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1. Introduction

Interactions between DNA and proteins are implicated in almost
all aspects of life.[1–3] Methods to analyze protein–DNA interac-
tions have a wide range of applications in various fields of science

and technology including drug discovery
and development,[4] diagnostics medi-
cine,[5] biotechnology and genetic engineer-
ing,[6] genomic research and regulation,[7,8]

and neuroscience.[9] Contemporary meth-
ods include vivo techniques such as chro-
matin immunoprecipitation (ChIP),[10]

electrophoretic mobility shift assay
(EMSA),[11] SELEX-based techniques[12]

southwestern blotting,[13] and biophysical
techniques like fluorescence-based techni-
ques,[13] circular dichroism,[13] atomic
force microscopy,[13] nuclear magnetic
resonance (NMR),[14] surface plasmon res-
onance spectroscopy,[13] and X-ray crystal-
lography.[13,15] However, these methods
have several limitations including the need
for 1) specific and potentially expensive
antibodies that are not widely accessible
(e.g., ChIP), 2) multimodal analytics (e.g.,
NMR), 3) elaborate and time-consuming
sample preparation (e.g., SELEX-based
methods), or 4) the need for specialized
equipment and facilities (e.g., X-ray techni-
ques).[13,16,17] Therefore, it is still a chal-

lenge to find and develop fast, simple, inexpensive, and
accurate methods to characterize protein–DNA binding affini-
ties.[18] In previous studies, the preferential interaction of linker
histone (H1) with eukaryotic DNA was contrasted to prokaryotic
DNA through binding assays utilizing nitrocellulose filters.[19]

Al-Natour et al. (2007) showed the binding of highly lysine-rich
H1 to superhelical DNA, favoring it over linear or nicked circular
DNA forms as deduced from direct competition experiments.[20]

Lymphocyte DNA fragments, weighing 2� 106 Da exhibited a
binding affinity with H1 at a magnitude at least 15 times greater
than equivalent E. coli fragments of the same molecular
weight.[21] Other studies demonstrated that helix and turn forma-
tion can be induced in a peptide from the COOH-terminal
domain of histone H1 by binding to double-stranded DNA.[22]

Luiza et al. found that the vibrational characteristics of DNA,
notably PO2

�, were influenced in distinct ways by binding to his-
tone H1, protamine, and histone-mimicking macromolecules.[23]

Specifically, they reported that the shift of DNA’s PO2
� antisym-

metric stretching bands were characteristically altered by the
presence of lysine-rich histones.[23] Alternatively, molecular
dynamic (MD) modeling techniques can predict the binding
affinity of biomacromolecules.[24] Despite the multitude of stud-
ies focusing on protein–ligand and protein–protein docking sim-
ulations,[25] MD methods still have limitations for DNA or larger
proteins.[25–27] Machine learning (ML) approaches have been
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discussed as alternatives,[28] but require access to large data
sets.[29] While the protein data bank (PDB) contains over
219 869 experimentally determined structures as of May 2024,
the number of protein–DNA complex structures listed is limited
to several thousands.[30]

Over the last few decades, increasing attention has been
directed toward the patterns obtained from drying droplets.[31–33]

Experimentally, characteristic patterns can emerge from drying
droplets of biological fluids containing nonvolatile species, which
reflects the physicochemical dynamics in droplet wetting and
evaporation.[34] The phenomenon sometimes referred to as the
“coffee-ring effect” depends on various parameters, such as envi-
ronmental conditions (temperature, relative humidity), nature of
salute components (chemical composition, size, and initial con-
centration),[35] and the substrate chemistry.[36,37] Askounis et al.
(2016) indicated that lower viscosity in droplets containing
shorter DNA chains facilitates easier mobility and continuous
deposit growth, causing dendrite crystal formation through
diffusion-limited growth. Conversely, for longer DNA chains,
crystallization was attributed to “faceted growth”, primarily a
nucleation-limited process.[38] Some other examples of published
deposit patterns include uniform films,[39] fingering-like pat-
tern,[40] dendritic pattern,[41] dot-like pattern,[42] as well as more
complex arrangements.[37,43]

In our previous study, we delved into the development of
ML-based image analysis methods for predicting single amino
acid mismatches in proteins using deep learning techniques.
We showed that crucial insights about both primary and second-
ary peptide structures could be gathered from the patterns of
residues left by drying droplets. We used deep-learning neural
networks trained with polarized light microscopy images
obtained from the drying droplet deposits of various amyloid-
beta peptides to analyze complex stain patterns.[44]

Here, we leverage conventional image-based neuronal
networks for the analysis of large cohorts of images obtained
by drying histone–DNA solutions. We developed an automated
workflow that involves depositing defined volumes of histone–
DNA complexes in a massively parallel fashion and obtaining
images of the stain patterns using an automated polarized light
microscope. This workflow resulted in thousands of images
within a couple of hours. This cost-efficient, fast, and automated
method to study histone–DNA interactions has been successfully
applied to both eukaryotic and prokaryotic DNA samples.

2. Results and Discussion

To create uniform and hydrophobic substrates, which are crucial
for ensuring consistent circular droplets with an average water
contact angle (80� 1°) across large surface areas, we utilized
chemical vapor deposition (CVD) polymerization. Specifically,
we used CVD polymerization to coat glass wafers with homoge-
nous poly(p-xylylene) (PPX) films of 50 nm thickness.[45]

Subsequently, a defined and constant volume of 2 μL of an aque-
ous solution containing the histone–DNAmixture was dispensed
onto the coated surfaces and allowed to dry under controlled
humidity and temperature conditions (40%, 23 °C) for 50min.
Throughout the study, the same buffer was used which con-
tained 100mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic

acid (HEPES) buffer (pH 7.8), 150mM potassium chloride,
and 50mM ammonium sulfate.[46] Potassium chloride and
ammonium sulfate were included because of their kosmotropic
properties, i.e., they prevent protein denaturation and enhance
salting-out effects promoting protein–DNA interactions.[47,48]

The patterns created during deposition from protein–DNA
mixtures are compositionally straightforward, but structurally
intricate supramolecular systems that are regulated by locally
and temporally interconnected multiscale processes.[33] As the
protein–DNA solution dries, the solution becomes saturated
until its components ultimately precipitate. Salt and biomolecule
deposition initiates at the periphery of the droplet and progresses
toward central droplet regions leading to at least partially crystal-
line stains (Video S1, Supporting Information). We thus rou-
tinely characterized these deposition patterns with polarized
light microscopy (PLM). Figure 1 displays a PLM image depicting
a typical drying pattern obtained from a histone-Salmon20 kbp
DNA mixture. For topographic characterization of the deposited
patterns, we employed scanning electron microscopy (SEM). The
SEM image revealed the existence of high-aspect structures,
which are distributed throughout the stain pattern (Figure 1A).

For chemical characterization, we utilized time-of-flight
secondary-ion mass spectrometry (TOF–SIMS) as illustrated in

Figure 1. Deposition stains of H1-DNA droplets reveal complex informa-
tion about protein-DNA interactions. Stains were obtained by depositing
2 μL droplets of an aqueous HEPES buffer solution onto hydrophobic poly
(para-xylylene) coated glass wafers. A) Representative PLM and SEM
images of the same dried stain obtained from an H1–Sal20 kbp DNA mix-
ture revealing complex deposition patterns. The scale bars represent
500 μm. B) Analysis of a H1–Sal20 kbp DNA mixture stain via TOF-SIMS
imaging reveals the presence of PO3

� (intensity color scale 0–2 counts),
highlighted in blue. The amino acids of histone and the nucleotides of
DNA, are distinguished by CNO� fragments (marked in green, intensity
color scale 0–30 counts). The chloride ions distribution stemming from
the buffer solution is displayed in red (intensity color scale 0–30 counts).
First row: RGB channels and their overlay. The scale bars represent
500 μm.
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Figure 1B for a H1–Sal20 kbp DNA stain. For comparison, the
analysis of pure Sal20 kbp DNA or H1 stains has been included
in the Supporting Information (Figure S1–S2). We associate the
PO3

� signal with the phosphate backbone of the DNA molecule,
while the CNO� signal is indicative of the total organic mass, i.e.,
histone and DNA. We used the Cl� signal to trace salt stemming
from the buffer. All three signals, CNO�, PO3

�, and Cl� were
homogeneously distributed throughout the entire stain pattern
indicating co-deposition of the protein and DNA.

Next, we tested if the stain patterns can be utilized to classify
diverse types of DNA of variant types and sizes (Figure 2A). First,
we generated arrays of drying droplet patterns obtained from
four distinct DNA–histone (H1) mixtures (Figure 2B). For each
group, we typically generate 400–500 PLM images, which are
then used to train InceptionV3. InceptionV3 is a commercially
available deep learning (DL) neural network.[44,49] We note that
about 100 images can easily be recorded in 60min.

2.1. Classification of Various DNA

Figure 3A displays the classification of PLM images of stain
patterns containing Salmon DNA (Sal20 kbp), Sheared Salmon
DNA (Sal1 kbp), Herring DNA (Her), and Lambda DNA (ƛ).
These four types of DNA differ in their genetic information
and/or molecular weight. Sal20 kbp DNA, Sal1 kbp DNA, and

Her DNA constitute eukaryotic DNA, while ƛ DNA is of prokary-
otic origin. Using the InceptionV3 DL network, the categoriza-
tion of PLM images was carried out and resulted in an
accuracy rate of 100% for each group, as illustrated by the con-
fusion matrix presented in Figure 3B. In this case, the evaluation
relied on training and validation dataset consisting of about 1600
images (400 images per group). For analysis, a test set compris-
ing 320 (80 images per group) randomly selected images was
used. All test set images were new and not previously included
in the training set. Gradient-weighted class activation mapping
(Grad-CAM) was utilized to generate activation maps of the soft-
max activation layer of the DL network. This approach is useful
for identifying learning features associated with information-
rich regions of the PLM images.[50] Figure S3 (Supporting
Information) shows the heat map layers of the PLM images,
underscoring the DL network’s specific focus on central regions
of the stain patterns. The application of the t-distributed stochas-
tic neighbor embedding (t-SNE) algorithm (Figure 3C) after
nonlinear dimensionality reduction in InceptionV3’s “depth
concatenation” layer revealed pronounced clustering for all four
DNA variants. The t-SNE visualizations were produced utilizing
the “Softmax” layer of the CNN. The result of this layer is a four-
dimensional array composed of the spatial dimensions (x and y)
of the images, the image channels, and the batch dimension,
respectively.[51] This observation further confirms that the stain

Figure 2. Classification of DNA, and H1-DNA binding affinity based on the type and the size of DNA by analyzing their deposition patterns applying a DL
approach. A) The pre-trained deep convolutional neural network (CNN) was trained using a moderate number of PLM images depicting various groups of
DNA and H1-DNA complex stains, employing an established transfer learning technique. In the subsequent step, the CNN was tested with unseen
images to evaluate its capability to classify different DNA and H1-DNA mixtures based on the distinct patterns formed during their interactions.
B) Representative PLM images of H1-DNA stains from four different DNA deposited on a CVD-coated glass slide, demonstrating pattern variability.
Top to bottom: H1–Sal20 kbp DNA (top, left), H–Her DNA (top, right), H1–Sal1 kbp DNA (bottom, left), and H1-ƛ DNA (bottom, right).
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patterns are not only distinguishable, but also predictive for a
particular DNA type.

2.2. Relative Affinity of H1–DNA Interaction - Based on DNA
Type (Eukaryotic Versus Prokaryotic DNA)

A simple method for stratification of different protein–DNA
complexes based on their binding affinity will be of significant
interest to a wide range of applications. We utilized H1 as the
DNA binding partner which was kept constant. We attempted
to delineate the interactions between H1-prokaryotic DNA
(non-specific binding) and H1-eukaryotic DNA (specific bind-
ing). Following the above-outlined experimental approach, the
InceptionV3 model was then employed to classify different sets
of protein–DNA mixtures, which varied in terms of the type of
DNA and had different binding affinities.[52,53]

Five distinct H1/DNA ratios (0.5–6.8 mole H1/168 base pairs
DNA) were prepared for eukaryotic Sal20 kbp DNA and the
prokaryotic ƛ DNA. To exclude size effects, DNA with similar
number of base pairs was procured from commercially available
DNA sources (Figure 4A). About 480 PLM images were collected
for each ratio (400 images for training and validation sets and 80
images for the test set). The corresponding PLM images
(Figure 4B) display distinct patterns for both, eukaryotic and

prokaryotic DNA. The deposited patterns of eukaryotic DNA
before and after adding the H1 appear similar. However, the
patterns for H1-prokaryotic DNA mixtures display visual charac-
teristics that are distinct from those observed in the patterns of
histone alone or prokaryotic DNA alone. Figure 4D depicts the
classification of similar ratios of H1 with two different types of
DNA (eukaryotic and prokaryotic) by the Inception V3 network.
In Sal20 kbp DNA samples exhibiting a higher binding affinity
with H1, even minor quantities of histone result in affinity com-
plexes as recognized by the CNN. We note that the associated
changes in the stain patterns are not visible to the naked eye.
The larger the structural changes, the clearer the CNN distin-
guishes the nature of the deposition patterns between different
ratios of H1/DNA as indicated by higher prediction accuracy
through CNNs.[44] Figure 4D shows that the average prediction
accuracy for various ratios of H1-Sal20 kbp DNA (eukaryotic) was
99%, exceeding the average prediction accuracy of 93% for
H1-ƛ DNA (prokaryotic).

According to the CNN-derived confusion matrix, the predic-
tion accuracies decreased with decreasing histone-to-base pair
ratio and were the lowest for R0.5 and R1 (0.5 and 1mol of
H1 per 168 base pairs of Sal20 kbp DNA). A total of 2.5% of stain
images of the R0.5 group were misclassified as R1 group, while
5% of the R1 group were miscategorized as R0.5. The addition of
more histone to Sal20 kbp DNA (e.g., R1.4, R3.4, and R6.8) yielded

Figure 3. DL-informed classification of various DNA. A) PLM images of Sal20 kbp DNA (with red dashed-line), Sal1 kbp DNA (with green dashed-line), Her
DNA (with blue dashed-line), and ƛDNA (orange dashed-line). The scale bars represent 1 mm. B) Four different DNA stains (varied by type and size) were
analyzed using InceptionV3. C) t-SNE plot displaying the results from the “SoftMax Activation” layer of the trained CNN. Sal20 kbp DNA, Sal1 kbp DNA, Her
DNA, and ƛ DNA were indicated by purple, yellow, blue, and orange, respectively.
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accuracies of up to 100%. Conversely, the H1-ƛ DNA (prokary-
otic) mixtures demonstrated a lower average prediction accuracy
of only 93%. The prediction accuracies for the groups of R0.5, R1,
R1.4, and R3.4 were 90%, 85%, 97.5%, and 80%, respectively.
Complete prediction accuracy (100%) occurred only at a ratio

R6.8 H1-ƛ DNA, while in the H1-Sal20 kbp DNA groups, this
100% prediction accuracy was achieved already at lower H1 con-
centrations at the ratio R1.4. The t-SNE visualization (Figure 4E)
showed clear clustering between different groups in H1-
Sal20 kbp DNA, bit not between different groups of H1-ƛ DNA.

Figure 4. DL-informed classification of eukaryote and prokaryote H1-DNA interactions. A) Schematic representation of Sal20 kbp DNA, ƛ DNA, and
histone (H1). B) PLM images of Sal20 kbp DNA (without histone), ƛ DNA (without histone), histone (without any DNA), and each H1-DNA mixtures
deposition patterns. The scale bars represent 1mm. C) Ethidium bromide-DNA complex displacement assay (each data point represents the average of
samples obtained from two distinct experiments). The decrease in relative fluorescence intensity of the EtBr-Sal20 kbp DNA (red dash-line), and EtBR-ƛ
DNA (orange dash-line) complexes is a result of the interaction between H1 and each DNA. D) H1-DNA mixture stains were analyzed using InceptionV3
for two different DNA which are mixed with histone. E) Visualization of the ’depth concatenation’ layer in the trained CNN.
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To corroborate the findings obtained from the CNN analysis,
we conducted an ethidium bromide displacement experiment.
Ethidium bromide typically binds to DNA through molecular

intercalation. However, when DNA binds to a strong binding
partner, the ethidium bromide molecule dislodges from the
DNA, resulting in reduced fluorescence, due to rapid proton

Figure 5. DL-informed prediction of H1-DNA interactions. A) Schematic representation of Sal 20 kbp DNA, Sal 1 kbp DNA, Her DNA, and H1. B) PLM
images of each DNA (without histone), histone (without DNA), and each H1-DNA mixture deposition pattern. The scale bars represent
1mm. C) Ethidium bromide-DNA complex displacement assay. D) H1-DNA mixtures stains analyzed using InceptionV3. E) Visualization of the
‘depth concatenation’ layer in the trained CNN indicates different clusters corresponding to H1-Sal 20 kbp DNA, H1-Sal1 kbp DNA, and H1-Her DNA.
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transfer from the excited singlet to water.[54] The results of this
assay are depicted in Figure 4C and clearly demonstrate that the
incorporation of H1 into a pre-incubated solution of Sal20 kbp
DNA-EtBr resulted in a greater displacement of ethidium
bromide compared to the solution with ƛ DNA-EtBr.

2.3. Relative Affinity of H1–DNA Interaction - The Role of
DNA Size

Longer DNA molecules provide more binding sites for H1,
increasing the likelihood of H1–DNA interactions, and contrib-
uting to tighter compaction of DNA. The study of Renz[21] found
that the binding affinity to H1 varies for DNA with different frag-
ment lengths, i.e., H1 showed a higher affinity for longer eukary-
otic DNA fragments compared to shorter fragments. Moreover,
Aviles et al.[55] demonstrated that H1 exhibits a preferential bind-
ing affinity for high molecular weight calf thymus DNA com-
pared to sheared DNA fragments. Changes in the molecular
weight of DNA can influence the propensity of binding between
DNA and protein, potentially altering the physical and chemical
properties of the protein–DNA complex.[56] In Figure 5,
Inception V3 was employed for classification of H1–DNA
binding affinity based on the difference in the size of the

DNA fragments. Three different sizes of eukaryotic DNA, includ-
ing Sal20 kbp DNA, Sal1 kbp DNA, and Herring (Her) DNA (50 bp)
were included in the comparison. Figure 5A shows a schematic
representation of three distinct DNA sizes, while Figure 5B dis-
plays characteristic PLM images of the droplet stains that
resulted from each complex. Using a training set of 360 PLM
images, and a test set of 80 PLM images for each group
(Figure 5D), we found that the average prediction
accuracy from various ratios of H1-Sal20 kbp DNA was higher
than the average prediction accuracy of H1-Sal1 kbp DNA and
H1-Her DNA complexes at similar histone ratios. With a
completely unknown test set, i.e., none of the images has been
previously encountered by the CNN, we observed 1%, 9% and
15% of total misclassification for H1-Sal20 kbp DNA, H1-Sal1 kbp
DNA, and H1-Her DNA, respectively. The H1-Sal20 kbp DNA
ratios of 1.4 and higher resulted in highly distinct stain
patterns, whereas in the case of the shorter DNA fragments,
lower accuracies were observed. Furthermore, the t-SNE
plot (Figure 5E) showed various clusters corresponding to
H1-Sal20 kbp DNA (with high binding affinity), H1-Sal1 kbp
DNA (with medium binding affinity), and H1-Her DNA (with
low binding affinity). The trend in binding affinity was verified
using the ethidium bromide displacement experiment
described above (Figure 5C).

Figure 6. Examination of the pre-trained network performance of DNA samples from a novel species (Calf DNA). A) Workflow for the classification of
unknown samples. B) Prediction table for unseen/unknown protein/DNA samples.
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2.4. Classification of Unknown Histone–DNA Interactions

Next, we wanted to assess the model’s ability to predict different
H1–DNA binding affinities of unknown DNA samples from spe-
cies not included in the original training set. For this purpose,
the neural network was trained with 25 distinct samples includ-
ing various ratios of H1-DNA for Sal20 kbp DNA, Sal1 kbp DNA,
Her DNA, and ƛ DNA, DNA samples without H1, and H1 sam-
ples without DNA. The size of the training and validation set
amounted to approximately ten thousand PLM images. This
pre-trained CNN was then used to predict various categories
of H1-DNA binding affinities from unknown DNA samples.
Figure 6A depicts the workflow used for the analysis of
unseen/unknown samples, which involved data collection, fea-
ture extraction, and model training and validation. As shown
in Figure 6B, the pre-trained network accurately predicted the
binding affinity of DNA from species included in the training
set. We observed 100% prediction accuracy even though these
images were unknown to the CNN (i.e., not included in the train-
ing set). For images of Calf DNA mixed with H1, samples were
predominantly classified as strong binders (84.4%) with another
5.6% characterized as medium binders. Despite the fact that the
CNN had never seen stain patterns that involve Calf DNA, the
vast majority (96%) of stain patterns were accurately classified
as eukaryotic DNA (i.e., specific H1 binding), while only 4% were
misclassified as prokaryotic DNA (i.e., non-specific binding).
This high classification accuracy of DNA stain images from
unknown DNA samples speaks to the robustness of our
approach and demonstrates the model’s capacity to evaluate
unknown field data.

We evaluated how the prediction accuracy is influenced by the
sample size of the test sets (Figure S4, Supporting Information).
Based on only 10 images, the CNN classified 90% of the Calf
DNA samples as strong binding. Further inclusion of additional
images (e.g., 50, 80, and 100 images) increased the average pre-
diction accuracy only marginally to 91%. These findings imply
that based on only 10 images, reliable results can be achieved,
underscoring the efficiency and feasibility of this ML approach.

3. Conclusions

Our study leverages deep-learning techniques to investigate the
relative binding affinity of DNA and H1. Specifically, analysis of
stain images of histone–DNA complexes with the InceptionV3
CNN resulted in reliable and predictive categorization of their
binding affinity. The network predicted that eukaryotic DNA
interacts more strongly with H1 than prokaryotic DNA. With
increasing fragment size, higher prediction accuracies were
observed and trends between DNA fragment size and binding
affinity to a histone were accurately predicted based on their stain
patterns. When challenged with DNA from an unknown species
(here Calf DNA), the CNN accurately classified the DNA as
strong H1 binder. Interestingly, the cohort size of the test set
had only marginal effects with a sample size suggesting that only
10 images are sufficient to obtain 90þ% accuracy. While small
sample sizes can be used for the test case, the robustness and
reliability of the model still depend on a very large training data
set. In this study, we generated ≈12 000 images in total that then

were used to pre-train the network to recognize unknown
images. We also note that our study used four different DNA
types and sizes, demonstrating that the model can generalize
effectively beyond the initial simple cases.

The methodology developed in this study may facilitate the
rapid screening of DNA-binding candidates or protein–DNA
interactions with potentially broad applicability in biotechnology
and molecular biology. Further image screening with a diverse
set of proteins and DNA is necessary to enhance the training of
the network, leading to improved binding affinity predictions and
generalization.

4. Experimental Section

Surface Preparation by CVD Polymerization: Glass slides with the dimen-
sions of 120mm� 80mm and the thickness of 0.1� 0.05mm
(Optrovision, München, Germany) were cleaned by a plasma cleaner
(Tergeo, Union city, CA, USA). Subsequently, they were coated with
poly(p–xylylene) through a chemical deposition polymerization pro-
cess.[57,58] In this process, the precursor [2,2]-paracyclophane (Curtiss-
Wright Surface Technologies, Galway, Ireland), undergoes sublimation
under reduced pressure and elevated temperature. Trough subsequent
pyrolysis it is then transformed into p-quinodimethane, which spontane-
ously polymerizes upon condensation onto a cooled surface.[59] Argon was
applied as a carrier gas at a flow rate of 20 sccm. The sublimation process
occurred within a temperature range of 100–150 °C, succeeded by pyrolysis
at 660 °C. The pressure for the coating procedure was maintained at
0.15mbar.

Histone–DNA Solutions: Deoxyribonucleic acid sodium salt from
salmon testes (Sal20 kbp), deoxyribonucleic acid from herring sperm
(Her DNA), low molecular weight deoxyribonucleic acid from salmon
sperm, and Histone H1 protein were purchased from Merck
(Germany). Sheared Salmon (Sal1 kbp) DNA was produced through the
sonication of Sal20 kbp DNA, resulting in fragments with an average size
of 1000 base pairs (Figure S5, Supporting Information). The sonication
process took place on ice at a frequency of 20 kHz with an exposure time
of 5 min. ƛ DNA was procured from Thermo Scientific. H1-DNA com-
plexes were prepared by the direct mixing of their previously equilibrated
solutions in a binding buffer. This buffer contained 100mM HEPES (pH
7.8) (Merck Chemicals GmbH), along with 150mM potassium chloride
(Merck Chemicals GmbH) and 50mM ammonium sulfate (Merck
Chemicals GmbH). Histone (H1) was gradually added to the DNA at five
ratios: 0.5 (R0.5), 1 (R1), 1.4 (R1.4), 3.4 (R3.4), and 6.8 (R6.8) mole of
histone (H1) per 168 base pairs of the DNA. The total mass concentration
of H1þDNA remained constant across all ratios. The solutions were
gently stirred by an SB3 tube rotator (Stuart, Stone, UK) at 10 rpm for
60min at room temperature (25 °C), and then stored at �20 °C until
further use.

Droplet Deposition: An automated 96-well microplate pipetting robot
(epMotion 5070, Eppendorf AG, Hamburg, Germany) was used to load
small droplet (2 μL) of the solutions on the coated surface by a 1-channel-
dispenser (TS10, Eppendorf AG, Hamburg, Germany). The pipetting
system was set up to put 96 droplets on each glass plate, forming a grid
with 12 columns and 8 rows. To control the evaporation rate, the robot was
inserted inside a climate chamber (ICH 750, Memmert GmbHþ Co. KG,
Schwabach, Germany) with the controlled temperature of 23� 0.5 °C and
a humidity of 40� 3%. After drying the droplets (≈50min). Deposition
pattern images were acquired using an Olympus polarizing optical micro-
scope with the exposure time of 1/20 s (BX-53F, Tokyo, Japan) equipped
with an automated stage. A 4 K digital camera (UC90, Münster, Germany)
operating in color profile mode captures images by assigning intensity val-
ues between 0 and 255 to each pixel for the red, green, and blue (RGB)
channels. All the images were taken under the same microscope settings,
using a 10� magnification lens, and stitched together using the Multi
Image Alignment (MIA) algorithm from CellSens software (Olympus,
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Tokyo, Japan).[44] Each dried droplet’s image had a size of 2344 pixels
� 1878 pixels in JPG format.

Convolutional Neural Network of Training and Testing Set Images: The
CNN training and further processing of the PLM images were performed
using MATLAB software (R2022a, MathWorks Inc.). The Inception V3 (the
pre-trained CNN network) was selected to train and test images, due to its
high response speed and acceptable accuracy. The Inception V3 network is
a deep convolutional neural network architecture primarily designed for
image classification tasks. It is an evolution of the original Inception
model, which was developed by Google. Inception V3 is characterized
by its use of “Inception modules,” which are designed to efficiently capture
multi-scale features in an image. It contains 315 layers, making it a rela-
tively deep neural network. The network requires input images with three
color channels corresponding to RGB to be resized to 299 pixels � 299
pixels. This means that the images used for training and inference should
be preprocessed to this size before being fed into the network. The images
were cropped to 1878� 1878 pixels by trimming 233 pixels from each side
and then resized to fit the CNN’s input layer requirements. The prepro-
cessing step involves “rescale-symmetric” normalization the pixel values
to [�1 1] range. The output parameters are the probabilities associated
with each class in the classification task. Using the same format for all
groups ensured consistent comparisons and maintained the integrity of
our analysis. The resizing of all images to 299� 299 pixels ensured stan-
dardized input and minimized the impact of the initial image format on
the final analysis. Using a transfer learning approach, a network initially
pre-trained on a substantial dataset of image features underwent fine-
tuning with a relatively small set of new images.[60,61] In the transfer learn-
ing process, the final classification layer was excluded from the network
and then retrained with the new dataset. The fine-tuning process involved
adjusting the parameters across all layers with a consistent global learning
rate of 0.001, a minimum batch size of 32 images, and a maximum of
40 epochs. During training, ≈360 images were used per class, while 40
images per class served as validation data. For evaluating the trained net-
work, 80 images per class were used as a separate test set. Importantly,
there was no overlap between the training, validation, and test sets to
ensure unbiased evaluation.[44] The t-distributed Stochastic Neighbor
Embedding (t-SNE) algorithm, known for visualizing high-dimensional
data, was utilized on the last hidden layer representation of the trained
CNN (softmax) to demonstrate the network’s ability to cluster different
groups effectively. This t-SNE analysis was carried out using a MATLAB
ML package, employing a perplexity of 30 and a learning rate of 500.
To gain insights into the regions of the image that significantly influence
the deep learning network’s classification decisions, the visualization
algorithm called gradient-weighted class activation mapping (Grad-CAM)
was employed.

SEM: The structural characteristics of the H1–DNA complex and salt of
stain droplets were analyzed through scanning electron microscopy (SEM)
using a TESCAN VEGA3 instrument. To mitigate surface charging effects,
a fine layer of gold was sputtered onto the samples before SEM imaging.
The secondary ion detector was used. All SEM images were acquired at an
electron accelerating voltage of 15 kV with a working distance of 7.2 mm.

TOF-SIMS: Time-of-flight secondary-ion mass spectrometry (TOF-
SIMS) was performed using a mass spectrometer (ION-TOF GmbH,
Münster, Germany) equipped with a Bi cluster liquid metal primary-ion
source and a non-linear time-of-flight analyzer. For spectrometry, short
primary-ion pulses (<1 ns) of the Bi source was operated in the “bunched”
mode providing Bi1þ ion pulses at 25 keV energy and a lateral resolution of
5 μm. As the droplets were larger than the maximum deflection range of
the primary-ion gun of 500� 500 μm2, the images were obtained using the
manipulator stage scanmode. Negative polarity spectra were calibrated on
the C�, CH�, and CH2� peaks. Spectrometry was performed in static
SIMS mode by limiting the primary-ion dose to <1011 ions cm�2.
Charge compensation was necessary because of the glass substrate so
that an electron flood gun providing electrons of 20 eV was applied
and the secondary-ion reflectron tuned accordingly.

Ethidium Bromide Displacement Assay: The ethidium bromide (EtBr)
(VWR, USA) displacement assay was performed according to Geall
et al. (2000) in 10mM HEPES buffer (pH 7.8) along with 15mM KCl

and 5mM (NH4)2 SO4.
[54] Steady state fluorescence measurements were

done on a spark multimode reader from Tecan (TECAN, Deutschland
GmbH).

The 96-well black well plate was maintained at a temperature of
293.15 K. The working volume of the solution (200 μL) contained 0.1 M

EtBr for each 168 base pairs of DNAs. A solution of EtBr was introduced
into the stirring solution and allowed to equilibrate for 15min.
Subsequently, aliquots of histone were added to the stirring solution,
and fluorescence was measured after 30min of equilibration.

Statistical Analysis: The analysis of variance was performed to examine
the impact of the quantity of unseen samples on prediction accuracy,
utilizing the least significant difference (LSD) method with SAS 9.1.3 soft-
ware (SAS Institute, Inc., 1999, Cary, NC, USA).The LSD method was
applied to identify significant differences with a significance level set at
p< 0.05 (Montgomery and Runger, 2011).[62]
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