCH
(𝑡=3)

BCH
(𝑡=4)

ResNet-34 (72.5, 91.5) (72.3, 91.4) (72.3, 91.5) (71.6, 90.9) (71.6, 90.4)
MobileNet-V2 (67.7, 89.3) (68.0, 88.3) (66.2, 89.1) (67.3, 88.8) (65.6, 88.7)

BCH codes. As the error correction capability increases, the sustainability of NN against the number of
injected faults also increases significantly. The increment in the fault tolerance limit almost doubles with
the increase in the error correction capability by 1 bit. For example, the fault tolerance limit of the BCH
code with 𝑡=2, 𝑡=3, and 𝑡=4 is almost 2×, 4×, and 8× the Hamming code (𝑡 = 1), respectively, as shown in
Fig. 12.13 and Fig. 12.14. In EfficientNet-B0, the improvement is minor, as there was not much reduction in
baseline accuracy, as shown in Fig. 12.14. However, if fault injections target sensitive weights (beyond
the scope of this work), the proposed strategy could play a crucial role in recovering sensitive weights to
avoid any drastic accuracy drop.

Figure 12.13.: NN inference accuracy on CIFAR-10 Datasets. The vertical dotted line indicates the fault-tolerance limits with 𝑡
number of error corrections. It is recommended to view this figure in color.

Furthermore, we also demonstrate a case of the superiority of the proposed NN-ECC against fault-aware
training (FAT) and recalibration-based fault-tolerant strategy [128], as shown in Figure 12.13 (ResNet-18
on CIFAR-10). We consider a case of FAT and recalibration for a specific fault rate (7.1 × 104 number of
faults), and we observe a noticeable reduction in starting accuracy. Subsequently, the accuracy experiences
a significant decline after reaching the designated fault rate, as shown in Figure 12.13. These strategies
recover the accuracy approximately up to the designated fault rate, and they are computationally intensive,
which becomes even more pronounced with higher fault rates. Furthermore, they may lead to a greater
loss in starting accuracy at higher fault rates.

12.3.3.5. Comparative Analysis with ECC-based Related Work

The proposed NN-ECC offers notable benefits over existing state-of-the-art ECC parity overhead reduction
techniques [138, 139, 140, 141], as highlighted in Table 12.22. A detailed discussion in this context is
followed next.

Our approach does not require a specific symmetric weight distribution and a higher quantization level
to store the parity. Instead, we employ multi-task learning to embed the parity into the weight matrix

248

12.3. GUARANTEED SOFT-FAULTS CORRECTION FOR DIGITAL AI ACCELERATORS

Figure 12.14.: NN inference accuracy (Top-5) on CIFAR-100 Datasets. The vertical dotted line indicates the fault-tolerance limits
with 𝑡 number of error corrections. The fault-tolerance trend was similar in the case of Top-1 accuracy. It is recommended to
view this figure in color.

without expanding its dimensions. Also, the proposed ECC encoding, based on multi-task learning, does
not degrade the baseline inference accuracy (∼ 2%), even for BCH codes with 𝑡 = 4 error correction
capability, which requires a very high number of parity bits. On the contrary, the work in [141] can incur
a drop in accuracy of up to ∼ 4% due to the ECC encoding even for 𝑡 = 2 error correction, which might
worsen with asymmetry in weight distributions.

Secondly, the proposed NN-ECC possesses the capability to perform not only single-bit but also multi-bit
error correction, even more than two with zero memory overhead, as illustrated in Table 12.23, which
provides a comparative analysis of memory overhead for various ECC scheme. This level of flexibility
and error correction capability was not observed in [141], where their method was limited to 𝑡 = 2 only
and not able to maintain a zero memory overhead for higher error correction capabilities, as shown in
Table 12.23. This is primarily due to their inability to accommodate more parity bits. For example, the
work in [141] can only accommodate 16-bit parity per 64-bit weight and can correct up to 𝑡 = 2 errors per
64-bit weight with ∼ 0.1% storage overhead (which is related to identifying the location of the parity bits
during decoding). However, when considering a 𝑡 = 3, they may require an additional ∼ 9.4% of memory
overhead, which would increase further for 𝑡 = 4.

The detailed analysis of the memory overhead in [141] is as follows: 48 out of the 64 bits can be used as
data bits, leaving the remaining 16 bits to store parity bits. A (70, 48) BCH code can be used to perform
up to 𝑡 = 3 error correction, which requires 22 parity bits. So, an additional 6 bits of storage are required
to accommodate the remaining parity bits, resulting in a memory overhead of ∼ 9.4% per 64-bit weight.
The same approach is also applicable to higher correction capabilities, such as 𝑡 = 4, incurring a memory
overhead of ∼ 20.3%.

Additionally, the proposed NN-ECC eliminates the requirement of masking ECC parity bits before inference
begins to restore the original weight bits. This is achievable because, in our method, both data and parity
bits actively participate in the inference process. Thus, we have access to parity information during
inference, which can offer the advantage of performing error detection and correction simultaneously
with the inference process. In contrast, existing approaches [138, 139, 140, 141] need to mask the ECC
parity bits before inference starts to recover the original weight values. This further limits their method to
perform error detection and correction before inference only.

Furthermore, the proposed NN-ECC eliminates the need for additional memory overhead to identify parity
locations during the decoding process, a requirement observed in [141], which may be approximately 0.1%
to 0.2% of memory overhead. We adhere to the concept of systematic linear block codes, where all the

249

CHAPTER 12. RUNTIME PERIODIC MAINTENANCE APPROACHES

parity bits are appended together before or after the data bits. This design choice ensures that the proposed
method incurs zero memory overhead while maintaining multi-bit correction capability. Lastly, with the
higher correction ability of the proposed NN-ECC, NN resilience against a large number of randomly
injected faults is significantly improved, as illustrated in Figures 12.13 and 12.14. This demonstrates its
adaptability to a variety of ECC schemes without loss of performance.

Table 12.22.: Factors distinguish the Proposed method from existing works.
Matrices [138, 139] [140] [141] Proposed

Require specific weight distribution ✓ ✓ ✓ ✗

Relies on higher quantization precision ✓ ✓ ✓ ✗

Limited Error Detection & Correction ✓ ✓ ✓ ✗

Require Parity masking before Inference ✓ ✓ ✓ ✗

Require Storage to identify Parity ✗ ✗ ✓ ✗

Accuracy degradation due to encoding ✓ ✗ ✓ ✗

Note: ✗ denotes that a particular constraint is not required. (i.e., advantage) and ✓ indicates that a particular constraint is required.
(i.e., bottleneck).

Table 12.23.: Comparative analysis of memory overhead for ECC parity bits.
Method [139] [140] [141] Proposed
ECC (𝑛𝑝 , 𝑘𝑝) MO (𝑛𝑝 , 𝑘𝑝) MO (𝑛𝑝 , 𝑘𝑝) MO (𝑛𝑝 , 𝑘𝑝) MO
Hamming (72,64) 10.9% (64,57) 0% (64,57) 0% (64,57) 0%
BCH
(𝑡=2)

(79,64) 21.9% (71,56) 10.9% (64,51) 0.1% (64,51) 0%

BCH
(𝑡=3)

(86,64) 32.8% (78,56) 21.9% (70,48) 9.4% (64,45) 0%

BCH
(𝑡=4)

(93,64) 43.7% (85,56) 32.8% (77,48) 20.3% (64,39) 0%

Note: MO represents the memory overhead for ECC parity bits.

12.3.4. Section Conclusion

In this section, we proposed NN-ECC, an efficient and generalized method that embeds the ECC parity
bits in the NN weight matrix during NN training, completely eliminating the parity bit storage overhead
for different ECC schemes in the NN accelerator memories storing NN model parameters. This way, we
provide multi-bit error correction guarantees, as required in safety-critical AI applications. We devised
a multi-task training approach for the suggested embedding that achieves the same level of inference
accuracy as the baseline. The efficacy of the proposed NN-ECC is tested by state-of-the-art codings, such as
the Hamming code (single-bit ECC) and the BCH code (multi-bit ECC), to different DNN models on various
benchmarks. The results showed that the NN-ECC can significantly improve fault tolerance depending on
the selected ECC, without introducing storage overhead. Notably, the proposed NN-ECC is versatile and
applicable to diverse NNs and linear block ECC schemes.

250

Part IV.

Ensuring Continuous Availability of Edge AI
Hardware Accelerator

13. Local Approximation-based Continuous Availability

13.1. Problem Statement and Challenges

13.2. Methodology

We propose an online fault tolerance technique to reduce or eliminate downtimes caused by more so-
phisticated fault mitigation techniques. The key idea of our method is to introduce low-cost block-wise
redundancy to the network by providing hardware backups for layers (or groups of layers) that are most
sensitive to faults. This is motivated by the fact that online faults have a different impact on the inference
accuracy of the network, depending on the layer in which they are localized. Instead of simply mak-
ing copies of the sensitive layers and using them as backups when the original ones are failing, we use
compression methods to approximate the original blocks with smaller models.

13.2.1. Building Local Approximators

To identify the most fault-sensitive parts of the network, we propose topology-specific block-wise fault
sensitivity analysis. To estimate the effect of faults on several memristive crossbar arrays, we perform a
Monte Carlo fault simulation.

After the fault-sensitive parts of the network are identified, approximators are built offline for each block. In
the worst case, several sensitive parts of the NN may fail simultaneously. Therefore, an approximator was
built for each sensitive part. To reduce both the hardware and offline training overhead, we propose a single
approximator for several sensitive layers of the NNs that are connected sequentially. Consequently, our
block-wise approximation led to a smaller number of layers. Our proposed approach applies compression
techniques to the original layer(s) of the NN to create block-wise approximators.

We perform a design space search to find the best approximator for each block of a NN topology. Moreover,
since the approximators will be "plugged" into the original network during the proposed online fault
tolerance, there can be a size mismatch between the approximators and the original blocks of the NNs. If
the approximator’s output is smaller than that expected by the next layer, the output resolution (height
and width) of the approximator must be up-sampled to the shape that the next layer anticipates. Although
there are several ways to achieve this, we propose parameter-free up-sampling by "zero padding" the
output of the approximators.

13.2.2. Implementation of Approximators

During operation, the health of the crossbar arrays must be constantly monitored to detect faults. In
this thesis, several suitable fault detection techniques have been developed, such as [41, 233, 42, 190,
221], which can complement our approach in this Chapter. Also, other existing work, e.g., [37], is also
suitable. Additionally, if the runtime monitoring system is able to determine the severity of the faults,
then the approximator can be activated based on the severity of the fault. If there are too many faults
in a particular block (e.g., the number is above a predefined threshold), an approximator is activated
for this block. The approximation remains active until inference accuracy is satisfactorily restored by
more sophisticated techniques, by proper fault removal or fault bypassing techniques. The threshold

253

CHAPTER 13. LOCAL APPROXIMATION-BASED CONTINUOUS AVAILABILITY

Table 13.1.: Analyzed neural networks and their respective baseline accuracies.

Architecture # of layers # of parameters Dataset Baseline acc.
MLP 3 269,826 MNIST 98.2%
VGG-7 7 148,336 Fashion-MNIST 93.3%

ResNet-18 18 11,173,979 CIFAR-10 92.5%

number of faults for a block is defined as the minimal percentage of faulty memristor devices that lead
to an unacceptable accuracy reduction. To determine the threshold, a very conservative estimate can be
used for high-performance applications, but for other applications, it can be approximated. The overall
implementation of our proposed method is depicted in Figure 13.1. Depending on the health of the crossbar
arrays, the controller routes the incoming signal to either the normal layers or the approximators. The
controller can be implemented with a 2-to-1 MUX, with the fault detection method providing the control
signal.

The original network is mapped to conventional memristor-based crossbar arrays. The proposed local
approximators are mapped to significantly smaller crossbar arrays. However, since approximators are also
mapped to memristor-based crossbar arrays, they are prone to the same faults as well. Thus, we suggest
mapping the approximators to more reliable memristors to ensure their fault-free operation. The reliability
of the memristor devices can be increased by technology-specific design decisions, e.g., by increasing
device dimensions. Also, because our approximators are much smaller than the original network, the cost
is minimally increased (see Section 13.3.4). In addition, the memristor cells of the proposed approximators
are expected to degrade much later because they are only activated on demand.

Layer 1 Layer 2

Approx. 1

0

0

Ex
pa

ns
io

n

Controller

Input

X

X

Co
m

pr
es

si
on

Output

Zero padding
Removed
dimension

Normal Operation

Online Fault-Tolerance

Legend

Figure 13.1.: The block diagram of proposed local approximators. Normal layers are active during fault-free operation, whereas
local approximators are disabled. Once a sufficient number of faults are detected, the controller activates the compressed local
approximators.

13.3. Evaluation

13.3.1. Simulation Setup

Our proposed method has been evaluated on three different topologies and benchmark datasets, as shown
in Table 13.1. All networks were trained with 8-bit weights and activations. In this work, faults are modelled
as stuck-at-faults (SAFs) as they are the most common type of defects leading to faults in memristive

254

13.3. EVALUATION

Table 13.2.: Most fault-sensitive blocks for each topology based on our fault sensitive analysis and approximation criteria.

Topology Sensitive Layers Topology Sensitive Layers
MLP First layer (B̄0)

VGG
First VGG block (B̄0)

ResNet-18 First layer (B̄0) Last VGG block (B̄2)
Third residual block (B̄0) All fully connected layers

devices and have a significant impact on inference accuracy. A custom builds PyTorch-based framework
was designed to simulate SAFs by randomly (uniform distribution) forcing the faulty bits of the quantized
weights to be at a particular state, 0 for stuck-at-0 (SA0) and 1 for stuck-at-1 (SA1). Work in [259] shows
that about 10% of cells can be affected by SAFs. Additionally, during their lifetime, memory cells wear out
and become faulty. As a result, we simulate networks with up to 25% of SAFs, taking samples every 2.5%.
For block-wise analysis, the same amounts of SAFs are injected into each block at a time. The sensitive
blocks for each topology based on our criteria and analysis is summarized in the Table 13.2.

13.3.2. Constructing of Approximators for Online Fault Tolerance

We analyzed different compression techniques to find the one that is suitable for our requirements. Our
goal is to maximize the compression ratio while maintaining inference accuracy sufficiently high. We
consider an approximator sufficiently good if the accuracy of the network is within 2.5% of the baseline
accuracy when this approximator is used.

Online fault-tolerance for MLP For MLP on the MNIST dataset, when only weights (W) are quantized,
the inference accuracy reduces by a negligible amount of 0.2%. Whereas, quantizing both weights and
activation (W & z) causes noticeable accuracy degradation (5%). The results are summarized in Table 13.3.
On the other hand, pruning allows removing up to 60% of the neurons without any reduction in accuracy,
as summarized in Figure 13.2 (a). Therefore, the sensitive blocks can be quantized as well as pruned. With
this approach, 60% of the neurons in the sensitive blocks can be removed while bit-width is reduced to
2-bit. This gives us a compression ratio of 8×. However, the order of pruning and quantization is important.
We found that post-quantization pruning is the better way of combining the two techniques. The 2, 3, and
4-bit quantized versions of the layer generally have the same behavior as the original 8-bit layer, as shown
in Figure 13.2 (b). With knowledge distillation, we were able to achieve results that are slightly worse than
those with post-quantization pruning, though they are comparable. Therefore, post-quantization pruning
with an 8.26× compression is used for the approximator block.

Table 13.3.: Inference accuracy of the MLP topology after quantization only weights (W) and weight and activation (W & z).

Bitwidth Accuracy (W) Accuracy (W & z) Compression ratio
8 98.2% (-0.0%) 98.2% (-0.0%) 1×
4 98.5% (+0.3%) 98.4% (+0.2%) 2×
3 98.4% (+0.2%) 98.1% (-0.1%) 2.67×
2 98.2% (-0.0%) 97.4% (-0.8%) 4×
1 98.0% (-0.2%) 93.2% (-5.0%) 8×

Online fault-tolerance for VGG Topology For VGG topology B̄1 and B̄2 blocks are approximated separately,
but all the FC layers are approximated into one block. Specifically, the B̄2 and FC blocks can be quantized

255

CHAPTER 13. LOCAL APPROXIMATION-BASED CONTINUOUS AVAILABILITY

Figure 13.2.: On the left: inference accuracy after pruning MLP. On the right: inference accuracy after quantization and pruning
MLP. Dashed lines represent accuracy before fine-tuning. It is recommended to view this figure in color.

to 1-bit weights with less than 1% accuracy reduction, but the B̄1 block can be quantized to only 3-bits for
a similar accuracy reduction. Similarly, with post-quantization pruning, the B̄2 block can be compressed
significantly more than B̄1. We were able to achieve an 8.52× and 8.43× compression for the B̄1 and B̄2
blocks, respectively, at a similar accuracy (92.3%) to the original network. Since we already had good
results with post-quantization pruning, we now apply this method to B̄1 and B̄2. The fully-connected (FC)
block contains a lot of redundant connections. About 90% of neurons can be removed without significant
accuracy degradation. Therefore, we try to reduce the number of layers to one with binarized weights. To
achieve this, we have used knowledge distillation to compress the FC block by 114.7× with a negligible
accuracy degradation of 1.8%. Applying the knowledge distillation method to the B̄1 and B̄2 blocks can
achieve a better compression ratio, but accuracy degrades by ∼7% from byseline, which does not meet our
requirement.

Online fault-tolerance for ResNet Topology For ResNet topology, the approximators for blocks B̄0 and
B̄3 are designed. Similar to MLP and VGG topology, both the B̄0 and B̄3 blocks of ResNet can tolerate
quantization quite well. Binarization of the weights in the B̄3 block does not degrade the inference accuracy
at all, whereas B̄0 shows an acceptable drop of just 1.6%. Therefore, further compression can be applied
with different techniques. We have found that pruning works quite well on both blocks, and about 50% of
filters in B̄0 and all layers of B̄3 can be removed without a big accuracy loss. Post-quantization pruning of
a few filters gives us the best result for the B̄0 block. We achieve 8.26× compression with an inference
accuracy of 91.0% (−1.5%), as summarized in Figure 13.3 (left). However, this method does not work for
the B̄3 block (see Figure 13.3) (right). Consequently, as an alternative, we first prune 50% of filters in
each layer of B̄3 and quantize the resulting block to 2 bits, which gives us 90.5% (-2.0%) accuracy at 14×
compression.

13.3.3. Multi-Block Fault Tolerance

For VGG topology, when all the approximators are activated at the same time, the accuracy reaches 84.3%
(−9%). Table 13.4 shows the accuracy of the network with different combinations of active approximators.
Similarly, for ResNet topology, when both approximators are active simultaneously, the inference accuracy
reduces to 88.3% (−4.2%). Approximation errors of multiple blocks accumulate to reduce the network’s
performance, but our method still provides reasonable performance, to achieve graceful degradation.

256

13.4. SCIENTIFIC IMPACT OF THIS WORK

Table 13.4.: Inference accuracy of the VGG-7 network with different combinations of active approximators

Active approx. None B̄1 B̄2 FC B̄1, B̄2 B̄1, FC B̄2, FC B̄1, B̄2, FC
Accuracy (%) 93.3 93.3 92.3 91.5 89.6 87.6 88.4 84.3

Figure 13.3.: Inference accuracy of ResNet (left) after with post-quatization pruning of block B̄0 and (right) after post-quatization
of block B̄3. Dashed lines represent accuracy before fine-tuning. It is recommended to view this figure in color.

13.3.4. Hardware Overhead Analysis

In terms of weight bits, the overhead of the local approximator is only 194.4 Kbit, 67.1 kBit, and 1.18 MBit
for the MLP, VGG, and ResNet topology, respectively. Consequently, it results in an overhead of 9.0%, 5.7%,
and 1.34%, respectively, compared to the original networks. For comparison, the overhead of a full copy
of the original NN with local and global redundancy approaches would be 42.7% and 100%, respectively.
Resulting in a reduction in overhead by 33.7% and 98.63%, respectively.

13.4. Scientific Impact of This Work

The major contributions and scientific impacts of this work are as follows:

• Development of an Online Fault-Tolerance Technique: Proposed a low-cost, online fault
tolerance method based on local approximations to ensure continuous operation of NNs without any
downtime. The proposed approach is crucial for ‘always-on’ applications where system interruptions
are unacceptable.

• Approximate Backups: The proposed method shows that making the approximation of the
sensitive blocks of a NN is an attractive option instead of full redundancy for system availability in a
resource constraint system.

• Scalability: The proposed approach is also applicable to other AI accelerator architectures such as
FPGAs, GPUs, and TPUs. Also, the proposed method is scalable to various NN topologies, including
MLPs, CNNs, and more complex structures.

257

CHAPTER 13. LOCAL APPROXIMATION-BASED CONTINUOUS AVAILABILITY

13.5. Chapter Conclusion

In this chapter, we propose an online fault tolerance method for ensuring the availability of neural networks
that are implemented on memristive crossbar arrays. Instead of creating copies of the entire network, we
propose to protect only the fault-sensitive part of the NNs and apply compression methods to approximate
those blocks as backups. In comparison to a conventional global and local redundancy-based approach, our
proposed method achieves within 2% accuracy of the original network while reducing hardware overhead
by up to 98.63% and 33.7%, respectively.

258

14. Conclusion and Perspective

In this thesis, we have addressed the critical reliability challenges associated with the deployment of
NNs in the resource-constraint edge AI applications and devices. The primary objective was to improve
the efficiency of uncertainty estimation, reduce costs of online testing, and improve reliability. Another
objective was to offer a low-cost solution for the continuous availability of edge AI hardware while
fault detection and maintenance are performed. Our work addresses the critical limitations of existing
approaches, which often suffer from significant resource scalability issues, making them impractical for
edge devices.

In Part I, we presented several approaches for efficient and scalable uncertainty estimation. Specifically,
in Chapter 4, we presented Monte Carlo Dropout-based approaches. We developed the first instance of
Dropout-based binary Bayesian Neural Network. Our implementation utilizes the stochastic properties of
Spintronic devices for Dropout modules, which are integrated into existing memristive crossbar arrays.
Later, we introduced the concept of "grouped Dropout," which solves the problem of the integration of
binary Bayesian neural networks into convolutional neural networks and significantly reduces the number
of Dropout models, power consumption, and chip area. Afterward, we introduced the scale Dropout
technique, which requires only a single Dropout module for the entire model, significantly reducing
resource overhead, power consumption, and chip area.

In addition, in Chapter 5, we present variational inference-based approaches. In Section 5.1, we propose a
memory-centric Bayesian approximation and a novel BayNN topology that allows efficient mapping and
on-the-fly sampling from the posterior distribution in CiM architectures. Additionally, we propose a CiM
architecture and a CiM aware mapping strategy. Furthermore, in the later work presented in Section 5.2,
we propose a novel Bayesian NN framework called "Bayesian subset parameter inference." Specifically, we
propose applying Bayesian treatment only to the smallest parameter group, such as the scale vector, while
keeping larger parameter groups deterministic. Our approach resulted in the first instance of VI-based
BayNN and is implemented in a spintronic-based CiM architecture. Consequently, it reduces memory
consumption and sampling time, maintaining resource scalability with minimal random number generators
irrespective of model size.

Model Ensemble Approach In Chapter 6, we propose a low-cost yet efficient model ensemble approach
where only normalization layers are ensembled, but other parameters are shared among ensemble members.
Our approach is grounded by the fact that normalization layers require significantly less storage for
parameters and computations. Thus, a better candidate for the ensemble than weights. Consequently,
the memory and latency for the inference are significantly reduced compared to related works and are
close to the single model. We also propose a hardware accelerator-centric inference method that allows
single-shot inference in architecture, such as edge GPUs, using dimension modification, batch-processing,
and utilizing the proposed ensemble norm layer. Furthermore, our approach allows updating all ensemble
members in a single shot, reducing training costs as well.

In Part II, we presented several approaches for efficient and scalable uncertainty estimation of edge AI
accelerator hardware using online functional testing methods. In Chapter 7, we presented several explicit
testing methods. We explored an approximate gradient ranking method compaction of test vectors in
Section 7.1. Our approach identifies training inputs that are more sensitive to parameter changes based on
how much the parameters are modified during training. Our approach can effectively detect hard-to-detect
faults with low test queries and significantly minimize testing overhead. Then, in Section 7.2, we also

259

CHAPTER 14. CONCLUSION AND PERSPECTIVE

developed a one-shot testing method, which requires only a single test vector and one forward pass to
test an entire model. Our approach relies on detecting distribution shifts in the NN output distribution. A
learning algorithm is proposed that generates the proposed one-shot testing test vector. In the later work,
presented in Section 7.3, we also proposed a few-shot testing method that can even test a NN with a small
number of classes, e.g., binary classifier. Our approach proposes to generate a Bayesian test vector that has
its element, e.g., a pixel in an image, represented as a distribution rather than a single value. Therefore,
multiple samples can be taken from a single test vector to test the edge AI accelerator.

In Chapter 9, we propose a concurrent testing method for the AI accelerator using a fingerprint-based
method. We propose a novel topology with a dual head, with one head giving a normal prediction and
the other head giving real-time fingerprints that represent the fault status of the model. By matching the
baseline fault-free fingerprint with the real-time fingerprint, faults can be detected concurrently without
extra forward passes or test vector storage. Extensive evaluations validated the effectiveness of our method
in detecting soft and transient faults.

In Chapter 8, we presented a method for testing Dropout-based BayNNs in Spintronics-implemented CiM
architecture. Due to the stochastic output, testing Dropout-based BayNN is difficult and challenging. We
investigated the impact of manufacturing and infield non-idealities, affecting different modules of BayNN,
on inference accuracy and uncertainty estimates. We propose an automatic test pattern generation method
based on the variability ranking of training images and online testing frameworks based on the distribution
shift of uncertainty distribution.

Furthermore, in Part III, we proposed several methods for reliability improvement. In Chapter 11, we pro-
posed self-healing approaches for uncertainty reduction. Self-healing is defined as the graceful degradation
in accuracy in the presence of faults or variations. In Section 11.1, we propose a quantization algorithm that
quantizes each partial sum of a layer in CiM architecture to increase the sensing margin and be tolerant to
manufacturing variations. In addition, we propose a design time reference current generation algorithm
for the sensing circuits that allows the crossbar arrays in CiM architecture to be tolerant to online thermal
variations over the entire operating range of temperature (up to 120 ◦𝐶). Later in Section 11.2, we propose
a self-healing BayNN without sacrificing the quality of uncertainty estimates. We propose the inverted
normalization and affine Dropout concepts that introduce implicit additive and multiplicative noise into
the MAC results during training. Also, our normalization layer performs run-time standardization that also
aids in fault tolerance via standardizing activations in the case of distribution shift due to faults. Evaluation
of our approach shows significant fault tolerance without sacrificing the quality of uncertainty estimates.

In Chapter 12, we proposed approaches for uncertainty reduction via runtime adaptation. Specifically, in
Section 12.1, we addressed manufacturing and in-field variations and faults using a low-cost re-calibration
method that re-calibrates statistical parameters of normalization layers. Also, to reduce the re-calibration
costs, we propose an automatic functional test pattern generation method to compact re-calibration data
and approximate batch normalization that reduces computation burden. Afterward, in Section 12.2, we
addressed data retention faults and aging-induced drift problems in memristors with approximate scrubbing
techniques, retention-aware training algorithms, and weight mapping methods. Our approach proposes to
map unstable and stable weights to respective regions of the memristor-based crossbar array. Our proposed
learning objective encourages weight organization in the matrix for our scrubbing need. During online
operation, unstable weights are frequently scrubbed to restore the respective weight value. Consequently,
our approaches can mitigate data retention faults without significant storage overhead, ensuring reliable
NN operation for the expected device lifetime. Later, in Section 12.3, we propose a zero-overhead method
for guaranteed soft-fault correction in digital AI accelerator architectures. Specifically, we utilize ECC with
the target of reducing the overhead of parity information. We propose a multi-task learning algorithm to
embed the parity information into the weight matrix during training. During inference, parity information
takes part in computations required for a prediction, but during decoding, parity information is used for
error correction. Consequently, our approach can maintain the inference accuracy despite single and
multiple faults based on the limit of utilized ECC without increasing the parameter count.

260

14.1. FUTURE WORKS

Lastly, in Chapter 13, we addressed the problem of long system downtime caused by sophisticated testing
and maintenance methods. We propose to make the AI accelerator available during system maintenance
by providing low-cost backup. Specifically, instead of making a full copy of the whole system, we only
provide backups for most fault-sensitive parts and further compress them via compression methods to
reduce costs.

In conclusion, this thesis has made significant strides in addressing uncertainty estimation and reduc-
tion challenges for edge AI accelerators deployed in dynamic and uncertain environments via a holistic
perspective. We particularly focused on resource-scalable and efficient approaches that are suitable for
resource-constrained applications and devices. Our work paves the way for robust and efficient edge AI
systems by enhancing uncertainty estimation, testing, and fault tolerance. Consequently, it facilitates the
widespread adoption of edge AI in real-world applications in diverse and dynamic environments, including
safety-critical applications where reliable predictions are paramount.

14.1. Future Works

This thesis opens several promising directions for future research:

Reducing Uncertainty in Prediction with Continual or Lifelong Learning We mostly focused on reducing
uncertainty estimates due to the non-idealities of edge AI accelerators. However, dealing with OoD or
uncertainty due to new classes of data in a resource-scalable manner is also important. Therefore, in our
future work, we plan to focus on developing continual or lifelong learning techniques to dynamically adapt
NNs to new data distributions and reduce uncertainty over time. Therefore, the overall reliability of edge
AI accelerators could be further improved in dynamic and uncertain environments.

Zero Overhead ECC for Analog CiM Architectures In the future, we plan on extending our zero-memory
overhead ECC method to analog CiM architectures. As a result, this could further enhance the reliability
of CiM architectures, ensuring fault tolerance without incurring additional resources. However, the CiM
architecture presents some unique challenges, including decoding and keeping the number of columns in
the crossbar structure the same. Our goal is to address these challenges.

Reducing Latency of BayNN We have proposed many BayNN approaches that are resource-scalable,
power-efficient, and memory-efficient. We also reduce the chip area for BayNN implementations and
sampling latency of inference. However, the inference stage still requires 5 − 20 forward passes. In our
future work, we aim to reduce the number of forward passes with one-shot or few-shot Bayesian inference,
which translates to a lower latency of BayNN inference.

Fault-tolerance for On-device Training While we proposed several fault-tolerance approaches, from
different angles, for on-device inference, on-device AI training has attracted a lot of interest. However,
specifically, when an NN is trained on analog CiM architectures, they are susceptible to novel challenges
such as reliable weight updates despite write failures, and so on. We also plan to address those challenges
and extend some of our approaches for on-device training.

261

CHAPTER 14. CONCLUSION AND PERSPECTIVE

14.2. Perspective

Faults and defects, including permanent and soft faults, affect all computing systems. Therefore, as
mentioned repeatedly in the "scientific impact of this work" sections of this thesis, the majority of the
works proposed in this thesis are also applicable to other architectures, such as TPUs in edge, FPGAs, edge
GPUs, and embedded CPUs.

For example, all the work related to uncertainty estimation presented in Part I can be implemented in other
AI accelerator architectures. However, the benefits of CiM and the implementation of Dropout modules
using the inherent stochasticity of the device cannot be attained. Furthermore, all the methods for testing
proposed in Part II are directly applicable to any edge AI accelerator. Lastly, for reliability improvement, all
methods except the self-healing method proposed in Section 11.1 can be applied to improve fault tolerance
in other edge AI accelerator architectures.

262

Bibliography

[1] IanGoodfellow, Yoshua Bengio andAaronCourville.Deep Learning. http://www.deeplearningbook.
org. MIT Press, 2016.

[2] Joe Lemley, Shabab Bazrafkan and Peter Corcoran. “Deep learning for consumer devices and
services: pushing the limits for machine learning, artificial intelligence, and computer vision”. In:
IEEE Consumer Electronics Magazine 6.2 (2017), pp. 48–56.

[3] Shabab Bazrafkan and Peter M Corcoran. “Pushing the AI envelope: merging deep networks
to accelerate edge artificial intelligence in consumer electronics devices and systems”. In: IEEE
Consumer Electronics Magazine 7.2 (2018), pp. 55–61.

[4] Nida Shahid, Tim Rappon and Whitney Berta. “Applications of artificial neural networks in health
care organizational decision-making: A scoping review”. In: PloS one 14.2 (2019), e0212356.

[5] Idongesit Zion, Simeon Ozuomba and Philip Asuquo. “An Overview of Neural Network Architec-
tures for Healthcare”. In: 2020 International Conference in Mathematics, Computer Engineering and
Computer Science (ICMCECS). IEEE. 2020, pp. 1–8.

[6] J Bughin and J Seong. “Assessing the economic impact of artificial intelligence”. In: ITUTrends Issue
Paper 1 (2018).

[7] Warren S McCulloch andWalter Pitts. “A logical calculus of the ideas immanent in nervous activity”.
In: The bulletin of mathematical biophysics 5 (1943), pp. 115–133.

[8] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li and Li Fei-Fei. “Imagenet: A large-scale
hierarchical image database”. In: 2009 IEEE conference on computer vision and pattern recognition.
Ieee. 2009, pp. 248–255.

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun. “Deep residual learning for image
recognition”. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016,
pp. 770–778.

[10] Sergey Zagoruyko andNikos Komodakis. “Wide residual networks”. In: arXiv preprint arXiv:1605.07146
(2016).

[11] Alex Krizhevsky, Ilya Sutskever and Geoffrey E Hinton. “ImageNet classification with deep convo-
lutional neural networks”. In: Communications of the ACM 60.6 (2017), pp. 84–90.

[12] Kit Yan Chan, Bilal Abu-Salih, Raneem Qaddoura, Al-Zoubi Ala’M, Vasile Palade, Duc-Son Pham,
Javier Del Ser and Khan Muhammad. “Deep neural networks in the cloud: Review, applications,
challenges and research directions”. In: Neurocomputing (2023), p. 126327.

[13] Alex Krizhevsky, Ilya Sutskever and Geoffrey E Hinton. “Imagenet classification with deep convo-
lutional neural networks”. In: Advances in neural information processing systems 25 (2012).

[14] Wei-Cheng Lin and Yi-Ren Yeh. “Efficient malware classification by binary sequences with one-
dimensional convolutional neural networks”. In: Mathematics 10.4 (2022), p. 608.

[15] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A Horowitz and William J Dally.
“EIE: Efficient inference engine on compressed deep neural network”. In: ACM SIGARCH Computer
Architecture News 44.3 (2016), pp. 243–254.

[16] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder Bajwa,
Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. “In-datacenter performance analysis of
a tensor processing unit”. In: Proceedings of the 44th annual international symposium on computer
architecture. 2017, pp. 1–12.

263

http://www.deeplearningbook.org
http://www.deeplearningbook.org

BIBLIOGRAPHY

[17] Shimeng Yu. “Neuro-inspired computing with emerging nonvolatile memorys”. In: Proceedings of
the IEEE 106.2 (2018), pp. 260–285.

[18] Jianmin Chen, Xi Tao, Zhen Yang, Jih-Kwon Peir, Xiaoyuan Li and Shih-Lien Lu. “Guided region-
based GPU scheduling: utilizing multi-thread parallelism to hide memory latency”. In: 2013 IEEE
27th International Symposium on Parallel and Distributed Processing. IEEE. 2013, pp. 441–451.

[19] T. Y. Lee et al. “World-most energy-efficient MRAM technology for non-volatile RAM applications”.
In: 2022 International Electron Devices Meeting (IEDM). ISSN: 2156-017X. IEEE, Dec. 2022, pp. 10.7.1–
10.7.4. doi: 10.1109/IEDM45625.2022.10019430.

[20] Dan Hendrycks and Thomas Dietterich. “Benchmarking neural network robustness to common
corruptions and perturbations”. In: arXiv preprint arXiv:1903.12261 (2019).

[21] Dan Hendrycks and Kevin Gimpel. “A baseline for detecting misclassified and out-of-distribution
examples in neural networks”. In: arXiv preprint arXiv:1610.02136 (2016).

[22] Siyu Luan, Zonghua Gu, Leonid B Freidovich, Lili Jiang and Qingling Zhao. “Out-of-distribution
detection for deep neural networks with isolation forest and local outlier factor”. In: IEEE Access 9
(2021), pp. 132980–132989.

[23] Cesar Torres-Huitzil and Bernard Girau. “Fault and error tolerance in neural networks: A review”.
In: IEEE Access 5 (2017), pp. 17322–17341.

[24] Hyein Shin, Myeonggu Kang and Lee-Sup Kim. “A thermal-aware optimization framework for
ReRAM-based deep neural network acceleration”. In: Int. Conf. on Computer-Aided Design (ICCAD).
2020.

[25] Meiyun Zhang, Shibing Long, Guoming Wang, Yang Li, Xiaoxin Xu, Hongtao Liu, Ruoyu Liu,
Ming Wang, Congfei Li, Pengxiao Sun, et al. “An overview of the switching parameter variation of
RRAM”. In: Chinese science bulletin 59 (2014), pp. 5324–5337.

[26] Liuyang Zhang, Aida Todri-Sanial, Wang Kang, Youguang Zhang, Lionel Torres, Yuanqing Cheng
and Weisheng Zhao. “Quantitative evaluation of reliability and performance for STT-MRAM”. In:
2016 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE. 2016, pp. 1150–1153.

[27] Christopher Münch, Jongsin Yun, Martin Keim and Mehdi B Tahoori. “Mbist-supported trim
adjustment to compensate thermal behavior of mram”. In: 2021 IEEE European Test Symposium
(ETS). IEEE. 2021, pp. 1–6.

[28] Elbruz Ozen and Alex Orailoglu. “Shaping resilient AI hardware through DNN computational
feature exploitation”. In: IEEE Design & Test 40.2 (2022), pp. 59–66.

[29] Christopher Münch, Rajendra Bishnoi and Mehdi B Tahoori. “Tolerating Retention Failures in
Neuromorphic Fabric based on Emerging Resistive Memories”. In: 2020 25th Asia and South Pacific
Design Automat. Conf. (ASP-DAC). IEEE. 2020, pp. 393–400.

[30] Vinay Joshi, Manuel Le Gallo, Simon Haefeli, Irem Boybat, Sasidharan Rajalekshmi Nandakumar,
Christophe Piveteau, Martino Dazzi, Bipin Rajendran, Abu Sebastian and Evangelos Eleftheriou.
“Accurate deep neural network inference using computational phase-change memory”. In: Nature
communications 11.1 (2020), p. 2473.

[31] Christopher Münch, Rajendra Bishnoi and Mehdi B Tahoori. “Reliable in-memory neuromorphic
computing using spintronics”. In: Proceedings of the 24th Asia and South Pacific design automation
conference. 2019, pp. 230–236.

[32] Gilbert Sassine, Cécile Nail, Luc Tillie, Diego Alfaro Robayo, Alexandre Levisse, Carlo Cagli, Khalil
El Hajjam, Jean-François Nodin, Elisa Vianello, Mathieu Bernard, et al. “Sub-pJ consumption and
short latency time in RRAM arrays for high endurance applications”. In: 2018 IEEE International
Reliability Physics Symposium (IRPS). IEEE. 2018, P–MY.

264

https://doi.org/10.1109/IEDM45625.2022.10019430

[33] Meiran Zhao, Huaqiang Wu, Bin Gao, Xiaoyu Sun, Yuyi Liu, Peng Yao, Yue Xi, Xinyi Li, Qingtian
Zhang, Kanwen Wang, et al. “Characterizing endurance degradation of incremental switching in
analog RRAM for neuromorphic systems”. In: 2018 IEEE International Electron Devices Meeting
(IEDM). IEEE. 2018, pp. 20–2.

[34] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu and Daan Wierstra. “Weight Uncertainty in
Neural Network”. In: Proceedings of the 32nd International Conference on Machine Learning. Ed. by
Francis Bach and David Blei. Vol. 37. Proceedings of Machine Learning Research. Lille, France:
PMLR, July 2015, pp. 1613–1622. url: https://proceedings.mlr.press/v37/blundell15.html.

[35] Yarin Gal and Zoubin Ghahramani. “Dropout as a bayesian approximation: Representing model
uncertainty in deep learning”. In: international conference onmachine learning. PMLR, 2016, pp. 1050–
1059.

[36] Aryan Mobiny, Pengyu Yuan, Supratik K Moulik, Naveen Garg, Carol C Wu and Hien Van Nguyen.
“Dropconnect is effective in modeling uncertainty of bayesian deep networks”. In: Scientific reports
(2021).

[37] Ching-Yuan Chen and Krishnendu Chakrabarty. “On-line Functional Testing of Memristor-mapped
Deep Neural Networks using Backdoored Checksums”. In: 2021 IEEE ITC.

[38] Research and Markets. Machine Learning as a Service (MLaaS) Global Market Report 2024. 2024. url:
https://www.researchandmarkets.com/reports/4806168/machine-learning-as-a-service-

mlaas-global (visited on 06/02/2024).
[39] Mengyun Liu and Krishnendu Chakrabarty. “Online fault detection in ReRAM-based computing

systems for inferencing”. In: IEEE Transactions on Very Large Scale Integration (VLSI) Systems 30.4
(2022), pp. 392–405.

[40] Hyun-Duk Cho, Ph D Principal Engineer, Kisuk Chung and Taehoon Kim. “Benefits of the big.
LITTLE Architecture”. In: EETimes, Feb (2012).

[41] Soyed Tuhin Ahmed and Mehdi B. Tahoori. “Compact Functional Test Generation for Memristive
Deep Learning Implementations using Approximate Gradient Ranking”. In: 2022 IEEE International
Test Conference (ITC). 2022, pp. 239–248. doi: 10.1109/ITC50671.2022.00032.

[42] Soyed Tuhin Ahmed and Mehdi B Tahoori. “One-shot online testing of deep neural networks
based on distribution shift detection”. In: IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (2024).

[43] Zangwei Zheng, Mingyuan Ma, Kai Wang, Ziheng Qin, Xiangyu Yue and Yang You. “Preventing
Zero-Shot Transfer Degradation in Continual Learning of Vision-Language Models”. In: arXiv
preprint arXiv:2303.06628 (2023).

[44] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv and Yoshua Bengio. “Binarized
neural networks”. In: NeurIPS 29 (2016).

[45] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon and Ali Farhadi. “Xnor-net: Imagenet
classification using binary convolutional neural networks”. In: European conference on computer
vision. Springer. 2016, pp. 525–542.

[46] Adrian Bulat and Georgios Tzimiropoulos. “Xnor-net++: Improved binary neural networks”. In:
arXiv preprint arXiv:1909.13863 (2019).

[47] Haotong Qin, Ruihao Gong, Xianglong Liu, Mingzhu Shen, Ziran Wei, Fengwei Yu and Jingkuan
Song. “Forward and backward information retention for accurate binary neural networks”. In:
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020, pp. 2250–
2259.

[48] Soyed Tuhin Ahmed, Kamal Danouchi, Michael Hefenbrock, Guillaume Prenat, Lorena Anghel
and Mehdi B Tahoori. “Scale-Dropout: Estimating Uncertainty in Deep Neural Networks Using
Stochastic Scale”. In: arXiv preprint arXiv:2311.15816 (2024).

265

https://proceedings.mlr.press/v37/blundell15.html
https://www.researchandmarkets.com/reports/4806168/machine-learning-as-a-service-mlaas-global
https://www.researchandmarkets.com/reports/4806168/machine-learning-as-a-service-mlaas-global
https://doi.org/10.1109/ITC50671.2022.00032

BIBLIOGRAPHY

[49] Soyed Tuhin Ahmed, Kamal Danouchi, Michael Hefenbrock, Guillaume Prenat, Lorena Anghel and
Mehdi B Tahoori. “Scalable Spintronics-based Bayesian Neural Network for Uncertainty Estimation”.
In: 2023 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE. 2023, pp. 1–6.

[50] Sergey Ioffe and Christian Szegedy. “Batch normalization: Accelerating deep network training
by reducing internal covariate shift”. In: International conference on machine learning. pmlr. 2015,
pp. 448–456.

[51] Jimmy Lei Ba, Jamie Ryan Kiros and Geoffrey E Hinton. “Layer normalization”. In: arXiv preprint
arXiv:1607.06450 (2016).

[52] Dmitry Ulyanov, Andrea Vedaldi and Victor Lempitsky. “Instance normalization: The missing
ingredient for fast stylization”. In: arXiv preprint arXiv:1607.08022 (2016).

[53] Yuxin Wu and Kaiming He. “Group normalization”. In: Proceedings of the European conference on
computer vision (ECCV). 2018, pp. 3–19.

[54] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever and Ruslan Salakhutdinov.
“Dropout: a simple way to prevent neural networks from overfitting”. In: The journal of machine
learning research 15.1 (2014), pp. 1929–1958.

[55] Durk P Kingma, Tim Salimans and Max Welling. “Variational dropout and the local reparameteri-
zation trick”. In: Advances in neural information processing systems 28 (2015).

[56] Jonathan Tompson, Ross Goroshin, Arjun Jain, Yann LeCun and Christoph Bregler. “Efficient object
localization using convolutional networks”. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. 2015, pp. 648–656.

[57] Anqi Wu, Sebastian Nowozin, Edward Meeds, Richard E Turner, Jose Miguel Hernandez-Lobato
and Alexander L Gaunt. “Deterministic variational inference for robust bayesian neural networks”.
In: arXiv preprint arXiv:1810.03958 (2018).

[58] H-S Philip Wong, Simone Raoux, SangBum Kim, Jiale Liang, John P Reifenberg, Bipin Rajendran,
Mehdi Asheghi and Kenneth E Goodson. “Phase change memory”. In: Proceedings of the IEEE 98.12
(2010), pp. 2201–2227.

[59] Hiroyuki Akinaga and Hisashi Shima. “Resistive random access memory (ReRAM) based on metal
oxides”. In: Proceedings of the IEEE 98.12 (2010), pp. 2237–2251.

[60] Dmytro Apalkov, Alexey Khvalkovskiy, Steven Watts, Vladimir Nikitin, Xueti Tang, Daniel Lottis,
Kiseok Moon, Xiao Luo, Eugene Chen, Adrian Ong, et al. “Spin-transfer torque magnetic random
access memory (STT-MRAM)”. In: ACM Journal on Emerging Technologies in Computing Systems
(JETC) 9.2 (2013), pp. 1–35.

[61] Seungchul Jung et al. “A crossbar array of magnetoresistive memory devices for in-memory
computing”. en. In: Nature 601.7892 (2022). issn: 0028-0836, 1476-4687. doi: 10.1038/s41586-021-
04196-6.

[62] Tayfun Gokmen, Murat Onen and Wilfried Haensch. “Training deep convolutional neural networks
with resistive cross-point devices”. In: Frontiers in neuroscience 11 (2017), p. 538.

[63] Xiaochen Peng, Rui Liu and Shimeng Yu. “Optimizing weight mapping and data flow for convolu-
tional neural networks on RRAM based processing-in-memory architecture”. In: IEEE ISCAS. IEEE.
2019, pp. 1–5.

[64] Xiaoyu Sun, Shihui Yin, Xiaochen Peng, Rui Liu, Jae-sun Seo and Shimeng Yu. “XNOR-RRAM: A
scalable and parallel resistive synaptic architecture for binary neural networks”. In: IEEE DATE.
2018.

[65] Yulhwa Kim, Hyungjun Kim and Jae-Joon Kim. “Neural network-hardware co-design for scalable
RRAM-based BNN accelerators”. In: arXiv preprint arXiv:1811.02187 (2018).

266

https://doi.org/10.1038/s41586-021-04196-6
https://doi.org/10.1038/s41586-021-04196-6

[66] Mahta Mayahinia, Abhairaj Singh, Christopher Bengel, Stefan Wiefels, Muath A Lebdeh, Stephan
Menzel, Dirk J Wouters, Anteneh Gebregiorgis, Rajendra Bishnoi, Rajiv Joshi, et al. “A voltage-
controlled, oscillation-based adc design for computation-in-memory architectures using emerging
rerams”. In: ACM Journal on Emerging Technologies in Computing Systems (JETC) 18.2 (2022), pp. 1–
25.

[67] Soyed Tuhin Ahmed, Mahta Mayahinia, Michael Hefenbrock, Christopher Münch and Mehdi B
Tahoori. “Design-time Reference Current Generation for Robust Spintronic-based Neuromorphic
Architecture”. In: ACM Journal on Emerging Technologies in Computing Systems 20.1 (2023).

[68] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang and Joel S Emer. “Efficient processing of deep neural
networks: A tutorial and survey”. In: Proceedings of the IEEE 105.12 (2017), pp. 2295–2329.

[69] Sarath Mohanachandran Nair, Christopher Münch and Mehdi B Tahoori. “Defect characteriza-
tion and test generation for spintronic-based compute-in-memory”. In: 2020 IEEE European Test
Symposium (ETS). IEEE. 2020, pp. 1–6.

[70] Ching-Yi Chen, Hsiu-Chuan Shih, Cheng-Wen Wu, Chih-He Lin, Pi-Feng Chiu, Shyh-Shyuan Sheu
and Frederick T Chen. “RRAM defect modeling and failure analysis based on march test and a
novel squeeze-search scheme”. In: IEEE Transactions on Computers 64.1 (2014), pp. 180–190.

[71] Manuel Le Gallo and Abu Sebastian. “An overview of phase-change memory device physics”. In:
Journal of Physics D: Applied Physics 53.21 (2020), p. 213002.

[72] Sarath Mohanachandran Nair, Rajendra Bishnoi, Mohammad Saber Golanbari, Fabian Oboril, Fazal
Hameed and Mehdi B Tahoori. “VAET-STT: Variation aware STT-MRAM analysis and design space
exploration tool”. In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
37.7 (2017), pp. 1396–1407.

[73] Rajendra Bishnoi, Mojtaba Ebrahimi, Fabian Oboril and Mehdi B Tahoori. “Read disturb fault
detection in STT-MRAM”. In: 2014 International Test Conference. IEEE. 2014, pp. 1–7.

[74] Chuteng Zhou, Prad Kadambi, Matthew Mattina and Paul N Whatmough. “Noisy machines: Un-
derstanding noisy neural networks and enhancing robustness to analog hardware errors using
distillation”. In: arXiv preprint arXiv:2001.04974 (2020).

[75] Hyeongsu Kim, Jong-Ho Bae, Suhwan Lim, Sung-Tae Lee, Young-Tak Seo, Dongseok Kwon, Byung-
Gook Park and Jong-Ho Lee. “Efficient precise weight tuning protocol considering variation of the
synaptic devices and target accuracy”. In: Neurocomputing 378 (2020), pp. 189–196.

[76] LizhouWu, Mottaqiallah Taouil, Siddharth Rao, Erik Jan Marinissen and Said Hamdioui. “Survey on
STT-MRAM testing: Failure mechanisms, fault models, and tests”. In: arXiv preprint arXiv:2001.05463
(2020).

[77] J. Park, M. Jo, E. M. Bourim, J. Yoon, D. Seong, J. Lee, W. Lee and H. Hwang. “Investigation of State
Stability of Low-Resistance State in Resistive Memory”. In: IEEE Electron Device Letters 31.5 (2010),
pp. 485–487. doi: 10.1109/LED.2010.2042677.

[78] K. Hofmann, K. Knobloch, C. Peters and R. Allinger. “Comprehensive statistical investigation of
STT-MRAM thermal stability”. In: Symposium on VLSI Technology: Digest of Technical Papers. June
2014, pp. 1–2. doi: 10.1109/VLSIT.2014.6894367.

[79] K. Tsunoda, M. Aoki, H. Noshiro, Y. Iba, S. Fukuda, C. Yoshida, Y. Yamazaki, A. Takahashi, A.
Hatada, M. Nakabayashi, Y. Tsuzaki and T. Sugii. “Area dependence of thermal stability factor in
perpendicular STT-MRAM analyzed by bi-directional data flipping model”. In: IEEE International
Electron Devices Meeting. Dec. 2014, pp. 19.3.1–19.3.4.

[80] Zhitao Diao, Zhanjie Li, Shengyuang Wang, Yunfei Ding, Alex Panchula, Eugene Chen, Lien-Chang
Wang and Yiming Huai. “Spin-transfer torque switching in magnetic tunnel junctions and spin-
transfer torque random access memory”. In: Journal of Physics: Condensed Matter 19.16 (2007),
p. 165209.

267

https://doi.org/10.1109/LED.2010.2042677
https://doi.org/10.1109/VLSIT.2014.6894367

BIBLIOGRAPHY

[81] Helia Naeimi, Charles Augustine, Arijit Raychowdhury, Shih-Lien Lu and James Tschanz. “STTRAM
SCALING AND RETENTION FAILURE.” In: Intel Technology Journal 17.1 (2013).

[82] N. Sayed, S. M. Nair, R. Bishnoi and M. B. Tahoori. “Process variation and temperature aware
adaptive scrubbing for retention failures in STT-MRAM”. In: 2018 23rd Asia and South Pacific Design
Automat. Conf. (ASP-DAC). 2018, pp. 203–208. doi: 10.1109/ASPDAC.2018.8297306.

[83] Nunzio Mirabella, Michelangelo Grosso, Giovanna Franchino, Salvatore Rinaudo, Ioannis Deretzis,
Antonino La Magna and M Sonza Reorda. “Comparing different solutions for testing resistive
defects in low-power SRAMs”. In: LATS. IEEE. 2021.

[84] Soyed Tuhin Ahmed, Kamal Danouchi, Christopher Münch, Guillaume Prenat, Anghel Lorena and
Mehdi B Tahoori. “Binary bayesian neural networks for efficient uncertainty estimation leveraging
inherent stochasticity of spintronic devices”. In: NANOARCH’22: 17th ACM International Symposium
on Nanoscale Architectures. ACM. 2022, pp. 1–6.

[85] Soyed Tuhin Ahmed, Kamal Danouchi, Christopher Münch, Guillaume Prenat, Lorena Anghel and
Mehdi B. Tahoori. “SpinDrop: Dropout-Based Bayesian Binary Neural Networks With Spintronic
Implementation”. In: IEEE Journal on Emerging and Selected Topics in Circuits and Systems 13 (2023).
doi: 10.1109/JETCAS.2023.3242146.

[86] Soyed Tuhin Ahmed, Kamal Danouchi, Michael Hefenbrock, Guillaume Prenat, Lorena Anghel and
Mehdi B Tahoori. “Spatial-SpinDrop: Spatial Dropout-based Binary Bayesian Neural Network with
Spintronics Implementation”. In: IEEE Transactions on Nanotechnology (2024).

[87] Eiji Fujiwara. Code Design for Dependable Systems: Theory and Practical Application. USA: Wiley-
Interscience, 2006. isbn: 0471756180.

[88] Jiaqiang Li, Pedro Reviriego, Liyi Xiao and Haotian Wu. “Protecting Memories against Soft Errors:
The Case for Customizable Error Correction Codes”. In: IEEE Transactions on Emerging Topics in
Computing 9.2 (2021), pp. 651–663. doi: 10.1109/TETC.2019.2953139.

[89] Shu Lin and Daniel J. Costello. Error control coding: fundamentals and applications. Upper Saddle
River, NJ: Pearson/Prentice Hall, 2004.

[90] R. W. Hamming. “Error detecting and error correcting codes”. In: The Bell System Technical Journal
29.2 (1950), pp. 147–160. doi: 10.1002/j.1538-7305.1950.tb00463.x.

[91] S. Lin and D.J. Costello. Error Control Coding: Fundamentals and Applications. Computer applications
in electrical engineering series. Prentice-Hall, 1983. isbn: 9780132837965.

[92] João Filipe Ferreira, Jorge Lobo and Jorge Dias. “Bayesian real-time perception algorithms on GPU”.
en. In: Journal of Real-Time Image Processing 6.3 (Sept. 2011), pp. 171–186. issn: 1861-8219. doi:
10.1007/s11554-010-0156-7. url: https://doi.org/10.1007/s11554-010-0156-7 (visited on
05/17/2022).

[93] Sara Zermani, Catherine Dezan, Hanen Chenini, Jean-Philippe Diguet and Reinhardt Euler. “FPGA
implementation of Bayesian network inference for an embedded diagnosis”. In: 2015 IEEE Conference
on Prognostics and Health Management (PHM). June 2015, pp. 1–10. doi: 10.1109/ICPHM.2015.
7245057.

[94] Glenn G. Ko, Yuji Chai, Marco Donato, Paul N.Whatmough, Thierry Tambe, Rob A. Rutenbar, David
Brooks and Gu-YeonWei. “A 3mm2 Programmable Bayesian Inference Accelerator for Unsupervised
Machine Perception using Parallel Gibbs Sampling in 16nm”. In: 2020 IEEE Symposium on VLSI
Circuits. ISSN: 2158-5636. June 2020, pp. 1–2. doi: 10.1109/VLSICircuits18222.2020.9162784.

[95] Hiromitsu Awano and Masanori Hashimoto. “BYNQNet: Bayesian neural network with quadratic
activations for sampling-free uncertainty estimation on FPGA”. In: 2020 Design, Automation & Test
in Europe Conference & Exhibition (DATE). IEEE, 2020, pp. 1402–1407.

268

https://doi.org/10.1109/ASPDAC.2018.8297306
https://doi.org/10.1109/JETCAS.2023.3242146
https://doi.org/10.1109/TETC.2019.2953139
https://doi.org/10.1002/j.1538-7305.1950.tb00463.x
https://doi.org/10.1007/s11554-010-0156-7
https://doi.org/10.1007/s11554-010-0156-7
https://doi.org/10.1109/ICPHM.2015.7245057
https://doi.org/10.1109/ICPHM.2015.7245057
https://doi.org/10.1109/VLSICircuits18222.2020.9162784

[96] Hongxiang Fan, Martin Ferianc, Zhiqiang Que, Shuanglong Liu, Xinyu Niu, Miguel R. D. Rodrigues
and Wayne Luk. “FPGA-Based Acceleration for Bayesian Convolutional Neural Networks”. In: IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 41.12 (Dec. 2022). Con-
ference Name: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
pp. 5343–5356. issn: 1937-4151. doi: 10.1109/TCAD.2022.3160948. (Visited on 01/05/2024).

[97] Hongxiang Fan, Martin Ferianc, Miguel Rodrigues, Hongyu Zhou, Xinyu Niu andWayne Luk. “High-
Performance FPGA-based Accelerator for Bayesian Neural Networks”. In: 2021 58th ACM/IEEE
Design Automation Conference (DAC). San Francisco, CA, USA: IEEE Press, Dec. 2021, pp. 1063–1068.
doi: 10.1109/DAC18074.2021.9586137. (Visited on 01/05/2024).

[98] Mark Horowitz. “1.1 Computing’s energy problem (and what we can do about it)”. In: 2014 IEEE
International Solid-State Circuits Conference Digest of Technical Papers (ISSCC). 2014, pp. 10–14. doi:
10.1109/ISSCC.2014.6757323.

[99] Akul Malhotra, Sen Lu, Kezhou Yang and Abhronil Sengupta. “Exploiting Oxide Based Resistive
RAM Variability for Bayesian Neural Network Hardware Design”. In: IEEE Transactions on Nan-
otechnology 19 (2020). Conference Name: IEEE Transactions on Nanotechnology, pp. 328–331. issn:
1941-0085. doi: 10.1109/TNANO.2020.2982819.

[100] Thomas Dalgaty, Niccolo Castellani, Clément Turck, Kamel-Eddine Harabi, Damien Querlioz and
Elisa Vianello. “In situ learning using intrinsic memristor variability via Markov chain Monte Carlo
sampling”. en. In: Nature Electronics 4.2 (Feb. 2021). Number: 2 Publisher: Nature Publishing Group,
pp. 151–161. issn: 2520-1131. doi: 10.1038/s41928-020-00523-3. (Visited on 05/17/2022).

[101] Djohan Bonnet, TifennHirtzlin, AtreyaMajumdar, Thomas Dalgaty, Eduardo Esmanhotto, Valentina
Meli, Niccolò Castellani, Simon Martin, Jean-Francois Nodin, Guillaume Bourgeois, et al. “Bringing
uncertainty quantification to the extreme-edge with memristor-based Bayesian neural networks”.
In: (2023).

[102] Kezhou Yang, Akul Malhotra, Sen Lu and Abhronil Sengupta. “All-spin Bayesian neural networks”.
In: IEEE Transactions on Electron Devices 67.3 (2020), pp. 1340–1347.

[103] Anni Lu et al. “An Algorithm-Hardware Co-Design for Bayesian Neural Network Utilizing SOT-
MRAM’s Inherent Stochasticity”. In: IEEE Journal on Exploratory Solid-State Computational Devices
and Circuits 8.1 (June 2022).

[104] Soyed Tuhin Ahmed, Kamal Danouchi, Michael Hefenbrock, Guillaume Prenat, Lorena Anghel and
Mehdi B. Tahoori. “SpinBayes: Algorithm-Hardware Co-Design for Uncertainty Estimation Using
Bayesian In-Memory Approximation on Spintronic-Based Architectures”. In: ACM Transactions
on Embedded Computing Systems 22.5s (Sept. 2023), 131:1–131:25. issn: 1539-9087. doi: 10.1145/
3609116. url: https://doi.org/10.1145/3609116.

[105] Mattias Teye, Hossein Azizpour and Kevin Smith. “Bayesian uncertainty estimation for batch
normalized deep networks”. In: ICML. PMLR. 2018.

[106] Lars Kai Hansen and Peter Salamon. “Neural network ensembles”. In: IEEE transactions on pattern
analysis and machine intelligence 12.10 (1990), pp. 993–1001.

[107] Thomas G Dietterich. “Ensemble methods in machine learning”. In: International workshop on
multiple classifier systems. Springer. 2000, pp. 1–15.

[108] David Opitz and Richard Maclin. “Popular ensemble methods: An empirical study”. In: Journal of
artificial intelligence research 11 (1999), pp. 169–198.

[109] Cristian Buciluǎ, Rich Caruana and Alexandru Niculescu-Mizil. “Model compression”. In: Proceed-
ings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining.
2006, pp. 535–541.

[110] Geoffrey Hinton, Oriol Vinyals and Jeff Dean. “Distilling the knowledge in a neural network”. In:
arXiv preprint arXiv:1503.02531 (2015).

269

https://doi.org/10.1109/TCAD.2022.3160948
https://doi.org/10.1109/DAC18074.2021.9586137
https://doi.org/10.1109/ISSCC.2014.6757323
https://doi.org/10.1109/TNANO.2020.2982819
https://doi.org/10.1038/s41928-020-00523-3
https://doi.org/10.1145/3609116
https://doi.org/10.1145/3609116
https://doi.org/10.1145/3609116

BIBLIOGRAPHY

[111] Gao Huang, Yixuan Li, Geoff Pleiss, Zhuang Liu, John E Hopcroft and Kilian Q Weinberger.
“Snapshot ensembles: Train 1, get m for free”. In: arXiv preprint arXiv:1704.00109 (2017).

[112] Ilya Loshchilov and Frank Hutter. “Sgdr: Stochastic gradient descent with warm restarts”. In: arXiv
preprint arXiv:1608.03983 (2016).

[113] Johanna Rock, Tiago Azevedo, René de Jong, Daniel Ruiz-Muñoz and Partha Maji. “On efficient
uncertainty estimation for resource-constrained mobile applications”. In: arXiv:2111.09838 (2021).

[114] Yeming Wen, Dustin Tran and Jimmy Ba. “Batchensemble: an alternative approach to efficient
ensemble and lifelong learning”. In: arXiv preprint arXiv:2002.06715 (2020).

[115] Soyed Tuhin Ahmed, Michael Hefenbrock and Mehdi B. Tahoori. “Tiny Deep Ensemble: Uncertainty
Estimation in Edge AI Accelerators via Ensembling Normalization Layers with Shared Weights”. In:
2024 IEEE/ACM International Conference on Computer Aided Design (ICCAD). IEEE. 2024, pp. 1–9.

[116] Peng Liu, Zhiqiang You, Jishun Kuang, Zhipeng Hu, Heng Duan and Weizheng Wang. “Efficient
March test algorithm for 1T1R cross-bar with complete fault coverage”. In: Electronics Letters 52.18
(2016), pp. 1520–1522.

[117] Wen Li, Ying Wang, Huawei Li and Xiaowei Li. “RRAMedy: Protecting ReRAM-based neural
network from permanent and soft faults during its lifetime”. In: IEEE ICCD). 2019.

[118] Bo Luo, Yu Li, Lingxiao Wei and Qiang Xu. “On functional test generation for deep neural network
ips”. In: 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE. 2019,
pp. 1010–1015.

[119] G Gavarini, D Stucchi, A Ruospo, G Boracchi and E Sanchez. “Open-set recognition: an inexpensive
strategy to increase dnn reliability”. In: 2022 IEEE 28th International Symposium on On-Line Testing
and Robust System Design (IOLTS). IEEE. 2022, pp. 1–7.

[120] Annachiara Ruospo, Gabriele Gavarini, Antonio Porsia, Matteo Sonza Reorda, Ernesto Sanchez,
Riccardo Mariani, Joseph Aribido, Jyotika Athavale, et al. “Image Test Libraries for the on-line
self-test of functional units in GPUs running CNNs”. In: 28th IEEE European Test Symposium 2023.
IEEE. 2023.

[121] Shuhang Zhang, Grace Li Zhang, Bing Li, Hai Helen Li andUlf Schlichtmann. “Lifetime enhancement
for rram-based computing-in-memory engine considering aging and thermal effects”. In: IEEE Int.
Conf. on Artificial Intelligence Circuits and Systems (AICAS). 2020.

[122] Majed Valad Beigi and Gokhan Memik. “Thermal-aware optimizations of ReRAM-based neuro-
morphic computing systems”. In: Proceedings of the 55th Annual Design Automation Conf. 2018,
pp. 1–6.

[123] JianMeng,Wonbo Shim, Li Yang, Injune Yeo, Deliang Fan, Shimeng Yu and Jaesun Seo. “Temperature-
Resilient RRAM-based In-Memory Computing for DNN Inference”. In: IEEE Micro (2021).

[124] Iason Giannopoulos, Manuel Le Gallo, Vara Prasad Jonnalagadda, Evangelos Eleftheriou and Abu
Sebastian. “Temperature Compensation Schemes for In-Memory Computing using Phase-Change
Memory”. In: 2020 2nd IEEE Int. Conf. on Artificial Intelligence Circuits and Systems (AICAS). 2020.

[125] Sujan K Gonugondla, Ameya D Patil and Naresh R Shanbhag. “SWIPE: enhancing robustness of
ReRAM crossbars for in-memory computing”. In: Int. Conf. on Computer-Aided Design (ICCAD).
2020.

[126] Yandong Luo, Xiaochen Peng, Ryan Hatcher, Titash Rakshit, Jorge Kittl, Mark S Rodder, Jae-Sun
Seo and Shimeng Yu. “A Variation Robust Inference Engine Based on STT-MRAM with Parallel
Read-Out”. In: IEEE Int. Symp. on Circuits and Systems (ISCAS). 2020.

[127] Shihui Yin, Xiaoyu Sun, Shimeng Yu and Jae-Sun Seo. “High-throughput in-memory computing for
binary deep neural networks with monolithically integrated RRAM and 90-nm CMOS”. In: IEEE
Transactions on Electron Devices 67.10 (2020).

270

[128] Li-Huang Tsai, Shih-Chieh Chang, Yu-Ting Chen, Jia-Yu Pan, Wei Wei and Da-Cheng Juan. “Ro-
bust Processing-In-Memory Neural Networks via Noise-Aware Normalization”. In: arXiv preprint
arXiv:2007.03230 (2020).

[129] William Wesley Peterson, Wesley Peterson, Edward J Weldon and Edward J Weldon. “Error-
correcting codes”. In: (1972).

[130] Vera Pless et al. “FJ MacWilliams and NJA Sloane, The theory of error-correcting codes. I and II”.
In: Bulletin of the American Mathematical Society 84.6 (1978), pp. 1356–1359.

[131] Bruce Jacob, David Wang and Spencer Ng. Memory systems: cache, DRAM, disk. Morgan Kaufmann,
2010.

[132] Moinuddin K Qureshi, Dae-Hyun Kim, Samira Khan, Prashant J Nair and Onur Mutlu. “AVATAR:
A variable-retention-time (VRT) aware refresh for DRAM systems”. In: 2015 45th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks. IEEE. 2015, pp. 427–437.

[133] Prashant J Nair, Dae-Hyun Kim and Moinuddin K Qureshi. “ArchShield: Architectural framework
for assisting DRAM scaling by tolerating high error rates”. In: ACM SIGARCH Computer Architecture
News 41.3 (2013), pp. 72–83.

[134] Jamie Liu, Ben Jaiyen, Richard Veras and Onur Mutlu. “RAIDR: Retention-aware intelligent DRAM
refresh”. In: ACM SIGARCH Computer Architecture News 40.3 (2012), pp. 1–12.

[135] A. Das and N. A. Touba. “Selective Checksum based On-line Error Correction for RRAM based
Matrix Operations”. In: 2020 IEEE 38th VLSI Test Symposium (VTS). 2020, pp. 1–6. doi: 10.1109/
VTS48691.2020.9107606.

[136] X. Guo, M. N. Bojnordi, Q. Guo and E. Ipek. “Sanitizer: Mitigating the Impact of Expensive ECC
Checks on STT-MRAM Based Main Memories”. In: IEEE Transactions on Computers 67.6 (2018),
pp. 847–860. doi: 10.1109/TC.2017.2779151.

[137] F. Brosser, E. Milh, V. Geijer and P. Larsson-Edefors. “Assessing scrubbing techniques for Xilinx
SRAM-based FPGAs in space applications”. In: Int. Conf. Field-Program. Technol. (FPT). 2014, pp. 296–
299. doi: 10.1109/FPT.2014.7082803.

[138] Minghai Qin, Chao Sun and Dejan Vucinic. “Robustness of neural networks against storage media
errors”. In: arXiv preprint arXiv:1709.06173 (2017).

[139] Stéphane Burel, Adrian Evans and Lorena Anghel. “Zero-Overhead Protection for CNN Weights”.
In: 2021 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology
Systems (DFT). 2021, pp. 1–6. doi: 10.1109/DFT52944.2021.9568363.

[140] Hui Guan, Lin Ning, Zhen Lin, Xipeng Shen, Huiyang Zhou and Seung-Hwan Lim. “In-place
zero-space memory protection for cnn”. In: Advances in Neural Information Processing Systems 32
(2019).

[141] Seo-Seok Lee and Joon-Sung Yang. “Value-aware parity insertion ECC for fault-tolerant deep neural
network”. In: 2022 DATE. IEEE. 2022, pp. 724–729.

[142] Di Gao, Qingrong Huang, Grace Li Zhang, Xunzhao Yin, Bing Li, Ulf Schlichtmann and Cheng Zhuo.
“Bayesian Inference Based Robust Computing on Memristor Crossbar”. In: 2021 58th ACM/IEEE
DAC. 2021, pp. 121–126. doi: 10.1109/DAC18074.2021.9586160.

[143] Nanyang Ye, Jingbiao Mei, Zhicheng Fang, Yuwen Zhang, Ziqing Zhang, Huaying Wu and Xiaoyao
Liang. “BayesFT: Bayesian Optimization for Fault Tolerant Neural Network Architecture”. In: 58th
ACM/IEEE DAC. 2021, pp. 487–492. doi: 10.1109/DAC18074.2021.9586115.

[144] Nanyang Ye, Linfeng Cao, Liujia Yang, Ziqing Zhang, Zhicheng Fang, Qinying Gu and Guang-
Zhong Yang. “Improving the robustness of analog deep neural networks through a Bayes-optimized
noise injection approach”. In: Communications Engineering 2.1 (2023), p. 25.

271

https://doi.org/10.1109/VTS48691.2020.9107606
https://doi.org/10.1109/VTS48691.2020.9107606
https://doi.org/10.1109/TC.2017.2779151
https://doi.org/10.1109/FPT.2014.7082803
https://doi.org/10.1109/DFT52944.2021.9568363
https://doi.org/10.1109/DAC18074.2021.9586160
https://doi.org/10.1109/DAC18074.2021.9586115

BIBLIOGRAPHY

[145] Soyed Tuhin Ahmed, Kamal Danouchi, Guillaume Prenat, Lorena Anghel and Mehdi B Tahoori.
“Enhancing Reliability of Neural Networks at the Edge: Inverted Normalization with Stochastic
Affine Transformations”. In: 2024 Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE. 2024, pp. 1–6.

[146] StefanoAmbrogio, Pritish Narayanan, Hsinyu Tsai, RobertM Shelby, IremBoybat, Carmelo Di Nolfo,
Severin Sidler, Massimo Giordano, Martina Bodini, Nathan CP Farinha, et al. “Equivalent-accuracy
accelerated neural-network training using analogue memory”. In: Nature 558.7708 (2018).

[147] Peng Yao, Huaqiang Wu, Bin Gao, Jianshi Tang, Qingtian Zhang, Wenqiang Zhang, J Joshua Yang
and He Qian. “Fully hardware-implemented memristor convolutional neural network”. In: Nature
577.7792 (2020), pp. 641–646.

[148] Sujan K Gonugondla, Mingu Kang and Naresh R Shanbhag. “A variation-tolerant in-memory
machine learning classifier via on-chip training”. In: IEEE Journal of Solid-State Circuits 53.11 (2018),
pp. 3163–3173.

[149] Beiye Liu, Hai Li, Yiran Chen, Xin Li, Qing Wu and Tingwen Huang. “Vortex: Variation-aware
training for memristor X-bar”. In: Proceedings of the 52nd Annual Design Automation Conference.
2015, pp. 1–6.

[150] Chenchen Liu, Miao Hu, John Paul Strachan and Hai Li. “Rescuing memristor-based neuromorphic
design with high defects”. In: 2017 54th ACM/EDAC/IEEE Design Automation Conference (DAC).
IEEE. 2017, pp. 1–6.

[151] Shinsei Yoshikiyo, Naoko Misawa, Chihiro Matsui and Ken Takeuchi. “NN Algorithm Aware
Alternate Layer Retraining on Computation-in-Memory for Write Variation Compensation of
Non-volatile Memories at Edge AI”. In: 2023 7th IEEE Electron Devices Technology & Manufacturing
Conference (EDTM). IEEE. 2023, pp. 1–3.

[152] Shinsei Yoshikiyo, Naoko Misawa, Kasidit Toprasertpong, Shinichi Takagi, Chihiro Matsui and
Ken Takeuchi. “Edge Retraining of FeFET LM-GA CiM for Write Variation & Reliability Error
Compensation”. In: 2022 IEEE International Memory Workshop (IMW). 2022, pp. 1–4. doi: 10.1109/
IMW52921.2022.9779255.

[153] Sajad Darabi, Mouloud Belbahri, Matthieu Courbariaux and Vahid Partovi Nia. “Regularized binary
network training”. In: arXiv preprint arXiv:1812.11800 (2018).

[154] T. Kobayashi, K. Nogami, T. Shirotori, Y. Fujimoto and O. Watanabe. “A current-mode latch sense
amplifier and a static power saving input buffer for low-power architecture”. en. In: 1992 Symposium
on VLSI Circuits Digest of Technical Papers. Seattle, WA, USA: IEEE, 1992, pp. 28–29. isbn: 978-0-7803-
0701-8. doi: 10.1109/VLSIC.1992.229252. url: http://ieeexplore.ieee.org/document/229252/
(visited on 03/17/2022).

[155] Yuanzhuo Qu, Bruce F. Cockburn, Zhe Huang, Hao Cai, Yue Zhang, Weisheng Zhao and Jie
Han. “Variation-Resilient True Random Number Generators Based on Multiple STT-MTJs”. In:
IEEE Transactions on Nanotechnology 17.6 (Nov. 2018). Conference Name: IEEE Transactions on
Nanotechnology, pp. 1270–1281. issn: 1941-0085. doi: 10.1109/TNANO.2018.2873970.

[156] Won Ho Choi, Yang Lv, Jongyeon Kim, Abhishek Deshpande, Gyuseong Kang, Jian-Ping Wang
and Chris H. Kim. “A Magnetic Tunnel Junction based True Random Number Generator with
conditional perturb and real-time output probability tracking”. In: 2014 IEEE International Electron
Devices Meeting. ISSN: 2156-017X. Dec. 2014, pp. 12.5.1–12.5.4. doi: 10.1109/IEDM.2014.7047039.

[157] Satoshi Oosawa, Takayuki Konishi, Naoya Onizawa and Takahiro Hanyu. “Design of an STT-MTJ
based true random number generator using digitally controlled probability-locked loop”. In: 2015
IEEE 13th International New Circuits and Systems Conference (NEWCAS). June 2015, pp. 1–4. doi:
10.1109/NEWCAS.2015.7182089.

272

https://doi.org/10.1109/IMW52921.2022.9779255
https://doi.org/10.1109/IMW52921.2022.9779255
https://doi.org/10.1109/VLSIC.1992.229252
http://ieeexplore.ieee.org/document/229252/
https://doi.org/10.1109/TNANO.2018.2873970
https://doi.org/10.1109/IEDM.2014.7047039
https://doi.org/10.1109/NEWCAS.2015.7182089

[158] Tifenn Hirtzlin, Marc Bocquet, Bogdan Penkovsky, Jacques-Olivier Klein, Etienne Nowak, Elisa
Vianello, Jean-Michel Portal and Damien Querlioz. “Digital Biologically Plausible Implementation
of Binarized Neural Networks With Differential Hafnium Oxide Resistive Memory Arrays”. en. In:
Frontiers in Neuroscience 13 (Jan. 2020), p. 1383. issn: 1662-453X. doi: 10.3389/fnins.2019.01383.
url: https://www.frontiersin.org/article/10.3389/fnins.2019.01383/full (visited on
01/11/2022).

[159] Hsiang-Yun Cheng, Christian Hakert, Kuan-Hsun Chen, Yuan-Hao Chang, Jian-Jia Chen, Chia-Lin
Yang, Tei-Wei Kuo, et al. “Future computing platform design: A cross-layer design approach”. In:
2021 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE. 2021, pp. 312–317.

[160] Xiangyu Dong, Cong Xu, Yuan Xie and Norman P. Jouppi. “NVSim: A Circuit-Level Performance,
Energy, and Area Model for Emerging Nonvolatile Memory”. In: IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 31.7 (2012), pp. 994–1007. doi: 10.1109/TCAD.2012.
2185930.

[161] Joes Staal, Michael D Abràmoff, Meindert Niemeijer, Max A Viergever and Bram Van Ginneken.
“Ridge-based vessel segmentation in color images of the retina”. In: IEEE transactions on medical
imaging 23.4 (2004), pp. 501–509.

[162] Walid Al-Dhabyani, Mohammed Gomaa, Hussien Khaled and Aly Fahmy. “Dataset of breast
ultrasound images”. In: Data in brief 28 (2020), p. 104863.

[163] Electron microscopy dataset. https://www.epfl.ch/labs/cvlab/data/data-em/.
[164] Olaf Ronneberger, Philipp Fischer and Thomas Brox. “U-net: Convolutional networks for biomedical

image segmentation”. In: International Conference onMedical image computing and computer-assisted
intervention. Springer. 2015, pp. 234–241.

[165] Vijay Badrinarayanan Alex Kendall and Roberto Cipolla. “Bayesian SegNet: Model Uncertainty in
Deep Convolutional Encoder-Decoder Architectures for Scene Understanding”. In: Proceedings of
the British Machine Vision Conference (BMVC). 2017, pp. 57.1–57.12.

[166] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan and Serge Belongie.
“Feature pyramid networks for object detection”. In: CVPR. 2017.

[167] John Lazzaro, Sylvie Ryckebusch, Misha Anne Mahowald and Caver A Mead. “Winner-take-all
networks of O (n) complexity”. In: Advances in neural information processing systems 1 (1988).

[168] Ruizhe Cai, Ao Ren, Ning Liu, Caiwen Ding, Luhao Wang, Xuehai Qian, Massoud Pedram and
Yanzhi Wang. “VIBNN: Hardware acceleration of Bayesian neural networks”. In: ACM SIGPLAN
Notices 53.2 (2018), pp. 476–488.

[169] Xiaotao Jia, Jianlei Yang, Runze Liu, Xueyan Wang, Sorin Dan Cotofana and Weisheng Zhao.
“Efficient Computation Reduction in Bayesian Neural Networks Through Feature Decomposition
and Memorization”. In: IEEE Trans. on Neural Networks and Learning Systems 32 (Apr. 2021). issn:
2162-2388. doi: 10.1109/TNNLS.2020.2987760.

[170] Ruizhou Ding, Ting-Wu Chin, Zeye Liu and Diana Marculescu. “Regularizing activation distribution
for training binarized deep networks”. In: Proceedings of the IEEE/CVF CVPR. 2019, pp. 11408–11417.

[171] Haotong Qin, Xiangguo Zhang, Ruihao Gong, Yifu Ding, Yi Xu and Xianglong Liu. “Distribution-
sensitive information retention for accurate binary neural network”. In: International Journal of
Computer Vision (2022), pp. 1–22.

[172] Lu Hou, Quanming Yao and James T Kwok. “Loss-aware binarization of deep networks”. In: arXiv
preprint arXiv:1611.01600 (2016).

[173] Jungwook Choi, Zhuo Wang, Swagath Venkataramani, Pierce I-Jen Chuang, Vijayalakshmi Srini-
vasan and Kailash Gopalakrishnan. “Pact: Parameterized clipping activation for quantized neural
networks”. In: arXiv preprint arXiv:1805.06085 (2018).

[174] Behzad Razavi. “The StrongARM latch [a circuit for all seasons]”. In: IEEE Solid-State Circuits
Magazine 7.2 (2015), pp. 12–17.

273

https://doi.org/10.3389/fnins.2019.01383
https://www.frontiersin.org/article/10.3389/fnins.2019.01383/full
https://doi.org/10.1109/TCAD.2012.2185930
https://doi.org/10.1109/TCAD.2012.2185930
https://www.epfl.ch/labs/cvlab/data/data-em/
https://doi.org/10.1109/TNNLS.2020.2987760

BIBLIOGRAPHY

[175] Ruizhou Ding, Ting-Wu Chin, Zeye Liu and Diana Marculescu. “Regularizing activation distribution
for training binarized deep networks”. In: Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition. 2019, pp. 11408–11417.

[176] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen and Yuheng Zou. “Dorefa-net: Training
low bitwidth convolutional neural networks with low bitwidth gradients”. In: arXiv preprint
arXiv:1606.06160 (2016).

[177] Ruihao Gong, Xianglong Liu, Shenghu Jiang, Tianxiang Li, Peng Hu, Jiazhen Lin, Fengwei Yu and
Junjie Yan. “Differentiable soft quantization: Bridging full-precision and low-bit neural networks”.
In: Proceedings of the ICCV. 2019, pp. 4852–4861.

[178] Lu Hou, Quanming Yao and James T Kwok. “Loss-aware Binarization of Deep Networks”. In:
International Conference on Learning Representations (ICLR). 2017.

[179] Prabodh Katti, Nicolas Skatchkovsky, Osvaldo Simeone, Bipin Rajendran and Bashir M. Al-Hashimi.
“Bayesian Inference on Binary Spiking Networks Leveraging Nanoscale Device Stochasticity”. In:
ISCAS. 2023, pp. 1–5. doi: 10.1109/ISCAS46773.2023.10181438.

[180] Seo-Won Lee et al. “Emerging Three-Terminal Magnetic Memory Devices”. In: Proceedings of the
IEEE 104.10 (Oct. 2016). Conference Name: Proceedings of the IEEE, pp. 1831–1843. issn: 1558-2256.
doi: 10.1109/JPROC.2016.2543782.

[181] J Ma, C Ge, Y Wang, X An, J Gao, Z Yu and J He. COVID-19 CT Lung and Infection Segmentation
Dataset. Zenodo. 2020.

[182] Teresa Mendonça, Pedro M Ferreira, Jorge S Marques, André RS Marcal and Jorge Rozeira. “PH 2-A
dermoscopic image database for research and benchmarking”. In: IEEE. 2013, pp. 5437–5440.

[183] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu and Andrew Y Ng. “Reading
digits in natural images with unsupervised feature learning”. In: (2011).

[184] Adam Coates, Andrew Ng and Honglak Lee. “An analysis of single-layer networks in unsupervised
feature learning”. In: Proceedings of the fourteenth international conference on artificial intelligence
and statistics. JMLR Workshop and Conference Proceedings. 2011, pp. 215–223.

[185] Karen Simonyan and Andrew Zisserman. “Very deep convolutional networks for large-scale image
recognition”. In: arXiv preprint arXiv:1409.1556 (2014).

[186] Kamal Danouchi, Guillaume Prenat and Lorena Anghel. “Spin Orbit Torque-based Crossbar Array
for Error Resilient Binary Convolutional Neural Network”. In: 23RD IEEE LATIN-AMERICAN TEST
SYMPOSIUM. Montevideo, Uruguay, Sept. 2022. (Visited on 09/05/2023).

[187] Balaji Lakshminarayanan, Alexander Pritzel and Charles Blundell. “Simple and scalable predictive
uncertainty estimation using deep ensembles”. In: NeurIPS (2017).

[188] Wenchong He and Zhe Jiang. “A Survey on Uncertainty Quantification Methods for Deep Neural
Networks: An Uncertainty Source Perspective”. In: arXiv preprint arXiv:2302.13425 (2023).

[189] D. Ielmini, N. Lepri, P. Mannocci and A. Glukhov. “Status and challenges of in-memory computing
for neural accelerators”. In: 2022 International Symposium on VLSI Technology, Systems and Applica-
tions (VLSI-TSA). ISSN: 1930-8868. Apr. 2022, pp. 1–2. doi: 10.1109/VLSI-TSA54299.2022.9770972.
(Visited on 01/10/2024).

[190] Soyed Tuhin Ahmed, Kamal Danouchi, Michael Hefenbrock, Guillaume Prenat, Lorena Anghel and
Mehdi B. Tahoori. “Testing Spintronics Implemented Monte Carlo Dropout-Based Bayesian Neural
Networks”. In: 2022 IEEE European Test Symposium (ETS). IEEE. 2024, pp. 1–6.

[191] Corey Lammie, Wei Xiang, Bernabé Linares-Barranco and Mostafa Rahimi Azghadi. “MemTorch:
An open-source simulation framework for memristive deep learning systems”. In: Neurocomputing
485 (2022), pp. 124–133.

[192] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen and Yuheng Zou. “Dorefa-net: Training
low bitwidth convolutional neural networks with low bitwidth gradients”. In: (2016).

274

https://doi.org/10.1109/ISCAS46773.2023.10181438
https://doi.org/10.1109/JPROC.2016.2543782
https://doi.org/10.1109/VLSI-TSA54299.2022.9770972

[193] Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun. “Deep Residual Learning for Image
Recognition”. en. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las
Vegas, NV, USA: IEEE, June 2016, pp. 770–778. isbn: 978-1-4673-8851-1. doi: 10.1109/CVPR.2016.90.
url: http://ieeexplore.ieee.org/document/7780459/ (visited on 05/30/2023).

[194] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks for Large-Scale Image
Recognition. en. Tech. rep. arXiv:1409.1556. arXiv:1409.1556 [cs]. arXiv, Apr. 2015. url: http :
//arxiv.org/abs/1409.1556 (visited on 05/30/2023).

[195] Shimeng Yu. “Neuro-inspired computing with emerging nonvolatile memorys”. In: Proceedings of
the IEEE 106.2 (2018).

[196] J. Doevenspeck, K. Garello, S. Rao, F. Yasin, S. Couet, G. Jayakumar, A. Mallik, S. Cosemans, P.
Debacker, D. Verkest, R. Lauwereins, W. Dehaene and G.S. Kar. “Multi-pillar SOT-MRAM for
Accurate Analog in-Memory DNN Inference”. In: 2021 Symposium on VLSI Technology. IEEE, 2021,
pp. 1–2.

[197] YC Wu, Kevin Garello, W Kim, M Gupta, M Perumkunnil, V Kateel, S Couet, R Carpenter, S
Rao, S Van Beek, et al. “Voltage-gate-assisted spin-orbit-torque magnetic random-access memory
for high-density and low-power embedded applications”. In: Physical Review Applied 15.6 (2021),
p. 064015.

[198] Debesh Jha, Pia H Smedsrud, Michael A Riegler, Pål Halvorsen, Thomas de Lange, Dag Johansen
and Håvard D Johansen. “Kvasir-seg: A segmented polyp dataset”. In: MultiMedia Modeling: 26th
International Conference, MMM 2020, Daejeon, South Korea, January 5–8, 2020, Proceedings, Part II
26. n.d.: Springer, 2020, pp. 451–462.

[199] Gabriel J Brostow, Julien Fauqueur and Roberto Cipolla. “Semantic object classes in video: A
high-definition ground truth database”. In: Pattern Recognition Letters (2009).

[200] Zhongrui Wang, Huaqiang Wu, Geoffrey W Burr, Cheol Seong Hwang, Kang L Wang, Qiangfei Xia
and J Joshua Yang. “Resistive switching materials for information processing”. In: Nature Reviews
Materials 5.3 (2020), pp. 173–195.

[201] Song Han, Huizi Mao and William J Dally. “Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding”. In: arXiv preprint arXiv:1510.00149 (2015).

[202] Biresh Kumar Joardar, Janardhan Rao Doppa, Hai Li, Krishnendu Chakrabarty and Partha Pra-
tim Pande. “ReaLPrune: ReRAM Crossbar-Aware Lottery Ticket Pruning for CNNs”. In: IEEE
Transactions on Emerging Topics in Computing (2022).

[203] Diederik P Kingma andMaxWelling. “Auto-encoding variational bayes”. In: arXiv preprint arXiv:1312.6114
(2013).

[204] Soyed Tuhin Ahmed and Mehdi B Tahoori. “Fault-tolerant Neuromorphic Computing with Func-
tional ATPG for Post-manufacturing Re-calibration”. In: 2022 IEEE 40th VLSI Test Symposium (VTS).
IEEE. 2022, pp. 1–7.

[205] Soyed Tuhin Ahmed and Mehdi B Tahoori. “Fault-tolerant Neuromorphic Computing with Mem-
ristors Using Functional ATPG for Efficient Re-calibration”. In: IEEE Design & Test (2023).

[206] Andrew G Wilson and Pavel Izmailov. “Bayesian deep learning and a probabilistic perspective of
generalization”. In: Advances in neural information processing systems 33 (2020), pp. 4697–4708.

[207] Said Hamdioui, Lei Xie, Hoang Anh Du Nguyen, Mottaqiallah Taouil, Koen Bertels, Henk Corporaal,
Hailong Jiao, Francky Catthoor, Dirk Wouters, Linn Eike, et al. “Memristor based computation-in-
memory architecture for data-intensive applications”. In: 2015 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE. 2015, pp. 1718–1725.

[208] Shimeng Yu, Hongwu Jiang, Shanshi Huang, Xiaochen Peng and Anni Lu. “Compute-in-memory
chips for deep learning: Recent trends and prospects”. In: IEEE circuits and systems magazine 21.3
(2021), pp. 31–56.

275

https://doi.org/10.1109/CVPR.2016.90
http://ieeexplore.ieee.org/document/7780459/
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556

BIBLIOGRAPHY

[209] Onur Mutlu, Saugata Ghose, Juan Gómez-Luna and Rachata Ausavarungnirun. “Processing data
where it makes sense: Enabling in-memory computation”. In: Microprocessors and Microsystems 67
(2019), pp. 28–41.

[210] Thorbjörn Posewsky and Daniel Ziener. “Efficient deep neural network acceleration through FPGA-
based batch processing”. In: 2016 International Conference on ReConFigurable Computing and FPGAs
(ReConFig). IEEE. 2016, pp. 1–8.

[211] Zongwei Zhou, Md Mahfuzur Rahman Siddiquee, Nima Tajbakhsh and Jianming Liang. “Unet++:
Redesigning skip connections to exploit multiscale features in image segmentation”. In: IEEE
transactions on medical imaging 39.6 (2019), pp. 1856–1867.

[212] José Miguel Hernández-Lobato and Ryan Adams. “Probabilistic backpropagation for scalable
learning of bayesian neural networks”. In: International conference on machine learning. PMLR.
2015, pp. 1861–1869.

[213] Raimund Ubar, Jaan Raik and Heinrich Theodor Vierhaus. Design and test technology for dependable
systems-on-chip. IGI Global, 2011.

[214] Wei Yang. pytorch-classification. url: https://github.com/bearpaw/pytorch-classification?
tab=readme-ov-file.

[215] Andrew Ilyas, Logan Engstrom, Anish Athalye and Jessy Lin. “Black-box adversarial attacks with
limited queries and information”. In: International Conference on Machine Learning. PMLR. 2018,
pp. 2137–2146.

[216] Mateusz Buda, Ashirbani Saha and Maciej A Mazurowski. “Association of genomic subtypes of
lower-grade gliomas with shape features automatically extracted by a deep learning algorithm”. In:
Computers in biology and medicine 109 (2019), pp. 218–225.

[217] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár and C Lawrence Zitnick. “Microsoft coco: Common objects in context”. In: Computer Vision–
ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V
13. Springer. 2014, pp. 740–755.

[218] Gao Huang, Zhuang Liu, Laurens Van Der Maaten and Kilian Q Weinberger. “Densely connected
convolutional networks”. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. 2017, pp. 4700–4708.

[219] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov and Liang-Chieh Chen. “Mo-
bilenetv2: Inverted residuals and linear bottlenecks”. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. 2018, pp. 4510–4520.

[220] Liang-Chieh Chen, George Papandreou, Florian Schroff and Hartwig Adam. “Rethinking atrous
convolution for semantic image segmentation”. In: arXiv preprint arXiv:1706.05587 (2017).

[221] Soyed Tuhin Ahmed and Mehdi Tahoori. “Few-Shot Testing: Estimating Uncertainty of Memristive
Deep Neural Networks Using One Bayesian Test Vector”. In: (2024). arXiv: 2405.18894 [cs.LG].

[222] Xiaohan Ding, Xiangyu Zhang, Ningning Ma, Jungong Han, Guiguang Ding and Jian Sun. “Repvgg:
Making vgg-style convnets great again”. In: Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. 2021, pp. 13733–13742.

[223] Alex Krizhevsky, Geoffrey Hinton, et al. “Learning multiple layers of features from tiny images”.
In: (2009).

[224] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens and Zbigniew Wojna. “Rethinking
the inception architecture for computer vision”. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. 2016, pp. 2818–2826.

[225] Jonathan Long, Evan Shelhamer and Trevor Darrell. “Fully convolutional networks for semantic
segmentation”. In: Proceedings of the IEEE conference on computer vision and pattern recognition.
2015, pp. 3431–3440.

276

https://github.com/bearpaw/pytorch-classification?tab=readme-ov-file
https://github.com/bearpaw/pytorch-classification?tab=readme-ov-file
https://arxiv.org/abs/2405.18894

[226] Alec Radford, Luke Metz and Soumith Chintala. Unsupervised Representation Learning with Deep
Convolutional Generative Adversarial Networks. 2016. arXiv: 1511.06434 [cs.LG].

[227] Negar Rostamzadeh, Seyedarian Hosseini, Thomas Boquet, Wojciech Stokowiec, Ying Zhang,
Christian Jauvin and Chris Pal. Fashion-Gen: The Generative Fashion Dataset and Challenge. 2018.
arXiv: 1806.08317 [stat.ML].

[228] Yaofo Chen. PyTorch CIFAR Models. https://github.com/chenyaofo/pytorch-cifar-models.
2013.

[229] Arjun Chaudhuri, Ching-Yuan Chen, Jonti Talukdar and Krishnendu Chakrabarty. “Functional
Test Generation for AI Accelerators using Bayesian Optimization”. In: 2023 IEEE 41th VLSI Test
Symposium (VTS). IEEE. 2023, pp. 1–7.

[230] Minah Lee, Anni Lu, Mandovi Mukherjee, Shimeng Yu and Saibal Mukhopadhyay. “CLUE: Cross-
Layer Uncertainty Estimator for Reliable Neural Perception using Processing-in-Memory Accelera-
tors”. In: IJCNN. 2023.

[231] Jakob Gawlikowski, Cedrique Rovile Njieutcheu Tassi, Mohsin Ali, Jongseok Lee, Matthias Humt,
Jianxiang Feng, Anna Kruspe, Rudolph Triebel, Peter Jung, Ribana Roscher, et al. “A survey of
uncertainty in deep neural networks”. In: Artificial Intelligence Review 56.Suppl 1 (2023), pp. 1513–
1589.

[232] Fei Su et al. “Testability and dependability of AI hardware: Survey, trends, challenges, and perspec-
tives”. In: IEEE Design & Test (2023).

[233] Soyed Tuhin Ahmed et al. “Concurrent Self-testing and Uncertainty Estimation of Neural Networks
Using Uncertainty Fingerprint”. In: arXiv preprint arXiv:2401.01458 (2024).

[234] Sagar Vaze, Kai Han, Andrea Vedaldi and Andrew Zisserman. “Open-set recognition: A good
closed-set classifier is all you need?” In: arXiv preprint arXiv:2110.06207 (2021).

[235] Qing Dong, Zhehong Wang, Jongyup Lim, Yiqun Zhang, Yi-Chun Shih, Yu-Der Chih, Jonathan
Chang, David Blaauw and Dennis Sylvester. “A 1Mb 28nm STT-MRAM with 2.8 ns read access time
at 1.2 V VDD using single-cap offset-cancelled sense amplifier and in-situ self-write-termination”.
In: 2018 IEEE Int. Solid-State Circuits Conf.-(ISSCC). IEEE. 2018.

[236] E. M. Boujamaa, S. M. Ali, S. N. Wandji, A. Gourio, S. Pyo, G. Koh, Y. Song, T. Song, J. Kye, J. C. Vial,
A. Sowden, M. Rathor and C. Dray. “A 14.7Mb/mm2 28nm FDSOI STT-MRAMwith Current Starved
Read Path, 52Ω/Sigma Offset Voltage Sense Amplifier and Fully Trimmable CTAT Reference”. In:
IEEE Symp. on VLSI Circuits. 2020. doi: 10.1109/VLSICircuits18222.2020.9162803.

[237] A. Antonyan, S. Pyo, H. Jung, G. Koh and T. Song. “28-nm 1T-1MTJ 8Mb 64 I/O STT-MRAM with
symmetric 3-section reference structure and cross-coupled sensing amplifier”. In: IEEE Int. Symp.
on Circuits and Systems (ISCAS). 2017. doi: 10.1109/ISCAS.2017.8050918.

[238] Andrew D Kent and Daniel C Worledge. “A new spin on magnetic memories”. In: Nature nanotech-
nology 10.3 (2015), pp. 187–191.

[239] Soyed Tuhin Ahmed, Mahta Mayahinia, Michael Hefenbrock, Christopher Münch and Mehdi B
Tahoori. “Process and Runtime Variation Robustness for Spintronic-Based Neuromorphic Fabric”.
In: 2022 IEEE European Test Symposium (ETS). IEEE. 2022, pp. 1–2.

[240] Ali Shafiee, Anirban Nag, Naveen Muralimanohar, Rajeev Balasubramonian, John Paul Strachan,
Miao Hu, R Stanley Williams and Vivek Srikumar. “ISAAC: A convolutional neural network
accelerator with in-situ analog arithmetic in crossbars”. In: ACM SIGARCH Computer Architecture
News 44.3 (2016).

[241] Yoshua Bengio, Nicholas Léonard and Aaron Courville. Estimating or Propagating Gradients Through
Stochastic Neurons for Conditional Computation. 2013. arXiv: 1308.3432 [cs.LG].

[242] David E Rumelhart, Geoffrey E Hinton and Ronald J Williams. Learning internal representations by
error propagation. Tech. rep. California Univ San Diego La Jolla Inst for Cognitive Science, 1985.

277

https://arxiv.org/abs/1511.06434
https://arxiv.org/abs/1806.08317
https://github.com/chenyaofo/pytorch-cifar-models
https://doi.org/10.1109/VLSICircuits18222.2020.9162803
https://doi.org/10.1109/ISCAS.2017.8050918
https://arxiv.org/abs/1308.3432

BIBLIOGRAPHY

[243] Sebastian Ruder. “An overview of gradient descent optimization algorithms”. In: arXiv preprint
arXiv:1609.04747 (2016).

[244] Adam Paszke et al. “Pytorch: An imperative style, high-performance deep learning library”. In:
Advances in neural information processing systems 32 (2019), pp. 8026–8037.

[245] Fabrice Bernard-Granger, Bernard Dieny, Raphael Fascio and Kotb Jabeur. “SPITT: A magnetic
tunnel junction SPICE compact model for STT-MRAM”. In: Proceedings of the MOS-AK Workshop
of the Design, Automation & Test in Europe (DATE). 2015.

[246] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv and Yoshua Bengio. “Binarized
Neural Networks”. In: 29 (2016).

[247] Y. Shih, C. Lee, Y. Chang, P. Lee, H. Lin, Y. Chen, K. Lin, T. Yeh, H. Yu, H. H. L. Chuang, Y. Chih
and J. Chang. “Logic Process Compatible 40-nm 16-Mb, Embedded Perpendicular-MRAM With
Hybrid-Resistance Reference, Sub- 𝜇 A Sensing Resolution, and 17.5-nS Read Access Time”. In:
IEEE Journal of Solid-State Circuits 54.4 (Apr. 2019). doi: 10.1109/JSSC.2018.2889106.

[248] Stela Pudar Hozo, Benjamin Djulbegovic and Iztok Hozo. “Estimating the mean and variance from
the median, range, and the size of a sample”. In: BMC medical research methodology 5.1 (2005),
pp. 1–10.

[249] Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun. “Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification”. In: Proceedings of the IEEE international
conference on computer vision. 2015, pp. 1026–1034.

[250] Yoshua Bengio, Nicholas Léonard and Aaron Courville. “Estimating or propagating gradients
through stochastic neurons for conditional computation”. In: arXiv preprint arXiv:1308.3432 (2013).

[251] Qing Dong, Zhehong Wang, Jongyup Lim, Yiqun Zhang, Mahmut E Sinangil, Yi-Chun Shih, Yu-Der
Chih, Jonathan Chang, David Blaauw and Dennis Sylvester. “A 1-Mb 28-nm 1T1MTJ STT-MRAM
with single-cap offset-cancelled sense amplifier and in situ self-write-termination”. In: IEEE Journal
of Solid-State Circuits 54.1 (2018), pp. 231–239.

[252] Yi-Chun Shih, Chia-Fu Lee, Yen-An Chang, Po-Hao Lee, Hon-Jarn Lin, Yu-Lin Chen, Chieh-Pu Lo,
Ku-Feng Lin, Tien-Wei Chiang, Yuan-Jen Lee, et al. “A Reflow-Capable, Embedded 8Mb STT-MRAM
Macro with 9ns Read Access Time in 16nm FinFet Logic CMOS Process”. In: 2020 IEEE International
Electron Devices Meeting (IEDM). IEEE. 2020, pp. 11–4.

[253] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”. In: arXiv preprint
arXiv:1412.6980 (2014).

[254] Han Xiao, Kashif Rasul and Roland Vollgraf. Fashion-MNIST: a Novel Image Dataset for Benchmarking
Machine Learning Algorithms. Aug. 28, 2017. arXiv: cs.LG/1708.07747 [cs.LG].

[255] Soyed Tuhin Ahmed, Surendra Hemaram and Mehdi B Tahoori. “NN-ECC: Embedding Error
Correction Codes in Neural Network Weight Memories using Multi-task Learning”. In: 2024 IEEE
42th VLSI Test Symposium (VTS). IEEE. 2024, pp. 1–6.

[256] Michael B. Sullivan, Nirmal R. Saxena, Mike O’Connor, Donghyuk Lee, Paul Racunas, Saurabh
Hukerikar, Timothy Tsai, Siva Kumar Sastry Hari and Stephen W. Keckler. “Characterizing and
Mitigating Soft Errors in GPU DRAM”. In: IEEE Micro 42.4 (2022), pp. 69–77. doi: 10.1109/MM.2022.
3163122.

[257] G. Tshagharyan, G. Harutyunyan, S. Shoukourian and Y. Zorian. “Experimental study on Hamming
and Hsiao codes in the context of embedded applications”. In: 2017 IEEE East-West Design & Test
Symposium (EWDTS). 2017, pp. 1–4. doi: 10.1109/EWDTS.2017.8110065.

[258] Dmitri Strukov. “The area and latency tradeoffs of binary bit-parallel BCH decoders for prospective
nanoelectronic memories”. In: 2006 Fortieth Asilomar Conference on Signals, Systems and Computers.
2006, pp. 1183–1187. doi: 10.1109/ACSSC.2006.354942.

278

https://doi.org/10.1109/JSSC.2018.2889106
https://arxiv.org/abs/cs.LG/1708.07747
https://doi.org/10.1109/MM.2022.3163122
https://doi.org/10.1109/MM.2022.3163122
https://doi.org/10.1109/EWDTS.2017.8110065
https://doi.org/10.1109/ACSSC.2006.354942

[259] Ching-Yi Chen, Hsiu-Chuan Shih, Cheng-Wen Wu, Chih-He Lin, Pi-Feng Chiu, Shyh-Shyuan Sheu
and Frederick T. Chen. “RRAM Defect Modeling and Failure Analysis Based on March Test and a
Novel Squeeze-Search Scheme”. In: IEEE TC 64 (2015). doi: 10.1109/TC.2014.12.

279

https://doi.org/10.1109/TC.2014.12

Part V.

Appendix

Soyed Tuhin Ahmed
Curriculum Vitae

Education
2020–2024 Doctor of Engineering (Dr. Ing.) in Computer Science, Karlsruhe Institute of Technology (KIT),

Karlsruhe, Germany.
Thesis: Scalable and Efficient Approaches to Estimating and Reducing Uncertainty in Edge AI, Advisor: Prof.
Dr. Mehdi B. Tahoori, IEEE Fellow

2016–2019 Master of Science in Communications Engineering, Technische Universität München (TU München),
München, Germany.
Focus: Computer Architecture, Design Automation, Embedded Systems, Advisor: Prof. Dr. Ulf Schlichtmann

2012–2016 Bachelor of Science in Electrical and Electronics Engineering, American International University
Bangladesh (AIUB), Dhaka, Bangladesh, Summa Cum Laude distinction.
Focus: Computer Architecture, Electronics, Embedded Systems, Advisor: Assist. Prof. Saiful Islam Khan

Research Experience
9/2020–
Present

Scientific Researcher, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
Chair of Dependable Nano Computing (CDNC), Institut für Technische Informatik (ITEC)
{ Lead and support research to accelerate AI applications on emerging accelerator architectures
{ Designing neural network architecture, optimizing training and inference algorithms to improve

efficiency, reliability, testability, and uncertainty estimates of next-gen AI workloads
{ Collaborate with other researchers across diverse disciplines, including circuit designers, device physics

experts, and DfT experts
{ Accomplishments: 1) Improved inference accuracy by up to 90% under unreliable computations, 2)

designed testability methods that can achieve 100% fault coverage with a reduction in test vectors
by 10000×, 3) designed Bayesian neural networks methods that reduced energy consumption up to
100×, memory overhead by up to 158.7×, and can detect up to 100% out-of-distribution data.

9/2018–
3/2019

Research Internship, Robert Bosch GmbH Center for Research and Advance Development, Robert
Bosch Campus 1, 71272 Renningen, Germany.
{ Researched and benchmarked RISC-V microprocessor architectures (implemented on FPGA) for

internal applications
{ Benchmarked ARM Cortex-M microcontroller architectures as baseline
{ Compiler optimization for internal applications
{ Accomplishments: were able to finish the designated tasks 1 month before the expected time

3/2018–
5/2018

Research Internship, Technische Universität München (TU München), Chair of Electronic Design
Automation, Arcisstr. 21, 80333, Munich, Germany.
Advisor: Prof. Dr.-Ing. habil. Helmut Gräb, IEEE Fellow
{ Implemented a cryptographic concept in FPGA and performed functional verification
{ Designed and verified finite state machines, random number generators, and layout constraints with

VHDL

Engineering Experience
4/2019–
12/2019

Part-time: Embedded Software Engineer, Infineon Technologies, Neubiberg, Germany.
Am Campeon 8b, 85579 Neubiberg, Germany
{ Developed a code-coverage tool for microcontrollers to ensure performance and reliability
{ Programming languages used: C/C++ , Python, CSS, Shell Scripting

Rintheim – Karlsruhe, Germany
H +4917634358645 • B soyed.ahmed@kit.edu

Í https://soyedtuhinahmed.github.io 1/5

{ Testing: PyTest, automated test procedures using Jenkins for continuous integration

Entrepreneur Experience
10/2017–
02/2018

MeinTV (Start-up venture to develop an entertainment box), UnternehmerTUM (Center for
Innovation and Business Creation at TUM), München, Germany.
{ Proposed, implemented, and presented a startup project “MeinTV: Entertainment Box”
{ Developed leadership, recruitment, and engineering skills
{ Lead research, innovation, and embedded system implementation

Funded Research Projects Worked On
{ NeuSPIN – An ANR/DFKI project: NeuSPIN stands for Design of a reliable edge neuromorphic

system based on spintronics for Green AI
{ NeuroTest – A DFG project: Testing Solutions for Neuromorphic Circuits and Architectures

Teaching and Mentoring
Software Engineering Practice [Requires curriculum development in each semester]
{ Summer 22: Pytorch-Based Neuromorphic Computing Simulation Tool
{ Winter 22/23: Neural Network-based Image Classification System on Heterogeneous Platforms
{ Winter 23/24: NeuroShift Dashboard: A Web-based Framework for Monitoring Neural Networks

Dynamics
{ Summer 24: Developing Android/IOS App for Benchmarking AI Applications in Mobile Devices

Thesis
Supervision 1. "Ensuring Reliability and Availability of Neural Networks Mapped to Neuromorphic Crossbar Arrays,"

Roman Rakhmatullin, Karlsruhe Institute of Technology (KIT)
2. "Developing and Evaluating Stochastic Binarized Activations for Uncertainty Estimation in Binary

Neural Networks," Marc Simon Falkenberg, Karlsruhe Institute of Technology (KIT)
3. "Developing Machine Learning-based tool," Aylin Kurumahmut, Karlsruhe Institute of Technology

(KIT) and CGI Inc.
4. "One-Shot Uncertainty Estimation Using Population Class," Karlsruhe Institute of Technology (KIT),

Hakima Marouan Marouan.

Student
Researcher 1. July 23 (one month): Coarse-grained Fault Localization of Deep Neural Networks, Marzieh Malekzadeh

Mahani, Karlsruhe Institute of Technology (KIT), studying MSc Remote Sensing and Geoinformatics
2. Summer 24: Evaluation of Uncertainty Estimation of Deep Learning Model Under Data Distribution

Shift, Lyes Slimani, Daniel Grévent, Florian Felix Zager, Yan-Keon Elster, Julius Emanuel Weilert,
Karlsruhe Institute of Technology (KIT)

Summer
Internship

Summer 22: Analysis and Implementation of Binary Neural Networks for Hardware Acceleration in
FPGAs, Mehdi Toundi, Polytech Montpellier, France

Outreach & Professional Development
Reviewer For

{ IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
{ Springer Neural Computing and Applications

Co-Founder Jobs for Bangladeshi People in Germany (online platform for helping people land jobs in Germany)

Rintheim – Karlsruhe, Germany
H +4917634358645 • B soyed.ahmed@kit.edu

Í https://soyedtuhinahmed.github.io 2/5

Awards And Nominations

{ Marie Curie Fellowship from University of York, UK, 2022, (did not pursue)
{ Richard Newton Young Student Fellowship at the Design Automation Conference 2022
{ Summa-Cum-Laude and university gold medal from American International University Bangladesh

(AIUB), 2016
{ Academic Merit Scholarship from American International University Bangladesh (AIUB), 2013-2015
{ EIT Digital Scholarships [merit-based scholarships and are offered to the top applicants], entry at

KTH Royal Institute of Technology, Sweden, 2016 (did not pursue)
{ Selected paper from VLSI Test Symposium 2022 to appear in the special issue of IEEE Design and

Test
{ Selected paper from Nanoscale Architectures Symposium (NANOARCH 2022) to appear in the special

issue of IEEE Transactions on Nanotechnology
{ Three best paper award nominations at premier conferences (IEEE DATE 2024, ACM NANOARCH

2022, IEEE VTS 2022)
{ Best paper award of IEEE Journal on Emerging and Selected Topics in Circuits and Systems best

paper award nominations (Nominees: Prof. Yiran Chen, Duke University USA, Prof. Partha Pratim
Pande, Washington State University USA, and Fei Su, Senior lead architect at Intel)

{ Received funding and letter of appreciation for the Bachelor’s thesis from "Tech Shop BD," the most
popular electronic component seller in Bangladesh

{ Finalist of the PhD forum of premier conferences such as Design, Automation, and Test in Europe
(DATE) (2×) and Embedded System Week (1×)

List of Scientific Publications (First Author)
Journals

[J1] Ahmed, Soyed Tuhin, Michael Hefenbrock, Christopher Münch, and Mehdi B. Tahoori, "Neuroscrub+:
Mitigating retention faults using flexible approximate scrubbing in neuromorphic fabric based on resistive
memories." IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 42, no. 5
(2022): 1490-1503

[J2] Ahmed, Soyed Tuhin, Kamal Danouchi, Christopher Münch, Guillaume Prenat, Lorena Anghel, and
Mehdi B. Tahoori. "SpinDrop: Dropout-Based Bayesian Binary Neural Networks with spintronic
Implementation." IEEE Journal on Emerging and Selected Topics in Circuits and Systems 13, no. 1
(2023): 150-164

[J3] Ahmed, Soyed Tuhin, and Mehdi B. Tahoori, "Fault-tolerant Neuromorphic Computing with Memristors
Using Functional ATPG for Efficient Re-calibration." IEEE Design and Test (2023), [Revised Publication
for Top Picks in VTS 2022]

[J4] Ahmed, Soyed Tuhin, Mahta Mayahinia, Michael Hefenbrock, Christopher Münch, and Mehdi
B. Tahoori. "Design-time Reference Current Generation for Robust Spintronic-based Neuromorphic
Architecture." ACM Journal on Emerging Technologies in Computing Systems 20, no. 1 (2023): 1-20,

[J5] Ahmed, Soyed Tuhin, Kamal Danouchi, Michael Hefenbrock, Guillaume Prenat, Lorena Anghel,
and Mehdi B. Tahoori. "SpinBayes: Algorithm-Hardware Co-Design for Uncertainty Estimation Using
Bayesian In-Memory Approximation on Spintronic-Based Architectures, ESWeek 2023/ACM Transactions
on Embedded Computing Systems, 2023

[J6] Ahmed, Soyed Tuhin, Kamal Danouchi, Michael Hefenbrock, Guillaume Prenat, Lorena Anghel, and
Mehdi B. Tahoori, "Spatial-SpinDrop: Spatial Dropout-based Binary Bayesian Neural Network with
Spintronics Implementation", IEEE Transactions on Nanotechnology (TNANO) [Accepted], 2023

[J7] Ahmed, Soyed Tuhin, Kamal Danouchi, Michael Hefenbrock, Guillaume Prenat, Lorena Anghel, and
Mehdi B. Tahoori, "Scale-dropout: Estimating uncertainty in deep neural networks using stochastic
scale", IEEE Transactions on Circuits and Systems I: Regular Papers (TCAS-I) [Under Review], 2023

[J8] Ahmed, Soyed Tuhin, and Mehdi B. Tahoori, "One-Shot Online Testing of Deep Neural Networks
Based on Distribution Shift Detection", IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD) [Accepted], 2023

Rintheim – Karlsruhe, Germany
H +4917634358645 • B soyed.ahmed@kit.edu

Í https://soyedtuhinahmed.github.io 3/5

[J9] Ahmed, Soyed Tuhin, and Mehdi B. Tahoori, "Concurrent Self-testing and Uncertainty Estimation of
Neural Networks Using Uncertainty Fingerprint", IEEE Transactions on Emerging Topics in Computing,
2024 [Under Review]
Conferences

[C1] Ahmed, Soyed Tuhin, Kamal Danouchi, Michael Hefenbrock, Guillaume Prenat, Lorena Anghel, and
Mehdi B. Tahoori, "Binary Bayesian Neural Networks for Efficient Uncertainty Estimation Leveraging
Inherent Stochasticity of Spintronic Devices", IEEE/ACM International Symposium on Nanoscale
Architectures (NANOARCH), 2022 [Best Paper Candidate]

[C2] Ahmed, Soyed Tuhin, Michael Hefenbrock, Christopher Münch, and Mehdi B. Tahoori, "NeuroScrub:
Mitigating Retention Failures Using Approximate Scrubbing in Neuromorphic Fabric Based on Resistive
Memories", Proceedings of the European Test Symposium (ETS), 2021

[C3] Ahmed, Soyed Tuhin, Roman Rakhmatullin, and Mehdi B. Tahoori, "Online Fault-Tolerance for
Memristive Neuromorphic Fabric Based on Local Approximation", 28th IEEE European Test Symposium,
2023

[C4] Ahmed, Soyed Tuhin, Kamal Danouchi, Michael Hefenbrock, Guillaume Prenat, Lorena Anghel, and
Mehdi B. Tahoori, "Scalable Spintronics-based Bayesian Neural Network for Uncertainty Estimation",
Design, Automation and Test in Europe Conference, 2023

[C5] Ahmed, Soyed Tuhin, and Mehdi B. Tahoori, Compact Functional Test Generation for Memristive Deep
Learning Implementations using Approximate Gradient Ranking, IEEE International Test Conference
(ITC), 2022

[C6] Ahmed, Soyed Tuhin, Mahta Mayahinia, Michael Hefenbrock, Christopher Münch, and Mehdi B.
Tahoori, "Process and Runtime Variation Robustness for Spintronic-Based Neuromorphic Fabric", IEEE
European Test Symposium (ETS), 2022

[C7] Ahmed, Soyed Tuhin, and Mehdi B. Tahoori, "Fault-tolerant Neuromorphic Computing with Functional
ATPG for Post-manufacturing Re-calibration", 40th VLSI Test Symposium (VTS), 2022 [Best Paper
Candidate]

[C8] Ahmed, Soyed Tuhin, Hemaram, Surendra, Mehdi B. Tahoori, Embedding Neural Network Parameters
with Self Error Correcting Coding using Multi-task Learning, 42th VLSI Test Symposium (VTS), 2024

[C9] Ahmed, Soyed Tuhin, Kamal Danouchi, Michael Hefenbrock, Guillaume Prenat, Lorena Anghel, and
Mehdi B. Tahoori, "Enhancing Reliability of Neural Networks at the Edge: Inverted Normalization with
Stochastic Affine Transformations", Design, Automation and Test in Europe Conference (DATE), 2024
[Accepted, Best Paper Candidate]

[C10] Ahmed, Soyed Tuhin, Kamal Danouchi, Michael Hefenbrock, Guillaume Prenat, Lorena Anghel, and
Mehdi B. Tahoori, "Testing Spintronics Implemented Monte Carlo Dropout-Based Bayesian Neural
Networks", IEEE European Test Symposium, 2024

[C11] Ahmed, Soyed Tuhin, Kamal Danouchi, Michael Hefenbrock, Guillaume Prenat, Lorena Anghel, and
Mehdi B. Tahoori, "NeuSpin: Design of a Reliable Edge Neuromorphic System Based on Spintronics for
Green AI", 2024, Design, Automation and Test in Europe Conference (DATE), 2024

[C12] Ahmed, Soyed Tuhin, and Mehdi B. Tahoori, "Estimating Model Uncertainty of Memristive Deep
Neural Networks Using One Bayesian Test Vector", 2024 [Under Review]

[C13] Ahmed, Soyed Tuhin, and Mehdi B. Tahoori, "Tiny Deep Ensemble: Uncertainty Estimation in Edge
AI Accelerators via Ensembling Normalization Layers with Shared Weights", International Conference on
Computer-Aided Design (ICCAD), 2024 [Under Review]

List of Scientific Publications (Co-Author)
Conferences

[C1] Hemaram, Surendra, Ahmed, Soyed Tuhin, Mahta Mayahinia, Christopher Münch, and Mehdi B.
Tahoori, A Low Overhead Checksum Technique for Error Correction in Memristive Crossbar for Deep
Learning Applications, IEEE 41st VLSI Test Symposium (VTS), 2023

Rintheim – Karlsruhe, Germany
H +4917634358645 • B soyed.ahmed@kit.edu

Í https://soyedtuhinahmed.github.io 4/5

[C2] Jafari, Atousa, Mahta Mayahinia, Ahmed, Soyed Tuhin, Christopher Münch, and Mehdi B. Tahoori,
MVSTT: A Multi-Value Computation-in-Memory based on Spin-Transfer Torque Memories, 25th
Euromicro Conference on Digital System Design (DSD), 2022

PhD-Forum
[P1] Ahmed, Soyed Tuhin, Reliable Memristive Neuromorphic In-Memory Computing: An Algorithm-

Hardware Co-Design Approach, in Design, Automation and Test in Europe Conference (DATE), 2023
[P2] Ahmed, Soyed Tuhin, Scalable Uncertainty Estimation Approaches in Memristive Deep Learning, in

Embedded Systems Week (ESWEEK), 2023
[P3] Ahmed, Soyed Tuhin, Scalable and Efficient Methods for Uncertainty Estimation and Reduction in

Deep Learning, in Design, Automation and Test in Europe Conference (DATE), 2024

Conference/Workshop Presentation
[T1] "NeuroScrub: Mitigating Retention Failures Using Approximate Scrubbing in Neuromorphic Fabric

Based on Resistive Memories", Proceedings of the European Test Symposium (ETS), 2021
[T2] ”Binary bayesian neural networks for efficient uncertainty estimation leveraging inherent stochasticity of

spintronic devices." In 17th ACM International Symposium on Nanoscale Architectures, 2022
[T3] "Enhancing Reliability of Neural Networks at the Edge: Inverted Normalization with Stochastic Affine

Transformations." In Design, Automation & Test in Europe Conference & Exhibition (DATE), 2024
[T4] ”Testing Spintronics Implemented Monte Carlo Dropout-Based Bayesian Neural Networks." In IEEE

European Test Symposium (ETS), 2024
[T5] "SpinBayes: Algorithm-Hardware Co-Design for Uncertainty Estimation Using Bayesian In-Memory

Approximation on Spintronic-Based Architectures” in International Conference on Hardware/Software
Codesign and System Synthesis (CODES+ISSS), 2023

[T6] "Fault-tolerant Neuromorphic Computing with Functional ATPG for Post-manufacturing Re-calibration",
40th VLSI Test Symposium (VTS), 2022

[T7] "Online Fault-Tolerance for Memristive Neuromorphic Fabric Based on Local Approximation", 28th
IEEE European Test Symposium, 2023

[T8] ”NeuSpin: Design of a Reliable Edge Neuromorphic System Based on Spintronics for Green AI" In
Design, Automation & Test in Europe Conference & Exhibition (DATE), 2024

[T9] "Test Vector Compression for the Functional Testing of AI Accelerators.” 4th workshop on AI Hardware:
Test, Reliability and Security” (AI-TREATS), 2024

Rintheim – Karlsruhe, Germany
H +4917634358645 • B soyed.ahmed@kit.edu

Í https://soyedtuhinahmed.github.io 5/5

List of Figures

1.1. The training flow of NNs. 1
1.2. A few examples of edge AI devices and applications, including safety-critical applications such

as autonomous driving and industrial predictive maintenance. 2
1.3. Visualization of the uncertainty of 3-class (Cat, Dog, and Bird) NN when it receives in-

distribution (ID) input of bird and out-of-distribution (pure Gaussian) input. The model
predicts Gaussian noise as a Dog with high confidence. 3

1.4. BayNN with variational distribution in a) activation and b) weights. During each forward
pass, c) element-wise sampling results in a single-point value for weights/activation, on which
computations are performed for a forward pass. 6

1.5. The resource scalability issue of BayNN implementations in CiM architectures. The number
of RNGs increases with the size of the model, which can lead to millions of RNGs in a larger
model. It is recommended to view this figure in color. 6

1.6. Resource scalability issue of testing edge AI accelerators in conventional methods, where a)
storage overhead increases linearly with the number of test vectors, b) testing overhead in
terms of latency, the number of MAC operations, and power consumption increases linearly
with the number of the test queries (forward pass), and c) size of test vectors increases linearly
with the size dataset. 7

1.7. Summary of the contributions of this thesis. 13
1.8. The overall reliability flow for the edge AI accelerator using the runtime monitoring and

maintenance methods proposed in this thesis. 14
1.9. Self-healing-based reliability flow for the edge AI accelerator proposed in this thesis. 14

2.1. Bayesian inference with MC-Dropout NN in comparison with conventional NN. In MC-
Dropout, multiple forward passes are performed to obtain the posterior distribution. It is
recommended to view this figure in color. 22

2.2. Cross-section of a) RRAM cell, b) PCM cell with a programmable region (PR), top electrode
(TE), bottom electrode (BE), and phase change (PC) material, and c) the MTJ device in parallel
(𝑃) state (both the reference (RL) and the free layers (FL) are aligned). It is recommended to
view this figure in color. 23

2.3. Graphical demonstration of the mapping of a fully-connected layer to a memristive crossbar
array of size𝑚 × 𝑛. 25

2.4. Demonstration of the low and high conductance regions of the Memristor with open/short
and stuck-at defects. 27

2.5. Conductance variations of MTJs showing device-to-device and thermal variations. It is rec-
ommended to view this figure in color. 27

4.1. Training curve for 𝐿2 regularized MLP compared to un-regularized MLP on MNIST dataset. It
is recommended to view this figure in color. 44

4.2. a) Spindrop module schematic and b) the generated probability as a function of the word Q. . 46
4.3. Inference architecture for BayBNN inference . 48
4.4. Depicting temporal independence in Dropped neurons with proposed SpinDrop. It is recom-

mended to view this figure in color. 48
4.5. Datasets to measure the detection capability of out-of-distribution data. It is recommended

to view this figure in color. 50
4.6. Evaluation of 4 bit-cells. It is recommended to view this figure in color. 50

289

List of Figures

4.7. Dropout non-idealities. It is recommended to view this figure in color. 51
4.8. Energy and Delay for MLP and CNN inferences evaluated for BNN and SpinDrop-based

BayBNN with 10 MC samples taken to achieve similar accuracy. 52
4.9. Results of semantic segmentation and estimations of uncertainty for the DRIVE, Breast Cancer,

and Mitochondrial Electron Microscopy datasets. Each row represents a single sample and
contains the input image along with the ground truth, prediction, correctness, and uncertainty
maps for both the MC-Dropout and SpinDrop BayBNN methods. The correctness map is
a binary representation of correct and incorrect predictions. The uncertainty map is the
normalized [0,1] map of uncertainty values derived after 20Monte Carlo samples. For prediction
masks, a threshold of 0.5 is applied. Correct and certain regions are displayed in white on the
correctness and confidence maps, respectively. Similarly, an incorrect or uncertain region is
shown in black. It is recommended to view this figure in color. 55

4.10. Capability of the proposed method in detecting out-of-distribution (OOD) datasets 𝐷1 to 𝐷6.
Evaluated on a model trained for MNIST dataset with a Dropout probability of 15%. It is
recommended to view this figure in color. 56

4.11. Twelve continuously rotated images of the digit 1. Point estimate BNN classifies inputs as
digits [1 1 1 0 0 5 3 3 5 2 5 7], even though model uncertainty is extremely large as the rotation
is increased. It is recommended to view this figure in color. 56

4.12. a) Impact of thermal variations on the inference accuracy. Evaluated on MNIST dataset with
15% spintronic-Dropout, b) Impact of the number of MC samples taken on accuracy. It is
recommended to view this figure in color. 57

4.13. Validation inference accuracy and Cross-entropy loss for 20% and 50% Dropout probability for
MNIST on MLP. It is recommended to view this figure in color. 59

4.14. a) Input feature map of a convolutional layer. Moving windows from all the input feature
maps are b) flattened and c) parallelized across 𝑘 × 𝐾 crossbars for the conventional mapping.
The number circle shows the cycle in which input is applied to the Spintronics crossbar. It is
recommended to view this figure in color. 61

4.15. (a) Writing and (b) reading schemes for the MTJ. 65
4.16. Crossbar design for theMC-SpatialDropout based onmapping strategy (a) 1⃝ and (b) strategy 2⃝.

In (b), only the Dropout module and WL decoder are shown. Everything else is abstracted. . . 65
4.17. Results of semantic segmentation and estimations of uncertainty for the DRIVE. The correctness map is a binary

representation of correct and incorrect predictions. The uncertainty map is the normalized [0, 1] map of uncertainty
values derived after 20 Monte Carlo samples. 68

4.18. Several nodes (neurons) a) at training time that are scaled with a probability of 𝑝 and dropped
(ignored) with a probability of 1 − 𝑝 , b). At test time, if point estimate prediction is preferred,
all the nodes are always scaled. However, for Bayesian inference, all nodes behave similarly to
train time. Here, all the nodes are connected to the weights of the next layer after non-linear
activation and Batch normalization, and their shapes represent scaling factors. All the dropped
nodes have the same shape, indicating no scaling factor. 72

4.19. Spin Scale-Dropout Module based on SOT MTJ. 77
4.20. Binary SOT crossbar array for the Bayesian inference. 77
4.21. Proposed inference architecture for Scale-Dropout. 78
4.22. Detecting Distribution Shift on CIFAR-10: a) A scatter and b) 95% confidence interval of 100 forward passes of

the softmax input (logits) and output for Scale-Dropout VGG topology. Uniform noise of increasing strength is
added to a randomly sampled image of a ship (leveled as 8). The uncertainty of the prediction increases with the
data distribution shift, as shown by the high SoftMax scatter and the confidence interval. Although the model
uncertainty is extremely high (best observed in color), the input for images 5 through 12 is classified as either a
truck (leveled as 9) or a bird (leveled as 3). It is recommended to view this figure in color. 83

290

List of Figures

4.23. The effect of distribution shift of inference images on inference accuracy (left y-axis) and
predictive entropy (uncertainty estimate on right y-axis). Images are continuously rotated
to introduce distribution shifts. The inference accuracy of all methods is reduced with the
same trend, and the uncertainty of prediction increases with the data distribution shift. The
uncertainty estimates of the proposed method outperform those of other methods, but the
accuracy of the Ensemble method is higher in comparison. It is recommended to view this
figure in color. 84

4.24. Evaluation of the effect of Monte Carlo runs on the inference accuracy of the CIFAR-10 dataset
on various topologies. It is recommended to view this figure in color. 84

4.25. The outcomes of semantic segmentation and uncertainty estimations for the Skin-Cancer, COVID-19 Lung-CT,
and Breast Cancer datasets. Each row comprises the input image followed by the ground truth, prediction mask,
correctness mask, and uncertainty mask for both the MC-Dropout and proposed MC-Scale Dropout methods.
The correctness mask is a binary representation of accurate and inaccurate predictions. The uncertainty mask is
the normalized [0, 1] uncertainty mask derived from twenty Monte Carlo samples. For prediction masks, a 0.5
threshold is used. On the correctness and uncertainty masks, the correct and certain regions are depicted in white.
Similarly, a region that is incorrect or uncertain is displayed in black. It is recommended to view this figure in
color. 85

4.26. Per class posterior distribution of ResNet-18 topology with a Monte Carlo sample size of 1000. 89

5.1. Overall flow of the proposed Bayesian in-memory approximation for efficient mapping of
Bayesian distributions to CiM architectures. 92

5.2. General SpinBayes topology. An arbiter is utilized in each layer to determine in which crossbar
the MAC operation is performed. 93

5.3. The flow depicting computation carried out in a layer of the proposed SpinBayes implemented
on CiM architectures. 94

5.4. Sketch of proposed SpinBayes based on popular CNN topologies ResNet [193] and VGG [194].
Here, we only show the first four layers of a specific topology. Our proposed SpinBayes
topology is generalizable across most existing topologies, with only the addition of arbiter and
average blocks required. MAC operation on 𝑛-way inference with 𝑛 > 1 parallelized in each
layer. It is recommended to view this figure in color. 95

5.5. Proposed layer architecture . 96
5.6. Spin-Orbit Torque random number generator . 96
5.7. The probability of switching the stochastic device of the spintronic Arbiter 97
5.8. Proposed multi-value SOT bit-cell. It is recommended to view this figure in color. 97
5.9. Qualitative analysis of semantic segmentation tasks. The correctness map shows pixel-by-pixel

correctness, with white representing correct predictions and black representing incorrect ones.
The confidence map shows pixel-by-pixel uncertainty (white regions are correct and certain).
It is recommended to view this figure in color. 101

5.10. The scalability of the proposed method is evaluated in terms of model size (in MB) for different
large CNN topologies. The model size for each of the topologies is compared to SOTA BNN
methods, namely MC-Dropout [35] & MC-Dropconnect [36], BB-BackProp [34], and Deep
Ensemble [187]. The proposed method achieves a significantly smaller model size compared to
the other BNN methods across all CNN topologies. It is recommended to view this figure
in color. 105

5.11. The relationship between inference accuracy and the number of samples (𝑆) for biomedical
segmentation task on the KVSir dataset (top) and classification task on the MNIST dataset
(bottom). It is recommended to view this figure in color. 105

5.12. Inference accuracy for different numbers of Monte Carlo (MC) runs for biomedical image
semantic segmentation (left) on the KVSir dataset and image classification (right) on the MNIST
dataset. It is recommended to view this figure in color. 106

5.13. Proposed spintronic architecture. 110
5.14. Proposed multi-value SOT bit-cell. It is recommended to view this figure in color. 110

291

List of Figures

5.15. Evaluation of out-of-distribution performance on Fashion-MNIST dataset. The images are
rotated by 7◦, and uniform noise is added to shift the distribution. It is recommended to
view this figure in color. 113

6.1. a) Deep Ensemble [187] with𝑀 ensemble members , b) BatchEnsemble [114], proposed Tiny-
DE model with 𝑀 normalization layers with a single shared convolutional layer in c) serial
mode, and d) parallel mode. 115

6.2. Share of parameter groups with respect to the total number of parameters in different CNN
topologies. 116

6.3. Sketch of proposed Tiny-DE architecture based on popular CNN architectures ResNet [9]
and VGG [185]. We only show the four signature layers of a specific topology. Our proposed
topology is generalizable across existing topologies, with only the addition of a router before
the normalization layers. In the case of our proposed approach in batch mode, no change is
required in the topology. It is recommended to view this figure in color. 117

6.4. a) Single input processing, and b) batched processing in a convolutional layer. The input is
repeated𝑀 times to create a batch. 118

6.5. Uncertainty distributions for the Tiny-DE approach on CIFAR-10, including ID CIFAR-10, and
OOD datasets such as rotated CIFAR-10, SVHN, and STL. Notably, larger ensembles show
increased relative change of uncertainty distribution from ID compared to a single model (M =
1). It is recommended to view this figure in color. 123

6.6. ID and OOD Max Disagreement distributions for the Tiny-DE approach trained on clean
CIFAR-100 (ID). Notably, larger ensembles show increased relative change of uncertainty
distribution from ID. It is recommended to view this figure in color. 124

6.7. Auto-regressive time series prediction of atmospheric CO2 of a single model and our proposed
Tiny-DE model with up to 10 ensemble members. The shaded region shows the uncertainty
around prediction. It is recommended to view this figure in color. 124

6.8. Qualitative results for several semantic segmentation tasks and associated uncertainty esti-
mates. The correctness map is a binary diagram indicating correct and incorrect predictions in
white and black, respectively. It is recommended to view this figure in color. 125

6.9. Relative change in predictive entropy on OOD data of Tiny-DE (ours) in comparison to Deep
Ensemble [187], MC-Dropout [35], and BatchEnsemble [114]. It is recommended to view
this figure in color. 126

6.10. Results for Pascal VOC with improved diversity in ensemble members using different random
data augmentation. It is recommended to view this figure in color. 126

6.11. The inference cost in terms of memory and latency of our and related approaches w.r.t the
ensemble size. The results are relative to a single model cost. The testing time cost and memory
cost of the naive ensemble are plotted in blue. It is recommended to view this figure in
color. 126

7.1. The change in NN prediction probability of NN on a faulty and ideal model (fault-free) when
the input is (a) test input (images with highest (ΔL)), (b) normal input (images with lowest
(ΔL)). NN prediction probability changes significantly on test inputs compared to normal
input. It is recommended to view this figure in color. 135

7.2. The training curve of baseline (typical DNN training) and proposed approximate gradient
ranking method. It is recommended to view this figure in color. 135

7.3. Fault detection flow for a) Important faults and b) Hard-to-detect faults. Test quarries are
applied only once for both fault detection methods. Detection of hard-to-detect faults is carried
out conditionally after an important fault detection step. 137

7.4. Test coverage of Fashion-MNIST dataset considering a) additive, and b) multiplicative varia-
tions. It is recommended to view this figure in color. 139

7.5. Test coverage of CIFAR-10 dataset considering a) additive, b) multiplicative variations. It is
recommended to view this figure in color. 140

292

List of Figures

7.6. Test coverage of permanent faults with a) CIFAR-10, and b) Fashion-MNIST dataset considering
both read/write disturbance and stuck-at/slow write faults. It is recommended to view this
figure in color. 141

7.7. Number of test queries required in relation to the number of test vectors stored for a) Fashion-
MNIST dataset, b) CIFAR-10 dataset. Analyses were performed on all the permanent faults
and both variations types. It is recommended to view this figure in color. 141

7.8. Analysis of test coverage when the accuracy degradation of a) fashion-MNIST dataset, b)
CIFAR-10 dataset is varied up to 0.27%. Here, the size of the test vector stored is 64, and
multiplicative type fault injection is performed. 142

7.9. Analysis of test coverage of global approximation method on pre-trained CIFAR-100 dataset.
It is recommended to view this figure in color. 142

7.10. a) Change in output distribution depicted for different NN models but on the same test vector,
b) comparison of the change in the output distribution for two different test vectors but on
the same NN model (ResNet-18). While the conventional method reveals a change in output
distribution across different models and test vectors, our approach ensures standardized output
distributions (distributions overlap) irrespective of models or test vectors. c) We compared
the relative change in output distribution for the same noise level between the proposed and
conventional test vectors. The output distribution is more sensitive to noise for our proposed
one-shot test vector. In the conventional method, the test vectors are randomly sampled from
the ImageNet validation dataset. It is recommended to view this figure in color. 144

7.11. Flow diagram of our proposed one-shot testing approach. A KL-divergence value greater than
a predefined threshold indicates faults or variation in the memristive NN. 146

7.12. Some examples of the proposed one-shot test vector for the DenseNet-121 topology. To the
naked eye, optimized stock images appear identical to their original images. Nevertheless,
they differ marginally. 148

7.13. (Left) Receiver operating curve (ROC) of proposed fault detection method and (Right) change in
accuracy and KL-Divergence value with fault rates for the Movilenet-V2 model and Imagenet
dataset. It is recommended to view this figure in color. 152

7.14. Distribution of logits on the fault- and variation-free RepVGG [222] model trained on the
CIFAR-10 dataset when several randomly sampled inputs from training and validation are
applied. The distribution logits change from one input to another. It is recommended to
view this figure in color. 159

7.15. Change in output distribution of logits of RepVGG [222] model on the CIFAR-10 dataset due to
a) variations and b) faults. The spread among logits increases as the noise scale of variations
and fault rate increases. It is recommended to view this figure in color. 159

7.16. Relative sensitivity of uncertainty estimates given proposed Bayesian test vector input as well
as randomly sampled training and validation. The change in uncertainty estimates is much
higher for our proposed Bayesian test vector. It is recommended to view this figure in color. 160

7.17. An example of a) conventional test vector with each pixel representing single point value for
the Red, Green, and Blue (RGB) channels, and b) proposed Bayesian test vector with each pixel
representing an independent distribution for the RGB channels. 160

7.18. Flowchart of the proposed uncertainty estimation method for a model under test (MUT). If the
standard deviation (SD) of the output of MUT 𝜎𝑦 is higher than a pre-defined threshold 𝑡ℎ,
then MUT is highly uncertain. 160

7.19. Flowchart of the application of the proposed uncertainty estimation method during a) post-
mapping but pre-deployment, b) post-deployment (online) operation. 162

8.1. Stochasticity of a) Spintronics-CiM output (logits values) and b) uncertainty estimates for the
same input for 200 different predictions and inference runs, respectively. 169

8.2. Impact of Inference accuracy of BayNNs implemented in Spintronics-CiM with different bit-flip
and stuck-at-fault rates, compared to a baseline without faults. It is recommended to view
this figure in color. 173

293

List of Figures

8.3. Comparison of the impact of inference accuracy of BayNNs implemented in Spintronics-CiM
with conductance variations relative to a fault-free baseline. It is recommended to view this
figure in color. 173

8.4. Fault coverage of proposed approach on various Spintronics implemented BayNN methods
under varying bit-flip and stuck-at faults rate a) affecting Spintronics cells that store weights,
b) buffer memories that store intermediate activation, and c) different conductance variations
in Spintronics. It is recommended to view this figure in color. 173

8.5. False positive rate (lower the better) of a) proposed voting-based approach, and b) theoretically
grounded estimation-based approach. It is recommended to view this figure in color. . . 173

8.6. ROC curves for benign and critical faults with varying positive test query lengths. It is
recommended to view this figure in color. 174

9.1. Change in the distribution of the feature maps due to soft-faults modeled as bit-flips of
memory cells that store weights (see 9.3.1) on binary ResNet-18 trained on CIFAR-10. It is
recommended to view this figure in color. 177

9.2. Two-Headed model with point estimate parameters for concurrent self-testing and uncertainty
estimation. The model is generalizable with existing NN topologies. 178

9.3. Impact of inference accuracy due to (a) permanent faults and (b) soft faults impacting memory
cells of CiM architectures that store weights. Shaded regions indicate the one standard deviation
variation around the mean inference accuracy or AUC scores. It is recommended to view
this figure in color. 182

9.4. Distribution of fault coverage when dealing with permanent faults in CiM architectures that
affect memory cells storing weights and buffer memory storing activations across different
datasets. It is recommended to view this figure in color. 182

9.5. Box plots depicting the distribution of fault coverage of the proposed method under soft faults
on memory cells and buffer memory of CiM architectures. It is recommended to view this
figure in color. 183

9.6. Distribution of fault coverage due to faults in the uncertainty head. Random noise with
increasing fault intensity is injected into the memory cells that store the weights of the
uncertainty head. 184

9.7. Change in the distribution of the proposed uncertainty fingerprint andmaximum logit score [234]
method due to soft faults on the memory cells of CiM architectures. It is recommended to
view this figure in color. 184

10.1. Flow diagram for the disentanglement of the sources of uncertainty. In the case of permanent
faults, an uncertainty reduction approach should be applied. 188

11.1. (a) The distribution of possible partial sum currents (𝐼𝑝𝑠) depending on cell state combinations
(−4,−2, · · · , 4) when four word-lines are activated concurrently. Since weights and activations
are binary, values such as −3 are not possible, (b) when more (𝑚𝑤𝑙=8) word-lines are activated
concurrently, the sensing margin of ADC (ADC SM) becomes smaller. It is recommended to
view this figure in color. 196

11.2. a) Distribution shift of partial sum current (𝐼𝑝𝑠) for states−2 and 0 due to temperature variations
(TV). The operating temperature increased from 25◦𝐶 to 125◦𝐶 . b) quantized 𝐼𝑝𝑠 with a larger
sense margin (SM) for some states. Partial sum currents more than 𝐼𝑟𝑒 𝑓 are quantized to +1,
while lower currents are quantized to −1. It is recommended to view this figure in color. 196

11.3. a) Forward pass of sign𝑤 function, b) illustrate the zero-derivative problem of sign𝑤 , c) learning
of quantized partial sum with STE, and d) gradient of STE during backward pass. 198

11.4. Regression plot showing the distribution of P and AP states of MTJ at various temperatures. It
is recommended to view this figure in color. 200

11.5. a) Overview of analytical fault modelling, and b) fault injection flow. 201

294

List of Figures

11.6. Impact of process variation on the inference accuracy of the MNIST, Fashion-MNIST and
CIFAR-10 datasets considering process variation only for different concurrently activated
word-lines. Here, linear layers of the quantized 𝑎𝑠𝑞𝑢𝑎𝑛𝑡 [65] and un-quantized 𝑎𝑠 [126] partial
sum NN model are considered. It is recommended to view this figure in color. 202

11.7. Training curves of an MLP on MNIST and Fashion-MNIST. The training trend of the proposed
modified quantization algorithm is similar to the original BNN [246]. The lower the validation
error rate, the better the performance. It is recommended to view this figure in color. . . 204

11.8. Impact of activating more word-lines concurrently on the inference accuracy of the MNIST,
Fashion-MNIST, and CIFAR-10 dataset with both process and temperature variations for
baseline 𝐼𝑟𝑒 𝑓 with quantized activations. Inference accuracy decreases with more word-lines
activations and increasing operating temperature. It is recommended to view this figure
in color. 204

11.9. Effect of activating more word-lines concurrently on the inference accuracy of MNIST and
Fashion-MNIST dataset with process and temperature variations for the proposed method for
generating optimal 𝐼𝑟𝑒 𝑓 . Inference accuracy remains stable with more number of word-lines
activations and increasing operating temperature. It is recommended to view this figure
in color. 205

11.10.The inference accuracy of a) MNIST, b) Fashion-MNIST, and c) CIFAR-10 datasets under both
process and temperature variation. The operating temperature of the device is increased from
25◦𝐶 to 125◦𝐶 . The green curve shows, for a reference current generated at 25◦𝐶 , temperature-
induced shifts in MTJ resistance for the operating temperature from 25◦𝐶 to 125◦𝐶 and the
corresponding change in inference accuracy. It is recommended to view this figure in color. 206

11.11.Change in activation distribution due to faults. It is recommended to view this figure in
color. 208

11.12.Computation flow of the proposed and conventional normalization layers. 209
11.13.Operation flow for the proposed affine parameters (weight and biases) Dropout. 210
11.14.Examples of non-idealities: (a) Stochastic switching in magnetic memories under different

voltages and (b) influence of temperature on the resistance distributions (Monte Carlo simula-
tions). 212

11.15.Evaluation of robustness of ResNet-18 and U-Net topologies on CIFAR-10 and DRIVE datasets.
The shaded region shows ± one standard deviation variation from the mean. The left and
right figures of both datasets illustrate the evaluation of bit-flips and additive conductance
variations, respectively. It is recommended to view this figure in color. 213

11.16.Evaluation of conductance and bit-flip robustness of ResNet-18 and U-Net topologies on CIFAR-
10 and DRIVE datasets. The shaded region shows ± one standard deviation variation from
the mean. Here, the first and second figures of both datasets show the evaluation of bit-flips
and additive conductance variations, respectively. In (b), the last figure shows multiplicative
conductance variations. It is recommended to view this figure in color. 213

11.17.Evaluation of the proposed method on OOD data. (Left) Uniform noise is added to images and
(right) images are rotated to shift the distribution. It is recommended to view this figure in
color. 214

12.1. Overview of analytical fault modeling for a) manufacturing variation and b) stuck-at faults.
Faults are injected into intermediate activation for manufacturing variation and weights for
stuck-at faults. 222

12.2. Impact of thermal variations on the inference accuracy of the MNIST, Fashion-MNIST, and
CIFAR-10 datasets when runtime temperature increases from 25 to 125◦C. Also presented is
the influence of various manufacturing variations (man. var.). The horizontal lines show the
training (ideal) inference accuracy. It is recommended to view this figure in color. 222

12.3. Impact of stuck-at faults on the inference accuracy of the MNIST, Fashion-MNIST on MLP
and CIFAR-10 datasets. The horizontal lines show the baseline (ideal) inference accuracy. It is
recommended to view this figure in color. 223

295

List of Figures

12.4. Training curve for the validation accuracy of ApproxBN compared to BatchNorm on different
datasets. It is recommended to view this figure in color. 224

12.5. (a) A Crossbar (𝑚 = 𝑛) showing different possible scrub and non-scrub areas with different
diagonals 𝑑 , (b) A Crossbar (𝑚 < 𝑛) showing rectangular shaped (𝑅1 and 𝑅2) scrub area. Each
scrub area requires storing two points (P1 and P2), (c) A Crossbar (𝑚 > 𝑛) showing staircase
shaped (𝑟𝑎𝑖𝑠𝑒 and 𝑟𝑢𝑛) scrub area for Conv layers of CNN. 228

12.6. Overview of NN training and evaluation flow. 233
12.7. Impact of different thermal stability factors on inference accuracy with MNIST dataset on MLP

when the scrub prepared model is directly mapped to the initial time 𝑡0. The uncertainty band
shows ±3𝜎𝑎𝑐𝑐 , where 𝜎𝑎𝑐𝑐 is the standard deviation of accuracy. It is recommended to view
this figure in color. 234

12.8. The impact of scrubbing when scrub and non-scrub areas have undesired −1 and +1 weights,
respectively. The crossbar H3 is scrubbed with a scrubbing period 𝑓 = 1y on the Fashion-
MNIST dataset. It is recommended to view this figure in color. 238

12.9. The effect of penalty rate 𝜆 on Scrub Area Coverage 𝑆𝐴𝐶 during training. The line with 𝜆 →∞
shows the case when the scrub and non-scrub areas are initialized with +1 and −1 weights,
respectively. It is recommended to view this figure in color. 239

12.10.a) Shows the relationship between scrub frequency and worst-case inference accuracy. When
the scrub frequency is high, inference accuracy does not degrade from the initial 𝑡0 inference
accuracy (the worst case inference accuracy = initial 𝑡0 inference accuracy), b) Shows the
relationship between scrub frequency and total energy µJ/24h. Scrub energy increases with
scrub frequency as more scrubbing is performed. It is recommended to view this figure in
color. 240

12.11.a) Impact of two different scrubbing periods (f) and not scrubbing on inference accuracy with
MNIST dataset with a thermal stability factor Δ = 40. b) & c) shows the relationship between
the thermal stability factor, scrubbing period, and inference accuracy. Fault injected into the
third convolution (Conv3) layer of CNN. Evaluation is performed on the proposed model with
the MNIST dataset. It is recommended to view this figure in color. 241

12.12.Example of proposed NN-ECC encoding process showing the size of original weights and
encoded weights are equal. 244

12.13.NN inference accuracy on CIFAR-10 Datasets. The vertical dotted line indicates the fault-
tolerance limits with 𝑡 number of error corrections. It is recommended to view this figure
in color. 248

12.14.NN inference accuracy (Top-5) on CIFAR-100 Datasets. The vertical dotted line indicates the
fault-tolerance limits with 𝑡 number of error corrections. The fault-tolerance trend was similar
in the case of Top-1 accuracy. It is recommended to view this figure in color. 249

13.1. The block diagram of proposed local approximators. Normal layers are active during fault-free
operation, whereas local approximators are disabled. Once a sufficient number of faults are
detected, the controller activates the compressed local approximators. 254

13.2. On the left: inference accuracy after pruning MLP. On the right: inference accuracy after
quantization and pruning MLP. Dashed lines represent accuracy before fine-tuning. It is
recommended to view this figure in color. 256

13.3. Inference accuracy of ResNet (left) after with post-quatization pruning of block B̄0 and (right)
after post-quatization of block B̄3. Dashed lines represent accuracy before fine-tuning. It is
recommended to view this figure in color. 257

296

List of Tables

2.1. Showing XNOR operation for BNN implementation. 24

4.1. Circuit-level characteristics . 52
4.2. Hardware comparison with other implementation . 53
4.3. Predictive performance comparison with SOTA methods on CIFAR-10 data. Results for related

works reported based on [47]. 54
4.4. Predictive performance comparison with SOTA methods on CIFAR-100 data. 54
4.5. The analysis of the proposed SpinDrop BayBNN on three biomedical segmentation datasets

trained on three SOTA topologies. A Dropout probability of 20% is used with 20 Monte Carlo
samples for the Bayesian inference. 54

4.6. Test the prediction accuracy (%) of the proposed SpinDrop BayBNN in comparison to the
32-bit MC-Dropout method. The proposed approach employs Sign(.) activation. Accuracy is
reported following 20 Monte Carlo samples for Bayesian inference. 55

4.7. Predictive performance of BayNN, point estimate NN (Pe. NN), and proposed SpinDrop
BayBNNwith spintronic-based Dropout with (w/) and without (w/o) variations in the SpinDrop
module. Evaluated for MNIST dataset with different non-linearity functions. 57

4.8. Predictive performance of BNN and BayBNN for MNIST dataset on LeNet-5 and CIFAR-10 on
VGG topology, considering with and without variations 𝜎 of the SpinDrop module. 58

4.9. Predictive performance of proposed SpinDrop BayBNN with different Dropout rates. 59
4.10. Predictive Performance of the proposed MC-SparialDropout method in comparison with SOTA

methods on CIFAR-10. 67
4.11. Evaluation of the proposed MC-SpatialDropout method in detecting OOD. 68
4.12. Layer-wise Overhead Analysis of the Proposed Method in Comparison to SpinDrop [84, 85]. . 69
4.13. Energy Efficiency Comparison of Hardware Implementations 69
4.14. Energy estimation for the different elements of the architecture for one reading operation. . . 80
4.15. Predictive performance of the proposed MC-SparialDropout method in comparison with SOTA

methods on CIFAR-10. The accuracy closest to the MC-Dropout is in bold, and the number in
the bracket shows the standard deviations of the accuracy after different repetitions. 81

4.16. Evaluation of the inference accuracy of the proposed Spintronics-based Scale-Dropout with
variations in the Dropout module. Variations in the probability of Dropout 𝑝 increased from
1× to 3×, and the baseline model is the ideal scenario without variation. 82

4.17. The analysis of the proposed Scale-Dropout BayBNN on three biomedical segmentation datasets
on SOTA topologies. A Dropout probability of 20% is used with 20 Monte Carlo samples for
Bayesian inference. The best-performing matrices are in bold. 84

4.18. Evaluation of the proposed MC-Scale Dropout method in detecting OOD across various
topologies. All the models are trained on the CIFAR-10 dataset. 86

4.19. Layer-wise and topology-wise overhead analysis of the proposed method in comparison to
existing works SpinDrop [84] and Spatial-SpinDrop [86]. 86

4.20. Energy Efficiency Comparison of Hardware Implementations 87
4.21. Analysis of the proposed method using in-distribution data, showing True Positive Rate (TPR),

True Negative Rate (TNR), and Acceptance Rate (AR) for various topologies. 88
4.22. Analysis of mean corruption errors (mCE) and mean out-of-distribution detection (mOOD)

detection values of different topologies when various corruptions applied CIFAR-10 with and
without pre-processing (PP). All numbers represent percentages. 89

297

List of Tables

5.1. Analysis of test prediction error and uncertainty estimation performance for MNIST, CIFAR-10,
and CIFAR-100 on popular NN topologies. 101

5.2. The quantitative prediction and uncertainty estimate performances of the proposed method
and state-of-the-art methods. 102

5.3. Analysis of the Proposed Method for Detecting Out-of-Distribution Data (OOD). 102
5.4. Architecture level estimations . 103
5.5. LeNet-5 configuration for MNIST dataset . 104
5.6. Comparison of energy consumption with respect to the state of the art 104
5.7. Predictive Performance of MNIST dataset on four-layer MLP in comparison to related Bayesian

and point estimate methods. The superscript ∗ represents methods that are point estimates. . . 112
5.8. Illustration of the proposed method’s prediction performance on the Fashion-MNIST dataset

using the LeNet-5 CNN topology, compared to Bayesian and point estimate approaches with
varied bit-widths of weights and activation (W/A). The superscript ∗ denotes point estimates
methods. 112

5.9. Prediction performance of our method is compared to Bayesian and point estimate approaches
utilizing the CIFAR-10 dataset and different bit-widths of weights and activation (W/A). ∗
denotes point estimation methods. 113

5.10. Energy comparison with SOTA implementation . 113

6.1. Results on regression benchmark datasets of the proposed approach and related works Prob-
abilistic back-propagation (PBP) [212], MC-Dropout [35], Deep Ensembles [187] comparing
RMSE and NLL. Dataset size (𝑁) and input dimensionality (𝑄) are also given. 121

6.2. Performance of Tiny-DE with CIFAR-10 and CIFAR-100 dataset trained on various topologies
with up to 15 ensemble members. 122

6.3. Pixel accuracy and mean intersection over union (IoU) of the single model and our proposed
Tiny-DE (M = 5) with different datasets and SOTA models. 123

7.1. Shows the inference accuracy and data augmentation setting of different datasets used in this
work. 138

7.2. Comparison of the proposed method with the related work in terms of test coverage, memory
storage overhead (when re-training data is and is not available), number of test queries required,
and fault-detection resolution. The analysis is done on CNN with the CIFAR-10 dataset. . . . 143

7.3. Showing the evaluated (pre-trained) models for classification and semantic segmentation tasks,
along with their respective information such as inference accuracy, number of parameters,
layers, and dataset used for training. 151

7.4. The fault coverage (%) achieved by the proposed one-shot method onmultiplicative and additive
variations with different noise scales 𝜂0. All the models are trained on the ImageNet dataset. . 152

7.5. Fault coverage of semantic segmentation models utilizing the proposed one-shot testing
method. The models are evaluated under multiplicative and additive variations with different
noise scales 𝜂0 to underscore the robustness of the models across different scenarios. 153

7.6. The effect of threshold 𝑡 on false-negative test cases. As the threshold is reduced, the fault
coverage increases. 154

7.7. Evaluation of false positive rate (FPR) of the proposed approach on different topologies when
NN is fault or variation-free. Since FPR is evaluated on a single test vector, it is represented as
a binary (0, 1) value with 0 representing no false positive (ideal scenario) and 1 representing a
false positive classification. 154

7.8. Evaluation of the fault coverage of SOTA ImageNet classification models under different fault
scenarios, including Bit-flip and Level-flip faults, and varying fault rates. 154

7.9. Fault coverage performance of semantic segmentation models U-Net and DeepLab-V3 under
Bit-flip and Level-flip fault scenarios with varying fault rates. 154

7.10. The analysis of the effectiveness of our method in detecting single and multiple faults (stuck-at
low/high) and bit-flip faults in ReLU activations, and manufacturing variations affecting the
MAC values of the hidden layer, for state-of-the-art ImageNet classification models. 155

298

List of Tables

7.11. Compares the proposed approach with the existing methods using four performance metrics:
fault coverage, memory storage overhead (with and without re-training data), number of test
queries required, and fault-detection resolution. To ensure a fair comparison, the analysis of
our approach is conducted on the CIFAR-10 dataset. 155

7.12. Summary KL-Divergence, mean, and standard deviation of the logit distributions of the re-
spective test vectors on evaluated topologies. 157

7.13. Impact of faults and variation on the accuracy of the ImageNet models. Here, the precision
shows the impact in relation to the smallest fault and variation rates. 157

7.14. Summary of the evaluated models. 163
7.15. Uncertainty estimation coverage for different NN models and datasets under varying noise

strengths for both multiplicative and additive variations. 164
7.16. The evaluation of the proposed method in terms of coverage for estimating uncertainty due to

both bit- and level-flip faults. 165
7.17. Evaluation of the uncertainty estimation coverage (true positive rates) with accuracy degra-

dation verified in each step. The same noise scales 𝜂0 and fault rates P𝑓 𝑙𝑖𝑝 are used as in
Tables 7.15 and 7.16. 166

7.18. Evaluation of the coverage of the proposed uncertainty estimate approach with faults and
variations injected into a random subset (10-50%) of all layers. Here, the fault rate and the
noise scale 𝜂0 are kept constant. 166

7.19. The effect of offset value of 𝑡ℎ on uncertainty estimation coverage. Evaluated on multiplicative
variations with the same noise scale 𝜂0 as Table 7.15. 167

7.20. Comparison of the proposed approach with the existing methods using different performance
metrics. To ensure a fair comparison, the analysis of all approaches is conducted on the CIFAR-
10 dataset. The memory consumptions for the test vectors and their labels are calculated based
on the bit width reported by [37]. 167

9.1. Comparison of the proposed method with the baseline method with different topologies. . . . 181

10.1. Evaluation of the disentanglement of the sources of uncertainties. Five scenarios with isolated
and a combination of sources of uncertainties are explored. 189

11.1. MTJ parameters and simulation setup. The MTJ parameters are based on work [245] 202
11.2. Pre-deployment: Depicts change in the training accuracy from the baseline training algorithm

to the proposed training algorithm and related works [65] and [121]. Here, ideal accuracy is
reported before deployment. Static manufacturing and dynamic thermal variations are not
considered. Post-deployment: Comparison of the change in post-mapping inference accuracy
from the training accuracy under process (PV) and temperature variations (TV). The column
"↔ ˆ𝐼𝑟𝑒 𝑓 " elaborates the inference accuracy of the proposed and related method methods at
temperatures below and above 85◦C. 203

11.3. Difference between inference accuracy of the proposed training algorithm and original BNN
as the number of neurons increased for MNIST and Fashion-MNIST datasets. As the width of
the model increases, the accuracy difference becomes negligible. 204

11.4. Analysis of the inference accuracy for Fashion-MNIST under 𝐼𝑟𝑒 𝑓 variations when process and
temperature variation is also considered. 207

11.5. Summary of inference accuracy of the proposed method and related works evaluated on
different datasets, bit-precision, metrics, and topologies. Here, W/A refers to the bit-precision
of weights and activation. 212

12.1. MTJ parameters and simulation setup . 221
12.2. Comparison of the proposed method with the related work in terms of inference accuracy,

buffer memory overhead, number of re-calibration steps performed, and re-calibration test
inputs. CNN is benchmarked on CIFAR-10, and the same mini-batch size and calibration test
inputs as [30] are assumed for [128]. 225

299

List of Tables

12.3. Comparison of re-calibration batch size, number of mini-batches applied, and test inputs
for the BatchNorm and proposed ApproxBN. The number in the brackets represents in-field
re-calibration settings. 225

12.4. The effect of removing batch normalization parameters and computation during inference in
hardware. Evaluated on testing datasets and without any fault injection. 226

12.5. Comparison of mean inference accuracy of partial re-calibration with full re-calibration on
13.95% (3𝜎MRAM) variation. 226

12.6. Summary of MLP and CNN topology. 232
12.7. MTJ parameters and simulation setup . 233
12.8. Comparison of the proposed diagonal and rectangular shaped scrub area for MNIST dataset

with penalty function Penalty3(W). Evaluation is performed on a four-layer NN with 256
neurons per layer. 234

12.9. Evaluation of MNIST and Fashion-MNIST datasets with a smaller MLP model (four layers NN
with 256 neurons layer). The thermal stability factor Δ = 30 is chosen, and the evaluation is
performed on both baseline and proposed model. 234

12.10.Evaluation of different crossbars (one at a time) with our proposed scrubbing technique and
the baseline model for MNIST, Fashion-MNIST, and CIFAR-3 datasets. Δ = 30 is chosen, and
the evaluation is performed on MLP. 235

12.11.Approximate operational time of proposed Proposed and baseline model Baseline when the
inference accuracy drops below the scrub prepared model. Here, H1 crossbar is evaluated
with Δ = 30 on CIFAR-10 dataset. 235

12.12.Evaluation of different crossbars (one at a time) with our proposed scrubbing technique 1⃝ (pre-
defined scrub area) in comparison to the baseline model. Δ = 30 is chosen for the evaluation.
Accuracy in the bracket shows the accuracy if the scrub prepared model is mapped at time 𝑡0
(see Section 12.2.2.5). 236

12.13.Evaluation of our proposed learnable scrub area method 2⃝ in comparison to the baseline
model for the CIFAR-10 dataset on CNN topology. The evaluation is performed with a thermal
stability factor Δ = 30. Accuracy in the bracket represents the accuracy of the scrub-prepared
model mapped at time 𝑡0. 236

12.14.The effect of changing the diagonal scrubbing parameter on inference accuracy after training.
Evaluated for MNIST dataset andH1 crossbar with Δ = 30. 237

12.15.The result for the Fashion-MNIST dataset with thermal stability factor (Δ) = 30 when only
non-scrub and both areas contain undesired weights. The evaluation is performed on MLP. . . 238

12.16.The result for the Fashion-MNIST dataset with thermal stability factor (Δ) = 30 when both
scrub and non-scrub areas contain undesired weights. The evaluation is performed on CNN. . 239

12.17.The result for the CIFAR-3 dataset with thermal stability factor (Δ) = 30 when CNN trained
with different penalty rate 𝜆. 240

12.18.NN Models and Their Respective Parameter Counts. 246
12.19.The possible Code Dimension (𝑛𝑝 , 𝑘𝑝) for Different Column size (𝑑2) of the Weight Matrix for

Proposed NN-ECC . 247
12.20.Impact on Baseline accuracy due to ECC Encoding (CIFAR-10). 247
12.21.Impact on Baseline accuracy due to ECC Encoding (CIFAR-100). 248
12.22.Factors distinguish the Proposed method from existing works. 250
12.23.Comparative analysis of memory overhead for ECC parity bits. 250

13.1. Analyzed neural networks and their respective baseline accuracies. 254
13.2. Most fault-sensitive blocks for each topology based on our fault sensitive analysis and approx-

imation criteria. 255
13.3. Inference accuracy of the MLP topology after quantization only weights (W) and weight and

activation (W & z). 255
13.4. Inference accuracy of the VGG-7 network with different combinations of active approximators 257

300

A. List of Abbreviations

CiM Computation-in-memory

CNN Convolutional Neural Network

IFM Input feature map

IF Input feature

MW Moving window

OFM Output feature map

FC Fully connected

FP Floating point

LUT Look-up table

AAC Adder-Accumulator circuit

MAC Multiply-Accumulate

ADC Analog-to-digital converter ()

WWL Write Word-Line

RWL Read Word-Line

SOT Spin-orbit-torque

MTJs Magnetic Tunnel Junction

RNG Random number generator

CMOS Complementary metal-oxide-semiconductor

SOTA State-Of-The-Art

Spice Simulation Program with Integrated Circuit Emphasis

FEOL Front-end-of-line

BEOL Back-end-of-line

TMR Tunnel magnetoresistance

FL Free layer in MTJs

STT Spin-Transfer-Torque

Spintronics-CIM Spintronics-based computation-in-memory

TPR True Negative Rate

FNR False Negative Rate

RRAM Resistive random access memory

NAS Neural architecture search

301

APPENDIX A. LIST OF ABBREVIATIONS

MUT Model under test

KL Kullback–Leibler

TSMC Taiwan Semiconductor Manufacturing Company Limited

MC Monte Carlo

VI Variational Inference

IoU Intersection over Union

PDK Process design kit

BB-BackProp Bayes by Backpropagation

MSE Mean squared error

OSR Open-set recognition

NLL Negative log-likelihood

BayNN Bayesian Neural Networks

302

B. List of Symbols

𝑙 current layer

𝑄 number of data points

𝐾 Kernel shape in a convolutional layer 𝐾𝐻 , 𝐾𝑊 Height and width of a kernel in a convolutional layer

𝐶𝑖𝑛 Number of input channels

𝐶𝑜𝑢𝑡 Number of output channel

𝑆 Stride in a convolutional layer

𝑁 Number of cycles

Q Digital value

D Dataset

𝜃 Overall parameters

𝜃 Stochastic parameters

𝜃 Overall parameters of NN parity bits embedded into weight matrix

�̄� Normalized weights

𝑉 Voltage

𝑊𝐿 Word-line

𝜌 Dropout probability

⊤Matrix transpose operation

𝜙 (.) Activation function

ẑ normalized activation value

BatchNorm𝛾,𝛽 (.) Batch normalization function

⊙ Element-wise multiplication

⊗ Binary convolution

M Dropout mask

𝜶 Scale vector

�̂� Dropped scale vector

𝜑 Penalty for scale vector

Δ Thermal stability factor

C Number of output classes

𝜏0 Attempt time

𝜏 Model precision in MC Dropout

303

APPENDIX B. LIST OF SYMBOLS

𝑘𝐵 Boltzmann constant

𝐼 Current

𝑡 Pulse duration

𝐼𝑐0 Critical current

T Temperature

z MAC results of a layer

𝜐 Number of counter bits

𝐵 Batch size

Z Batched output

𝝎 Parameters of variational distribution

𝑞𝝎 (𝜽) Variational distribution

S set of values

𝐽 Number of samples from the VI distribution

𝜐 Number of bits

𝑃 Parallel state of MTJ

𝐴𝑃 anti-parallel state of MTJ

𝑅P and 𝑅AP low and high resistance state of MTJ device, respectively

𝑞𝝎 (𝜽) Approximate posterior distribution of VI

D𝑡𝑟𝑎𝑖𝑛 Training dataset

𝜂 Learning rate

F (.) A NN represented as a function

𝐴𝑖𝑛𝑓 𝑒𝑟 Inference accuracy of NN

𝐺 Conductance of memristor

V(.) Variation model of memristors

𝜂0 Noise scale for fault injection

𝑓 (·) Permanent fault model

𝑡ℎ Threshold

x̄ Synthetically generated test vector

K Iteration

P𝑓 𝑙𝑖𝑝 Percentage of injected bit-flip faults

R Fault injection runs

U Uncertainty fingerprint

𝑙 and ℎ Boundary values for fault detection

S(.) SoftMax function

𝜶 Approximation of batch normalization parameters

304

𝜎𝑀𝑅𝐴𝑀 manufacturing variations

Ω Momentum of batch normalization

𝜓 32-bit integer variable to keep track of unique activation

𝑠 Steps

𝑀𝑒 Median

𝑊 weights

𝑐 Counter variable

L loss function

𝑝 dropout probability

𝑇 MC samples

𝐻 ECC parity check matrix

𝑛 code size of ECC

𝑘 data size of ECC

𝑘 Length of data bits

305

	Acknowledgments
	Abstract
	Zusammenfassung
	Introduction
	Edge AI
	Edge AI Accelerator
	Uncertainty In AI Accelerators
	Uncertainty In Predictions
	Functional Uncertainty In Edge AI Accelerators
	Uncertainty Due to Aging

	Reliability Requirements for Safety-Critical Applications
	Challenges and Research Direction
	Predictive Uncertainty Estimation
	Quantification of Functional Uncertainty of The Edge AI Accelerators
	Uncertainty Reduction
	Integration Challenges

	Summary of Contributions
	Overall Reliability Flow
	Runtime Monitoring and Reliability Improvement
	Self-Healing Approaches

	Outline Of This Thesis

	Background
	Neural Network
	Binary Neural Network
	Scale Vector In BNN

	Normalization Approaches In Deep Learning
	Regularization Methods
	Drawbacks for Edge AI-Accelerators

	Expectation of Uncertainty Estimates In Edge AI Accelerator
	Bayesian Neural Networks
	Variational Inference
	MC-Dropout as Bayesian Approximation Approximation

	Model Ensemble For Uncertainty Estimation
	Memristor Technologies
	Spintronic Technology
	RRAM Technology
	PCM Technology

	AI Accelerator Architectures
	Memristor-based Computation-in-Memory Architectures
	Digital AI Accelerators

	Failure Mechanisms in Memristor-based CiM
	Permanent Faults
	Soft faults
	Variations
	Failure Mechanisms of Buffer Memories
	Failure Mechanisms of Dropout Modules of CiM
	Linear Block Error Correction Coding

	Related Works
	Uncertainty Estimation
	Hardware Implementation of BayNN
	Variational Inference
	Monte Carlo Sampling-based Approaches
	Model Ensemble

	Testing NNs in Edge AI Accelerators
	Hardware-based Solutions
	Algorithm-based Testing Approaches
	Test Specific Modules of AI Accelerator
	Summary of the Gaps in the Existing Literature

	Uncertainty Reduction
	Variation Robustness
	Per-device Re-calibration For Variation-Tolerance
	Memory Scrubbing
	Zero Overhead ECC
	Self-Healing Bayesian Neural Networks
	Online/offline Training and Re-training

	Methods for Resource Scalable Predictive Uncertainty Estimation
	Monte-Carlo Dropout-Based Bayesian NNs
	Dropout-Based Bayesian Binary Neural Network
	Methodology
	Evaluation
	Scientific Impact of This Work
	Section Conclusion

	Grouped-Dropout as Bayesian Binary Neural Network
	Methodology
	Results
	Scientific Impact of This Work
	Section Conclusion

	Scale Dropout-Based Bayesian Binary Neural Network
	Scale Dropout
	Scale-Dropout as a Bayesian Approximation
	Hardware Implementation
	Evaluation
	Scientific Impact of This Work
	Section Conclusion

	Variational Inference-Based Bayesian NNs
	Bayesian In-Memory Approximation and CiM-Aware NN Architecture for Efficient Sampling
	Methodology
	Hardware Implementation
	Evaluation
	Simulation Setup
	Algorithmic Results
	Scientific Impact of This Work
	Section Conclusion

	Bayesian Subset Parameter Inference
	Observation and Motivation
	Bayesian Subset Parameter Inference
	Hardware implementation
	Experimental Result
	Scientific Impact of This Work
	Section Conclusion

	Model Ensemble-Based Uncertainty Estimation
	Motivation and Observation
	Methodology
	Core Idea
	Operation Modes
	Training
	Prediction and Uncertainty Estimation
	Diversity Improvement Among Ensemble Members

	Results
	Experimental Setup
	Evaluation of Regression on Real-World UCI Datasets
	Evaluation of Classification
	Evaluation of Time-Series Prediction
	Evaluation of Semantic Segmentation
	Comparison with Related Works
	Improving Diversity
	Hardware Overhead

	Scientific Impact of This Work
	Section Conclusion

	Methods for Quantifying Functional Uncertainty of Edge AI Accelerators
	Explicit Testing of NNs
	Approximate Gradient Ranking
	Methodology
	Proposed Test Application Method
	Fault Modelling and Injection Framework
	Results
	Scientific Impact of This Work and Contributions
	Section Conclusion

	Single-shot Testing Large-Scale Deep Neural Networks
	Methodology
	Relevance of Normalization Methods for Standardizing the Output Distribution
	Simulation Results
	Discussion and Future Works
	Scientific Impact of This Work
	Section Conclusion

	Few-Shot Testing Using Bayesian Test Vectors
	Problem Statement and Motivation
	Methodology
	Evaluation
	Scientific Impact of This Work
	Section Conclusion

	Explicit Testing of Bayesian NNs
	Methodology
	Problem Statement
	Automatic Test Generation Framework
	Proposed Fault Detection Approach
	Reduction of False Positives Rate

	Evaluation
	Simulation Setup
	Fault Models For Spintronics-CiM-based BayNN
	Fault Sensitivity Analysis of BayNN on Spintronics-CiM
	Analysis of Fault Coverage
	Analysis of False Positive Rate (FPR)
	Analysis of Non-ideal Dropout Module
	Overhead Analysis and Comparison to Related Works

	Scientific Impact of This Work
	Section Summary

	Concurrent Testing NNs
	Problem Statement
	Methodology
	Uncertainty Fingerprint
	Dual-Head Model
	Training Objective
	Online Concurrent Self-test

	Results
	Simulation Setup
	Inference Accuracy
	Analysis of Permanent and Soft Faults Coverage
	Analysis of Faults in the Uncertainty Head
	Analysis of FPR and Comparison With Related Works
	Discussion
	Scientific Impact of This Work
	Section Conclusion

	Disentanglement of Source of Uncertainty
	Problem Statement
	Methodology

	Results
	Evaluation Setup
	Analysis of Disentanglement of Source of Uncertainty

	Scientific Impact of This Work and Contributions
	Chapter Summary

	Methods for Uncertainty Reduction
	Self-Healing Approaches
	Self-Healing the Impact of Manufacturing and Infield Thermal Variations
	Problem Definition
	Methodology
	Results
	Scientific Impact of This Work and Contributions
	Section Summary

	Self-Healing Bayesian NNs
	Problem Statement
	Methodology
	Results
	Scientific Impact of This Work and Contributions
	Section Conclusion

	Runtime Periodic Maintenance Approaches
	Runtime Re-Calibration For Fault-Tolerance
	Problem Statement and Motivation
	Approximate Batch Normalization (ApproxBN)
	Post-Manufacturing Functional ATPG
	Overall Re-Calibration Workflow
	Simulation Results
	Analysis of the per-device re-calibration with BatchNorm
	Analysis of the per-device re-calibration with ApproxBN
	Batch Normalization Parameter Collapsing
	Analysis of partial re-calibration
	Scientific Impact of This Work
	Section Conclusion

	Maintaining Retention Faults and Aging Induce Drifts
	Problem Statement
	Methodology
	Results
	Evaluation Setup
	Discussion
	Scientific Impact of This Work and Contributions
	Section Summary

	Guaranteed Soft-Faults Correction for Digital AI Accelerators
	Problem Definition
	methodology
	Evaluation
	Section Conclusion

	Ensuring Continuous Availability of Edge AI Hardware Accelerator
	Local Approximation-based Continuous Availability
	Problem Statement and Challenges
	Methodology
	Building Local Approximators
	Implementation of Approximators

	Evaluation
	Simulation Setup
	Constructing of Approximators for Online Fault Tolerance
	Multi-Block Fault Tolerance
	Hardware Overhead Analysis

	Scientific Impact of This Work
	Chapter Conclusion

	Conclusion and Perspective
	Future Works
	Perspective

	Bibliography

	Appendix
	List of Figures
	List of Tables
	List of Abbreviations
	List of Symbols

