
Carl von Ossietzky University of Oldenburg
Department of Computing Science
Software Engineering Group

Study Thesis (”Individuelles Projekt”)

Empirical Validation and Comparison
of the Model-Driven Performance

Prediction Techniques of CB-SPE and
Palladio

Anne Martens, Mat.-Nr. 8146070

August 12, 2005

Supervised by:
Dipl.-Math. Viktoria Firus

Jun.-Prof. Dr. Ralf H. Reussner

For the design of component based systems, it is important toguarantee non-
functional attributes before actually composing a system.Performance usually is
a crucial property of a software system, for safety or usability reasons. Several
approaches to predict performance characteristics of a component based system in
an early stage of development have been introduced in recenttimes. However, for
an engineering discipline, not only the propose of techniques is needed, but also
empirical studies of their applicability.

This work empirically compares and evaluates two approaches to early predict
the performance of component based software systems. The empirical study is
conducted in form of a case study, although attempts are madeto achieve a good
generalizability.

The results attest the CB-SPE technique a good applicability, although some
problems occured. The Palladio technique has less good results. Here, there have
been problems with the specification of the distribution functions.

Contents 2

Contents

1 Introduction 4
1.1 Software Performance Engineering 4
1.2 Component-Based Software Performance Engineering 5
1.3 Contribution . 5

2 Tested Performance Prediction Techniques 6
2.1 CB-SPE . 6
2.2 Palladio . 8

3 Research Method 10
3.1 Case Study . 10
3.2 GQM Plan . 11

3.2.1 Goal of the Case Study . 12
3.2.2 Questions and Derived Metrics .. . 13

4 Design and Conduction of the Case Study 18
4.1 Participants .18
4.2 Preparation . 20

4.2.1 Preparatory Execises .20
4.2.2 Results of the Preparation .. 21

4.3 Experiment . 22
4.3.1 Experimental Task . 22
4.3.2 Execution of the Experiment .. 25

4.4 Problems . 26
4.4.1 CB-SPE Problems . 26
4.4.2 Palladio Problems . 26

4.5 Measurement of the Web Server .. . 26

5 Results 28
5.1 Correctness of the Techniques 28

5.1.1 Measurement Results . 29
5.1.2 Comparison of Predicted and Measured Performance 33
5.1.3 Percentage of Correct Design Decisions 38
5.1.4 Answers to Question 1: How correct are the performancepredictions? . 39

5.2 Influence of Inputs .40
5.2.1 Classification of the Sensitivity of the Techniques 40
5.2.2 Differences of Input Models .. 46
5.2.3 Answers to Question 2: What influence do the input models have? . . . 47

5.3 Reasonableness of the Workload 47
5.3.1 Results of Intuitive Prediction 47
5.3.2 Workload Metrics . 49
5.3.3 Correct Solutions and Corrections 49
5.3.4 Answers to Question 3: Is the workload of a prediction reasonable? . . 50

Contents 3

6 Conclusions and Outlook 51
6.1 Validity of this Case Study 51

6.1.1 Internal Validity . 51
6.1.2 External Validity . 53

6.2 Summary . 55
6.3 Future Work . 56

A Preparatory Exercises and Tutorial Slides I
A.1 CB-SPE Tutorial Slides .. . I
A.2 CB-SPE Preparatory Exercise XV
A.3 Palladio Tutorial Slides XVII
A.4 Palladio Preparatory Exercise XXV

B Experimental Exercises XXVII
B.1 CB-SPE Exercise . XXVII
B.2 Palladio Exercise .. XXX
B.3 Exercise for Comparison Group XXXIII

C Resulting Data XXXVI
C.1 Predictions of the Participants XXXVI
C.2 Results of Measurements .. . XXXVIII
C.3 Needed Times to Learn the Techniques and Solve the Experimental Task LI

1 INTRODUCTION 4

1 Introduction

Although hardware gets faster and more efficient each year, performance is nonetheless a criti-
cal factor when developing software systems. A major part ofsoftware projects fails to comply
with performance requirements [11], which leads to high costs or even the failure of the project.
Users are not willing to accept long response times, and a high response and processing time
disturbs operating the system. The problem here often is notjust to guarantee certain perfor-
mance values for a fix number of users, e.g. some test users, but to guarantee scalability, i.e.
guarantee performance values for certain numbers of users.The future load of a system is hard
to assess: Often, systems are tested with a number of test users and perform well, but fail to
meet performance criteria when used in practice with a much higher user number.

Prominent examples for systems failing and causing high losses because of not complying with
performance requirements are the automated baggage handling system at Denver airport and
IBM’s information system at the Olympic Games 1996 in Atlanta [22]. The initial problems
with the baggage handling system caused the airport to open 16 month later than scheduled,
almost $2 billion over budget and without an automated baggage system. Here, the system
was planned to serve one terminal first, but later should serve all terminals of the airport [17].
The problems with IBM’s information system at the Olympics caused the company high losses
in reputation, not expressible in numbers [12]. Here, the problem was the number of users,
too: The system was tested with 150 users, however, 1000 useraccessed it during the Olympic
games, causing a system collapse.

In spite of these experiences, the performance of a softwaresystem is most often not considered
in the development process. A widespread attitude is to dealwith performance problems when
they occur, i.e. after testing implemented parts of the system (fix-it-later approach, [24]). Be-
cause performance problems are often based in the architecture of the system, their solving can
become very costly at such a late point of time. Design decisions concerning the architecture
have to be modified, which may lead to a new design and new implementation of major parts of
the system.

1.1 Software Performance Engineering

Since the beginning of the 80’s, the early analysis of non-functional properties, including per-
formance, has been a topic of research. By analyzing non-functional properties in an early
stage of development, performance problems should be identified early and costly redesign and
reimplementation should be avoided.

The termSoftware Performance Engineering (SPE) was formed by Connie U. Smith in 1981.
She later defined it as a ”systematic, quantitative approachto constructing software systems
that meet performance objectives” [24], with being an ”engineering approach to performance,
avoiding the extremes of performance-driven development and ’fix-it-later’ ” [24].

SPE techniques are based on models describing the performance of the system to be developed.
These models are attributed with certain performance values. In early stages of development,

1 INTRODUCTION 5

these values are based on estimation, in later phases existing implementation and prototypes
can be used to get more precise values. Thus, Software Performance Engineering accompanies
the whole development process.

As mentioned above, especially performance problems due toarchitectural flaws are problem-
atic. This field gets more and more attention in recent times,many further approaches for
predicting the performance at an early design level have been proposed [2]. An overview for
performance prediction techniques at an architectural level is given in [1].

1.2 Component-Based Software Performance Engineering

The prediction of performance has a critical relevance in the assembling of a system from com-
ponents. However, in many previous works concerning component-based software engineering,
the prediction of functional properties was getting more attention [23].

Component-based software engineering brings potential advantages for the software perfor-
mance engineering, because the performance of the system arises from the performance of
the single components, if their interaction is known. If components are already known with
their implementation, they might be considerably tested for their performance properties. This
knowledge can be used when designing the architecture of a system and when choosing the
components [27]. For components having to be newly developed or being hardly tested, the
performance properties can be estimated with SPE methods. The resulting data can be taken
into account for the component-based software engineeringin the same way like that of a tested
component.

Unfortunately, classical techniques for performance analysis are unsuited for the performance
prediction of generic software components. They cannot cope with the parameterization and
layering [23].

As a result, new performance analysis techniques have to be developed, specially made for the
needs of component-based software engineering. An important aspect are the different contexts
a component is to be deployed into. A static description of the performance of a component
is impossible, because performance heavily depends on the context (platform, hardware, ex-
ternal calls, usage profile, etc.). Thus, the component has to be parameterized concerning its
performance characteristics [20].

1.3 Contribution

The contribution of this work is twofold. Firstly, the applicability of the two performance pre-
diction techniques CB-SPE and Palladio is empirically evaluated and compared from a devel-
opers point of view. Both techniques are not fully matured yet, and are not applied in practice.
The work focuses (a) on the applicability of the techniques,(b) on the identification of potential

2 TESTED PERFORMANCE PREDICTION TECHNIQUES 6

for improvement and (c) on the validation of assumptions made implicitly or explicitly by the
methods.

To reach the above-stated goal, several questions are posed:

• How correct are the performance predictions?

• What influence do the input models have?

• Is the workload for a performance prediction reasonable?

In section 3.2.2, the questions are further refined into metrics, using the Goal-Question-Metric
approach [3]. By that, an empirical case study is designed. This design can also be applied
to the empirical investigation of model-driven quality prediction approaches in general. This
research method forms the second contribution. The empirical analysis to apply the metrics on
has the form of a case study. A controlled experiment is desirable, but not accomplishable in
the scope of this work.

2 Tested Performance Prediction Techniques

In this case study, two model-driven performance prediction techniques for component-based
architectures are evaluated and compared. Both techniquesare based on models of the later
developed software, including data for the timing behaviorof its components. To predict the
performance, the software models are analyzed using methods of theoretical computer science
(queuing networks) and mathematics (Fourier transformation), respectively, as opposed to other
performance prediction techniques using simulations.

2.1 CB-SPE

The CB-SPE technique was developed by Antonia Bertolino andRaffaela Mirandola [4, 5]. It
predicts and analyzes the performance of a system being assembled from components. CB-SPE
is a compositional technique. It is based on the concepts of the well-known SPE and uses an
RT-UML PA profile for input modeling.

The proceeding is compositional: At first, the component developer uses it at component level
by making a parameterized performance evaluation of the single component. When compos-
ing the system, the systems assembler is provided with a step-wise procedure to predict the
performance of the assembled components on the actual platform [5].

2 TESTED PERFORMANCE PREDICTION TECHNIQUES 7

Figure 1: CB-SPE Framework (like presented in [5])

On the component level, the performance values for a component Ci’s servicesSj are analyzed
for changing environment parametersenv−par, The results are presented in a parametric form,
Perf Ci(Sj[env − par]∗), for the different performance indicesPerf the component developer
analyzed (examples for analyzed performance indices are demand of service, response time or
communication delay). These parametric descriptions for the services of a component can be
shipped with the component and independently used by the component assembler.

Step 1: Determine the Usage Profile
Step 2: Component Pre-selection
Step 3: Modeling and Annotation
Step 4: Analysis of Results

Figure 2: CB-SPE Procedure on Application Layer (System Assembler)

Figure 2 shows the proceeding on the application layer, i.e.the proceeding for the component
assembler. First, the component assembler has to determinethe usage profile. To do so, he has
to analyze the different types of users and the required Use Cases.

Then, the component assembler preselects his components out of a set of offered components,
each having parametric descriptions. To preselect, he can instantiate the parametric description
of the services’ performance indices he is interested in by inserting his particular environment
parameters in the analysis results.

The components offering the best performance characteristics for his particular environment
are further analyzed. Therefore, a description of the workflow of the system using sequence
diagrams is created by the system assembler. The sequence diagrams objects represent the
involved components. A deployment diagram is used to describe the available resources and
their characteristics. Additionally, the number of users using the system concurrently can be

2 TESTED PERFORMANCE PREDICTION TECHNIQUES 8

specified. In both diagrams, characteristics are specified using RT-UML PA annotations as well
as extensions to RT-UML. Having completed the diagrams describing the workflow and the
resources, the system assembler can use the CB-SPE tool to perform a performance prediction.

The CB-SPE tool gives a best-worse case analysis as well as a contention based result. With
the best-worse case results, the component assembler can see whether his performance goals
are feasible, i.e. lie between best case and worst case. If yes, the contention based results
are considered. For the contention based results, the CB-SPE tool uses queuing networks, and
thus include waiting times for contended results. In so doing, the behavior of the system with
multiple users at the same time can be predicted.

With these results, the system assembler can decide whetherthe predicted performance values
satisfy his needs or whether he has to look for other components that lead to better values.

2.2 Palladio

The Palladio technique [7, 8] is currently developed by the Palladio research group at the Uni-
versity of Oldenburg. This technique emphasizes (a) the parametrization of the specification of
a component to be able to model their performance behavior for different contexts and (b) the
use of distribution functions t describe the timing behavior.

According to [8], performance analysis not only needs compositional performance models to
compute the performance of a system from the performance behavior of the single components.
A component performance model is needed, too, modeling the performance of a single com-
ponent. The performance values measured in one context, however, are not valid for other
contexts, like mentioned above, and thus cannot be used for the prediction of the performance
behavior in other contexts.

The technique uses a compositional component performance model. These should be compo-
sitional, parametric and as precise as possible. Therefore, it is based on parametric contracts.
The response time (or other linear additive metrics, like reaction time) is specified by random
variables in these contracts. Such a parametric component performance model is supposed to
describe the dependency between the quality attributes of the component and the context [21].
Therefore, extended service effect automata are used. Service effect automata are finite state
machines representing an abstraction of the control flow. The transitions of the automaton cor-
respond with external calls, all internal computations areintegrated in the nodes. The service
effect automata are extended to Markov Models to describe the probabilities of execution of
transitions and by adding a random variable to describe the timing behavior of internal and
external services:

The resulting extended service effect automaton is a 7-tuple,(S, Σ, T, s, F, P, B), consisting of

• a finite set of states (S)

• a finite set called the alphabet (Σ)

2 TESTED PERFORMANCE PREDICTION TECHNIQUES 9

• a transition function (T : S × Σ → S)

• a start state(s ∈ S)

• a set of final states (F ⊂ S)

• a transition probability function (P : S × Σ → [0, 1]) and

• a function assigning timing behavior to transitions and states (B : (S × Σ) ∪ S → DF

wit DF being the set of discrete distribution functions.)

No static variables are used to describe the timing behavior, as the timing behavior of internal
as well as external services is never fix. The distribution ofthe random variables itself depends
on the service effect automaton of the called service. To be able to use a computed distribution
function as an input for another computation, like needed inthis compositional approach, dis-
crete distribution functions are used. Thus, the techniqueis not dependent on a specific class of
statistic distributions. The distribution of the random variable is specified with the Quality of
Service Modeling Language (QML) [10].

from service require Performance contract {
responseTime {

percentile 40 < 50 msec;
percentile 60 < 100 msec;
percentile 90 < 250 msec;

};

Figure 3: Palladio: Distribution Function Defined by a QML Contract

With the Palladio techniques, the distribution function ofa service is computed based on the
distribution functions describing the timing behavior of the internal computations and the ex-
ternal calls on the one hand and the control flow described with a Markov Chain on the other
hand. To compute the resulting distribution function, the discrete Fourier transform is used.

By using this technique, statistical distributions of the response time of this component can be
computed, taking into account the different execution possibilities. The resulting performance
model is compositional: The computed distribution function for one service can be used as an
input for the analysis of a second service calling this service.

The technique is not fully developed yet [8]. Questions of computational complexity and com-
peting threads are an area of further research here.

3 RESEARCH METHOD 10

3 Research Method

As mentioned in the introduction, the comparison of the two performance prediction techniques
CB-SPE and Palladio is realized with a case study. Section 3.1 describes in details why a case
study has been chosen and what is important about it.

Conducted without specific goals in mind, a case study can lead to a large amount of data. To
extract the relevant information after collecting the datais hard, and it may be discovered that
important information misses, because its relevance was not known beforehand. To be able to
reduce this mass of data, eliminate irrelevant informationand collect all relevant information,
the goals of the case study should be worked out in advance. A well known and successful
goal-oriented procedure is the Goal-Question-Metric Approach by Basili et al [3]. Section 3.2
describes the GQM approach shortly and introduces the GQM plan for this work, containing
questions and metrics to compare the performance prediction techniques.

3.1 Case Study

When conducting an empirical analysis, the most convincingresults are won by conducting
a controlled experiment. With this form of empirical research, all factors that influence an
experimental setup are controlled. Only the factors being the subject of the empirical analysis
are varied (experimental variables or independent variable), all other factors are held constant.
Thus, the changes of the results (the dependent variables) can be identified as caused by the
changes of the experimental variables. It has to be ensured that apart from independent and
dependent variables, all other influencing factors (the disturbance variables) are held constant.
For empirically comparing two performance prediction techniques, the experimental variable is
the used prediction technique, whereas all other factors must be constant.

However, the effort for conducting a controlled experimentis high. The claim to controll all
disturbance variables is hard to fulfill. Especially if humans are participating in the experiment,
which is most often the case in the context of software engineering, there are many influencing
factors. A large group of participants with a preferably equal knowledge is a good way to
minimize or at least identify the influence of uncontrollable variables, because a strong influence
of an individual’s performance can likely be detected. If a strong effect is observed in the
experiment, even a smaller group can lead to a high significance of the results. On the contrary,
the smaller the expected effect, the bigger the group shouldbe to get a high significance. The
further investigation of these connections, however, is beyond the scope of this work. The
participants have to be carefully chosen, to ensure that uncontrollable influences vary as little
as possible.

For this empirical comparison of two performance prediction techniques, a controlled exper-
iment is desirable. All factors except the used performanceprediction techniques have to be
controlled. Of course, a comparison of performance prediction techniques, and especially their
applicability, involves human participants. It has to be tested whether the needed inputs for the
techniques can be derived from the given information and whether the participants can handle

3 RESEARCH METHOD 11

the techniques. To minimize the influence of uncontrollablevariables, however, a large group
of participants is needed. Within the context of this work, students will be asked to participate,
and only about 20 participants are expected. Thus, the groupis too small to be able to suffi-
ciently eliminate the influence of uncontrollable variables. Additionally, the participants are not
experienced with the used techniques, so a beforehand introduction is needed. But even with
a beforehand training, it cannot be assured that the techniques will be equally known to the
participants [14].

As a result, this empirical comparison will be conducted as acase study. In the context of
software engineering, Prechelt [18] defines a case study as follows (and relates it to a controlled
experiment):

A case study is the description and evaluation of an instrument or a technique
with a concrete example conducted ad hoc under artificial or typical conditions.
Case studies may also compare several instruments or techniques, however, unlike
controlled experiments, it is not guaranteed that all further factors are constant.

In this work, the compared techniques are the two performance prediction techniques. A con-
crete example is the performance prediction for a request toa prototypical web server. As not
all factors have to be ensured to be constant, the experimental setup is less costly, and can be
conducted within the bounds of this work. The drawback of a case study, however, is that the
missing control makes it less generalizable. Only a single example system is used, and maybe
the results here are not transferable to other architectures.

To achieve the best possible generalizability, I control the influencing factors as much as possi-
ble and use guidelines and techniques for controlled experiments like presented in [18]. When
analyzing the results of the experiment, I try to identify the uncontrolled factors and interpret
the results with this knowledge to assess the generaliziability.

3.2 GQM Plan

Primary principle of the GQM approach is that measurement should be goal-oriented. The
first advantage of this proceeding is that having the goal in mind it is easier to choose useful
and relevant data. This is supported by GQM’s top down approach: On the basis of the goals,
questions are found and further lead to metrics. The second advantage of the GQM approach
comes with the backward proceeding: In a bottom up approach,the collected data is interpreted
based on the questions and finally based on the goals [6]. The goals, questions and metrics
together form the GQM plan.

There are several prerequisites for a successful use of the GQM approach [6].

1. The goal must specify with great detail what is to be analyzed.

3 RESEARCH METHOD 12

2. Metrics have to be derived in a top down approach based on goals and questions.

3. The choice of metrics must be explicitly documented. The GQM questions embody this
rationale of how the metrics are derived from the goals.

4. The collected data must be interpreted in a bottom up approach based on the GQM ques-
tions and goals.

5. The people whose viewpoint is used in the GQM goal have to bedeeply involved in the
definition and the interpretation of the goal.

Prerequisite 1 to 4 will be regarded in this GQM plan, and willbe explicitly named where
fulfilled. Prerequisite 5, however, relates to appliance ofthe GQM approach in practical sur-
roundings, e.g. in software development. In research, the participants of a case study are almost
never involved in the design of the GQM plan. Thus, this prerequisite is invalid in this work.

3.2.1 Goal of the Case Study

A GQM goal specifies purpose of measurement, the object to be measured, the issue to be
measured, and the viewpoint from which the measure is taken [3]. By naming all these parts of
the goal, prerequisite 1 is fulfilled. Here, the GQM goals is to

empirically compare and evaluate the applicability of the two model-driven per-
formance prediction techniques CB-SPE and Palladio from a developer’s point of
view.

Note that the term developer means a developer of a system, who is at the same time the user
of the two performance prediction techniques. Of course, itdoes not mean the developer of the
performance prediction tool itself. The parts of the GQM goal are named explicitly in table 1.

Goal
Purpose Empirically compare and evaluate
Issue the applicability
Object of the two model-driven performance prediction techniquesCB-SPE and Palladio
Viewpoint from a developer’s point of view

Table 1: Research Goal

3 RESEARCH METHOD 13

3.2.2 Questions and Derived Metrics

In the following, the questions and metrics are derived based on the GQM goal, thus fulfilling
prerequisite 2. A detailed rationale describing the metrics is given for each question, thus ful-
filling prerequisite 3. Table 3 gives an overview on all derived questions and metrics. Questions
and metrics are stated as generally as possible, to enable future experimenters to reuse them
with other experimental setups.

For the following discussion, we introduce the following variables:

• Number of participants:m

• Number of participants in CB-SPE group:mCBSPE

• Number of participants in Palladio group:mPalladio

• Number of actions to assess a timing value for:n

1. How correct are the performance predictions?

Rationale: The most obvious metric to answer this question is a comparison of the
predicted performance and the actual performance of the implementation (metric 1a).
For both techniques, the predicted average response timepredAvgRespT imep is com-
pared to the measured average response timemeasAvgRespT ime for each participant
p ∈ mt, t ∈ {CBSPE, Palladio}.

To evaluate the deviation to the measured average response time, the absolute devia-
tion absDevp = |predAvgRespT imep − measAvgRespT ime| is determined. Finally,
the average absolute deviation over all participants applying one technique is assessed:
avgAbsDevt =

∑mt

p=1
absDevp for t ∈ {CBSPE, Palladio}, For the Palladio tech-

nique, the predicted distribution function is compared to the distribution of the measured
time consumption, too. To do so, the absolute deviation of the distribution functions is
compared.

However, the Palladio performance prediction technique does not claim to deliver abso-
lute performance values, but to help comparing different design decisions at architectural
level. Thus, to be right does not mean to predict the right response time or other per-
formance metric, but to identify the design decision leading to the higher performance.
If only two design options are available, the resulting metric is quite simple, as the per-
centage of correct design decisionsperct (metric 1b) for each techniquet can be looked
at:

perct =
Number of correct decisions

mt

However, for the more general case of more design options, the metric becomes more
complicated. In [15], a solution is presented: Not only the identification of the best
alternative, but the ranking of all design decisions shouldbe taken into account. However,
if two design options lead to almost the same response time, their order should have no

3 RESEARCH METHOD 14

impact on the judgment of the ranking. Thus, the design options leading to similar results
should be clustered, and the ranking of these clusters can beassessed.

What metric is actually more important in a performance engineering process depends on
the requirements. If two alternatives are to be compared, the actual values may be less
important than the result of which has the best performance.If one component has to be
tested for its performance behavior, the actual values are wanted.

Metrics:

a) Comparison of predicted performance to measured performance.

b) Percentage of correct design decisions based on prediction: perct

Note that the rightness of the techniques is looked at in the context of this question. A
further possibility is to evaluate the accuracy of the techniques, comprising both rightness
and precision (c.f. section 6.3).

2. What influence do the input models have?

Rationale: Assuming the used technique for computing the performance is correct, the
results of a performance prediction depend on the given inputs. Therefore, it is interesting
to analyze the influence of the inputs on the results and find the reason why a performance
prediction is good or bad, i.e. whether it correctly predicts the performance or makes
wrong predictions.

It is likely that even a perfectly right performance prediction technique used within a
prediction technique delivers wrong results if the used performance model reflects the
actual system poorly. But an input model will not perfectly reflect a system in all its
details, especially if it is based on estimations. Thus, theinfluence of impreciseness of
the results has to be analyzed. This can be done by analyzing the techniques sensitivity,
i.e. how much the results vary in relation to the statisticalspread of the inputs.

The first metric in this context describes the statistical spread of inputs, more precisely of
the estimations. The participants will be required to writedown their timing estimations
for an actioni ∈ n during the experiment. With the term action, I subsume all blocks
of computation and network delay that are relevant for performance prediction and that
are assigned some estimated timing value when using the techniques. For CB-SPE, the
timing estimation for an actioni ∈ n is the demand of computation or the network delay.
For Palladio, the timing estimation for an actioni ∈ n is the time consumption of internal
or external services.

For each actioni ∈ n, the average valueavgi of the estimated timing value over all partic-
ipants is calculated (Note that the measured average response time is not of interest here,
as this question only relate to the statistical spread of theinput data, not to the rightness of
the input data.) With this average, the absolute deviation from the average for each partic-
ipant and each assessed action can be evaluated:devEsti,p = |esti,p − avgi| with esti,p
being participantp’s estimated timing value of actioni. To get a single deviation value
for each participantp, the previously calculated absolute deviation valuesdevEsti,p are
summed up:devEstp =

∑n
i=1

devEsti,p. As all participants estimated the time behavior
for the same number of actions,devEstp does not have to be normalized. Looking at the
distribution of these deviationsdevEstp, the statistical spread of the estimations can be
assessed (metric 2a).

3 RESEARCH METHOD 15

Next, the statistical spread of the resulting performance predictions is looked at. For CB-
SPE, the result of a prediction is the average time in the network, which can be used
directly in this metric. The Palladio output, however, is a distribution function. To be able
to compare the techniques outputs, the average value of thisdistribution function is used
for this metric, too.

Metric 2b describes the statistical spread of the results. The metric is similar to metric
2a: First, I average over the predicted performance. With the average valueavgPred

the absolute deviation of each participant’s prediction from the average can be assessed:
devPredp = |predp − avgPred| with predp being the predicted performance of par-
ticipant p. As with metric 2a, with the distribution of these deviations devPredp, the
statistical spread of the estimations can be assessed (metric 2b).

With metrics 2a and 2b, the sensitivity of the performance prediction techniques can be
assessed. The sensitivity of a technique describes how susceptible it is to changes in
the input. For the applicability of a performance prediction technique, it is best if the
results are insusceptible to inaccuracy in the input data. Thus, the sensitivity must not
be too high, as otherwise the results vary too much with similar inputs. To analyze the
sensitivity of the techniques, I create a matrix containingthe different combinations of
metric 2a and 2b. The techniques will be classified in this matrix according to the results
of the two previous metrics.

Statistical spread of
X

X
X

X
X

X
X

X
X

X
X
X

inputs
outputs

high low

high No statement
about sensitivity
is possible.

Sensitivity is low
→ good applica-
bility

low Sensitivity is high
→ poor applica-
bility

Sensitivity is al-
right, as is appli-
cability

Table 2: Metric 2c: Classification Matrix to Assess Sensitivity

Note that for a high statistical spread of the input data and ahigh statistical spread of the
results, it is impossible to assess the sensitivity, as it isunknown whether a low statistical
spread of the inputs would result in a low statistical spreadof the results, too. A low
statistical spread of the inputs resulting in a low statistical spread of the results gives us
more information. It is, however, not an optimal classification for a performance predic-
tion technique, as it is unknown how the technique reacts with a high statistical spread
of the inputs. The two remaining classes in the matrix deliver clear results: A technique
that produces a low statistical spread of the results from a high statistical spread of the
input data will likely also produce a low spread of outputs from a low statistical spread
of the inputs. On the other hand, a technique that produces a high statistical spread of
the results even from a low statistical spread of the inputs will likely also produce a high
spread when confronted with wide spread inputs.

A further metric is supposed to analyze the difficulty of creating an input model. A
performance predictions technique should include a way to easily and straightforward

3 RESEARCH METHOD 16

create an input model or use existing ones. Here, the difference of the input models
created by different participants can give information about how obvious input models
can be extracted from given information. However, it is hardto state this difference in
numbers, thus a scale from low to high will be used (metric 2d).

Metrics:

a) Statistical spread of inputs (i.e. of estimations).

b) Statistical spread of the output data (i.e. of predicted performance value).

c) Classification of the techniques sensitivity based on metric 2a and metric 2b.

d) Differences of input models on a scale low to high.

The evaluation of the influence of the input models can go muchfurther. For a more elab-
orate evaluation and comparison, however, a more complex experimental setup is needed.
To analyze the influence of single properties of the input models, for example, lots of
data point only differing in a single property are needed. Additionally, the system to be
analyzed in the experiment must be of sufficient complexity,using the techniques’ possi-
bilities as much as possible. Another further aspect that could be evaluated in the context
of this question is the influence of the distribution functions the participants specify, e.g.
the deviation caused by imprecise distribution functions.

3. Is the workload for a performance prediction reasonable?

Rationale: To answer this question, two different groups ofmetrics are needed. First, the
validity of the performance prediction results have to be taken into account. The effort
for using a technique that does not deliver accurate predictions is likely to be unreason-
able. On the other hand, if an intuitive prediction is much less accurate than a prediction
with one of the techniques, the effort for using the technique is likely to be reasonable.
Of course, the second group of metrics needs to be considered, too: The workload of
a performance prediction technique must have reasonable workload toward an intuitive
performance prediction. A very accurate performance prediction may not be useful if it
comes with a high workload to predict the performance of a system.

To evaluate this question, the workload for intuitive and technical performance prediction
as well as the rightness of results have to be analyzed. The workload can be divided
into acquainting oneself with the prediction technique on the one hand and performing
the prediction on the other hand. The training time, of course, is less critical, as this
workload only comes once. However, the training time is to beincluded. The time the
participants needed to deal with the preparatory exercisescan be viewed as a part of the
training effort. It also helps to avoid subjective appraisal of the own training time: A
participant A claiming to be acquainted with the technique after 5 minutes of training
may need more time to solve the exercise than a participant B who familiarized himself
for half an hour with the technique, as A was less prepared when starting with the exercise
than B.

To assess the time needed to train the techniques, not only the time measured for prepa-
ration, but the effectiveness of the training has to be considered. If a training is short, but
the participants are not familiarized with the techniques afterward, it may have been too
short. To measure the success of the beforehand training, the number of correct prepara-
tory exercises as well as number of requested corrections for the experimental exercise

3 RESEARCH METHOD 17

is considered. A participant who solves the preparatory exercise is likely to be well ac-
quainted with the techniques. Additionally, the number of requested corrections for the
experimental exercise shows how familiar the participantsare with the techniques.

Metrics:

a) Metric 1a), for both techniques and intuitive proceeding.

b) Metric 1b), for both techniques and intuitive proceeding.

c) Time needed for the performance prediction in the experiment.

d) Time to become acquainted with the techniques.

e) Time to solve the preparatory exercises.

f) Number of correct solutions for preparatory exercises handed in.

g) Number of requested corrections for the experimental exercise.

Question 1 How correct are the performance predictions?
Metric 1a Comparison of predicted performance to measured performance.
Metric 1b Percentage of correct design decisions based on prediction.

Question 2 What influence do the input models have?
Metric 2a Statistical spread of inputs (i.e. of estimations).
Metric 2b Statistical spread of the output data (i.e. of predicted performance value).
Metric 2c Classification of the techniques sensitivity based on metric 2a and metric 2b.
Metric 2d Differences of input models on a scale low to high.

Question 3 Is the workload for a performance prediction reasonable?
Metric 3a = 1a), for both techniques and intuitive proceeding.
Metric 3b = 1b), for both techniques and intuitive proceeding.
Metric 3c Time needed for the performance prediction in the experiment.
Metric 3d Time to become acquainted with the techniques.
Metric 3e Time to solve the preparatory exercises.
Metric 3f Number of correct solutions for preparatory exercises handed in.
Metric 3g Number of requested corrections for the experimental exercise.

Table 3: Summary GQM Questions and Metrics

There are other possible questions to compare the applicability of the techniques. The applica-
bility of the used tools is essential for performance prediction techniques in practice. However,
both evaluated techniques come with tools that are developed for research rather than practical
applicability, and therefore the tools are prototypical. Object of this comparison are the under-
lying techniques themselves, not their existing implementation. Of course, an evaluation of the
applicability of the tools should be carried out as soon as the tools are claimed to be mature.

At this point of time, an evaluation is reasonable, too. Early evaluation of the techniques is
needed to (a) correct possible errors in the methods, (b) findpoints for further research and (c)
detect wrong assumptions that have been made. By detecting these errors or missing aspects
early, the techniques can be changed without having put mucheffort in the wrong direction.

4 DESIGN AND CONDUCTION OF THE CASE STUDY 18

4 Design and Conduction of the Case Study

This section describes the experimental setup, as well as the required preparations. As men-
tioned in section 3.1, the empirical study is conducted in form of a case study, because not all
variables can be controlled. However, as effort is taken to control as many variables as possible,
I try to achieve internal and external validity (c.f. section 6.1).

During the experiment session, two groups of participants are asked to analyze a prototypical
web server for its performance, each applying one of the two performance prediction tech-
niques. Hence, the performance prediction technique to be used is the independent variable. A
third comparison group analyzes the system without any technique. To prepare the test group
participants for the experiment, training sessions are arranged.

4.1 Participants

When designing an experiment, the participants are the firstissue to consider. For this experi-
ment, the students of the course ”Component-Based SoftwareEngineering” at the University of
Oldenburg in summer term 2005 are asked to take part. Thus, the participants of the experiment
are students of 3rd and 4th year. A common objection to experiments in software engineering
involving student participants is that the results cannot be transfered to ”real” software develop-
ment. According to [18], this objection may be true, but in most cases is exaggerated. He argues
that (1) the difference between advanced students and professionals is not very great and that
(2) this difference is not relevant, because not the absolute achievements of the participants is
measured in an experiment, but the change of the achievementwhen changing the experimental
variables. However, this is only applicable if the working method of less competent participant
is different to that of a competent participant. To ensure the working methods do not differ, the
task must not be to complex and the participants must not be too inexperienced with software
engineering in general or the specific kind of exercise, as the task would otherwise ask too much
of them.

In addition, experience in software development is often over-estimated: In our study, the ex-
perience within a specific application domain is irrelevant. Besides, students have two benefit,
opposed to software developers: (a) ”students know what they are capable of, while many pro-
fessional developers do not, as they lack steady evaluationand, more importantly, comparison
with their fellows” [W. Tichy, personal communication to R.Reussner, Software Engineering
2005 conference] and (b) students have a similar individualbackground. Hence, outliers due to
individual performance are less likely.

To further assess the participant’s abilities for this experiment, a questionnaire was issued. The
results of the questionnaire, characterizing the participants, can be seen in figure 4.

4 DESIGN AND CONDUCTION OF THE CASE STUDY 19

Figure 4: Information on the Participants

All participants have completed at least 6 semesters of study, thus they are advanced students.
Additionally, they have participated at a software laboratory, as this is obligatory in the second
year. Most participants have several years of programming experience, and designed one or
more systems with more than 5000 lines of code.

Furthermore, all except two participants took the softwareengineering course, thus being fa-
miliar with UML notations. Both participants not having taken the software engineering course
stated to have much programming experience. If UML was nonetheless not known to them,
they did at least learn about it in the Component-Based Software Engineering course, which all
participants have taken. Most participants had no or littleexperience with performance analy-
sis. One participant stated to have medium experience with performance analysis, one stated to
have much experience with performance analysis, but profiling and tuning only.

All things considered, the participants all have a base competence.Their competence can be
compared to a competence of a professional whose main interest is not in performance analysis.
Thus, the results of this experiment are transferable to thesame situation involving professional
software engineers, if not professional performance analysts.

The motivation or missing motivation of the participants can be a further problem for an ex-
periment. To ensure that the participants take their tasks seriously, the participation is awarded.
For each preparatory exercise, 15 points can be achieved. Not the correctness of the results, but
the right applying of the techniques is awarded. Together, the achieved points make up 30%
of the Component-Based Software Engineering course grade.The participance in the whole

4 DESIGN AND CONDUCTION OF THE CASE STUDY 20

experiment is nonetheless voluntary: Alternatively, the student may write a housework to get
full marks in the course.

For the experiment, the award is different. The participants should not be under too much
pressure, thus the possibility to achieve full marks in the course should not be connected to
their success in the experiment session. On the other hand, to nonetheless achieve a certain
motivation, up to 6 bonus points are awarded. Bonus points are added to the participants marks
(on a scale 0 to 100) after having summed up the points for the preparatory exercises (0 - 30)
and the oral examination (0 - 70).

For the comparison group, graduated computer scientists are asked to participate. Thus, the
comparison group is at least as qualified as the two test groups. This may work against a
possible effect of better predictions and design decisionsby the participants. If such an effect
is observed nonetheless, this observation can be quite relied on. However, the work of the
comparison group cannot be as well controlled as that of the two test groups. Furthermore, only
a smaller number of participants is available.

4.2 Preparation

The participants have to train the technique beforehand, asuntrained participants would have
to use a main part of the time in the experiment session to learn the techniques, thus leaving no
time to actually work on the task. Additionally, problems with understanding the techniques can
be discussed out beforehand. To ensure that the participants are familiar with the techniques,
training session are established. For each technique, a tutorial session is held, presenting the
technique and describing its appliance. Subsequently, a preparatory exercise is handed out, each
participant has one week to work on. While working on the preparatory exercises, the partic-
ipants can ask me for help. In a third tutorial session, a sample solution for each preparatory
exercise is presented and the participants have again the opportunity to ask questions.

The preparation does not only train the participants, but tests their abilities as well as the for-
mulation of the task and thus fulfilling the role of a pretest [18]. With a pretest, the learn effects
during the experiment is minimized, as the participants learn during the pretest. Learn effects
during the experiment itself may invalidate the results of the experiment. Additionally, the
pretest can be used to assess the participant’s abilities and balance the two groups (each apply-
ing one technique) so that the ability of the groups are aboutthe same. In this experiment, the
two experiment groups are set up based on the participant’s results in the pretest, so that each
group has stronger and weaker participants.

4.2.1 Preparatory Execises

The preparatory exercises can be found in the appendix. Withboth techniques, an imaginary
system to find flights for a specific date and time is analyzed. The flight finder component first
requests a list of available airline web services from a service broker. Afterward, it requests

4 DESIGN AND CONDUCTION OF THE CASE STUDY 21

all airline web services for available flights at the specified time. Finally, the available flights
are sorted by price and for the three cheapest flights, further details are requested. The exercise
comprises communication over network like the later experimental task. Additionally, it uses
different control flow elements, like loops and alternatives.

For the CB-SPE technique, a sequence diagram describing theapplication work flow as well as
a deployment diagram describing the deployment of the components on different servers has to
be created by the participants with ArgoUML. The response times for the calls to the service
broker and the web services as well as the times for the internal computations of the flight finder
are given. The diagrams have to be annotated with RT-UML PA tags describing performance
values for the different steps of the sequence diagram and the nodes of the deployment diagram.

For the Palladio technique, a service effect automaton describing the flight finder has to be
created. Here, the response times for the calls to the service broker and the web services are
given, but the times for the internal computations of the flight finder have to be estimated. The
participants have to create an input file for the Palladio tool that contains the service effect
automaton as well as the timing values for internal computations (estimated) and external calls
(given).

With the second preparatory exercise a questionnaire is issued. The questions regard the partici-
pants’ opinion of the techniques, and collects critique.

4.2.2 Results of the Preparation

23 participants handed in results for the CB-SPE technique,for the Palladio technique 22 did
so. For the CB-SPE, many participants experienced problemswith the interplay of ArgoUML
and the CB-SPE tool. Only 12 participants were able to analyze the system. Although no esti-
mations were involved, the predictions of the participantsvaried. The reason for this variation
is not always identifiable, some diagrams seem to be identical, but lead to different results.
Some participants with analyzable diagrams had small errors in their diagrams, e.g. they for-
got a return transition, or did not model the control flow for alternatives and loops correctly.
All these types of errors are due to a more complex exercise. The experimental exercise has a
simpler control flow. The participants who could not analyzetheir diagrams mainly had syn-
tactical errors. As a result of the problems with the preparatory exercise, the experimental task
is adjusted: The ArgoUML diagrams are given, the participants do not have to create them
themselves. Thus, syntactical errors in the created diagrams are prevented. Actually, this is
quite realistic: In a design process, sequence and deployment diagrams are probably available.
The problems of creating an ArgoUML diagram should not be subject to this experiment, and
therefore should be left out.

The second exercise trained the Palladio technique. Here, 18 participants were able to analyze
the system, four participants were unable to do so. One participant of those three had syntactical
errors, one left his input file incomplete, for the other two participants the reason could not be
found. 5 participants correctly modeled the system, although two of them had to comment out
parts of their service effect automaton to be able to do the analysis. The other participants did not

4 DESIGN AND CONDUCTION OF THE CASE STUDY 22

model the service effect automaton correctly. Here, as withthe CB-SPE technique, the loops and
alternatives caused of errors. Although the sequence and deployment diagrams for the CB-SPE
group are given, the Palladio participants have to create their service effect automata themselves.
Sequence and deployment diagrams are usually present in a design process, however, service
effect automata certainly are not. Thus, it is realistic to give the ready sequence and deployments
diagrams, but not the service effect automata.

In the third tutorial session, the problems that occured were discussed. Most problems were
due to the complex control flow of the preparatory exercise. As the control flow of the system
analysis during the experiment is less complex, no similar problems are expected during the
experiment. Many other problem were caused by syntactical errors. This source of error was
discussed in the third tutorial session, too. Additionally, during the experiment, the participants
will be allowed to ask for help when unable to analyze the system.

For the experiment session itself, participants were grouped; each group applying one tech-
nique. This grouping bases on the participants’ results in the preparatory exercise. Thereby,
two factors are decisive: First, the groups should be equally well-trained and successful in ap-
plying the techniques. Second, the participants should apply the technique they were more
successful in during the experiment. Table 4 shows the points the CB-SPE group members
achieved in the CB-SPE practice and the the points the Palladio group members achieved in the
Palladio practice.

CB-SPE group members15 15 15 15 14 14 14 13 13 10 10 9
Palladio group members 15 15 15 15 14 14 14 14 13 12 10

Table 4: Achieved Points in Preparatory Exercises (of Respective Technique)

4.3 Experiment

4.3.1 Experimental Task

During the experimental session, the response time of a component based, prototypic web server
should be analyzed. The web server was developed in the Palladio research group for testing
purposes.

The server receives requests following the HTTP protocol and delivers the requested sites or
documents. For each request, a thread is spawned, handling the request. First, the request is
parsed by theRequestParser and its subcomponents, then forwarded to a corresponding
request processor. For a HTTP request, the requests is parsed by theHTTPRequestParser
subcomponent and forwarded to theHTTPRequestProcessor component. Here, the re-
quested content is retrieved, either by retrieving a staticfile from the file system or by building
the content dynamically. The retrieved content is then converted to a byte array. A component
providing auxiliary functions (theHTTPRequestProcessorTools component) is used to
send header and content to the client. All requests are savedin a log file after sending the file.

4 DESIGN AND CONDUCTION OF THE CASE STUDY 23

For this experiment, the response time of the server when requesting a static HTML document
(size 50 kB) is analyzed. The involved components can be seenin figure 5. Note that the
WebserverMonitor has been left out, as it is called after the content has been sent to the
client, thus beyond the response time of the web server.

Figure 5: Involved Components of the Web Server

For comparing the performance prediction techniques, at least two different design alternatives
are needed. Here, the original web server design is comparedto a design in which the content
is compressed before sent to the client. For the compressionalgorithm, existing libraries can be
used. The decompression can be done by all current browsers.By analyzing the performance of
both design alternatives, the participants have to find out whether more time is saved by sending
smaller files then time is used for compressing the content.

For the design option with compression, a second subcomponent,ZipHTTPRequestProces-
sorTools, is inserted into theHTTPRequestProcessorTools component. The two
subcomponents are now arranged in a Pipe-and-Filter pattern: Requests to the IHTTPRequest-
processorTools interface are first delegated to theZipHTTPRequestProcessorTools
component. The content is compressed using SharpZipLib, anopen source compression library
for .NET [13]. After compressing the content, it is forwarded to theDefaultHTTPRequest-
ProcessorTools, who sends both content and header.

During the experiment session, the participants are asked to evaluate both design alternatives
and identify the design option more advantageous for performance. This does intentionally
not just ask for the lower response time, so that the participants may concern other values like
utilization of the resources, too. Two groups are established: One group applies the CB-SPE
technique, one applies the Palladio technique. All variables of the groups, except for the used
performance technique, are held as constant as possible. A comparison group of graduated com-
puter scientists is asked to analyze the system without any technique, but here the participants
individual performance cannot be held as constant as for thetwo test groups.

For both techniques, the participants have to estimate the time consumption or workload, re-
spectively, for certain actions (internal computation andexternal calls). To narrow down the
values estimates by the participants, borders for this values are given. To get realistic borders,
the web server is analyzed with the ANTS profiler by Red Gate Software [19], thus time con-
sumptions for the different methods can be obtained. Of course, this profiling slows down the
web server. However, the ANTS profiler states to subtract thetime needed for profiling.

4 DESIGN AND CONDUCTION OF THE CASE STUDY 24

The exercises for the experiment itself were pretested by members of the Palladio research
group. Thereby, problems with understanding and structuring could be removed. Additionally,
the guidelines for the specification of the distribution function of the Palladio method were
developed. This problem has not been visible in the preparatory exercises, as then distributions
have been given and not created by the participants. The problem is to specify a certain, fix
time consumption, as the Palladio tool understands distribution functions only. Therefore, a
participant who estimatesx milliseconds for a certain action to take cannot insert these x ms
directly into the tool (as ”in 100% of all cases, the action takes less or equal thanx ms”), as it is
interpreted as a distribution between 1 ms andx ms. However, it is impossible to specify lower
bounds for a distribution. Thus, the distribution is artificial restricted by inserting the equivalent
to ”In 1% of all cases, the action takes less or equal than(x − 1) ms. In 100% of all cases, the
action takes less or equal thanx ms” (Only integers can be inserted for defining the quantiles).
Thus, in 99% of all cases, the time consumption for the actionis right. The last 1% percent,
however, cannot be controlled.

Both groups are given UML diagrams describing the system, aswell as a explanation of these.
The UML diagrams are conform to the UML 2.0 standard like presented in [9]. Additionally,
information on the timing behavior is given: The average size of the file to be transfered is 50
kB and the speed of the network connecting the client to the web server is 1 Mb/s. Additionally,
information on the time needed for calculations is given. The participants have to estimate the
time needed for internal computations as well as the time needed for calls to the compression
library and the component logging the actions. For both, a range is given to avoid very wrong
estimations.

For the CB-SPE group, the sequence and deployment diagrams are given as an ArgoUML
project, ensuring that no syntactical errors of the diagrams itself hinder the experiment (as
mentioned in section 4.2.2). The given diagrams have to be annotated by the participants based
on their calculations and estimations. Finally, they have to interpret the results.

For the Palladio group, the sequence diagram and deploymentinformation are only given on
the exercise sheet. To simplify the participants work, however, they are given an automaton
comprising some of the service effect automata that have to be created when analyzing the
system (see exercise sheet in section B of the appendix). As the first three components that
handle the request have very simple service effect automata, their service effect automata are
comprised in one automaton. This service effect automaton does not change with the design
options. As a goal of the Palladio technique is to automatically derive service effect automata
from other available information (e.g. sequence diagrams or byte code), this help does not
invalidate the results.

For the comparison group, the exercise contains the same information as for the two test groups,
i.e. the sequence diagram for work flow of the two design options and a text describing the
work flow, the deployment of the component and the approximate bounds for the executions of
different steps. However, no information on how to predict the performance is given.

Except for tool-specific information, the task is identicalfor both groups. No group has more
information regarding the system to be evaluated than the other one. All differences of the
tasks can be traced back to differences in the techniques, and thus are a part of the experimental

4 DESIGN AND CONDUCTION OF THE CASE STUDY 25

variable. The final exercise sheets, (for both techniques aswell as the intuitive prediction of the
comparison group) can be seen in section B in the appendix.

With the experimental task, a second questionnaire is issued. The questions regard the partici-
pants former experience, the time they needed to work on the preparatory exercises and the time
they need to work on the experimental exercise. The results are used to assess the participants’
abilities in section 4.1 and to answer question 3.

4.3.2 Execution of the Experiment

The experiment was conducted on June, 28th 2005 at the OFFIS research institute. Due to the
limited space and PCs, the groups did not work concurrently:The CB-SPE group appeared in
the morning, the Palladio group appeared in the afternoon. The participants worked at 6 desktop
PCs and 6 notebooks, all having installed the required tools. The experiment was announced
to take two hours, although participants who did not complete the analysis could continue after
this time. Due to former experiences with this kind of experiments [14], most of the results were
checked before the participants left. Thus, apparent errors could be detected and removed on
the spot. However, some participants left without having their results checked. Possible errors
by these participants have not been detected until the sightof all results, then, they have been
asked to correct the solutions (included in the correction statistics).

After the experiment, the resulting data was collected and recorded in a spread sheet tool. More
gross errors were found, that invalidates the results. The participants were asked to correct them
before receiving the bonus points for the experiment. Two different kinds of errors have been
detected.

• Falsely specified distribution: Most errors have been made in defining the distribution
functions. Some participants did not adhere the notes on thetask sheet. Others specified
a distribution, but one that does not confines the distribution function, thus leading to the
same results like with no restriction.

• Miscalculation: Some participants had errors in their calculations, e.g. calculating a
wrong transfer time from a given network speed and file size.

A week after the conduction of the experiment with the test groups, the comparison group was
asked to analyze the performance of the web server. Here, theexercises were mailed to the
participants, and the participants worked on them alone. Thus, the variables influencing the
participants could not be controlled. Five participants sent back solutions of the analysis.

Errors were also encountered in the solutions of the intuitive group. Here, one participant
miscalculated the transfer time for a file, too. Thus, the errors are not due to distraction through
the tools.

4 DESIGN AND CONDUCTION OF THE CASE STUDY 26

4.4 Problems

4.4.1 CB-SPE Problems

Beyond dispute, the biggest problem of the CB-SPE techniqueis the creation of the ArgoUML
diagrams. The transitions are hard to handle and there is no undo function. Additionally, it
often happens that a diagram cannot be analyzed by the CB-SPEtool for unknown reasons. As
sequence diagrams are needed, ArgoUML 0.12 has to be used, being the last version supporting
sequence diagrams. In later version, the sequence diagramshave been left out due to problems
[25].

The CB-SPE tool comes with a few problems, too. Error messages are not in English, thus
hard to understand. Additionally, they are quite imprecise. However, as the tool more like
a prototype, these problems are not problems of the technique itself, but only of its current
implementation.

Currently, a new version of the CB-SPE tool is developed, that should be integrated in the
Eclipse IDE. Activity diagrams will replace the sequence diagrams, thus the modeling problem
might be removed.

4.4.2 Palladio Problems

Here, the specification of the distribution function is the main problem. As mentioned in section
4.3.1, no lower bounds for distributions can be specified. Ofcourse, all time consuming steps
have some lower time bound. The limitation of the distribution function introduced to the
participants on the experimental task sheet helps specifying the distribution, but not completely.
Especially with high estimated times, the hundredth of the distribution function that cannot
be constrained heavily influences the average of the distribution function. Of course, some
statistical values like the average are more subject to outliers than other, for example the median,
but nonetheless such results can be misleading.

A further problem are the error messages, too, as they are sometimes are imprecise, too. How-
ever, as with the CB-SPE tool, both problems are rather problems of the implementation than
problems of the techniques themselves. As the distributionfunctions are supposed to be speci-
fied in QML, lower bounds can easily be specified, and only the implementation has to be able
to handle them.

4.5 Measurement of the Web Server

The actual response time of the implementation of the web server is measured after conducting
the experiment. A notebook with a 1.8 GHz Intel Pentium 4 Mobile processor and 256 MB
RAM is used for the measurements. To generate the HTTP requests and measure the response

4 DESIGN AND CONDUCTION OF THE CASE STUDY 27

time, the ”Web Performance Trainer” (WPT) by Web Performance Inc. [26] is used, as it has
been successfully used in a similar study [14]. During the measurements, only the operating
system (Windows XP Home Edition), the Web Performance Trainer and the tested web server
were running.

Like stated in the experimental exercise, the WPT simulatesa 1 Mb/s connection. Different files
having the size of 50 kB are requested. For the web server implementation without compression,
only one file was requested, as the kind of file does not influence the response time. For the
web server implementation with compression, five files are tested, each leading to a different
compression rate. A plain text file (containing recurring content) can be compressed by 96.9%.
A second plain text file, containing a randomly generated text with no recurring passages, can
be compressed by 72.3%. Two executable files lead to compression rates of 55.3% and 36.4%,
respectively. Finally, transfering a JPG file leads to a compression rate of 1.3%.

The WPT is set to request the respective file for 10 minutes, ineach case waiting for the delivery
of the file before requesting it anew. Thus, if a big file is transfered, less requests are made within
10 minutes. Table 5 shows how much requests have been made foreach compression rate and
the web server without compression.

Compression rate 1.3% 36.4% 55.3% 72.3% 96.9%No compression
Number of requests 426 472 498 529 578 427

Table 5: Number of Requests during Measurement of the Web Server

Unfortunately, it turned out that the simulated network speed of the WPT is not exact. For
example, for the implementation without compression, the simulated network speed is higher
than required: In the first measurement, the average speed was 133.025 kB/swhich is 1.064
Mb/s. With a network speed of 1Mb/s, 50 KB take 409.6 ms to be transferred. With a network
speed of 1.064 Mb per second, 50 KB take only 384.89 ms to be transferred. This difference is
not just marginal and has to be considered when comparing themeasured and predicted values.

A repetition of the measurement for the implementation without compression lead to a sim-
ulated connection speed of 132.41 kB/s, which is not considerably lower. Unfortunately, the
WPT does not allow an exact specification of the speed of the connection, so the simulation
cannot be conducted with the exact connection speed. It is assumed that for this setup, the
connection speed cannot be properly set.

For the measurement of the implementation with compression, the network speed does differ
from the input requirements of 1 Mb/s (= 122.07 kB/s), too. For the first four measurements,
the deviation from the aimed network speed is low. For the compression rate of 96.908 %, the
simulated connection speed was 93.29 kB/s in the first measurement. The measurement has
been repeated to get a simulated connection speed of 102.14 kB/s. Further measurements lead
to no higher connection speed, so this simulation is used. The actual network speed (like given
in the output of the Web Performance Trainer), that will be used in further sections, can be seen
in table 6.

5 RESULTS 28

Compression Rate 1.3 % 36.4 % 55.3 % 72.3 % 96.9 %
Actual Network Speed in kB/s 129.22 118.89 123.80 124.92 102.14

Table 6: Actual Simulated Network Speed

Additionally, the time consumptions obtained with the ANTSProfiler seems to be too high. For
the compression of a 15 kB file, a time consumption of 15 ms has been measured by the ANTS
Profiler. However, the results of the WPT measurements show amuch smaller difference (2.57
ms) between the response time of the web server without compression and the response time
of the web server with a compression rate of 1.3%. This cannotbe explained with the slightly
smaller file transfered, as this can lead to a time saving of 5.06 ms (1.3% of the response time
of the uncompressed) and a remaining difference of 10 ms at the most (assuming the time for
compressing is constant and not depends on the file size). Thus, the ANTS results have to
be wrong, i.e. to high. They were used to help with the estimations on the sheets, thus the
information on the sheet is misleading.

5 Results

In this section, the results of the experiment are described. The experimental setup that lead to
these results is described in section 4 (Experiment). The resulting data of the experiment can be
found in the appendix. With this data, the conclusions drawnin this section can be reproduced.
The data is analyzed with the Goal Question Metric Approach (GQM), the metrics and question
are presented in section 3.2.2 GQM Questions and Metrics. Itis essential for using GQM that
the resulting data is interpreted on the basis of the beforehand stated metrics and questions.

5.1 Correctness of the Techniques

The GQM question was stated in section 3.2.2:

How correct are the performance predictions?

Two metrics have been specified to answer this question: First, the predicted performance is
compared to the measured performance of the web server (metric 1a) and second, the percent-
age of correct design decisions is determined (metric 1b). To interpret the first metric, the
measurement results of the web server implementation are needed.

5 RESULTS 29

5.1.1 Measurement Results

The setup for the measurement of the web server is described in section 4.5 (Measurement of
the Web Server). Values have been rounded off. First, the average response time of the system is
considered. The web server implementation without compression has an average response time
of 389 ms for a 50 kB file. The resulting response times of the web server using compression
are shown in Table 7 for different compression rates. The files used here have a size of 50 kB,
too.

Compression Rate Response Time in ms
1.3 % 392
36.4 % 268
55.3 % 192
72.3 % 118
96.9 % 25

Table 7: Average Response Times of the Web Server with Compression

It is clearly visible that using compression greatly reduces response time if a high compression
rate is used. But even with a lower compression rate of 36.4 percent, the response time is
reduced by 31.1 percent. It is also visible that the time needed to compress a file is very low,
as the difference of the response time of the web server without compression and the response
time of the web server with compression, using a compressionrate of 1.3%, is very small. Thus,
the time needed for compression is probably not higher than 10 ms.

Figure 6 shows the measured response times, plotted by the corresponding compression rate.
With this graph, response times for other compression ratescan be assessed.

Figure 6: Average Response Time of Web Server with Compression

The distribution of the response times is shown in figure 7 andfigure 8 (To associate the dis-
tributions with the compression rates in figure 8, note that the peaks have the same order as

5 RESULTS 30

the key below). The distributions are of different shape forthe different compression rates. In
general, they run out less steep to the right, toward higher values. The run of the curves is very
uneven with peaks about every 10 milliseconds. As the commontimer tick on Windows XP
machines is 10 milliseconds [16], the peaks are likely to be results of these time slices. The
actual distribution of the response time probably is more even, but cannot be measured.

Figure 7: Distribution of Response Time of Web Server without Compression

Figure 8: Distribution of Response Times of Web Server with Compression for Different Com-
pression Rates

To be able to compare the measured distributions to predicted distributions, descriptive statisti-
cal measures are shown in table 8.

5 RESULTS 31

Compression rate 0% 1.3% 36.4% 55.3% 72.3% 96.9%
Average in ms 389 392 268 191 118 23
Variance in ms2 44669.5 195951.8 297823.3 26719.6 10276.5 4653.6
Standard deviation in ms 211.35 442.66 545.73 163.46 101.37 68.22
Absolute deviation in ms 8.55 10.98 13.62 6.93 4.17 4.74
Lower Quartile in ms 383 384 258 187 118 21
Median in ms 384 385 260 188 118 21
Upper Quartile in ms 386 388 262 194 119 22
Difference lower quartile
and median in ms 1 1 2 1 0 0
Difference upper quartile
and median in ms 2 3 2 6 1 1

Table 8: Statistical Values of Measured Distribution of Response Times

Adjustment of Measured Data As mentioned in section 4.5, the network speed was not
precisely set by the Web Performance Trainer. To eliminate the failure in the results caused
by the improper connection speed , the results of the measurement are adjusted. To do so, I
calculate the time needed for transferring a file of the corresponding size with both simulated
and required connection speed. The difference is the time that has to be added to or subtracted
from the average response time of the system. The resulting adjusted average response times
can be seen in table 9, the column with compression rate of 0 % representing the measurement
of the implementation without compression. The adjustmentis the value that has to be added to
the average response time. It is calculated as follows:

adjustment =
fileSize

reqNetSpeed
−

fileSize

simNetSpeed

with fileSize the size of the transferred file in KB,simNetSpeed the simulated connection
speed in kB/s andreqNetSpeed the required connection speed of 122.07 kB/s. The resulting
adjustment is in seconds, in the table it is given transferred to milliseconds. The adjustment
may, of course, be negative if the simulated connection speed is higher than the required.

compression rate 0 % 1.3 % 36.4 % 55.3 % 72.3 % 96.9 %
measured av. response time in ms389 392 268 191 118 23
simulated network speed in kB/s 133.02 129.22 118.89 123.80 124.92 102.14
file size in kB 50 48.83 30.37 22.46 13.87 1.55
adjustment in ms 33.73 22.15 -6.66 2.58 2.59 -2.47
adjusted average response time 423 414 261 193 121 20

Table 9: Adjusted Average Response Times of the Web Server with Compression

Figure 9 shows the adjusted response times, plotted by the corresponding compression rate.

5 RESULTS 32

Figure 9: Adjusted Average Response Times of Web Server withCompression

In the following sections, the adjusted data will be used to compare and evaluate the perfor-
mance predictions, except for the comparison of the distribution of the response time. For the
comparison of the distributions, the original values are used, as the adjustment of the distri-
butions is more delicate. However, for the comparison of thedistribution functions, the mean
response time is less important, as especially variance anddeviation are looked at. Of course,
it is problematical to change the measured values belatedly. When doing so, the predictions of
the participants cannot be directly compared to measured values, but have to be compared to
values that underwent another procedure. With showing thatthis procedure does not invalidate
the results, however, the rightness of these adjustments isshown.

The adjustment of the values is quite simple. When delivering a file, the web server displays the
exact file size of the sent file in bytes. Additionally, the WebPerformance Trainer logs the actual
bandwidth used during benchmarking the system. Thus, the time for transferring the file with
the actual bandwidth as well as the time for transferring thefile with the required bandwidth
can be calculated. The difference of the two resulting values is added to the measured response
time, to get the adjusted response time. Thus, the time measured for the calculations of the web
server remains the same, only the transfer time is adjusted.

There is one risk in this calculation: It depends on the Web Performance Trainer detecting
the right actual bandwidth. However, as mentioned above, the bandwidth was certainly not
simulated correctly, as the response time is too low to send a50 kB file with a 1 Mbit connection.

Derivation of Response Times for Other Compression Rates For the predictions of
the web server with compression, the compression rates estimated by the participants are not
equal to those measured. Thus, I derive the actual response times for these compression rates

5 RESULTS 33

from a spline fitting the measured values using first-degree polynomials. For each section of the
graph, the function is determined. The resulting function is

respT ime(x) =



























−4.3471x + 419.3, x ∈ (0, 1.3]

−3.5920x + 391.8, x ∈ (1.3, 36.4]

−4.2472x + 428.1, x ∈ (36.4, 55.3]

−4.0896x + 416.7, x ∈ (55.3, 100)

The values are rounded off for clarity, in further calculations the precise values are used. The
resulting response times for the compression rates used by the participants are shown in table
10. A variant would be to approximate a single linear function based on the measured values,
but as the spline is almost linear, this will not improve the fitting.

Compression Rate in
%

10 20 30 35 40 50 60 80

Derived Response
Time in ms

375.85 332.38 288.9 267.17 248.14 212.22 173.23 89.5

Table 10: Derived Response Times For Compression

5.1.2 Comparison of Predicted and Measured Performance

CB-SPE 10 participants handed in results computed with the CB-SPE technique. Figure 10
shows their predictions for the implementation without compression as well as for the imple-
mentation with compression. All predictions for the web server without compression are close
to each other, and range between 402 and 431 milliseconds. The absolute deviation here from
the adjusted measured average response time ranges from 1.84 ms to 20.82 ms. The average
absolute deviation from the adjusted measured response time is 7.97 ms.

Figure 10: Predicted Response Times with CB-SPE Technique for Web Server

5 RESULTS 34

The predictions for the design option with compression are more spread, ranging from 112 to
373 milliseconds. This greater spread is caused by the participants estimating different com-
pression rates. In section 5.1.1, the actual response time for the different compression rates
estimated by the participants are determined from the measured response times. Both predicted
response times and adjusted measured response time of the derived function can be viewed in
figure 11.

Figure 11: Comparison Adjusted Measured Response Times andCB-SPE Predicted Response
Times for Web Server with Compression

With the derived function and the resulting response times for selected compression rates (table
10), the absolute deviation of the predicted response timescan be calculated. The results range
from 10.37 ms to 160.78 ms, with an average of 58.79 ms.

Palladio 11 participants handed in results computed with the Palladio technique. Figure 12
shows their predicted average response time for the implementation without compression as
well as for the implementation with compression. The predictions for both design options are
quite spread. The predicted average response time for the design option without compression
ranges from 285.8 ms to 419.68 ms. The absolute deviation here from the adjusted measured
average response time ranges from 3.16 ms to 137.04 ms. The average absolute deviation from
the adjusted measured response time is 60.04 ms.

5 RESULTS 35

Figure 12: Predicted Response Times with Palladio Technique for Web Server

The predictions for the design option with compression are more spread, too, ranging from
118.75 ms to 376.35 ms. Like above, this greater spread is caused by the the participants
estimating different compression rates. Both predicted response times and adjusted measured
response time of the derived function can be viewed in figure 13.

Figure 13: Comparison Adjusted Measured Response Times andPalladio Predicted Response
Times for Web Server with Compression

Again, with the derived function and the resulting responsetimes for selected compression rates

5 RESULTS 36

(table 10), the absolute deviation of the predicted response times can be calculated. The results
range from 0.85 ms to 83.32 ms, with an average of 26.2 ms.

For Palladio, the predicted distribution is considered, too. The measured distributions of the
response times of the web server for both design options can be seen in section 5.1.1 (figure
7 or 8, respectively). An excerpt of distribution for the design option without compression,
predicted with the Palladio technique, is seen in figure 14. Figure 14 shows that the predicted
distributions vary greatly, in table 11, the correspondingabsolute deviations are listed.

Figure 14: Excerpt of Distribution of Predicted Response Time for Web Server without Com-
pression

The variations are the result of the different distributions the participants use within their service
effect automata. As mentioned in section 4.3.1, the participants had to constrain the distribution
of their estimated values, but were free to decide how to constrain the distribution. Participant 2
and 6, having the steepest distribution, constrained all distributions (external as well as internal
computations) as tight as possible, i.e. they inserted every estimation ofx ms as the distribution
((1, 100), (x − 1, x)). Thus, in all cases, the execution of this step takes less or equal thanx

ms, and only in 1% of the cases, the execution of this step takes less or equal thanx − 1 ms, so
99% of the cases have an execution time of exactlyx ms. All other participants were less strict:
Participant 9, having the third steepest distribution, allowed an interval of 2 ms for two of his
estimations. Participant 3, having the forth steepest curve, thrice allowed an interval of 5 ms.

To compare the distribution functions, their absolute deviation as well as their quartiles are
considered.

Table 11 shows the absolute deviations, the median and the quartiles of the different partici-
pants’ predicted distribution functions, for both design options. Table 12 is an excerpt of table
8, showing the absolute deviation, the median and the quartiles of the measured distribution
functions.

For the design option without compression, the average of the absolute deviations is 74.3 ms,
whereas the absolute deviation of the measured distribution function is only 8.6 ms. For the

5 RESULTS 37

design option with compression, the average of the absolutedeviations is 71 ms, whereas the
absolute deviations of the measured distribution functionrange between 4.7 ms (compression
rate 96.9%) and 11 ms (compression rate 1.3%).

Participant Absolute deviation in ms
No compression Compression

1 14. 11.1
2 4 1
3 4.5 44.9
4 114.4 96.3
5 110.9 116.2
6 4 2.8
7 130.6 107.4
8 115.6 114.6
9 4 76.4
10 200.4 116.8
11 114.9 93.7
Average 74.3 71

Table 11: Absolute Deviation of Predicted Distribution Functions

Compression rate 0% 1.3% 36.4% 55.3% 72.3% 96.9%
Absolute deviation in ms 8.6 11 13.6 6.9 4.2 4.7

Table 12: Absolute Deviation of Measured Distribution of Response Times

Measures for the dispersion are meaningful enough for normal variables. Here, the shape of
the distribution is interesting, too. To compare the runs ofthe distribution functions, the upper
and lower quartiles are considered. To assess the run of the distribution functions, I use the
difference of the upper and lower quartile, respectively, from the median. The average of the
differences between the quartiles and the median of the predicted distribution functions are
shown in table 13. The differences between the quartiles andthe median of the measured
distribution functions can be seen in table 8, ranging between 0 ms and 2 ms for the difference
of lower quartile and median and between 1 ms and 6 ms for the difference of upper quartile
and median. It is detected that the runs of the measured distribution functions are less steep to
the right, toward higher values, however, the runs of all predicted distribution functions are less
steep to the left, toward lower values. Additionally, the intervals between the quartiles is much
greater for the predicted distributions.

No compression Compression
Difference lower quartile and median in ms140.2 119.8
Difference upper quartile and median in ms31.8 27.5

Table 13: Difference Between Lower and Upper Quartile toward Median of Predicted Distribu-
tion Functions

5 RESULTS 38

5.1.3 Percentage of Correct Design Decisions

From the results of the measurements, it can be seen that compression reduces performance,
however, the amount heavily depends on the compression rate.

The average compression rate the participants used is 46.9%. Of course, this depends on the
contents the web server provides. The experimental exercise states that the server is supposed
to host many packed images, that usually cannot be further compressed or even result in bigger
files after compression. A photo gallery will likely have a worse average compression rate. To
get practice values, I analyzed the starting site of Spiegel.de1. 85 files are transferred when
opening the site. Here, the average compression rate (of course weighted by file size) is 59%.
I also analyzed an image search with google, looking for "Hintergrund" (background)2. For
the page showing the first 20 results, an average compressionrate of 24.3% can be achieved.
Viewing a small photo gallery of the student representatives of the Oldenburg Department of
Computer Science3 results in a compression rate of 9.3%.

It becomes clear that the statement ”The server hosts many packed images” does not imply
a specific compression rate, but a wide range. The compression rate lies between 9.3% and
59% in the analyzed sample sites. The average compression rate the participants estimated is
realistic, as it is within this range. However, many of the participants chose a compression rate
of 80%, as this number is mentioned in the excercise. This is unrealistic: The exercise indeed
states that with compression, a site can be compressed up to 80%, but at the same time it says
that this server hosts many packed images.

The correct design decision for all compression rates the participants chose (starting from 10%)
is the use of compression. All participants using the CB-SPEtechnique to predict the perfor-
mance have correctly chosen this design option, thus the percentage of correct design decisions
is 100%. All except one participant using the Palladio technique chose the design option with
compression, thus the percentage of correct design decisions here is 90.9%. The one participant
choosing the wrong design decision used the lowest compression rate of all participants, i.e.
10%. No participant using CB-SPE chose a compression rate ofonly 10%, so it is unknown
whether it would have lead to a wrong decision, too.

Probably, this one participant chose the wrong design options because of the high time con-
sumption for the compression of a 15 kB file given on the sheet (c.f. section 4.5) and the
participant’s estimation for the time consumption for the compression of a 50 kB file, respec-
tively.

Technique Percentage
CB-SPE 100%
Palladio 90.9 %

Table 14: Percentage of Correct Design Decisions

1www.spiegel.de, accessed July 27th, 2005
2images.google.de/images?svnum=10&hl=de&lr=&q=Hintergrund&btnG=Suche, accessed July 27th, 2005
3http://www.fachschaft-informatik.de/uni-oldenburg/bildergalerie.php?verzeichnis=O-

Woche%202004&galerie=Dienstag&oberdatei=ersti, accessed July 27th, 2005

5 RESULTS 39

5.1.4 Answers to Question 1: How correct are the performance predictions?

When comparing the predicted values to the measured values,it has to be taken into account
that the time needed to compress a file was lower than providedon the sheet, c.f. section 5.1.1.
Thus, a deviation toward higher values is likely to be resultof this misinterpretation, and may
be correct if the right guidelines had been set.

For CB-SPE, the predictions for the design alternative without compression deviate only by
7.97 ms, i.e. here the performance is reliably predicted. The results for the design alternative
with compression are less good, most participants predicted a response time that is too high.
However, this may be caused by the wrong information on the time to compress a file. Despite
the impreciseness here, the correct design option has been chosen by all participants. The CB-
SPE technique can therefore be called right.

For Palladio, the predictions for the design alternative without compression deviate more, the
average absolute deviation is 60 ms. Here, it has to be taken into account that the Palladio
technique delivers a distribution function in first place, and does not claim to deliver exact
time amounts. The main goal is to be able to identify the better design decision. Additionally,
the specifying of the distribution function in the inputs for the Palladio technique causes more
spread, as the participants specified these differently. The inability of the tool to work with
lower bounds for performance results in a distribution where a response time of 1 ms is always
possible. Thus, the the mean of the distribution is further invalidated, as it is susceptible to
outliers and no upper outliers are present to balance the influence of the outliers. The Palladio
results for the design option with compression are better, even having a lower average deviation
than the CB-SPE predictions (26.2). Here, the lower mean response time of a Palladio prediction
balances the higher time estimated for compressing a file.

As the Palladio technique delivers distribution functions, too, these are compared to the mea-
sured distributions, too. For both design option, the absolute deviation of the majority of the
predicted distribution functions is too high. For the design option without compression, the
average of the absolute deviation of the predicted distribution functions is even ten times the
measured one. Analyzing the quartiles supports this impression: The dispersion of the pre-
dicted distribution functions is too high. Additionally, the measured distributions run out less
steep toward higher values, whereas the predicted distributions run out less steep toward lower
values. This may be a result of the inability to specify lowerbounds with the Palladio tool.

Even if the distribution of the measured response times could not be correctly predicted, there
is a distribution in the measured response time, which is notreflected by the CB-SPE tech-
nique at all. I suppose that to get better distribution functions, more detailed instructions to
the participants how to create a distribution are needed. This aspect has been unattended in
the preparation. Additionally, the Palladio tool has to offer more powerful methods to define a
distribution, as some of the participants’ distribution functions are rather accidental, resulting
from the inability to specify a lower bound for time consumptions.

The Palladio performance prediction is less correct than the CB-SPE predictions in this exper-
iment. A reason may be that the tool is less well developed, being unable to specify lower

5 RESULTS 40

bounds. Additionally, the specification of distribution functions was problematically. The ex-
ercise did not contain information on the distribution of times. Thus, to further evaluate the
rightness of the Palladio performance prediction technique, further experiments should take
place, putting the stress on the specification of distribution functions and their influence on
performance predictions.

5.2 Influence of Inputs

The GQM question for this area was stated in section 3.2.2:

What influence do the input models have?

Four metrics have been specified to answer this question. Thefirst three metrics, namely the
statistical spread of the inputs (metric 2a), the statistical spread of the output (metric 2b) and
the classification of the techniques sensitivity (metric 2c) are closely related and are analyzed
in section 5.2.1. The forth metric, namely the differences of the input models on a scale low to
high (metric 2d), is analyzed in section 5.2.2.

5.2.1 Classification of the Sensitivity of the Techniques

First, the metrics 2a and 2b are analyzed separately, each for both design options. Afterward,
the actual classification of the techniques is carried out.

Metric 2a, design option without compression The summed deviation valuedevEstp
for each participant is shown in table 15.devEstp is calculated like described in section 3.2.2:

devEstp =
n

∑

i=1

|esti,p − avgi|

(with esti,p being participantp’s estimated timing value of actioni, avgi being the average
estimated timing value of actioni, n being the number of participants). Figure 15 and 16
show the distributions of the summed deviation values graphically. Statistical values for both
distributions are shown in table 16.

CB-SPE
Participant 1 2 3 4 5 6 7 8 9 10
devEstp 13.5 11.9 9.7 11.9 9.7 5.9 5.3 10.5 6.3 9.1

Palladio
Participant 1 2 3 4 5 6 7 8 9 10 11
devEstp 5.7 19.1 13 8.1 18.6 11.5 13.9 10.2 13.7 8.4 6.4

Table 15: Summed Absolute Deviations of Each Participant’sEstimations (Design Option With-
out Compression)

5 RESULTS 41

Figure 15: Distribution of Summed Absolute Deviations of Each Participant’s Estimations (CB-
SPE Technique, Design Option Without Compression)

Figure 16: Distribution of Summed Absolute Deviations of Each Participant’s Estimations (Pal-
ladio Technique, Design Option Without Compression)

Technique Average Average Absolute Deviation Variance Standard Deviation
CB-SPE 9.4 2.4 7.7 2.8
Palladio 11.7 3.6 20.3 4.5

Table 16: Statistical Values ofdevEstp Distribution (Design Option Without Compression)

For both techniques, the spread of the input data is present,but not too high. Note that the range
in the figures 15 and 16 is quite small. The spread of the input data for the CB-SPE technique,
having a lower mean and a lower deviation, is lower that that of the Palladio technique, but not
significantly. Therefore, I classify the spread for both techniques as being relatively low.

Metric 2a, design option with compression For the estimations for the design option
with compression, the metrics 2a and 2b are analyzed, too. Table 17 shows the summed devia-
tion valuedevEstp for each participant. In figure 17 and 18, the distribution ofthese summed
deviation values is shown graphically.

Statistical values for both distributions are shown in table 18. The spread of the inputs of the
CB-SPE technique is lower, too.

5 RESULTS 42

CB-SPE
Participant 1 2 3 4 5 6 7 8 9 10
devEstp 137.8 60.8 40 38.6 40.8 37.6 19.6 68.4 43.6 46.8

Palladio
Participant 1 2 3 4 5 6 7 8 9 10 11
devEstp 8.9 45.4 60.3 21.3 62.3 26.4 25.1 31.5 29.4 28.7 20.1

Table 17: Summed Absolute Deviations of Each Participant’sEstimations (Design Option With
Compression)

Figure 17: Distribution of Summed Absolute Deviations of Each Participant’s Estimations (CB-
SPE Technique, Design Option With Compression)

Figure 18: Distribution of Summed Absolute Deviations of Each Participant’s Estimations (Pal-
ladio Technique, Design Option With Compression)

Technique Average Average Absolute Deviation Variance Standard Deviation
CB-SPE 43.4 9.7 179.1 13.4
Palladio 32.7 12.7 278 16.7

Table 18: Statistical Values ofdevEstp Distribution (Design Option With Compression)

For the design option with compression, the spread of input data is relatively high for both
techniques, as can be seen in the figures 17 and 18. Note that the scale in this figure is different
to the corresponding figures of the other design option, and that the deviation is much higher.
This is due to the different compression rates the participants estimated.

Metric 2b, design option without compression The analysis of metric 2b is similar to
the analysis of metric 2a. However, only one value per participant is considered, thus no sum

5 RESULTS 43

has to be calculated. For each participant, thedevPredp is calculated like described in section
3.2.2:

devPredp = |predp − avgPred|

with predp being the result of participantp’s performance prediction, i.e. the predicted response
time, andavgPred being the average predicted response time. Note that the result of a Palladio
prediction is a distribution, not a single value. For this metric, the mean value of the distribution
is considered, representing the predicted average response time. Table 19 shows the resulting
absolute deviation of each participant’s predicted response time to the average predicted re-
sponse time. A graphical representation of the distribution of the predicted response time (for
both CB-SPE and Palladio technique) are shown in figure 19 or 20, respectively. Descriptive
statistical measures for this distribution are given in table 20.

CB-SPE
Participant 1 2 3 4 5 6 7 8 9 10
devPredp 4.5 14.5 0.5 1.5 1.5 4.5 0.5 2.5 2.5 14.5

Palladio
Participant 1 2 3 4 5 6 7 8 9 10 11
devPredp 12.2 36.2 35.2 50.8 16.5 56.1 77 48.9 41.1 56.9 44.5

Table 19: Absolute Deviation of Each Participant’s Predicted Response Time (Design Option
without Compression)

Figure 19: Distribution Of Absolute Deviation of Each Participant’s Predicted Response Time
(CB-SPE Technique, Design Option without Compression)

Figure 20: Distribution Of Absolute Deviation of Each Participant’s Predicted Response Time
(Palladio Technique, Design Option without Compression)

5 RESULTS 44

Technique Average Average Absolute Deviation Variance Standard Deviation
CB-SPE 4.7 3.9 28.6 5.3
Palladio 43.2 13.6 337.9 18.4

Table 20: Statistical Values ofdevPredp Distribution (Design Option Without Compression)

The statistical spread of the output of the CB-SPE techniqueis low. The average absolute
deviation of the CB-SPE predictions (i.e. the mean of the distribution in figure 19) is even
lower than that of the corresponding input. The deviation ofthe distribution is higher than that
of the inputs, however, this difference is not high.

The statistical spread of the output of the Palladio technique is much higher than that of the
CB-SPE technique. The mean value of the distribution in figure 20 is almost ten times that of
the CB-SPE distribution. The deviation is higher, too. Thus, the statistical spread of the output
is classified high.

Metric 2b, design option with compression Table 21 shows the resulting absolute de-
viation of each participant’s predicted response time to the average predicted response time. A
graphical representation of the distribution of the predicted response time (for both CB-SPE and
Palladio technique) are shown in figure 21 or 22, respectively. Descriptive statistical measures
for this distribution are given in table 22

CB-SPE
Participant 1 2 3 4 5 6 7 8 9 10
devPredp 33.5 70.5 46.5 67.5 121.5 102.5 21.5 139.5 92.5 66.5

Palladio
Participant 1 2 3 4 5 6 7 8 9 10 11
devPredp 36.3 114.1 142.2 2.5 114 34.6 21 64.5 3.4 5.1 0.5

Table 21: Absolute Deviation of Each Participant’s Predicted Response Time (Design Option
with Compression)

Figure 21: Distribution Of Absolute Deviation of Each Participant’s Predicted Response Time
(CB-SPE Technique, Design Option with Compression)

5 RESULTS 45

Figure 22: Distribution Of Absolute Deviation of Each Participant’s Predicted Response Time
(Palladio Technique, Design Option with Compression)

Technique Average Average Absolute Deviation Variance Standard Deviation
CB-SPE 76.2 30.2 1435.1 37.9
Palladio 48.9 43.5 2707.1 52

Table 22: Statistical Values ofdevPredp Distribution (Design Option With Compression)

For the design option with compression, the statistical spread of both output data is high, too, as
can be seen in the figures 21 and 22. Here, like with the input values, this is due to the different
compression rates the participants estimated. As the time in the network is a major part of the
total response time, the compression rate greatly influences the response time.

As a result, to classify the performance prediction techniques, only the results for inputs and
outputs of the design option without compression are used.

Classification The techniques are classified according to the matrix (table2) presented for
metric 2c. For the classification, only the results of the prediction for the design option without
compression are used, as the results for the second design option are too heavily influenced by
the compression rate. The statistical spread of the input data for the CB-SPE technique is low,
and results in a low statistical spread of the output data. Thus, the CB-SPE technique is put in
the forth cell of the matrix. The statistical spread of the input data for the Palladio technique is
low, too (although slightly higher than that of the CB-SPE tool), its output, however, has a high
statistical spread. Thus it is classified in the third cell, having a high sensitivity.

Statistical spread of
X

X
X

X
X

X
X

X
X

X
X
X

inputs
outputs

high low

high No statement
about sensitivity
is possible.

Sensitivity is low

low Sensitivity is
high: Palladio

Sensitivity is al-
right: CB-SPE

Table 23: Metric 2c: Classification of Performance Prediction techniques

Note that the differences in the specified distributions forthe Palladio prediction has not been
taken into account here, only the estimated values are considered. The differences of the speci-
fied distributions is not as easy to assess as the other estimations.

5 RESULTS 46

5.2.2 Differences of Input Models

Due to the experimental setup, the input model of the CB-SPE technique only differ in the
estimated values (cf. section 4.3.1). Because ArgoUML caused to many problems, I could not
expect the students to create the required ArgoUML diagramsduring the limited time of the
experiment, thus, I prepared diagrams they only had to fill their estimations in. The difference
of the input models cannot be assessed in this setting. The only differences, the estimations, do
not depend on the used technique. Thus, an analysis of these differences do not help assessing
the difficulty to create an input model.

For the Palladio technique, input models have been created by the participants, as they had to
transfer the given sequence diagrams into service effect automata. Here, two main classes of
resulting automata can be identified.

1. 5 out of 11 participants created a service effect automaton for each service (i.e. for De-
faultHTTPrequestProcessorTools.SendContentToClient and ZipHTTPRequestProcessor-
Tools.SendContentToClient), describing the internal computations and external calls ex-
ecuted when calling this service.

2. 6 out of 11 participants created only one service effect automaton for each design op-
tion. Their first service effect automaton describes the internal computations and external
calls executed when calling DefaultHTTPrequestProcessorTools.SendContentToClient,
too. Their second automaton describes the internal computations and external calls ex-
ecuted when calling DefaultHTTPrequestProcessorTools.SendContentToClient and Zip-
HTTPRequestProcessorTools.SendContentToClient in a row.

These differences do not affect the results, because the ”melting” of service effect automata is
done during the calculations of the Palladio tool, too. However, the second class is not what a
service effect automaton is supposed to be. Maybe the idea ofservice effect automata has not
been perfectly understood by the participants. When drawing this conclusion, it has to be kept
in mind that some of these 6 participants may have chosen thisway fully aware of what they
do, to simplify their later analysis.

The results show, however, that it is quite hard for the participants to find adequate distributions
of their estimated values. A way to handle the distributionswas given on the sheets: restrict-
ing the distribution as far as possible. A comparison with the measured distribution shows that
this leads to a less spread distribution than measured. Someparticipants specified other distri-
butions, many of them too even. However, they were not prepared to do do. Altogether, the
preparation of the participants should have been better or the exercise should have proposed
a better way to specify the distribution functions. However, should be delivered by preceding
analyses, are not supposed to be estimated manually.

As the two variants of creating the input automaton do not affect the results, the difference of
input automata is low. However, the specification of distribution functions was problematical.

5 RESULTS 47

5.2.3 Answers to Question 2: What influence do the input model s have?

The results of metric 2c attest the CB-SPE technique a good applicability due to a moderate
sensitivity. It is unknown how results are if high-spread inputs are used. However, the aver-
age absolute deviation of the results here is lower than the average absolute deviation of the
estimations. Thus, one can suppose that the sensitivity is rather low, and that the technique
could handle more wide-spread inputs, too. Of course, this is only speculation and should be
supported by further experiments.

The results for the Palladio technique attest a high sensitivity, thus leading to a bad applicability.
However, the influence of the different distributions used by the participants has not been taken
into account, thus the classification may be wrong. Further experiments are needed to find an
answer.

The difficulty to create input models could not be assessed for CB-SPE. The problems during
the preparatory exercises, however, suggest that the creation of input models is problematically,
at least at this point of time, using ArgoUML. However, theseproblems are merely technical
and should not be used to assess the applicability of the technique itself.

The input automata for Palladio could be created by the participants. The differences in the
input automata do not affect the results, and thus are ratherstylistic. Thus, the input automata
can be obviously extracted from given information. However, the specifying of distribution
functions in this experiment are problematically. It has tobe kept in mind that the participants
had not been trained to do so. Thus, this flaw is likely to be a flaw of preparation and not of the
technique.

5.3 Reasonableness of the Workload

5.3.1 Results of Intuitive Prediction

As mentioned in section 4.3.1, a comparison group has been asked to predict the performance
of the system, too. Five computer scientists handed in solutions to the exercise. Metrics 1a and
1b have to be analyzed for their results. Figure 23 shows the predictions of the members of the
intuitive group. In figure 24, the prediction for the design option with compression are compared
to the function derived from the adjusted measured responsetime of the implementation.

5 RESULTS 48

Figure 23: Intuitive Predicted Response Times for Web Server

Figure 24: Comparison Adjusted Measured Response Times andIntuitively Predicted Response
Times for Web Server with Compression

The predicted response times for the design option without compression range between 400 ms
and 435 ms. The absolute deviation here from the adjusted measured average response time
ranges from 0.16 ms to 22.84 ms. The average absolute deviation from the adjusted measured
response time is 12.97 ms.

The predictions for the use of compression vary more, they range between 260 ms and 434
ms. Here, the absolute deviation from the function derived from the adjusted measured average

5 RESULTS 49

response time ranges from 51.9 ms to 116.5 ms. The average absolute deviation from the
function is 71.1 ms.

Based on their predictions, 4 out of the 5 participants chosethe correct design decision, the
use of compression. Thus, the percentage of correct design decisions is 80%. As the size of
the intuitive group is very small, this is probably no significant value. Additionally, the intu-
itive group was subject of the wrong expectation of the time consumption of the compression
algorithm, too.

A further threat to the validity of the comparison group’s results is their participation in the
similar study of Koziolek [14]. In Koziolek’s study, the design option with compression had
the best response time, too. The members of the comparison group may have transferred their
experiences with the before mentioned study into their predictions here. This threat cannot be
eliminated, however, all solutions of members of the comparison group have discernible calcu-
lations, thus the members of the comparison group did not only rely on their former experiences.

5.3.2 Workload Metrics

Three metrics in this context capture times the participants needed to work on their tasks,
namely metric 3c (the time needed to solve experiment exercise), metric 3d (the time to become
acquainted with the techniques) and metric 3e (the time to solve the preparatory exercises). The
participants were asked about the needed times anonymously. For both techniques as well as an
intuitive prediction, the results for the metric 3c can be seen in table 26. For both performance
prediction techniques, the results for metrics 3d and 3e areshown in table 25. Both tables can be
found in the appendix. The average times for each technique as well as an intuitive prediction
for the three metrics can be found in table 24.

Technique Average Time to
solve experimen-
tal exercise in
minutes

Average time to
learn technique in
minutes

Average time to
solve preparatory
exercise in min-
utes

CB-SPE 122.3 141.8 363
Palladio 136.4 72.1 216

intuitive 49 0 0

Table 24: Average Needed Times

5.3.3 Correct Solutions and Corrections

23 solutions were handed in for the first preparatory exercise, 22 for the second. I only analyze
the solutions handed in by participants of the experiment, as the other solutions have no signif-
icance here. In section 4.2.2, the results of the preparatory exercises are presented. To better
analyze this metric, the results are repeated in this section, some enhancements needed for the
interpretation of this metric are included.

5 RESULTS 50

The first exercise trained the CB-SPE technique. As mentioned in section 4.4.1, many expe-
rienced problems with the interplay of ArgoUML and the CB-SPE tool. Only 12 participants
were able to analyze the system. Although no estimations were involved, the predictions of
the participants varied. The reason for this variation is not always identifiable, some diagrams
seem to be identical, but lead to different results. Thus, small variations are classified correct
solutions. With this demand, 6 participants handed in correct solutions. The other participants
with analyzable diagrams had small errors in their diagrams, e.g. they forgot a return transition,
or did not model the control flow for alternatives and loops correctly. All these types of errors
are due to a more complex exercise. The experimental exercise has a simpler control flow. The
participants who could not analyze their diagrams mainly had syntactical errors.

The second exercise trained the Palladio technique. Here, 18 participants were able to analyze
the system, three participants were unable to do so. One participant of those three had syntac-
tical errors, for the other two the reason could not be found.5 participant correctly modeled
the system, although two of them had to comment out parts of their automaton to be able to do
the analysis. The other participants did not model the automaton correctly. Here, as with the
CB-SPE technique, the loops and alternatives were sources of errors.

For the experiment itself, only two participants using the CB-SPE technique were asked to
correct their solutions. One participants left the experiment after little more than 2 hours, as he
had other obligations, and finished the exercise later, thushaving one correction. One participant
seemed to have problems with the technique, especially withthe use of same units for time and
file size throughout the diagrams. After 5 corrections, he handed in a correct solution.

For the Palladio technique, 6 participants were asked to correct their solutions. Once, a partici-
pant had made a mistake when inserting the results of one analysis into a second service effect
automaton. The other corrections concerned the specifyingof the distributions of estimated
values. As mentioned in section 4.4.2, its specification is error-prone.

5.3.4 Answers to Question 3: Is the workload of a prediction r easonable?

For this rather simple performance prediction, the intuitive prediction has advantages. The time
needed for the intuitive prediction is much lower than for a prediction with a technique. One rea-
son is that the comparison group was able to concentrate on the values that affect performance
and add these to get the overall response time. They did not have to handle the techniques that
are able to handle other tasks, too, and thus are more general.

Additionally, it has to be taken into account that the participants were not very experienced with
the techniques. Although they received a beforehand training, the prediction during the experi-
ment was only their second one. Thus, the time needed for a single prediction may further drop
when the participants have gained more experience with the used techniques. The majority of
participants was, however, prepared enough to handle the techniques. Only one participants for
CB-SPE had to correct his solution. The corrections made forPalladio concerned the specifica-
tion of a distribution for their estimation. This aspect of the Palladio technique was not enough
well-trained. It may have lead to worse overall results for the Palladio prediction technique.

6 CONCLUSIONS AND OUTLOOK 51

The percentage of correct design decisions was lowest in theresults of the comparison group.
However, as the group was small, the number is not very significant. Additionally, the wrong
expectations of the time needed to compress a file influenced the one wrong decision. Anyway,
it is shown that the predictions with techniques are at leastas good as the intuitive predictions,
if not better.

The time needed to learn the techniques and to work on the preparatory exercises are lower for
the Palladio technique. Thus, the idea of service effect automata seems to be intuitive. However,
the longer time for the CB-SPE technique may be a result of problems with ArgoUML, too. A
different tool may improve the times needed to become acquainted with the CB-SPE technique.

For both techniques, more elaborated tools may lead to better times to become acquainted with
the techniques. Of course, a tool that is more convenient to handle can be used faster. Addition-
ally, more tasks for the user of the tools have to be automated, like deriving the service effect
automata from sequence diagrams or inserting the results from the analysis of the performance
of one service into the next. As both tools are developed for research purposes rather than
practical applicability, there is much potential for improvement here.

For more complex tasks, the techniques are likely to be advantageous. When the complexity
of the task becomes too great for an intuitive prediction to deal with, techniques can help.
However, the tools used with the techniques have to be more convenient and have to automatize
more. To prove this assumption, more complex system have to be analyzed within a further
experiment or more alternatives have to be evaluated against each other.

6 Conclusions and Outlook

6.1 Validity of this Case Study

To assess the overall validity of this case study, its internal and external validity is looked at. The
internal validity of an experiment describes how good disturbance variables are held constantly,
i.e. how good influencing variables can be controlled. The external validity describes how good
the results of the experiment can be transferred to other applications [18].

6.1.1 Internal Validity

Prechelt [18] defines the internal validity of a controlled experiment as follows. As I try to
conduct this case study as close to a controlled experiment as possible, this definition is used.

The internal validity of a controlled experiment is the degree to which the changes
of the dependent variables were caused by only the changes ofthe independent
variables, i.e. how good disturbance variables can be controlled.

6 CONCLUSIONS AND OUTLOOK 52

The most important threats to internal validity are introduced in the following and their impact
in this case study is analyzed.

Maturation: The maturation applies to changes of the participants behavior over the course of
the experiment. There exist two main forms of maturation: Onthe one hand, a participants
behavior changes because he or she learned during the experiment (Learning Effect) or
applies conclusions from one part of the exercise to a later one (Sequence Effect). On the
other hand, fatigue may change a participant’s behavior.

In this experiment, each participant only has to solve one task, reducing the threat of
learning and sequence effects. However, they had to analyzetwo design options succes-
sively. Here, sequence effects are theoretically possible. Looking at the design options
more closely, however, it becomes visible that sequence effects have no impact here, as
timing estimations that occurred in both design options were supposed to be identical.
Fatigue effects are unlikely to occur during the two hours ofthe experiment.

Instrumentation: Not only the behavior of the participants, but the behavior of the experi-
menter or the arrangement of the experiment is subject to changes, invalidating the re-
sults of data collection. For example, subjective adjudgements issued experimenter may
change during the process of judging.

In this case study, no subjective evaluations of the participants results have been made,
as the results of the performance predictions are expressible in numbers. Their collection
was tool supported. The tasks were issued on sheets and printed beforehand, thus the
results of the first CB-SPE group did not influence the Palladio group’s task.

History: Experiments that take several weeks can be subject to eventsthat happen outside
the experiment itself. For example, news in technical pressreferring to one of the tested
or a similar techniques may change the participants attitude toward the techniques, thus
influencing their motivation. Another simpler history effect are former participants giving
away their results to prospective participants of the experiment.

In this case study, the experiment took place on one single day, thus events outside the
experiment did not affect it. However, between the two groups, there was a break of two
hours. Thus, the possibility that members of the two groups talked on the experiment
during this time cannot be excluded. However, the proceeding of the two techniques
differs sufficiently so that such a talk would not help the members of the second group.
Additionally, no particular compliance between the estimation of the members of the first
group and the members of the second group could be detected.

Selection: In principle, dividing the participants into groups shouldbe random. However,
circumstances can demand a certain division. For example, if there are insufficient par-
ticipants, a random division could lead to a stronger and a weaker group. If the selection
of the participants is not random, it has to be ensured that the selection does not affect the
results of the experiment.

In this case study, the participants have been assigned to the groups. The goal of this
division was to create equally capable groups, as describedin section 4.2.2. No other
selection criteria than the results of the preparatory exercises have been used, thus this
selection lead to a more balanced group instead of resultingin seclection effects.

6 CONCLUSIONS AND OUTLOOK 53

Regression: If a participant performs an exceptionally good (or exceptionally bad) perfor-
mance for his or her means, it is likely that in a second test his or her performance will
drop (or increase). If the participants have been assigned to groups based on pretests, this
”regression toward the mean” effect invalidates the selection.

As there were two preparatory exercises in this experiment,the probability of undetected
regression effects is lower. Most participants have shown relatively constant performance
in the two preparatory exercises. In the experiment session, no deviation from the partic-
ipants formerly shown performance could be detected, too.

Mortality: Participants leaving the experiment during its conductionare a threat for internal
validity, too. Other participants’ motivation can be affected, additionally the selection of
members for the groups is distorted.

In this experiment, two participants of the preparatory exercises did not take part in the
experiment session. As the preparatory exercises were dealt with at home, their missing
in the experiment session should have had no impact on the other participants. However,
the two dropped-out participants had been considered when selecting the members of the
groups. Due to their drop-out, the CB-SPE group was left weaker than before. However,
as the CB-SPE group delivered good results in this study, theimpact seems to be low.

Demand Characteristics: The way in which different techniques and exercises are pre-
sented to the participants can further threaten the experiments significance. For example,
the experimenter may unknowingly improve his or her favorite test group’s motivation by
welcoming them more enthusiastic and friendly. Of course, such influences invalidate the
results of the experiment.

In this case study, the involved experimenters presenting the techniques and accompany-
ing the experiment were more closely related to the Palladiotechnique. However, they
strove toward being neutral. The basis for the CB-SPE tutorial slides kindly have been
sent in by Raffaela Mirandola, one of the developers of the CB-SPE technique. Thus, the
introductions of the technique supposably can be compared.The exercises themselves
were issued on sheets, only differing in parts that are different for the two techniques (c.f.
exercise sheets in section B in the appendix).

Processing Errors: A further threat to internal validity is to erroneously measure the result-
ing data. Here, the errors range from wrong measurement instruments over mistypings
when transferring measurement results to faults with applying statistical techniques.

In this experiment, the majority of the data has been collected by copy-pasting the partici-
pants results into spread sheets. Thus, mistyping errors are unlikely, except for the data of
the questionnaire. The participants results were saved directly, so wrong measurements
instruments do not apply here. Of course, the possibility ofother faults in transferring the
resulting data into the spread sheets cannot be entirely excluded.

6.1.2 External Validity

Prechelt [18] defines external validity as follows:

6 CONCLUSIONS AND OUTLOOK 54

The external validity of a controlled experiment is the degree to which its results
can be transferred correctly to other applications - in particular those that frequently
occur in practice. Aspects are, for example, motivation andqualification of partici-
pants, kind and size of the software, kind and form of the taskas well as constraints
like further software engineering methods, technical and spacious work environ-
ment, mental state, labor times, time pressure, quality requirements and the like.

To evaluate the external validity of this case study, I look at the aspects mentioned above more
closely. Additionally, the size of the test groups is important for generalizability.

Motivation and Qualification of the Participants: As mentioned in section 4.1, the par-
ticipants are advanced students, thus they were able to handle the fundamentals of com-
puter science. Although the difference in qualification between advanced students and
professionals is not very big according to Prechelt [18], anexperiment with professional
participants would have resolved the last doubts. The motivation of the participants was
given by awarding marks. Depending on a students individualattitude, this may result in
a lower or higher motivation. However, the motivation differs to the practical appliance
of predicting the performance of a system that you developedyourself. However, this
motivation can only be found in practice, not in experiments.

Size of the Test Groups: 10 participants applied the CB-SPE technique, 11 participants ap-
plied the Palladio technique. For a good generalizability,both groups should have had
more members.

Kind and Size of the Software: The analyzed web server is a typical example for a sys-
tems whose performance properties are predicted. However,the size of the analyzed
software is very small, compared to systems that have to be analyzed for their perfor-
mance in practice. At this point of time, however, the techniques are not fully matured
yet: To apply them in a large scale software project, the Palladio technique needs more
automation to use the prediction of a services performance for another prediction. The
presented problems with CB-SPE and ArgoUML prevents the usein large scale projects
at this point of time, too. However, to assess the techniquespotential, an empirical study
of this size is appropriate.

A further point is that the measurement results depend not only on the web server de-
sign, but on the specific implementations. Thus, the exact measurements are not even
transferable to different implementations.

Kind and Form of the Task: In connection with performance predictions, the possible tasks
do not vary much. In this experiment, the participants are asked to predict a systems
performance. Except for the size of the system (see above), the task is transferable to
practical applications.

Further Constraints: There is no standard for the constraints presented in the definition
above. For example, different organizations have different forms of these constraints.
There have been no special constraints in this experiments that would hinder the transfer
to other applications.

6 CONCLUSIONS AND OUTLOOK 55

The results of this case study are likely not directly transferable to a practice appliance of the
techniques. Although the student participants are not problematic, the test groups size is to
low. Additionally, the analyzed system is indeed similar tosystems in practice, but too small.
However, as the practical application of the techniques is not given yet, the possibility of testing
the techniques with large scale software projects is not given. Thus, the size and transferability
of this experiment is adequate.

6.2 Summary

This case study shows the applicability of the two performance prediction techniques CB-SPE
and Palladio for the prediction of the response time of a simple software architecture. In the
experiment, 21 students used the two techniques to predict aweb server’s response time and
choose a the design option out of two possible ones. Most participants (95%) choose the design
option whose later implementation indeed had the best response time: The use of compression
when sending a HTTP response to the client.

Altogether, the CB-SPE technique produced the better results. The absolute predicted response
time for the design option without compression is closer to the measured one. Additionally,
all CB-SPE participants chose the right design option. The predicted response times for the
design option without compression are less true, however, here the information on the sheets
are imprecise.

The predictions made using the Palladio technique are less right. Probably, this is due to the
problem of specifying lower bounds for distribution function and the absence of information
concerning the distribution of the called services and internal computations on the sheet. As no
lower bounds can be specified, the predicted average response time is to much influenced by the
outliers, as the average of a distribution is sensitive to outliers. A statistical metric that is less
prone to outliers is the median, possibly a comparison of thetechniques medians would lead to
different results.

The sensitivity of the CB-SPE technique regarding changes in the input data is moderate, which
results in a good applicability. To assess the behavior of the CB-SPE technique when confronted
with wide spread inputs, further experiments have to take place. Taking only into account the
estimated values, the Palladio technique has a high sensibility. However, the different distribu-
tion functions that have been specified by the participants have not been taken into account.

The implementation of both techniques is problematically,especially for CB-SPE. About half of
the participants were not able to create input diagrams withthe ArgoUML tool that are process-
able by the CB-SPE tool. Here, the implementation has to be improved. For the Palladio tool,
the specification of a lower bound for distribution functionmisses. The use of both techniques
could be more convenient, too, but it has to be kept in mind that they both are prototypical.

The time needed for a performance prediction by both test groups was higher than the time
needed by the comparison group using no technique. At the same time, the predictions made
with the help of the techniques have only slightly better results (here, it has to be kept in mind

6 CONCLUSIONS AND OUTLOOK 56

that the comparison group was mislead by false information on the sheet). Thus, I conclude
that for the simple system like analyzed here, the performance prediction techniques as they are
now have no advantages. However, the techniques are not fully matured yet. A more mature
technique would reduce the efforts of the developer, as moresteps can be automatized. For the
CB-SPE technique, it is planned to fully integrate the prediction into a UML modeling tool, by
inserting the predictions results in the UML diagrams for immediate feedback. For the Palladio
technique, the results of one services performance can be more straightforward included into a
further analysis.

Altogether, the CB-SPE technique can be attested a good applicability when abstracting from
the problems of the current implementation. To assess the Palladio technique, further exper-
iments have to take place. In these experiments, more data must be present concerning the
distribution functions or the participants have to be better trained to assess the distributions
themselves. However, the experiment shows that the Palladio technique needs more effort to
predict a performance of a system, as in addition to the estimations of plain timing values, a
distribution has to be found. If this data is collected, however, the approach looks promising
to actually derive extra information on a distribution function of performance values. Further
experiments have to evaluate this statement.

6.3 Future Work

There are several points for further works in this area. The empirical comparison and validation
could be conducted as a controlled experiment. Thus, its plausibility could be improved, as the
observed results could be definitively traced back to the change of the experimental variables.
However, it is even more important to look at the performanceprediction of more complex sys-
tems or for more possible design options. In this study, the comparison group achieved similar
results in less time. For more complex systems or more designoptions, a manual prediction may
be too complex or even lead to wrong results, but this can onlybe evaluated by experimenting
with a more complex system or more design options.

A third point of contact references the Palladio technique:Here, the potential of the specification
of distribution functions has to be looked at. In this experiment, the possibility of specifying dis-
tribution functions was rather negative for the techniquesresults. It relates to the practical case
in which no information about distribution is available. Ifso, the Palladio technique possibly
should not be applied (or have reasonable default distributions). The case that the distributions
are known, however, is not considered in this study and needsfurther investigation. Participants
have to be trained.

In the context of this work, only the rightness of the techniques is looked. A further possibility
is to evaluate the accuracy of the techniques, comprising both rightness and precision.

The duration of the measurement of the web server and thus thenumber of measurements
have been arbitrary in this study. As more than 400 requests have been tested, the distribution
function seems likely to be valid. However, the needed amount of measurements to get an
appropriate distribution function may be determined, too.

List of Figures 57

List of Figures

1 CB-SPE Framework (like presented in [5]) 7
2 CB-SPE Procedure on Application Layer (System Assembler). 7
3 Palladio: Distribution Function Defined by a QML Contract 9
4 Information on the Participants 19
5 Involved Components of the Web Server 23
6 Average Response Time of Web Server with Compression 29
7 Distribution of Response Time of Web Server without Compression 30
8 Distribution of Response Times of Web Server with Compression for Different

Compression Rates . 30
9 Adjusted Average Response Times of Web Server with Compression 32
10 Predicted Response Times with CB-SPE Technique for Web Server 33
11 Comparison Adjusted Measured Response Times and CB-SPE Predicted Re-

sponse Times for Web Server with Compression 34
12 Predicted Response Times with Palladio Technique for WebServer 35
13 Comparison Adjusted Measured Response Times and Palladio Predicted Re-

sponse Times for Web Server with Compression 35
14 Excerpt of Distribution of Predicted Response Time for Web Server without

Compression . 36
15 Distribution of Summed Absolute Deviations of Each Participant’s Estimations

(CB-SPE Technique, Design Option Without Compression) 41
16 Distribution of Summed Absolute Deviations of Each Participant’s Estimations

(Palladio Technique, Design Option Without Compression) 41
17 Distribution of Summed Absolute Deviations of Each Participant’s Estimations

(CB-SPE Technique, Design Option With Compression) 42
18 Distribution of Summed Absolute Deviations of Each Participant’s Estimations

(Palladio Technique, Design Option With Compression) 42
19 Distribution Of Absolute Deviation of Each Participant’s Predicted Response

Time (CB-SPE Technique, Design Option without Compression) 43
20 Distribution Of Absolute Deviation of Each Participant’s Predicted Response

Time (Palladio Technique, Design Option without Compression) 43
21 Distribution Of Absolute Deviation of Each Participant’s Predicted Response

Time (CB-SPE Technique, Design Option with Compression) 44
22 Distribution Of Absolute Deviation of Each Participant’s Predicted Response

Time (Palladio Technique, Design Option with Compression). 45
23 Intuitive Predicted Response Times for Web Server 48
24 Comparison Adjusted Measured Response Times and Intuitively Predicted Re-

sponse Times for Web Server with Compression 48

List of Tables 58

List of Tables

1 Research Goal . 12
2 Metric 2c: Classification Matrix to Assess Sensitivity 15
3 Summary GQM Questions and Metrics .17
4 Achieved Points in Preparatory Exercises (of Respective Technique) 22
5 Number of Requests during Measurement of the Web Server 27
6 Actual Simulated Network Speed .. . 28
7 Average Response Times of the Web Server with Compression 29
8 Statistical Values of Measured Distribution of Response Times 31
9 Adjusted Average Response Times of the Web Server with Compression 31
10 Derived Response Times For Compression 33
11 Absolute Deviation of Predicted Distribution Functions. 37
12 Absolute Deviation of Measured Distribution of ResponseTimes 37
13 Difference Between Lower and Upper Quartile toward Median of Predicted Dis-

tribution Functions . 37
14 Percentage of Correct Design Decisions 38
15 Summed Absolute Deviations of Each Participant’s Estimations (Design Option

Without Compression) . 40
16 Statistical Values ofdevEstp Distribution (Design Option Without Compression) 41
17 Summed Absolute Deviations of Each Participant’s Estimations (Design Option

With Compression) . 42
18 Statistical Values ofdevEstp Distribution (Design Option With Compression) . 42
19 Absolute Deviation of Each Participant’s Predicted Response Time (Design Op-

tion without Compression) .43
20 Statistical Values ofdevPredp Distribution (Design Option Without Compres-

sion) . 44
21 Absolute Deviation of Each Participant’s Predicted Response Time (Design Op-

tion with Compression) . 44
22 Statistical Values ofdevPredp Distribution (Design Option With Compression) 45
23 Metric 2c: Classification of Performance Prediction techniques 45
24 Average Needed Times . 49
25 Needed Times to Learn the Techniques and Work on Preparatory Exercise (met-

rics 3d and 3e) . LI
26 List of Needed Times for Experimental Exercise (Metric 3c) LI

References 59

References

[1] S. Balsamo, A. DiMarco, P. Inverardi, and M. Simeoni, “Model-based performance pre-
diction in software development: A survey,”IEEE Transactions on Software Engineering,
vol. 30, no. 5, pp. 295–310, May 2004.

[2] S. Balsamo, M. Marzolla, A. DiMarco, and P. Inverardi, “Experimenting different soft-
ware architectures performance techniques: A case study,”in Proceedings of the Fourth
International Workshop on Software and Performance. ACM Press, 2004, pp. 115–119.

[3] V. R. Basili, G. Caldiera, and H. D. Rombach, “The goal question metric approach,” in
Encyclopedia of Software Engineering - 2 Volume Set, J. J. Marciniak, Ed., 1994, pp.
528–532.

[4] A. Bertolino and R. Mirandola, “Towards Component-Based Software Performance Engi-
neering,” inProc. 6th Workshop on Component-Based Software Engineering: Automated
Reasoning and Prediction, ACM/IEEE 25th International Conference on Software Engi-
neering ICSE 2003, 2003, pp. 1–6.

[5] ——, “CB-SPE Tool: Putting Component-Based PerformanceEngineering into Practice,”
in Proc. 7th International Symposium on Component-Based Software Engineering, Lec-
ture Notes in Computer Science, vol. 3054, 2004, pp. 233–248.

[6] C. Differding, B. Hoisl, and C. M. Lott, “Technoloy package for the Goal Question Metric
Paradigm,” University of Kaiserslautern, AG Software Engineering, Tech. Rep., 1996.

[7] V. Firus and S. Becker, “Towards performance evaluationof component based soft-
ware architectures,” inProceedings of Formal Foundation of Embedded Software and
Component-Based Software Architectures (FESCA), Electronic Notes in Theoretical Com-
puter Science, 2004.

[8] V. Firus, S. Becker, and J. Happe, “Parametric Performance Contracts for QML-specified
Software Components,” 2005, to be published in:Proceedings of Formal Foundation of
Embedded Software and Component-Based Software Architectures (FESCA) and Elec-
tronic Notes in Theoretical Computer Science.

[9] M. Fowler,UML Distilled, 3rd ed. Addison-Weasley, 2003.

[10] S. Frølund and J. Koistinen, “QML: A Language for Quality of Service Specification,”
Hewlett Packard, Software Technology Laboratory, Tech. Rep. HPL-98-10, Feb. 1998.

[11] R. L. Glass,Software Runaways: Lessons Learned from Massive Software Project Fail-
ures. Prentice-Hall Publication, 1998.

[12] R. Guth and L. Radosevich, “IBM crosses the Olympic finish line,”
http://www.infoworld.com/cgi-bin/displayStory.pl?/features/980209olympics.htm,
Feb. 1998, accessed July 21st, 2005.

[13] IC#Code, “SharpLibZip,” http://www.icsharpcode.net/OpenSource/SharpZipLib/Default.aspx,
accessed August 6th, 2005.

References 60

[14] H. Koziolek, “Empirische Bewertung von Performance-Analyseverfahren für Software-
Architekturen,” Diplomarbeit, Carl von Ossietzky Universität Oldenburg, 2004.

[15] H. Koziolek and V. Firus, “Empirical Evaluation of Model-based Performance Prediction
Methods in Software Development,” inSoftware Architecture Quality and Software Qual-
ity, ser. Lecture Notes in Computer Science, R. Reussner et al.,Ed., vol. 3712. Springer
Verlag, 2005, pp. 188–202.

[16] Microsoft Corporation, “Guidelines For Providing Multimedia Timer Support,”
www.microsoft.com/whdc/system/CEC/mm-timer.mspx, 9 2002, accessed July 22nd,
2005.

[17] R. Montealegre and M. Keil, “De-escalating Information Technology Projects: Lessons
from the Denver International Airport,”MIS Quarterly, vol. 3, pp. 417–447, 2000.

[18] L. Prechelt,Kontrollierte Experimente in der Softwaretechnik. Springer Verlag, 2001.

[19] Red Gate Software, “ANTS Profiler,” http://www.red-gate.com/code_profiling.htm, ac-
cessed and downloaded June 18th, 2005.

[20] R. H. Reussner and H. W. Schmidt, “Using parameterised contracts to predict properties
of component based software architectures,” inWorkshop On Component-Based Software
Engineering (in association with 9th IEEE Conference and Workshops on Engineering of
Computer-Based Systems), Lund, Sweden, 2002, I. Crnkovic, S. Larsson, and J. Stafford,
Eds., 4 2002.

[21] R. H. Reussner, H. W. Schmidt, and I. H. Poernomo, “Reasoning on Software Architec-
tures with Contractually Specified Components,” inComponent-Based Software Quality:
Methods and Techniques, A. Cechich, M. Piattini, and A. Vallecillo, Eds. Springer-
Verlag, Berlin, Germany, 2003.

[22] A. Schmietendorf and A. Scholz, “Aspects of Performance Engineering - an Overview,” in
Performance Engineering: State of the art and current trends, Lecture Notes on Computer
Science, R. Dumke, Ed., vol. 2047. Springer Verlag, 2001.

[23] M. Sitaraman, G. Kulczycki, J. Krone, W. F. Ogden, and A.L. N. Reddy, “Performance
specification of software components,” inSSR ’01: Proceedings of the 2001 symposium
on Software reusability. New York, NY, USA: ACM Press, 2001, pp. 3–10.

[24] C. U. Smith,Performance Solutions: A Practical Guide To Creating Responsive, Scalable
Software. Addison-Wesley, 2002.

[25] L. Tolke, “Frequently asked questions for ArgoUML,”
http://argouml.tigris.org/faqs/users.html, accessed April 25th, 2005.

[26] Web Performance Inc., “Web Performance Trainer,” http://www.webperformanceinc.com,
accessed and downloaded June 17th, 2005.

[27] X. Wu, D. McMullan, and M. Woodside, “Component Based Performance Prediction,” in
6th ICSE Workshop on Component-Based Software Engineering: Automated Reasoning
and Prediction, 2003.

A PREPARATORY EXERCISES AND TUTORIAL SLIDES I

A Preparatory Exercises and Tutorial Slides

A.1 CB-SPE Tutorial Slides

1

Empirical Comparison of
the Model-Driven

Performance Prediction
Techniques CB-SPE and

Palladio
Raffaela Mirandola

Università di Roma „Tor Vergata“
Viktoria Firus, Anne Martens

Universität Oldenburg

03/06/2005Tutorial Component Based Software Engineering: CB-SPE Performance Prediction Technique2

Organisatorisches (1)

• 31.05. 2005
– 1. Tutorium CB-SPE
– Ausgabe 1. Übungszettel

• 07.06. 2005
– 2. Tutorium Palladio
– Abgabe 1. Übungszettel
– Ausgabe 2. Übungszettel

• 14.06. 2005
– Abgabe 2. Übungszettel

03/06/2005Tutorial Component Based Software Engineering: CB-SPE Performance Prediction Technique3

Organisatorisches (2)

• 21.06. 2005
– 3. Tutorium: Besprechung der Abgaben

• 28.06. 2005
– Experiment

• Abgaben der Lösungen per Mail (vgl.
Übungszettel)

4

Towards Component-Based
Software Performance

Engineering

Raffaela Mirandola

Dipartimento di Informatica, Sistemi e Produzione
Università di Roma Tor Vergata, Roma, Italy

mirandola@info.uniroma2.it

03/06/2005Tutorial Component Based Software Engineering: CB-SPE Performance Prediction Technique5

Outline

• Introduction:
– from the software model to the validation

of Extra-Functional Requirements (E-
FRs)

• Performance validation
– SPE

• Component-based systems
• CB-SPE

03/06/2005Tutorial Component Based Software Engineering: CB-SPE Performance Prediction Technique6

Software Validation

… what the customer wants is (more or less
completely and correctly) specified in the
software requirements

Evaluating
in the upper lifecycle phases

whether the software model
does

has the ability of doing
what the customer wants

Early

03/06/2005Tutorial Component Based Software Engineering: CB-SPE Performance Prediction Technique7

Software
requirements

• Functional : statements of services
the software system should provide,
how it should react to particular inputs
and behave in particular situations

• Extra-functional : constraints on the
services offered by the software
system affecting the software quality

03/06/2005Tutorial Component Based Software Engineering: CB-SPE Performance Prediction Technique8

Software validation of
E-FR

It is a common practice to validate a
software model mostly against
functional requirements rather than
against extra-functional ones

Why?!

03/06/2005Tutorial Component Based Software Engineering: CB-SPE Performance Prediction Technique9

• Different (and often not available) skills
required for E-FR modeling and validation

• Short time to market, i.e. quickly available
software products performing quite poorly
“seem” to be more attractive nowadays!

Motivations from outer world

03/06/2005Tutorial Component Based Software Engineering: CB-SPE Performance Prediction Technique10

“… then why to pursue early
validation of E-FRs?”

• In the early phases of the lifecycle a
validation of E-FRs may prevent late
inconsistencies hard to fix

• E-FRs are more critical in modern (possibly
distributed) component-based software
systems

03/06/2005Tutorial Component Based Software Engineering: CB-SPE Performance Prediction Technique11

1. Amount and type of missing info to integrate
into a basic software model in order to
perform a E-FR validation

2. Algorithms to make automatic the step:

“What is the gap between
software development and

E-FR validation?”

basic software model
+

additional info

“ready-to-validation”
model

03/06/2005Tutorial Component Based Software Engineering: CB-SPE Performance Prediction Technique12

A general validation
scheme

Software
Model

(original notation)

Additional
information:

software
annotations

Enriched
Software Model

(possibly new
notation)

Validation of
Functional
Requirements

Validation of
Non-Functional
Requirements

03/06/2005Tutorial Component Based Software Engineering: CB-SPE Performance Prediction Technique13

PERFORMANCE
VALIDATION

03/06/2005Tutorial Component Based Software Engineering: CB-SPE Performance Prediction Technique14

Performance

“Theoretical” performance definition:

Time behavior (ISO 9126):
The capability of the software product
to provide appropriate response and
processing times and throughput
rates when performing its function,
under stated conditions

03/06/2005Tutorial Component Based Software Engineering: CB-SPE Performance Prediction Technique15

Performance metrics

“Practical” examples:
• Response time
• Throughput
• Device utilization
• Scalability
• Reaction time (in real time systems)

03/06/2005Tutorial Component Based Software Engineering: CB-SPE Performance Prediction Technique16

Software Performance
Engineering

03/06/2005Tutorial Component Based Software Engineering: CB-SPE Performance Prediction Technique17

Software Performance
Engineering

• Systematic quantitative approach to
constructing software systems
that meet performance objectives.

• Based on the methodical assessment
of performance issues from
requirements to implementation.

03/06/2005Tutorial Component Based Software Engineering: CB-SPE Performance Prediction Technique18

SPE Process

assess
performance

risk

identify
critical

use cases

select key
performance

scenarios

establish
performance

objectives

construct
performance

models

add software
resource

requirements

add computer
resource

requirements

evaluate
performance

model(s)

verify and
validate
models

modify/add
scenarios

adjust
system
design

revise
performance
requirements

[infeasible] [feasible]

[acceptable]

03/06/2005Tutorial Component Based Software Engineering: CB-SPE Performance Prediction Technique19

SPE Process (2)

1. Assess Performance Risk: the level of risk and its impact on system
performance determines the amount of effort to put into SPE activity

2. Identify Critical Use Cases, i.e., those use cases that are mostly
important to responsiveness or scalability for the user(s) of the system

3. Select Key Performance Scenarios, i.e., those that are executed
frequently or that are perceived as critical to the performance

4. Establish Performance Objectives, i.e., for each key performance
scenario specify quantitative criteria for evaluating its performance
characteristics and for each combination of scenario and performance
objective specify the conditions (workload mix and intensity) under which the
performance objective should be achieved

03/06/2005Tutorial Component Based Software Engineering: CB-SPE Performance Prediction Technique20

SPE Process (3)

5. Construct Performance Models

6. Determine Software Resource Requirements, i.e., the amount of
processing and software resources required for each scenario step.

separates the Software Model (SM)

from its environment/machinery model (MM)

� allows for defining software and machinery

models separately and solving their combination,

� improves the portability of models

03/06/2005Tutorial Component Based Software Engineering: CB-SPE Performance Prediction Technique21

SPE Process (3)
7. Add Computer Resource Requirements, i.e., the load imposed on the
devices used by scenario steps. Computer resource requirements depend
on the environment in which the software executes

8. Evaluate Performance Models: using the model and the selected
analysis method, compute the performance predictions. If feasible:
choose the most promising design approach; otherwise, if
infeasible, change product requirements

9. Verify and Validate the Model: these activities proceed in parallel with the
construction and evaluation of the models. Model verification, for example,
determines if the estimated resource requirements are reasonable.
Model validation ensures that we are building a model that accurately
(faithfully) reflects the target system.

03/06/2005Tutorial Component Based Software Engineering: CB-SPE Performance Prediction Technique22

Software Model

• characterizes the resource
requirements of the proposed
software alone, in the absence of
– other workloads

– multiple users
– delays due to contention for resources

03/06/2005Tutorial Component Based Software Engineering: CB-SPE Performance Prediction Technique23

Software Model

• provides static analysis of
– best-case
– worst-case
– average
response times

• is generally sufficient
for identifying serious performance problems
at the architectural and early design phase

03/06/2005Tutorial Component Based Software Engineering: CB-SPE Performance Prediction Technique24

Machinery Model

• represents the key computer system
resources as queues and servers.
– a server represents a component

of the environment
that provides some service
to the software (e.g., processor, disk)

– a queue represents jobs
waiting for service

03/06/2005Tutorial Component Based Software Engineering: CB-SPE Performance Prediction Technique25

Queueing Model

population

queue

server 1

server 2

server m

03/06/2005Tutorial Component Based Software Engineering: CB-SPE Performance Prediction Technique26

Queueing Network Models

users

Service center

queue server

• Components
• Topology

• Parameters
– job classes
– job routing among centers
– scheduling discipline at service

centers
– service demand at service centers

03/06/2005Tutorial Component Based Software Engineering: CB-SPE Performance Prediction Technique27

Queueing Networks
• open QN:

– incoming and
outgoing jobs
to the network

– Number of jobs
varies over the time

• closed QN:
– no external arrivals

to the network
– circulation of

fix number of jobs

(Folie von Heiko Koziolek)

03/06/2005Tutorial Component Based Software Engineering: CB-SPE Performance Prediction Technique28

Component-based systems

03/06/2005Tutorial Component Based Software Engineering: CB-SPE Performance Prediction Technique29

Functional correct component

CBSE

Rapid assembly of systems from components where

� components and frameworks have certified properties

� these certified properties provide the basis for predicting
the properties of systems built from components [SEI00]

Properties
useful componentExtra-functional

(performance, reliability)

03/06/2005Tutorial Component Based Software Engineering: CB-SPE Performance Prediction Technique30

Motivation
Performance specifications are essential for two basic reasons:

1. Multiple implementations provide the same functional
behavior.

Components that best fit the client
performance requirements.

Software components should include descriptions of
performance behavior

2. If components have performance specifications, then the
performance of the system can be derived based on the
components it directly uses; the component implementations
need not be re-analyzed in each new context they are used.

03/06/2005Tutorial Component Based Software Engineering: CB-SPE Performance Prediction Technique31

Performance (1)
Metrics such as application and component

execution times, response times, resource utilization

Depends on characteristics of the systems such as:

Choice of the architecture

Choice of the programming paradigm

Underlying platform resources

Parallelism

Distribution
...

03/06/2005Tutorial Component Based Software Engineering: CB-SPE Performance Prediction Technique32

Performance of
component-based systems

• Source code not available

• Possible dependance
on external components

• Possibly distributed application

• Heterogeneity
in the underlying machine configurations

03/06/2005Tutorial Component Based Software Engineering: CB-SPE Performance Prediction Technique33

What to do?

Measurement

Platform specific

code (not) available

costly

Basing on models

03/06/2005Tutorial Component Based Software Engineering: CB-SPE Performance Prediction Technique34

Goal

Component-based

Software Performance

Engineering

03/06/2005Tutorial Component Based Software Engineering: CB-SPE Performance Prediction Technique35

… some pieces are
already round here ...

�SPE

�UML

03/06/2005Tutorial Component Based Software Engineering: CB-SPE Performance Prediction Technique36

UML

Specification of component based on UML

UML cannot express several important
(extra functional) system requirements such as:
response time, availability, throughput and bandwidth.

Performance Analysis profile:

RT-UML standard

03/06/2005Tutorial Component Based Software Engineering: CB-SPE Performance Prediction Technique37

RT-UML(1)

� The RT UML Profile defines a standard set of stereotypes
for expressing platform-related concepts:

� resources
� concurrency mechanisms
� time and timing mechanisms

� The PA sub-profile:
� Allows accurate specification of key performance
concepts directly on UML models
� Eliminates the need for manual construction of a
separate performance model (i.e., the model can be
derived automatically)

03/06/2005Tutorial Component Based Software Engineering: CB-SPE Performance Prediction Technique38

RT-UML(2)
PRIMA-UML, Propean, …..

Automatic (!!) generation

of queueing network based performance models

at different abstraction levels and

their parametric analysis

03/06/2005Tutorial Component Based Software Engineering: CB-SPE Performance Prediction Technique39

Component-based
SPE

• Developed by Antonia Bertolino (1) and
Raffaela Mirandola (2)

• Towards Performance Based Software Performance
Engineering. Proc. 6th Workshop on Component-Based
Software Engineering (CBSE), 2003

• CB-SPE Tool: Putting Component-Based Performance
Engineering into Practice. Proc. 7th International Symposium
on CBSE, 2004

• (1) I.S.T.I., Italian Research Council
• (2) Università di Roma „Tor Vergata“

03/06/2005Tutorial Component Based Software Engineering: CB-SPE Performance Prediction Technique40

Component-based SPE
Two usage layers:

The component layer: guarantees to have

components with certified performance properties

The application layer: guarantees to have

CB applications with the required performance

(component developer)

(system assembler)

03/06/2005Tutorial Component Based Software Engineering: CB-SPE Performance Prediction Technique41

CB-SPE:
Automated framework

System Assembler

Usage profile
Performance goal

Importance
factors

Best-worst case perf
Contention-based perf
Component selection

APPLICATION LAYERCOMPONENT LAYER

Component
specification

PAresptimeCi(Sj[env-par]*)
PAdemandCi(Sj[env-par]*)
…
PAdelayCi(Sj[env-par]*)

Component developers

interface

Component
repository

Component
pre-selection/
search

UML modeling
and PA annotation

CB-SPE Tool

03/06/2005Tutorial Component Based Software Engineering: CB-SPE Performance Prediction Technique42

CB-SPE Tool
(Underlying architecture)

Model
generator

UML model
(XMI)

Performance
model
Solver

Performance
models
(XMI)

Performance
results
(XMI)

ARGO-
UML

+ RT UML
PA
annotations

Execution Graphs

Queueing Network Models

Best/worst
case analyzer

Result converter

Result
converter

03/06/2005Tutorial Component Based Software Engineering: CB-SPE Performance Prediction Technique43

CB-SPE Tool
(Underlying architecture)

CB-SPE
tool

Performance
model Solver

(RAQS)

Performance
models

Performance
results

(txt)

Execution Graphs

Queueing Network Models

UML model
(XMI)

ARGO-
UML

+ RT UML
PA
annotations

03/06/2005Tutorial Component Based Software Engineering: CB-SPE Performance Prediction Technique44

CB-SPE Process

• Input: set of components with performance
parametric annotations on the functionality
interfaces (component developer)

• Output: selection of the components and
modeling of the application with
performance requirements satisfied or
otherwise declaration of performance
requirements unfeasibility

03/06/2005Tutorial Component Based Software Engineering: CB-SPE Performance Prediction Technique45

CB-SPE Process

• Step 1. Determine the usage profile (system
assembler)

• Step 2. Component selection (system assembler)
• Step 3. Modeling and annotation (system

assembler)
• Step 4. Best case analysis (automatic)
• Step 5. CB-SPE model generation (automatic)
• Step 6. Model evaluation (automatic)
• Step 7. Analysis of results (system assembler)

03/06/2005Tutorial Component Based Software Engineering: CB-SPE Performance Prediction Technique46

CB-SPE tool: a proof of
concept

Weakness points:

component specification

usage profile (input domain analysis)

...

Strength points:

specification � performance prediction

underlying sound methodology (SPE)

automatic, compositional, hierarchical

03/06/2005Tutorial Component Based Software Engineering: CB-SPE Performance Prediction Technique47

New tool including CB-SPE

ECLIPSE

Profile definition
mobility
performance

automatic performance model generation

[Work in progress]

Challenges (1)

03/06/2005Tutorial Component Based Software Engineering: CB-SPE Performance Prediction Technique48

[Work in progress]

Challenges (2)

Web services

composition

model “on the fly”

Best/worst case analysis

Contention based analysis

03/06/2005Tutorial Component Based Software Engineering: CB-SPE Performance Prediction Technique49

Use CB-SPE

03/06/2005Tutorial Component Based Software Engineering: CB-SPE Performance Prediction Technique50

Example Service

alt

loop

OrderReceiver

Order(articleList)

Stock

CheckAvailability

[for each article]

[all articles available]

InitiateDelivery

Customer
Correspondence

SendWaitMessage
[else]

Want to know:

CPU elapsed time
Communication delay

03/06/2005Tutorial Component Based Software Engineering: CB-SPE Performance Prediction Technique51

Additional information

• Control flow:
– Assume mean amount of articles to be

10.
– Assume probability of all articles being

available is 0.4

• Number of users: 100

03/06/2005Tutorial Component Based Software Engineering: CB-SPE Performance Prediction Technique52

Deployment

• OrderReceiver and Customer-
Correspondence are deployed on a
server called localServer.

• Stock is deployed on another server
called warehouseServer.

• The two servers are connected with a
fast leased line connection.

03/06/2005Tutorial Component Based Software Engineering: CB-SPE Performance Prediction Technique53

Metrics

• Processing time:
– Demand: Number of work units
– Throughput: How many work units per time unit
� Goal: Time consumption in time unit

• Communication delay:
– Demand: Message size
– Throughput: How many messages of size 1 per

time unit
� Goal: Time consumption in time unit

• Use same time unit!
03/06/2005Tutorial Component Based Software Engineering: CB-SPE Performance Prediction Technique54

Processing Values

• CPU demand
– OrderReceiver needs 1000 work units to call

CheckAvalability, 2000 work units to call
SendWaitMessage and 3000 work units to call
InitiateDelivery

– Stock needs 3000 work units to check the
availability of an article.

• Throughput:
– localServer: 30‘000 work units per sec.
– warehouseServer: 10‘000 work unit per sec.

03/06/2005Tutorial Component Based Software Engineering: CB-SPE Performance Prediction Technique55

Communication Values

• Communication delay:
– Message size measured in bit
– Time unit is sec

• We assume:
– Used leased line‘s speed is 10 Mbps
– Size of messages:

• Checking for availability: 130 Kbyte = 1.04 Mbit
• Returning availability t/f: 100 Kbyte = 0.8 Mbit
• Initiating delivery: 250 Kbyte = 2 Mbit

03/06/2005Tutorial Component Based Software Engineering: CB-SPE Performance Prediction Technique56

Resulting ArgoUML
Sequence Diagram

03/06/2005Tutorial Component Based Software Engineering: CB-SPE Performance Prediction Technique57

Resulting ArgoUML
Sequence Diagram

• PA Annotations:

1<<PAstep>>{PArep=10;PAextOP=(Internet_2,1.04);PAdemand=(est,mean,1);PAsd=1;}<<PAclosedLoad>>{PApopulation=100;PAextDelay=1;}

2<<PAstep>>{\PArep;PAextOP=(Internet_2,0.8);PAdemand=(est,mean,3);}

3<<PAstep>>{PAextOP=(Internet_2,2);PAdemand=(est,mean,3);PAprob=0.4;}

4<<PAstep>>{PAdemand=(est,mean,2);PAprob=0.6;}

03/06/2005Tutorial Component Based Software Engineering: CB-SPE Performance Prediction Technique58

Resulting ArgoUML
Deployment Diagram

03/06/2005Tutorial Component Based Software Engineering: CB-SPE Performance Prediction Technique59

Using ArgoUML

03/06/2005Tutorial Component Based Software Engineering: CB-SPE Performance Prediction Technique60

PA Annotations

• RT UML PA sub-profile
• Stereotypes <<PAxx>>

– Followed by tags in braces
– Tags are separated with semicolons

<<PAxx>>{PAtag1=value;PAtag2=value;}

03/06/2005Tutorial Component Based Software Engineering: CB-SPE Performance Prediction Technique61

PA Annotations in SD

• Name of calls must end with a hyphen (-)
and an ascending number, to associate the
node with a RT-UML annotation.

• Each RT-UML annotation in the SD begins
with the number of the call it belongs to.

• No number must be omitted (e.g. do not
name three nodes x-1, x-2, x-8)

name-1 1<<PAstep>>{PArep=10;PAextOP=(Internet_2,1.04);}

03/06/2005Tutorial Component Based Software Engineering: CB-SPE Performance Prediction Technique62

1<<PAstep>>{PArep=10;PAextOP=(Internet_2,1.04);PAdemand=(est,mean,1);PAsd=1;}<<PAclosedLoad>>{PApopulation=100;PAextDelay=1;}

PA Annotations for SD

• <<PAclosedLoad>>
– Once in diagram, associated with first call
– Defines PApopulation and PAextDelay

• <<PAstep>>
– For each call
– Defines PAextOP, PAdemand and control flow

annotations

03/06/2005Tutorial Component Based Software Engineering: CB-SPE Performance Prediction Technique63

1<<PAstep>>{PArep=10;PAextOP=(Internet_2,1.04);PAdemand=(est,mean,1);PAsd=1;}<<PAclosedLoad>>{PApopulation=100;PAextDelay=1;}

• Must be inserted in the first note of the SD.

• QN is closed (cf. slide 27)
• PApopulation;

– The size of the workload (number of system
users)

• PAextDelay
– Tag must be defined and have a value
– No further effect

<<PAclosedLoad>>

03/06/2005Tutorial Component Based Software Engineering: CB-SPE Performance Prediction Technique64

• PAdemand
– Used to model the demand to host on which the

sending component is deployed.
– est,mean for estimated, mean. Has no effect.

• PAextOP
– optional
– Used to model the service demand to

resources like network
– and so to model the communication delay
– PAextOP=(resourceNode,messageSize);

3<<PAstep>>{PAextOP=(Internet_2,2);PAdemand=(est,mean,3);}

<<PAstep>>
4<<PAstep>>{PAdemand=(est,mean,2);PAprob=0.6;}

03/06/2005Tutorial Component Based Software Engineering: CB-SPE Performance Prediction Technique65

• PAprob
– The probability to execute this step.
– A sequence of steps must have a PAprob sum

of 1.

• PArep
– To model a loop
– Defines the number of repetitions
– End tag \PArep in a following or the same step

to mark end of repeated block.

1<<PAstep>>{PArep=10;PAextOP=(Internet_2,1.04);PAdemand=(est,mean,1);}

4<<PAstep>>{PAdemand=(est,mean,2);PAprob=0.6;}

<<PAstep>>

2<<PAstep>>{\PArep;PAextOP=(Internet_2,0.8);PAdemand=(est,mean,3);}

03/06/2005Tutorial Component Based Software Engineering: CB-SPE Performance Prediction Technique66

Note:

• An optional call can only be modeled by
providing a dummy alternative having no
execution time and no extOP, to have
probabilities‘ sum of one.

• Only one statement can be addressed by a
probability. Branches are not possible.

• PArep and PAprob don‘t fit, as PAprobs
must have sum of 1.
– To model a loop containing two alternatives,

use a dummy call to start and end loop.

03/06/2005Tutorial Component Based Software Engineering: CB-SPE Performance Prediction Technique67

<<PAstep>>

• PAsd
– Not RT-UML

– Introduced to model the probability of a
single SD to be executed

– Must be inserted in the first note of the
SD.

– The sum of the probabilities of SDs must
be equal to 1.

1<<PAstep>>{PArep=10;PAextOP=(Internet_2,1.04);PAdemand=(est,mean,1);PAsd=1;}<<PAclosedLoad>>{PApopulation=100;PAextDelay=1;}

03/06/2005Tutorial Component Based Software Engineering: CB-SPE Performance Prediction Technique68

PA annotations for DD

• Name of nodes must end with an
underscore (_) and an ascending number,
to associate the node with a RT UML
annotation.

• Each RT-UML annotation in the DD begins
with the number of the node it belongs to.

• No number must be omitted (e.g. do not
name three nodes _1, _2, _8)

03/06/2005Tutorial Component Based Software Engineering: CB-SPE Performance Prediction Technique69

1<<PAhost>>{PAschedPolicy=PS;PAthroughput=30;}

<<PAhost>>

• Preceded by number of associated
node

• PAschedPolicy
– Tag must be present and have a value
– Has no further effect

• PAthroughput
– Defines the speed of the device

03/06/2005Tutorial Component Based Software Engineering: CB-SPE Performance Prediction Technique70

Feed CB-SPE Tool

• Annotated
sequence
diagram
composed
with
ArgoUML

03/06/2005Tutorial Component Based Software Engineering: CB-SPE Performance Prediction Technique71

Run CB-SPE

• Computes
– Best/worst case

– Execution Graph
– Queueing Network

03/06/2005Tutorial Component Based Software Engineering: CB-SPE Performance Prediction Technique72

Feed RAQS

• Rapid Analysis of Queueing Systems
• Generated Input.txt contains QN

– EG data included

03/06/2005Tutorial Component Based Software Engineering: CB-SPE Performance Prediction Technique73

Execute RAQS

03/06/2005Tutorial Component Based Software Engineering: CB-SPE Performance Prediction Technique74

• Average time
consumption:
20.003 sec

• Bottleneck
node 3:
Warehouse
Server

Analyze Results

03/06/2005Tutorial Component Based Software Engineering: CB-SPE Performance Prediction Technique75

Conclusions

• Compare results with performance
requirements

• If performance requirements are not
fulfilled:
– Try other adequate components, if

available
– Else revise requirements

03/06/2005Tutorial Component Based Software Engineering: CB-SPE Performance Prediction Technique76

Tipps

• Die Werkzeuge gibt es im Stud.IP

• Das CB-SPE Werkzeug muss im
Verzeichnis C:\CB_SPE liegen
– Entweder Install.bat benutzen
– Oder es dorthin kopieren und

Unterverzeichnisse Input und Output erstellen

• RAQS und ArgoUML einfach entzippen

03/06/2005Tutorial Component Based Software Engineering: CB-SPE Performance Prediction Technique77

Tipps

• Das Deployment- und Sequenzdiagramm
muss den richtigen Namen haben. Am
besten das template.zargo Projekt
benutzen.

• ArgoUML keine Undo Funktion: Öfter
Zwischenversionen unter anderem Namen
speichern.

• Vgl. README.txt
• Falls es Fragen gibt:

anne.martens@informatik.uni-oldenburg.de

A PREPARATORY EXERCISES AND TUTORIAL SLIDES XV

A.2 CB-SPE Preparatory Exercise

Component Based Software Engineering SoSe2005

Übungsblatt 1

Evaluation of Model-Driven Performance Prediction Techniques:
CB-SPE Technique

Please work on the exercises alone. Send solutions to Anne until June, 7th 2005.

Exercise 1:

- Install the CB-SPE tools (can be downloaded from Stud.IP)
o ArgoUML: Version 0.12, to be able to draw sequence diagrams.
o CB-SPE Must be installed in C:\CB_SPE as the program contains hard coded paths.

Create subfolders Input and Output or use Install.bat, which copies the files to
C:\CB_SPE and creates the subfolders.

o RAQS: Open c:\CB_SPE\Output\input.txt to analyze CB-SPE’s output.
- Make yourself familiar with their functions by analyzing the case study example. For further

reading, two papers by A. Bertolino and R. Mirandola presenting the technique are available in
the Stud.IP portal.

Help using the CB-SPE tool:
- Be sure that calls and nodes are named correctly (-1, -2, ... resp. _1, _2, ...)
- Add call resp. node number to PA annotation.

Exercise 2:

The following sequence diagram (see appendix) models a system that finds flights for a user. The user
specifies the time (including the date) and the start and destination airports. The FlightFinder
component first requests all available AirlineWebServices from a service brocker. Afterwards, it
requests general information needed for communication from the web services, if they are not already
known.
After obtaining the general information, the available flights are requested from each
AirlineWebservice. This happens successively. If there are flights available from one of the requested
Airlines, the details for the cheapest flight are requested from the corresponding airline. Before
requesting the details of the cheapest flight, however, the flights have to be ordered by price.

All components are located on different servers, that are connected by internet. For simplicity, model
the different AirlineWebServices as one component on one server. Note that this does normally not
allow an analysis with a population higher than 1.

Additional control flow information
- The chance that an AirlineWebService is not known to the FlightFinder is 10 percent.
- The chance that no flights are available is quite low, being 1 percent.
- Assume that the ServiceBroker returns 10 AirlineWebServices, i.e. GetFlights is called ten

times.

Load information:
- Before each call to the other components, the FlightFinder component has a CPU demand of

2 work units, except before requesting the details of the cheapest flight, where the CPU
demand is 50 work units. This is caused by the sorting of the flights by price.

- To return the available webservices, the service broker component has a CPU demand of 10
work units.

- To return its general information on a GetAirlineInformation call, the AirlineWebServices have
a CPU demand of 3 work units. To find the flights for a given time and route, the
AirlineWebServices have a CPU demand of 200 work units. Finally, to get the details of a
flight, an AirlineWebService has a CPU demand of 5 work units.

Component Based Software Engineering SoSe2005

Message sizes:

Call Message Size in Byte
GetAirlineWebServices 4
Return AirlineWebServices 80
GetAirlineInformaton 4
Return AirlineInformation 10
GetFlights 10
Return Flights 80
GetDetails 5
Return Details 20
Remember to convert all bytes to bit or the other way round.

Deployment information:
 Internet: 8 mbit/s connection.
 FlightFinder’s server: Throughput of 15 work units per msec.
 ServiceBroker’s server: Throughput of 65 work units per msec.
 AirlineWebservices’ server: Throughput of 65 work units per msec.

Your tasks:
Other designers think about deploying the FlightFinder on a faster, but more expensive server. You
are supposed to find out whether this would increase the performance significantly or whether there
are other bottlenecks.

a) Analyze the webserver component’s performance using the CB-SPE technique.
The metrics of interest are CPU elapsed time and communication delay. Assume
that only one user uses the system.

b) Assume that all AirlineWebService components are deployed on one single server.
With that, analyze the performance for 10 users using the system concurrently.

c) Propose actions to improve performance.

Send your solutions, i.e. the zargo project, the RAQS output, proposed actions to improve
performance and an explanation of your decision to anne.martens@informatik.uni-oldenburg.de.
Please include “CB-SPE exercise“ in the subject and your name.

If your ArgoUML project cannot be processed by the CB-SPE tool, compare it with the case study
projects downloaded with the CB-SPE tool an check your notations. If there are any further questions,
don’t hesitate to ask Anne.

Tip:
Only single calls can be annotated with a probability. However, always two calls are executed together
in this example. To model these calls, annotate each single call with the corresponding probability.

Thus, model:

 With a probability of x A and B are executed.
as

With a probability of x A is executed.
With a probability of x B is executed.

This does not model the control flow correctly, but the changes are minor. A new Eclipse based
version of CB-SPE will be able to handle these cases correctly.

Component Based Software Engineering SoSe2005

APPENDIX

Sequence diagram:

opt

loop

opt

FlightFinder
Airline

WebService
ServiceBroker

FindFlight(Time, From, To)

GetDetails(Flight)

GetAirlineWebServices

GetFlights(Time, From, To)

[for each found web service]

[if AirlineWebService unknown]

GetAirlineInformation

[flight available]

A PREPARATORY EXERCISES AND TUTORIAL SLIDES XVII

A.3 Palladio Tutorial Slides

1

Performance Prediction
Technique: Palladio

02/08/2005Tutorial Component Based Software Engineering: Palladio Performance Prediction Technique2/41

Overview

• Motivation
• Approach of the Palladio Technique
• Modelling

– Enhanced Service Effect Automata

• Using the Tool

02/08/2005Tutorial Component Based Software Engineering: Palladio Performance Prediction Technique3/41

Early Evaluation of
Software-Architectures

View

Model
Controller

ViewView View

Model
Controller

ViewView
Architectural
Decision

Prediction
Model Simulation

AnalysisSimulation
AnalysisThroughput 180

Response timem 7s
Reaction timen 5s
...

Throughput 210
Response timem 5s
Reaction timen 4s
...

?

02/08/2005Tutorial Component Based Software Engineering: Palladio Performance Prediction Technique4/41

Component
Performance

• Component‘s performance results
from
– Performance of called services

– Performance of underlying code
– Hardware, middleware, ...

– Operational profile

02/08/2005Tutorial Component Based Software Engineering: Palladio Performance Prediction Technique5/41

Palladio Technique

• Palladio Research Group

• V. Firus, S. Becker und J. Happe, Parametric
Performance Contracts for QML-specified
Software Components, 2005, to be published in:
Electronic Notes in Theoretical Computer Science.

02/08/2005Tutorial Component Based Software Engineering: Palladio Performance Prediction Technique6/41

Approach

• Modelling the response time of a
single service of a component in
relation to the response times of the
called external services

• No fixed response times to model
influences of environment (hardware,
internal state, amount of data, ...)

02/08/2005Tutorial Component Based Software Engineering: Palladio Performance Prediction Technique7/41

Service Effect
Automaton

• Service Effect Automata
– Finite State Machines
– Control-flow abstraction

• Transitions
correspond to
external calls

• Nodes
correspond
to internal
computations

[1]

Started

/ Connect

Connected CCStatus known
/ HasValidCC

/ Disconnect

/ BillCashOnDeliver

/ Transfer

02/08/2005Tutorial Component Based Software Engineering: Palladio Performance Prediction Technique8/41

Creating a SEA for a
service

• Start with an initial State
• Add transition for each external call
• Model control flow with loops and

alternatives

02/08/2005Tutorial Component Based Software Engineering: Palladio Performance Prediction Technique9/41

Example Service

alt

loop

OrderReceiver

Order(articleList)

Stock

CheckAvailability

[for each article]

[all articles available]

InitiateDelivery

Customer
Correspondence

SendShippedMessage

SendWaitMessage

[else]
AddToWaitList

02/08/2005Tutorial Component Based Software Engineering: Palladio Performance Prediction Technique10/41

Example: Resulting
SEA

OrderReceived

DeliveryInitiated

/ CheckAvailability

/ InitiateDelivery

OrderWaiting

/ AddToWaitList

/ SendWaitMessage / SendShippedMessage

02/08/2005Tutorial Component Based Software Engineering: Palladio Performance Prediction Technique11/41

Additional Annotation

• Additional values needed for
performance prediction

• Probabilities for different control flows
– Probability to exit a loop
– Probabilities for different alternatives

• Time consumption of nodes and
transitions

02/08/2005Tutorial Component Based Software Engineering: Palladio Performance Prediction Technique12/41

Probabilities for
different control flows

• Add probabilities to transitions, if
multiple choices

Alternatives Loop

State
/ call2 [p2]

/ call1 [p1]

/ call3 [p3]

State

/ call1 [p]

/ call2 [1-p]

02/08/2005Tutorial Component Based Software Engineering: Palladio Performance Prediction Technique13/41

Example: Probabilities

• Estimate probabilities

OrderReceived

DeliveryInitiated

/ CheckAvailability [0,85]

/ InitiateDelivery [(1 – 0.85) * 0,6]

OrderWaiting

 / AddToWaitList [(1 - 0,85) * 0,4]

/ SendWaitMessage [1] / SendShippedMessage [1]

02/08/2005Tutorial Component Based Software Engineering: Palladio Performance Prediction Technique14/41

Time Consumption

• Need time consumption
– Of internal computations
– Of external calls

• No fix values
– Influence of input parameters, variable values
– Influence of platform, hardware, network, ...
– No real time platforms

02/08/2005Tutorial Component Based Software Engineering: Palladio Performance Prediction Technique15/41

Distribution function

• Model time consumption of each node and
transition with distribution functions

• Example:
– 40% less than 50 msec,
– 60% less than 100 msec,
– 90% less than 250 msec

• Note: No upper bound given here, but
possible

100 200 300 400 msec

p

90

60

40

20

0

02/08/2005Tutorial Component Based Software Engineering: Palladio Performance Prediction Technique16/41

External Time
Consumption

• Look up time
consumptions for
external calls, i.e.
transitions
– Will be available

from performance
predictions or
measurements of
the called services

OrderReceived

DeliveryInitiated

/ CheckAvailability [0,85]

/ InitiateDelivery [(1 – 0.85) * 0,6]

OrderWaiting

 / AddToWaitList [(1 - 0,85) * 0,4]

/ SendWaitMessage / SendShippedMessage

02/08/2005Tutorial Component Based Software Engineering: Palladio Performance Prediction Technique17/41

External Time
Consumption (2)

• CheckAvailability
– Percentile 40 < 50 msec
– Percentile 60 < 80 msec
– Percentile 100 < 100 msec

• AddToWaitList and InitiateDelivery
– Percentile 40 < 50 msec
– Percentile 60 < 100 msec
– Percentile 100 < 250 msec

02/08/2005Tutorial Component Based Software Engineering: Palladio Performance Prediction Technique18/41

External Time
Consumption (3)

• SendWaitMessage
– Percentile 60 < 100 msec

– Percentile 100 < 200 msec

• SendShippedMessage
– Percentile 60 < 100 msec
– Percentile 100 < 200 msec

02/08/2005Tutorial Component Based Software Engineering: Palladio Performance Prediction Technique19/41

Internal time
Consumption

• Estimate time consumption of internal
computations

• Generally much lower than external
• Consider:

– Workload, in abstract unit work unit
– Device throughput
– Both may vary (because of amount of

data or device utilization)

02/08/2005Tutorial Component Based Software Engineering: Palladio Performance Prediction Technique20/41

Internal Time
Consumption (2)

• Estimate operations of underlying
code

• Assign into demand classes
– High (e.g. a loop over all inputs, sorting,

hard drive access)
– Medium
– Low (almost no computation needed)

• Assign work units according to class

02/08/2005Tutorial Component Based Software Engineering: Palladio Performance Prediction Technique21/41

Internal Time
Consumption (3)

• Demand in example system
– OrderReceived: Medium

– DeliveryInitiated: Low
– OrderWaiting: Low

02/08/2005Tutorial Component Based Software Engineering: Palladio Performance Prediction Technique22/41

Internal Time
Consumption (4)

• Demand of classes:
– Low: 24 work units

– Medium: 48 work units

• Throughput:
– 2 work units per msec

02/08/2005Tutorial Component Based Software Engineering: Palladio Performance Prediction Technique23/41

Internal Time
Consumption (5)

• Resulting time consumptions:
• OrderWaiting

– Percentile 100 < 12 msec

• DeliveryInitiated
– Percentlie 100 < 12 msec

• OrderReceived
– Percentile 100 < 24 msec

02/08/2005Tutorial Component Based Software Engineering: Palladio Performance Prediction Technique24/41

Using the tool

• Input data
– Service Effect Automaton
– Probabilities
– Time Consumption

• Output
– Distribution function for the analyzed

service

02/08/2005Tutorial Component Based Software Engineering: Palladio Performance Prediction Technique25/41

Input File Format

• Regions:
– states, startstate, finalstates, inputs, transitions,

probabilities, time_consumption
– All ended by a semicolon
– Order must be preserved

• All names are case sensitive
• All names must be distinct

• Use # for comments, until end of line

02/08/2005Tutorial Component Based Software Engineering: Palladio Performance Prediction Technique26/41

Input: States

states: OrderReceived, OrderWaiting, DeliveryInitiated,
finalstate;

One start state. Start state must be in states
startstate: OrderReceived;

One or more final states. Each state must be in states.
finalstates: finalstate;

02/08/2005Tutorial Component Based Software Engineering: Palladio Performance Prediction Technique27/41

Input: Transitions
List of input symbols
inputs: CheckAvailability, AddToWaitList, InitiateDelivery,
SendWaitMessage,SendShippedMessage;

Transitions are defined: input=(source,destination)
Input must be in inputs. Source and destination must be
in states.
Input is also the name of the transition.
transitions:

CheckAvailability=(OrderReceived,OrderReceived),
AddToWaitList=(OrderReceived,OrderWaiting),
InitiateDelivery=(OrderReceived,DeliveryInitiated),
SendWaitMessage=(OrderWaiting,finalstate),
SendShippedMessage=(DeliveryInitiated,finalstate);

02/08/2005Tutorial Component Based Software Engineering: Palladio Performance Prediction Technique28/41

Input: Probabilities

• Sum of probabilities for transitions
leaving one state must be 1

• Not listed transitions have a
probability of 1

Probabilities for transitions.
transition=probability
probabilities:

CheckAvailability = 0.85,
AddToWaitList=0.06,
InitiateDelivery=0.09;

02/08/2005Tutorial Component Based Software Engineering: Palladio Performance Prediction Technique29/41

Input: Distributions
Time consumtion for a state or transition as QML aspect.
stateOrTransition((percentiles),(times))
time_consumption:

OrderReceived((100),(24)),
OrderWaiting((100),(12)),
DeliveryInitiated((100),(12)),
CheckAvailability((40,60,100),(50,80,100)),
AddToWaitList((40,60,100),(50,100,250)),
InitiateDelivery((40,60,100),(50,100,250)),
SendWaitMessage((60,100),(100,200)),
SendShippedMessage((60,100),(100,200));

02/08/2005Tutorial Component Based Software Engineering: Palladio Performance Prediction Technique30/41

Input: Tips

• No commas in floating point numbers
• Use only integers for time

consumptions.

• Alternatively, you may use the xml
version of the tool.
– Parses an xml file defining the SEA
– See example in xml tool directory

02/08/2005Tutorial Component Based Software Engineering: Palladio Performance Prediction Technique31/41

Execute the tool

• You need the .NET framework 1.1
• Open a console
• Change into directory Palladio

Performance Prediction
• Invoke tool with SEA and optionally the

number of result values as parameter:

• For linux, you can use the Mono framework
– Runs .NET compatible programs

Palladio.Performance.Main.exe SampleSEA.dat {30}

02/08/2005Tutorial Component Based Software Engineering: Palladio Performance Prediction Technique32/41

Output

• Output is written into Berechnet.txt

02/08/2005Tutorial Component Based Software Engineering: Palladio Performance Prediction Technique33/41

Berechnet.txt

• Some statistical reporting
Sum of all probabilities: 0,999999999999999
Minimum value: 51
Maximum value: 2545
Median: 567
UpperQuartil: 911
SamplingRate: 86
Expectancy: 600,474353049564
Variance: 170974,110874331
Deviation: 413,490158134787

02/08/2005Tutorial Component Based Software Engineering: Palladio Performance Prediction Technique34/41

Berechnet.txt

• Probabilities for single intervals

Execution Time: Probabilities:
51 0,019241802927386
137 0,0689880476604597
223 0,112422482011755
309 0,125623647052229
395 0,116532685592899
481 0,0974960053488438
567 0,0808065427350571
653 0,066915032329015
739 0,055404292941819
:
:

02/08/2005Tutorial Component Based Software Engineering: Palladio Performance Prediction Technique35/41

Probability Mass
Function

• Probabilities for single intervals

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

51 22
3

39
5

56
7

73
9

91
1

10
83

12
55

14
27

15
99

17
71

19
43

21
15

22
87

24
59

prob

02/08/2005Tutorial Component Based Software Engineering: Palladio Performance Prediction Technique36/41

Distribution Function

• Cumulative probabilities, transformed
from PMF

0

0,2

0,4

0,6

0,8

1

1,2

51 22
3

39
5

56
7

73
9

91
1

10
83

12
55

14
27

15
99

17
71

19
43

21
15

22
87

24
59

cum. prob

02/08/2005Tutorial Component Based Software Engineering: Palladio Performance Prediction Technique37/41

Results

• Distribution function of service in
relation to called services
performance

• Compositional approach: Result can
be used as an input for analyzing
services that call this service.

• Thus, system response time can be
computed as a distribution function.

02/08/2005Tutorial Component Based Software Engineering: Palladio Performance Prediction Technique38/41

Evaluate the Results

• Which service has the better
response time?

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

0,18

34
8

52
2

69
6

87
0

10
44

12
18

13
92

15
66

17
40

19
14

20
88

22
62

24
36

26
10

27
84

prob

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

34
8

52
2

69
6

87
0

10
44

12
18

13
92

15
66

17
40

19
14

20
88

22
62

24
36

26
10

27
84

prob

02/08/2005Tutorial Component Based Software Engineering: Palladio Performance Prediction Technique39/41

Evaluation

• Low mean response time may come
with a high maximum response time.

• A lower maximum response time
might have a much higher mean.

• Other values?

02/08/2005Tutorial Component Based Software Engineering: Palladio Performance Prediction Technique40/41

Evaluation

• Depends on performance requirements

• Different values to look at
– Mean time
– Maximum response time
– Upper quartile

• What response time with a probability of 0.75?

– Variance / deviation

• Often outliers of interest

02/08/2005Tutorial Component Based Software Engineering: Palladio Performance Prediction Technique41/41

Evaluation

• Values for the Example:

• Upper quartiles: 911 msec
• Expectancy: 600,47 msec

• Median: 567 msec
• Approx. maximum response time: 2545

msec

• Variance: 170974,11 msec²
• Deviation: 413,49 msec

02/08/2005Tutorial Component Based Software Engineering: Palladio Performance Prediction Technique42/41

References

• [1] V. Firus, S. Becker und J. Happe, Parametric
Performance Contracts for QML-specified Software
Components, 2005, to be published in: Electronic Notes in
Theoretical Computer Science.

A PREPARATORY EXERCISES AND TUTORIAL SLIDES XXV

A.4 Palladio Preparatory Exercise

Component Based Software Engineering SoSe2005

Übungsblatt 2

Evaluation of Model-Driven Performance Prediction Techniques:
Palladio Technique

Please work on the exercises alone. Send your solutions to Anne until June, 14th 2005.

Exercise 1:

- Install the .NET framework 1.1
- Unzip the Palladio tool (can be downloaded from Stud.IP)
- Make yourself familiar with it by analyzing the example.

Exercise 2:

The following sequence diagram (see appendix) models a system that finds flights for a user. It is
similar to the system you know from exercise 1, but there are some differences.

The user specifies the time (including the date) and the start and destination airports. The FlightFinder
component first requests all available AirlineWebServices from a service broker. Afterwards, it
requests general information needed for communication from the web services, if they are not already
known.
After obtaining the general information, the available flights are requested from each
AirlineWebservice. This happens successively. After having requested the available flights, the flights
are ordered by price. If there are at least three flights available from one of the requested airlines, the
details for the three cheapest flight are requested from the corresponding airline (this a the difference
to the system modelled in exercise 1).

All components are located on different servers, that are connected by the internet. The speed of the
internet connection is included in the time consumption of the external services.

Additional control flow information
- The chance that an AirlineWebService is not known to the FlightFinder is 10 percent.
- The chance that no three flights are available is quite low, being 2 percent.
- The probability to exit the first loop that requests flights from the AirlineWebServices is 0.2

Time Consumption of External Services:
Called Service Time Consumption
GetAirlineWebServices Percentile 40 < 0.5 sec

Percentile 75 < 1 sec
Percentile 100 < 2 sec

GetAirlineInformation Percentile 50 < 0.4 sec
Percentile 75 < 1 sec
Percentile 100 < 2 sec

GetFlights Percentile 50 < 1.5 sec
Percentile 75 < 2 sec
Percentile 100 < 4 sec

GetDetails Percentile 70 < 0.5 sec
Percentile 100 < 1.5 sec

Remember that only integers can be inserted into the input SEA, so use msec for computations.

Time Consumption of Internal Services:
The processing demand of internal services ranges from 10 to 50 work units, 10 work units being a
low demand, about 25 work units being a medium demand and 50 work units being a high demand.
Assign the needed internal computation into these classes. The throughput of the server the service is
deployed on is 100 work unit per second.

Your tasks:
The FindFlight Service is supposed to have a response time of less than 6 seconds in 75 percent of all
uses. Will this performance goal be reached? What is the expected response time (i.e. mean response
time) of the service?

Component Based Software Engineering SoSe2005

To answer the questions, analyze the FlightFinder component’s performance using the Palladio
technique. Only the FindFlight service (below) is looked at. For analyzing the FlightFinder, use the
given distribution functions of the called services and estimate the FlightFinder’s internal
computations. Equip a service effect automaton describing the behaviour of the FlightFinder with these
distribution functions. Finally, use the Palladio tool to get a distribution function that describes the
FlightFinder’s performance. If you like, insert your solutions into a spread sheet tool like Open Office
Calc and create a graph visualizing the distribution function.

Notes:
- You may change the number of values in the distribution functions so that they can be

computed faster, but are less precise.
- Remember that all names of states and transitions must be distinct.
- Service Effect Automatons may have multiple final states If a state is a final state, the sum of

the probabilities of the leaving transitions may be lower than one. Thus, the remaining
probability is for ending in this state.

- The second loop is always iterated thrice or not at all. Thus, you cannot model the loop with a
probability in the Service Effect Automaton, as a loop construct in the SEA does not have a
fixed number of iterations.

- To model the demand of sorting, you may divide it and consider it demand for the requesting
of the flights. This matches the fact that the time for sorting increases with more flights.

- Do not expect that the results are similar to the results of exercise 1, as different time
consumptions are used.

Exercise 3:
Please answer these questions. They relate to both performance prediction technique.

1) Did you experience problems with a) the CB-SPE tool and b) the Palladio tool? If yes, please
shortly describe the problems.

2) Assuming the tools worked fine, did you experience problems with a) the CB-SPE technique
or b) the Palladio technique? If yes, please describe the problems.

3) Which of the techniques do you think better applicable? Why?
4) Do you have other comments on the exercises? If yes, please describe them.

Send your solutions, i.e. a graphical representation of the service effect automaton (in jpg, gif or
another widely-used file format), the Palladio Tool input and output, the explanation of your decision
and your ansers to the question in exercise 3 to anne.martens@informatik.uni-oldenburg.de. You do
not need to include the distribution functions in the service effect automaton. Please include “Palladio
exercise“ and your name in the subject.

Component Based Software Engineering SoSe2005

APPENDIX:

opt

loop

loop

opt

FlightFinder
Airline

WebService
ServiceBroker

FindFlight(Time, Destination, Mode)

GetDetails(Flight)

[for cheapest 3 flights, if 3 avail.]

GetAirlineWebServices

GetFlights(Time, Destination)

[for each found web service]

ShowResultOverview

[if airline unknown]

GetAirlineInformation

[3 flights available]

B EXPERIMENTAL EXERCISES XXVII

B Experimental Exercises

B.1 CB-SPE Exercise

Component Based Software Engineering SoSe 2005

1

Case Study: Evaluation of Model-Driven Performance Prediction
Techniques

CB-SPE Technique

Your Name:

Exercise:

A new component-based webserver is designed. While designing, the developers discuss an
architectural alternative that is supposed to improve the webservers performance. As you are familiar
with performance engineering, you are asked to evaluate the alternatives.

The idea is to add a component that compresses the webserver’s answers to requests. The resulting
compressed data is readable by all current browsers. When used with plain HTML files and slow
connections, this generally improves performance, because plain HTML can be compressed up to 80
percent. Additionally, the size of the messages is more important for the performance if slow
connections are used. However, it is expected that this webserver will host many packed images, too,
and that users have an adequate internet connection. As the compression of the files puts an
additional processing load on the webserver, the designers want you to predict the performance of
both alternatives and find out whether the compression really improves performance.

 The developers provide you information on both design options, i.e. the unmodified webserver and
the alternative webserver using compression. Only the HTTPRequestProcessorTools component
is affected by the change. This component offers various services to the other components of the
webserver. They all are deployed on a single server. For compression, only the service
SendContentDataToClient is of importance. SendContentDataToClient receives a byte
stream as a parameter, creates a header and sends both header and content byte stream to the user.

The performance of the other components does not change if compression is used and therefore is
unimportant for the design decision. Thus, their actions are only roughly modelled.

If no compression is used, the HTTPRequestProcessorTools component consists of only one
subcomponent, the DefaultHTTPRequestProcessorTools component. See component diagram
1 for the structure of this component. If compression is used, a second component
ZipHTTPRequestProcessorTools is added to HTTPRequestProcessorTools using the pipe-
and-filter pattern. The ZipHTTPRequestProcessorTools first processes a
SendContentDataToClient call, and then forwards the compressed data to the
DefaultHTTPRequestProcessorTools component, which sends it to the client. See component
diagram 2 for the structure of the HTTPRequestProcessorTools with compression and sequence
diagram 2 for the behavior of the SendContentDataToClient service.

The ZipHTTPRequestProcessorTools calls the SharpZipLib library to compress the data.
Note that a byte stream is passed to the SharpZipLib, which cannot determine whether it contains
already compressed data. Thus, the compression has a processing load that only depends on the size
of the byte stream, not on the contained data.

The time the client needs to decompress the data is neglected in this analysis.

Additional information on performance data and timing behavior of called services is given in the
tables in the appendix.

Component Based Software Engineering SoSe 2005

2

Your tasks:

- Estimate the demand and time consumption for calls and computations and list them in the
tables in the appendix.

- For both design options, annotate the template sequence diagram with the RT-UML values.
You find them on your PC at C:\CB_SPE\. See the notes to the templates below, too.

- Analyze the annotated diagram for one user. To do so, start the CB_SPE.EXE.bat in the
C:\CB_SPE directory. Then, run the RAQS tool located at C:\CB_SPE\raqs\ and interpret the
results. The RAQS input file is input.txt in the Output directory.

- What design option should be chosen? Why?
- Save your results, i.e. the zargo project and the results of the RAQS tool in the CB-SPE

directory. All files should contain your name in their file names.

APPENDIX

The webserver’s architecture (simplified):

IHTTPProcessorTools

WebserverMonitor

HTTP
Request

ProcessorTools

Default
Dispatcher

RequestParser

HTTP
RequestParser

IRequestParser

WebserverMonitor

HTTPRequestProcessor

Static
FileProvider

IHTTPRequestProcessor WebserverMonitor

Component Based Software Engineering SoSe 2005

3

Alternative 1: No compression

Component Diagram 1:
SendContentDataToClient is a service of the IHTTPProcessorTools interface.

HTTPRequestProcessorTools

Default
HTTPRequest

ProcessorTools

IHTTPProcessorTools

WebserverMonitor

Sequence Diagram 1:
This diagram describes the behavior of the DefaultHttpRequestProcessorTools component
without compression.

1) The DefaultDispatcher component listens to the ports specified in a configuration file. If
a request is received, the DefaultDispatcher will create a new thread for handling this
request. Within this thread, a new HTTPRequestParser is created and its
HandleRequest(Request) method is called.

2) The HTTPRequestParser parses the HTTP information of the request and then calls the
HandleRequest(HTTPRequest) method of a HTTPRequestProcessor, in our case the
StaticFileProvider component.

3) The StaticFileProvider component retrieves the requested file from the file cache (no
disk access needed) and converts it to a byte array. Finally, it calls
DefaultHTTPRequestProcessorTools’ SendContentToClient method, passing
the byte array as a parameter.

4) The DefaultHTTPRequestProcessorTools component first converts the header to a
byte array, too, and sends it to the client. Then, the byte array containing the requested file is
sent.

Default
HttpRequest

ProcessorTools

SendContentToClient

Client

Default
Dispatcher

HTTPRequest
Parser

StaticFile
Provider

HTTP request
HandleRequest

HandleRequest

SendContent

SendHeader

Component Based Software Engineering SoSe 2005

4

Alternative 2: Compression

Component Diagram 2:

The HTTPRequestProcessorTools components are organised in a pipe-and-filter pattern.
SendContentDataToClient is a service of the IHTTPProcessorTools interface.

HTTPRequestProcessorTools

Default
HTTPRequest

ProcessorTools

IHTTPProcessorTools

WebserverMonitor

Zip
HTTPRequest

ProcessorTools

Pipe and Filter

Sequence Diagram 2:

This diagram describes the behavior of the components if compression is used. The first components
act like before, cf. sequence diagram 1, except that the StaticFileProvider component calls the
ZipHttpRequestProcessorTools instead of the DefaultHttpRequestProcessorTools.

- The ZipHttpRequestProcessorTools component compresses the content data,
appends the compression information to the header and writes a log entry. Afterwards, the
DefaultHttpRequestProcessorTools component is called.

- Then the DefaultHttpRequestProcessorTools behaves like above.

Note that the content of the header is not compressed. Thus, the header is slightly bigger with the
compression information.

Default
HttpRequest

ProcessorTools

SendContentToClient

Webserver
Monitor

Client

Default
Dispatcher

HTTPRequest
Parser

StaticFile
Provider

HTTP request
HandleRequest

HandleRequest

SendContent

SendHeader

SendContentToClient

Zip
HTTPRequest

ProcessorTools
SharpZipLib

CompressAsGZip

AppendToHeader(CompressInfo)

WriteLogEntry

Component Based Software Engineering SoSe 2005

5

Additional data:

You know that the demand of internal computation ranges between 0 and 7 work units. The
throughput of the server is 1000 work units per second.

Note: You have to put a small load on the client machine, as otherwise RAQS will complain about a
singular matrix, which cannot be analyzed. Set the client machines throughput to 500 and put a
demand of 0,001 on first call of the user (HTTP request in zargo project).

Internal Computation Demand in work units
(range 0-7)

DefaultDispatcher (before calling HandleRequest)
HTTPRequestParser (before calling HandleRequest)
StaticFileProvider (before calling SendContentToClient)
DefaultHTTPRequestProcessorTools (before calling SendHeader)
DefaultHTTPRequestProcessorTools (before calling SendContent)
ZipHTTPRequestProcessorTools (before compressing)
ZipHTTPRequestProcessorTools (before appending the header)
ZipHTTPRequestProcessorTools (before writing a log entry)
ZipHTTPRequestProcessorTools (before calling SendContentToClient)

The compression of a 15 KB file takes about 10 to 20 msec. Designers are not sure whether there is a
linear relationship between file size and time to compress the file. Additionally, part of the compression
call may be independent of the file size and thus take constant time. You have to estimate the demand
for a 50KB file, which is the average file size. The demand for the other two external calls
(AppendToHeader, WriteLogEntry) will probably take no longer than the internal computations.
For WriteLogEntry, no disk access is needed.

External Call Demand in work units
SharpZipLib.CompressAsGZip
DefaultHTTPRequestProcessor.AppendToHeader
WebserverMonitor.WriteLogEntry

Network speed is 1Mbit per second. The average file size of the requested content is 50KB. The
compression rate must be estimated. A standard header has a size of about 120 byte. A standard
HTTP request has a size of about 130 byte. Both request and header are not compressed.

Compression
Compression rate
Size of requested file without compression 50 KB
Size of requested file after compression KB
HTTP request size 130 byte
Header size without compression 120 byte
Header size with compression information byte

Notes to the templates:

The SendHeader call from DefaultRequestProcessorTools is modeled with a return in the
template sequence diagram. This is needed for CB-SPE, as the tool assumes parallel processing
without this return call. Do not annotate this return call (you can just leave out the annotation field and
go on with step 7).

If you experience problems, check the output.txt file in the Output directory of the CB-SPE tool. When
running without problems, this file contains a list of all components, followed by the information of the
deployment diagram and the sequence diagram, both with the RT-UML information. If the CB-SPE
output does not help you, please ask.

Component Based Software Engineering SoSe 2005

6

Your interpretation of the results:

What design option should be chosen? Why?

B EXPERIMENTAL EXERCISES XXX

B.2 Palladio Exercise

Component Based Software Engineering SoSe 2005

1

Case Study: Evaluation of Model-Driven Performance Prediction
Techniques

Palladio Technique

Your Name:

Exercise:

A new component-based webserver is designed. While designing, the developers discuss an
architectural alternative that is supposed to improve the webservers performance. As you are familiar
with performance engineering, you are asked to evaluate the alternatives.

The idea is to add a component that compresses the webserver’s answers to requests. The resulting
compressed data is readable by all current browsers. When used with plain HTML files and slow
connections, this generally improves performance, because plain HTML can be compressed up to 80
percent. Additionally, the size of the messages is more important for the performance if slow
connections are used. However, it is expected that this webserver will host many packed images, too,
and that users have an adequate internet connection. As the compression of the files puts an
additional processing load on the webserver, the designers want you to predict the performance of
both alternatives and find out whether the compression really improves performance.

 The developers provide you information on both design options, i.e. the unmodified webserver and
the alternative webserver using compression. Only the HTTPRequestProcessorTools component
is affected by the change. This component offers various services to the other components of the
webserver. They all are deployed on a single server. For compression, only the service
SendContentDataToClient is of importance. SendContentDataToClient receives a byte
stream as a parameter, creates a header and sends both header and content byte stream to the user.

The performance of the other components does not change if compression is used and therefore is
unimportant for the design decision. Thus, their actions are only roughly modelled.

If no compression is used, the HTTPRequestProcessorTools component consists of only one
subcomponent, the DefaultHTTPRequestProcessorTools component. See component diagram
1 for the structure of this component. If compression is used, a second component
ZipHTTPRequestProcessorTools is added to HTTPRequestProcessorTools using the pipe-
and-filter pattern. The ZipHTTPRequestProcessorTools first processes a
SendContentDataToClient call, and then forwards the compressed data to the
DefaultHTTPRequestProcessorTools component, which sends it to the client. See component
diagram 2 for the structure of the HTTPRequestProcessorTools with compression and sequence
diagram 2 for the behavior of the SendContentDataToClient service.

The ZipHTTPRequestProcessorTools calls the SharpZipLib library to compress the data.
Note that a byte stream is passed to the SharpZipLib, which cannot determine whether it contains
already compressed data. Thus, the compression has a processing load that only depends on the size
of the byte stream, not on the contained data.

The time the client needs to decompress the data is neglected in this analysis.

Additional information on performance data and timing behavior of called services is given in the
tables in the appendix.

Component Based Software Engineering SoSe 2005

2

Your tasks:

- Create service effect automata describing the SendContentToClient service of both
DefaultHTTPRequestProcessorTools and ZipHTTPRequestProcessorTools. Treat
the sending of the header and the content to the client as an external call from the
DefaultHTTPRequestProcessorTools component. Create graphical representations of
these service effect automata either on this sheet or on your PC (write filename on this sheet).
The service effect automata for the DefaultDispatcher, the HTTPRequestParser and
the StaticFileProvider can be combined in one automaton (see below).

- Estimate the demand and time consumption for the nodes and edges and list them in the
tables in the appendix.

- Create input files for the Palladio tool. Note that you need the results of an analysis of a
service A before you can create the input for a service B that calls service A. For the different
design options, you need different time consumptions for sending header and content in your
input file for the DefaultHTTPRequestProcessorTools component, thus you have to
create two input files for the DefaultHTTPRequestProcessorTools component. See
notes to the Palladio tool below, too.

- Interpret the results of the Palladio tool. You find the Palladio tool and all needed files at
C:\Palladio\.

- What design option should be chosen? Why? Consider the upper quartile value for your
decision.

- Save your results, i.e. the three textual representations of the service effect automata (and the
two graphical representations, if not on this sheet) as well as the results of the RAQS tool in
the Palladio directory. All files should contain your name in their file names.

APPENDIX

The webserver’s architecture (simplified):

IHTTPProcessorTools

WebserverMonitor

HTTP
Request

ProcessorTools

Default
Dispatcher

RequestParser

HTTP
RequestParser

IRequestParser

WebserverMonitor

HTTPRequestProcessor

Static
FileProvider

IHTTPRequestProcessor WebserverMonitor

Notes to the Palladio Tool:

A Palladio input of ((100),(50)) means that all calls will be completed in 50 time units. It does not state,
however, what the lowest possible time is. If you estimate a time consumption of 50 for a transition A,
you want to model that calls need about 50 time units. By stating ((100),(50)) as a time consumption,
the tool will assume a distribution whose maximum value is 50, but whose expected value will be
significantly lower. Thus, you have to tighten the bounds for time consumption yourself: In this case,
state ((1,100),(49,50)). Thus, only one percent of the calls will be completed in less than 49 time units.
If your tool takes too long to analyze such an service effect automaton, try ((1,100),(45,50)), so that
the tool can use greater sampling rates.

If you have analyzed one service and want to use the results as an external call’s time consumption
for another service, you can use the median x, upper quartile y and maximum value z in the output file
and convert them into a distribution ((50,75,100),(x,y,z)). You may also add a lower bound like
described above, to do so you have to look at the probability function the Palladio tool computes. Look
up in which time 1 percent of the calls are completed by summing up the probabilties (Note that the
Palladio tool computes a probability function, not a distribution function, thus you have to cumulate the
probabilities to get the distribution function).

Have some patience while the Palladio tool analyzes the service effect automaton.

Component Based Software Engineering SoSe 2005

3

Alternative 1: No compression

Component Diagram 1:
SendContentDataToClient is a service of the IHTTPProcessorTools interface.

HTTPRequestProcessorTools

Default
HTTPRequest

ProcessorTools

IHTTPProcessorTools

WebserverMonitor

Sequence Diagram 1:
This diagram describes the behavior of the DefaultHttpRequestProcessorTools component
without compression.

1) The DefaultDispatcher component listens to the ports specified in a configuration file. If
a request is received, the DefaultDispatcher will create a new thread for handling this
request. Within this thread, a new HTTPRequestParser is created and its
HandleRequest(Request) method is called.

2) The HTTPRequestParser parses the HTTP information of the request and then calls the
HandleRequest(HTTPRequest) method of a HTTPRequestProcessor, in our case the
StaticFileProvider component.

3) The StaticFileProvider component retrieves the requested file from the file cache (no
disk access needed) and converts it to a byte array. Finally, it calls
DefaultHTTPRequestProcessorTools’ SendContentToClient method, passing
the byte array as a parameter.

4) The DefaultHTTPRequestProcessorTools component first converts the header to a
byte array, too, and sends it to the client. Then, the byte array containing the requested file is
sent.

Default
HttpRequest

ProcessorTools

SendContentToClient

Client

Default
Dispatcher

HTTPRequest
Parser

StaticFile
Provider

HTTP request
HandleRequest

HandleRequest

SendContent

SendHeader

Component Based Software Engineering SoSe 2005

4

Alternative 2: Compression

Component Diagram 2:

The HTTPRequestProcessorTools components are organised in a pipe-and-filter pattern.
SendContentDataToClient is a service of the IHTTPProcessorTools interface.

HTTPRequestProcessorTools

Default
HTTPRequest

ProcessorTools

IHTTPProcessorTools

WebserverMonitor

Zip
HTTPRequest

ProcessorTools

Pipe and Filter

Sequence Diagram 2:

This diagram describes the behavior of the components if compression is used. The first components
act like before, cf. sequence diagram 1, except that the StaticFileProvider component calls the
ZipHttpRequestProcessorTools instead of the DefaultHttpRequestProcessorTools.

- The ZipHttpRequestProcessorTools component compresses the content data,
appends the compression information to the header and writes a log entry. Afterwards, the
DefaultHttpRequestProcessorTools component is called.

- Then the DefaultHttpRequestProcessorTools behaves like above.

Note that the content of the header is not compressed. Thus, the header is slightly bigger with the
compression information.

Default
HttpRequest

ProcessorTools

SendContentToClient

Webserver
Monitor

Client

Default
Dispatcher

HTTPRequest
Parser

StaticFile
Provider

HTTP request
HandleRequest

HandleRequest

SendContent

SendHeader

SendContentToClient

Zip
HTTPRequest

ProcessorTools
SharpZipLib

CompressAsGZip

AppendToHeader(CompressInfo)

WriteLogEntry

Component Based Software Engineering SoSe 2005

5

Service Effect Automata for Client, DefaultDispatcher, HTTPRequestParser and
StaticFileProvider:

The service effect automata for the Client, DefaultDispatcher, HTTPRequestParser and
StaticFileProvider are simple, as they contain just one state and one call.

Webserver.HTTPRequest

ClientStarted

Client:

HTTPRequestParser.HandleRequest

StartingNew
HandlingThread

DefaultDispatcher:

StaticFileProvider.HandleRequest

ParsingRequest

HTTPRequestParser:

IHTTPRequestProcessorTools.SendContentToClient

GettingFile

StaticFileProvider:

To make analysis faster, these service effect automata can be combined into one:

Webserver.HTTPRequest’

Default
Dispatcher.
StartingNew

HandlingThread

HTTPRequestParser.HandleRequest’

HTTPRequest
Parser.

ParsingRequest

StaticFile
Provider.

GettingFile

StaticFileProvider.HandleRequest’

IHTTPRequestProcessorTools.SendContentToClient

Client.
ClientStarted

Here, the calls marked with an apostrophe model only the begin of an external call. Thus,
HTTPRequestParser.HandleRequest’ and StaticFileProvider.HandleRequest’ are
epsilon transitions with time consumption 0. For Webserver.HTTPRequest’, however, you need to
consider the time for sending the request to the webserver over the network. You find this service
effect automaton in the Palladio directory, you only have to add the time consumptions.

The time consumption for the IHTTPRequestProcessorTools.HandleRequest call (either to
DefaultHTTPRequestProcessor or ZipHTTPRequestProcessor, depending on design
decision) has to be inserted after having analyzed the service effect automaton for the called service.
The sending of the header and content to the client should be modeled as an external call in the
DefaultHTTPRequestProcessorTools component.

Component Based Software Engineering SoSe 2005

6

Additional data:

You know that the demand of internal computation ranges between 0 and 7 work units. The
throughput of the server is 1000 work units per second.

Internal Computation Demand in work units
(range 0-7)

DefaultDispatcher (before calling HandleRequest)
HTTPRequestParser (before calling HandleRequest)
StaticFileProvider (before calling SendContentToClient)
DefaultHTTPRequestProcessor (before calling SendHeader)
DefaultHTTPRequestProcessor (before calling SendContent)
ZipHTTPRequestProcessor (before compressing)
ZipHTTPRequestProcessor (before appending the header)
ZipHTTPRequestProcessor (before writing a log entry)
ZipHTTPRequestProcessor (before calling SendContentToClient)

The compression of a 15 KB file takes about 10 to 20 msec. Designers are not sure whether there is a
linear relationship between file size and time to compress the file. Additionally, part of the compression
call may be independent of the file size and thus take constant time. You have to estimate the time for
a 50KB file, which is the average file size. The time consumption for the other two external calls
(AppendToHeader, WriteLogEntry) will probably take no longer than the internal computations.
For WriteLogEntry, no disk access is needed.

External Call Time Consumption in ms
SharpLibZip.CompressAsGZip
DefaultHTTPRequestProcessor.AppendToHeader
WebserverMonitor.WriteLogEntry

Network speed is 1Mbit per second. The average file size of the requested content is 50KB. The
compression rate must be estimated. A standard header has a size of about 120 byte. A standard
HTTP request has a size of about 130 byte. Both request and header are not compressed.

Compression
Compression rate
File size of requested content after compression KB
Time to transfer requested file with compression ms
Time to transfer requested file without compression ms
Time to transfer header with compression information ms
Time to transfer header without compression information ms
Time to transfer HTTP request ms

Component Based Software Engineering SoSe 2005

7

Service effect automata

DefaultHTTPRequestProcessorTools.SendContentToClient

ZipHTTPRequestProcessorTools.SendContentToClient

Component Based Software Engineering SoSe 2005

8

Your interpretation of the results:

What design option should be chosen? Why?

B EXPERIMENTAL EXERCISES XXXIII

B.3 Exercise for Comparison Group

Component Based Software Engineering SoSe 2005

1

Case Study: Evaluation of Model-Driven Performance Prediction
Techniques

No prediction technique

Your Name:

Exercise:

A new component-based webserver is designed. While designing, the developers discuss an
architectural alternative that is supposed to improve the webservers performance. As you are familiar
with performance engineering, you are asked to evaluate the alternatives.

The idea is to add a component that compresses the webserver’s answers to requests. The resulting
compressed data is readable by all current browsers. When used with plain HTML files and slow
connections, this generally improves performance, because plain HTML can be compressed up to 80
percent. Additionally, the size of the messages is more important for the performance if slow
connections are used. However, it is expected that this webserver will host many packed images, too,
and that users have an adequate internet connection. As the compression of the files puts an
additional processing load on the webserver, the designers want you to predict the performance of
both alternatives and find out whether the compression really improves performance.

 The developers provide you information on both design options, i.e. the unmodified webserver and
the alternative webserver using compression. Only the HTTPRequestProcessorTools component
is affected by the change. This component offers various services to the other components of the
webserver. They all are deployed on a single server. For compression, only the service
SendContentDataToClient is of importance. SendContentDataToClient receives a byte
stream as a parameter, creates a header and sends both header and content byte stream to the user.

The performance of the other components does not change if compression is used and therefore is
unimportant for the design decision. Thus, their actions are only roughly modelled.

If no compression is used, the HTTPRequestProcessorTools component consists of only one
subcomponent, the DefaultHTTPRequestProcessorTools component. See component diagram
1 for the structure of this component. If compression is used, a second component
ZipHTTPRequestProcessorTools is added to HTTPRequestProcessorTools using the pipe-
and-filter pattern. The ZipHTTPRequestProcessorTools first processes a
SendContentDataToClient call, and then forwards the compressed data to the
DefaultHTTPRequestProcessorTools component, which sends it to the client. See component
diagram 2 for the structure of the HTTPRequestProcessorTools with compression and sequence
diagram 2 for the behavior of the SendContentDataToClient service.

The ZipHTTPRequestProcessorTools calls the SharpZipLib library to compress the data.
Note that a byte stream is passed to the SharpZipLib, which cannot determine whether it contains
already compressed data. Thus, the compression has a processing load that only depends on the size
of the byte stream, not on the contained data.

The time the client needs to decompress the data is neglected in this analysis.

Additional information on performance data and timing behavior of called services is given in the
tables in the appendix.

Component Based Software Engineering SoSe 2005

2

Your tasks:

- Please calculate or estimate the response times of both design options.
- What design option should be chosen? Why?

APPENDIX

The webserver’s architecture (simplified):

IHTTPProcessorTools

WebserverMonitor

HTTP
Request

ProcessorTools

Default
Dispatcher

RequestParser

HTTP
RequestParser

IRequestParser

WebserverMonitor

HTTPRequestProcessor

Static
FileProvider

IHTTPRequestProcessor WebserverMonitor

Component Based Software Engineering SoSe 2005

3

Alternative 1: No compression

Component Diagram 1:
SendContentDataToClient is a service of the IHTTPProcessorTools interface.

HTTPRequestProcessorTools

Default
HTTPRequest

ProcessorTools

IHTTPProcessorTools

WebserverMonitor

Sequence Diagram 1:
This diagram describes the behavior of the DefaultHttpRequestProcessorTools component
without compression.

1) The DefaultDispatcher component listens to the ports specified in a configuration file. If
a request is received, the DefaultDispatcher will create a new thread for handling this
request. Within this thread, a new HTTPRequestParser is created and its
HandleRequest(Request) method is called.

2) The HTTPRequestParser parses the HTTP information of the request and then calls the
HandleRequest(HTTPRequest) method of a HTTPRequestProcessor, in our case the
StaticFileProvider component.

3) The StaticFileProvider component retrieves the requested file from the file cache (no
disk access needed) and converts it to a byte array. Finally, it calls
DefaultHTTPRequestProcessorTools’ SendContentToClient method, passing
the byte array as a parameter.

4) The DefaultHTTPRequestProcessorTools component first converts the header to a
byte array, too, and sends it to the client. Then, the byte array containing the requested file is
sent.

Default
HttpRequest

ProcessorTools

SendContentToClient

Client

Default
Dispatcher

HTTPRequest
Parser

StaticFile
Provider

HTTP request
HandleRequest

HandleRequest

SendContent

SendHeader

Component Based Software Engineering SoSe 2005

4

Alternative 2: Compression

Component Diagram 2:

The HTTPRequestProcessorTools components are organised in a pipe-and-filter pattern.
SendContentDataToClient is a service of the IHTTPProcessorTools interface.

HTTPRequestProcessorTools

Default
HTTPRequest

ProcessorTools

IHTTPProcessorTools

WebserverMonitor

Zip
HTTPRequest

ProcessorTools

Pipe and Filter

Sequence Diagram 2:

This diagram describes the behavior of the components if compression is used. The first components
act like before, cf. sequence diagram 1, except that the StaticFileProvider component calls the
ZipHttpRequestProcessorTools instead of the DefaultHttpRequestProcessorTools.

- The ZipHttpRequestProcessorTools component compresses the content data,
appends the compression information to the header and writes a log entry. Afterwards, the
DefaultHttpRequestProcessorTools component is called.

- Then the DefaultHttpRequestProcessorTools behaves like above.

Note that the content of the header is not compressed. Thus, the header is slightly bigger with the
compression information.

Default
HttpRequest

ProcessorTools

SendContentToClient

Webserver
Monitor

Client

Default
Dispatcher

HTTPRequest
Parser

StaticFile
Provider

HTTP request
HandleRequest

HandleRequest

SendContent

SendHeader

SendContentToClient

Zip
HTTPRequest

ProcessorTools
SharpZipLib

CompressAsGZip

AppendToHeader(CompressInfo)

WriteLogEntry

Component Based Software Engineering SoSe 2005

5

Additional data:

You know that the demand of internal computation ranges between 0 and 7 work units. The
throughput of the server is 1000 work units per second.

Internal Computation Demand in work units
(range 0-7)

DefaultDispatcher (before calling HandleRequest)
HTTPRequestParser (before calling HandleRequest)
StaticFileProvider (before calling SendContentToClient)
DefaultHTTPRequestProcessor (before calling SendHeader)
DefaultHTTPRequestProcessor (before calling SendContent)
ZipHTTPRequestProcessor (before compressing)
ZipHTTPRequestProcessor (before appending the header)
ZipHTTPRequestProcessor (before writing a log entry)
ZipHTTPRequestProcessor (before calling SendContentToClient)

The compression of a 15 KB file takes about 10 to 20 msec. Designers are not sure whether there is a
linear relationship between file size and time to compress the file. Additionally, part of the compression
call may be independent of the file size and thus take constant time. You have to estimate the time for
a 50KB file, which is the average file size. The time consumption for the other two external calls
(AppendToHeader, WriteLogEntry) will probably take no longer than the internal computations.
For WriteLogEntry, no disk access is needed.

External Call Time Consumption in ms
SharpLibZip.CompressAsGZip
DefaultHTTPRequestProcessor.AppendToHeader
WebserverMonitor.WriteLogEntry

Network speed is 1Mbit per second. The average file size of the requested content is 50KB. The
compression rate must be estimated. A standard header has a size of about 120 byte. A standard
HTTP request has a size of about 130 byte. Both request and header are not compressed.

Compression
Compression rate
File size of requested content after compression KB
Time to transfer requested file with compression ms
Time to transfer requested file without compression ms
Time to transfer header with compression information ms
Time to transfer header without compression information ms
Time to transfer HTTP request ms

Your solution:

Response Time
Response time without compression
Response time with compression

Room for Notes

Component Based Software Engineering SoSe 2005

6

 Your interpretation of the results:

What design option should be chosen? Why?

Time you needed to analyze the system:

C RESULTING DATA XXXVI

C Resulting Data

C.1 Predictions of the Participants

Results of the performance predictions

CB-SPE results

Response time for design option...
Participant without compression with compression compression rate

1 421 285 50
2 402,017 322 20
3 417 205 60
4 418 319 40
5 415 373 50
6 412 149 80
7 416 273 50
8 419 112 80
9 414 159 80

10 431 318 30

Palladio results

Distribution for design option...
without compression with compression

Participant Average Upper Quartile Average Upper Quartile Compression Rate
1 374,95 389,33 224,6425 285,25 40
2 398,9852 398,9852 375,12 375,12 20
3 398,045 401 118,75 162 80
4 312 415 263,5 350 30
5 346,25 480 375 500 10
6 418,925 418,925 295,545 295,545 50
7 285,8 404 240 338 40
8 313,9147627 430,858 196,5295784 271,039 50
9 403,975 407 264,375 334 35

10 419,68 621 255,86 362 50
11 318,25 422 261,5 346 40

the distribution functions are too large to be displayed here.

C RESULTING DATA XXXVIII

C.2 Results of Measurements

Measurements Web Server

uncompressed 50 KB

Total
Repeats

Average
Duration
(seconds)

Average
Speed
(kBytes/sec)

Time
(HH:MM:SS)

Average Size
(kBytes)

0 0 0 00:00:01 0

0 0 0 00:00:02 0

0 0 0 00:00:03 0

1 0.384 135 00:00:04 52

2 0.40300003 128 00:00:05 52

2 0 0 00:00:06 0

3 0.38300002 135 00:00:07 52

4 0.38300002 135 00:00:08 52

4 0 0 00:00:09 0

5 0.384 135 00:00:10 52

6 0.386 134 00:00:11 52

7 0.41300002 125 00:00:12 52

7 0 0 00:00:13 0

8 0.402 129 00:00:14 52

9 0.384 135 00:00:15 52

9 0 0 00:00:16 0

10 0.38300002 135 00:00:17 52

11 0.38300002 135 00:00:18 52

12 0.393 132 00:00:19 52

12 0 0 00:00:20 0

13 0.384 135 00:00:21 52

14 0.38300002 135 00:00:22 52

14 0 0 00:00:23 0

15 0.38300002 135 00:00:24 52

16 0.38700002 134 00:00:25 52

17 0.41400003 125 00:00:26 52

17 0 0 00:00:27 0

18 0.393 132 00:00:28 52

19 0.38300002 135 00:00:29 52

19 0 0 00:00:30 0

20 0.38300002 135 00:00:31 52

21 0.384 135 00:00:32 52

22 0.386 134 00:00:33 52

22 0 0 00:00:34 0

23 0.38300002 135 00:00:35 52

24 0.38300002 135 00:00:36 52

24 0 0 00:00:37 0

25 0.384 135 00:00:38 52

26 0.386 134 00:00:39 52

27 0.41300002 125 00:00:40 52

27 0 0 00:00:41 0

28 0.384 135 00:00:42 52

29 0.384 135 00:00:43 52

29 0 0 00:00:44 0

30 0.38300002 135 00:00:45 52

31 0.397 130 00:00:46 52

32 0.423 122 00:00:47 52

32 0 0 00:00:48 0

33 0.384 135 00:00:49 52

34 0.38300002 135 00:00:50 52

34 0 0 00:00:51 0

35 0.38300002 135 00:00:52 52

36 0.38300002 135 00:00:53 52

37 0.40300003 128 00:00:54 52

37 0 0 00:00:55 0

38 0.38300002 135 00:00:56 52

39 0.38300002 135 00:00:57 52

39 0 0 00:00:58 0

40 0.384 135 00:00:59 52

41 0.38700002 134 00:01:00 52

42 0.41300002 125 00:01:01 52

42 0 0 00:01:02 0

43 0.38300002 135 00:01:03 52

44 0.384 135 00:01:04 52

44 0 0 00:01:05 0

45 0.38300002 135 00:01:06 52

46 0.384 135 00:01:07 52

47 0.41300002 125 00:01:08 52

47 0 0 00:01:09 0

48 0.38500002 134 00:01:10 52

49 0.38300002 135 00:01:11 52

49 0 0 00:01:12 0

50 0.38300002 135 00:01:13 52

51 0.38500002 134 00:01:14 52

52 0.41400003 125 00:01:15 52

52 0 0 00:01:16 0

53 0.38300002 135 00:01:17 52

54 0.38300002 135 00:01:18 52

54 0 0 00:01:19 0

55 0.384 135 00:01:20 52

56 0.38700002 134 00:01:21 52

57 0.41300002 125 00:01:22 52

57 0 0 00:01:23 0

58 0.402 129 00:01:24 52

59 0.384 135 00:01:25 52

59 0 0 00:01:26 0

60 0.38300002 135 00:01:27 52

61 0.38300002 135 00:01:28 52

62 0.393 132 00:01:29 52

62 0 0 00:01:30 0

63 0.384 135 00:01:31 52

64 0.38300002 135 00:01:32 52

64 0 0 00:01:33 0

65 0.38300002 135 00:01:34 52

66 0.386 134 00:01:35 52

67 0.41400003 125 00:01:36 52

67 0 0 00:01:37 0

68 0.38300002 135 00:01:38 52

69 0.38300002 135 00:01:39 52

69 0 0 00:01:40 0

70 0.38300002 135 00:01:41 52

71 0.384 135 00:01:42 52

71 0 0 00:01:43 0

72 0.386 134 00:01:44 52

73 0.38300002 135 00:01:45 52

74 0.38300002 135 00:01:46 52

74 0 0 00:01:47 0

75 0.384 135 00:01:48 52

76 0.384 135 00:01:49 52

76 0 0 00:01:50 0

77 0.41300002 125 00:01:51 52

78 0.384 135 00:01:52 52

79 0.38300002 135 00:01:53 52

79 0 0 00:01:54 0

80 0.38300002 135 00:01:55 52

81 0.38300002 135 00:01:56 52

81 0 0 00:01:57 0

82 0.38700002 134 00:01:58 52

83 0.38300002 135 00:01:59 52

84 0.38300002 135 00:02:00 52

84 0 0 00:02:01 0

85 0.38300002 135 00:02:02 52

86 0.384 135 00:02:03 52

86 0 0 00:02:04 0

87 0.41300002 125 00:02:05 52

88 0.38300002 135 00:02:06 52

89 0.38300002 135 00:02:07 52

89 0 0 00:02:08 0

90 0.384 135 00:02:09 52

91 0.388 133 00:02:10 52

91 0 0 00:02:11 0

92 0.38700002 134 00:02:12 52

93 0.384 135 00:02:13 52

94 0.384 135 00:02:14 52

94 0 0 00:02:15 0

95 0.38300002 135 00:02:16 52

96 0.38300002 135 00:02:17 52

96 0 0 00:02:18 0

97 0.41300002 125 00:02:19 52

98 0.384 135 00:02:20 52

99 0.38300002 135 00:02:21 52

99 0 0 00:02:22 0

100 0.38300002 135 00:02:23 52

101 0.384 135 00:02:24 52

101 0 0 00:02:25 0

102 0.41400003 125 00:02:26 52

103 0.38500002 134 00:02:27 52

104 0.38300002 135 00:02:28 52

104 0 0 00:02:29 0

105 0.384 135 00:02:30 52

106 0.38500002 134 00:02:31 52

106 0 0 00:02:32 0

107 0.41300002 125 00:02:33 52

108 0.384 135 00:02:34 52

109 0.384 135 00:02:35 52

109 0 0 00:02:36 0

110 0.38300002 135 00:02:37 52

111 0.386 134 00:02:38 52

111 0 0 00:02:39 0

112 0.41300002 125 00:02:40 52

113 0.384 135 00:02:41 52

114 0.38300002 135 00:02:42 52

114 0 0 00:02:43 0

115 0.38300002 135 00:02:44 52

116 0.386 134 00:02:45 52

116 0 0 00:02:46 0

117 0.41400003 125 00:02:47 52

118 0.38300002 135 00:02:48 52

119 0.38300002 135 00:02:49 52

119 0 0 00:02:50 0

120 0.384 135 00:02:51 52

121 0.386 134 00:02:52 52

121 0 0 00:02:53 0

122 0.41300002 125 00:02:54 52

123 0.38300002 135 00:02:55 52

124 0.384 135 00:02:56 52

124 0 0 00:02:57 0

125 0.38300002 135 00:02:58 52

126 0.384 135 00:02:59 52

126 0 0 00:03:00 0

127 0.41300002 125 00:03:01 52

128 0.4 129 00:03:02 52

129 0.38300002 135 00:03:03 52

129 0 0 00:03:04 0

130 0.384 135 00:03:05 52

131 0.38300002 135 00:03:06 52

131 0 0 00:03:07 0

132 0.41300002 125 00:03:08 52

133 0.38500002 134 00:03:09 52

134 0.38300002 135 00:03:10 52

134 0 0 00:03:11 0

135 0.38300002 135 00:03:12 52

136 0.38300002 135 00:03:13 52

136 0 0 00:03:14 0

137 0.41400003 125 00:03:15 52

138 0.38300002 135 00:03:16 52

139 0.38300002 135 00:03:17 52

139 0 0 00:03:18 0

140 0.38300002 135 00:03:19 52

141 0.384 135 00:03:20 52

141 0 0 00:03:21 0

142 0.41300002 125 00:03:22 52

143 0.38300002 135 00:03:23 52

144 0.38300002 135 00:03:24 52

144 0 0 00:03:25 0

145 0.384 135 00:03:26 52

146 0.386 134 00:03:27 52

146 0 0 00:03:28 0

147 0.386 134 00:03:29 52

148 0.38300002 135 00:03:30 52

149 0.384 135 00:03:31 52

149 0 0 00:03:32 0

150 0.38300002 135 00:03:33 52

151 0.386 134 00:03:34 52

151 0 0 00:03:35 0

152 0.41300002 125 00:03:36 52

153 0.384 135 00:03:37 52

154 0.38300002 135 00:03:38 52

154 0 0 00:03:39 0

155 0.38300002 135 00:03:40 52

156 0.38700002 134 00:03:41 52

156 0 0 00:03:42 0

157 0.41400003 125 00:03:43 52

158 0.38200003 135 00:03:44 52

159 0.38300002 135 00:03:45 52

159 0 0 00:03:46 0

160 0.384 135 00:03:47 52

161 0.384 135 00:03:48 52

161 0 0 00:03:49 0

162 0.41300002 125 00:03:50 52

163 0.38300002 135 00:03:51 52

164 0.384 135 00:03:52 52

164 0 0 00:03:53 0

165 0.38300002 135 00:03:54 52

166 0.386 134 00:03:55 52

166 0 0 00:03:56 0

167 0.41300002 125 00:03:57 52

168 0.384 135 00:03:58 52

169 0.38300002 135 00:03:59 52

169 0 0 00:04:00 0

170 0.38300002 135 00:04:01 52

171 0.38500002 134 00:04:02 52

171 0 0 00:04:03 0

172 0.41400003 125 00:04:04 52

173 0.38300002 135 00:04:05 52

173 0 0 00:04:06 0

174 0.38300002 135 00:04:07 52

175 0.384 135 00:04:08 52

176 0.38500002 134 00:04:09 52

176 0 0 00:04:10 0

177 0.41300002 125 00:04:11 52

178 0.38300002 135 00:04:12 52

178 0 0 00:04:13 0

179 0.384 135 00:04:14 52

180 0.38300002 135 00:04:15 52

181 0.38500002 134 00:04:16 52

181 0 0 00:04:17 0

182 0.41300002 125 00:04:18 52

183 0.384 135 00:04:19 52

183 0 0 00:04:20 0

184 0.38300002 135 00:04:21 52

185 0.38300002 135 00:04:22 52

186 0.386 134 00:04:23 52

186 0 0 00:04:24 0

187 0.41300002 125 00:04:25 52

188 0.38300002 135 00:04:26 52

188 0 0 00:04:27 0

189 0.38300002 135 00:04:28 52

190 0.38300002 135 00:04:29 52

191 0.39400002 131 00:04:30 52

191 0 0 00:04:31 0

192 0.40300003 128 00:04:32 52

193 0.38300002 135 00:04:33 52

193 0 0 00:04:34 0

194 0.38300002 135 00:04:35 52

195 0.384 135 00:04:36 52

196 0.38500002 134 00:04:37 52

196 0 0 00:04:38 0

197 0.41300002 125 00:04:39 52

198 0.384 135 00:04:40 52

198 0 0 00:04:41 0

199 0.384 135 00:04:42 52

200 0.38300002 135 00:04:43 52

201 0.38500002 134 00:04:44 52

201 0 0 00:04:45 0

202 0.41300002 125 00:04:46 52

203 0.38300002 135 00:04:47 52

203 0 0 00:04:48 0

204 0.38300002 135 00:04:49 52

205 0.38300002 135 00:04:50 52

206 0.386 134 00:04:51 52

206 0 0 00:04:52 0

207 0.41300002 125 00:04:53 52

208 0.38300002 135 00:04:54 52

208 0 0 00:04:55 0

209 0.38300002 135 00:04:56 52

210 0.384 135 00:04:57 52

211 0.38700002 134 00:04:58 52

211 0 0 00:04:59 0

212 0.38700002 134 00:05:00 52

213 0.629 82 00:05:01 52

213 0 0 00:05:02 0

214 0.39800003 130 00:05:03 52

215 0.38300002 135 00:05:04 52

215 0 0 00:05:05 0

216 0.397 130 00:05:06 52

217 0.38300002 135 00:05:07 52

218 0.38300002 135 00:05:08 52

218 0 0 00:05:09 0

219 0.38300002 135 00:05:10 52

220 0.38300002 135 00:05:11 52

220 0 0 00:05:12 0

221 0.384 135 00:05:13 52

222 0.384 135 00:05:14 52

223 0.393 132 00:05:15 52

223 0 0 00:05:16 0

224 0.38300002 135 00:05:17 52

225 0.384 135 00:05:18 52

225 0 0 00:05:19 0

226 0.38300002 135 00:05:20 52

227 0.38300002 135 00:05:21 52

228 0.38700002 134 00:05:22 52

228 0 0 00:05:23 0

229 0.384 135 00:05:24 52

230 0.384 135 00:05:25 52

230 0 0 00:05:26 0

231 0.38300002 135 00:05:27 52

232 0.38300002 135 00:05:28 52

233 0.41300002 125 00:05:29 52

233 0 0 00:05:30 0

234 0.38300002 135 00:05:31 52

235 0.38300002 135 00:05:32 52

235 0 0 00:05:33 0

236 0.384 135 00:05:34 52

237 0.381 136 00:05:35 52

238 0.41300002 125 00:05:36 52

238 0 0 00:05:37 0

239 0.38300002 135 00:05:38 52

240 0.384 135 00:05:39 52

240 0 0 00:05:40 0

241 0.38300002 135 00:05:41 52

242 0.38300002 135 00:05:42 52

243 0.41300002 125 00:05:43 52

243 0 0 00:05:44 0

244 0.384 135 00:05:45 52

245 0.38300002 135 00:05:46 52

245 0 0 00:05:47 0

246 0.38300002 135 00:05:48 52

247 0.38500002 134 00:05:49 52

248 0.41400003 125 00:05:50 52

248 0 0 00:05:51 0

249 0.38300002 135 00:05:52 52

250 0.38300002 135 00:05:53 52

250 0 0 00:05:54 0

251 0.38300002 135 00:05:55 52

252 0.386 134 00:05:56 52

253 0.38700002 134 00:05:57 52

253 0 0 00:05:58 0

254 0.38300002 135 00:05:59 52

255 0.38300002 135 00:06:00 52

255 0 0 00:06:01 0

256 0.38300002 135 00:06:02 52

257 0.397 130 00:06:03 52

257 0 0 00:06:04 0

258 0.38300002 135 00:06:05 52

259 0.38300002 135 00:06:06 52

260 0.384 135 00:06:07 52

260 0 0 00:06:08 0

261 0.40300003 128 00:06:09 52

262 0.393 132 00:06:10 52

262 0 0 00:06:11 0

263 0.38300002 135 00:06:12 52

264 0.384 135 00:06:13 52

265 0.38300002 135 00:06:14 52

265 0 0 00:06:15 0

266 0.38300002 135 00:06:16 52

267 0.38300002 135 00:06:17 52

267 0 0 00:06:18 0

268 0.384 135 00:06:19 52

269 0.38300002 135 00:06:20 52

270 0.38300002 135 00:06:21 52

270 0 0 00:06:22 0

271 0.38300002 135 00:06:23 52

272 0.384 135 00:06:24 52

272 0 0 00:06:25 0

273 0.384 135 00:06:26 52

274 0.41300002 125 00:06:27 52

275 0.38300002 135 00:06:28 52

275 0 0 00:06:29 0

276 0.384 135 00:06:30 52

277 0.38300002 135 00:06:31 52

277 0 0 00:06:32 0

278 0.38300002 135 00:06:33 52

279 0.41400003 125 00:06:34 52

280 0.384 135 00:06:35 52

280 0 0 00:06:36 0

281 0.38300002 135 00:06:37 52

282 0.38300002 135 00:06:38 52

282 0 0 00:06:39 0

283 0.384 135 00:06:40 52

284 0.41400003 125 00:06:41 52

285 0.38300002 135 00:06:42 52

285 0 0 00:06:43 0

286 0.38300002 135 00:06:44 52

287 0.384 135 00:06:45 52

287 0 0 00:06:46 0

288 0.38700002 134 00:06:47 52

289 0.41700003 124 00:06:48 52

290 0.38300002 135 00:06:49 52

290 0 0 00:06:50 0

291 0.38200003 135 00:06:51 52

292 0.38300002 135 00:06:52 52

292 0 0 00:06:53 0

293 0.38300002 135 00:06:54 52

294 0.41300002 125 00:06:55 52

295 0.38500002 134 00:06:56 52

295 0 0 00:06:57 0

296 0.38300002 135 00:06:58 52

297 0.38300002 135 00:06:59 52

297 0 0 00:07:00 0

298 0.386 134 00:07:01 52

299 0.38700002 134 00:07:02 52

300 0.38300002 135 00:07:03 52

300 0 0 00:07:04 0

301 0.38300002 135 00:07:05 52

302 0.38300002 135 00:07:06 52

302 0 0 00:07:07 0

303 0.384 135 00:07:08 52

304 0.41300002 125 00:07:09 52

304 0 0 00:07:10 0

305 0.38300002 135 00:07:11 52

306 0.384 135 00:07:12 52

307 0.38300002 135 00:07:13 52

307 0 0 00:07:14 0

308 0.388 133 00:07:15 52

309 0.38700002 134 00:07:16 52

309 0 0 00:07:17 0

310 0.384 135 00:07:18 52

311 0.38300002 135 00:07:19 52

312 0.38300002 135 00:07:20 52

312 0 0 00:07:21 0

313 0.384 135 00:07:22 52

314 0.418 124 00:07:23 52

314 0 0 00:07:24 0

315 0.38300002 135 00:07:25 52

316 0.38300002 135 00:07:26 52

317 0.38300002 135 00:07:27 52

317 0 0 00:07:28 0

318 0.38900003 133 00:07:29 52

319 0.386 134 00:07:30 52

319 0 0 00:07:31 0

320 0.38300002 135 00:07:32 52

321 0.38300002 135 00:07:33 52

322 0.384 135 00:07:34 52

322 0 0 00:07:35 0

323 0.39800003 130 00:07:36 52

324 0.41300002 125 00:07:37 52

324 0 0 00:07:38 0

325 0.38300002 135 00:07:39 52

326 0.384 135 00:07:40 52

327 0.38300002 135 00:07:41 52

327 0 0 00:07:42 0

328 0.386 134 00:07:43 52

329 0.38700002 134 00:07:44 52

329 0 0 00:07:45 0

330 0.384 135 00:07:46 52

331 0.38300002 135 00:07:47 52

332 0.384 135 00:07:48 52

332 0 0 00:07:49 0

333 0.386 134 00:07:50 52

334 0.41300002 125 00:07:51 52

334 0 0 00:07:52 0

335 0.38300002 135 00:07:53 52

336 0.38300002 135 00:07:54 52

337 0.384 135 00:07:55 52

337 0 0 00:07:56 0

338 0.384 135 00:07:57 52

339 0.41300002 125 00:07:58 52

339 0 0 00:07:59 0

340 0.38300002 135 00:08:00 52

341 0.384 135 00:08:01 52

342 0.38300002 135 00:08:02 52

342 0 0 00:08:03 0

343 0.386 134 00:08:04 52

344 0.41300002 125 00:08:05 52

344 0 0 00:08:06 0

345 0.38300002 135 00:08:07 52

346 0.38300002 135 00:08:08 52

347 0.384 135 00:08:09 52

347 0 0 00:08:10 0

348 0.38300002 135 00:08:11 52

349 0.41500002 125 00:08:12 52

349 0 0 00:08:13 0

350 0.38300002 135 00:08:14 52

351 0.38500002 134 00:08:15 52

352 0.384 135 00:08:16 52

352 0 0 00:08:17 0

353 0.39400002 131 00:08:18 52

354 0.40300003 128 00:08:19 52

354 0 0 00:08:20 0

355 0.38300002 135 00:08:21 52

356 0.38500002 134 00:08:22 52

357 0.38300002 135 00:08:23 52

357 0 0 00:08:24 0

358 0.386 134 00:08:25 52

359 0.41700003 124 00:08:26 52

359 0 0 00:08:27 0

360 0.384 135 00:08:28 52

361 0.38500002 134 00:08:29 52

362 0.38300002 135 00:08:30 52

362 0 0 00:08:31 0

363 0.384 135 00:08:32 52

364 0.38700002 134 00:08:33 52

364 0 0 00:08:34 0

365 0.384 135 00:08:35 52

366 0.38300002 135 00:08:36 52

367 0.38300002 135 00:08:37 52

367 0 0 00:08:38 0

368 0.38900003 133 00:08:39 52

369 0.41400003 125 00:08:40 52

369 0 0 00:08:41 0

370 0.38300002 135 00:08:42 52

371 0.38300002 135 00:08:43 52

372 0.384 135 00:08:44 52

372 0 0 00:08:45 0

373 0.38700002 134 00:08:46 52

374 0.38700002 134 00:08:47 52

374 0 0 00:08:48 0

375 0.38300002 135 00:08:49 52

376 0.38500002 134 00:08:50 52

376 0 0 00:08:51 0

377 0.38300002 135 00:08:52 52

378 0.38500002 134 00:08:53 52

379 0.41300002 125 00:08:54 52

379 0 0 00:08:55 0

380 0.384 135 00:08:56 52

381 0.38300002 135 00:08:57 52

381 0 0 00:08:58 0

382 0.38300002 135 00:08:59 52

383 0.38700002 134 00:09:00 52

384 0.38700002 134 00:09:01 52

384 0 0 00:09:02 0

385 0.38300002 135 00:09:03 52

386 0.38300002 135 00:09:04 52

386 0 0 00:09:05 0

387 0.384 135 00:09:06 52

388 0.384 135 00:09:07 52

389 0.41300002 125 00:09:08 52

389 0 0 00:09:09 0

390 0.38300002 135 00:09:10 52

391 0.384 135 00:09:11 52

391 0 0 00:09:12 0

392 0.38300002 135 00:09:13 52

393 0.386 134 00:09:14 52

394 0.38700002 134 00:09:15 52

394 0 0 00:09:16 0

395 0.38300002 135 00:09:17 52

396 0.38300002 135 00:09:18 52

396 0 0 00:09:19 0

397 0.38300002 135 00:09:20 52

398 0.38500002 134 00:09:21 52

399 0.41400003 125 00:09:22 52

399 0 0 00:09:23 0

400 0.38300002 135 00:09:24 52

401 0.38300002 135 00:09:25 52

401 0 0 00:09:26 0

402 0.38300002 135 00:09:27 52

403 0.386 134 00:09:28 52

404 0.38700002 134 00:09:29 52

404 0 0 00:09:30 0

405 0.38300002 135 00:09:31 52

406 0.38300002 135 00:09:32 52

406 0 0 00:09:33 0

407 0.384 135 00:09:34 52

408 0.38500002 134 00:09:35 52

409 0.41300002 125 00:09:36 52

409 0 0 00:09:37 0

410 0.38300002 135 00:09:38 52

411 0.384 135 00:09:39 52

411 0 0 00:09:40 0

412 0.38300002 135 00:09:41 52

413 0.38300002 135 00:09:42 52

414 0.41400003 125 00:09:43 52

414 0 0 00:09:44 0

415 0.38300002 135 00:09:45 52

416 0.38300002 135 00:09:46 52

416 0 0 00:09:47 0

417 0.38300002 135 00:09:48 52

418 0.397 130 00:09:49 52

419 0.423 122 00:09:50 52

419 0 0 00:09:51 0

420 0.38300002 135 00:09:52 52

421 0.38300002 135 00:09:53 52

421 0 0 00:09:54 0

422 0.384 135 00:09:55 52

423 0.384 135 00:09:56 52

424 0.40300003 128 00:09:57 52

424 0 0 00:09:58 0

425 0.38300002 135 00:09:59 52

426 0.384 135 00:10:00 52

426 0 0 00:10:01 0

427 0.384 135 00:10:02 52

 166.150006 56801.6496

Average 0.38911008 133.02494

Measurement
Webserver

compr 1:1.0128 = 1.2%

Total
Repeats

Average
Duration
(seconds)

Average
Speed
(kBytes/sec)

Time
(HH:MM:SS)

Average
Size
(kBytes)

0 0 0 00:00:01 0

0 0 0 00:00:02 0

0 0 0 00:00:03 0

1 0.384 132 00:00:04 51

2 0.43400002 116 00:00:05 51

2 0 0 00:00:06 0

3 0.39400002 128 00:00:07 51

4 0.38500002 131 00:00:08 51

4 0 0 00:00:09 0

5 0.384 132 00:00:10 51

6 0.384 132 00:00:11 51

7 0.45200002 112 00:00:12 51

7 0 0 00:00:13 0

8 0.38500002 131 00:00:14 51

9 0.384 132 00:00:15 51

9 0 0 00:00:16 0

10 0.384 132 00:00:17 51

11 0.38900003 130 00:00:18 51

12 0.384 132 00:00:19 51

12 0 0 00:00:20 0

13 0.384 132 00:00:21 51

14 0.39400002 128 00:00:22 51

14 0 0 00:00:23 0

15 0.38500002 131 00:00:24 51

16 0.39900002 127 00:00:25 51

17 0.39400002 128 00:00:26 51

17 0 0 00:00:27 0

18 0.384 132 00:00:28 51

19 0.38500002 131 00:00:29 51

19 0 0 00:00:30 0

20 0.384 132 00:00:31 51

21 0.39600003 128 00:00:32 51

22 0.38500002 131 00:00:33 51

22 0 0 00:00:34 0

23 0.384 132 00:00:35 51

24 0.384 132 00:00:36 51

24 0 0 00:00:37 0

25 0.384 132 00:00:38 51

26 0.38500002 131 00:00:39 51

27 0.404 125.05 00:00:40 51

27 0 0 00:00:41 0

28 0.384 132 00:00:42 51

29 0.38500002 131 00:00:43 51

29 0 0 00:00:44 0

30 0.384 132 00:00:45 51

31 0.38500002 131 00:00:46 51

32 0.41400003 122 00:00:47 51

32 0 0 00:00:48 0

33 0.38500002 131 00:00:49 51

34 0.386 131 00:00:50 51

34 0 0 00:00:51 0

35 0.384 132 00:00:52 51

36 0.384 132 00:00:53 51

36 0 0 00:00:54 0

37 0.41400003 122 00:00:55 51

38 0.384 132 00:00:56 51

39 0.384 132 00:00:57 51

39 0 0 00:00:58 0

40 0.384 132 00:00:59 51

41 0.38500002 131 00:01:00 51

41 0 0 00:01:01 0

42 0.40100002 126 00:01:02 51

43 0.402 126 00:01:03 51

44 0.384 132 00:01:04 51

44 0 0 00:01:05 0

45 0.38500002 131 00:01:06 51

46 0.384 132 00:01:07 51

46 0 0 00:01:08 0

47 0.384 132 00:01:09 51

48 0.39400002 128 00:01:10 51

49 0.38500002 131 00:01:11 51

49 0 0 00:01:12 0

50 0.384 132 00:01:13 51

51 0.384 132 00:01:14 51

51 0 0 00:01:15 0

52 0.38500002 131 00:01:16 51

53 0.41500002 122 00:01:17 51

54 0.384 132 00:01:18 51

54 0 0 00:01:19 0

55 0.384 132 00:01:20 51

56 0.38500002 131 00:01:21 51

56 0 0 00:01:22 0

57 0.38500002 131 00:01:23 51

58 0.404 125.05 00:01:24 51

59 0.384 132 00:01:25 51

59 0 0 00:01:26 0

60 0.38500002 131 00:01:27 51

61 0.38500002 131 00:01:28 51

61 0 0 00:01:29 0

62 0.386 131 00:01:30 51

63 0.38700002 131 00:01:31 51

64 0.384 132 00:01:32 51

64 0 0 00:01:33 0

65 0.384 132 00:01:34 51

66 0.384 132 00:01:35 51

66 0 0 00:01:36 0

67 0.38500002 131 00:01:37 51

68 0.41400003 122 00:01:38 51

69 0.384 132 00:01:39 51

69 0 0 00:01:40 0

70 0.384 132 00:01:41 51

71 0.38500002 131 00:01:42 51

71 0 0 00:01:43 0

72 0.38500002 131 00:01:44 51

73 0.404 125.05 00:01:45 51

74 0.38500002 131 00:01:46 51

74 0 0 00:01:47 0

75 0.38500002 131 00:01:48 51

76 0.384 132 00:01:49 51

76 0 0 00:01:50 0

77 0.384 132 00:01:51 51

78 0.41500002 122 00:01:52 51

79 0.384 132 00:01:53 51

79 0 0 00:01:54 0

80 0.384 132 00:01:55 51

81 0.38500002 131 00:01:56 51

81 0 0 00:01:57 0

82 0.38500002 131 00:01:58 51

83 0.41400003 122 00:01:59 51

84 0.384 132 00:02:00 51

84 0 0 00:02:01 0

85 0.38500002 131 00:02:02 51

86 0.384 132 00:02:03 51

86 0 0 00:02:04 0

87 0.384 132 00:02:05 51

88 0.402 126 00:02:06 51

88 0 0 00:02:07 0

89 0.395 128 00:02:08 51

90 0.384 132 00:02:09 51

91 0.384 132 00:02:10 51

91 0 0 00:02:11 0

92 0.38700002 131 00:02:12 51

93 0.404 125.05 00:02:13 51

93 0 0 00:02:14 0

94 0.38300002 132 00:02:15 51

95 0.384 132 00:02:16 51

96 0.38500002 131 00:02:17 51

96 0 0 00:02:18 0

97 0.38500002 131 00:02:19 51

98 0.404 125.05 00:02:20 51

98 0 0 00:02:21 0

99 0.38500002 131 00:02:22 51

100 0.38500002 131 00:02:23 51

101 0.384 132 00:02:24 51

101 0 0 00:02:25 0

102 0.388 130 00:02:26 51

103 0.41400003 122 00:02:27 51

103 0 0 00:02:28 0

104 0.384 132 00:02:29 51

105 0.384 132 00:02:30 51

106 0.384 132 00:02:31 51

106 0 0 00:02:32 0

107 0.38500002 131 00:02:33 51

108 0.404 125.05 00:02:34 51

108 0 0 00:02:35 0

109 0.384 132 00:02:36 51

110 0.38500002 131 00:02:37 51

111 0.38500002 131 00:02:38 51

111 0 0 00:02:39 0

112 0.386 131 00:02:40 51

113 0.41400003 122 00:02:41 51

113 0 0 00:02:42 0

114 0.38500002 131 00:02:43 51

115 0.384 132 00:02:44 51

116 0.384 132 00:02:45 51

116 0 0 00:02:46 0

117 0.38500002 131 00:02:47 51

118 0.388 130 00:02:48 51

118 0 0 00:02:49 0

119 0.384 132 00:02:50 51

120 0.384 132 00:02:51 51

121 0.38500002 131 00:02:52 51

121 0 0 00:02:53 0

122 0.388 130 00:02:54 51

123 0.41400003 122 00:02:55 51

123 0 0 00:02:56 0

124 0.384 132 00:02:57 51

125 0.38500002 131 00:02:58 51

126 0.384 132 00:02:59 51

126 0 0 00:03:00 0

127 0.384 132 00:03:01 51

128 0.38900003 130 00:03:02 51

128 0 0 00:03:03 0

129 0.384 132 00:03:04 51

130 0.384 132 00:03:05 51

131 0.384 132 00:03:06 51

131 0 0 00:03:07 0

132 0.38500002 131 00:03:08 51

133 0.432 117 00:03:09 51

133 0 0 00:03:10 0

134 0.384 132 00:03:11 51

135 0.384 132 00:03:12 51

136 0.38500002 131 00:03:13 51

136 0 0 00:03:14 0

137 0.43 117 00:03:15 51

138 0.384 132 00:03:16 51

138 0 0 00:03:17 0

139 0.43400002 116 00:03:18 51

140 0.38500002 131 00:03:19 51

141 0.384 132 00:03:20 51

141 0 0 00:03:21 0

142 0.384 132 00:03:22 51

143 0.38500002 131 00:03:23 51

143 0 0 00:03:24 0

144 0.418 121 00:03:25 51

145 0.384 132 00:03:26 51

145 0 0 00:03:27 0

146 0.384 132 00:03:28 51

147 0.38500002 131 00:03:29 51

148 0.38500002 131 00:03:30 51

148 0 0 00:03:31 0

149 0.425 119 00:03:32 51

150 0.384 132 00:03:33 51

150 0 0 00:03:34 0

151 0.38500002 131 00:03:35 51

152 0.384 132 00:03:36 51

153 0.384 132 00:03:37 51

153 0 0 00:03:38 0

154 0.41300002 122 00:03:39 51

155 0.38500002 131 00:03:40 51

155 0 0 00:03:41 0

156 0.384 132 00:03:42 51

157 0.384 132 00:03:43 51

158 0.388 130 00:03:44 51

158 0 0 00:03:45 0

159 0.41400003 122 00:03:46 51

160 0.384 132 00:03:47 51

160 0 0 00:03:48 0

161 0.384 132 00:03:49 51

162 0.38500002 131 00:03:50 51

163 0.384 132 00:03:51 51

163 0 0 00:03:52 0

164 0.41400003 122 00:03:53 51

165 0.38500002 131 00:03:54 51

165 0 0 00:03:55 0

166 0.384 132 00:03:56 51

167 0.384 132 00:03:57 51

168 0.384 132 00:03:58 51

168 0 0 00:03:59 0

169 0.41400003 122 00:04:00 51

170 0.64500004 78 00:04:01 51

170 0 0 00:04:02 0

171 0.40100002 126 00:04:03 51

172 0.43500003 116 00:04:04 51

172 0 0 00:04:05 0

173 0.393 128.55 00:04:06 51

174 0.384 132 00:04:07 51

175 0.384 132 00:04:08 51

175 0 0 00:04:09 0

176 0.38500002 131 00:04:10 51

177 0.41400003 122 00:04:11 51

177 0 0 00:04:12 0

178 0.384 132 00:04:13 51

179 0.384 132 00:04:14 51

180 0.38500002 131 00:04:15 51

180 0 0 00:04:16 0

181 0.384 132 00:04:17 51

182 0.41400003 122 00:04:18 51

182 0 0 00:04:19 0

183 0.384 132 00:04:20 51

184 0.384 132 00:04:21 51

184 0 0 00:04:22 0

185 0.384 132 00:04:23 51

186 0.384 132 00:04:24 51

187 0.38700002 131 00:04:25 51

187 0 0 00:04:26 0

188 0.384 132 00:04:27 51

189 0.384 132 00:04:28 51

189 0 0 00:04:29 0

190 0.38500002 131 00:04:30 51

191 0.38500002 131 00:04:31 51

192 0.41400003 122 00:04:32 51

192 0 0 00:04:33 0

193 0.384 132 00:04:34 51

194 0.38500002 131 00:04:35 51

194 0 0 00:04:36 0

195 0.384 132 00:04:37 51

196 0.384 132 00:04:38 51

197 0.41400003 122 00:04:39 51

197 0 0 00:04:40 0

198 0.38500002 131 00:04:41 51

199 0.384 132 00:04:42 51

199 0 0 00:04:43 0

200 0.384 132 00:04:44 51

201 0.384 132 00:04:45 51

202 0.404 125.05 00:04:46 51

202 0 0 00:04:47 0

203 0.384 132 00:04:48 51

204 0.384 132 00:04:49 51

204 0 0 00:04:50 0

205 0.39200002 129 00:04:51 51

206 0.384 132 00:04:52 51

207 0.404 125.05 00:04:53 51

207 0 0 00:04:54 0

208 0.38500002 131 00:04:55 51

209 0.38700002 131 00:04:56 51

209 0 0 00:04:57 0

210 0.384 132 00:04:58 51

211 0.42700002 118 00:04:59 51

212 0.38500002 131 00:05:00 51

212 0 0 00:05:01 0

213 0.47300002 107 00:05:02 51

214 0.384 132 00:05:03 51

214 0 0 00:05:04 0

215 0.384 132 00:05:05 51

216 0.384 132 00:05:06 51

216 0 0 00:05:07 0

217 0.432 117 00:05:08 51

218 0.384 132 00:05:09 51

219 0.384 132 00:05:10 51

219 0 0 00:05:11 0

220 0.384 132 00:05:12 51

221 0.38500002 131 00:05:13 51

222 0.38500002 131 00:05:14 51

222 0 0 00:05:15 0

223 0.41400003 122 00:05:16 51

224 0.384 132 00:05:17 51

224 0 0 00:05:18 0

225 0.38500002 131 00:05:19 51

226 0.384 132 00:05:20 51

226 0 0 00:05:21 0

227 0.41500002 122 00:05:22 51

228 0.38500002 131 00:05:23 51

229 0.384 132 00:05:24 51

229 0 0 00:05:25 0

230 0.384 132 00:05:26 51

231 0.384 132 00:05:27 51

231 0 0 00:05:28 0

232 0.38500002 131 00:05:29 51

233 0.41400003 122 00:05:30 51

234 0.384 132 00:05:31 51

234 0 0 00:05:32 0

235 0.38500002 131 00:05:33 51

236 0.384 132 00:05:34 51

236 0 0 00:05:35 0

237 0.384 132 00:05:36 51

238 0.41400003 122 00:05:37 51

239 0.38500002 131 00:05:38 51

239 0 0 00:05:39 0

240 0.384 132 00:05:40 51

241 0.384 132 00:05:41 51

241 0 0 00:05:42 0

242 0.384 132 00:05:43 51

243 0.404 125.05 00:05:44 51

244 0.384 132 00:05:45 51

244 0 0 00:05:46 0

245 0.384 132 00:05:47 51

246 0.38500002 131 00:05:48 51

246 0 0 00:05:49 0

247 0.38500002 131 00:05:50 51

248 0.41400003 122 00:05:51 51

249 0.384 132 00:05:52 51

249 0 0 00:05:53 0

250 0.38500002 131 00:05:54 51

251 0.384 132 00:05:55 51

251 0 0 00:05:56 0

252 0.384 132 00:05:57 51

253 0.41400003 122 00:05:58 51

254 0.38500002 131 00:05:59 51

254 0 0 00:06:00 0

255 0.384 132 00:06:01 51

256 0.4 126.3 00:06:02 51

256 0 0 00:06:03 0

257 0.4 126.3 00:06:04 51

258 0.39400002 128 00:06:05 51

259 0.384 132 00:06:06 51

259 0 0 00:06:07 0

260 0.384 132 00:06:08 51

261 0.384 132 00:06:09 51

261 0 0 00:06:10 0

262 0.38500002 131 00:06:11 51

263 0.41400003 122 00:06:12 51

264 0.384 132 00:06:13 51

264 0 0 00:06:14 0

265 0.38500002 131 00:06:15 51

266 0.384 132 00:06:16 51

266 0 0 00:06:17 0

267 0.384 132 00:06:18 51

268 0.41400003 122 00:06:19 51

269 0.38500002 131 00:06:20 51

269 0 0 00:06:21 0

270 0.384 132 00:06:22 51

271 0.384 132 00:06:23 51

271 0 0 00:06:24 0

272 0.384 132 00:06:25 51

273 0.40500003 125 00:06:26 51

274 0.384 132 00:06:27 51

274 0 0 00:06:28 0

275 0.384 132 00:06:29 51

276 0.38500002 131 00:06:30 51

276 0 0 00:06:31 0

277 0.402 126 00:06:32 51

278 0.41400003 122 00:06:33 51

279 0.384 132 00:06:34 51

279 0 0 00:06:35 0

280 0.38500002 131 00:06:36 51

281 0.384 132 00:06:37 51

281 0 0 00:06:38 0

282 0.384 132 00:06:39 51

283 0.41400003 122 00:06:40 51

284 0.38500002 131 00:06:41 51

284 0 0 00:06:42 0

285 0.39200002 129 00:06:43 51

286 0.384 132 00:06:44 51

286 0 0 00:06:45 0

287 0.384 132 00:06:46 51

288 0.404 125.05 00:06:47 51

289 0.386 131 00:06:48 51

289 0 0 00:06:49 0

290 0.384 132 00:06:50 51

291 0.38500002 131 00:06:51 51

291 0 0 00:06:52 0

292 0.38500002 131 00:06:53 51

293 0.41400003 122 00:06:54 51

294 0.384 132 00:06:55 51

294 0 0 00:06:56 0

295 0.395 128 00:06:57 51

296 0.384 132 00:06:58 51

296 0 0 00:06:59 0

297 0.384 132 00:07:00 51

298 0.40500003 125 00:07:01 51

299 0.384 132 00:07:02 51

299 0 0 00:07:03 0

300 0.384 132 00:07:04 51

301 0.384 132 00:07:05 51

301 0 0 00:07:06 0

302 0.38700002 131 00:07:07 51

303 0.41400003 122 00:07:08 51

304 0.384 132 00:07:09 51

304 0 0 00:07:10 0

305 0.38500002 131 00:07:11 51

306 0.384 132 00:07:12 51

306 0 0 00:07:13 0

307 0.384 132 00:07:14 51

308 0.41400003 122 00:07:15 51

308 0 0 00:07:16 0

309 0.38500002 131 00:07:17 51

310 0.384 132 00:07:18 51

311 0.384 132 00:07:19 51

311 0 0 00:07:20 0

312 0.384 132 00:07:21 51

313 0.40500003 125 00:07:22 51

313 0 0 00:07:23 0

314 0.384 132 00:07:24 51

315 0.384 132 00:07:25 51

316 0.38500002 131 00:07:26 51

316 0 0 00:07:27 0

317 0.38500002 131 00:07:28 51

318 0.41400003 122 00:07:29 51

318 0 0 00:07:30 0

319 0.384 132 00:07:31 51

320 0.38500002 131 00:07:32 51

321 0.384 132 00:07:33 51

321 0 0 00:07:34 0

322 0.384 132 00:07:35 51

323 0.41400003 122 00:07:36 51

323 0 0 00:07:37 0

324 0.38500002 131 00:07:38 51

325 0.384 132 00:07:39 51

326 0.384 132 00:07:40 51

326 0 0 00:07:41 0

327 0.38500002 131 00:07:42 51

328 0.418 121 00:07:43 51

328 0 0 00:07:44 0

329 0.39400002 128 00:07:45 51

330 0.384 132 00:07:46 51

331 0.38500002 131 00:07:47 51

331 0 0 00:07:48 0

332 0.395 128 00:07:49 51

333 0.384 132 00:07:50 51

333 0 0 00:07:51 0

334 0.38500002 131 00:07:52 51

335 0.384 132 00:07:53 51

336 0.384 132 00:07:54 51

336 0 0 00:07:55 0

337 0.384 132 00:07:56 51

338 0.41400003 122 00:07:57 51

338 0 0 00:07:58 0

339 0.384 132 00:07:59 51

340 0.384 132 00:08:00 51

341 0.38500002 131 00:08:01 51

341 0 0 00:08:02 0

342 0.43300003 117 00:08:03 51

343 0.38500002 131 00:08:04 51

343 0 0 00:08:05 0

344 0.384 132 00:08:06 51

345 0.384 132 00:08:07 51

346 0.38500002 131 00:08:08 51

346 0 0 00:08:09 0

347 0.38500002 131 00:08:10 51

348 0.41400003 122 00:08:11 51

348 0 0 00:08:12 0

349 0.384 132 00:08:13 51

350 0.38500002 131 00:08:14 51

351 0.384 132 00:08:15 51

351 0 0 00:08:16 0

352 0.407 124 00:08:17 51

353 0.384 132 00:08:18 51

353 0 0 00:08:19 0

354 0.38500002 131 00:08:20 51

355 0.384 132 00:08:21 51

356 0.384 132 00:08:22 51

356 0 0 00:08:23 0

357 0.38500002 131 00:08:24 51

358 0.41400003 122 00:08:25 51

358 0 0 00:08:26 0

359 0.384 132 00:08:27 51

360 0.384 132 00:08:28 51

361 0.38500002 131 00:08:29 51

361 0 0 00:08:30 0

362 0.41900003 121 00:08:31 51

363 0.384 132 00:08:32 51

363 0 0 00:08:33 0

364 0.384 132 00:08:34 51

365 0.38500002 131 00:08:35 51

366 0.384 132 00:08:36 51

366 0 0 00:08:37 0

367 0.384 132 00:08:38 51

368 0.41400003 122 00:08:39 51

368 0 0 00:08:40 0

369 0.38500002 131 00:08:41 51

370 0.38500002 131 00:08:42 51

371 0.384 132 00:08:43 51

371 0 0 00:08:44 0

372 0.416 121 00:08:45 51

373 0.384 132 00:08:46 51

373 0 0 00:08:47 0

374 0.39200002 129 00:08:48 51

375 0.384 132 00:08:49 51

376 0.38500002 131 00:08:50 51

376 0 0 00:08:51 0

377 0.384 132 00:08:52 51

378 0.404 125.05 00:08:53 51

378 0 0 00:08:54 0

379 0.38500002 131 00:08:55 51

380 0.38500002 131 00:08:56 51

381 0.384 132 00:08:57 51

381 0 0 00:08:58 0

382 0.384 132 00:08:59 51

383 0.41400003 122 00:09:00 51

383 0 0 00:09:01 0

384 0.54200006 93 00:09:02 51

385 0.43500003 116 00:09:03 51

385 0 0 00:09:04 0

386 0.384 132 00:09:05 51

387 0.384 132 00:09:06 51

388 0.384 132 00:09:07 51

388 0 0 00:09:08 0

389 0.393 128.55 00:09:09 51

390 0.41400003 122 00:09:10 51

390 0 0 00:09:11 0

391 0.384 132 00:09:12 51

392 0.38500002 131 00:09:13 51

392 0 0 00:09:14 0

393 0.38500002 131 00:09:15 51

394 0.384 132 00:09:16 51

395 0.41400003 122 00:09:17 51

395 0 0 00:09:18 0

396 0.38500002 131 00:09:19 51

397 0.38500002 131 00:09:20 51

397 0 0 00:09:21 0

398 0.384 132 00:09:22 51

399 0.384 132 00:09:23 51

400 0.41500002 122 00:09:24 51

400 0 0 00:09:25 0

401 0.384 132 00:09:26 51

402 0.384 132 00:09:27 51

402 0 0 00:09:28 0

403 0.384 132 00:09:29 51

404 0.38500002 131 00:09:30 51

405 0.41400003 122 00:09:31 51

405 0 0 00:09:32 0

406 0.384 132 00:09:33 51

407 0.386 131 00:09:34 51

407 0 0 00:09:35 0

408 0.384 132 00:09:36 51

409 0.40800002 124 00:09:37 51

410 0.384 132 00:09:38 51

410 0 0 00:09:39 0

411 0.38500002 131 00:09:40 51

412 0.384 132 00:09:41 51

412 0 0 00:09:42 0

413 0.38300002 132 00:09:43 51

414 0.38500002 131 00:09:44 51

415 0.41400003 122 00:09:45 51

415 0 0 00:09:46 0

416 0.384 132 00:09:47 51

417 0.38700002 131 00:09:48 51

417 0 0 00:09:49 0

418 0.38500002 131 00:09:50 51

419 0.384 132 00:09:51 51

420 0.404 125.05 00:09:52 51

420 0 0 00:09:53 0

421 0.38500002 131 00:09:54 51

422 0.38500002 131 00:09:55 51

422 0 0 00:09:56 0

423 0.384 132 00:09:57 51

424 0.384 132 00:09:58 51

425 0.41500002 122 00:09:59 51

425 0 0 00:10:00 0

426 0.384 132 00:10:01 51

Sum 166.856004 55049.6378

Average 0.39168076 129.224502

Measurements Web Server

compressed 1:1.5727 = 36%

Total
Repeats

Average
Duration
(seconds)

Average
Speed
(kBytes/sec)

Time
(HH:MM:SS)

Average
Size
(kBytes)

0 0 0 00:00:01 0

0 0 0 00:00:02 0

0 0 0 00:00:03 0

1 0.37 85 00:00:04 32

2 0.29200003 108 00:00:05 32

2 0 0 00:00:06 0

3 0.264 120 00:00:07 32

4 0.30100003 105 00:00:08 32

5 0.26200002 121 00:00:09 32

6 0.29500002 107 00:00:10 32

6 0 0 00:00:11 0

7 0.26000002 122 00:00:12 32

8 0.30800003 103 00:00:13 32

9 0.28500003 111 00:00:14 32

9 0 0 00:00:15 0

10 0.264 120 00:00:16 32

11 0.273 116 00:00:17 32

12 0.26700002 118 00:00:18 32

13 0.261 121 00:00:19 32

13 0 0 00:00:20 0

14 0.264 120 00:00:21 32

15 0.26000002 122 00:00:22 32

16 0.261 121 00:00:23 32

17 0.259 122 00:00:24 32

17 0 0 00:00:25 0

18 0.293 108 00:00:26 32

19 0.27400002 115 00:00:27 32

20 0.259 122 00:00:28 32

21 0.256 124 00:00:29 32

21 0 0 00:00:30 0

22 0.259 122 00:00:31 32

23 0.256 124 00:00:32 32

24 0.26000002 122 00:00:33 32

24 0 0 00:00:34 0

25 0.305 104 00:00:35 32

26 0.286 111 00:00:36 32

27 0.25800002 123 00:00:37 32

28 0.26000002 122 00:00:38 32

28 0 0 00:00:39 0

29 0.25800002 123 00:00:40 32

30 0.26000002 122 00:00:41 32

31 0.259 122 00:00:42 32

32 0.26000002 122 00:00:43 32

32 0 0 00:00:44 0

33 0.257 123 00:00:45 32

34 0.26000002 122 00:00:46 32

35 0.25800002 123 00:00:47 32

36 0.29700002 107 00:00:48 32

36 0 0 00:00:49 0

37 0.25800002 123 00:00:50 32

38 0.261 121 00:00:51 32

39 0.25800002 123 00:00:52 32

39 0 0 00:00:53 0

40 0.26000002 122 00:00:54 32

41 0.261 121 00:00:55 32

42 0.31 102 00:00:56 32

43 0.28 113 00:00:57 32

43 0 0 00:00:58 0

44 0.293 108 00:00:59 32

45 0.26500002 119.37 00:01:00 32

46 0.26000002 122 00:01:01 32

46 0 0 00:01:02 0

47 0.284 111 00:01:03 32

48 0.26000002 122 00:01:04 32

49 0.257 123 00:01:05 32

50 0.26000002 122 00:01:06 32

50 0 0 00:01:07 0

51 0.259 122 00:01:08 32

52 0.259 122 00:01:09 32

53 0.257 123 00:01:10 32

54 0.259 122 00:01:11 32

54 0 0 00:01:12 0

55 0.305 104 00:01:13 32

56 0.26000002 122 00:01:14 32

57 0.25800002 123 00:01:15 32

58 0.26000002 122 00:01:16 32

58 0 0 00:01:17 0

59 0.257 123 00:01:18 32

60 0.26000002 122 00:01:19 32

61 0.27600002 115 00:01:20 32

61 0 0 00:01:21 0

62 0.3 105 00:01:22 32

63 0.25800002 123 00:01:23 32

64 0.264 120 00:01:24 32

65 0.259 122 00:01:25 32

65 0 0 00:01:26 0

66 0.259 122 00:01:27 32

67 0.25800002 123 00:01:28 32

68 0.26000002 122 00:01:29 32

69 0.26500002 119.37 00:01:30 32

69 0 0 00:01:31 0

70 0.26000002 122 00:01:32 32

71 0.25800002 123 00:01:33 32

72 0.26000002 122 00:01:34 32

73 0.25800002 123 00:01:35 32

73 0 0 00:01:36 0

74 0.30200002 105 00:01:37 32

75 0.25800002 123 00:01:38 32

76 0.259 122 00:01:39 32

77 0.25800002 123 00:01:40 32

77 0 0 00:01:41 0

78 0.26000002 122 00:01:42 32

79 0.25800002 123 00:01:43 32

80 0.31100002 102 00:01:44 32

80 0 0 00:01:45 0

81 0.284 111 00:01:46 32

82 0.263 120 00:01:47 32

83 0.259 122 00:01:48 32

84 0.26000002 122 00:01:49 32

84 0 0 00:01:50 0

85 0.25800002 123 00:01:51 32

86 0.259 122 00:01:52 32

87 0.25800002 123 00:01:53 32

88 0.261 121 00:01:54 32

88 0 0 00:01:55 0

89 0.259 122 00:01:56 32

90 0.264 120 00:01:57 32

91 0.30600002 103 00:01:58 32

92 0.259 122 00:01:59 32

92 0 0 00:02:00 0

93 0.58100003 54 00:02:01 32

94 0.26200002 121 00:02:02 32

94 0 0 00:02:03 0

95 0.259 122 00:02:04 32

96 0.26000002 122 00:02:05 32

97 0.257 123 00:02:06 32

98 0.26000002 122 00:02:07 32

98 0 0 00:02:08 0

99 0.25800002 123 00:02:09 32

100 0.259 122 00:02:10 32

101 0.26000002 122 00:02:11 32

102 0.259 122 00:02:12 32

102 0 0 00:02:13 0

103 0.25800002 123 00:02:14 32

104 0.259 122 00:02:15 32

105 0.257 123 00:02:16 32

106 0.259 122 00:02:17 32

106 0 0 00:02:18 0

107 0.282 112 00:02:19 32

108 0.26000002 122 00:02:20 32

109 0.26200002 121 00:02:21 32

109 0 0 00:02:22 0

110 0.26000002 122 00:02:23 32

111 0.25800002 123 00:02:24 32

112 0.26000002 122 00:02:25 32

113 0.30900002 102 00:02:26 32

113 0 0 00:02:27 0

114 0.26700002 118 00:02:28 32

115 0.257 123 00:02:29 32

116 0.259 122 00:02:30 32

117 0.256 124 00:02:31 32

117 0 0 00:02:32 0

118 0.25800002 123 00:02:33 32

119 0.256 124 00:02:34 32

120 0.259 122 00:02:35 32

121 0.256 124 00:02:36 32

121 0 0 00:02:37 0

122 0.26000002 122 00:02:38 32

123 0.257 123 00:02:39 32

124 0.259 122 00:02:40 32

125 0.25800002 123 00:02:41 32

125 0 0 00:02:42 0

126 0.259 122 00:02:43 32

127 0.25800002 123 00:02:44 32

128 0.294 108 00:02:45 32

128 0 0 00:02:46 0

129 0.257 123 00:02:47 32

130 0.287 110 00:02:48 32

131 0.25800002 123 00:02:49 32

132 0.31100002 102 00:02:50 32

132 0 0 00:02:51 0

133 0.27100003 117 00:02:52 32

134 0.26000002 122 00:02:53 32

135 0.25800002 123 00:02:54 32

136 0.259 122 00:02:55 32

136 0 0 00:02:56 0

137 0.263 120 00:02:57 32

138 0.259 122 00:02:58 32

139 0.259 122 00:02:59 32

140 0.26000002 122 00:03:00 32

140 0 0 00:03:01 0

141 0.298 106 00:03:02 32

142 0.25800002 123 00:03:03 32

143 0.257 123 00:03:04 32

143 0 0 00:03:05 0

144 0.26000002 122 00:03:06 32

145 0.257 123 00:03:07 32

146 0.259 122 00:03:08 32

147 0.30800003 103 00:03:09 32

147 0 0 00:03:10 0

148 0.29200003 108 00:03:11 32

149 0.25800002 123 00:03:12 32

150 0.259 122 00:03:13 32

151 0.25800002 123 00:03:14 32

151 0 0 00:03:15 0

152 0.26000002 122 00:03:16 32

153 0.25800002 123 00:03:17 32

154 0.261 121 00:03:18 32

154 0 0 00:03:19 0

155 0.25800002 123 00:03:20 32

156 0.259 122 00:03:21 32

157 0.26000002 122 00:03:22 32

158 0.29900002 106 00:03:23 32

158 0 0 00:03:24 0

159 0.25800002 123 00:03:25 32

160 0.259 122 00:03:26 32

161 0.261 121 00:03:27 32

162 0.26000002 122 00:03:28 32

162 0 0 00:03:29 0

163 0.29900002 106 00:03:30 32

164 0.26000002 122 00:03:31 32

165 0.27800003 114 00:03:32 32

166 0.26000002 122 00:03:33 32

166 0 0 00:03:34 0

167 0.25800002 123 00:03:35 32

168 0.259 122 00:03:36 32

169 0.25800002 123 00:03:37 32

169 0 0 00:03:38 0

170 0.259 122 00:03:39 32

171 0.25800002 123 00:03:40 32

172 0.259 122 00:03:41 32

173 0.25800002 123 00:03:42 32

173 0 0 00:03:43 0

174 0.259 122 00:03:44 32

175 0.30200002 105 00:03:45 32

176 0.26000002 122 00:03:46 32

177 0.25800002 123 00:03:47 32

177 0 0 00:03:48 0

178 0.26000002 122 00:03:49 32

179 0.305 104 00:03:50 32

180 0.289 109 00:03:51 32

180 0 0 00:03:52 0

181 0.25800002 123 00:03:53 32

182 0.26900002 118 00:03:54 32

183 0.25800002 123 00:03:55 32

184 0.26000002 122 00:03:56 32

184 0 0 00:03:57 0

185 0.26000002 122 00:03:58 32

186 0.259 122 00:03:59 32

187 0.25800002 123 00:04:00 32

188 0.30100003 105 00:04:01 32

188 0 0 00:04:02 0

189 0.25800002 123 00:04:03 32

190 0.25800002 123 00:04:04 32

191 0.257 123 00:04:05 32

192 0.26000002 122 00:04:06 32

192 0 0 00:04:07 0

193 0.259 122 00:04:08 32

194 0.307 103 00:04:09 32

195 0.275 115 00:04:10 32

195 0 0 00:04:11 0

196 0.26000002 122 00:04:12 32

197 0.25800002 123 00:04:13 32

198 0.259 122 00:04:14 32

199 0.257 123 00:04:15 32

199 0 0 00:04:16 0

200 0.26000002 122 00:04:17 32

201 0.25800002 123 00:04:18 32

202 0.26000002 122 00:04:19 32

203 0.303 104 00:04:20 32

203 0 0 00:04:21 0

204 0.26000002 122 00:04:22 32

205 0.25800002 123 00:04:23 32

206 0.26000002 122 00:04:24 32

206 0 0 00:04:25 0

207 0.31300002 101 00:04:26 32

208 0.284 111 00:04:27 32

209 0.25800002 123 00:04:28 32

210 0.26000002 122 00:04:29 32

210 0 0 00:04:30 0

211 0.261 121 00:04:31 32

212 0.26700002 118 00:04:32 32

213 0.25800002 123 00:04:33 32

214 0.26000002 122 00:04:34 32

214 0 0 00:04:35 0

215 0.25800002 123 00:04:36 32

216 0.259 122 00:04:37 32

217 0.25800002 123 00:04:38 32

218 0.294 108 00:04:39 32

218 0 0 00:04:40 0

219 0.25800002 123 00:04:41 32

220 0.26000002 122 00:04:42 32

221 0.25800002 123 00:04:43 32

222 0.259 122 00:04:44 32

222 0 0 00:04:45 0

223 0.25800002 123 00:04:46 32

224 0.30600002 103 00:04:47 32

225 0.28100002 113 00:04:48 32

225 0 0 00:04:49 0

226 0.26000002 122 00:04:50 32

227 0.259 122 00:04:51 32

228 0.259 122 00:04:52 32

229 0.25800002 123 00:04:53 32

229 0 0 00:04:54 0

230 0.26000002 122 00:04:55 32

231 0.25800002 123 00:04:56 32

232 0.259 122 00:04:57 32

233 0.25800002 123 00:04:58 32

233 0 0 00:04:59 0

234 0.26000002 122 00:05:00 32

235 0.453 69.83 00:05:01 32

236 0.259 122 00:05:02 32

236 0 0 00:05:03 0

237 0.25800002 123 00:05:04 32

238 0.259 122 00:05:05 32

239 0.25800002 123 00:05:06 32

240 0.305 104 00:05:07 32

240 0 0 00:05:08 0

241 0.25800002 123 00:05:09 32

242 0.26000002 122 00:05:10 32

243 0.25800002 123 00:05:11 32

243 0 0 00:05:12 0

244 0.31100002 102 00:05:13 32

245 0.28 113 00:05:14 32

246 0.261 121 00:05:15 32

247 0.26200002 121 00:05:16 32

247 0 0 00:05:17 0

248 0.26000002 122 00:05:18 32

249 0.25800002 123 00:05:19 32

250 0.259 122 00:05:20 32

251 0.26000002 122 00:05:21 32

251 0 0 00:05:22 0

252 0.261 121 00:05:23 32

253 0.25800002 123 00:05:24 32

254 0.259 122 00:05:25 32

254 0 0 00:05:26 0

255 0.30100003 105 00:05:27 32

256 0.264 120 00:05:28 32

257 0.259 122 00:05:29 32

258 0.26000002 122 00:05:30 32

258 0 0 00:05:31 0

259 0.31100002 102 00:05:32 32

260 0.27600002 115 00:05:33 32

261 0.25800002 123 00:05:34 32

262 0.26000002 122 00:05:35 32

262 0 0 00:05:36 0

263 0.25800002 123 00:05:37 32

264 0.259 122 00:05:38 32

265 0.257 123 00:05:39 32

266 0.259 122 00:05:40 32

266 0 0 00:05:41 0

267 0.259 122 00:05:42 32

268 0.259 122 00:05:43 32

269 0.25800002 123 00:05:44 32

269 0 0 00:05:45 0

270 0.289 109 00:05:46 32

271 0.25800002 123 00:05:47 32

272 0.26700002 118 00:05:48 32

273 0.25800002 123 00:05:49 32

273 0 0 00:05:50 0

274 0.31 102 00:05:51 32

275 0.27 117 00:05:52 32

276 0.26000002 122 00:05:53 32

277 0.259 122 00:05:54 32

277 0 0 00:05:55 0

278 0.261 121 00:05:56 32

279 0.25800002 123 00:05:57 32

280 0.26000002 122 00:05:58 32

281 0.25800002 123 00:05:59 32

281 0 0 00:06:00 0

282 0.261 121 00:06:01 32

283 0.257 123 00:06:02 32

284 0.26000002 122 00:06:03 32

284 0 0 00:06:04 0

285 0.303 104 00:06:05 32

286 0.25800002 123 00:06:06 32

287 0.256 124 00:06:07 32

288 0.261 121 00:06:08 32

288 0 0 00:06:09 0

289 0.31 102 00:06:10 32

290 0.277 114 00:06:11 32

291 0.257 123 00:06:12 32

292 0.26000002 122 00:06:13 32

292 0 0 00:06:14 0

293 0.261 121 00:06:15 32

294 0.259 122 00:06:16 32

295 0.25800002 123 00:06:17 32

295 0 0 00:06:18 0

296 0.26000002 122 00:06:19 32

297 0.257 123 00:06:20 32

298 0.259 122 00:06:21 32

299 0.25800002 123 00:06:22 32

299 0 0 00:06:23 0

300 0.26000002 122 00:06:24 32

301 0.257 123 00:06:25 32

302 0.305 104 00:06:26 32

303 0.257 123 00:06:27 32

303 0 0 00:06:28 0

304 0.26000002 122 00:06:29 32

305 0.25800002 123 00:06:30 32

306 0.259 122 00:06:31 32

307 0.25800002 123 00:06:32 32

307 0 0 00:06:33 0

308 0.312 101 00:06:34 32

309 0.268 118 00:06:35 32

310 0.259 122 00:06:36 32

310 0 0 00:06:37 0

311 0.25800002 123 00:06:38 32

312 0.26000002 122 00:06:39 32

313 0.25800002 123 00:06:40 32

314 0.26000002 122 00:06:41 32

314 0 0 00:06:42 0

315 0.25800002 123 00:06:43 32

316 0.26000002 122 00:06:44 32

317 0.25800002 123 00:06:45 32

318 0.26000002 122 00:06:46 32

318 0 0 00:06:47 0

319 0.25800002 123 00:06:48 32

320 0.259 122 00:06:49 32

321 0.287 110 00:06:50 32

322 0.259 122 00:06:51 32

322 0 0 00:06:52 0

323 0.257 123 00:06:53 32

324 0.26000002 122 00:06:54 32

325 0.25800002 123 00:06:55 32

326 0.26000002 122 00:06:56 32

326 0 0 00:06:57 0

327 0.30900002 102 00:06:58 32

328 0.28500003 111 00:06:59 32

329 0.25800002 123 00:07:00 32

329 0 0 00:07:01 0

330 0.259 122 00:07:02 32

331 0.257 123 00:07:03 32

332 0.261 121 00:07:04 32

333 0.257 123 00:07:05 32

333 0 0 00:07:06 0

334 0.26000002 122 00:07:07 32

335 0.25800002 123 00:07:08 32

336 0.259 122 00:07:09 32

337 0.25800002 123 00:07:10 32

337 0 0 00:07:11 0

338 0.259 122 00:07:12 32

339 0.257 123 00:07:13 32

340 0.28500003 111 00:07:14 32

341 0.256 124 00:07:15 32

341 0 0 00:07:16 0

342 0.25800002 123 00:07:17 32

343 0.25800002 123 00:07:18 32

344 0.259 122 00:07:19 32

345 0.25800002 123 00:07:20 32

345 0 0 00:07:21 0

346 0.277 114 00:07:22 32

347 0.293 108 00:07:23 32

348 0.26000002 122 00:07:24 32

348 0 0 00:07:25 0

349 0.27100003 117 00:07:26 32

350 0.26000002 122 00:07:27 32

351 0.25800002 123 00:07:28 32

352 0.26000002 122 00:07:29 32

352 0 0 00:07:30 0

353 0.257 123 00:07:31 32

354 0.26000002 122 00:07:32 32

355 0.25800002 123 00:07:33 32

356 0.26700002 118 00:07:34 32

356 0 0 00:07:35 0

357 0.305 104 00:07:36 32

358 0.26000002 122 00:07:37 32

359 0.257 123 00:07:38 32

360 0.26000002 122 00:07:39 32

360 0 0 00:07:40 0

361 0.25800002 123 00:07:41 32

362 0.26000002 122 00:07:42 32

363 0.30400002 104 00:07:43 32

363 0 0 00:07:44 0

364 0.282 112 00:07:45 32

365 0.25800002 123 00:07:46 32

366 0.263 120 00:07:47 32

367 0.25800002 123 00:07:48 32

367 0 0 00:07:49 0

368 0.259 122 00:07:50 32

369 0.25800002 123 00:07:51 32

370 0.259 122 00:07:52 32

371 0.25800002 123 00:07:53 32

371 0 0 00:07:54 0

372 0.26000002 122 00:07:55 32

373 0.26200002 121 00:07:56 32

374 0.30600002 103 00:07:57 32

375 0.25800002 123 00:07:58 32

375 0 0 00:07:59 0

376 0.26000002 122 00:08:00 32

377 0.25800002 123 00:08:01 32

378 0.261 121 00:08:02 32

378 0 0 00:08:03 0

379 0.259 122 00:08:04 32

380 0.31 102 00:08:05 32

381 0.279 113 00:08:06 32

382 0.26000002 122 00:08:07 32

382 0 0 00:08:08 0

383 0.257 123 00:08:09 32

384 0.26000002 122 00:08:10 32

385 0.25800002 123 00:08:11 32

386 0.259 122 00:08:12 32

386 0 0 00:08:13 0

387 0.257 123 00:08:14 32

388 0.26000002 122 00:08:15 32

389 0.257 123 00:08:16 32

390 0.259 122 00:08:17 32

390 0 0 00:08:18 0

391 0.25800002 123 00:08:19 32

392 0.259 122 00:08:20 32

393 0.28800002 110 00:08:21 32

393 0 0 00:08:22 0

394 0.26500002 119.37 00:08:23 32

395 0.259 122 00:08:24 32

396 0.26000002 122 00:08:25 32

397 0.257 123 00:08:26 32

397 0 0 00:08:27 0

398 0.26000002 122 00:08:28 32

399 0.31 102 00:08:29 32

400 0.26700002 118 00:08:30 32

401 0.257 123 00:08:31 32

401 0 0 00:08:32 0

402 0.261 121 00:08:33 32

403 0.25800002 123 00:08:34 32

404 0.26000002 122 00:08:35 32

405 0.259 122 00:08:36 32

405 0 0 00:08:37 0

406 0.261 121 00:08:38 32

407 0.25800002 123 00:08:39 32

408 0.26000002 122 00:08:40 32

409 0.25800002 123 00:08:41 32

409 0 0 00:08:42 0

410 0.26000002 122 00:08:43 32

411 0.25800002 123 00:08:44 32

412 0.30400002 104 00:08:45 32

412 0 0 00:08:46 0

413 0.259 122 00:08:47 32

414 0.259 122 00:08:48 32

415 0.25800002 123 00:08:49 32

416 0.28 113 00:08:50 32

416 0 0 00:08:51 0

417 0.289 109 00:08:52 32

418 0.26000002 122 00:08:53 32

419 0.268 118 00:08:54 32

420 0.26000002 122 00:08:55 32

420 0 0 00:08:56 0

421 0.25800002 123 00:08:57 32

422 0.259 122 00:08:58 32

423 0.25800002 123 00:08:59 32

424 0.259 122 00:09:00 32

424 0 0 00:09:01 0

425 0.25800002 123 00:09:02 32

426 0.26000002 122 00:09:03 32

427 0.25800002 123 00:09:04 32

427 0 0 00:09:05 0

428 0.26000002 122 00:09:06 32

429 0.25800002 123 00:09:07 32

430 0.259 122 00:09:08 32

431 0.286 111 00:09:09 32

431 0 0 00:09:10 0

432 0.26000002 122 00:09:11 32

433 0.257 123 00:09:12 32

434 0.259 122 00:09:13 32

435 0.25800002 123 00:09:14 32

435 0 0 00:09:15 0

436 0.261 121 00:09:16 32

437 0.31100002 102 00:09:17 32

438 0.28800002 110 00:09:18 32

439 0.25800002 123 00:09:19 32

439 0 0 00:09:20 0

440 0.26000002 122 00:09:21 32

441 0.257 123 00:09:22 32

442 0.26000002 122 00:09:23 32

442 0 0 00:09:24 0

443 0.25800002 123 00:09:25 32

444 0.26000002 122 00:09:26 32

445 0.257 123 00:09:27 32

446 0.259 122 00:09:28 32

446 0 0 00:09:29 0

447 0.257 123 00:09:30 32

448 0.307 103 00:09:31 32

449 0.25800002 123 00:09:32 32

450 0.259 122 00:09:33 32

450 0 0 00:09:34 0

451 0.259 122 00:09:35 32

452 0.26000002 122 00:09:36 32

453 0.25800002 123 00:09:37 32

454 0.307 103 00:09:38 32

454 0 0 00:09:39 0

455 0.28 113 00:09:40 32

456 0.26000002 122 00:09:41 32

457 0.257 123 00:09:42 32

457 0 0 00:09:43 0

458 0.26000002 122 00:09:44 32

459 0.25800002 123 00:09:45 32

460 0.26000002 122 00:09:46 32

461 0.25800002 123 00:09:47 32

461 0 0 00:09:48 0

462 0.261 121 00:09:49 32

463 0.30800003 103 00:09:50 32

464 0.26000002 122 00:09:51 32

465 0.25800002 123 00:09:52 32

465 0 0 00:09:53 0

466 0.26200002 121 00:09:54 32

467 0.25800002 123 00:09:55 32

468 0.263 120 00:09:56 32

469 0.305 104 00:09:57 32

469 0 0 00:09:58 0

470 0.282 112 00:09:59 32

471 0.25800002 123 00:10:00 32

471 0 0 00:10:01 0

472 0.52000004 61 00:10:02 32

Sum 126.342006 56116.2301

Average 0.26824205 118.890318

Measurements
Webserver

compr 1:2.23762 = 55.31%

Total
Repeats

Average
Duration
(seconds)

Average
Speed
(kBytes/sec)

Time
(HH:MM:SS)

Average
Size
(kBytes)

0 0 0 00:00:01 0

0 0 0 00:00:02 0

0 0 0 00:00:03 0

1 0.18800001 125 00:00:04 24

2 0.18800001 125 00:00:05 24

3 0.208 113.12 00:00:06 24

4 0.187 126 00:00:07 24

4 0 0 00:00:08 0

5 0.20700002 114 00:00:09 24

6 0.19700001 119 00:00:10 24

7 0.18900001 124 00:00:11 24

8 0.18800001 125 00:00:12 24

9 0.18800001 125 00:00:13 24

9 0 0 00:00:14 0

10 0.20700002 114 00:00:15 24

11 0.18800001 125 00:00:16 24

12 0.18800001 125 00:00:17 24

13 0.307 77 00:00:18 24

13 0 0 00:00:19 0

14 0.187 126 00:00:20 24

15 0.187 126 00:00:21 24

16 0.187 126 00:00:22 24

17 0.22700001 104 00:00:23 24

18 0.177 133 00:00:24 24

18 0 0 00:00:25 0

19 0.19000001 124 00:00:26 24

20 0.18800001 125 00:00:27 24

21 0.19700001 119 00:00:28 24

22 0.208 113.12 00:00:29 24

23 0.18800001 125 00:00:30 24

23 0 0 00:00:31 0

24 0.18800001 125 00:00:32 24

25 0.18800001 125 00:00:33 24

26 0.18800001 125 00:00:34 24

27 0.19800001 119 00:00:35 24

28 0.18800001 125 00:00:36 24

28 0 0 00:00:37 0

29 0.18800001 125 00:00:38 24

30 0.178 132 00:00:39 24

31 0.20400001 115 00:00:40 24

32 0.18100001 130 00:00:41 24

33 0.187 126 00:00:42 24

33 0 0 00:00:43 0

34 0.19500001 121 00:00:44 24

35 0.187 126 00:00:45 24

36 0.19700001 119 00:00:46 24

37 0.18800001 125 00:00:47 24

38 0.178 132 00:00:48 24

38 0 0 00:00:49 0

39 0.19700001 119 00:00:50 24

40 0.18800001 125 00:00:51 24

41 0.19700001 119 00:00:52 24

42 0.208 113.12 00:00:53 24

43 0.18800001 125 00:00:54 24

43 0 0 00:00:55 0

44 0.18800001 125 00:00:56 24

45 0.18800001 125 00:00:57 24

46 0.178 132 00:00:58 24

47 0.208 113.12 00:00:59 24

48 0.18800001 125 00:01:00 24

48 0 0 00:01:01 0

49 0.19900002 118 00:01:02 24

50 0.19600001 120 00:01:03 24

51 0.18800001 125 00:01:04 24

52 0.208 113.12 00:01:05 24

53 0.18800001 125 00:01:06 24

53 0 0 00:01:07 0

54 0.178 132 00:01:08 24

55 0.18800001 125 00:01:09 24

56 0.18800001 125 00:01:10 24

57 0.208 113.12 00:01:11 24

57 0 0 00:01:12 0

58 0.187 126 00:01:13 24

59 0.18800001 125 00:01:14 24

60 0.18800001 125 00:01:15 24

61 0.187 126 00:01:16 24

62 0.19700001 119 00:01:17 24

62 0 0 00:01:18 0

63 0.187 126 00:01:19 24

64 0.187 126 00:01:20 24

65 0.18400002 128 00:01:21 24

66 0.178 132 00:01:22 24

67 0.19600001 120 00:01:23 24

67 0 0 00:01:24 0

68 0.187 126 00:01:25 24

69 0.19700001 119 00:01:26 24

70 0.20700002 114 00:01:27 24

71 0.18800001 125 00:01:28 24

72 0.18800001 125 00:01:29 24

72 0 0 00:01:30 0

73 0.18800001 125 00:01:31 24

74 0.178 132 00:01:32 24

75 0.18800001 125 00:01:33 24

76 0.202 116.48 00:01:34 24

77 0.202 116.48 00:01:35 24

77 0 0 00:01:36 0

78 0.178 132 00:01:37 24

79 0.18800001 125 00:01:38 24

80 0.18800001 125 00:01:39 24

81 0.18800001 125 00:01:40 24

82 0.20700002 114 00:01:41 24

82 0 0 00:01:42 0

83 0.19600001 120 00:01:43 24

84 0.186 127 00:01:44 24

85 0.185 127 00:01:45 24

86 0.216 109 00:01:46 24

87 0.187 126 00:01:47 24

87 0 0 00:01:48 0

88 0.18900001 124 00:01:49 24

89 0.19600001 120 00:01:50 24

90 0.18800001 125 00:01:51 24

91 0.18800001 125 00:01:52 24

92 0.18800001 125 00:01:53 24

92 0 0 00:01:54 0

93 0.18800001 125 00:01:55 24

94 0.177 133 00:01:56 24

95 0.18800001 125 00:01:57 24

96 0.18800001 125 00:01:58 24

97 0.208 113.12 00:01:59 24

97 0 0 00:02:00 0

98 0.178 132 00:02:01 24

99 0.18800001 125 00:02:02 24

100 0.187 126 00:02:03 24

101 0.21900001 107 00:02:04 24

102 0.177 133 00:02:05 24

102 0 0 00:02:06 0

103 0.187 126 00:02:07 24

104 0.187 126 00:02:08 24

105 0.187 126 00:02:09 24

106 0.18800001 125 00:02:10 24

107 0.208 113.12 00:02:11 24

107 0 0 00:02:12 0

108 0.18800001 125 00:02:13 24

109 0.18800001 125 00:02:14 24

110 0.18800001 125 00:02:15 24

111 0.18800001 125 00:02:16 24

112 0.18800001 125 00:02:17 24

112 0 0 00:02:18 0

113 0.186 127 00:02:19 24

114 0.187 126 00:02:20 24

115 0.18800001 125 00:02:21 24

116 0.18800001 125 00:02:22 24

117 0.19700001 119 00:02:23 24

117 0 0 00:02:24 0

118 0.187 126 00:02:25 24

119 0.19600001 120 00:02:26 24

120 0.19600001 120 00:02:27 24

121 0.187 126 00:02:28 24

122 0.19700001 119 00:02:29 24

122 0 0 00:02:30 0

123 0.187 126 00:02:31 24

124 0.187 126 00:02:32 24

125 0.187 126 00:02:33 24

126 0.187 126 00:02:34 24

127 0.202 116.48 00:02:35 24

127 0 0 00:02:36 0

128 0.187 126 00:02:37 24

129 0.18800001 125 00:02:38 24

130 0.178 132 00:02:39 24

131 0.18800001 125 00:02:40 24

132 0.21800001 108 00:02:41 24

132 0 0 00:02:42 0

133 0.187 126 00:02:43 24

134 0.178 132 00:02:44 24

135 0.19700001 119 00:02:45 24

136 0.187 126 00:02:46 24

137 0.19700001 119 00:02:47 24

137 0 0 00:02:48 0

138 0.187 126 00:02:49 24

139 0.19900002 118 00:02:50 24

140 0.187 126 00:02:51 24

141 0.185 127 00:02:52 24

142 0.185 127 00:02:53 24

142 0 0 00:02:54 0

143 0.187 126 00:02:55 24

144 0.187 126 00:02:56 24

145 0.187 126 00:02:57 24

146 0.18800001 125 00:02:58 24

147 0.19600001 120 00:02:59 24

147 0 0 00:03:00 0

148 0.187 126 00:03:01 24

149 0.19900002 118 00:03:02 24

150 0.193 122 00:03:03 24

151 0.187 126 00:03:04 24

151 0 0 00:03:05 0

152 0.20700002 114 00:03:06 24

153 0.187 126 00:03:07 24

154 0.177 133 00:03:08 24

155 0.187 126 00:03:09 24

156 0.18800001 125 00:03:10 24

156 0 0 00:03:11 0

157 0.19800001 119 00:03:12 24

158 0.178 132 00:03:13 24

159 0.18800001 125 00:03:14 24

160 0.18800001 125 00:03:15 24

161 0.18800001 125 00:03:16 24

161 0 0 00:03:17 0

162 0.208 113.12 00:03:18 24

163 0.19700001 119 00:03:19 24

164 0.187 126 00:03:20 24

165 0.19700001 119 00:03:21 24

166 0.187 126 00:03:22 24

166 0 0 00:03:23 0

167 0.19700001 119 00:03:24 24

168 0.18800001 125 00:03:25 24

169 0.18800001 125 00:03:26 24

170 0.178 132 00:03:27 24

171 0.18800001 125 00:03:28 24

171 0 0 00:03:29 0

172 0.20700002 114 00:03:30 24

173 0.187 126 00:03:31 24

174 0.186 127 00:03:32 24

175 0.19600001 120 00:03:33 24

176 0.187 126 00:03:34 24

176 0 0 00:03:35 0

177 0.19700001 119 00:03:36 24

178 0.178 132 00:03:37 24

179 0.18800001 125 00:03:38 24

180 0.18800001 125 00:03:39 24

181 0.18800001 125 00:03:40 24

181 0 0 00:03:41 0

182 0.208 113.12 00:03:42 24

183 0.18800001 125 00:03:43 24

184 0.18800001 125 00:03:44 24

185 0.18800001 125 00:03:45 24

186 0.178 132 00:03:46 24

186 0 0 00:03:47 0

187 0.208 113.12 00:03:48 24

188 0.19600001 120 00:03:49 24

189 0.18800001 125 00:03:50 24

190 0.178 132 00:03:51 24

191 0.19700001 119 00:03:52 24

191 0 0 00:03:53 0

192 0.18800001 125 00:03:54 24

193 0.18800001 125 00:03:55 24

194 0.187 126 00:03:56 24

195 0.19600001 120 00:03:57 24

196 0.186 127 00:03:58 24

196 0 0 00:03:59 0

197 0.185 127 00:04:00 24

198 0.177 133 00:04:01 24

199 0.19600001 120 00:04:02 24

200 0.187 126 00:04:03 24

201 0.186 127 00:04:04 24

201 0 0 00:04:05 0

202 0.22800002 103 00:04:06 24

203 0.18800001 125 00:04:07 24

204 0.18800001 125 00:04:08 24

205 0.18800001 125 00:04:09 24

206 0.178 132 00:04:10 24

206 0 0 00:04:11 0

207 0.238 99 00:04:12 24

208 0.18800001 125 00:04:13 24

209 0.18800001 125 00:04:14 24

210 0.178 132 00:04:15 24

211 0.18800001 125 00:04:16 24

211 0 0 00:04:17 0

212 0.20700002 114 00:04:18 24

213 0.187 126 00:04:19 24

214 0.177 133 00:04:20 24

215 0.187 126 00:04:21 24

216 0.18800001 125 00:04:22 24

216 0 0 00:04:23 0

217 0.21800001 108 00:04:24 24

218 0.178 132 00:04:25 24

219 0.187 126 00:04:26 24

220 0.18800001 125 00:04:27 24

221 0.18800001 125 00:04:28 24

221 0 0 00:04:29 0

222 0.187 126 00:04:30 24

223 0.18800001 125 00:04:31 24

224 0.18800001 125 00:04:32 24

225 0.18800001 125 00:04:33 24

226 0.178 132 00:04:34 24

226 0 0 00:04:35 0

227 0.21800001 108 00:04:36 24

228 0.18800001 125 00:04:37 24

229 0.18800001 125 00:04:38 24

230 0.178 132 00:04:39 24

231 0.18800001 125 00:04:40 24

231 0 0 00:04:41 0

232 0.208 113.12 00:04:42 24

233 0.187 126 00:04:43 24

234 0.177 133 00:04:44 24

235 0.187 126 00:04:45 24

235 0 0 00:04:46 0

236 0.187 126 00:04:47 24

237 0.21700001 108 00:04:48 24

238 0.20600002 114 00:04:49 24

239 0.187 126 00:04:50 24

240 0.18800001 125 00:04:51 24

240 0 0 00:04:52 0

241 0.18800001 125 00:04:53 24

242 0.178 132 00:04:54 24

243 0.18800001 125 00:04:55 24

244 0.18800001 125 00:04:56 24

245 0.18800001 125 00:04:57 24

245 0 0 00:04:58 0

246 0.18800001 125 00:04:59 24

247 0.208 113.12 00:05:00 24

248 0.18900001 124 00:05:01 24

249 0.19800001 119 00:05:02 24

250 0.19600001 120 00:05:03 24

250 0 0 00:05:04 0

251 0.20400001 115 00:05:05 24

252 0.192 123 00:05:06 24

253 0.19700001 119 00:05:07 24

254 0.178 132 00:05:08 24

255 0.18800001 125 00:05:09 24

255 0 0 00:05:10 0

256 0.18800001 125 00:05:11 24

257 0.238 99 00:05:12 24

258 0.178 132 00:05:13 24

259 0.18800001 125 00:05:14 24

260 0.18800001 125 00:05:15 24

260 0 0 00:05:16 0

261 0.19700001 119 00:05:17 24

262 0.20700002 114 00:05:18 24

263 0.187 126 00:05:19 24

264 0.18800001 125 00:05:20 24

265 0.187 126 00:05:21 24

265 0 0 00:05:22 0

266 0.178 132 00:05:23 24

267 0.20700002 114 00:05:24 24

268 0.187 126 00:05:25 24

269 0.187 126 00:05:26 24

270 0.177 133 00:05:27 24

270 0 0 00:05:28 0

271 0.18800001 125 00:05:29 24

272 0.20700002 114 00:05:30 24

273 0.19700001 119 00:05:31 24

274 0.187 126 00:05:32 24

275 0.18800001 125 00:05:33 24

275 0 0 00:05:34 0

276 0.18800001 125 00:05:35 24

277 0.18800001 125 00:05:36 24

278 0.177 133 00:05:37 24

279 0.18800001 125 00:05:38 24

280 0.18800001 125 00:05:39 24

280 0 0 00:05:40 0

281 0.18800001 125 00:05:41 24

282 0.208 113.12 00:05:42 24

283 0.18800001 125 00:05:43 24

284 0.187 126 00:05:44 24

285 0.185 127 00:05:45 24

285 0 0 00:05:46 0

286 0.177 133 00:05:47 24

287 0.20700002 114 00:05:48 24

288 0.187 126 00:05:49 24

289 0.187 126 00:05:50 24

290 0.177 133 00:05:51 24

290 0 0 00:05:52 0

291 0.19700001 119 00:05:53 24

292 0.19600001 120 00:05:54 24

293 0.187 126 00:05:55 24

294 0.178 132 00:05:56 24

295 0.187 126 00:05:57 24

295 0 0 00:05:58 0

296 0.194 121 00:05:59 24

297 0.19700001 119 00:06:00 24

298 0.187 126 00:06:01 24

299 0.18800001 125 00:06:02 24

300 0.18800001 125 00:06:03 24

300 0 0 00:06:04 0

301 0.18800001 125 00:06:05 24

302 0.178 132 00:06:06 24

303 0.18800001 125 00:06:07 24

304 0.18800001 125 00:06:08 24

305 0.187 126 00:06:09 24

305 0 0 00:06:10 0

306 0.178 132 00:06:11 24

307 0.18800001 125 00:06:12 24

308 0.18800001 125 00:06:13 24

309 0.18800001 125 00:06:14 24

310 0.19700001 119 00:06:15 24

310 0 0 00:06:16 0

311 0.187 126 00:06:17 24

312 0.187 126 00:06:18 24

313 0.187 126 00:06:19 24

314 0.178 132 00:06:20 24

315 0.20700002 114 00:06:21 24

315 0 0 00:06:22 0

316 0.187 126 00:06:23 24

317 0.187 126 00:06:24 24

318 0.187 126 00:06:25 24

319 0.19700001 119 00:06:26 24

320 0.20700002 114 00:06:27 24

320 0 0 00:06:28 0

321 0.18800001 125 00:06:29 24

322 0.178 132 00:06:30 24

323 0.18800001 125 00:06:31 24

324 0.18800001 125 00:06:32 24

325 0.208 113.12 00:06:33 24

325 0 0 00:06:34 0

326 0.178 132 00:06:35 24

327 0.18800001 125 00:06:36 24

328 0.18800001 125 00:06:37 24

329 0.18800001 125 00:06:38 24

330 0.208 113.12 00:06:39 24

330 0 0 00:06:40 0

331 0.18800001 125 00:06:41 24

332 0.18800001 125 00:06:42 24

333 0.187 126 00:06:43 24

334 0.186 127 00:06:44 24

334 0 0 00:06:45 0

335 0.20700002 114 00:06:46 24

336 0.187 126 00:06:47 24

337 0.187 126 00:06:48 24

338 0.177 133 00:06:49 24

339 0.187 126 00:06:50 24

339 0 0 00:06:51 0

340 0.18100001 130 00:06:52 24

341 0.18800001 125 00:06:53 24

342 0.2 118 00:06:54 24

343 0.18800001 125 00:06:55 24

344 0.18800001 125 00:06:56 24

344 0 0 00:06:57 0

345 0.18800001 125 00:06:58 24

346 0.178 132 00:06:59 24

347 0.18800001 125 00:07:00 24

348 0.18800001 125 00:07:01 24

349 0.19700001 119 00:07:02 24

349 0 0 00:07:03 0

350 0.194 121 00:07:04 24

351 0.187 126 00:07:05 24

352 0.187 126 00:07:06 24

353 0.187 126 00:07:07 24

354 0.177 133 00:07:08 24

354 0 0 00:07:09 0

355 0.18800001 125 00:07:10 24

356 0.18800001 125 00:07:11 24

357 0.18800001 125 00:07:12 24

358 0.21700001 108 00:07:13 24

359 0.18800001 125 00:07:14 24

359 0 0 00:07:15 0

360 0.18800001 125 00:07:16 24

361 0.186 127 00:07:17 24

362 0.187 126 00:07:18 24

363 0.18800001 125 00:07:19 24

364 0.19800001 119 00:07:20 24

364 0 0 00:07:21 0

365 0.18800001 125 00:07:22 24

366 0.187 126 00:07:23 24

367 0.18800001 125 00:07:24 24

368 0.18800001 125 00:07:25 24

369 0.187 126 00:07:26 24

369 0 0 00:07:27 0

370 0.178 132 00:07:28 24

371 0.187 126 00:07:29 24

372 0.18800001 125 00:07:30 24

373 0.19700001 119 00:07:31 24

374 0.187 126 00:07:32 24

374 0 0 00:07:33 0

375 0.187 126 00:07:34 24

376 0.18800001 125 00:07:35 24

377 0.18800001 125 00:07:36 24

378 0.208 113.12 00:07:37 24

379 0.18800001 125 00:07:38 24

379 0 0 00:07:39 0

380 0.18800001 125 00:07:40 24

381 0.18800001 125 00:07:41 24

382 0.186 127 00:07:42 24

383 0.20700002 114 00:07:43 24

384 0.18800001 125 00:07:44 24

384 0 0 00:07:45 0

385 0.18900001 124 00:07:46 24

386 0.178 132 00:07:47 24

387 0.18800001 125 00:07:48 24

388 0.20700002 114 00:07:49 24

389 0.187 126 00:07:50 24

389 0 0 00:07:51 0

390 0.177 133 00:07:52 24

391 0.187 126 00:07:53 24

392 0.193 122 00:07:54 24

393 0.20700002 114 00:07:55 24

394 0.177 133 00:07:56 24

394 0 0 00:07:57 0

395 0.18800001 125 00:07:58 24

396 0.187 126 00:07:59 24

397 0.19700001 119 00:08:00 24

398 0.187 126 00:08:01 24

399 0.18800001 125 00:08:02 24

399 0 0 00:08:03 0

400 0.18800001 125 00:08:04 24

401 0.186 127 00:08:05 24

402 0.187 126 00:08:06 24

403 0.18800001 125 00:08:07 24

404 0.18800001 125 00:08:08 24

404 0 0 00:08:09 0

405 0.186 127 00:08:10 24

406 0.186 127 00:08:11 24

407 0.18800001 125 00:08:12 24

408 0.18800001 125 00:08:13 24

409 0.186 127 00:08:14 24

409 0 0 00:08:15 0

410 0.19600001 120 00:08:16 24

411 0.187 126 00:08:17 24

412 0.187 126 00:08:18 24

413 0.185 127 00:08:19 24

414 0.186 127 00:08:20 24

414 0 0 00:08:21 0

415 0.18800001 125 00:08:22 24

416 0.19800001 119 00:08:23 24

417 0.18800001 125 00:08:24 24

418 0.178 132 00:08:25 24

419 0.18800001 125 00:08:26 24

419 0 0 00:08:27 0

420 0.187 126 00:08:28 24

421 0.19700001 119 00:08:29 24

422 0.187 126 00:08:30 24

423 0.19700001 119 00:08:31 24

424 0.187 126 00:08:32 24

424 0 0 00:08:33 0

425 0.21800001 108 00:08:34 24

426 0.177 133 00:08:35 24

427 0.187 126 00:08:36 24

428 0.187 126 00:08:37 24

429 0.187 126 00:08:38 24

429 0 0 00:08:39 0

430 0.177 133 00:08:40 24

431 0.19600001 120 00:08:41 24

432 0.186 127 00:08:42 24

433 0.185 127 00:08:43 24

434 0.18900001 124 00:08:44 24

434 0 0 00:08:45 0

435 0.18800001 125 00:08:46 24

436 0.208 113.12 00:08:47 24

437 0.18800001 125 00:08:48 24

438 0.178 132 00:08:49 24

439 0.18800001 125 00:08:50 24

439 0 0 00:08:51 0

440 0.18800001 125 00:08:52 24

441 0.208 113.12 00:08:53 24

442 0.178 132 00:08:54 24

443 0.18800001 125 00:08:55 24

444 0.18800001 125 00:08:56 24

444 0 0 00:08:57 0

445 0.18800001 125 00:08:58 24

446 0.20700002 114 00:08:59 24

447 0.187 126 00:09:00 24

448 0.187 126 00:09:01 24

449 0.19700001 119 00:09:02 24

449 0 0 00:09:03 0

450 0.19600001 120 00:09:04 24

451 0.238 99 00:09:05 24

452 0.18800001 125 00:09:06 24

453 0.19600001 120 00:09:07 24

453 0 0 00:09:08 0

454 0.18 131 00:09:09 24

455 0.18800001 125 00:09:10 24

456 0.19700001 119 00:09:11 24

457 0.18800001 125 00:09:12 24

458 0.178 132 00:09:13 24

458 0 0 00:09:14 0

459 0.18800001 125 00:09:15 24

460 0.187 126 00:09:16 24

461 0.19600001 120 00:09:17 24

462 0.186 127 00:09:18 24

463 0.19600001 120 00:09:19 24

463 0 0 00:09:20 0

464 0.186 127 00:09:21 24

465 0.186 127 00:09:22 24

466 0.187 126 00:09:23 24

467 0.18800001 125 00:09:24 24

468 0.18800001 125 00:09:25 24

468 0 0 00:09:26 0

469 0.186 127 00:09:27 24

470 0.22800002 103 00:09:28 24

471 0.18800001 125 00:09:29 24

472 0.18800001 125 00:09:30 24

473 0.186 127 00:09:31 24

473 0 0 00:09:32 0

474 0.187 126 00:09:33 24

475 0.187 126 00:09:34 24

476 0.19700001 119 00:09:35 24

477 0.187 126 00:09:36 24

478 0.177 133 00:09:37 24

478 0 0 00:09:38 0

479 0.187 126 00:09:39 24

480 0.187 126 00:09:40 24

481 0.19700001 119 00:09:41 24

482 0.187 126 00:09:42 24

483 0.19700001 119 00:09:43 24

483 0 0 00:09:44 0

484 0.187 126 00:09:45 24

485 0.20700002 114 00:09:46 24

486 0.18800001 125 00:09:47 24

487 0.18800001 125 00:09:48 24

488 0.18800001 125 00:09:49 24

488 0 0 00:09:50 0

489 0.18800001 125 00:09:51 24

490 0.178 132 00:09:52 24

491 0.19700001 119 00:09:53 24

492 0.18800001 125 00:09:54 24

493 0.18800001 125 00:09:55 24

493 0 0 00:09:56 0

494 0.187 126 00:09:57 24

495 0.187 126 00:09:58 24

496 0.19900002 118 00:09:59 24

497 0.187 126 00:10:00 24

498 0.177 133 00:10:01 24

Sum 94.905003 61654.3506

Average 0.1905723 123.803917

Measurement
Webserver

compressed 1:3.6091 = 72%

Total
Repeats

Average
Duration
(seconds)

Average
Speed
(kBytes/sec)

Time
(HH:MM:SS)

Average
Size
(kBytes)

0 0 0 00:00:01 0

0 0 0 00:00:02 0

0 0 0 00:00:03 0

1 0.11000001 134 00:00:04 15

2 0.10900001 135 00:00:05 15

3 0.116 126.94 00:00:06 15

4 0.119 124 00:00:07 15

5 0.119 124 00:00:08 15

6 0.11000001 134 00:00:09 15

7 0.11000001 134 00:00:10 15

7 0 0 00:00:11 0

8 0.112 131 00:00:12 15

9 0.119 124 00:00:13 15

10 0.10900001 135 00:00:14 15

11 0.11100001 133 00:00:15 15

12 0.12900001 114 00:00:16 15

13 0.11000001 134 00:00:17 15

14 0.10900001 135 00:00:18 15

15 0.10900001 135 00:00:19 15

15 0 0 00:00:20 0

16 0.119 124 00:00:21 15

17 0.10900001 135 00:00:22 15

18 0.119 124 00:00:23 15

19 0.119 124 00:00:24 15

20 0.11800001 125 00:00:25 15

21 0.11800001 125 00:00:26 15

22 0.11800001 125 00:00:27 15

23 0.119 124 00:00:28 15

23 0 0 00:00:29 0

24 0.119 124 00:00:30 15

25 0.119 124 00:00:31 15

26 0.11800001 125 00:00:32 15

27 0.11800001 125 00:00:33 15

28 0.11800001 125 00:00:34 15

29 0.119 124 00:00:35 15

30 0.119 124 00:00:36 15

30 0 0 00:00:37 0

31 0.119 124 00:00:38 15

32 0.11800001 125 00:00:39 15

33 0.11800001 125 00:00:40 15

34 0.11800001 125 00:00:41 15

35 0.15900001 92.61 00:00:42 15

36 0.11000001 134 00:00:43 15

37 0.11000001 134 00:00:44 15

38 0.119 124 00:00:45 15

38 0 0 00:00:46 0

39 0.13900001 106 00:00:47 15

40 0.119 124 00:00:48 15

41 0.10900001 135 00:00:49 15

42 0.11000001 134 00:00:50 15

43 0.12000001 123 00:00:51 15

44 0.10900001 135 00:00:52 15

45 0.11800001 125 00:00:53 15

45 0 0 00:00:54 0

46 0.11800001 125 00:00:55 15

47 0.11800001 125 00:00:56 15

48 0.13900001 106 00:00:57 15

49 0.119 124 00:00:58 15

50 0.11800001 125 00:00:59 15

51 0.11800001 125 00:01:00 15

52 0.11800001 125 00:01:01 15

53 0.11800001 125 00:01:02 15

53 0 0 00:01:03 0

54 0.119 124 00:01:04 15

55 0.119 124 00:01:05 15

56 0.119 124 00:01:06 15

57 0.11800001 125 00:01:07 15

58 0.11800001 125 00:01:08 15

59 0.149 99 00:01:09 15

60 0.119 124 00:01:10 15

60 0 0 00:01:11 0

61 0.119 124 00:01:12 15

62 0.11800001 125 00:01:13 15

63 0.11800001 125 00:01:14 15

64 0.11800001 125 00:01:15 15

65 0.11800001 125 00:01:16 15

66 0.119 124 00:01:17 15

67 0.119 124 00:01:18 15

68 0.119 124 00:01:19 15

68 0 0 00:01:20 0

69 0.11800001 125 00:01:21 15

70 0.11800001 125 00:01:22 15

71 0.11800001 125 00:01:23 15

72 0.119 124 00:01:24 15

73 0.13900001 106 00:01:25 15

74 0.119 124 00:01:26 15

75 0.11800001 125 00:01:27 15

75 0 0 00:01:28 0

76 0.123 120 00:01:29 15

77 0.11800001 125 00:01:30 15

78 0.11800001 125 00:01:31 15

79 0.119 124 00:01:32 15

80 0.119 124 00:01:33 15

81 0.11800001 125 00:01:34 15

82 0.11800001 125 00:01:35 15

83 0.11800001 125 00:01:36 15

83 0 0 00:01:37 0

84 0.11800001 125 00:01:38 15

85 0.119 124 00:01:39 15

86 0.119 124 00:01:40 15

87 0.119 124 00:01:41 15

88 0.11800001 125 00:01:42 15

89 0.11800001 125 00:01:43 15

90 0.11800001 125 00:01:44 15

91 0.11800001 125 00:01:45 15

91 0 0 00:01:46 0

92 0.119 124 00:01:47 15

93 0.119 124 00:01:48 15

94 0.11800001 125 00:01:49 15

95 0.11800001 125 00:01:50 15

96 0.11800001 125 00:01:51 15

97 0.11800001 125 00:01:52 15

98 0.119 124 00:01:53 15

98 0 0 00:01:54 0

99 0.12900001 114 00:01:55 15

100 0.17400001 85 00:01:56 15

101 0.10900001 135 00:01:57 15

102 0.10900001 135 00:01:58 15

103 0.119 124 00:01:59 15

104 0.10900001 135 00:02:00 15

105 0.11000001 134 00:02:01 15

106 0.11000001 134 00:02:02 15

106 0 0 00:02:03 0

107 0.11700001 126 00:02:04 15

108 0.119 124 00:02:05 15

109 0.10900001 135 00:02:06 15

110 0.12000001 123 00:02:07 15

111 0.11000001 134 00:02:08 15

112 0.119 124 00:02:09 15

113 0.119 124 00:02:10 15

114 0.10900001 135 00:02:11 15

114 0 0 00:02:12 0

115 0.13800001 107 00:02:13 15

116 0.11000001 134 00:02:14 15

117 0.11000001 134 00:02:15 15

118 0.10900001 135 00:02:16 15

119 0.10900001 135 00:02:17 15

120 0.10900001 135 00:02:18 15

121 0.10900001 135 00:02:19 15

122 0.12000001 123 00:02:20 15

122 0 0 00:02:21 0

123 0.119 124 00:02:22 15

124 0.11800001 125 00:02:23 15

125 0.11800001 125 00:02:24 15

126 0.11800001 125 00:02:25 15

127 0.11800001 125 00:02:26 15

128 0.148 99 00:02:27 15

129 0.119 124 00:02:28 15

129 0 0 00:02:29 0

130 0.11800001 125 00:02:30 15

131 0.11800001 125 00:02:31 15

132 0.11800001 125 00:02:32 15

133 0.11800001 125 00:02:33 15

134 0.119 124 00:02:34 15

135 0.13900001 106 00:02:35 15

136 0.119 124 00:02:36 15

137 0.11800001 125 00:02:37 15

137 0 0 00:02:38 0

138 0.11800001 125 00:02:39 15

139 0.11800001 125 00:02:40 15

140 0.119 124 00:02:41 15

141 0.119 124 00:02:42 15

142 0.119 124 00:02:43 15

143 0.11800001 125 00:02:44 15

144 0.126 117 00:02:45 15

144 0 0 00:02:46 0

145 0.10900001 135 00:02:47 15

146 0.10900001 135 00:02:48 15

147 0.11000001 134 00:02:49 15

148 0.11000001 134 00:02:50 15

149 0.119 124 00:02:51 15

150 0.11800001 125 00:02:52 15

151 0.11800001 125 00:02:53 15

152 0.11800001 125 00:02:54 15

152 0 0 00:02:55 0

153 0.119 124 00:02:56 15

154 0.119 124 00:02:57 15

155 0.11800001 125 00:02:58 15

156 0.11800001 125 00:02:59 15

157 0.11800001 125 00:03:00 15

158 0.123 120 00:03:01 15

159 0.128 115 00:03:02 15

160 0.11800001 125 00:03:03 15

160 0 0 00:03:04 0

161 0.11800001 125 00:03:05 15

162 0.119 124 00:03:06 15

163 0.119 124 00:03:07 15

164 0.119 124 00:03:08 15

165 0.11800001 125 00:03:09 15

166 0.11800001 125 00:03:10 15

167 0.11800001 125 00:03:11 15

167 0 0 00:03:12 0

168 0.11800001 125 00:03:13 15

169 0.119 124 00:03:14 15

170 0.119 124 00:03:15 15

171 0.11800001 125 00:03:16 15

172 0.11800001 125 00:03:17 15

173 0.11800001 125 00:03:18 15

174 0.11800001 125 00:03:19 15

175 0.119 124 00:03:20 15

175 0 0 00:03:21 0

176 0.11800001 125 00:03:22 15

177 0.11800001 125 00:03:23 15

178 0.13800001 107 00:03:24 15

179 0.11800001 125 00:03:25 15

180 0.11800001 125 00:03:26 15

181 0.11800001 125 00:03:27 15

182 0.119 124 00:03:28 15

182 0 0 00:03:29 0

183 0.119 124 00:03:30 15

184 0.11800001 125 00:03:31 15

185 0.11800001 125 00:03:32 15

186 0.11800001 125 00:03:33 15

187 0.11800001 125 00:03:34 15

188 0.119 124 00:03:35 15

189 0.119 124 00:03:36 15

190 0.11800001 125 00:03:37 15

190 0 0 00:03:38 0

191 0.11800001 125 00:03:39 15

192 0.11800001 125 00:03:40 15

193 0.11800001 125 00:03:41 15

194 0.119 124 00:03:42 15

195 0.119 124 00:03:43 15

196 0.119 124 00:03:44 15

197 0.11800001 125 00:03:45 15

198 0.11800001 125 00:03:46 15

198 0 0 00:03:47 0

199 0.11800001 125 00:03:48 15

200 0.11800001 125 00:03:49 15

201 0.119 124 00:03:50 15

202 0.119 124 00:03:51 15

203 0.11800001 125 00:03:52 15

204 0.11800001 125 00:03:53 15

205 0.13800001 107 00:03:54 15

205 0 0 00:03:55 0

206 0.128 115 00:03:56 15

207 0.12900001 114 00:03:57 15

208 0.11000001 134 00:03:58 15

209 0.10900001 135 00:03:59 15

210 0.10900001 135 00:04:00 15

211 0.10900001 135 00:04:01 15

212 0.10900001 135 00:04:02 15

213 0.12000001 123 00:04:03 15

213 0 0 00:04:04 0

214 0.11000001 134 00:04:05 15

215 0.119 124 00:04:06 15

216 0.10900001 135 00:04:07 15

217 0.10900001 135 00:04:08 15

218 0.11000001 134 00:04:09 15

219 0.11000001 134 00:04:10 15

220 0.119 124 00:04:11 15

221 0.11800001 125 00:04:12 15

221 0 0 00:04:13 0

222 0.11800001 125 00:04:14 15

223 0.11800001 125 00:04:15 15

224 0.119 124 00:04:16 15

225 0.119 124 00:04:17 15

226 0.119 124 00:04:18 15

227 0.11800001 125 00:04:19 15

228 0.11800001 125 00:04:20 15

228 0 0 00:04:21 0

229 0.11800001 125 00:04:22 15

230 0.11800001 125 00:04:23 15

231 0.119 124 00:04:24 15

232 0.13900001 106 00:04:25 15

233 0.11800001 125 00:04:26 15

234 0.11800001 125 00:04:27 15

235 0.126 117 00:04:28 15

236 0.128 115 00:04:29 15

236 0 0 00:04:30 0

237 0.11800001 125 00:04:31 15

238 0.11000001 134 00:04:32 15

239 0.11000001 134 00:04:33 15

240 0.119 124 00:04:34 15

241 0.10900001 135 00:04:35 15

242 0.10900001 135 00:04:36 15

243 0.119 124 00:04:37 15

244 0.119 124 00:04:38 15

244 0 0 00:04:39 0

245 0.119 124 00:04:40 15

246 0.11800001 125 00:04:41 15

247 0.11800001 125 00:04:42 15

248 0.11800001 125 00:04:43 15

249 0.119 124 00:04:44 15

250 0.119 124 00:04:45 15

251 0.119 124 00:04:46 15

251 0 0 00:04:47 0

252 0.11800001 125 00:04:48 15

253 0.10900001 135 00:04:49 15

254 0.10900001 135 00:04:50 15

255 0.11000001 134 00:04:51 15

256 0.11000001 134 00:04:52 15

257 0.10900001 135 00:04:53 15

258 0.11800001 125 00:04:54 15

259 0.11800001 125 00:04:55 15

259 0 0 00:04:56 0

260 0.11800001 125 00:04:57 15

261 0.11800001 125 00:04:58 15

262 0.119 124 00:04:59 15

263 0.119 124 00:05:00 15

264 0.13000001 113 00:05:01 15

265 0.119 124 00:05:02 15

265 0 0 00:05:03 0

266 0.192 77 00:05:04 15

267 0.10900001 135 00:05:05 15

268 0.116 126.94 00:05:06 15

269 0.149 99 00:05:07 15

270 0.10900001 135 00:05:08 15

271 0.12000001 123 00:05:09 15

272 0.11000001 134 00:05:10 15

272 0 0 00:05:11 0

273 0.10900001 135 00:05:12 15

274 0.10900001 135 00:05:13 15

275 0.10900001 135 00:05:14 15

276 0.11800001 125 00:05:15 15

277 0.13000001 113 00:05:16 15

278 0.11800001 125 00:05:17 15

279 0.11800001 125 00:05:18 15

280 0.11800001 125 00:05:19 15

280 0 0 00:05:20 0

281 0.11800001 125 00:05:21 15

282 0.119 124 00:05:22 15

283 0.119 124 00:05:23 15

284 0.119 124 00:05:24 15

285 0.11800001 125 00:05:25 15

286 0.11800001 125 00:05:26 15

287 0.11800001 125 00:05:27 15

287 0 0 00:05:28 0

288 0.11800001 125 00:05:29 15

289 0.119 124 00:05:30 15

290 0.12900001 114 00:05:31 15

291 0.11800001 125 00:05:32 15

292 0.15900001 92.61 00:05:33 15

293 0.10900001 135 00:05:34 15

294 0.10900001 135 00:05:35 15

295 0.11000001 134 00:05:36 15

295 0 0 00:05:37 0

296 0.14 105 00:05:38 15

297 0.10900001 135 00:05:39 15

298 0.10900001 135 00:05:40 15

299 0.11800001 125 00:05:41 15

300 0.119 124 00:05:42 15

301 0.125 117.8 00:05:43 15

302 0.127 116 00:05:44 15

303 0.12000001 123 00:05:45 15

303 0 0 00:05:46 0

304 0.10900001 135 00:05:47 15

305 0.119 124 00:05:48 15

306 0.10900001 135 00:05:49 15

307 0.11000001 134 00:05:50 15

308 0.11000001 134 00:05:51 15

309 0.11800001 125 00:05:52 15

310 0.11800001 125 00:05:53 15

311 0.11800001 125 00:05:54 15

311 0 0 00:05:55 0

312 0.126 117 00:05:56 15

313 0.119 124 00:05:57 15

314 0.119 124 00:05:58 15

315 0.11800001 125 00:05:59 15

316 0.11800001 125 00:06:00 15

317 0.128 115 00:06:01 15

317 0 0 00:06:02 0

318 0.126 117 00:06:03 15

319 0.119 124 00:06:04 15

320 0.11800001 125 00:06:05 15

321 0.11800001 125 00:06:06 15

322 0.11800001 125 00:06:07 15

323 0.11800001 125 00:06:08 15

324 0.119 124 00:06:09 15

325 0.119 124 00:06:10 15

325 0 0 00:06:11 0

326 0.11800001 125 00:06:12 15

327 0.11800001 125 00:06:13 15

328 0.11700001 126 00:06:14 15

329 0.11800001 125 00:06:15 15

330 0.119 124 00:06:16 15

331 0.119 124 00:06:17 15

332 0.11800001 125 00:06:18 15

333 0.11800001 125 00:06:19 15

333 0 0 00:06:20 0

334 0.11800001 125 00:06:21 15

335 0.11800001 125 00:06:22 15

336 0.119 124 00:06:23 15

337 0.119 124 00:06:24 15

338 0.13900001 106 00:06:25 15

339 0.11800001 125 00:06:26 15

340 0.11800001 125 00:06:27 15

340 0 0 00:06:28 0

341 0.126 117 00:06:29 15

342 0.11800001 125 00:06:30 15

343 0.119 124 00:06:31 15

344 0.119 124 00:06:32 15

345 0.11800001 125 00:06:33 15

346 0.11800001 125 00:06:34 15

347 0.11800001 125 00:06:35 15

348 0.11800001 125 00:06:36 15

348 0 0 00:06:37 0

349 0.119 124 00:06:38 15

350 0.119 124 00:06:39 15

351 0.11800001 125 00:06:40 15

352 0.11800001 125 00:06:41 15

353 0.11800001 125 00:06:42 15

354 0.11800001 125 00:06:43 15

355 0.11800001 125 00:06:44 15

355 0 0 00:06:45 0

356 0.119 124 00:06:46 15

357 0.119 124 00:06:47 15

358 0.128 115 00:06:48 15

359 0.11800001 125 00:06:49 15

360 0.11800001 125 00:06:50 15

361 0.13800001 107 00:06:51 15

362 0.125 117.8 00:06:52 15

363 0.11000001 134 00:06:53 15

363 0 0 00:06:54 0

364 0.11700001 126 00:06:55 15

365 0.147 100 00:06:56 15

366 0.11800001 125 00:06:57 15

367 0.10900001 135 00:06:58 15

368 0.12000001 123 00:06:59 15

369 0.11000001 134 00:07:00 15

369 0 0 00:07:01 0

370 0.12100001 122 00:07:02 15

371 0.119 124 00:07:03 15

372 0.11800001 125 00:07:04 15

373 0.11800001 125 00:07:05 15

374 0.11800001 125 00:07:06 15

375 0.119 124 00:07:07 15

376 0.119 124 00:07:08 15

377 0.119 124 00:07:09 15

377 0 0 00:07:10 0

378 0.11800001 125 00:07:11 15

379 0.11800001 125 00:07:12 15

380 0.11800001 125 00:07:13 15

381 0.11800001 125 00:07:14 15

382 0.119 124 00:07:15 15

383 0.119 124 00:07:16 15

384 0.11800001 125 00:07:17 15

385 0.11800001 125 00:07:18 15

385 0 0 00:07:19 0

386 0.11800001 125 00:07:20 15

387 0.11800001 125 00:07:21 15

388 0.119 124 00:07:22 15

389 0.119 124 00:07:23 15

390 0.119 124 00:07:24 15

391 0.13800001 107 00:07:25 15

392 0.11800001 125 00:07:26 15

392 0 0 00:07:27 0

393 0.11800001 125 00:07:28 15

394 0.119 124 00:07:29 15

395 0.119 124 00:07:30 15

396 0.119 124 00:07:31 15

397 0.11800001 125 00:07:32 15

398 0.11800001 125 00:07:33 15

399 0.12900001 114 00:07:34 15

400 0.119 124 00:07:35 15

400 0 0 00:07:36 0

401 0.119 124 00:07:37 15

402 0.119 124 00:07:38 15

403 0.11800001 125 00:07:39 15

404 0.11800001 125 00:07:40 15

405 0.11800001 125 00:07:41 15

406 0.125 117.8 00:07:42 15

407 0.11800001 125 00:07:43 15

407 0 0 00:07:44 0

408 0.119 124 00:07:45 15

409 0.119 124 00:07:46 15

410 0.11800001 125 00:07:47 15

411 0.11800001 125 00:07:48 15

412 0.11800001 125 00:07:49 15

413 0.11800001 125 00:07:50 15

414 0.119 124 00:07:51 15

415 0.119 124 00:07:52 15

415 0 0 00:07:53 0

416 0.119 124 00:07:54 15

417 0.11800001 125 00:07:55 15

418 0.11800001 125 00:07:56 15

419 0.11800001 125 00:07:57 15

420 0.11800001 125 00:07:58 15

421 0.119 124 00:07:59 15

422 0.13900001 106 00:08:00 15

422 0 0 00:08:01 0

423 0.123 120 00:08:02 15

424 0.127 116 00:08:03 15

425 0.11800001 125 00:08:04 15

426 0.119 124 00:08:05 15

427 0.119 124 00:08:06 15

428 0.11800001 125 00:08:07 15

429 0.11800001 125 00:08:08 15

429 0 0 00:08:09 0

430 0.11800001 125 00:08:10 15

431 0.11800001 125 00:08:11 15

432 0.119 124 00:08:12 15

433 0.119 124 00:08:13 15

434 0.119 124 00:08:14 15

435 0.11800001 125 00:08:15 15

436 0.126 117 00:08:16 15

437 0.11800001 125 00:08:17 15

437 0 0 00:08:18 0

438 0.10900001 135 00:08:19 15

439 0.10900001 135 00:08:20 15

440 0.11000001 134 00:08:21 15

441 0.10900001 135 00:08:22 15

442 0.10900001 135 00:08:23 15

443 0.11800001 125 00:08:24 15

444 0.11800001 125 00:08:25 15

445 0.119 124 00:08:26 15

445 0 0 00:08:27 0

446 0.119 124 00:08:28 15

447 0.119 124 00:08:29 15

448 0.11800001 125 00:08:30 15

449 0.11800001 125 00:08:31 15

450 0.11800001 125 00:08:32 15

451 0.119 124 00:08:33 15

452 0.119 124 00:08:34 15

452 0 0 00:08:35 0

453 0.119 124 00:08:36 15

454 0.11800001 125 00:08:37 15

455 0.11800001 125 00:08:38 15

456 0.15900001 92.61 00:08:39 15

457 0.10900001 135 00:08:40 15

458 0.11000001 134 00:08:41 15

459 0.11000001 134 00:08:42 15

460 0.13900001 106 00:08:43 15

460 0 0 00:08:44 0

461 0.10900001 135 00:08:45 15

462 0.11100001 133 00:08:46 15

463 0.115 128 00:08:47 15

464 0.12900001 114 00:08:48 15

465 0.11000001 134 00:08:49 15

466 0.127 116 00:08:50 15

467 0.125 117.8 00:08:51 15

467 0 0 00:08:52 0

468 0.10900001 135 00:08:53 15

469 0.10900001 135 00:08:54 15

470 0.11000001 134 00:08:55 15

471 0.12000001 123 00:08:56 15

472 0.10900001 135 00:08:57 15

473 0.119 124 00:08:58 15

474 0.10900001 135 00:08:59 15

475 0.13900001 106 00:09:00 15

475 0 0 00:09:01 0

476 0.13700001 107 00:09:02 15

477 0.10900001 135 00:09:03 15

478 0.12000001 123 00:09:04 15

479 0.11000001 134 00:09:05 15

480 0.119 124 00:09:06 15

481 0.10900001 135 00:09:07 15

481 0 0 00:09:08 0

482 0.10900001 135 00:09:09 15

483 0.10900001 135 00:09:10 15

484 0.11000001 134 00:09:11 15

485 0.112 131 00:09:12 15

486 0.108 136 00:09:13 15

487 0.10900001 135 00:09:14 15

488 0.10900001 135 00:09:15 15

489 0.119 124 00:09:16 15

489 0 0 00:09:17 0

490 0.13900001 106 00:09:18 15

491 0.11000001 134 00:09:19 15

492 0.10900001 135 00:09:20 15

493 0.112 131 00:09:21 15

494 0.10900001 135 00:09:22 15

495 0.11000001 134 00:09:23 15

496 0.10900001 135 00:09:24 15

497 0.119 124 00:09:25 15

497 0 0 00:09:26 0

498 0.11800001 125 00:09:27 15

499 0.11800001 125 00:09:28 15

500 0.119 124 00:09:29 15

501 0.119 124 00:09:30 15

502 0.119 124 00:09:31 15

503 0.11800001 125 00:09:32 15

504 0.11800001 125 00:09:33 15

505 0.11800001 125 00:09:34 15

505 0 0 00:09:35 0

506 0.11800001 125 00:09:36 15

507 0.119 124 00:09:37 15

508 0.119 124 00:09:38 15

509 0.119 124 00:09:39 15

510 0.11800001 125 00:09:40 15

511 0.11800001 125 00:09:41 15

512 0.11800001 125 00:09:42 15

512 0 0 00:09:43 0

513 0.119 124 00:09:44 15

514 0.119 124 00:09:45 15

515 0.11800001 125 00:09:46 15

516 0.11800001 125 00:09:47 15

517 0.149 99 00:09:48 15

518 0.11800001 125 00:09:49 15

519 0.11800001 125 00:09:50 15

520 0.119 124 00:09:51 15

520 0 0 00:09:52 0

521 0.119 124 00:09:53 15

522 0.11800001 125 00:09:54 15

523 0.11800001 125 00:09:55 15

524 0.11800001 125 00:09:56 15

525 0.11800001 125 00:09:57 15

526 0.119 124 00:09:58 15

527 0.119 124 00:09:59 15

527 0 0 00:10:00 0

528 0.119 124 00:10:01 15

529 0.049 242 00:10:02 12

Sum 62.6480031
66083.5102

3

Average 0.11842723
124.921569

4

Measurement Web
Server

compressed 1:32.34365 = 97%

Total
Repeats

Average
Duration
(seconds)

Average
Speed
(kBytes/sec)

Time
(HH:MM:SS)

Average
Size
(kBytes)

0 0 0 00:00:01 0

0 0 0 00:00:02 0

0 0 0 00:00:03 0

1 0.021 100.095 00:00:04 2.102

2 0.022 95.545006 00:00:05 2.102

3 0.021 100.095 00:00:06 2.102

4 0.022 95.545006 00:00:07 2.102

5 0.021 100.095 00:00:08 2.102

6 0.074 28.405 00:00:09 2.102

7 0.023 91.39101 00:00:10 2.102

8 0.021 100.095 00:00:11 2.102

9 0.022 95.545006 00:00:12 2.102

10 0.023 91.39101 00:00:13 2.102

11 0.07300001 28.795002 00:00:14 2.102

12 0.033 63.697002 00:00:15 2.102

13 0.021 100.095 00:00:16 2.102

14 0.022 95.545006 00:00:17 2.102

15 0.062 33.903 00:00:18 2.102

16 0.021 100.095 00:00:19 2.102

17 0.022 95.545006 00:00:20 2.102

18 0.021 100.095 00:00:21 2.102

19 0.022 95.545006 00:00:22 2.102

20 0.021 100.095 00:00:23 2.102

21 0.021 100.095 00:00:24 2.102

21 0 0 00:00:25 0

22 0.021 100.095 00:00:26 2.102

23 0.038 55.316 00:00:27 2.102

24 0.014 150.143 00:00:28 2.102

25 0.021 100.095 00:00:29 2.102

26 0.021 100.095 00:00:30 2.102

27 0.021 100.095 00:00:31 2.102

28 0.02 105.100006 00:00:32 2.102

29 0.021 100.095 00:00:33 2.102

30 0.021 100.095 00:00:34 2.102

31 0.021 100.095 00:00:35 2.102

32 0.019 110.632 00:00:36 2.102

33 0.021 100.095 00:00:37 2.102

34 0.022 95.545006 00:00:38 2.102

35 0.021 100.095 00:00:39 2.102

36 0.022 95.545006 00:00:40 2.102

37 0.021 100.095 00:00:41 2.102

38 0.028 75.07101 00:00:42 2.102

39 0.05 42.04 00:00:43 2.102

40 0.022 95.545006 00:00:44 2.102

41 0.021 100.095 00:00:45 2.102

42 0.022 95.545006 00:00:46 2.102

43 0.021 100.095 00:00:47 2.102

44 0.012 175.167 00:00:48 2.102

45 0.021 100.095 00:00:49 2.102

46 0.022 95.545006 00:00:50 2.102

47 0.021 100.095 00:00:51 2.102

48 0.021 100.095 00:00:52 2.102

49 0.021 100.095 00:00:53 2.102

49 0 0 00:00:54 0

50 0.021 100.095 00:00:55 2.102

51 0.021 100.095 00:00:56 2.102

52 0.011 191.091 00:00:57 2.102

53 0.021 100.095 00:00:58 2.102

54 0.021 100.095 00:00:59 2.102

55 0.022 95.545006 00:01:00 2.102

56 0.021 100.095 00:01:01 2.102

57 0.021 100.095 00:01:02 2.102

58 0.037 56.811 00:01:03 2.102

59 0.041 51.268 00:01:04 2.102

60 0.012 175.167 00:01:05 2.102

61 0.022 95.545006 00:01:06 2.102

62 0.021 100.095 00:01:07 2.102

63 0.021 100.095 00:01:08 2.102

64 0.021 100.095 00:01:09 2.102

65 0.022 95.545006 00:01:10 2.102

66 0.021 100.095 00:01:11 2.102

67 0.021 100.095 00:01:12 2.102

68 0.021 100.095 00:01:13 2.102

69 0.022 95.545006 00:01:14 2.102

70 0.011 191.091 00:01:15 2.102

71 0.022 95.545006 00:01:16 2.102

72 0.012 175.167 00:01:17 2.102

73 0.022 95.545006 00:01:18 2.102

74 0.072 29.194002 00:01:19 2.102

75 0.021 100.095 00:01:20 2.102

76 0.011 191.091 00:01:21 2.102

77 0.021 100.095 00:01:22 2.102

78 0.021 100.095 00:01:23 2.102

78 0 0 00:01:24 0

79 0.021 100.095 00:01:25 2.102

80 0.021 100.095 00:01:26 2.102

81 0.022 95.545006 00:01:27 2.102

82 0.021 100.095 00:01:28 2.102

83 0.021 100.095 00:01:29 2.102

84 0.012 175.167 00:01:30 2.102

85 0.021 100.095 00:01:31 2.102

86 0.021 100.095 00:01:32 2.102

87 0.021 100.095 00:01:33 2.102

88 0.021 100.095 00:01:34 2.102

89 0.061 34.459003 00:01:35 2.102

90 0.025 84.08 00:01:36 2.102

91 0.024 87.58301 00:01:37 2.102

92 0.022 95.545006 00:01:38 2.102

93 0.021 100.095 00:01:39 2.102

94 0.022 95.545006 00:01:40 2.102

95 0.021 100.095 00:01:41 2.102

96 0.022 95.545006 00:01:42 2.102

97 0.021 100.095 00:01:43 2.102

98 0.022 95.545006 00:01:44 2.102

99 0.021 100.095 00:01:45 2.102

100 0.021 100.095 00:01:46 2.102

101 0.021 100.095 00:01:47 2.102

102 0.021 100.095 00:01:48 2.102

103 0.039 53.897003 00:01:49 2.102

104 0.041 51.268 00:01:50 2.102

105 0.021 100.095 00:01:51 2.102

106 0.021 100.095 00:01:52 2.102

106 0 0 00:01:53 0

107 0.022 95.545006 00:01:54 2.102

108 0.021 100.095 00:01:55 2.102

109 0.021 100.095 00:01:56 2.102

110 0.021 100.095 00:01:57 2.102

111 0.022 95.545006 00:01:58 2.102

112 0.021 100.095 00:01:59 2.102

113 0.021 100.095 00:02:00 2.102

114 0.021 100.095 00:02:01 2.102

115 0.024 87.58301 00:02:02 2.102

116 0.026 80.846 00:02:03 2.102

117 0.021 100.095 00:02:04 2.102

118 0.037 56.811 00:02:05 2.102

119 0.015 140.13301 00:02:06 2.102

120 0.021 100.095 00:02:07 2.102

121 0.021 100.095 00:02:08 2.102

122 0.021 100.095 00:02:09 2.102

123 0.022 95.545006 00:02:10 2.102

124 0.011 191.091 00:02:11 2.102

125 0.022 95.545006 00:02:12 2.102

126 0.021 100.095 00:02:13 2.102

127 0.022 95.545006 00:02:14 2.102

128 0.011 191.091 00:02:15 2.102

129 0.022 95.545006 00:02:16 2.102

130 0.021 100.095 00:02:17 2.102

131 0.022 95.545006 00:02:18 2.102

132 0.02 105.100006 00:02:19 2.102

133 0.037 56.811 00:02:20 2.102

134 0.041 51.268 00:02:21 2.102

134 0 0 00:02:22 0

135 0.018 116.77801 00:02:23 2.102

136 0.021 100.095 00:02:24 2.102

137 0.021 100.095 00:02:25 2.102

138 0.021 100.095 00:02:26 2.102

139 0.023 91.39101 00:02:27 2.102

140 0.011 191.091 00:02:28 2.102

141 0.021 100.095 00:02:29 2.102

142 0.021 100.095 00:02:30 2.102

143 0.021 100.095 00:02:31 2.102

144 0.021 100.095 00:02:32 2.102

145 0.021 100.095 00:02:33 2.102

146 0.022 95.545006 00:02:34 2.102

147 0.021 100.095 00:02:35 2.102

148 0.012 175.167 00:02:36 2.102

149 0.035 60.057003 00:02:37 2.102

150 0.041 51.268 00:02:38 2.102

151 0.021 100.095 00:02:39 2.102

152 0.021 100.095 00:02:40 2.102

153 0.021 100.095 00:02:41 2.102

154 0.021 100.095 00:02:42 2.102

155 0.021 100.095 00:02:43 2.102

156 0.011 191.091 00:02:44 2.102

157 0.021 100.095 00:02:45 2.102

158 0.021 100.095 00:02:46 2.102

159 0.021 100.095 00:02:47 2.102

160 0.021 100.095 00:02:48 2.102

161 0.021 100.095 00:02:49 2.102

162 0.021 100.095 00:02:50 2.102

163 0.023 91.39101 00:02:51 2.102

164 0.027 77.852005 00:02:52 2.102

164 0 0 00:02:53 0

165 0.013 161.692 00:02:54 2.102

166 0.021 100.095 00:02:55 2.102

167 0.022 95.545006 00:02:56 2.102

168 0.021 100.095 00:02:57 2.102

169 0.021 100.095 00:02:58 2.102

170 0.021 100.095 00:02:59 2.102

171 0.022 95.545006 00:03:00 2.102

172 0.011 191.091 00:03:01 2.102

173 0.022 95.545006 00:03:02 2.102

174 0.021 100.095 00:03:03 2.102

175 0.022 95.545006 00:03:04 2.102

176 0.021 100.095 00:03:05 2.102

177 0.022 95.545006 00:03:06 2.102

178 0.021 100.095 00:03:07 2.102

179 0.037 56.811 00:03:08 2.102

180 0.031 67.806 00:03:09 2.102

181 0.021 100.095 00:03:10 2.102

182 0.022 95.545006 00:03:11 2.102

183 0.021 100.095 00:03:12 2.102

184 0.021 100.095 00:03:13 2.102

185 0.021 100.095 00:03:14 2.102

186 0.021 100.095 00:03:15 2.102

187 0.021 100.095 00:03:16 2.102

188 0.011 191.091 00:03:17 2.102

189 0.021 100.095 00:03:18 2.102

190 0.021 100.095 00:03:19 2.102

191 0.021 100.095 00:03:20 2.102

192 0.021 100.095 00:03:21 2.102

193 0.021 100.095 00:03:22 2.102

193 0 0 00:03:23 0

194 0.034 61.824 00:03:24 2.102

195 0.041 51.268 00:03:25 2.102

196 0.012 175.167 00:03:26 2.102

197 0.021 100.095 00:03:27 2.102

198 0.022 95.545006 00:03:28 2.102

199 0.021 100.095 00:03:29 2.102

200 0.022 95.545006 00:03:30 2.102

201 0.021 100.095 00:03:31 2.102

202 0.021 100.095 00:03:32 2.102

203 0.021 100.095 00:03:33 2.102

204 0.012 175.167 00:03:34 2.102

205 0.021 100.095 00:03:35 2.102

206 0.022 95.545006 00:03:36 2.102

207 0.021 100.095 00:03:37 2.102

208 0.022 95.545006 00:03:38 2.102

209 0.021 100.095 00:03:39 2.102

210 0.061 34.459003 00:03:40 2.102

211 0.021 100.095 00:03:41 2.102

212 0.021 100.095 00:03:42 2.102

213 0.021 100.095 00:03:43 2.102

214 0.021 100.095 00:03:44 2.102

215 0.026 80.846 00:03:45 2.102

216 0.021 100.095 00:03:46 2.102

217 0.022 95.545006 00:03:47 2.102

218 0.021 100.095 00:03:48 2.102

219 0.021 100.095 00:03:49 2.102

220 0.011 191.091 00:03:50 2.102

221 0.021 100.095 00:03:51 2.102

222 0.021 100.095 00:03:52 2.102

222 0 0 00:03:53 0

223 0.021 100.095 00:03:54 2.102

224 0.021 100.095 00:03:55 2.102

225 0.062 33.903 00:03:56 2.102

226 0.021 100.095 00:03:57 2.102

227 0.022 95.545006 00:03:58 2.102

228 0.011 191.091 00:03:59 2.102

229 0.021 100.095 00:04:00 2.102

230 0.021 100.095 00:04:01 2.102

231 0.024 87.58301 00:04:02 2.102

232 0.023 91.39101 00:04:03 2.102

233 0.024 87.58301 00:04:04 2.102

234 0.023 91.39101 00:04:05 2.102

235 0.022 95.545006 00:04:06 2.102

236 0.011 191.091 00:04:07 2.102

237 0.021 100.095 00:04:08 2.102

238 0.021 100.095 00:04:09 2.102

239 0.021 100.095 00:04:10 2.102

240 0.021 100.095 00:04:11 2.102

241 0.061 34.459003 00:04:12 2.102

242 0.021 100.095 00:04:13 2.102

243 0.021 100.095 00:04:14 2.102

244 0.011 191.091 00:04:15 2.102

245 0.021 100.095 00:04:16 2.102

246 0.02 105.100006 00:04:17 2.102

247 0.021 100.095 00:04:18 2.102

248 0.021 100.095 00:04:19 2.102

249 0.021 100.095 00:04:20 2.102

250 0.021 100.095 00:04:21 2.102

251 0.021 100.095 00:04:22 2.102

251 0 0 00:04:23 0

252 0.011 191.091 00:04:24 2.102

253 0.021 100.095 00:04:25 2.102

254 0.021 100.095 00:04:26 2.102

255 0.021 100.095 00:04:27 2.102

256 0.061 34.459003 00:04:28 2.102

257 0.021 100.095 00:04:29 2.102

258 0.022 95.545006 00:04:30 2.102

259 0.021 100.095 00:04:31 2.102

260 0.022 95.545006 00:04:32 2.102

261 0.021 100.095 00:04:33 2.102

262 0.012 175.167 00:04:34 2.102

263 0.021 100.095 00:04:35 2.102

264 0.013 161.692 00:04:36 2.102

265 0.021 100.095 00:04:37 2.102

266 0.023 91.39101 00:04:38 2.102

267 0.021 100.095 00:04:39 2.102

268 0.021 100.095 00:04:40 2.102

269 0.021 100.095 00:04:41 2.102

270 0.021 100.095 00:04:42 2.102

271 0.037 56.811 00:04:43 2.102

272 0.046 45.696003 00:04:44 2.102

273 0.022 95.545006 00:04:45 2.102

274 0.021 100.095 00:04:46 2.102

275 0.022 95.545006 00:04:47 2.102

276 0.021 100.095 00:04:48 2.102

277 0.022 95.545006 00:04:49 2.102

278 0.021 100.095 00:04:50 2.102

279 0.022 95.545006 00:04:51 2.102

279 0 0 00:04:52 0

280 0.021 100.095 00:04:53 2.102

281 0.028 75.07101 00:04:54 2.102

282 0.021 100.095 00:04:55 2.102

283 0.022 95.545006 00:04:56 2.102

284 0.021 100.095 00:04:57 2.102

285 0.022 95.545006 00:04:58 2.102

286 0.061 34.459003 00:04:59 2.102

287 0.021 100.095 00:05:00 2.102

288 0.021 100.095 00:05:01 2.102

289 0.021 100.095 00:05:02 2.102

290 0.021 100.095 00:05:03 2.102

291 0.021 100.095 00:05:04 2.102

292 0.011 191.091 00:05:05 2.102

293 0.021 100.095 00:05:06 2.102

294 0.022 95.545006 00:05:07 2.102

295 0.021 100.095 00:05:08 2.102

296 0.021 100.095 00:05:09 2.102

297 0.021 100.095 00:05:10 2.102

298 0.022 95.545006 00:05:11 2.102

299 0.021 100.095 00:05:12 2.102

300 0.011 191.091 00:05:13 2.102

301 0.021 100.095 00:05:14 2.102

302 0.021 100.095 00:05:15 2.102

303 0.036 58.389004 00:05:16 2.102

304 0.031 67.806 00:05:17 2.102

305 0.022 95.545006 00:05:18 2.102

306 0.022 95.545006 00:05:19 2.102

307 0.021 100.095 00:05:20 2.102

308 0.012 175.167 00:05:21 2.102

308 0 0 00:05:22 0

309 0.021 100.095 00:05:23 2.102

310 0.021 100.095 00:05:24 2.102

311 0.022 95.545006 00:05:25 2.102

312 0.021 100.095 00:05:26 2.102

313 0.021 100.095 00:05:27 2.102

314 0.022 95.545006 00:05:28 2.102

315 0.021 100.095 00:05:29 2.102

316 0.012 175.167 00:05:30 2.102

317 0.021 100.095 00:05:31 2.102

318 0.021 100.095 00:05:32 2.102

319 0.061 34.459003 00:05:33 2.102

320 0.016 131.375 00:05:34 2.102

321 0.021 100.095 00:05:35 2.102

322 0.021 100.095 00:05:36 2.102

323 0.021 100.095 00:05:37 2.102

324 0.011 191.091 00:05:38 2.102

325 0.021 100.095 00:05:39 2.102

326 0.021 100.095 00:05:40 2.102

327 0.021 100.095 00:05:41 2.102

328 0.021 100.095 00:05:42 2.102

329 0.021 100.095 00:05:43 2.102

330 0.021 100.095 00:05:44 2.102

331 0.021 100.095 00:05:45 2.102

332 0.021 100.095 00:05:46 2.102

333 0.021 100.095 00:05:47 2.102

334 0.061 34.459003 00:05:48 2.102

335 0.022 95.545006 00:05:49 2.102

336 0.021 100.095 00:05:50 2.102

336 0 0 00:05:51 0

337 0.021 100.095 00:05:52 2.102

338 0.021 100.095 00:05:53 2.102

339 0.022 95.545006 00:05:54 2.102

340 0.011 191.091 00:05:55 2.102

341 0.022 95.545006 00:05:56 2.102

342 0.02 105.100006 00:05:57 2.102

343 0.021 100.095 00:05:58 2.102

344 0.021 100.095 00:05:59 2.102

345 0.021 100.095 00:06:00 2.102

346 0.021 100.095 00:06:01 2.102

347 0.021 100.095 00:06:02 2.102

348 0.022 95.545006 00:06:03 2.102

349 0.021 100.095 00:06:04 2.102

350 0.022 95.545006 00:06:05 2.102

351 0.02 105.100006 00:06:06 2.102

352 0.022 95.545006 00:06:07 2.102

353 0.021 100.095 00:06:08 2.102

354 0.022 95.545006 00:06:09 2.102

355 0.021 100.095 00:06:10 2.102

356 0.021 100.095 00:06:11 2.102

357 0.021 100.095 00:06:12 2.102

358 0.021 100.095 00:06:13 2.102

359 0.021 100.095 00:06:14 2.102

359 0 0 00:06:15 0

360 0.037 56.811 00:06:16 2.102

361 0.041 51.268 00:06:17 2.102

362 0.021 100.095 00:06:18 2.102

363 0.021 100.095 00:06:19 2.102

364 0.011 191.091 00:06:20 2.102

365 0.021 100.095 00:06:21 2.102

366 0.021 100.095 00:06:22 2.102

367 0.02 105.100006 00:06:23 2.102

368 0.021 100.095 00:06:24 2.102

369 0.021 100.095 00:06:25 2.102

370 0.021 100.095 00:06:26 2.102

371 0.021 100.095 00:06:27 2.102

372 0.011 191.091 00:06:28 2.102

373 0.022 95.545006 00:06:29 2.102

374 0.021 100.095 00:06:30 2.102

375 0.021 100.095 00:06:31 2.102

376 0.07600001 27.658 00:06:32 2.102

377 0.022 95.545006 00:06:33 2.102

378 0.021 100.095 00:06:34 2.102

379 0.022 95.545006 00:06:35 2.102

380 0.012 175.167 00:06:36 2.102

381 0.022 95.545006 00:06:37 2.102

382 0.021 100.095 00:06:38 2.102

383 0.021 100.095 00:06:39 2.102

384 0.021 100.095 00:06:40 2.102

385 0.021 100.095 00:06:41 2.102

386 0.021 100.095 00:06:42 2.102

387 0.021 100.095 00:06:43 2.102

387 0 0 00:06:44 0

388 0.021 100.095 00:06:45 2.102

389 0.021 100.095 00:06:46 2.102

390 0.037 56.811 00:06:47 2.102

391 0.031 67.806 00:06:48 2.102

392 0.021 100.095 00:06:49 2.102

393 0.021 100.095 00:06:50 2.102

394 0.021 100.095 00:06:51 2.102

395 0.021 100.095 00:06:52 2.102

396 0.011 191.091 00:06:53 2.102

397 0.021 100.095 00:06:54 2.102

398 0.022 95.545006 00:06:55 2.102

399 0.021 100.095 00:06:56 2.102

400 0.022 95.545006 00:06:57 2.102

401 0.021 100.095 00:06:58 2.102

402 0.022 95.545006 00:06:59 2.102

403 0.022 95.545006 00:07:00 2.102

404 0.012 175.167 00:07:01 2.102

405 0.053 39.660004 00:07:02 2.102

406 0.021 100.095 00:07:03 2.102

407 0.021 100.095 00:07:04 2.102

408 0.021 100.095 00:07:05 2.102

409 0.022 95.545006 00:07:06 2.102

410 0.021 100.095 00:07:07 2.102

411 0.021 100.095 00:07:08 2.102

412 0.021 100.095 00:07:09 2.102

413 0.021 100.095 00:07:10 2.102

413 0 0 00:07:11 0

414 0.021 100.095 00:07:12 2.102

415 0.021 100.095 00:07:13 2.102

416 0.021 100.095 00:07:14 2.102

417 0.04 52.550003 00:07:15 2.102

418 0.036 58.389004 00:07:16 2.102

419 0.041 51.268 00:07:17 2.102

420 0.011 191.091 00:07:18 2.102

421 0.022 95.545006 00:07:19 2.102

422 0.021 100.095 00:07:20 2.102

423 0.021 100.095 00:07:21 2.102

424 0.021 100.095 00:07:22 2.102

425 0.021 100.095 00:07:23 2.102

426 0.021 100.095 00:07:24 2.102

427 0.022 95.545006 00:07:25 2.102

428 0.02 105.100006 00:07:26 2.102

429 0.021 100.095 00:07:27 2.102

430 0.021 100.095 00:07:28 2.102

431 0.021 100.095 00:07:29 2.102

432 0.021 100.095 00:07:30 2.102

433 0.037 56.811 00:07:31 2.102

434 0.031 67.806 00:07:32 2.102

435 0.011 191.091 00:07:33 2.102

436 0.027 77.852005 00:07:34 2.102

437 0.021 100.095 00:07:35 2.102

438 0.021 100.095 00:07:36 2.102

439 0.021 100.095 00:07:37 2.102

440 0.022 95.545006 00:07:38 2.102

441 0.011 191.091 00:07:39 2.102

441 0 0 00:07:40 0

442 0.022 95.545006 00:07:41 2.102

443 0.021 100.095 00:07:42 2.102

444 0.022 95.545006 00:07:43 2.102

445 0.021 100.095 00:07:44 2.102

446 0.022 95.545006 00:07:45 2.102

447 0.021 100.095 00:07:46 2.102

448 0.037 56.811 00:07:47 2.102

449 0.041 51.268 00:07:48 2.102

450 0.021 100.095 00:07:49 2.102

451 0.011 191.091 00:07:50 2.102

452 0.021 100.095 00:07:51 2.102

453 0.021 100.095 00:07:52 2.102

454 0.021 100.095 00:07:53 2.102

455 0.021 100.095 00:07:54 2.102

456 0.021 100.095 00:07:55 2.102

457 0.011 191.091 00:07:56 2.102

458 0.021 100.095 00:07:57 2.102

459 0.021 100.095 00:07:58 2.102

460 0.022 95.545006 00:07:59 2.102

461 0.02 105.100006 00:08:00 2.102

462 0.021 100.095 00:08:01 2.102

463 0.046 45.696003 00:08:02 2.102

464 0.023 91.39101 00:08:03 2.102

465 0.014 150.143 00:08:04 2.102

465 0 0 00:08:05 0

466 0.021 100.095 00:08:06 2.102

467 0.012 175.167 00:08:07 2.102

468 0.021 100.095 00:08:08 2.102

469 0.021 100.095 00:08:09 2.102

470 0.021 100.095 00:08:10 2.102

471 0.021 100.095 00:08:11 2.102

472 0.021 100.095 00:08:12 2.102

473 0.011 191.091 00:08:13 2.102

474 0.021 100.095 00:08:14 2.102

475 0.021 100.095 00:08:15 2.102

476 0.021 100.095 00:08:16 2.102

477 0.037 56.811 00:08:17 2.102

478 0.015 140.13301 00:08:18 2.102

479 0.021 100.095 00:08:19 2.102

480 0.022 95.545006 00:08:20 2.102

481 0.021 100.095 00:08:21 2.102

482 0.022 95.545006 00:08:22 2.102

483 0.011 191.091 00:08:23 2.102

484 0.022 95.545006 00:08:24 2.102

485 0.021 100.095 00:08:25 2.102

486 0.022 95.545006 00:08:26 2.102

487 0.021 100.095 00:08:27 2.102

488 0.022 95.545006 00:08:28 2.102

489 0.011 191.091 00:08:29 2.102

490 0.022 95.545006 00:08:30 2.102

491 0.021 100.095 00:08:31 2.102

492 0.022 95.545006 00:08:32 2.102

493 0.071 29.606 00:08:33 2.102

494 0.021 100.095 00:08:34 2.102

494 0 0 00:08:35 0

495 0.021 100.095 00:08:36 2.102

496 0.025 84.08 00:08:37 2.102

497 0.021 100.095 00:08:38 2.102

498 0.021 100.095 00:08:39 2.102

499 0.022 95.545006 00:08:40 2.102

500 0.021 100.095 00:08:41 2.102

501 0.042 50.048004 00:08:42 2.102

502 0.021 100.095 00:08:43 2.102

503 0.021 100.095 00:08:44 2.102

504 0.021 100.095 00:08:45 2.102

505 0.022 95.545006 00:08:46 2.102

506 0.021 100.095 00:08:47 2.102

507 0.062 33.903 00:08:48 2.102

508 0.021 100.095 00:08:49 2.102

509 0.021 100.095 00:08:50 2.102

510 0.021 100.095 00:08:51 2.102

511 0.022 95.545006 00:08:52 2.102

512 0.021 100.095 00:08:53 2.102

513 0.022 95.545006 00:08:54 2.102

514 0.021 100.095 00:08:55 2.102

515 0.021 100.095 00:08:56 2.102

516 0.011 191.091 00:08:57 2.102

517 0.021 100.095 00:08:58 2.102

518 0.021 100.095 00:08:59 2.102

519 0.021 100.095 00:09:00 2.102

520 0.021 100.095 00:09:01 2.102

520 0 0 00:09:02 0

521 0.059 35.627003 00:09:03 2.102

522 0.021 100.095 00:09:04 2.102

523 0.021 100.095 00:09:05 2.102

524 0.022 95.545006 00:09:06 2.102

525 0.021 100.095 00:09:07 2.102

526 0.02 105.100006 00:09:08 2.102

527 0.021 100.095 00:09:09 2.102

528 0.012 175.167 00:09:10 2.102

529 0.022 95.545006 00:09:11 2.102

530 0.022 95.545006 00:09:12 2.102

531 0.021 100.095 00:09:13 2.102

532 0.022 95.545006 00:09:14 2.102

533 0.021 100.095 00:09:15 2.102

534 0.021 100.095 00:09:16 2.102

535 0.061 34.459003 00:09:17 2.102

536 0.021 100.095 00:09:18 2.102

537 0.021 100.095 00:09:19 2.102

538 0.021 100.095 00:09:20 2.102

539 0.021 100.095 00:09:21 2.102

540 0.021 100.095 00:09:22 2.102

541 0.021 100.095 00:09:23 2.102

542 0.011 191.091 00:09:24 2.102

543 0.021 100.095 00:09:25 2.102

544 0.021 100.095 00:09:26 2.102

545 0.021 100.095 00:09:27 2.102

546 0.021 100.095 00:09:28 2.102

547 0.021 100.095 00:09:29 2.102

547 0 0 00:09:30 0

548 0.011 191.091 00:09:31 2.102

549 0.021 100.095 00:09:32 2.102

550 0.071 29.606 00:09:33 2.102

551 0.022 95.545006 00:09:34 2.102

552 0.02 105.100006 00:09:35 2.102

553 0.022 95.545006 00:09:36 2.102

554 0.025 84.08 00:09:37 2.102

555 0.022 95.545006 00:09:38 2.102

556 0.021 100.095 00:09:39 2.102

557 0.021 100.095 00:09:40 2.102

558 0.011 191.091 00:09:41 2.102

559 0.021 100.095 00:09:42 2.102

560 0.011 191.091 00:09:43 2.102

561 0.021 100.095 00:09:44 2.102

562 0.022 95.545006 00:09:45 2.102

563 0.021 100.095 00:09:46 2.102

564 0.011 191.091 00:09:47 2.102

565 0.036 58.389004 00:09:48 2.102

566 0.031 67.806 00:09:49 2.102

567 0.021 100.095 00:09:50 2.102

568 0.022 95.545006 00:09:51 2.102

569 0.021 100.095 00:09:52 2.102

570 0.021 100.095 00:09:53 2.102

571 0.021 100.095 00:09:54 2.102

572 0.021 100.095 00:09:55 2.102

573 0.021 100.095 00:09:56 2.102

574 0.012 175.167 00:09:57 2.102

575 0.021 100.095 00:09:58 2.102

576 0.012 175.167 00:09:59 2.102

576 0 0 00:10:00 0

577 0.021 100.095 00:10:01 2.102

578 0.022 95.545006 00:10:02 2.102

 13.191001 59036.5109

Average 0.0228218 102.139292

C RESULTING DATA LI

C.3 Needed Times to Learn the Techniques and Solve the
Experimental Task

Metric 3d, time to become ac-
quainted with the techniques in h

Metric 3e, time to solve the prepara-
tory exercises in h

CB-SPE Palladio CB-SPE Palladio
3 2 3 3
2 1 3 3
3.5 3.5 5 5
0.25 0.17 7 5
2.5 0.8 6.5 3
1 1 4.5 2.5
5 1 4 3
3 0.5 6 2
2 1 5 2
4 1 11 5
2 2 4 4
1.5 0.3 16 3.5
2.5 1 6 4
0 0 10 5
2 3 10 10
1 1 2 2
1 1 4 2
3 1 4 3
4 0.75 8 3
4 2 2 2

Table 25: Needed Times to Learn the Techniques and Work on Preparatory Exercise (metrics
3d and 3e)

Time in minutes
CB-SPE Palladio intuitive

155 180 90
150 210 40
120 135 40
140 120 30
120 135
120 120
120 90
90 105
78 120

130 135
150

Table 26: List of Needed Times for Experimental Exercise (Metric 3c)

Empirical Validation and Comparison of the Model-Driven Performance
Prediction Techniques CB-SPE and Palladio

Declaration

I declare that this thesis is my own work and has not been submitted in any form to another
university or other institute of tertiary education. Information derived from the published and
unpublished work of others has been acknowledged in the text and a list of references is given.

August 15th, 2005
Anne Martens

