
Generalized Reinforcement Learning for
Automated Driving under Uncertainty

Zur Erlangung des akademischen Grades eines

DOKTORS DER INGENIEURWISSENSCHAFTEN
(Dr.-Ing.)

von der KIT-Fakultät für Maschinenbau des
Karlsruher Instituts für Technologie (KIT)

angenommene

DISSERTATION

von

Danial Kamran, M.Sc.
geb. in Isfahan

Tag der mündlichen Prüfung: 29. January 2024

Hauptreferent: Prof. Dr.-Ing. Christoph Stiller
Korreferent: Prof. Dr. Matthĳs Spaan

Foreword

This dissertation is the result of my research as a PhD student at the Institute of
Measurement and Control Systems (MRT) at Karlsruhe Institute of Technology
(KIT). I would like to express my sincere gratitude to Prof. Stiller for his
guidance and mentorship throughout my PhD research projects. Special thanks
also go to Martin, Sahin, Florian, and other colleagues at MRT for their helpful
ideas, comments, and discussions about my work.

I would also like to express my special gratitude to Prof. Spaan for co-examining
my thesis and for the insightful discussions and excellent collaboration with his
research group (Thiago, Canmanie, and Qisong) at the Algorithmics Group at
Delft University of Technology.

Last but not least, I would like to extend my heartfelt thanks to my wife, my
parents, and my uncle Ali for their support during every moment of this journey.

Kurzfassung

Automatisiertes Fahren, auch als autonomes Fahren Technologie bekannt, hat
eine tiefgreifende Bedeutung im modernen Verkehrswesen und darüber hinaus.
Einer der überzeugendsten Gründe für die Bedeutung des automatisierten
Fahrens ist sein Potenzial zur erheblichen Verbesserung der Verkehrssicher-
heit. Menschliches Versagen ist eine führende Ursache für Unfälle auf der
Straße, und autonome Fahrzeuge haben das Potenzial, diese Vorfälle drastisch
zu reduzieren, indem sie Faktoren wie abgelenktes Fahren, Müdigkeit und
beeinträchtigtes Urteilsvermögen eliminieren. Darüber hinaus können automa-
tisierte Systeme schneller auf unerwartete Situationen reagieren als Menschen,
was die Wahrscheinlichkeit von Kollisionen weiter verringert. Eines der
Hauptprobleme für vollautomatisiertes Fahren besteht darin, dass die Entschei-
dungsrichtlinie mit verschiedenen Unsicherheitsquellen umgehen muss, wie
Wahrnehmungsfehler, verdeckte Fahrzeuge und unbekannte Absichten der
Fahrer mit unterschiedlichen Fahrstilen. Diese Arbeit stellt einen Ansatz auf
der Grundlage des Reinforcement Learning vor, um dieses komplexe Problem
zu lösen.

Reinforcement Learning (RL) kann komplexe Entscheidungsprobleme lösen, in-
dem es langfristig optimale Richtlinien lernt. Im modellfreien RL wird die nicht
vollständige Beobachtbarkeit in der Regel durch die Annäherung des wahren
Zustands mit einer Historie aktueller Beobachtungen (𝑘-Markov-Annäherung)
behandelt. Dies führt jedoch oft zu Richtlinien, die nicht verallgemeinert wer-
den können auf Umgebungen mit leicht unterschiedlichen Dynamiken aufgrund
verschiedener Rauschpegel oder unerwarteter menschlicher Verhaltensweisen
mit neuen Beobachtungen. Darüber hinaus wird die Sicherheit in der Regel
durch die Bestrafung des RL-Agenten für riskante Situationen behandelt, was
entweder zu wenigen Fehlern zur Laufzeit oder zu sehr konservativen Richtlin-
ien führt. Selbst generalisten Richtlinien, die mit verschiedenen Rauschpegeln
und unterschiedlichem menschlichem Verhalten trainiert werden, sind nicht
gegen neue Umgebungen mit neuen Fahrstilen robust.

I

Kurzfassung

Um die Verallgemeinerung in Bezug auf Sicherheit, Komfort und Nutzen anzuge-
hen, schlagen wir vor, Verteilungs-RL mit einem proaktiven Sicherheitsverifika-
tionsmodul zu kombinieren, um sichere und risikobewusste RL-Richtlinien bere-
itzustellen. Dank der proaktiven Sicherheitsschicht, die machbare notfallmäßige
Ausweichmanöver basierend auf den schlimmsten Annahmen gewährleistet,
werden unsichere Aktionen des RL herausgefiltert, was selbst bei höheren
Rauschpegeln als den Trainingsbedingungen zu sicheren Richtlinien führt.
Gleichzeitig wird die Richtlinie während des Trainings ermutigt, Sicherheit-
seingriffe zu minimieren und risikosensitive Entscheidungen mit Hilfe des
Verteilungs-RL zu erlernen.

Um die Verallgemeinerung in Bezug auf unerwartete menschliche Verhal-
tensweisen anzugehen, modellieren wir unbekannte menschliche Absichten als
versteckte Parameter im ursprünglich teilweise beobachtbaren Problem, was
dazu führt, dass das Problem als Hidden Parameter Block Markov Decision
Process (HiP-BMDP) gelöst wird. In dieser Formulierung haben Fahrer mit
denselben Absichten dieselben abstrakten MDP-Zustände und unterscheiden
sich nur in den Emissionsfunktionen. Dies führt zu einem modularen Rahmen-
werk, das während des Trainings effizienter mit Beispielen umgeht und sich in
neuen Umgebungen anpassen kann.

Unsere Bewertungen umfassen sowohl Simulationen als auch Experimente in der
realen Welt. In den Simulationsexperimenten trainieren und bewerten wir RL-
Richtlinien für das automatisierte Fahren an verdeckten Kreuzungen mit Sensor-
rauschen sowie interaktiven Einfädelungen mit neuen Fahrstilen. Unsere Bewer-
tungen in der realen Welt basieren auf Open-Source-Beobachtungsdatensätzen,
um die effiziente Offline-RL aus den Trajektorien beobachteter Fahrer für
interaktives Einfädeln auf Autobahnen zu demonstrieren.

In Anbetracht unserer Experimente kann das vorgeschlagene Verteilungs-RL
mit Sicherheitsverifikationsebene die Sicherheit garantieren und Notmanöver
minimieren, wenn es in Umgebungen mit höherem Sensorsignalrauschen als
im Training eingesetzt wird, basierend auf den zur Laufzeit bereitgestellten
geeigneten Risikosensibilitätsdaten für die Richtlinie. Darüber hinaus kann
das vorgeschlagene HiP-AP RL für interaktives automatisiertes Einfädeln in
Umgebungen mit neuen Fahrstilen übertragen werden. Quantitativ kann der
vorgeschlagene Verteilungs-RL-Agent die durchschnittliche Fahrzeit um etwa
40% bis 50% im Vergleich zur normalen DQN-Baseline reduzieren. Er erfordert

II

auch 50% bis 83% weniger Sicherheitseingriffe im Vergleich zur regelbasierten
Richtlinie und erhöht die durchschnittliche Fahrzeit leicht.

In realen Einstellungen zeigt der vorgeschlagene Offline-RL-Agent die Fähigkeit,
optimale interaktive Einfädelrichtlinien zu erlernen und mit neuen Fahrstilen
umzugehen. Wir beobachten eine Erfolgsrate von 100% für diese Richtlinie,
wenn sie mit dem proaktiven Sicherheitsmodul kombiniert wird, und zeigen
ihre Robustheit gegen ungültige Absichtsvorhersagen gemäß unseren Abla-
tionsversuchen.

III

Abstract

Automated driving, also known as autonomous or self-driving technology, holds
profound significance in modern transportation and beyond. One of the most
compelling reasons for the importance of automated driving is its potential to
significantly enhance road safety. Human error is a leading cause of accidents
on the road, and autonomous vehicles have the potential to drastically reduce
these incidents by eliminating factors such as distracted driving, fatigue, and
impaired judgment. Moreover, automated systems can react faster than humans
to unexpected situations, further reducing the likelihood of collisions. One
of the major obstacles for fully automated driving is that the decision-making
policy needs to deal with different sources of uncertainties such as perception
errors, occluded vehicles and unknown drivers’ intentions with different driving
styles. This thesis presents an approach based on reinforcement learning to
solve this complex issue.

Reinforcement learning (RL) can solve complex decision-making problems
by learning long-term optimal policies. In model-free RL paradigm, partial
observation is usually addressed by approximating the true state with a history
of recent observations (𝑘-Markov approximation). This will however result
in policies that are not generalized to be used in environments with slightly
different dynamics due to different noise levels or unexpected human behaviors
resulting in novel observations. Moreover, safety is usually addressed by
penalizing the RL agent for risky situations leading to either few failures at
run-time or too much conservative policies. Even generalist policies which are
trained with multiple noise levels and different human behaviors are not robust
to new environments with novel driving styles.

In order to address generalization of RL policies regarding safety, comfort,
and utility, we propose to combine distributional RL with a proactive safety
verification module to provide safe and risk-aware RL policies. Thanks to the
proactive safety layer which assures a feasible fail-safe emergency maneuver
based on the worst-case assumptions, unsafe actions from the RL are filtered out

V

Abstract

resulting in safe policies even at higher noise levels than the training settings.
Concurrently, the policy is encouraged to minimize safety interference during
training and learn risk-sensitive decisions using distributional RL.

In order to address generalization regarding unexpected human behaviors, we
model unknown human intentions as hidden parameters in the original partially
observable problem, leading to solve the problem as a Hidden Parameter Block
Markov Decision Process (HiP-BMDP). In this formulation, drivers with same
intentions have same high level MDP states and only differ in emission functions.
This results in a modular framework which is more sample-efficient during
training and adaptive when transferred into new environments.

Our evaluations include both simulation and real-world experiments. In the
simulation experiments we train and evaluate RL policies for automated driving
at occluded intersections with sensor noise and also interactive merging with
novel driving styles. Our real-world evaluations are based on open-source
observational datasets in order to demonstrate efficient offline RL from observed
drivers’ trajectories for interactive merging in highways.

In the light of our experiments, the proposed distributional RL with safety
verification layer can guarantee safety and minimize emergency maneuvers
when transferred to environments with higher sensor noise than training.
Moreover, the proposed HiP-AP RL for interactive automated merging can
transfer to environments with novel driver styles. Quantitatively, the proposed
distributional RL agent can reduce the average driving time up to 50% compared
to the normal DQN baseline. It also requires up to 83% less safety interference
compared to the rule-based policy and slightly increases the average driving
time.

In real-world settings, the proposed offline RL agent shows ability to learn
optimal interactive merging policies from observed human trajectories. We
observe 100% success rate for this policy when it is combined with the proactive
safety module and show its robustness against invalid intention predictions
according to our ablation experiments.

VI

Table Of Contents

Kurzfassung . I

Abstract . V

Abbreviations and Symbols . XI

1 Introduction . 1
1.1 Motivation . 2

1.1.1 Safe Reinforcement Learning for Automated Driving 2
1.1.2 Interactive Reinforcement Learning under Uncertainty 3
1.1.3 Offline Reinforcement Learning using Real-World Ob-

servational Datasets 5
1.2 Contributions . 6

1.2.1 Safe Reinforcement Learning for Automated Driving
under Uncertainty 6

1.2.2 Interactive and Transferrable RL Policies under Inten-
tion Uncertainty 7

1.2.3 Safe and Interactive RL with Real-World Datasets . . 8
1.3 Outline . 8

2 Fundamentals . 9
2.1 Markov Decision Process (MDP) 9
2.2 Partially Observable Markov Decision Process (POMDP) . . 10
2.3 Hidden Parameter Markov Decision Process (HiP-MDP) . . 10

2.3.1 Block Markov Decision Process (BMDP) 12
2.3.2 Hidden Parameter Block Markov Decision Process

(HiP-BMDP) . 12
2.4 Reinforcement Learning 13

VII

Table Of Contents

2.4.1 Deep Q-Network (DQN) 14
2.4.2 Distributional Reinforcement Learning 15
2.4.3 Batch-Constrained Deep Q-learning (BCQ) 17

3 Safe and Risk-Aware RL . 19
3.1 Related Work: Safe Reinforcement Learning 19

3.1.1 Penalty-Based Safety Encouragement 20
3.1.2 Safety Assessment via Shielding 22

3.2 Approach . 24
3.2.1 Problem Formulation 25
3.2.2 Observation Space 26
3.2.3 𝑘-Markov State Approximation 28
3.2.4 Deep Sets for Scalable Intersection State Representation 28
3.2.5 Proactive Safety Verification for Safe RL at Intersections 30
3.2.6 Safe and Risk-Aware Automated Driving with Distri-

butional Reinforcement Learning 34
3.3 Evaluations . 36

3.3.1 Simulation Scenarios 37
3.3.2 Baseline Policies 38
3.3.3 Evaluation Metrics 39
3.3.4 Results . 39

3.4 Conclusions . 44

4 Interactive and Transferable RL 45
4.1 Related Work . 48

4.1.1 Interactive Merging as Partially Observable MDP . . 48
4.1.2 K-Markov Approximation for Interactive Reinforce-

ment Learning . 49
4.1.3 Unknown Intentions as Latent Variables 50
4.1.4 Generalized Reinforcement Learning 50

4.2 Problem Formulation . 52
4.2.1 Drivers’ Intention and Behavior Model 53
4.2.2 Novel Drivers Behavior in the Transfer Environment 54
4.2.3 State Space . 54
4.2.4 Observation Model 55

VIII

Table Of Contents

4.3 Approach . 55
4.3.1 Modelling Unknown Driver Intentions with Hidden

Parameters . 56
4.3.2 Final Model based on Hidden Parameter Block MDPs 57
4.3.3 Decoupling Intention Prediction and Decision-Making 59
4.3.4 Policy Transfer with Hidden Parameter Adversarial

Perturbation (HiP-AP) RL 61
4.4 Evaluations on Interactive Automated Merging in Simulation 63

4.4.1 Simulation Environment and Main Challenges . . . 63
4.4.2 Baselines . 64
4.4.3 Impact of HiP-MDP Modelling on Sample Efficiency

During Training . 65
4.4.4 Policy Transfer in Target Environments with Novel

Cooperative Behaviors 66
4.5 Evaluations on Interactive Automated Merging with Real-World

Datasets . 72
4.5.1 Dataset Preprocessing 72
4.5.2 MDP Dataset Generation 73
4.5.3 Offline Reinforcement Learning Baselines 78
4.5.4 Policy Simulation with Recorded Datasets 80
4.5.5 Evaluation Results 81

4.6 Conclusions . 101

5 Conclusions and Future Directions 103
5.1 Conclusions . 103
5.2 Future Directions . 104

Bibliography . 107

Publications by the Author . 119

Supervised Theses . 121

IX

Abbreviations and Symbols

Abbreviations

RL Reinforcement Learning

AI Artificial Intelligence

DQN Deep Q-Network

IQN Implicit Quantile Network

PPO Proximal Policy Optimization

MDP Markov Decision Process

POMDP Partially Observable Markov Decision Process

HiP Hidden Parameter

HiP-MDP Hidden Parameter Markov Decision Process

BMDP Block Markov Decision Process

HiP-BMDP Hidden Parameter Block Markov Decision Process

HiP-AP Hidden Parameter Adversarial Perturbation

BCQ Batch-Constrained Deep Q-learning

PO-BCQ Partially Observable BCQ

HiP-AP-BCQ Hidden Parameter Adversarial Perturbation BCQ

VAE Variational Auto-Encoder

XI

Abbreviations and Symbols

IDM Intelligent Driver Model

2D Two Dimensional

PSS Proactive Safe State

PSA Proactive Safe Action

BNN Bayesian Neural Network

MLP Multi-layer Perceptron

Symbols

General

R real numbers

E expected value

𝑈 continues uniform distribution

N normal distribution

𝑡 time

Markov Decision Processes

S state space

O observation space (POMDP)

X context space (BMPD)

Θ hidden parameter space (HiP-MPD)

A action space

𝑅 reward function

XII

Abbreviations and Symbols

𝑇 environment transition distribution

𝑍 observation distribution (POMDP)

𝜃 list of hidden parameters for one task (episode) (HiP-MDP)

𝑃𝜃 distribution over hidden parameters (HiP-MDP)

𝑇𝜃 environment transition distribution for hidden parameter 𝜃 (HiP-
MDP)

𝑞 emission distribution (BMDP)

𝛾 discount factor

Decision-Making

𝑑𝑘 longitudinal distance of vehicle 𝑘 (or ego) on its path to conflict
zone

𝑣𝑘 longitudinal velocity of vehicle 𝑘 (or ego) on its path

𝜃𝑘 driver intention of vehicle 𝑘

𝑙𝑘 lane 𝑘 at intersection

𝑑𝑙𝑘 longitudinal distance of closest occluded grid to the conflict zone
at line 𝑘

𝑣𝑙𝑘 speed limit on lane 𝑘

𝑎ego longitudinal acceleration of the ego vehicle on its path

𝑎max
ego , 𝑎min

ego maximum and minimum acceleration of the ego vehicle

𝑎max, 𝑎min maximum and minimum acceleration of other vehicles

H set of worst-case assumptions

𝑠𝑎H,𝑜
simulated worst-case state by observation 𝑜 and action 𝑎 with
assumptions in H

𝑑FS
ego ego distance to conflict zone after a full stop maneuver

XIII

Abbreviations and Symbols

𝑡HW
𝑖

time headway between ego vehicle and earliest vehicle on lane 𝑖

𝑤CZ conflict zone width

𝑑SG safety gap distance (emergency stop maneuver)

𝑡SG safety gap time (emergency leave maneuver)

𝐴PSA (𝑜) set of safe actions for observation 𝑜

𝑇𝑋𝑖 time for the vehicle 𝑖 to reach the conflict zone with constant
velocity

𝑇𝑇𝐶 time for the vehicle 𝑖 to reach the conflict zone with constant
velocity

𝑡AP threshold on TTC to apply adversarial perturbation on true value
of driver intention

Reinforcement Learning

𝑄 𝜋 (𝑠, 𝑎) expected value of return for policy 𝜋 when choosing action 𝑎 at
state 𝑠

Z𝜋 (𝑠, 𝑎) distribution of return for policy 𝜋

T Bellman optimality operator

𝛼 risk-sensitivity parameter in IQN

𝑎emg emergency action from safety layer

𝜆 collision penalty

𝑤𝑄 neural network parameters for 𝑄 network

XIV

1 Introduction

Several real-world problems can be modeled as sequential decision-making
problems where a decision at different time sequences needs to be made in order
to fulfill some long term goals. This can be the treatment for a patient given the
current patient characteristics or the future trajectory of an automated vehicle
while driving on the highway. Most real-world sequential decision-making
problems are not easy to solve with a simple solution. It requires predicting the
future state in the environment for different possible actions, and selecting the
action which results in the best outcome.

The main challenge is that the outcome not only depends on the current, previous,
and future decision sequences, but also depends on several environmental factors.
Moreover, good or bad decisions are not always identifiable from spontaneous
environmental feedback. A poor decision may result in an adverse outcome
after several future decisions, making it difficult to determine the main cause of
unwanted outcomes.

Suppose that a physician wants to find the optimal treatment for a patient. They
should consider several factors that represent the current state of the patient, as
well as previous treatments the patient may have received. Based on the patient’s
state, the physician should study the effectiveness of different treatment options.
One treatment may result in different outcomes when applied to patients with
slightly different states. The effectiveness of a treatment can depend on several
factors, such as genetics, previous treatments, and other patient characteristics.
For a young patient, a strong treatment with certain side effects may be the best
option, while for an old patient, such treatment can be life-threatening.

Artificial Intelligence (AI) can help to address these complex decision-making
problems by training deep neural networks which can learn the complex
relationships between observations and long-term outcomes for different actions.
Reinforcement Learning (RL) [SB18] is a machine-learning paradigm that can
address sequential decision-making problems in different domains such as health

1

1 Introduction

[Fat+21] and automated driving [Ise+18; INF18; Tra+18; KZL19; Kam+20;
Mir+18; Hue+19; Kam+22]. RL learns the best decision-making solution from
several interactions with the environment and maximizing numeric rewards
that it receives from the environment.

Learning from previous interactions is a natural mechanism that we all expe-
rience and benefit from, even from the beginning of our lives. A child learns
how to stand up and walk for the first time through several trials and errors,
and by reasoning about causal relationships between observations, actions,
and outcomes. In health or robotics, several existing datasets about different
treatments or actions applied in the real world can be an important source of
information to learn optimal decisions from previous experiences with RL.

1.1 Motivation

Several previous works have leveraged the high computational power of deep
RL methodologies as the main decision-making module in automated driving
across various challenging scenarios. Although these approaches can address
the complex problem of sequential decision-making in automated driving, they
are usually not generalized solutions for different real-world applications. The
motivations for this thesis regarding generalized RL for automated driving are
three-fold, as explained in the following sections.

1.1.1 Safe Reinforcement Learning for Automated Driving

Decision-making policies for automated driving do not have access to accurate
and complete information about the environment. This information comes from
perception systems such as cameras, which are prone to estimation noise and
sensor occlusions. Therefore, an RL policy should be robust to these challenges,
which is usually not the case in previous works, where the agent is trained in an
ideal simulation environment assuming perfect perception.

Another issue regarding safety of RL policies at deployment time is related
to their deep learning-based architectures. These architectures are usually the
main computational power of RL policies in order to extract useful features
from high dimensional and noisy input data in order to estimate the value of

2

1.1 Motivation

different decisions using deep neural networks. Due to their black-box nature,
deep neural networks are usually hard to verify [Liu+19]. Moreover, they
are vulnerable to different problems related to their training procedure such
as overfitting and sample inefficiency. Due to overfitting, they may perform
well only for specific variation of the data which is usually the part similar to
the training and validation datasets. This results in poor generalization of RL
policies in situations where test data is not similar to the validation data, and
therefore the model may not be safe in those corner case scenarios.

In order to learn generalized RL policies, one can design deeper neural networks
and train the policy using different possible scenarios and corner cases in order
to make the policy optimal for all situations. The main issue related to that
solution is the requirement for huge amount of training data in order to cover
all possible scenarios. This also requires huge and complex neural networks
which can result in catastrophic forgetting, a general challenge in sequential
decision learning and deep neural networks [MC89; Goo+13].

Another issue regarding generalized and safe RL for automated driving is
that not all corner case scenarios can be provided during training. This is
inherently a problem when humans are part of the system, as they generally act
as non-stationary elements in an environment [Xie+20]. In critical applications
like automated driving, factors such as local infrastructure, traffic density, and
weather conditions may lead to varying behaviors of human-controlled agents.
Therefore, it can always be possible for the trained policy to observe novel
scenarios and confront out-of-distribution dynamics in the test environment,
which can result in unsafe outcomes.

1.1.2 Interactive Reinforcement Learning under
Uncertainty

Another main challenge in RL is uncertainty about important features that
impact the likelihood of outcomes. These features can play a key role on the
outcome of decisions but not directly observable, such as genetic information
of a patient which can relate to the efficacy of the treatments on that patient.
In automated driving context, these important features can be the intention of
other drivers in the interactive scenarios. In merging scenarios, accelerating
to merge before a cooperative driver is a safe decision, while the same action

3

1 Introduction

Un-cooperative

Cooperative

Figure 1.1: Two different interactive automated driving scenarios with different driver intentions
that have exactly same observations (shaded region) at the current time. In order to
predict drivers’ intention and make optimal decision, a history of recent observations is
necessary.

for having interaction with a non-cooperative driver may result in unsuccessful
merging.

RL theoretically models the decision-making problem as Markov Decision
Process (MDP) [How60], assuming it has access to all required information for
optimal decision-making represented as the current state of the environment.
However, this is not a realistic assumption, as important genetic information
of the patient may not be always in access or the main intention of drivers
is not always predictable. Fig. 1.1 shows two interactive merging scenarios
with different driver intentions. In the bottom scenario, the other vehicle has a
cooperative intention. Although it has a higher velocity (longer arrow in the
figure) at the beginning, it decelerates to open a merging gap for the ego vehicle.
In the top scenario, the other vehicle is non-cooperative and drives with constant
velocity. Although these are two different scenarios with different MDP states,
the current observations for both of them are identical due to partial observation
about drivers’ intentions. Therefore, standard RL models can not easily be
applied in such interactive scenarios in real-life, where humans’ intention play
an important role but are not directly observable.

One way to address intention uncertainty in RL is to provide history of recent
observations as an approximation of the current state [MS13; Bou+18; Kam+20].
The goal is to enable RL to predict the intention of drivers implicitly through
its previous interactions with them. However, this requires high-dimensional
observations containing long enough history of previous interactions. The

4

1.1 Motivation

policy then needs to consider multiple MDPs for multiple tasks (e.g. different
driving styles) which results in super-MDPs [Zha+20a].

In order to learn optimal policies for such complex super-MDPs, a huge amount
of data is required to capture all possible behaviors and observations [Sod+22;
Du+19], which is not realistic and prone to different issues explained in previous
section such as catastrophic forgetting and corner cases.

Moreover, RL policies that are trained based on long history observations have
a poor performance when transferred into new environments with different
transition dynamics. Suppose that an RL policy is capable to identify cooperative
drivers by observing their previous trajectories trained by datasets from one
country and now transferred into new country. Although the policy can generate
optimal decisions in scenarios very similar to its training environment, it may
generate suboptimal decisions in the new environment when the drivers have
totally different behaviors compared with the training environment. Therefore,
generalization is an important requirement for intelligent policies used for
automated driving.

1.1.3 Offline Reinforcement Learning using Real-World
Observational Datasets

Although RL is a powerful methodology to solve different decision-making
tasks, it usually requires online interactions with the environment by its current
policy in order to improve it. This makes majority of standard RL algorithms not
applicable in crucial real-world settings were data gathering is very expensive,
difficult or even not possible. The amount of randomized controlled trial data is
much lower than real-world data in clinical research because we cannot easily
compare the effectiveness of random treatments on different patients. Similarly,
in automated driving, it can be very dangerous to train an RL model directly on
highways to learn how to prevent risky situations.

Recently offline RL [Lev+20; FMP19; ASN20], as new paradigm in RL has
gained a huge attention to solve decision-making problems by observing other
policies’ interactions in the environment. This methodology does not require
new interactions with the environment and therefore can benefit from already
existing interactions from other policies called behavior policies. The behavior

5

1 Introduction

policies can be either suboptimal or expert, and the RL algorithm should be
able to learn the optimal policy in both cases. This makes RL to be used in
crucial real-world applications such as health or interactive automated driving.
Moreover, with the help of technology advances, gathering, management, and
access to several observational datasets in these applications are becoming
more and more possible. For example, in [Zha+19], several hours of vehicles’
trajectories driving in highways and urban areas are provided which can be
used to train automated driving RL policies. This motivates to concentrate
on methodologies that can mitigate from this immense amount of available
data and learn the decision-making solutions from those observed behaviors.
Therefore, in this dissertation, we demonstrate training and evaluating offline
RL algorithm for interactive automated driving in the merging scenario using
this observational datasets. We show how we train our offline RL policy without
requiring to gather new interactions in the environment and utilize the available
observational dataset for our scenario.

1.2 Contributions

We split the main contributions of this thesis into three main aspects and explain
them in the following sections.

1.2.1 Safe Reinforcement Learning for Automated Driving
under Uncertainty

We address safety, scalability and comfort as intertwined challenges for RL
under uncertainty. Similar to [SSS16], we consider safety as a hard constraint in
the decision-making problem and therefore utilize RL to optimize other targets
(utility and comfort) as soft constraints. For that, we utilize a proactive safety
layer similar to [Nau+19] which evaluates if an emergency fail-safe maneuver
by the worst-case assumption exists in order to verify the actions generated
from the RL policy. We will show how the proposed concept helps to learn
verified safe RL policies that are not prone to high sensor noise or corner case
scenarios and always perform safe under specific circumstances for maximum
perception noise and compliant behaviors for other participants.

6

1.2 Contributions

Although safety verification is done by the worst-case proactive module, the RL
policy still needs to minimize the amount of emergency safety interruptions
to generate comfortable behaviors. In order to make the policy adaptive in
terms of choosing more/less conservative behaviors, we apply distributional
RL which learns distributions of action returns instead of their expected values.
This feature makes the learned policy generic and applicable to high uncertainty
environments, or corner case scenarios that may happen in real-world.

1.2.2 Interactive and Transferrable RL Policies under
Intention Uncertainty

Our contribution to address interactive automated driving under intention uncer-
tainty is twofold. First, we model interactive automated driving under intention
uncertainty with Hidden Parameter Markov Decision Process (HiP-MDP)
[Zha+20a] where human strategies are modeled as behavioral latent variables
with different emission functions for different drivers. Different cooperative
drivers all decelerate in the merging scenario to open a merging gap for our
vehicle, while they may have different deceleration and speed profiles (differ-
ent emissions for the same hidden parameter). In contrast to history-based
approaches which address intention uncertainty by implicit intention prediction,
in our framework, the RL policy is directly conditioned on the output of drivers’
intention predictors which are trained separately as supervised learning models.
This results in a more compact state vector and a more sample-efficient RL
comparing to the history-based RL solutions.

In order to learn robust RL policies which can use plug-in intention predictors,
we propose Hidden Parameter Adversarial Perturbation (HiP-AP) RL agents that
are trained in the oracle environment with adversarial perturbations [Zha+20b]
on the true hidden parameters. We will show that HiP-AP policies can directly
transfer to new environments with different emission functions by just updating
their online hidden parameter estimators or using an updated external intention
predictor without any requirement to update the reinforcement policy itself.

7

1 Introduction

1.2.3 Safe and Interactive RL with Real-World Datasets

Finally, we demonstrate efficiency of safe HiP-AP RL as our proposal to learn
interactive policies under intention uncertainty using real-world datasets. We
show how our solution can address safety and sample efficiency of RL policies
when they are trained by limited observational datasets instead of simulators.

1.3 Outline

The remaining parts of this dissertation are structured as following: In Chapter
2, first fundamentals about MDP and partially observable MDPs which we use
for automated driving problem formulation are explained. Then we explain
fundamentals of RL which we apply to provide decision-making for automated
driving.

In Chapter 3, our approach for addressing safety in RL for automated driving
is presented. We focus on safety and comfort of RL policies for automated
driving at occluded intersections with noisy observations.

In Chapter 4, first we present our approach addressing interactive and generalized
RL for automated driving under drivers’ intention uncertainty. Then we explain
our simulations and real-world experiments, and evaluate the efficiency of
our framework compared with different baselines in terms of safety, sample
efficiency, and generalization.

Finally, Chapter 5 will conclude this dissertation and provides insights and
directions for potential future works.

8

2 Fundamentals

Sequential decision-making for robotics and specifically self-driving vehicles
can be modeled as a Markov Decision Process (MDP). Since usually in
reality not all required information for optimal decision-making is available,
most of the problems should be modelled with Partially Observable Markov
Decision Process (POMDP). In this dissertation, we mainly focus on benefitting
from high computational power of RL in order to solve POMDP problems in
automated driving.

For that, in this section, we briefly explain fundamentals about MDP, POMDP,
and its other subtypes which later will be used in our approaches. After
explaining important models for our decision-making problem formulations,
we will have an introduction about RL fundamentals as machine-learning-
based decision-making solution for them. Recently several varieties of RL
methodologies have been proposed which we briefly review some well-known
algorithms related to this dissertation.

2.1 Markov Decision Process (MDP)

MDP [How60] is a well known model for formulating decision-making problems
in different real-world applications. An MDP is represented with a tuple <

S,A, 𝑅, 𝑇, 𝛾 > All the required information about the surrounding environment
at time 𝑡 is described by a state 𝑠𝑡 ∈ S. The action space A identifies all possible
decision options, 𝑅 : S×A → R is the reward function, 𝑇 : S×A → 𝐷𝑖𝑠𝑡 (S)
is the environment transition probability function, and 𝛾 ∈ [0, 1) is the discount
factor.

The action can be discrete or continues based on the application. The action
selection process is described by a policy 𝜋 : S → A which is a mapping
from states to actions (or to distributions over actions). The distribution of the

9

2 Fundamentals

successor state 𝑠𝑡+1 is defined by the transition model 𝑠𝑡+1 ∼ 𝑇 (𝑠𝑡 , 𝑎𝑡) based on
the current state and chosen action. In every step, depending on the state and
applied action, a reward is provided from the reward function 𝑟𝑡 = 𝑅(𝑠𝑡 , 𝑎𝑡).
An optimal policy in MDP will maximize the cumulative discounted reward
(also called return):

∞∑︁
𝑘=0

𝛾𝑡𝑟𝑡+𝑘 (2.1)

Where future rewards are discounted by the factor 𝛾 ∈ [0, 1).

2.2 Partially Observable Markov Decision Process
(POMDP)

In many real-world applications, the agent does not have full knowledge of the
environment’s state but instead receives only partial observations of the state.
These problems can be formulated by a Partially Observable Markov Decision
Process (POMDP) and represented by the tuple < S,A, 𝑅,O, 𝑇, 𝑍, 𝛾 >.
Similar to MDP, S is the state space, A action space, 𝑅 reward function, and
𝑇 is the environment transition probability function. In addition, O is the
observation space and 𝑍 is the observation model. At each step, the agent
receives an observation 𝑜𝑡 ∈ O which depends on the current state and chosen
action and is distributed according to the observation model 𝑜𝑡 ∼ 𝑍 (𝑠𝑡 , 𝑎𝑡).
The agent’s goal in POMDP problems is still to maximize the future return, but
with the additional challenge of uncertainty about the environment state.

2.3 Hidden Parameter Markov Decision
Process (HiP-MDP)

Several real-world problems that are originally POMDP, can be described by a
finite set of MDPs which are identified with a set of finite hidden parameters.
As an example, learning a policy for a robot to swing a bat with unknown
length and mass is originally a POMDP but for fixed values of length and mass,
it will become an MDP. This problem can be formulated as a family of bat
swinging tasks which differ in the hidden parameters as length and mass of the

10

2.3 Hidden Parameter Markov Decision Process (HiP-MDP)

Figure 2.1: Left: a Supper-MDP problem which can be represented as HiP-MDP in right (graphic
from [Zha+20a]).

bat. The main advantage of this formulation is the efficiency in the training and
generalization. After training a policy for specific tasks, the policy does not
need to be trained from scratch for a new task.

Hidden Parameter Markov Decision Process (HiP-MDP) [DK16] was proposed
to model such family of tasks which differ in the underlying dynamics that
are captured by a set of hidden parameters. HiP-MDP is represented by a
tuple: < S,A, 𝑅, 𝑇𝜃 ,Θ, 𝛾, 𝑃𝜃 >. Similar to MDP, S is the state space, A is
the action space. 𝑇𝜃 describes the transition dynamics of the environment for
specific task with hidden parameter (probably a set) 𝜃. In HiP-MDP, the reward
function 𝑅 is shared across all task instances. Hidden parameters are drawn
at the beginning of each task instance by probability 𝑃Θ from possible hidden
parameters set Θ and are fixed until the end of the task.

HiP-MDP has these important assumptions:

• Considering a fixed (but unknown) task parameters (𝜃), the transition
function is also fixed (only depends on the state).

• The hidden parameters for each task are constant and have no dynamics
until the end of the task.

• The hidden parameters are the only information required to specify the
task and the underlying MDP.

11

2 Fundamentals

These features of HiP-MDP allow its usage in several applications where a
family of tasks are required to solved together, happening arbitrarily in a shared
environment. Although the hidden parameters are not observable directly, they
can be identified during the interaction with the environment and once they
are identified, the whole transition function is captured and the corresponding
policy can be applied for that particular task.

2.3.1 Block Markov Decision Process (BMDP)

Block Markov Decision Process (BMDP) [Du+19] is described by a tuple:
< S,A, 𝑅,X, 𝑇, 𝑞, 𝛾 >. Here the finite state space (S) is unobservable but the
context space X is observable. A is action space and 𝑇 latent state transition
distribution function. 𝑞 is the (possibly stochastic) context emission mapping
function which provides the conditional probability 𝑞(𝑥 |𝑠) for all 𝑠 ∈ S and
𝑥 ∈ X. Similar to the POMDP, in the BMDP the state is not directly observable.
However, the main difference is that in the BMDP, the whole context space is
partitioned into disjoint blocks X𝑠 each referring to the underlying unobservable
state based on the conditional distribution 𝑞(𝑥 |𝑠).

2.3.2 Hidden Parameter Block Markov Decision
Process (HiP-BMDP)

Hidden Parameter Block Markov Decision Process (HiP-BMDP) [Zha+20a]
combines HiP-MDP and BMDP settings, both of which describe partially-
observable systems and build upon the definition of a MDP. Similar to
HiP-MDP, it models a family of tasks which have different hidden parameters.
In addition, it assumes that the true states are not observable, and we only
have access to the observable context that refers to unique state (assumption in
Block-MDP).

A HiP-BMDP is described by a tuple {S,A, 𝑅, 𝑇𝜃 ,Θ, 𝑃𝜃 ,X, 𝑞, 𝛾} where A is
action space, S describes the unobservable state space and X the observable
context. In a HiP-BMDP, the transition function 𝑇𝜃 is conditioned on the value
of a task parameter 𝜃 : 𝜃 ∈ Θ (HiP-MDP property). This hidden parameter is
sampled from a probability distribution 𝜃 ∼ 𝑃Θ. Additionally, 𝑞 is the emission

12

2.4 Reinforcement Learning

mapping that describes the probability of observing 𝑥 given the true state 𝑠:
𝑞(𝑥 |𝑠) for 𝑥 ∈ X, 𝑠 ∈ S.

2.4 Reinforcement Learning

Reinforcement Learning (RL) [SB18] is a type of machine learning which is
usually used for solving decision-making problems that are modelled by MDPs.
RL learns the optimal decision-making policy through several trial and error
interactions with its environment and adapting its actions based on the reward
it receives from the environment. By employing techniques such as exploration
and exploitation, RL algorithms aim to discover optimal strategies that lead to
the most favorable long-term outcomes through maximizing the discounted
cumulative reward (equation 2.1).

Several algorithms for RL have been proposed which can be categorized based
on their learning paradigm into model-based and model free groups. Model-
free RL involves the agent directly learning a policy or value function from
its interactions with the environment, without building an explicit model of
the environment. This includes methods like Q-learning [WD92], where the
agent learns action-values, and policy gradient methods like Proximal Policy
Optimization (PPO) [Sch+17], which optimize policy parameters directly.

On the other hand, model-based RL entails the agent constructing a model of the
environment, enabling it to simulate possible outcomes and plan accordingly.
This category includes techniques like Monte Carlo Tree Search (MCTS)
[Sil+16], where the agent combines real experience with simulated experience
generated from its model. Both model-free and model-based approaches have
their strengths and weaknesses, and their efficiency for specific task depends
on factors such as the complexity of the environment and the availability of
computational resources.

RL algorithms can also be categorized based on the policy that is used for
interaction with the environment for gathering training data. If the policy for
training data collection is exactly same as the RL policy, it is an on-policy RL
type (like PPO). On-policy RL potentially leads to slower learning due to lack
of reusing old collected data.

13

2 Fundamentals

On the other hand, off-policy RL involves training an agent’s policy using data
collected by a different policy, which is usually the old version of actual RL
policy and therefore allowing efficient reuse of previous experiences (such as
Q-learning [WD92]).

As a new type of RL, Offline RL, or batch learning (e.g. [Lev+20; FMP19;
ASN20]) has recently gained a huge attention, which is based on training from
a fixed dataset of experiences, without further interaction with the environment
to gather new training data. These type of RL methods address the challenges
posed by safety concerns, high-cost interactions, or restricted access to live data
collection, making it applicable in scenarios like robotics, autonomous systems,
and healthcare. However, ensuring robust generalization from historical data
and effectively handling issues like distributional shift remain active research
areas regarding optimal offline RL methodologies.

In the remaining parts of this section, we explain a few well-known RL
algorithms as fundamentals for our baselines and proposed models in the next
chapters.

2.4.1 Deep Q-Network (DQN)

A famous approach to find an optimal policy with RL is Q-learning [WD92]
which tries to train a policy that maximizes the expected future return, defined
as state, action value, or Q value for a policy 𝜋:

𝑄 𝜋 (𝑠, 𝑎) = E
[
𝑅(𝑠, 𝑎) +

∞∑︁
𝑘=1

𝛾𝑘𝑅(𝑠𝑘 , 𝜋(𝑠𝑘))
]
,

𝑠𝑖 ∼ 𝑇 (.|𝑠𝑖−1, 𝑎𝑖−1), 𝑠0 = 𝑠, 𝑎0 = 𝑎

after choosing action 𝑎 in state 𝑠 and following policy 𝜋 thereafter.

Using the Bellman equation [Bel66], the policy 𝜙 Q function can be represented
as:

𝑄 𝜋 (𝑠, 𝑎) = E𝑠′∼𝑇,𝑎′∼𝜋 [𝑅(𝑠, 𝑎) + 𝛾𝑄 𝜋 (𝑠′, 𝑎′)] .

14

2.4 Reinforcement Learning

Similarly, the optimal Q function can be represented as:

𝑄∗ (𝑠, 𝑎) = E𝑠′∼𝑇
[
𝑅(𝑠, 𝑎) + 𝛾 max

𝑎′∈A
𝑄∗ (𝑠′, 𝑎′)

]
.

In DQN [MS13], deep neural networks are utilized to learn the optimal Q
values for each state and action over samples from a replay buffer. For that, in
every training interaction, the target Q network parameters (𝑤𝑄′) are updated
through minimizing the loss function for 𝐵 random samples of (𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖 , 𝑠𝑖+1)
tuples (state, action, reward, next state) from the replay buffer:

𝐿 (𝑤𝑄′) =
𝐵∑︁
𝑖=1

(𝑦𝑖 −𝑄(𝑠𝑖 , 𝑎𝑖 |𝑤𝑄′))2 (2.2)

where 𝑦𝑖 is the network training target based on the current Q network (𝑤𝑄):

𝑦𝑖 = 𝑟𝑖 + 𝛾 max
𝑎′

𝑄(𝑠𝑖+1, 𝑎
′) |𝑤𝑄) (2.3)

The parameters of the target network 𝑤𝑄′ are updated to the current network
parameters 𝑤𝑄 after a fixed number of iterations (hard update), or by averaging
(soft update) 𝑤𝑄 = 𝛽𝑤𝑄′ + (1 − 𝛽)𝑤𝑄 for some small 𝛽 ([Lil+15]).

The use of max operator in the network training target can result in large
overestimation of the action values. In order to resolve this bias, Double DQN
algorithm [VGS16] uses two separate Q-networks. During each update, one
Q-network is used to select the best action, while the other Q-network evaluates
the chosen action’s value which prevent the same Q-values from being selected
and evaluated at the same time. This technique is usually helpful for more
accurate and stable learning particularly in environments where reward or state
transitions are stochastic.

2.4.2 Distributional Reinforcement Learning

In normal RL algorithms like DQN, the expected values of actions are being
learned. However, more information about the distribution of the learned values
are vital for risk-aware decision-making.

15

2 Fundamentals

Distributional RL [BDM17] tries to learn a return distribution Z𝜋 (𝑠𝑡 , 𝑎𝑡)
𝐷
=

𝑅(𝑠𝑡 , 𝑎𝑡) +
∑∞

𝑘=1 𝛾
𝑘𝑅(𝑠𝑡+𝑘 , 𝜋(𝑠𝑡+𝑘)) instead of its expected value. Note that

here 𝐷
= indicates equality in distribution. The value distribution can be computed

using dynamic programming based on the distributional Bellman equation
[BDM17] :

Z𝜋 (𝑠, 𝑎) 𝐷
= 𝑅(𝑠, 𝑎) + 𝛾Z𝜋 (𝑆′, 𝐴′) (2.4)

𝑆′ ∼ 𝑇 (· |𝑠, 𝑎), 𝐴′ ∼ 𝜋(· |𝑠′)

This equation is shown in [BDM17] to be a contraction in the Wasserstein
metric.

Similar to regular RL, the distributional Bellman optimality operator (T ∗)can
be applied to the distributional RL:

T ∗Z(𝑠, 𝑎) 𝐷
= 𝑅(𝑠, 𝑎) + 𝛾Z(𝑆′, arg max

𝑎′∈A
E [Z(𝑆′, 𝑎′)]) (2.5)

𝑆′ ∼ 𝑇 (· |𝑠, 𝑎)

In order to learn the optimal return distribution, Bellemare et al. parameterized
it as a categorical distribution over a fixed set of equidistant points [BDM17].
Their approach, called C51, minimizes the Kullback-Leibler divergence [KL51]
to the distributional Bellman targets, which, however, was not a contraction in
the Wasserstein metric.

Later Dabney et al. proposed to learn return distributions through Quantile
Regression (QR-DQN) on a fixed set of quantiles, minimizing the Wasserstein
distance to the distributional Bellman targets [Dab+18b]. In a newer approach,
Dabney et al. introduced Implicit Quantile Network (IQN) [Dab+18a] to
approximate the quantile function 𝐹−1

Z (𝜏) for the random variableZ. Assuming
𝜏 ∼ 𝑈 ([0, 1]), the return distribution can then be sampled from 𝐹−1

Z (𝜏) as
samples from the implicitly defined return distribution. The main advantage
of IQN is that any distortion risk measure 𝛽 : [0, 1] → [0, 1] for different
types of desired risk-aware behaviors can be incorporated to compute distorted
expectations of 𝑍:

𝑄𝛽 (𝑠𝑡 , 𝑎𝑡) = E𝜏∼𝑈 ([0,1])
[
Z𝛽 (𝜏) (𝑠𝑡 , 𝑎𝑡)

]
,

16

2.4 Reinforcement Learning

and the risk-sensitive greedy policy:

𝜋𝛽 (𝑠𝑡) = arg max
𝑎∈A

𝑄𝛽 (𝑠𝑡 , 𝑎).

In this dissertation, we utilize the IQN implementation of distributional RL
since it allows exploring risk-sensitive policies 𝜋𝛽 during training which helps
us to learn a family of risk-aware policies using only one neural network.

2.4.3 Batch-Constrained Deep Q-learning (BCQ)

Batch-Constrained Deep Q-learning (BCQ) is an offline type of RL proposed
by Fujimoto et al. in [FMP19]. It combines both imitation learning and RL
paradigms at the same time, and therefore it can benefit from both expert and
suboptimal policy observations in the training dataset. It should be noted that
pure imitation learning methods can only learn optimal policies from pure
expert datasets and therefore are not capable of learning from suboptimal
behaviors.

Extrapolation error is one of the main challenges in offline or batch RL which
refers to the difference between the true state action visitation in the current
policy and the dataset. The main reason for extrapolation error can be incomplete
datasets, biased batches, or the mismatch between the distribution of data and
the current policy.

In order to address extrapolation error in offline RL, BCQ proposes to enforce
the current policy have similar state-action visitation to the training batch.
Therefore, in BCQ, in addition to optimizing value function, a constraint limits
the amount of distance between the selected actions from the policy to the
dataset, and therefore the method is called batch-Constrained Q-learning. For
that, a state conditioned generative model based on conditional Variational
Auto-Encoder (VAE) [KW13; RMW14] is used to produce actions similar to
the dataset for a give state. The generated actions from this model are then
perturbed with another neural network for optimal policy training. The final

17

2 Fundamentals

policy then samples 𝑛 actions from the state conditioned generative model (𝐺𝜔)
and selects the action with the highest value estimate (𝑄𝑤):

𝜋(𝑠) = arg max
𝑎𝑖+E𝜙 (𝑠,𝑎𝑖 ,Φ)

𝑄𝑤 (𝑠, 𝑎𝑖 + E𝜙 (𝑠, 𝑎𝑖 ,Φ)), (2.6)

{𝑎𝑖 ∼ 𝐺𝜔 (𝑠)}𝑛𝑖=1.

Here E𝜙 (𝑠, 𝑎,Φ) represents the perturbation model which outputs a constrained
adjustment for action 𝑎 in range [−Φ,Φ]. Parameters 𝑛 and Φ can tune the
amount of similarity between RL actions to dataset actions and therefore 𝑛 = 1
and Φ = 0 results in complete behavior cloning instead of RL.

18

3 Safe and Risk-Aware RL

Safety is one of important challenges in real-world applications of AI. Specially
when AI is being used for decision-making in automated driving, wrong
decisions can result in unwanted and catastrophic outcomes. Black-box nature
of AI makes it very hard to understand and debug the main logic behind the AI
model. Moreover, it is very difficult to make sure that a trained AI model always
has the same performance and safety guarantee measured before deployment.

Similarly, a RL policy may have undesired outcomes at deployment time due
to observing out-of-distribution inputs or paying attention to different criteria
such as utility rather than safety as the highest priority for optimal decision-
making. Most of previous works, address safety of RL in automated driving by
providing big negative rewards when the RL results in collisions during training
in simulations. However, these Penalty-Based solutions can not be considered
as the final solution for providing safe-RL policies as we will explore their
drawbacks through some experiments in this chapter.

In this chapter, we focus on approaches for providing safe and risk-aware RL
policies in automated driving based on worst-case safety verification. We
first review some of the previous works which address safety in RL and then
explain our approach for tackling this issue. Finally, we evaluate our approach
in different experiments and compare its performance with other baselines.

3.1 Related Work: Safe Reinforcement Learning

In this section we briefly summarize previous works that address safety of RL
agents in automated driving or other real-world applications in robotics. We
categorize state-of-the-art safety related approaches into three major groups: 1)
Penalty-based safety encouragement, 2) Shielding mechanism and 3) Decoupling
safety from RL.

19

3 Safe and Risk-Aware RL

3.1.1 Penalty-Based Safety Encouragement

In order to encourage learning safe policies which prevent the agent to be in
unsafe states, one solution is to apply penalties in the reward function as part
of the MDP model. As proposed in [Ise+18; Tra+18], for encouraging safe
behaviors, the reward function will usually have this form:

𝑅 =

−𝜆, if collision
1.0, if success
0.0, otherwise

(3.1)

Applying collision penalties in the reward function will automatically assign
lower values for unsafe actions and therefore the RL agent learns to select
actions that result in safer trajectories.

Although the learned policies are prevented to generate risky behavior during
training by receiving large penalties for having collisions [Ise+18; Tra+18;
Kam+22] or being in risky situations [INF18; Kam+20], there is no guarantee
that the learned policy is always safe after training. This can be the result
of different issues related to improper policy training such as catastrophic
forgetting [MC89] or permutation sensitive input representation for the RL neural
network [Zah+17]. Unsafe behaviors can also happen during out of distribution
observations in the test environment, such as edge case configurations which
rarely or never happened during training and therefore the RL agent does not
generate suitable safe behavior when it occurs.

One can try to learn a policy which reduces the amount of risk to be still safe
in rare but challenging scenarios like [Kam+20], however, such a policy then
becomes too conservative in normal scenarios. This dilemma between more
conservative but slower policies and risky but faster policies is thoroughly
elaborated by Isele et al. in [INF18] where higher timeout penalties as part of
the reward function resulted in a faster but more risky policy. The origin of this
problem lies in the difficulty of shaping the reward to guarantee having safe
policies in gradient based learning approaches as discussed in [SSS16].

We also investigate the result of setting different crash penalties on the behavior
of the trained RL policies for automated driving at simulated intersection
scenarios. For that, we trained different RL policies based on Proximal

20

3.1 Related Work: Safe Reinforcement Learning

Policy Optimization (PPO) [Sch+17] RL model that have penalty-based reward
functions as Equation 3.1 with different crash penalties (𝜆). Figs. 3.1 to 3.4
depict average collision rates (shown as average cost) and average durations to
finish the scenario (episode length until a success or a crash) for these policies.
Note that some policies could not completely converge during the training time
fixed across all experiments. We observed that having higher collision penalties
will result in safer policies as expected. But those policies become much slower
as the result of too much conservative decisions. Moreover, even the policy
with the highest collision penalty (𝜆 = 0.2) is not completely collision free.
This proves the fact that penalty-based RL methods suffer from two important
challenges: 1) Finding a good trade-off between safety and utility, and 2)
Sensitivity of the final trained behavior to the reward parameters.

0.0 0.5 1.0 1.5 2.0
TotalEnvInteracts 1e6

0.1

0.2

0.3

0.4

Av
er

ag
eE

pC
os

t

0.0 0.5 1.0 1.5 2.0
TotalEnvInteracts 1e6

30

40

50

60

70

80

Ep
Le

n

Figure 3.1: Average episode cost and length for penalty-based RL agents with 𝜆=0.10.

0.0 0.5 1.0 1.5 2.0
TotalEnvInteracts 1e6

0.1

0.2

0.3

0.4

Av
er

ag
eE

pC
os

t

0.0 0.5 1.0 1.5 2.0
TotalEnvInteracts 1e6

30

40

50

60

70

80

Ep
Le

n

Figure 3.2: Average episode cost and length for penalty-based RL agents with 𝜆=0.11.

21

3 Safe and Risk-Aware RL

0.0 0.5 1.0 1.5 2.0
TotalEnvInteracts 1e6

0.0

0.1

0.2

0.3

0.4

Av
er

ag
eE

pC
os

t

0.0 0.5 1.0 1.5 2.0
TotalEnvInteracts 1e6

20

40

60

80

Ep
Le

n
Figure 3.3: Average episode cost and length for penalty-based RL agents with 𝜆=0.14.

0.0 0.5 1.0 1.5 2.0
TotalEnvInteracts 1e6

0.0

0.2

0.4

Av
er

ag
eE

pC
os

t

0.0 0.5 1.0 1.5 2.0
TotalEnvInteracts 1e6

20

40

60

80

100

Ep
Le

n

Figure 3.4: Average episode cost and length for penalty-based RL agents with 𝜆=0.20.

Policy sensitivity to the collision penalty can also prevent the policy to be trans-
ferred into new environments with slightly different dynamics and observation
models (e.g. with more dense traffic, less cooperative drivers or higher sensor
noise). Therefore, for a new environment, we should either retrain a new policy
from scratch in that new environment or a more conservative policy with bigger
safety penalty in the old environment.

3.1.2 Safety Assessment via Shielding

Another approach to address safety for RL policies is to utilize a safety layer
which is capable of distinguishing safe and unsafe actions using formal methods.
Based on a shielding mechanism [Als+17] the safety layer robustly verifies

22

3.1 Related Work: Safe Reinforcement Learning

Figure 3.5: Preemptive (left) and post-posed (right) shielding mechanisms for safe RL (graphic
from [Als+17]).

safety of generated actions from the RL policy. Authors in [Als+17] studied the
effect of applying the safety shield before or after the RL agent as Preemptive
and Post-Posed Shielding mechanisms (Fig. 3.5). In preemptive shielding, the
list of safe actions are first provided as the input for the RL agent which then
selects one of the safe actions, while in post-posed shielding the safety layer
monitors the RL output and corrects the generated action if it violates safety
specifications. The authors showed that safety verification mechanisms not only
address safety issues, but they can also be helpful for faster convergence of RL.

The post-posed shielding mechanism has been recently used for safety veri-
fication of RL policies used for lane change decision-making of automated
vehicles in [Mir+18; KWA20]. Authors in [Mir+18] used formal methods to
verify safety of a lane change action based on the required constraints for a safe
lane change maneuver. They deployed DQN in order to approximate 𝑄(𝑠, 𝑎)
for every lane change action. Using the safety layer, possible safe lane change
actions are generated for every state and then the safe action with the highest 𝑄
value from the DQN is selected as the final action. As the fail-safe action, the
automated vehicle will keep its current lane whenever both right and left lane
change actions are unsafe. Therefore, the agent always performs safe and does
not require any collision penalty in its reward function.

Similarly, in [KWA20] authors proposed a safety based masking framework
which excludes unsafe lane change actions. However, the authors added
collision-based penalties into the reward function in order to train a policy
without applying safety-filter during training and only deploying that in the test
phase.

Similar to the shielding perspective, authors in [SSS16] proposed to provide
safe RL policies by decoupling safety from the RL in the final framework. In

23

3 Safe and Risk-Aware RL

Figure 3.6: General structure of the proposed safe RL framework for automated driving at occluded
intersections.

this way, the RL agent is only responsible to generate soft-constraints which
are then considered in an optimization problem which costs depend on the
soft-constraints from RL and also hard-constraints related to safety. Our
proposed approach to address safety in automated driving can be categorized
as part of this general approach.

3.2 Approach

In the context of automated driving, uncertainties due to sensor occlusions,
perception noise or ambiguous behavior of other participants need to be
considered inside the safety verification constraints. However, there is a trade-
off between the level of safety that is guaranteed and efficiency [Sha+01].
Assuming the worst-case perception noise and worst-case occluded vehicles in
the safety verification layer may result in unnecessary safety interruptions. On
the other hand, one can increase the capability of intervention (e.g. deceleration
with -10 𝑚/𝑠2) and only prevent unsafe actions just before a hazardous event
is going to happen. This will result in rare interventions but with extremely
uncomfortable maneuvers for the vehicle passengers.

In order to address safety and comfort, we propose safe risk-aware policies by
combining the shielding mechanism with distributional RL. Fig. 3.6 depicts
the general structure of the proposed safe distributional RL framework. During
training, the RL agent is penalized for every safety intervention similar to

24

3.2 Approach

[Als+17; LLK20]. However, the main difference is that it learns distributions
instead of expected values for each action return which helps to provide risk-
aware policies that are able to adapt their conservative behavior according to
the existing uncertainty in the environment.

In the remaining parts of this section, we first explain our problem formulation
for automated driving at intersections under uncertainties. Then we explain
our safety verification approach which makes sure the safety is guaranteed
based on assumptions about maximum velocity of other vehicles. Finally, we
will explain our safe RL agent which is based on distributional RL in order
to provide adaptive safe policies for automated driving at intersections with
different uncertainty levels.

3.2.1 Problem Formulation

We consider the problem of automated driving at occluded intersections where
the ego vehicle has uncertainties about the state of occluded vehicles similar
to [Ise+18; Tra+18]. Here the RL agent is only responsible for longitudinal
control of the automated vehicle assuming that no lane change decisions are
needed, and the automated vehicle is following a predefined path by a lateral
controller (e.g. [WG08]). In addition to the sensor occlusion, we assume the
detected vehicles’ position and velocities have noise and therefore make our
assumptions closer to real world scenarios. Let N 𝑡

𝑓
(𝜇, 𝜎2) denote a truncated

Gaussian distribution with support [𝜇 − 𝑓 𝜎, 𝜇 + 𝑓 𝜎]. Then, the distance and
velocity measurement errors are modeled as truncated Normal distributions
N 𝑡

3 (𝑑, 𝜎
2
d) and N 𝑡

3 (𝑣, 𝜎
2
v), respectively, i.e. with a 3𝜎 range around the true

value.

Since the agent does not receive all required information for safe and optimal
decision-making, the problem is formulated as a POMDP.

Occluded Intersection Model Using Lanelet2 Maps

Using Lanelet2 HD maps [Pog+18], we extract all information about the
upcoming conflict zones in the intersections in order to create the observations
for the RL agent. Every intersection is mapped inside the Lanelet2 map with

25

3 Safe and Risk-Aware RL

its lanes as polygons where each lane has a unique ID. All lanes that have
intersection with the ego lane will be identified as intersecting lanes 𝑙𝑖 . Among
perceived vehicles from sensor fusion, those that are matched to end in an
intersection lane will be extracted as relevant vehicles for the decision-making
policy. Then, position and velocity of detected vehicles and for the ego vehicle
are mapped to their Lanelet center lines in order to extract vehicle distance and
velocity along the Lanelet center line, resulting in one dimensional distance
and velocity values for each vehicle.

In addition to the relevant vehicles, information about the occluded areas
inside the intersecting lanes are needed for optimal decision-making handling
occluded vehicles. For that, instead of using grid-based representation for
RL agents (e.g. as proposed in [Ise+18]), we propose modeling the occluded
areas by providing the distance between conflict zone and the point where an
occlusion begins along the Lanelet center line. This can be done by matching
detectable 2D grid-maps from sensor fusion module with the intersection lane
𝑙𝑖 and calculate the distance of closest occluded grid to the conflict zone as
𝑑𝑙𝑖 . In order to provide information about the lane speed limit (which can be
assumed for as reasonable worst-case speed of an occluded vehicle), the lane
speed limit from the Lanelet2 map for each lane is represented as 𝑣𝑙𝑖 . Therefore,
occluded information and speed limit for an intersection lane 𝑙𝑖 is provided in
our formulation with a ghost vehicle with distance 𝑑𝑙𝑖 and velocity 𝑣𝑙𝑖 .

3.2.2 Observation Space

We represent the whole situation at an occluded intersection using this observa-
tion matrix:

𝑜𝑡 =

𝑑ego,goal 𝑑1 ... 𝑑𝑁 𝑑𝑙1 ... 𝑑𝑙𝑀

𝑣ego 𝑣1 ... 𝑣𝑁 𝑣𝑙1 ... 𝑣𝑙𝑀

𝑎ego 𝑑ego,1 ... 𝑑ego,𝑁 𝑑ego,𝑙1 ... 𝑑ego,𝑙𝑀

𝑇

𝑒𝑔𝑜 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 𝑙𝑎𝑛𝑒𝑠

(3.2)

where 𝑑ego,goal is the ego vehicle distance to the other side of the intersection
(goal), 𝑣ego its velocity, and 𝑎ego is its acceleration. We assume maximum 𝑁

vehicles and 𝑀 intersecting lanes are existing in the scenario. 𝑑𝑖 , 𝑣𝑖 are distance

26

3.2 Approach

𝑑1, 𝑣1

𝑑2, 𝑣2

𝑑𝑙1 , 𝑣𝑙1

𝑑𝑙2 , 𝑣𝑙2

𝑑ego,goal
𝑑ego,1
𝑑ego,2

euzungsszenarien

Figure 3.7: Top: Parameters in our observation model for intersections with multiple conflict zones
and occluded areas (graphic from [Kam+20], ©2020 IEEE). Bottom: Proposed Deep
Sets based structure for learning scalable policies which are not sensitive to the input
(vehicles) order and size.

27

3 Safe and Risk-Aware RL

and velocity of every observable vehicle to their conflict zones and 𝑑𝑙𝑖 , 𝑣𝑙𝑖 ghost
vehicles distance and velocity indicating maximum visible distance and speed
limit on every intersecting lane. Finally, 𝑑ego,𝑖 and 𝑑ego,𝑙𝑖 represent the distance
of the ego vehicle to the conflict zone with vehicle 𝑖 and the ghost vehicle at lane
𝑙𝑖 respectively. We extend this representation for merging scenarios where we
also observe the distance and velocity of the closest front vehicle on the target
lane. Fig. 3.7 depicts an overview about our observation model for occluded
intersection scenario. Other traffic participants such as pedestrians or cyclists
can also be added into this model in order to provide a more generic model.
This representation is more compact compared to the grid-based representations
used in [Ise+18; KZL19] to represent detected objects and sensor occlusions.

3.2.3 𝑘-Markov State Approximation

In order to make RL agent able to solve this POMDP problem, we provide
a 𝑘-Markov approximation [Bou+18] of the state as input to the RL neural
network in order to enable 𝑄-learning:

𝑠𝑡 =
[
𝑜𝑡 𝑜𝑡−1 ... 𝑜𝑡−(𝑘−1)

]
(3.3)

By using history of recent observations as RL input state, the neural network and
its training process become less complex compared to other implementations
for POMDPs like [Tra+18] which utilize Long Short-Term Memory (LSTM)
cells [HS97] to incorporate past information. Similarly, in [Mni+15] authors
provided the last 𝑘=4 observations and actions as the current state of a DQN
agent for classic Atari 2600 games. In our experiments we supply the last 𝑘 = 5
observations to the network. Note that the direction of vehicles is specified by
their velocity sign and their intention can be estimated from the observation
history.

3.2.4 Deep Sets for Scalable Intersection State
Representation

The dimension of the observation Equation 3.2 can rapidly grow for complex
scenarios when the number of vehicles (𝑁) or intersecting lanes (𝑀) increase.

28

3.2 Approach

This is a general issue related to scalability of RL policies according to the
policy state representation. In similar works like [Bou+19b] a fixed number of
relevant vehicles are provided as the input to the RL, however, this model can
result in suboptimal behaviors since such representation can not completely
provide all the information about the whole scenario. The other challenge is
that different orders of the vehicles in the observation for the exact scenario
will have different representations for the RL neural network which will result
in inefficiency and ambiguity during training [Hue+19].

This requires to reformulate the interface between the state representation and
the RL policy. In order to address this problem, we use Deep Sets [Zah+17;
Hue+19] architectures that decouple the network size of machine learning
algorithms from the number of input elements.

Deep Sets approach has already been applied to learn a lane change policy
with DQN for highway scenarios in [Hue+19]. In this thesis, we apply a Deep
Sets architecture for automated navigation at occluded merging and crossing
scenarios (Fig 3.7). A representation is calculated for each type of the input
element (real vehicles or ghost vehicles) with the 𝜙 networks. After that,
all features for each element type are combined with a permutation invariant
operator, we used sum as the permutation operator. Finally, 𝜌 networks extract
fixed size features from the combination of each type of the input element with
the ego vehicle state.

Action Space

Here we consider actions as jerk commands applied to the automated vehicle
similar to [Wer+10; MB19]. This explicitly results in comfortable maneuvers,
as we have restricted jerk commands. Therefore, we do not need to include
comfort rewards (or discomfort penalties) in the reward function. Therefore,
we set possible discrete actions as A = {−1.5 𝑚

𝑠3 , 0.0 𝑚

𝑠3 , 1.5 𝑚

𝑠3 }.

29

3 Safe and Risk-Aware RL

3.2.5 Proactive Safety Verification for Safe RL at
Intersections

In this section, we explain our proposed approach for worst-case safety verifi-
cation of RL agents. Similar to the shielding mechanism, we utilize a safety
verification module which prevents unsafe decisions to be executed. In order to
identify unsafe actions, it considers the worst-case scenario that can happen
for the current state. The RL agent is therefore not responsible for the safety
anymore and only needs to consider other criteria such as utility, cooperation
with other participants and comfort as soft constraints in order to reason and
learn the optimal policy.

The proactive safety verification module provides safe actions for every state
𝑠 ∈ S as those that are guaranteed to be safe by making sure that a fail-safe
action is feasible to be executed if one of the worst-case assumptions is going to
happen. We call it a proactive safety verification approach since the worst-case
scenario always considers preventing being in an unsafe state in the future by
assuming the worst-case scenario to happen.

Worst-Case Scenarios for Proactive Safety Verification

We define a set of worst-case scenarios H that can happen during automated
driving behind a conflict zone:

1. On the intersecting lane 𝑙𝑖 , an occluded vehicle is driving with velocity
of speed limit on that lane at the closest occluded distance to the conflict
zone.

2. On the intersecting lane 𝑙𝑖 , an observed vehicle has an estimation error
of 3𝜎d and 3𝜎v for its distance and velocity and accelerates with 𝑎max to
reach speed limit on that lane.

3. On the ego vehicle lane, an observed vehicle in front of the ego vehicle
has an estimation error of 3𝜎d and 3𝜎v for its distance and velocity
respectively. Additionally, it decelerates with 𝑎min to reach zero velocity.

By assumptions in H we over-approximate the state of an occluded vehicle at
intersecting lanes similar to [OML18; TS18] and for detected vehicles as well.

30

3.2 Approach

Figure 3.8: Our modelling for the conflict zone on two intersecting lanes. Note that we assume
fixed vehicle dimension (𝐿veh, 𝑊veh) for all vehicles in our experiments and therefore
𝑤CZ = (𝐿veh +𝑊veh)/2 is calculated as the width of the conflict zone (graphic from
[Kam+20], ©2020 IEEE).

In addition to that, we also over-approximate vehicles’ distance and velocity
estimation errors in our worst-case assumptions.

Feasibility of Emergency Maneuvers for Safety Verification

Similar to [Nau+19], in order to verify safety of a vehicle state at intersecting
conflict zones, we can verify if the vehicle can either safely stop before the
conflict zone or leave it before any other vehicle with priority can enter there.
Therefore, for every intersecting lane 𝑙𝑖 and also the ego vehicle lane inside
the observation 𝑜, feasibility of executing one of the following two emergency
maneuvers is evaluated to verify the observation 𝑜 as a Proactive Safe State (PSS)
according to the worst-case assumptions H :

• Emergency stop maneuver: Ego vehicle is able to stop at a distance
bigger than 𝑑SG before the conflict zone.

• Emergency leave maneuver: Ego vehicle is able to leave a conflict zone
existing in the current observation for duration 𝑡SG earlier than the shortest
time other vehicles can enter the conflict zone.

31

3 Safe and Risk-Aware RL

In order to verify if the emergency stop maneuver is feasible or not, we
calculate the remaining distance of the ego vehicle to the closest conflict zone
which is at line 𝑙1 after a full stop emergency maneuver as 𝑑FS

ego. Therefore,
𝑑FS

ego − 𝑤CZ/2 > 𝑑SG means that the ego vehicle is able to execute a safe full
stop maneuver before the closest conflict zone with safety distance gap of 𝑑SG
where 𝑤CZ is the width of the conflict zone (Fig. 3.8).

For verification of the safe emergency leave maneuver, we assume maximum
acceleration for the ego vehicle (𝑎max

ego) and for other vehicles (𝑎max), and
calculate the difference between the time that ego vehicle leaves the conflict
zone and the time when other vehicle reaches the conflict zone. It should be
noted that depending on the vehicles’ current distance, velocity and maximum
velocity, different equations should be used to find the time to reach or leave
the conflict zone based on accelerated or fixed velocity assumptions.

For simplicity, here we only explain the case with zero initial velocity and
assume that both ego and other vehicles will not reach their maximum velocity
before the time they leave or reach the conflict zone. For this case, the time
headway between the time that ego vehicle can leave the conflict zone at
intersecting lane 𝑙𝑖 and the time that the front vehicle on this lane can reach this
conflict zone is calculated as below:

𝑡HW
𝑖 =

√︄
2(𝑑ego,𝑖 + 𝑤CZ/2)

𝑎max
ego

−

√︄
2(𝑑front

𝑖
− 𝑤CZ/2)

𝑎max (3.4)

where 𝑑front
𝑖

is the distance of front vehicle on intersecting lane 𝑙𝑖 , 𝑎max
ego maximum

ego acceleration, and 𝑎max is maximum front vehicle acceleration.

Therefore, the condition 𝑡HW
𝑖

> 𝑡SG verifies that the ego vehicle is feasible to
safely leave the conflict zone at this lane.

PSS verification for the given observation 𝑜 including intersecting lanes 𝑙𝑖 can
be formulated as:

PSS(𝑜) =
(
𝑑FS
𝑒 − 𝑤CZ/2 > 𝑑SG

) ∨ (∧
𝑙𝑖∈𝑜

𝑡HW
𝑖 > 𝑡SG

)
, (3.5)

32

3.2 Approach

Note that here we validate safety according to all worst-case assumptions in
H simultaneously, therefore, if any of them or all happen, the situation should
remain safe.

Proactive Safety Verification of Actions

We assume the RL agent selects action 𝑎 ∈ A for the history of observations
𝑜 ∈ O. In order to verify safety of 𝑎, we need to make sure that it results in
a proactive safe state even if the worst-case scenario happens. Therefore, we
simulate the future state of the ego vehicle by simulating the execution of 𝑎 and
the worst-case state of other vehicles based on 𝑜 with the worst-case assumptions
in H until the next decision time. We name this simulated worst-case state
𝑠𝑎H,𝑜

.

If 𝑠𝑎H,𝑜
is a Proactive Safe State (PSS), then action 𝑎 ∈ A is verified as a

Proactive Safe Action (PSA):

PSA(𝑜, 𝑎) =
{

True, if PSS(𝑠𝑎H,𝑜
),

False, otherwise.
(3.6)

The main advantage of the worst-case proactive safety verification compared to
reachability-based [AD14] and prediction-based approaches [INF18] for safety
is that it only needs to predict the whole situation for one time step and only for
the worst-case scenarios defined in H instead of all possible maneuvers for all
participants in the whole future horizon. Since for each intersecting lane, the
proactive safety verification approach only considers the vehicle closest to the
conflict zone, it has computation complexity of 𝑂 (𝑚) where 𝑚 is the number
of intersecting lanes in the scenario. This complexity is much smaller than
the safety verification strategy proposed in [INF18] which has complexity of
𝑂 (𝑛 × 𝑡HR) where 𝑛 >> 𝑚 is the number of agents and 𝑡HR is the time horizon
considered for safety verification in that approach.

33

3 Safe and Risk-Aware RL

3.2.6 Safe and Risk-Aware Automated Driving with
Distributional Reinforcement Learning

In this section, we explain our final safe and adaptive RL framework for
automated driving at occluded intersections with sensor uncertainty. Using the
proactive safety verification concept for a candidate action (Equation 3.6), we
can have the set of all safe actions for the current observation (𝑜) as 𝐴PSA:

𝐴PSA (𝑜) = {𝑎 ∈ A|PSA(𝑜, 𝑎) = True}, (3.7)

Therefore, we make sure that every action from the RL agent is a member of
safe action set before executing it. In case the RL action is not safe, one of the
emergency maneuvers are executed in order to prevent a collision. However,
we aim to minimize the amount of safety interventions in order to maximize
comfort during automated driving. For that, we penalize the RL during training
for every selection of an action which is not PSA using this reward function:

𝑅(𝑜𝑡 , 𝑎) =

1, if goal reached
−𝜆, if 𝑎 ∉ 𝐴PSA (𝑜𝑡)
0, otherwise

(3.8)

The proposed framework has two main differences compared to other safe
RL frameworks like [Als+17; Mir+18]. Firstly, the emergency action is not
necessarily a member of A, therefore the training episode is terminated when a
safety interference is required. For the same reason, the replay buffer which
includes policy interactions during training keeps the unsafe action generated
from the RL instead of the emergency action applied in the environment.
Secondly, the agent receives a large penalty of 𝜆 > 0 whenever its action is
not a member of 𝐴PSA which is also not suggested in [Als+17] and not used in
[Mir+18] for reducing the amount of safety interference.

One challenge here is choosing the safety interference penalty 𝜆. Lazarus et al.
in [LLK20] applied a similar rewarding scheme for an autopilot system of the
aircraft which penalized the RL agent whenever the emergency controller had
to be deployed. They showed choosing higher values for 𝜆 will encourage more

34

3.2 Approach

conservative behavior, whereas faster policies with more interruptions can be
expected for lower values of 𝜆.

One may try to find the best value for 𝜆 through different experiments, however,
the learned policy generates proper behavior only for the environments with
state transition probabilities 𝑇 similar to the training. In other words, when
the probability on the occurrence of the worst-case scenarios changes in the
environment (due to changes in sensor noise or occlusion severity or drivers’
behavior), the RL policy will generate improper actions, since it tries to
maximize the expected future return which is approximated according to its
training transitions. Moreover, due to the safety verification penalty which
considers worst-case assumptions, RL either learns a superconservative policy
or a fast policy with too many safety interventions. In our experiments, we
learned a balanced policy by a DQN with 𝜆 = 1 as a normal RL baseline.

Risk-aware Policies with Distributional Reinforcement Learning

The main problem with applying normal RL in environments under uncertainty
is its risk-neutral characteristic, which cannot distinguish the variance in an
action’s return and only considers the expected values. Therefore, one risky
action with negative tail in its return but higher total expected value is always
preferred to a safer (lower variance) action. For that, Tang et al. modeled the
return for each action as a normal distribution and optimized an RL policy
by learning the return distribution parameters (𝜇,𝜎) [TZS20]. However, we
believe that the return is a multimodal distribution, and therefore we applied
Implicit Quantile Network (IQN) [Dab+18a] which approximates the quantile
function that implicitly defines the return distribution. Moreover, utilizing the
return distribution also allows expanding risk-neutral policies to risk-sensitive
policies by applying distortion risk measures like the Conditional Value-at-Risk
(CVaR) [RU+00]:

CVaR𝛼 = E
[
Z𝜋 |Z𝜋 ≤ 𝐹−1

Z𝜋 (𝛼)
]
, (3.9)

where Z𝜋 is distribution for the sum of discounted rewards under policy 𝜋 and
𝐹−1
Z𝜋 (𝛼) is its quantile function at 𝛼 ∈ [0, 1].

Therefore, we train the IQN agent with the same reward function as DQN
(Equation (3.8) with 𝜆 = 1) and tune the risk-sensitivity of the policy using 𝛼

35

3 Safe and Risk-Aware RL

at execution time without requiring to train multiple policies for different risk
levels. In order to leverage the whole solution space over different risk-sensitive
policies, 𝛼 is uniformly sampled with 𝛼 ∼ 𝑈 (0, 1) at the beginning of each
episode during training and applied to the IQN results (Fig. 3.9).

Figure 3.9: The proposed distributional RL framework for safe and comfortable navigation at
occluded intersections. Deep sets architecture helps for embedding surrounding
vehicles, distributional RL learns risk-aware policies and the safety verification layer
filters out unsafe actions (graphic from [Kam+21], ©2021 IEEE).

3.3 Evaluations

In this section, we evaluate the efficiency of the proposed safe and adaptive RL
framework for automated driving at intersections under uncertainties. We first
explain our simulation environment, baselines, and evaluation metrics. Finally,

36

3.3 Evaluations

we provide the results of experiments and compare the performance of each
baseline.

3.3.1 Simulation Scenarios

We simulate automated driving at occluded intersections using our high level
simulator which can simulate different randomized scenarios. Fig. 3.10
shows an example scenario generated by our simulator. In order to create
a random scenario, the location and size of obstacles (orange boxes) for
simulating sensor occlusions are generated randomly causing some vehicles
at intersections to be invisible for the ego vehicle. Moreover, every vehicle at
the beginning of each scenario will have a random desired velocity sampled
from a normal distribution N(𝜇vdis, 𝜎

2
vdis) with uniformly sampled parameters

𝜇vdis ∈ {6, 9, 12}(m
s) and 𝜎vdis ∈ {2, 4, 6}(m

s). Each vehicle drives with the
Intelligent Driver Model (IDM) [THH00] controller with maximum acceleration
1 m

s2 , minimum deceleration 10 m
s2 and comfortable deceleration 1.6 m

s2 . The
IDM model has safety distance of 2 m and time headway 1.6 s in order to
prevent collision with front vehicles. However, the IDM does not keep distance
to the ego vehicle (when it drives into the intersection), thus a collision between
a vehicle and the ego vehicle is possible.

At every simulation step a new vehicle is generated in the simulator with
probability 𝑝new ∈ {0.1, 0.4, 0.7}. Vehicles are cooperative with probability
𝑝c ∈ {0.1, 0.3, 0.7} meaning that they yield to the ego vehicle by setting their
desired velocity to zero when the ego vehicle is close to the intersection.

In order to simulate perception noise during simulation, distance and velocity
of vehicles are perturbed according to the truncated Normal distributions
N 𝑡

3 (0, 𝜎
2
d) and N 𝑡

3 (0, 𝜎
2
v) respectively, where 𝜎d = 1 m and 𝜎v = 2 m

s are fixed
during RL training. For the ego vehicle, the RL policy generates a discrete
jerk action from A = {−1.5 m

s3 , 0 m
s3 , 1.5 m

s3 } every 0.3 second. RL policies are
trained with over 1000 randomized intersection scenarios providing more than
3 × 105 training steps in total.

37

3 Safe and Risk-Aware RL

Figure 3.10: Example of an occluded intersection scenario generated by our simulator. Orange
obstacles have random size and position causing sensor occlusions. Ego vehicle (red)
should pass the intersection without having collision with vehicles driving from left
or right side.

3.3.2 Baseline Policies

We evaluate the performance of three baselines in our experiments:

• DQN Agent: A RL agent based on DQN.

• IQN Agent: A distributional RL agent based on IQN.

• Rule-based Agent: A rule-based policy which selects the fastest safe
action from A and in case of emergency selects an emergency action
with the lowest jerk.

For the proactive safety verification module which we used for all baseline
policies, we set 𝑑SG = 𝑡SG = 0.5 in our simulation experiments which resulted
in collision free maneuvers during training and evaluation of all baselines.

38

3.3 Evaluations

3.3.3 Evaluation Metrics

After training the RL agents, we evaluate their efficiency using 30 benchmark
scenarios with random uncertainty configurations 𝜎d ∈ 0m, 1m, 2m, 𝜎v = 2𝜎d,
and 𝑝c ∈ 0.1, 0.4, 0.7. Note that, no collision with other vehicles happens
during evaluations thanks to the proactive safety verification layer. In case of
an emergency situation, i.e. 𝑎RL ∉ APSA, an emergency maneuver from the
safety layer with maximum allowed emergency jerk limit of 5 m

s3 is sent to
the controller instead of the unsafe RL action. In order to compare the effect
of interference applied for each policy, we define a metric for measuring the
amount of applied emergency interference:

𝐽Interference =
Σ𝑎2

emg

𝑁episodes
, (3.10)

where 𝑎emg is the emergency jerk command applied to replace the unsafe action
and 𝑁episodes is the total number of evaluation episodes. Note that this metric
measures the average value for the sum of all squared jerk values applied to
the vehicle during one episode identifying the amount of discomfort caused by
each policy.

In addition to the amount of emergency interference for each policy, we also
measure the average crossing time as the metric for utility. An optimal policy
which maximizes the total reward defined in Equation 3.8 should minimize the
emergency interference penalties and also minimize the duration of finishing
the episode in order to receive the final finishing reward. Therefore, a policy
that only has good performance in one of the two metrics is either too much
conservative or too much uncomfortable.

3.3.4 Results

Fig. 3.11 compares the speed and comfort of each baseline based on the recorded
measurements when they control the automated vehicle in the benchmark
simulation episodes. The IQN agent shows an adaptive behavior based on the
𝛼 percentile. The policy becomes faster but less comfortable on average by
increasing 𝛼. For lower 𝛼 percentile, it has less absolute jerk and therefore
results in more comfortable driving.

39

3 Safe and Risk-Aware RL

Environment Configuration (𝜎𝑑 , 𝑝c) (0, 0.3) (2, 0.3) (2, 0.7)
Policy Metric for optimal 𝛼 Time 𝐽Int. Time 𝐽Int. Time 𝐽Int.

IQN Speed 9.8 25.0 8.8 43.0 9.9 33.3
Comfort 11.8 10.0 11.1 25.5 12.2 18.8

DQN —– 20.0 10.8 21.4 14.2 21.3 20.1
Rule-based —– 7.7 83.6 7.8 92.3 7.7 103.1

Table 3.1: Evaluation of the IQN with best 𝛼 for different metrics and comparison with other
baselines for different environment configurations.

Distribution of recorded vehicle jerk values for IQN with different 𝛼 values and
other baselines is depicted in Fig. 3.12. The IQN with lower 𝛼 has less jerk
values outside the RL jerk limit which indicates less emergency interference
and more comfortable maneuvers. DQN agent shows the most conservative
behavior, but it also has the highest crossing time proving the fact that it fails to
optimize both comfort and utility at the same time.

On the other hand, the rule-based policy has the highest amount of emergency
interference as a risk neutral policy resulting in a wider jerk distribution and
uncomfortable maneuvers.

𝛼 percentile

Av
g.

cr
os

si
ng

tim
e
[𝑠
]

𝛼 percentile

A
bs

ol
ut

e
je

rk
[𝑚 𝑠

3
]

Figure 3.11: Comparing performance of each baseline on benchmark scenarios. Left: Average
crossing time for each baseline. The IQN policy becomes faster and less conservative
with higher 𝛼. The rule-based policy is the fastest and DQN is the slowest policy.
Note that all policies are completely safe without any collision due to the safety
verification layer. Right: Average of vehicle absolute jerk and its confidence interval
for each baseline. By increasing 𝛼, IQN policy becomes less conservative (higher
jerk) (graphics from [Kam+21], ©2021 IEEE).

40

3.3 Evaluations

Je
rk

[𝑚 𝑠
3
]

Figure 3.12: Distribution of vehicle jerk for each baseline on benchmark scenarios. The green
interval shows the RL jerk limits. Jerk values out of this interval are due to emergency
interference and indicate uncomfortable driving (graphic from [Kam+21], ©2021
IEEE).

We can conclude that the IQN agent can learn a family of adaptive policies
which are not as highly conservative as DQN and also not as risk-neutral and
uncomfortable as the rule-based policy. The same conclusions can be drawn
from Table 3.1 where we recorded the average crossing time and 𝐽Interference
for all policies at different environment configurations. Here we only consider
two IQN sub-policies, the ones with the fastest behavior and the ones with the
lowest interference cost (most comfortable ones). We evaluated the policy in
10 uniform samples of 𝛼 and selected the best policy according to each metric.
Note that finding the best 𝛼 value could be done in a more automated approach
but here we only want to compare the best behavior of the IQN agent with
other baselines and examine how much other metrics are sacrificed when the
policy performs as the best in only one of metrics. In all three configurations
considered in Table 3.1, the rule-based policy is the fastest one, however, it
is also the worst policy in terms of comfort. The DQN policy, on the other
hand, always has low interference cost, but drives more than two times slower

41

3 Safe and Risk-Aware RL

𝑡=𝑡0+0.9
non-cooperative driver, chance of

collision for accelerate

𝑡=𝑡0+0.9
cooperative driver

𝑡=𝑡0
approaching

Figure 3.13: Left: Learned return distributions for two scenarios with similar initial situation.
Ego vehicle (red) follows the action with the highest CVaR that is shown with filled
distribution. Gray ghost vehicle indicates maximum visible distance limited due to
orange obstacles. Middle: Black vehicle is non-cooperative causing more negative
return chance for the accelerate action. Right: Black vehicle is cooperative causing
higher CVaR for accelerate action (graphics from [Kam+21], ©2021 IEEE).

than the others. The IQN policy trades-off between average crossing time
and interference cost by showing relatively fast behavior which requires 3.6
to 8 times lower interference than the rule-based policy depending on the
environment configuration.

IQN Policy Reactions to Drivers’ Intentions

Since the RL policies receive history of the last 5 recent observations as their
input, they can predict the intention of other drivers and generate optimal actions
based on that. Fig. 3.13 shows examples of the return distributions learned
by the IQN agent for two similar scenarios with the only difference of having
cooperative (yielding to the ego vehicle) and non-cooperative drivers. As can
be seen, when the other vehicle is cooperative and reduces its velocity, the IQN
policy generates higher return for the 𝑎 = 1.5 m

s3 action allowing the ego vehicle
to enter into the intersection.

42

3.3 Evaluations

𝛼

𝜎𝑑

𝐽
In

te
rfe

re
nc

e

Figure 3.14: Safety interference cost applied to the IQN policy for different environment noise
levels and its comparison with baselines (graphic from [Kam+21], ©2021 IEEE).

Evaluation under Higher Perception Uncertainties

In addition to the experiments where we applied training noise levels during
testing, we studied the sensitivity of each policy to higher amounts of noise in
the environment. The RL and rule-based agents were evaluated for 5 different
noise levels 𝜎𝑑 ∈ {0, 1, 2, 3, 4, 5} (in meters) and 𝜎𝑣 = 2𝜎𝑑 (in m

s). The results
are depicted in Fig. 3.14. As the diagram reveals, the IQN policy has lower
interference cost for lower 𝛼 and also lower noise levels. For higher noise
levels, it requires more interference which can be reduced by decreasing 𝛼. The
rule-based policy always has high cost and DQN has low cost independent of
the amount of noise existing in the environment. Here DQN seems to be a
comfortable policy, however it is the worst policy in case of utility as discussed
before.

43

3 Safe and Risk-Aware RL

3.4 Conclusions

In this section we addressed safety as one of the most important challenges of
decision-making problems in real-world. Focusing on automated driving, we
acknowledge that perception modules cannot provide all required information
due to sensor noise, occlusions, and unknown drivers’ intentions, to name a few.
Moreover, RL solutions usually tolerate collisions without any guarantee to
perform completely safe. Therefore, we utilized a proactive safety verification
approach to validate the safety of actions with the goal of preventing unsafe
situations in critical applications. In order to minimize uncomfortable safety
interference, we used RL to learn policies that are penalized for resulting in states
where an emergency maneuver is necessary. We showed how the IQN agent
can mitigate the conservative behavior existing in DQN policies by learning
return distributions which provide policies that can generate adaptive behaviors
after training in order to become more comfortable or less conservative. The
proactive safety layer however prevents hazardous outcomes in case any worst-
case scenario for a less conservative policy happens. Moreover, the learned
distributional IQN policy requires less safety interference in noisy environments
compared to a rule-based safe policy even when the noise level is higher than
the training configurations.

44

4 Interactive and Transferable RL

One of the important uncertainties for automated driving in real-world is
unknown intention of other drivers. Even for human drivers at specific scenarios,
it can be challenging to correctly understand the intention of other drivers and
make the best decision. For automated vehicles, even with the best perception
modules which can estimate position and velocity of surrounding vehicles with
good accuracy, intention of the drivers cannot be easily predicted. This is
inherently a problem when humans are part of the system, as they generally
act as non-stationary and partially observable elements in an environment
[Xie+20].

On the other hand, for making optimal decisions, the intention of surrounding
vehicles is a crucial factor for the behavior generation policy. Therefore, a
history of observations and interactions with the other vehicles is needed in
order to correctly estimate their intentions. For that, a human driver or the
behavior generation module in the automated driving vehicle may need to first
gather enough information in order to observe the behavior of other drivers
and then make the best decision based on that. More specifically, an efficient
interactive decision-making policy should consider these factors:

• Other drivers can have different desires and intentions such as being
cooperative, non-cooperative, or inattention, which are not directly
observable by the perception system.

• Since the drivers’ intention is not observable, in the worst-case, the
policy needs to perform data-gathering behaviors in order to receive more
information required to estimate these unknown parameters.

• The policy can influence cooperative drivers by interacting with them in
a way that they understand ego vehicle’s intention and cooperate with it
(if they are cooperative).

45

4 Interactive and Transferable RL

Un-cooperative

Cooperative:
Big Gap

Cooperative:
Small Gap

Cooperative:
Lane Change

Figure 4.1: Multiple interactive merging scenarios where cooperative drivers with same intention
have different history of observations.

• In case other drivers’ intention is wrongly estimated (either by the policy
or an external intention estimator), a safety verification module should
prevent undesired outcomes and maybe execute emergency actions.

Another important factor regarding RL under partial observation is poor gener-
alization to new environments with different transition dynamics [EL21]. In
critical applications like automated driving, factors such as local infrastructures,
rules or different driving styles and cultures may lead to varying behaviors of
human-controlled agents in new environments which may lead to unsuccessful
policy transfer [Cen+19].

Fig. 4.1 shows three different behaviors from cooperative drivers in an interactive
merging scenario. Let assume that in our training environment, all cooperative
drivers yield to our automated vehicle by reducing their velocity and opening
large merging gaps for us. Now assume that we want to transfer the trained
policy into a new environment with lower speed limit where cooperate vehicles

46

open a smaller merging gap for our vehicle since they have relatively smaller
velocities compared with the cooperative drivers in the training environment.
It is also possible that a cooperative vehicle does not decelerate at all and
instead changes its lane in a different transfer environment. In such cases,
the automated vehicle observes novel cooperative behaviors which was not
demonstrated in the training environment, and therefore it can result into
suboptimal decision-making.

All of these factors can affect low-level transition dynamics of the underlying
MDP, making it complex to be solved by a generalist or a family of specialist
policies trained for all possible environments and scenarios at the same time or
separately [PSK20]. The generalist RL requires to be trained on all possible
cooperative maneuvers. In such problem formulations based on rich observa-
tions, similar states can be mapped to different observations which can increase
the complexity of underlying transition dynamics. Therefore, generalist RL
requires complex learning structures and huge amount of training data. On
the other hand, the specialist RL can be trained in a more straightforward way,
while it cannot be transferred into new environments with new cooperative
maneuvers.

We believe that such problem can be modeled as Hidden Parameter Block
Markov Decision Process (HiP-BMDP) where unknown intention of drivers
are modeled by hidden parameters. This helps to model drivers’ intention
prediction and decision-making as two separate tasks where supervised learning
can be used for the first one and RL can be used for the second task. The main
advantages of this modular framework are:

• More abstract state representation, smaller neural network and therefore
more sample-efficient RL.

• When transferring to new environments, only the intention prediction
module needs to be updated or replaced. Depending on the extent of
the differences between the transfer and training environments, the RL
policy can still be used, or it may also need updating but with less training
complexity.

In the remaining parts of this chapter, we first provide a literature review
about recent papers regarding interactive automated driving and transferable
RL policies. Then we explain our solution for interactive RL under intention
uncertainty based on HiP-BMDP. We introduce a new method called Hidden

47

4 Interactive and Transferable RL

Parameter Adversarial Perturbation (HiP-AP) RL, which is able to handle
uncertain intention predictions which may happen in new environments with
different dynamics.

This idea of uncertainty-aware transfer was first introduced in a method that
also modeled the problem as a HiP-MDP and assumed that the true value of the
hidden parameter would be revealed in hindsight [Pon+22]. We apply a similar
approach and model the situation where the hidden parameter estimator is not
confident (especially at the beginning of interaction in a new environment),
requiring more exploration to be done by the policy. This strategy is helpful
in both offline RL and sim-to-real transfer learning contexts where the agent
could have access to the true hidden parameters either by post-processing of
the interactions (similar to [Pon+22]) or receiving that from the simulator.

Finally, we evaluate our solution and compare its performance with a classical
history-based RL which addresses the partial observation issue by providing
a long history of observations as the input to the RL agent. We evaluate our
approach in the interactive merging environment and provide different results
comparing the efficiency of our approach with the history-based RL agent. We
will explain the main drawback of history-based RL methods which is their
inability to transfer to new environments with different traffic dynamics, and
show the ability of our solution (HiP-AP RL) to efficiently transfer to those new
environments.

4.1 Related Work

4.1.1 Interactive Merging as Partially Observable MDP

Considering the unknown route of each driver at an un-signalized intersection as
not observable parameters in a POMDP setting, authors in [Hub+17] proposed
a POMDP solver which utilizes belief estimations for predicting each driver’s
route based on the generated acceleration from the predefined transition model
of each possible route. Although route uncertainty is well formulated in this
work, authors made specific assumptions about constant reference velocity and
constant interaction based acceleration which makes their approach not generic
to be used in different configurations. Moreover, for automated driving in

48

4.1 Related Work

merging scenarios, the unknown intention is more related to drivers’ longitudinal
velocity rather than their global route which makes it more challenging compared
with intersection scenarios.

In a newer approach, authors in [Hub+18] addressed unknown intention of
other drivers about being cooperative or non-cooperative in a merging scenario.
Authors deployed a logistic regression classifier called yield classifier which is
trained on real-world data and estimates the probability for cooperative behavior
of a human driver. This probability will be turned into a binary value via a
threshold which can be tuned for more or less aggressive merging behavior.

In [Taş22] authors applied a POMDP solver which is encouraged through
information rewards to execute dedicated actions for revealing driving intentions
of other traffic participants. By identifying their driving intentions the planner
is able to plan execute more optimal trajectories achieving higher rewards.

Some researchers proposed to solve similar POMDP problems using RL agents
with specific belief estimators for the hidden parameters (in our scenario the
unknown intention of other drivers). Authors in [Bou+19b] tackled unknown
intention of other drivers in the cooperative merging scenario by maintaining a
belief over the level of cooperation of other drivers and used it as extra input for
the RL policy. Although this approach enables reasoning about the intention of
other drivers, its main drawback is that it simplifies the transition dynamics of
the vehicles with different intentions which makes the approach not generalized
and valid in new environments with different transition models.

4.1.2 K-Markov Approximation for Interactive
Reinforcement Learning

As explained in Section 3.2.3, 𝑘-Markov Approximation is one way to tackle the
unknown intention challenge by providing the recent history of last interactions
with each driver included in the recent 𝑘 observation history:

(𝑜𝑡−𝑘−1, 𝑎𝑡−𝑘−1), ..., (𝑜𝑡−1, 𝑎𝑡−1), (𝑜𝑡 , 𝑎𝑡), (4.1)

where 𝑘 is the history length ([Bou+19a; Kam+21]).

49

4 Interactive and Transferable RL

One question here is how long should be the history length of the observation
matrix. Providing longer histories can include more information and tackle the
problem of partial observation from the environment making the policy to have
better reasoning about the intention of each driver and also the whole scenario.
On the other hand, longer history can have adverse effect on the training
procedure since it necessitates bigger or more complex learning architectures
[KRL21; LM19; Hue+19]. We will later answer this question in the evaluations
by comparing different RL agents trained with different history lengths for an
interactive automated merging scenario.

Moreover, high-dimensional observations can result in complex underlying tran-
sition functions, where different states are mapped to very similar observations,
requiring large amounts of training data to cover all possible behaviors and
observations [Sod+22; Du+19]. Finally, a history-based RL policy may overfit
to the training environment and have poor performance when transferred in a
new environment with novel traffic dynamics (such as drivers’ new strategies of
cooperation with the ego vehicle).

4.1.3 Unknown Intentions as Latent Variables

In [Xie+20] authors proposed to consider unknown strategies of another
opponent as latent variables and proposed to learn an RL policy which is
conditioned on these latent variables and simultaneously learns these latent
variables from the previous interactions with the other participants (opponents).
They utilized an encoder-decoder learning architecture for predicting future
interactions of the participants based on these latent variables and therefore
formulated the total loss function in order to minimize the prediction error
for future interactions of the opponent agent. Therefore, the encoder is aimed
to learn latent variables representing opponent’s strategy which will affect its
future interactions.

4.1.4 Generalized Reinforcement Learning

Both 𝑘-Markov approximation and latent variable encoding of unknown human
intentions can be good solutions to tackle interactive RL policies for a fixed
environment, but not able to be transferred in new environments with new

50

4.1 Related Work

transition dynamics. In this section we briefly explain some previous works
which tackle generalization and ability to transfer to new environments for RL
policies.

Generalized RL for different environments can be framed as the problem of
transferring a policy from one or more source MDPs to one or more unseen
target MDPs. Prior works have explored various approaches to this problem,
which we briefly review in the following. Generally, they can be divided into two
categories: those that meta-learn few-shot transferable, i.e., easily adaptable
policies [FAL17; Rot+18; Rak+19] and those that directly learn zero-shot
transferable policies [PBS15; Gel+19; Teh+17; Yu+20]. Since our goal is to
develop ready-to-use policies for automated driving that are generalized for
different environments, our discussion of related works focuses on zero-shot
policy transfer.

Zero-Shot Policy Transfer with Representation Learning

Prior work has explored approaches that learn state or task representations to
ease learning in subsequent transfer tasks. In [Hig+17], families of MDPs
with varying observations, but structurally similar transitions and rewards are
considered. At the first stage, they learn a Variational Auto-Encoder (VAE) that
maps observations to disentangled features by recording random trajectories in
a sufficient number of different environments. The subsequent RL step uses
these disentangled features as inputs to the policy. They demonstrate that the
method improves zero-shot policy transfer performance, like in the case of
parameter changes or sim-to-real transfer. A similar approach is presented in
[Yan+19]. Other methods have avoided the use of a reconstruction loss by
leveraging bi-simulation metrics [Zha+20a], or adversarial losses [Li+21].

Policy Transfer with Latent-Variable Models

A large body of related-work has focused on modelling the system dynamics
using latent-variable models. In [PSK18], variational inference is used to
determine the latent variables of the transition dynamics. The inferred model is
subsequently used for model-predictive control.

51

4 Interactive and Transferable RL

Figure 4.2: Interactive automated merging scenario under intention uncertainty for other drivers.
The blue vehicle represents the ego vehicle which attempts to merge between the other
vehicles. The red rectangle depicts the conflict zone used as the reference to calculate
vehicles distance on their route. Cooperative car is colored in green and the other cars
are colored in red.

In [Yao+18], the tasks are modeled as instances of a Hidden Parameter Markov
Decision Process (HiP-MDP) [DK16]. It is assumed that an optimal policy is
available for every task. The authors propose to infer the hidden parameters
using expectation-propagation [Her+16] and to distill the task-specific policies
into a global policy that is directly conditioned on the hidden parameters of
the MDP. This approach assumes that the policy will be transferred to new
environments, where some unknown parameters affect the transition function.
The policy uses a Bayesian Neural Network (BNN) to estimate the hidden
parameters. Based on this estimation, the policy will be adapted to the new
task by comparing the transitions from the current environment with observed
transitions from previous instances. The policy also contains global parameters
which are trained before transfer. A drawback of this work, which is addressed
via uncertainty-aware transfer, is the lack of a mechanism for task identification
by the policy when it faces a new environment.

4.2 Problem Formulation

In this section we explain our problem formulation to address unknown intention
of other drivers in the automated merging scenario where the ego vehicle needs

52

4.2 Problem Formulation

to interact with other drivers in order to safely and efficiently merge into a
merging lane (Fig 4.2).

4.2.1 Drivers’ Intention and Behavior Model

Similar to [Hub+18], we model the intention of a driver with index 𝑖 in our
observation as a Boolean parameter which can have one of the two possible
values:

𝜃𝑖 ∈ {cooperative, non-cooperative} (4.2)

A cooperative driver will only reduce its velocity and open a merging gap for
the ego vehicle if it observes clear merging intention from the ego vehicle (e.g.
driving with non-negative acceleration towards the merging area). On the other
hand, a non-cooperative driver never reacts to the ego vehicle merging intention
and continues with its original strategy (e.g. drives with constant velocity) even
if the ego vehicle is clearly driving to merge in front of this vehicle.

We assume that drivers’ intention is fixed during one episode, meaning coopera-
tive drivers never stop their cooperative yielding maneuver when they observe a
merging attempt from our vehicle. Also, a non-cooperative driver never starts a
yielding maneuver even if it observes a clear merging attempt from our vehicle.
In addition to these characteristics in our drivers’ intention model which are
similar to the model used in [Hub+18], we assume that multiple drivers with
same intention can follow different maneuvers and with different dynamics. In
other words, we assume that, based on their intention, drivers follow a specific
policy from a family of policies regarding that intention:

𝜋𝑖 ∈ Π𝜃𝑖 , (4.3)

Cooperative drivers which all have same intention parameter (𝜃𝑖 = cooperative)
may follow different cooperative policies such as small gap, big gap or lane
change strategies (see Fig. 4.1). In the same way, non-cooperative drivers may
have different behaviors such as constant velocity driving, acceleration, or even
change their lane to the ego vehicle merging lane. Therefore, in this dissertation

53

4 Interactive and Transferable RL

we can tackle a wider range of scenarios and not assume a fixed policy and
dynamics for drivers with specific intentions.

4.2.2 Novel Drivers Behavior in the Transfer Environment

In order to tackle a more realistic interactive merging scenario, we assume that
not all the policies for a specific intention are available during training and a
subset of them are demonstrated to the RL agent during training. Instead of
training generalist policies that are required to train for all possible scenarios
and behaviors, we propose generalized RL agents that do not necessarily need
to observe all possible behaviors during training. Therefore, the policies are
able to transfer to a new environment where drivers follow new policies for
their intentions.

4.2.3 State Space

The state space summarizes all required information for optimal decision-making
in the merging scenario. Fig. 4.3 depicts an overview of this scenario and the
parameters used for the state representation. For more general representation,
position and velocity of the ego vehicle and all 𝑁 vehicles are transformed into
their distances and velocities along their routes. The beginning edge of conflict
zone is the origin for vehicles distance on their route meaning the vehicles
behind the merging point have positive distances. Finally, the whole state is
represented as below:

𝑠 =

𝑑ego 𝑑1 ... 𝑑𝑁

𝑣ego 𝑣1 ... 𝑣𝑁

𝑎ego 𝜃1 ... 𝜃𝑁

𝑒𝑔𝑜 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠

(4.4)

Where 𝑑ego, 𝑣ego, and 𝑎ego are the ego vehicle distance, velocity and acceleration
along their routes. Similarly, 𝑑𝑖 , 𝑣𝑖 are the distance and velocity of other vehicles,
and 𝜃𝑖 is their intention parameter.

54

4.3 Approach

Goal

𝑑ego

𝑑1 𝑑2

Figure 4.3: State representation for the interactive merging scenario. Ego vehicle (Blue) should
merge between other vehicles (red) and finally reach the goal. The intention of other
vehicles 𝜃𝑖 are not directly observable (graphic from [KRL21], ©2021 IEEE).

4.2.4 Observation Model

We assume drivers’ intentions (𝜃𝑖) are hidden parts of the state which cannot
be observed by the policy, however, they can be revealed after some proper
information-gathering interactions between the ego vehicle and the drivers. For
simplicity, we assume other parts of the state (vehicles’ distance and velocity)
can directly be observed from the environment without any measurement noise:

𝑜 = (𝑜ego, 𝑜1, ..., 𝑜𝑁), (4.5)

where 𝑜ego = (𝑑ego, 𝑣ego, 𝑎ego) and 𝑜𝑖 = (𝑑𝑖 , 𝑣𝑖).

4.3 Approach

In order to address intention uncertainty for interactive automated driving, we
model the problem as a Hidden Parameter Block Markov Decision Process
(HiP-BMDP) [Zha+20a]. We model unknown intentions of drivers by hidden
parameters in our framework which can be estimated via intention estimators
as separate modules outside RL. Such hidden parameter estimators can be
trained in parallel with the policy by incremental supervised learning. Drivers’
intentions can also be estimated by available trajectory predictors based on

55

4 Interactive and Transferable RL

machine learning [Sal+20], probabilistic graphical models [DDL17], or any
other form.

In case the hidden parameter predictor has a high uncertainty (e.g., due to
lack of observations from the new environment for updating the model), the
proposed policy is able to perform optimal information gathering actions to
obtain more observations and reduce the prediction uncertainty due to the
adversarial perturbations applied on it during RL training.

HiP-BMDP is defined as a combination of Hidden Parameter Markov Decision
Process (HiP-MDP) [DK16] and Block Markov Decision Process (BMDP). We
first explain HiP-MDP part of the model and later provide a complete model
definition based on HiP-BMDP.

4.3.1 Modelling Unknown Driver Intentions with Hidden
Parameters

A POMDP problem can generally be formulated as a HiP-MDP considering
these two assumptions:

• There exists a bounded number of latent variables such that, if they are
known, the entire dynamics of the system would be specified.

• These latent variables remain fixed during one episode (until task is
finished), but can change for a new episode (task).

These assumptions fit very well to our interactive automated merging problem:

• Considering drivers’ intention as unknown latent variable, the whole
dynamics of the system would be specified if the drivers’ intention
becomes revealed and therefore the problem can be modeled as an MDP.

• Drivers’ intention remains fixed during one episode, meaning that a
cooperative vehicle reacts to our vehicle merging attempt and never
changes its behavior.

Therefore, the problem of partial observation due to unknown drivers’ intention
in automated driving can be reformulated as a family of HiP-MDP problems

56

4.3 Approach

which are conditioned on the fixed hidden parameters that are in our case the
cooperative intentions of all surrounding vehicles:

𝜃 = (𝜃1, 𝜃2, ..., 𝜃𝑁) (4.6)

It should be noted that the size of hidden parameter vector (𝑁) is bounded
since we only provide a fixed number of surrounding vehicles as the input state
representation for the policy.

This model helps us to break the problem of planning under intention uncertainty
into two smaller tasks: 1) Hidden parameter estimation and 2) Decision-making
based on predicted parameters.

4.3.2 Final Model based on Hidden Parameter Block MDPs

Now we explain our final modelling of the interactive merging problem using
HiP-BMDP. As explained in Section 2.3, HiP-BMDP has an extra attribute
in addition to HiP-MDP which is the state block assumption for different
observations that refer to a same state. In our problem, we assume different
observation dynamics from the drivers with the same intentions can be modeled
with same states. In other words, we assume drivers with same intentions (e.g.
being cooperative) have same states but since they may have different driving
styles (e.g. being cooperative by fast deceleration or keeping constant distance
to the ego vehicle), they can have different observations (Fig. 4.4).

In summary, the main HiP-BMDP modelling for the problem of interactive
automated driving under intention uncertainty with different behavior dynamics
can be described as below:

• State Set S: The state that fully describes the current situation for an
optimal policy, consisting of the location, velocity and intention of every
participant, as well as the ego vehicle (as explained in Sec. 4.4).

• Action Set A: Set of possible actions the ego vehicle can select. In our
case it will be jerk commands that are selected from the policy to control
the acceleration of the automated vehicle.

• Task Parameter setΘ: Different combinations of intentions that all drivers
can have. This is assumed to be hidden and not observable.

57

4 Interactive and Transferable RL

s𝑠𝑡

𝑠𝑡+1 𝑠𝑡+1

𝜃=Non-Cooperative 𝜃=Cooperative

𝑞 (𝑠)
𝑥𝑡+1 𝑥𝑡+1
𝑞 (𝑠)

𝜃 = Uncooperative

𝑞-1
Env-1 𝑞-1

Env-1

Env-1 Env-1

Env-2

𝜃 = Cooperative

Env-3Env-3

Env-2

Figure 4.4: In real-world, drivers with same intentions (cooperative or non-cooperative) may follow
different policies which can result in different observations, while they all have same
hidden parameters. Shaded cars depict previous positions of the drivers and circles
depict their intended future positions.

• Observable Space X: The part of the state that can directly be observed.
This includes the location and velocity of every participant, as well as
the ego vehicle.

58

4.3 Approach

• Emission Mapping function 𝑞: The stochastic mapping that emits the
sequence of observations 𝑞(𝑥 |𝑠), in our case, the sequence of vehicles’
positions and velocities given their intention.

4.3.3 Decoupling Intention Prediction and Decision-Making

So far we modeled the problem of interactive merging under intention uncertainty
based on HiP-BMDP. Different RL models can be used in order to solve HiP-
BMDP problems. In [Xie+20] hidden parameters are implicitly learned as
part of the learning framework where observations are provided for part of the
RL network which predicts the current task parameters as latent variables by
reconstruction. Similar to 𝑘-Markov Approximation [Bou+19a], it is assumed
that history of 𝑘 recent observations is enough in order to identify the current
task parameters (drivers’ intentions in our scenario). However, this methodology
has two main drawbacks:

• Since the policy is conditioned on the recent observation history, we
require a more complex and less sample efficient training architecture.

• Once the policy is trained, it cannot be generalized into new environments
where drivers have new maneuvers with novel dynamics.

Therefore, instead of providing a history of recent 𝑘 observations, we propose
to utilize an external task estimator which in our case predicts the intention of
drivers based on their histories and only the predicted state from this module is
provided as the input to the RL agent:

𝑠𝑡 = (𝑜𝑡 , 𝑞−1 (𝑜𝑡 , 𝑜𝑡−1, ..., 𝑜𝑡−𝑘+1)) (4.7)

Where 𝑞−1 is the function which estimates the value of hidden parameters in
the state from the recent history of observations from the environment. This
function can be implemented as a classifier which predicts the probability of
different possible values for the existing hidden parameters. In our application,
this function provides estimates of the drivers’ intention:

𝑞−1 (𝑜𝑡 , 𝑜𝑡−1, ..., 𝑜𝑡−𝑘+1) = (𝜃1, 𝜃2, ..., ˆ𝜃𝑁) (4.8)

59

4 Interactive and Transferable RL

euzungsszenarien

𝑠𝑡

𝑜𝑡−𝑘−1

𝑜𝑡

DQN
𝑎𝑡

DQN

𝑠𝑡

𝑜𝑡

𝑞−1

DQN
𝑎𝑡𝜃𝑛

𝜃1
𝑜𝑡−𝑘−1

𝑜𝑡

Figure 4.5: Top: Implicit intention estimation in 𝑘-Markov RL models. Bottom: External hidden
parameter estimation in HiP-BMDP RL.

Fig. 4.5 depicts the difference between the implicit intention estimation and
our proposal which uses external intention estimators. As it is visible, the main
difference is in the input of each RL agent while they both have a same output
(action) interface.

More specifically, we utilize an external intention predictor module (𝑞−1) which
explicitly predicts the cooperative intention based on previous interactions with
each vehicle. Using an external drivers’ intention prediction has these major
benefits:

• Generalization: The RL does not require to be trained in all environments
in order to observe all possible behaviors for different intentions. Instead,
the policy can only be trained in one of the environments, by having
access to the true states in that environment, and then be transferred to
new environments by only updating its intention predictor module (𝑞−1).

60

4.3 Approach

• Sample Efficiency There is no need to provide history of 𝑘 recent
observations as the RL agent input and therefore the RL neural network
structure becomes less complex and more efficient to train.

• Modular Structure Due to the decoupling between RL and predictions,
we can benefit from several classical and efficient prediction models avail-
able in the literature to use as behavior predictor. Moreover, maintenance
of both modules can be done separately.

The main drawback of this structure is the potential loss of benefits that come
with an end-to-end solution. In simpler tasks, this approach may actually
increase the complexity of learning since it requires training two separate
models independently. Additionally, the policy must account for variations and
uncertainties in the predicted intentions in new environments. We will address
this issue in the next section.

4.3.4 Policy Transfer with Hidden Parameter Adversarial
Perturbation (HiP-AP) RL

We assume that drivers have one of cooperate and non-cooperative intentions
(Eq. 4.2.1) but follow different policies at different environments (Eq. 4.2.1).
By modelling the problem with HiP-BMDP, we assume that high level states of
drivers with same intentions across different environments are similar and only
their emission functions change depending on the environment.

Therefore, we propose to train the RL policy with direct access to the true
hidden variables in the source environment which makes it transferable between
related HiP-MDPs, that only differ in the emission functions (𝑞′). The true
hidden parameters can come from the assigned parameters in the simulator or
by post-processing and hindsight extraction [Pon+22] from recorded datasets
and identifying cooperative and non-cooperative drivers based on their final
behavior. However, when deploying the trained policy in a test environment, an
external hidden parameter estimator is required to predict the existing latent
variables for the policy. It can happen that by transferring the policy to a
new environment with completely new emission functions (𝑞′), the hidden
parameter estimator have high uncertainty and therefore our assumption about
having access to the true hidden parameter becomes invalid.

61

4 Interactive and Transferable RL

We propose to make the policy robust to uncertain hidden parameter estimations
at test time by applying adversarial perturbations ([Zha+20b]) on the true hidden
parameters during training, in order to make the policy more robust at transfer
time. In the context of automated driving, we apply a rule-based adversarial
function (𝑓AP (.)) to the true driver intentions based on their time to collision
(TTC):

𝑓AP (𝜃𝑖 , 𝑡0) =
{
𝜃𝑖 , if |𝑇𝑋𝑖 − 𝑇𝑋ego | > 𝑡AP

−1, otherwise
(4.9)

Here 𝑇𝑋𝑖 is the time for the vehicle 𝑖 and 𝑇𝑋ego for the ego vehicle to reach
the conflict zone assuming driving with constant velocity. We calculate the
difference between these two time values which indicates the risk of collision
between the two vehicles on intersecting lanes [JNG13] and also the complexity
of estimating vehicle’s intention. When the time difference is close to zero,
vehicle 𝑖 and ego vehicle have a high risk of collision when reaching the conflict
zone, and therefore it is complex to estimate if the other vehicle is cooperative or
non-cooperative. On the other hand, when the other vehicle reaches the conflict
zone earlier or later than the ego vehicle by constant velocity assumption for
both vehicles, it can be less complex to estimate its intention using an advanced
behavior/intention prediction module. This is simple model of drivers’ intention
prediction and could be replaced by a non-linear perturbation in future works.

62

4.4 Evaluations on Interactive Automated Merging in Simulation

4.4 Evaluations on Interactive Automated Merging
in Simulation

4.4.1 Simulation Environment and Main Challenges

We consider the automated merging problem where the RL agent controls
an automated vehicle (ego vehicle) on the merging lane, which needs to
interact with the other vehicles driving on the target lane. For that, we use
the open-source simulator [Leu18] where other vehicles are controlled by the
Intelligent Driver Model (IDM) [THH00] to keep safety distance with their front
vehicle, but do not react to the ego vehicle. Therefore, in the original version
of the simulator, all drivers have uncooperative intention. We applied some
modifications to implement the cooperative behaviors for randomly selected
cooperative vehicles. The cooperative drivers consider the projected position
of the ego-vehicle on their lane as their front vehicle position and keep a safe
distance to that.

In order to evaluate and compare the ability of a RL agent to generalize
well enough when transferred to a new environment with new dynamics, we
implemented three different automated merging environments:

• Early-Brake: Cooperative drivers reduce their velocity as early as
possible to open a big merging gap for the ego vehicle.

• Late-Brake: Cooperative drivers keep their velocity until just before
the conflict zone where they perform a harsh deceleration.

• Mixed-Brake: Cooperative drivers are randomly assigned to have one
of the two (early-brake or late-brake) behaviors.

The main difference between these environments is the behavior of cooperative
drivers regarding the merging attempt of the ego vehicle by having different
comfortable deceleration limit in their IDM controller (𝑎comf-max=1.0 m/s2 for
early-brake and 𝑎comf-max=5.0 m/s2 for late-brake behaviors).

In summary, the main challenges in our simulation are: 1) Unknown drivers
intentions and 2) Novel behaviors for cooperative drivers in the test environment.

63

4 Interactive and Transferable RL

Reward Function

The desired behavior to learn by RL is to safely merge into the target lane as
fast as possible without collision or harsh deceleration, which is implied by this
reward function:

𝑅 =

1, if goal reached
-0.25, if collision happened
-0.009 , if 𝑣 (𝑡)ego < 𝑣

(𝑡−1)
ego

-0.003 , otherwise

(4.10)

In the above, 𝑣 (𝑡)ego is the velocity of the ego vehicle at current time (𝑡), which we
penalize its decrease to reduce harsh deceleration and encourage comfortable
driving.

Action Space

We assume that the ego vehicle utilizes a low level path follower controller like
[Ack+95] in order to follow a fixed route into the merging point. Therefore,
the RL only controls the longitudinal velocity of the ego vehicle according to
the current observation by selecting one of possible jerk commands from our
action space:

A = {−1.5
𝑚

𝑠3 , 0.0
𝑚

𝑠3 , 1.5
𝑚

𝑠3 } (4.11)

4.4.2 Baselines

We compare the performance of four different RL baselines during training in
the source environment and also at test time when they are transferred to the
test environments:

K-Markov Generalist

As proposed in [PSK20], one way to learn a generalized policy for HiP-MDP
problems is to train a generalist policy using several training batches from all

64

4.4 Evaluations on Interactive Automated Merging in Simulation

possible tasks. We call this baseline 𝑘-Markov Generalist agent since it receives
a 𝑘 recent observations and is trained across all environments at the same time.

K-Markov Specialists

We implement 𝑘-Markov Specialists RL agents that are conditioned on obser-
vation history but only trained in one specific environment (Early-Brake or
Late-Brake) and therefore are called 𝑘-Markov Early-Brake or 𝑘-Markov
Late-Brake, respectively.

HiP-AP Specialists

Finally, we implement our proposed HiP-AP RL agent which is trained in one of
the environments using the proposed hidden parameter adversarial perturbation
approach (equation 4.3.4) and is subsequently transferred to the new environment
using an online intention estimator network that is trained incrementally on
the novel cooperative behaviors in that environment. Depending on which
environment this agent is trained, it is named HiP-AP Early-Brake or HiP-AP
Late-Brake accordingly.

HiP-Oracle Specialists

We also implement HiP-Oracle specialists as HiP-based baselines (Hidden
Parameter (HiP)-Oracle Early-Brake or HiP-Oracle Late-Brake) which
have access to the true driver intentions during training (provided by the
simulator). Note that this is not a realistic assumption, but we are interested to
see how fast these policies can converge during training.

4.4.3 Impact of HiP-MDP Modelling on Sample Efficiency
During Training

In order to show the impact of modelling driver intentions as hidden parameters
in a HiP-MDP formulation, we first trained HiP-Oracle and 𝑘-Markov specialist
agents in each of the environments.

65

4 Interactive and Transferable RL

Fig. 4.6 (top) depicts the average episode reward of each policy during training,
indicating that having direct access to the hidden parameter helps the HiP-Oracle
policy to reach higher reward with fewer interactions and training updates. On
the other hand, the 𝑘-Markov agents require more training and still do not reach
the maximum reward achieved by the HiP-Oracle agent. We find that providing
longer observation histories can help to improve the policy to some extent, but
it is not a sample-efficient solution.

Moreover, Fig. 4.6 (bottom) shows the average episode reward of HiP-AP agent,
which has direct access to perturbed drivers’ intentions. Obviously HiP-AP
requires more time to converge compared with the HiP-Oracle, due to the
adversarial perturbations on the states. But this policy has the advantage to
be transferred in new environments and receive uncertain estimations about
drivers’ intentions, which is not the case for the HiP-Oracle agent that only
assumes to receive true values of the hidden parameters.

4.4.4 Policy Transfer in Target Environments with Novel
Cooperative Behaviors

In this section, we compare the efficiency of each baseline when trained in one
environment and transferred to new environments. For comparing performance
of each baseline at transfer time, we formulate our criteria by asking the
following questions.

Which source environment leads to the best performance in all target
environments?

This can be an interesting question specially when a RL policy is trained with
one accessible environment at training but needs to be robust to novel behaviors
in other environments.

Table 4.1 provides average reward, collision rate and average episode length
for two different HiP-Oracle agents trained in Early-Brake or Late-Brake
environments and evaluated in all three environments. According to this
table, the HiP-Oracle agent that is trained in the Late-Brake environment has
higher return in all evaluation environments compared with the HiP-Oracle

66

4.4 Evaluations on Interactive Automated Merging in Simulation

Figure 4.6: Top: Average episode return for the HiP-Oracle and 𝑘-Markov RL with different history
lengths in the Late-Brake environment. Bottom: Average episode return for training
the proposed HiP-AP agent in the Late-Brake environment. Note that due to the
adversarial perturbation of the true hidden parameters, the training takes longer than
other baseline agents.

agent trained in the Early-Brake environment. Note that the agent trained
in the Late-Brake environment is about 4 seconds in average faster than the
agent trained in the Early-Brake environment. This is mainly because in
Late-Brake environment, the agent learns how to merge in tight merging

67

4 Interactive and Transferable RL

Transfer Env. Metric Training Env.
Early-Brake Late-Brake

Early-Brake
Avg. Return 0.933 ± 3e-3 0.942 ± 3e-3
Collision rate (%) 1 2
Avg. Length (s) 52.5 ± 1.2 48.2 ± 0.4

Late-Brake
Avg. Return 0.93 ± 3e-3 0.94 ± 4e-3
Collision rate (%) 2 2
Avg. Length (s) 53.3 ± 1.2 48.4 ± 0.6

Mixed-Brake
Avg. Return 0.93 ± 6e-3 0.94 ± 3e-3
Collision rate (%) 2 2
Avg. Length (s) 53.5 ± 0.4 49.3 ± 1.0

Table 4.1: Comparing Oracle HiP-AP agents transferred in the training environment and in the
other environments.

gaps and is therefore able to merge in easier scenarios with big merging gaps.
While the agent trained in Early-Brake only learns to merge in large gaps
and therefore the agent needs to yield to the most of the drivers even if they are
late-brake cooperative.

How well the HiP-AP agent transfers to new environments with online
intention predictor?

We compare the baselines with realistic assumptions that there is no direct
access to the driver intentions when transferred to new environments. For
that, we transfer all the baselines to different environments and measure their
average performance over 100 episodes for 10 epochs (1000 episodes in total).
The results are reported in Fig. 4.7. For the proposed HiP-AP agent with
online intention estimator, we utilize an Multi-layer Perceptron (MLP) classifier
that is trained incrementally to reduce the average prediction loss (Fig. 4.8)
for predicting the true driver intentions using the recorded trajectories from
previous epochs.

Due to similar reason explained in previous section, 𝑘-Markov specialist
agent that is trained in Late-Brake outperforms the same agent trained in
Early-Brake with higher return in all three test environments. The 𝑘-Markov
generalist outperforms the Late-Brake specialist in the Early-Brake test
environment and has similar performance in other environments.

68

4.4 Evaluations on Interactive Automated Merging in Simulation

Figure 4.7: Average episode return (first column) and average episode length (second col-
umn) for different baselines (zero-shot) transferred to Env-Early-Brake (first row),
Env-Late-Brake (second row) and Env-Mixed-Brake (last row).

The proposed HiP-AP agent is the only policy which is able to update its intention
predictor module at transfer time. The prediction loss for the intention predictor
module at transfer time is shown in Fig. 4.8 which shows the improvements on
the accuracy of intention predictions during transfer time. It is clearly visible
that the HiP-AP performance has a huge improvement from the first epoch to the

69

4 Interactive and Transferable RL

Figure 4.8: Average loss for the intention predictor loss of Late-Brake-HiP-AP agent while incre-
mentally trained at different environments.

70

4.4 Evaluations on Interactive Automated Merging in Simulation

last epoch in all three environments. This is mainly the result of improvements
on the intention predictor module as the RL policy is fixed. Therefore, after
some epochs it outperforms both specialist history-based agents with higher
reward.

71

4 Interactive and Transferable RL

4.5 Evaluations on Interactive Automated Merging
with Real-World Datasets

In this section, we present the evaluation results of the RL merging policy which
is trained based on real-world observational datasets. For that, first we explain
the pipeline implemented in order to process the datasets and generate training
data for the RL algorithm. The dataset is also used for providing a simulation
environment and evaluating the trained RL policy with the real-world data.

We process the Interaction dataset ([Zha+19]) as an open-source automated
driving dataset which includes recorded trajectories of vehicles in different
scenarios including merging scenario. We use several recorded trajectories in
Germany (DEU) and China (CHN) in this dataset. Each dataset contains several
hours of recorded trajectories which will be processed in order to extract several
merging scenarios for training the RL agent. In the following, we explain the
main procedure to process the datasets and extract all merging scenarios from
them.

4.5.1 Dataset Preprocessing

Vehicle State Transformation

Fig. 4.9 depicts an example frame of vehicles driving at a merging scenario in
highway from German and China datasets. Using available open-source tools
from common-road benchmarks ([AKM17]), we extract merging and normal
highway lanes and project each vehicle position on its route in order to compute
its position and velocity along its route (4.10). The vehicles’ longitudinal
distances are relative to the starting edge of the conflict zone, resulting in
positive (negative) distances for vehicles behind (after) the conflict zone edge.

Merging Scenario Identification

We are interested to observe the trajectory of vehicles that are merging into
the highway and let the RL observe their interactions with other drivers while
merging. Therefore, for all time frames in a dataset, the list of vehicles on the

72

4.5 Evaluations on Interactive Automated Merging with Real-World Datasets

merging lane are extracted and the vehicle which has the minimum positive
distance is identified as the current merging vehicle for that time frame.

Every time frame that has a new merging vehicle is identified as a starting time
for a new merging scenario. Note that a new scenario may start only in one
of these cases: 1) When a merging vehicle enters into the merging lane for
the first time and there is no other vehicle on its lane before that vehicle. 2)
When a merging vehicle merges into the highway lane and therefore the vehicle
behind this vehicle has no other vehicle in front and will be considered as the
new merging vehicle.

After identification of the starting time for a new merging scenario, the time
frame which the merging vehicle reaches 20 meters after the conflict zone is
identified as the ending time of that scenario. Therefore, each extracted merging
scenario has three characteristics: vehicle ID for the merging vehicle, starting
time and end time of the merging scenario.

Figure 4.9: One frame from the merging scenario in the Germany (left) and China (right) Interaction
dataset.

4.5.2 MDP Dataset Generation

After extracting all merging scenarios in a dataset, for each scenario the array
of all MDP transitions from start to the end of merging trajectory is generated.
Each MDP transition includes the current MDP state (𝑠), next MDP state (𝑠′),
merging vehicle action (𝑎) and MDP reward (𝑟 = 𝑅(𝑠, 𝑎, 𝑠′)) for that transition.

73

4 Interactive and Transferable RL

Figure 4.10: Merging and normal highway routes provided in the German Interaction dataset. We
use these routes in order to compute vehicles’ position and velocity along their lanes’
center lines.

MDP State

Similar to our simulation experiments, the MDP state extracted for these
observational trajectories provides all available information about the existing
situation for a decision-making policy in order to generate the optimal action.
We provide the distance and speed of the merging vehicle along its route, and
closest vehicles in front and behind this vehicle on the highway lane. The true
drivers’ intention is calculated based on their final location relative to the ego
vehicle at the end of the scenario. If their final position is behind the ego vehicle
(they yield to our vehicle) their intention will be labeled as cooperative. If they
are located after the ego vehicle (they merged earlier than our vehicle) their
intentions are labeled as uncooperative.

The next MDP state is generated in the same way from the next time frame
in the dataset. Fig. 4.11 and Fig. 4.12 show histogram of different state
parameters generated from all identified merging scenarios from the DEU and
CHN datasets respectively.

MDP Action

Since we aim to train a RL as an acceleration controller for merging in highway,
the MDP action is calculated as the acceleration of the merging vehicle as

74

4.5 Evaluations on Interactive Automated Merging with Real-World Datasets

𝑑front (m) 𝑣front (m
s)

𝑑behind (m) 𝑣behind (m
s)

coop-behind coop-front

𝑑ego (m) 𝑣ego (m
s)

DEU Dataset

Figure 4.11: Histogram of different observation elements in the generated MDP dataset from the
DEU dataset.

75

4 Interactive and Transferable RL

𝑑ego (m) 𝑣ego (m
s)

𝑑front (m) 𝑣front (m
s)

𝑑behind (m)

coop-behind coop-front

CHN Dataset

𝑣behind (m
s)

Figure 4.12: Histogram of different observation elements in the generated MDP dataset from the
CHN dataset.

76

4.5 Evaluations on Interactive Automated Merging with Real-World Datasets

the difference of its longitudinal velocity along merging route between the
current and the next time frame divided by the time difference. Fig. 4.13 show
histogram of generated actions in the MDP datasets for DEU and CHN datasets.

DEU Dataset

Action (m
s2)

CHN Dataset

Action (m
s2)

Figure 4.13: Histogram of MDP actions generated from the DEU dataset (left) and CHN dataset
(right).

MDP Reward

We calculate the reward for the MDP transitions based on the Eq. 4.5.2. This
reward function consists of a negative time penalty for every time frame except
the last time frame where the vehicle reaches the end of merging scenario and
the MDP reward will be a positive value. Fig. 4.14 shows the histogram of all
calculated reward values for the DEU and CHN datasets.

𝑅 =

{
−0.001, if 𝑑ego > 𝑑end

0.1, otherwise.
(4.12)

After generating all MDP transitions for all merging scenarios, they will be
combined and stored in a database as training data for the offline RL policy.
Note that the order of MDP transitions does not need to be stored in this database
since in the end they will be randomly selected in small batches for iterative
policy training.

77

4 Interactive and Transferable RL

Reward

DEU Dataset

Reward

CHN Dataset

Figure 4.14: Histogram of MDP rewards generated from the DEU (left) and CHN (right) datasets.

4.5.3 Offline Reinforcement Learning Baselines

After generating the MDP datasets from our merging scenarios, we train RL
agents using those datasets for an interactive automated merging policy. Since
we are using recorded datasets and the RL agent does not have the possibility
for online interactions with the environment in order to generate new transitions,
receive feedback and update itself, we need to apply offline RL methodology.

In offline RL settings ([FMP19; ASN20; Lev+20]), it is assumed that the agent
observes several trajectories from interactions of another policy which is called
behavior policy. This policy can be a random action selector, an expert agent
or different suboptimal agents. Selecting the appropriate offline RL algorithm
depends on different factors especially the size of training data, type of RL
action space, and importance of policy exploration [Lev+20].

Due to limited amount of scenarios in our dataset and considering generating
vehicle accelerations as continuous actions, we selected BCQ in order to train
our offline RL agent. For implementing and training the BCQ agent, we use the
open-source d3rlpy library [SI22] which has an efficient interface to generate
MDP datasets from our offline data and train several state-of-the art offline RL
algorithms.

78

4.5 Evaluations on Interactive Automated Merging with Real-World Datasets

Oracle-BCQ

As the first baseline, we train a BCQ agent which has full observation on all
state parameters including their true intention labels and call it Oracle-BCQ.
We expect to achieve the best performance from this baseline, but it should
also be considered that this is not a realistic solution, since the trained policy
is conditioned on drivers’ intention which is usually hard to estimate in real-
world settings. However, comparing the performance of Oracle BCQ and
other baselines with partial observation can provide useful insights about the
complexity of the task and importance of considering drivers’ intention for
optimal policy training in our experiments.

Partially Observable BCQ (PO-BCQ)

The PO-BCQ does not observe the drivers’ intention but has access to the other
parameters in the state.

Hidden Parameter Adversarial Perturbation BCQ (HiP-AP-BCQ)

Finally, we implement our HiP-AP solution for addressing generalized and
sample efficient RL under intention uncertainty in the offline RL setting and
call it HiP-AP-BCQ.

Similar to the strategy explained in simulation experiments, here we apply the
adversarial perturbation function in the Equation 4.3.4 on the true intention
labels. In order to set a reasonable value for 𝑡AP parameter which identifies
the power of perturbation, we first have a look into the time difference of
cooperative vehicles in the dataset as those that the ego vehicle could merge
into their lanes earlier than they enter into the conflict zone. As it is visible in
Fig. 4.15 the most frequent time difference (𝑇𝑋𝑖 − 𝑇𝑋ego) in both datasets is
between 0.0 and 2.5 seconds. Interestingly, in the CHN dataset, we observe
some cooperative drivers with negative time difference, meaning that those
drivers could reach the conflict zone faster than the ego vehicle, but in the end
they reduced their velocity and yielded to the ego vehicle. Considering the
range of time differences in both datasets, we apply a uniform random selection
of perturbation threshold for each specific training episode: 𝑡AP ∼ 𝑈 (0, 2.5).

79

4 Interactive and Transferable RL

0 10 20 30
0

2

4

6

8

10

0

20

40

60

80

100

120

140
count

𝑑ego (m)

Ti
m

e
(s

)

0 20 40 60
−5

0

5

10

0

50

100

150

200

count

𝑑ego (m)

Ti
m

e
(s

)

Figure 4.15: Histograms of cooperative vehicles’ time difference and its relationship to the ego
vehicle distance to the merging point for DEU dataset (top) and CHN dataset (bottom).

4.5.4 Policy Simulation with Recorded Datasets

In order to evaluate the trained RL policy with the recorded merging scenarios
from the Interaction dataset, we deploy a test (artificial) merging vehicle which

80

4.5 Evaluations on Interactive Automated Merging with Real-World Datasets

starts exactly with the same position and velocity of the real merging vehicle
for each scenario. However, the future states of the test vehicle are updated
based on the control decisions (accelerations) generated by the RL policy,
rather than following the states in the recorded trajectories. Since there are no
collisions in the real data, a policy that strictly follows the recorded trajectories
would result in a zero collision rate. Although this might not be the most
effective way to evaluate the trained policies, it is our only option for testing
their performance with our offline dataset. Therefore, we also assess the policies
visually by examining their generated trajectories in various scenarios to provide
an additional layer of evaluation.

Similar to our simulation experiments, the RL only generates accelerations
without any lateral control and the vehicles follow their fixed merging path.
Based on that, we implement a simulator which can randomly select a merging
scenario and then provide the initial MDP state of the environment for the RL
policy and follow the RL actions in order to generate the next simulated MDP
states. Note that only the state of the ego vehicle will be simulated and for other
vehicles in the scenario, their recorded trajectories in the real-world will be
followed for future simulation steps.

4.5.5 Evaluation Results

In this section, we provide evaluation results of different BCQ baselines trained
with our offline MDP dataset and evaluated in the recorded scenarios from
real-world merging scenarios in DEU and CHN datasets.

As the most important evaluation metric, we record the number of collisions
that happen during testing each baseline and based on that, we report success
rate as the average number of successful episodes. It may happen that the other
vehicles have collision with the simulated test vehicle since they just follow their
recorded trajectory without any interaction with this vehicle. We only neglect
those types of collisions only if they happen when the test vehicle is behind
the merging conflict zone, since they are not indicating bad merging policy for
the test vehicle. However, the collisions that happen when the test vehicle is
after or inside the merging conflict zone are considered as consequences of
bad decisions from the RL policy and will be reported in our evaluations. The
amount of success rates for different baselines in different observation settings

81

4 Interactive and Transferable RL

are provided in Table 4.2. Note that HiP-AP-BCQ is the only baseline that can
be evaluated in both full observation (with access to intentions) and partial
observation settings (without access to intentions). In other words, here we do
not learn or embed an external intention predictor for HiP-AP-BCQ and instead
evaluate its performance in partial or full observation settings.

We also provide time-distance diagrams for the ego, front, and behind vehi-
cles during some example episodes. Additionally, we provide velocity and
acceleration profiles of the ego vehicle during those episodes.

Observation Oracle-BCQ PO-BCQ HiP-AP-BCQ (ours)
Full observation 90 – 85
Partial observation – 75 80

Table 4.2: Success rate of different baselines evaluated in the CHN dataset.

Comparing Oracle-BCQ and PO-BCQ

In table 4.2, we can observe that Oracle-BCQ has higher success rate than
PO-BCQ agent. This justifies the importance of knowing about the intention of
other vehicles for interactive merging and also the fact that the problem needs
to be formulated as a POMDP rather than MDP due to decision-making under
intention uncertainty.

We have a closer look into one of the episodes where PO-BCQ fails while
Oracle-BCQ can finish the episode successfully. Fig. 4.16 shows some frames of
the Oracle-BCQ trajectory in scenario CHN-19-8. The velocity and acceleration
profiles of this agent is also visible in Fig. 4.17. Since Oracle-BCQ knows
about the uncooperative intention of the front vehicle, it starts with negative
acceleration in order to safely merge after this vehicle and successfully finishes
the episode.

For the same episode, we run the PO-BCQ to control the merging vehicle.
Since PO-BCQ has no access to the uncooperative driver’s intention, it fails
and has a collision with this vehicle. By having a closer look into this episode
(Fig. 4.18 and Fig. 4.19), we observe that PO-BCQ accelerates at 𝑡=0 with
acceleration 1.4 (m

s) and first tries to merge before the uncooperative driver in
front. However, at 𝑡=2.0 (s) it changes the decision to decelerate but can not be
successful and has a collision with this vehicle at 𝑡=5.1 (s).

82

4.5 Evaluations on Interactive Automated Merging with Real-World Datasets

(a) 𝑡 = 0 s

(b) 𝑡 = 1.5 s

(c) 𝑡 = 3 s

(d) 𝑡 = 4.5 s

(e) 𝑡 = 6.0 s

Figure 4.16: Different frames of the scenario CHN-19-8 where Oracle-BCQ agent (yellow) with
access to the driver’s intention is controlling the merging vehicle (number 152) and
knows about the intention of the front uncooperative vehicle (number 167). Therefore,
Oracle-BCQ can safely merge after that vehicle. Note that the original trajectory of
the merging vehicle (number 152) is not part of the simulation and is only shown here
(blue vehicle below yellow) for comparison.

83

4 Interactive and Transferable RL

Figure 4.17: Distances, velocity and acceleration profile for the Oracle-BCQ agent at scenario
CHN-19-8. The Oracle agent knows about the intention of front uncooperative vehicle,
therefore it can safely merge after that vehicle.

84

4.5 Evaluations on Interactive Automated Merging with Real-World Datasets

(a) 𝑡 = 0 s

(b) 𝑡 = 1.5 s

(c) 𝑡 = 3 s

(d) 𝑡 = 4.5 s

(e) 𝑡 = 5.1 s

Figure 4.18: Different frames of the scenario CHN-19-8 where PO-BCQ agent (yellow) without
access to the driver’s intention is controlling the merging vehicle (number 152) and
has a collision with the uncooperative front vehicle (number 167) at 𝑡=5.1 (s). Note
that the original trajectory of the merging vehicle (number 152) is not part of the
simulation and is only shown here (blue vehicle below yellow) for comparison.

85

4 Interactive and Transferable RL

Figure 4.19: Distances, velocity and acceleration profile for the PO-BCQ agent at scenario CHN-
19-8. The PO-agent does not know about the intention of front uncooperative vehicle
and has a collision with it at 𝑡=5.1 (s).

86

4.5 Evaluations on Interactive Automated Merging with Real-World Datasets

Comparing PO-BCQ and HiP-AP-BCQ

According to the Table 4.2, there are some scenarios where PO-BCQ agent fails
but HiP-AP-BCQ with same partial observations (unknown intention) does
not fail. This shows the advantage of applying adversarial perturbation on
drivers’ intention during policy training which improves the performance of
policy at runtime. In other words, since the agent knows about the true drivers’
intention for some training scenarios, it can learn a better solution about how
to merge between vehicles by observing examples about how cooperative and
non-cooperative drivers behave. At the same time, the agent also experiences
some drivers with unknown intention (due to perturbation) and therefor learns
how to deal with these situations.

We have a closer look again in episode "CHN-19-8" where PO-BCQ failed but
Oracle-BCQ could be successful. This time we run HiP-AP-BCQ with partial
observation settings (similar to PO-BCQ) in this episode (Fig. 4.20). As it
is visible in the velocity and acceleration profiles of this agent in Fig. 4.21,
HiP-AP-BCQ starts to accelerate first and merge before the front vehicle. But
in contrast to the PO-BCQ, it decelerates earlier (𝑡=1.7 (s)) and can successfully
merge after the uncooperative car in front.

87

4 Interactive and Transferable RL

(a) 𝑡 = 0 s

(b) 𝑡 = 1.5 s

(c) 𝑡 = 3 s

(d) 𝑡 = 4.5 s

(e) 𝑡 = 6.0 s

Figure 4.20: Different frames of the scenario CHN-19-8 where HiP-AP-BCQ (our approach)
agent (yellow) without access to the driver’s intention is controlling the merging
vehicle (number 152). Although HiP-AP-BCQ does not know about the intention of
uncooperative front vehicle (number 167), it safely merges after this vehicle. Note
that the original trajectory of the merging vehicle (number 152) is not part of the
simulation and is only shown here (blue vehicle below yellow) for comparison.

88

4.5 Evaluations on Interactive Automated Merging with Real-World Datasets

Figure 4.21: Distances, velocity and acceleration profile for the HiP-AP-BCQ agent at scenario CHN-
19-8. Although HiP-AP-BCQ does not know about the intention of uncooperative
front vehicle, it safely merges after this vehicle

89

4 Interactive and Transferable RL

Applying Safety Verification

As we discussed the results in Table 4.2, all three baselines, even the Oracle, are
not collision free. In Chapter 3 we discussed multiple reasons that may result
in unsafe behaviors from a trained agent and the need for the safety verification
module in order to prevent unsafe outcomes in real-world applications. After
applying our proactive safety verification on top of the decisions from each
agent, we observe that the collisions will not happen anymore, although there
will be uncomfortable emergency maneuvers from the safety module in order
to prevent them.

Fig. 4.22 and Fig. 4.23 show performance of HiP-AP-BCQ in episode CHN-15-
686 which is one of the failure episodes for this agent. Fig. 4.24 and Fig. 4.25
show the performance of this agent combined with proactive safety module.
We can see how the proactive safety module forces the agent to reduce its
acceleration much earlier and prevent a collision with the front vehicle.

90

4.5 Evaluations on Interactive Automated Merging with Real-World Datasets

(a) 𝑡 = 0 s

(b) 𝑡 = 1.5 s

(c) 𝑡 = 3 s

(d) 𝑡 = 3.9 s

Figure 4.22: Different frames of the scenario CHN-15-686 where HiP-AP-BCQ agent (yellow)
without access to the driver’s intention is controlling the merging vehicle (number
317) and has a collision with the uncooperative front vehicle (number 316) at 𝑡=3.9
(s). Note that the original trajectory of the merging vehicle (number 317) is not part
of the simulation and is only shown here (blue vehicle below yellow) for comparison.

91

4 Interactive and Transferable RL

Figure 4.23: Distances, velocity and acceleration profile for the HiP-AP-BCQ agent at scenario
CHN-15-686. The HiP-AP-BCQ agent does not know about the intention of front
uncooperative vehicle and has a collision with it at 𝑡=3.9 (s).

92

4.5 Evaluations on Interactive Automated Merging with Real-World Datasets

(a) 𝑡 = 0 s

(b) 𝑡 = 1.5 s

(c) 𝑡 = 3 s

(d) 𝑡 = 4.5 s

(e) 𝑡 = 5.4 s

Figure 4.24: Different frames of the scenario CHN-15-686 where HiP-AP-BCQ agent with safety
verification (yellow) is controlling the merging vehicle (number 317). The agent does
not know about the uncooperative intention of the front vehicle (number 316) and
tries to overtake this vehicle and merge first. However, the safety verification layer
interrupts and decelerates to prevent a collision. Note that the original trajectory of
the merging vehicle (number 317) is not part of the simulation and is only shown here
(blue vehicle below yellow) for comparison.

93

4 Interactive and Transferable RL

Figure 4.25: Distances, velocity and acceleration profile for the HiP-AP-BCQ agent with safety
verification at scenario CHN-15-686. The HiP-AP-BCQ agent does not know about
the intention of front uncooperative vehicle and starts with an acceleration. However,
the safety verification layer interrupts and decelerates to prevent a collision.

94

4.5 Evaluations on Interactive Automated Merging with Real-World Datasets

Safety Verification with Invalid Intention Predictions

We also evaluated the performance of HiP-AP-BCQ with and without safety
module in situations where the intention predictor provides invalid predictions
due to inaccurate detections, novel behavior observations, or any other reason.
For that, we perform an ablation study by changing the intention of uncooperative
drivers to cooperative inside the provided observations for the HiP-AP-BCQ
agent.

Fig. 4.26 and Fig. 4.27 show some frames and velocity/acceleration profiles of
the HiP-AP-BCQ agent without safety module which receives invalid predictions
during the episode CHN-13-323. As it is visible, the HiP-AP-BCQ agent tries
to overtake the front vehicle (assuming it is a cooperative driver) with positive
accelerations at the beginning. From t=3.0 (𝑠) HiP-AP-BCQ decelerates to stop
before the conflict zone but finally can not prevent a collision with this vehicle.

Now we apply the safety module together with the HiP-AP-BCQ agent for the
exact episode with invalid intention predictions. In Fig. 4.28 and Fig. 4.29, the
results of running safety module on HiP-AP-BCQ decisions are provided. As it
is depicted, this time the proactive safety layer forces the vehicle to decelerate
harshly and prevent a collision. This is mainly because the safety module always
considers the worst-case assumption for the front vehicle (to be uncooperative).

95

4 Interactive and Transferable RL

(a) 𝑡 = 0 s

(b) 𝑡 = 1.5 s

(c) 𝑡 = 3 s

(d) 𝑡 = 4.5 s

(e) 𝑡 = 5.2 s

Figure 4.26: Different frames the scenario CHN-13-323 where HiP-AP-BCQ agent (yellow) is
controlling the merging vehicle (number 236) while receiving wrong prediction for
the intention of uncooperative front vehicle (green). Therefore, the HiP-AP-BCQ
agent tries to overtake this vehicle and finally has a collision with it at 𝑡=5.2 (s). Note
that the original trajectory of the merging vehicle (number 236) is not part of the
simulation and is only shown here (blue vehicle below yellow) for comparison.

96

4.5 Evaluations on Interactive Automated Merging with Real-World Datasets

Figure 4.27: Velocity/acceleration profile in the scenario CHN-13-323 for the HiP-AP-BCQ agent
while receiving wrong prediction for the intention of uncooperative front vehicle.
Therefore, the HiP-AP-BCQ agent tries to overtake this vehicle and finally has a
collision with it at 𝑡=5.2 (s).

97

4 Interactive and Transferable RL

(a) 𝑡 = 0 s

(b) 𝑡 = 1.5 s

(c) 𝑡 = 3 s

(d) 𝑡 = 4.5 s

(e) 𝑡 = 6.0 s

98

4.5 Evaluations on Interactive Automated Merging with Real-World Datasets

(f) 𝑡 = 7.5 s

(g) 𝑡 = 8.7 s

Figure 4.28: Different frames of the scenario CHN-13-323 where AP BCQ agent with safety
module (yellow) is controlling the merging vehicle (number 317). The agent does
not know about the uncooperative intention of the front vehicle (number 316) and
tries to overtake this vehicle and merge first. However, the safety verification layer
interrupts and decelerates to prevent a collision. Note that the original trajectory of
the merging vehicle (number 317) is not part of the simulation and is only shown here
(blue vehicle below yellow) for comparison.

99

4 Interactive and Transferable RL

Figure 4.29: Velocity/acceleration profile in the scenario CHN-13-323 where HiP-AP-BCQ agent
with safety layer is controlling the merging vehicle while receiving wrong prediction
for the intention of uncooperative front vehicle. Due to wrong prediction, the
HiP-AP-BCQ agent tries to overtake this vehicle while the safety layer forces the agent
to decelerate from 2.9 (s). Finally, the agent can safely merge after the uncooperative
vehicle. Note that a vehicle behind the ego vehicle appears in the list of observations
during the last second of the scenario with its trajectory is shown in green.

100

4.6 Conclusions

4.6 Conclusions

In this chapter we addressed generalized RL under intention uncertainty for
automated driving. We explained the conventional 𝑘-Markov approach for
addressing partial observation in RL and its main drawbacks regarding modu-
larity, sample efficiency, and inability to be transferred into new environments
with novel behaviors for cooperative/non-cooperative drivers.

In order to address such issues, we proposed our approach HiP-AP RL which
models drivers intentions as hidden parameters which have different emission
functions in different environments. Therefore, the RL policy assumes to
receive estimates about the value of hidden parameters from an external module
which can be trained online at the transfer time or be provided as off-the-shelf.
In order to make the policy robust to uncertain predictions from this module, we
apply adversarial perturbation on the true values of hidden parameters during
training.

In our simulation experiments we showed the ability of the HiP-AP agent to
outperform 𝑘-Markov baselines when transferred in new environments with
novel behaviors. Moreover, in our experiments with real-world observational
datasets, we demonstrated an offline RL agent based on HiP-AP which is able to
operate in both situations: with or without access to accurate drivers’ intention
predictions. The policy also demonstrated completely safe evaluations when it
is combined with the proactive safety verification module proposed in Chapter
3 even when receiving invalid predictions.

101

5 Conclusions and Future Directions

5.1 Conclusions

In this dissertation, we addressed the safety and generalization of Reinforcement
Learning (RL) as applied to automated driving. In Chapter 3, we proposed a
safe and risk-aware RL framework for automated driving at occluded intersec-
tions. Our framework considers a set of worst-case assumptions for unknown
parameters in the scenario, such as intention of other drivers, occluded vehicles,
and perception noise.

In contrast to most previous works, which aim to minimize the number of crashes
or unsafe states without completely preventing them, our framework guarantees
that the RL policy is collision-free based on the worst-case assumptions. This
is done in the safety module in our framework which makes sure that the action
generated by the RL framework will result in a proactive safe state, meaning
that if any of the worst-case assumptions (or all together) happen, an emergency
maneuver is feasible to execute in order to prevent a collision. We combined this
safety layer with distributional RL to learn comfortable and adaptive policies
which can tune their risk sensitivity based on a single parameter provided by
the user at run-time.

In addition to safety, in Chapter 4, we addressed generalization and sample-
efficiency of RL policies in interactive automated driving scenarios. We showed
that previous approaches addressing this problem utilize a history of recent
observations as a rich state representation in order to implicitly predict the
intention of other drivers resulting in complex learning models. Such models
are not sample efficient and also not transferable to new environments with new
dynamics. For that, we proposed to model the problem with Hidden-Parameter
Block MDP (HiP-BMDP) formulation which allows us to condition the RL
policy on compact state representations resulting in modular and sample-
efficient RL policies. The policy therefore receives a prediction of drivers’

103

5 Conclusions and Future Directions

intentions from a predictive model which can either be trained in parallel with
the RL procedure or be provided as a plug in. In order to address generalization,
we proposed hidden parameter adversarial perturbation (HiP-AP) RL which
is trained with perturbed values of true states and therefore is able to transfer
to new environments with new dynamics and uncertain estimations about the
intention of other drivers.

Finally, in Sec. 4.5, we combined the proactive safety verification, hidden
parameter adversarial perturbation and offline RL to learn safe, interactive and
sample efficient policies from real-world datasets in automated driving. We
showed that using the proposed HiP-AP methodology, we could learn sample
efficient and robust policies for interactive policies with limited real-world
datasets. Moreover, we empirically showed how the proactive safety verification
layer results in safe and collision free RL policies in these real-world evaluations.

5.2 Future Directions

Several future works regarding safe, generalized and interactive RL under
uncertainty for real-world decision-making problems are promising.

In the context of automated driving, our framework for addressing safe and
interactive learning-based decision-making approaches can be applied on other
scenarios such as safe interactions with pedestrians. Moreover, for interactions
with drivers, the drivers’ intention model (cooperative vs non-cooperative)
can be extended to cover other types of behaviors (e.g. rule compliant vs
non-compliant) for different scenarios. The worst-case assumptions can also be
increased to cover more complex scenarios such as a sudden lane change of
another vehicle in our target lane.

Our contribution to interactive policies with hidden parameter adversarial
perturbation can be applied to other similar problems, especially those where
unknown hidden parameters play an important role in optimal decision-making.
In such problems, the identification of hidden parameters is usually either too
expensive or time-consuming.

Our approach can effectively address the problem of unknown genetic informa-
tion in patients, which is crucial for selecting the best treatment by a physician,
or the unknown preferences of a customer in a product recommender system.

104

5.2 Future Directions

In both cases, the decision-making policy can be trained in an Oracle training
environment with full access to compact states and then transferred to the
final environment, where it receives estimations of the hidden parameters from
specialized predictors tailored to that environment.

105

Bibliography

[Ack+95] J. Ackermann, J. Guldner, W. Sienel, R. Steinhauser, and V. I.
Utkin. “Linear and nonlinear controller design for robust automatic
steering”. In: IEEE Transactions on control systems technology
3.1 (1995), pp. 132–143.

[AD14] M. Althoff and J. M. Dolan. “Online verification of automated
road vehicles using reachability analysis”. In: IEEE Transactions
on Robotics 30.4 (2014), pp. 903–918.

[AKM17] M. Althoff, M. Koschi, and S. Manzinger. “CommonRoad: Com-
posable benchmarks for motion planning on roads”. In: 2017 IEEE
Intelligent Vehicles Symposium (IV). IEEE. 2017, pp. 719–726.

[Als+17] M. Alshiekh, R. Bloem, R. Ehlers, B. Könighofer, S. Niekum,
and U. Topcu. “Safe reinforcement learning via shielding”. In:
arXiv preprint arXiv:1708.08611 (2017).

[ASN20] R. Agarwal, D. Schuurmans, and M. Norouzi. “An optimistic
perspective on offline reinforcement learning”. In: International
Conference on Machine Learning. PMLR. 2020, pp. 104–114.

[BDM17] M. G. Bellemare, W. Dabney, and R. Munos. “A distributional per-
spective on reinforcement learning”. In: International Conference
on Machine Learning. PMLR. 2017, pp. 449–458.

[Bel66] R. Bellman. “Dynamic programming”. In: Science 153.3731
(1966), pp. 34–37.

[Bou+18] M. Bouton, K. Julian, A. Nakhaei, K. Fujimura, and M. J. Kochen-
derfer. “Utility decomposition with deep corrections for scalable
planning under uncertainty”. In: Proceedings of the 17th Interna-
tional Conference on Autonomous Agents and MultiAgent Systems.
2018, pp. 462–469.

107

Bibliography

[Bou+19a] M. Bouton, K. D. Julian, A. Nakhaei, K. Fujimura, and M. J.
Kochenderfer. “Decomposition methods with deep corrections for
reinforcement learning”. In: Autonomous Agents and Multi-Agent
Systems 33.3 (2019), pp. 330–352.

[Bou+19b] M. Bouton, A. Nakhaei, K. Fujimura, and M. J. Kochender-
fer. “Cooperation-aware reinforcement learning for merging in
dense traffic”. In: 2019 IEEE Intelligent Transportation Systems
Conference (ITSC). IEEE. 2019, pp. 3441–3447.

[Bus20] M. Busch. “Dynamic Input for Deep Reinforcement Learning at
Unsignalized Intersections with Deep Sets”. Master thesis. Karls-
ruhe, Germany: Institute of Measurement and Control Systems,
Karlsruhe Institute of Technology, 2020.

[Cen+19] A. Censi, K. Slutsky, T. Wongpiromsarn, D. Yershov, S. Pendleton,
J. Fu, and E. Frazzoli. “Liability, ethics, and culture-aware behavior
specification using rulebooks”. In: 2019 International Conference
on Robotics and Automation (ICRA). IEEE. 2019, pp. 8536–8542.

[Dab+18a] W. Dabney, G. Ostrovski, D. Silver, and R. Munos. “Implicit
Quantile Networks for Distributional Reinforcement Learning”. In:
International Conference on Machine Learning. 2018, pp. 1096–
1105.

[Dab+18b] W. Dabney, M. Rowland, M. Bellemare, and R. Munos. “Dis-
tributional reinforcement learning with quantile regression”. In:
Proceedings of the AAAI Conference on Artificial Intelligence.
Vol. 32. 1. 2018.

[DDL17] C. Dong, J. M. Dolan, and B. Litkouhi. “Intention estimation for
ramp merging control in autonomous driving”. In: 2017 IEEE
intelligent vehicles symposium (IV). IEEE. 2017, pp. 1584–1589.

[DK16] F. Doshi-Velez and G. Konidaris. “Hidden parameter markov
decision processes: A semiparametric regression approach for
discovering latent task parametrizations”. In: ĲCAI: Proceedings
of the Conference. Vol. 2016. 2016, p. 1432.

[Du+19] S. Du, A. Krishnamurthy, N. Jiang, A. Agarwal, M. Dudik, and
J. Langford. “Provably efficient RL with rich observations via
latent state decoding”. In: International Conference on Machine
Learning. PMLR. 2019, pp. 1665–1674.

108

[EL21] B. Eysenbach and S. Levine. “Maximum entropy rl (provably)
solves some robust rl problems”. In: arXiv preprint arXiv:2103.06257
(2021).

[Eng21] T. Engelgeh. “Risk-Sensitive Behavior Generation for Vehicles
at Partially Occluded Intersections Using Attention-Based Dis-
tributional Reinforcement Learning”. Master thesis. Karlsruhe,
Germany: Institute of Measurement and Control Systems, Karls-
ruhe Institute of Technology, 2021.

[FAL17] C. Finn, P. Abbeel, and S. Levine. “Model-Agnostic Meta-
Learning for Fast Adaptation of Deep Networks”. In: arXiv:1703.03400
[cs] (July 2017). arXiv: 1703.03400.

[Fat+21] M. Fatemi, T. W. Killian, J. Subramanian, and M. Ghassemi.
“Medical dead-ends and learning to identify high-risk states
and treatments”. In: Advances in Neural Information Processing
Systems 34 (2021), pp. 4856–4870.

[FMP19] S. Fujimoto, D. Meger, and D. Precup. “Off-policy deep reinforce-
ment learning without exploration”. In: International Conference
on Machine Learning. PMLR. 2019, pp. 2052–2062.

[Gel+19] C. Gelada, S. Kumar, J. Buckman, O. Nachum, and M. G. Belle-
mare. “Deepmdp: Learning continuous latent space models for
representation learning”. In: International Conference on Machine
Learning. PMLR. 2019, pp. 2170–2179.

[Goo+13] I. J. Goodfellow, M. Mirza, D. Xiao, A. Courville, and Y. Bengio.
“An empirical investigation of catastrophic forgetting in gradient-
based neural networks”. In: arXiv preprint arXiv:1312.6211
(2013).

[Her+16] J. Hernandez-Lobato, Y. Li, M. Rowland, T. Bui, D. Hernández-
Lobato, and R. Turner. “Black-box alpha divergence minimiza-
tion”. In: International Conference on Machine Learning. PMLR.
2016, pp. 1511–1520.

[Hig+17] I. Higgins, A. Pal, A. Rusu, L. Matthey, C. Burgess, A. Pritzel,
M. Botvinick, C. Blundell, and A. Lerchner. “Darla: Improving
zero-shot transfer in reinforcement learning”. In: International
Conference on Machine Learning. PMLR. 2017, pp. 1480–1490.

109

Bibliography

[How60] R. A. Howard. Dynamic programming and markov processes. The
MIT Press, 1960.

[HS97] S. Hochreiter and J. Schmidhuber. “Long Short-Term Memory”.
In: Neural Computation 9.8 (1997), pp. 1735–1780.

[Hub+17] C. Hubmann, M. Becker, D. Althoff, D. Lenz, and C. Stiller.
“Decision making for autonomous driving considering interaction
and uncertain prediction of surrounding vehicles”. In: 2017 IEEE
Intelligent Vehicles Symposium (IV). IEEE. 2017, pp. 1671–1678.

[Hub+18] C. Hubmann, J. Schulz, G. Xu, D. Althoff, and C. Stiller. “A
belief state planner for interactive merge maneuvers in congested
traffic”. In: 2018 21st International Conference on Intelligent
Transportation Systems (ITSC). IEEE. 2018, pp. 1617–1624.

[Hue+19] M. Huegle, G. Kalweit, B. Mirchevska, M. Werling, and J.
Boedecker. “Dynamic Input for Deep Reinforcement Learning
in Autonomous Driving”. In: 2019 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS). IEEE. 2019,
pp. 7566–7573.

[INF18] D. Isele, A. Nakhaei, and K. Fujimura. “Safe Reinforcement
Learning on Autonomous Vehicles”. In: 2018 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS). Oct.
2018, pp. 1–6.

[Ise+18] D. Isele, R. Rahimi, A. Cosgun, K. Subramanian, and K. Fu-
jimura. “Navigating Occluded Intersections with Autonomous
Vehicles Using Deep Reinforcement Learning”. In: 2018 IEEE
International Conference on Robotics and Automation (ICRA).
May 2018, pp. 2034–2039.

[JNG13] F. Jiménez, J. E. Naranjo, and F. García. “An improved method to
calculate the time-to-collision of two vehicles”. In: International
Journal of Intelligent Transportation Systems Research 11 (2013),
pp. 34–42.

[Kam+20] D. Kamran, C. F. Lopez, M. Lauer, and C. Stiller. “Risk-aware high-
level decisions for automated driving at occluded intersections
with reinforcement learning”. In: 2020 IEEE Intelligent Vehicles
Symposium (IV). IEEE. 2020, pp. 1205–1212.

110

[Kam+21] D. Kamran, T. Engelgeh, M. Busch, J. Fischer, and C. Stiller.
“Minimizing safety interference for safe and comfortable auto-
mated driving with distributional reinforcement learning”. In:
2021 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). IEEE. 2021, pp. 1236–1243.

[Kam+22] D. Kamran, T. D. Simãor, Q. Yang, C. T. Ponnambalam, J. Fis-
cher, M. T. Spaan, and M. Lauer. “A modern perspective on safe
automated driving for different traffic dynamics using constrained
reinforcement learning”. In: 2022 IEEE 25th International Con-
ference on Intelligent Transportation Systems (ITSC). IEEE. 2022,
pp. 4017–4023.

[KL51] S. Kullback and R. A. Leibler. “On information and sufficiency”.
In: The annals of mathematical statistics 22.1 (1951), pp. 79–86.

[KRL21] D. Kamran, Y. Ren, and M. Lauer. “High-level decisions from a
safe maneuver catalog with reinforcement learning for safe and
cooperative automated merging”. In: 2021 IEEE International
Intelligent Transportation Systems Conference (ITSC). IEEE. 2021,
pp. 804–811.

[KW13] D. P. Kingma and M. Welling. “Auto-encoding variational bayes”.
In: arXiv preprint arXiv:1312.6114 (2013).

[KWA20] H. Krasowski, X. Wang, and M. Althoff. “Safe reinforcement
learning for autonomous lane changing using set-based predic-
tion”. In: 2020 IEEE 23rd International Conference on Intelligent
Transportation Systems (ITSC). IEEE. 2020, pp. 1–7.

[KZL19] D. Kamran, J. Zhu, and M. Lauer. “Learning Path Tracking
for Real Car-like Mobile Robots From Simulation”. In: 2019
European Conference on Mobile Robots (ECMR). IEEE. 2019,
pp. 1–6.

[Leu18] E. Leurent. An Environment for Autonomous Driving Decision-
Making. https://github.com/eleurent/highway- env.
2018. (Visited on 05/15/2021).

[Lev+20] S. Levine, A. Kumar, G. Tucker, and J. Fu. “Offline reinforcement
learning: Tutorial, review, and perspectives on open problems”.
In: arXiv preprint arXiv:2005.01643 (2020).

111

https://github.com/eleurent/highway-env

Bibliography

[Li+21] B. Li, V. François-Lavet, T. Doan, and J. Pineau. “Domain adversar-
ial reinforcement learning”. In: arXiv preprint arXiv:2102.07097
(2021).

[Li22] M. Li. “Decision-Making with Reinforcement Learning based on
Interactive Behavior Predictors”. Master thesis. Karlsruhe, Ger-
many: Institute of Measurement and Control Systems, Karlsruhe
Institute of Technology, 2022.

[Lil+15] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra. “Continuous control with deep rein-
forcement learning”. In: arXiv preprint arXiv:1509.02971 (2015).

[Liu+19] C. Liu, T. Arnon, C. Lazarus, C. Barrett, and M. J. Kochender-
fer. “Algorithms for verifying deep neural networks”. In: arXiv
preprint arXiv:1903.06758 (2019).

[LLK20] C. Lazarus, J. G. Lopez, and M. J. Kochenderfer. “Runtime Safety
Assurance Using Reinforcement Learning”. In: 2020 AIAA/IEEE
39th Digital Avionics Systems Conference (DASC). IEEE. 2020,
pp. 1–9.

[LM19] E. Leurent and J. Mercat. Social Attention for Autonomous
Decision-Making in Dense Traffic. 2019. arXiv: 1911.12250.

[MB19] J. Müller and M. Buchholz. “A risk and comfort optimizing
motion planning scheme for merging scenarios”. In: 2019 IEEE
Intelligent Transportation Systems Conference (ITSC). IEEE. 2019,
pp. 3155–3161.

[MC89] M. McCloskey and N. J. Cohen. “Catastrophic interference in
connectionist networks: The sequential learning problem”. In:
Psychology of learning and motivation. Vol. 24. Elsevier, 1989,
pp. 109–165.

[Men22] J. Meng. “Improving Generalization in Reinforcement Learning
with Meta-Learning”. Master thesis. Karlsruhe, Germany: Institute
of Measurement and Control Systems, Karlsruhe Institute of
Technology, 2022.

112

https://arxiv.org/abs/1911.12250

[Mir+18] B. Mirchevska, C. Pek, M. Werling, M. Althoff, and J. Boedecker.
“High-level Decision Making for Safe and Reasonable Au-
tonomous Lane Changing using Reinforcement Learning”. In:
2018 21st International Conference on Intelligent Transportation
Systems (ITSC). IEEE. 2018, pp. 1–8.

[Mni+15] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G.
Ostrovski, et al. “Human-level control through deep reinforcement
learning”. In: nature 518.7540 (2015), pp. 529–533.

[MS13] V. Mnih and D. Silver. “Playing Atari with Deep Reinforcement
Learning”. In: (2013). arXiv: 1312.5602.

[Nau+19] M. Naumann, H. Konigshof, M. Lauer, and C. Stiller. “Safe but
not overcautious motion planning under occlusions and limited
sensor range”. In: 2019 IEEE Intelligent Vehicles Symposium (IV).
IEEE. 2019, pp. 140–145.

[OML18] P. F. Orzechowski, A. Meyer, and M. Lauer. “Tackling occlusions
& limited sensor range with set-based safety verification”. In:
2018 21st International Conference on Intelligent Transportation
Systems (ITSC). IEEE. 2018, pp. 1729–1736.

[PBS15] E. Parisotto, J. L. Ba, and R. Salakhutdinov. “Actor-mimic: Deep
multitask and transfer reinforcement learning”. In: arXiv preprint
arXiv:1511.06342 (2015).

[Pog+18] F. Poggenhans, J.-H. Pauls, J. Janosovits, S. Orf, M. Naumann, F.
Kuhnt, and M. Mayr. “Lanelet2: A high-definition map framework
for the future of automated driving”. In: 2018 21st International
Conference on Intelligent Transportation Systems (ITSC). IEEE.
2018, pp. 1672–1679.

[Pon+22] C. T. Ponnambalam, D. Kamran, T. D. Simão, F. A. Oliehoek, and
M. T. J. Spaan. “Back to the Future: Solving Hidden Parameter
MDPs with Hindsight”. In: Adaptive Learning Agents Workshop
at the 21st International Conference on Autonomous Agents and
Multiagent Systems (AAMAS). May 2022.

[PSK18] C. F. Perez, F. P. Such, and T. Karaletsos. “Efficient transfer
learning and online adaptation with latent variable models for
continuous control”. In: arXiv:1812.03399 [cs, stat] (Dec. 2018).
arXiv: 1812.03399. (Visited on 02/24/2022).

113

https://arxiv.org/abs/1312.5602

Bibliography

[PSK20] C. Perez, F. P. Such, and T. Karaletsos. “Generalized hidden
parameter mdps: Transferable model-based rl in a handful of
trials”. In: Proceedings of the AAAI Conference on Artificial
Intelligence. Vol. 34. 04. 2020, pp. 5403–5411.

[Rak+19] K. Rakelly, A. Zhou, C. Finn, S. Levine, and D. Quillen. “Efficient
off-policy meta-reinforcement learning via probabilistic context
variables”. In: International Conference on Machine Learning.
PMLR. 2019, pp. 5331–5340.

[Ren21] Y. Ren. “Risk-Aware Decision Making for Automated Driving
Under Perception Uncertainty with Model Predictive Control”.
Master thesis. Karlsruhe, Germany: Institute of Measurement and
Control Systems, Karlsruhe Institute of Technology, 2021.

[RMW14] D. J. Rezende, S. Mohamed, and D. Wierstra. “Stochastic back-
propagation and approximate inference in deep generative models”.
In: International Conference on Machine Learning. PMLR. 2014,
pp. 1278–1286.

[Rot+18] J. Rothfuss, D. Lee, I. Clavera, T. Asfour, and P. Abbeel. “Promp:
Proximal meta-policy search”. In: arXiv preprint arXiv:1810.06784
(2018).

[RU+00] R. T. Rockafellar, S. Uryasev, et al. “Optimization of conditional
value-at-risk”. In: Journal of risk 2 (2000), pp. 21–42.

[Sal+20] T. Salzmann, B. Ivanovic, P. Chakravarty, and M. Pavone. “Trajec-
tron++: Dynamically-feasible trajectory forecasting with hetero-
geneous data”. In: Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings,
Part XVIII 16. Springer. 2020, pp. 683–700.

[SB18] R. S. Sutton and A. Barto. Reinforcement Learning: An Introduc-
tion. The MIT Press, 2018.

[Sch+17] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov.
“Proximal policy optimization algorithms”. In: arXiv preprint
arXiv:1707.06347 (2017).

[Sha+01] L. Sha et al. “Using simplicity to control complexity”. In: IEEE
Software 18.4 (2001), pp. 20–28.

114

[SI22] T. Seno and M. Imai. “d3rlpy: An offline deep reinforcement
learning library”. In: The Journal of Machine Learning Research
23.1 (2022), pp. 14205–14224.

[Sil+16] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, et al. “Mastering the game of Go with deep neural
networks and tree search”. In: nature 529.7587 (2016), pp. 484–
489.

[Sod+22] S. Sodhani, F. Meier, J. Pineau, and A. Zhang. “Block contextual
mdps for continual learning”. In: Learning for Dynamics and
Control Conference. PMLR. 2022, pp. 608–623.

[SSS16] S. Shalev-Shwartz, S. Shammah, and A. Shashua. “Safe, multi-
agent, reinforcement learning for autonomous driving”. In: arXiv
preprint arXiv:1610.03295 (2016).

[Taş22] Ö. Ş. Taş. “Motion Planning for Autonomous Vehicles in Partially
Observable Environments”. PhD thesis. Karlsruher Institut für
Technologie (KIT), 2022. 191 pp.

[Teh+17] Y. Teh, V. Bapst, W. M. Czarnecki, J. Quan, J. Kirkpatrick, R.
Hadsell, N. Heess, and R. Pascanu. “Distral: Robust multitask
reinforcement learning”. In: Advances in neural information
processing systems 30 (2017).

[THH00] M. Treiber, A. Hennecke, and D. Helbing. “Congested traffic
states in empirical observations and microscopic simulations”. In:
Physical review E 62.2 (2000), p. 1805.

[Tra+18] T. Tram, A. Jansson, R. Grönberg, M. Ali, and J. Sjöberg. “Learn-
ing Negotiating Behavior Between Cars in Intersections using
Deep Q-Learning”. In: 2018 21st International Conference on
Intelligent Transportation Systems (ITSC) (2018), pp. 3169–3174.

[TS18] Ö. Ş. Taş and C. Stiller. “Limited visibility and uncertainty aware
motion planning for automated driving”. In: 2018 IEEE Intelligent
Vehicles Symposium (IV). IEEE. 2018, pp. 1171–1178.

[TZS20] Y. C. Tang, J. Zhang, and R. Salakhutdinov. “Worst Cases Policy
Gradients”. In: Conference on Robot Learning. 2020, pp. 1078–
1093.

115

Bibliography

[VGS16] H. Van Hasselt, A. Guez, and D. Silver. “Deep reinforcement
learning with double q-learning”. In: Thirtieth AAAI Conference
on Artificial Intelligence. 2016.

[WD92] C. J. C. H. Watkins and P. Dayan. “Q-learning”. In: Machine
Learning 8.3 (1992), pp. 279–292.

[Wer+10] M. Werling, J. Ziegler, S. Kammel, and S. Thrun. “Optimal
trajectory generation for dynamic street scenarios in a frenet
frame”. In: 2010 IEEE International Conference on Robotics and
Automation. IEEE. 2010, pp. 987–993.

[WG08] M. Werling and L. Groll. “Low-level controllers realizing high-
level decisions in an autonomous vehicle”. In: 2008 IEEE Intelli-
gent Vehicles Symposium. IEEE. 2008, pp. 1113–1118.

[Xie+20] A. Xie, D. P. Losey, R. Tolsma, C. Finn, and D. Sadigh. “Learning
latent representations to influence multi-agent interaction”. In:
arXiv preprint arXiv:2011.06619 (2020).

[Xu19] P. Xu. “Behaviour Generation for Overtaking with Deep Rein-
forcement Learning”. Master thesis. Karlsruhe, Germany: Institute
of Measurement and Control Systems, Karlsruhe Institute of Tech-
nology, 2019.

[Yan+19] J. Yang, B. Petersen, H. Zha, and D. Faissol. “Single episode
policy transfer in reinforcement learning”. In: arXiv preprint
arXiv:1910.07719 (2019).

[Yao+18] J. Yao, T. Killian, G. Konidaris, and F. Doshi-Velez. “Direct policy
transfer via hidden parameter markov decision processes”. In:
LLARLA Workshop, FAIM. Vol. 2018. 2018.

[Yu+20] T. Yu, S. Kumar, A. Gupta, S. Levine, K. Hausman, and C. Finn.
“Gradient surgery for multi-task learning”. In: Advances in Neural
Information Processing Systems 33 (2020), pp. 5824–5836.

[Zah+17] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R. Salakhut-
dinov, and A. J. Smola. “Deep sets”. In: Advances in neural
information processing systems. 2017, pp. 3391–3401.

116

[Zha+19] W. Zhan, L. Sun, D. Wang, H. Shi, A. Clausse, M. Naumann,
J. Kümmerle, H. Königshof, C. Stiller, A. de La Fortelle, et al.
“INTERACTION Dataset: An INTERnational, Adversarial and
Cooperative moTION Dataset in Interactive Driving Scenarios
with Semantic Maps”. In: arXiv:1910.03088 [cs, eess] (2019).

[Zha+20a] A. Zhang, S. Sodhani, K. Khetarpal, and J. Pineau. “Learning
robust state abstractions for hidden-parameter block MDPs”. In:
arXiv preprint arXiv:2007.07206 (2020).

[Zha+20b] H. Zhang, H. Chen, C. Xiao, B. Li, M. Liu, D. Boning, and C.-J.
Hsieh. “Robust deep reinforcement learning against adversarial
perturbations on state observations”. In: Advances in Neural
Information Processing Systems 33 (2020), pp. 21024–21037.

117

Publications by the Author

[Kam+20] D. Kamran, C. F. Lopez, M. Lauer, and C. Stiller. “Risk-aware high-
level decisions for automated driving at occluded intersections
with reinforcement learning”. In: 2020 IEEE Intelligent Vehicles
Symposium (IV). IEEE. 2020, pp. 1205–1212.

[Kam+21] D. Kamran, T. Engelgeh, M. Busch, J. Fischer, and C. Stiller.
“Minimizing safety interference for safe and comfortable auto-
mated driving with distributional reinforcement learning”. In:
2021 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). IEEE. 2021, pp. 1236–1243.

[Kam+22] D. Kamran, T. D. Simãor, Q. Yang, C. T. Ponnambalam, J. Fis-
cher, M. T. Spaan, and M. Lauer. “A modern perspective on safe
automated driving for different traffic dynamics using constrained
reinforcement learning”. In: 2022 IEEE 25th International Con-
ference on Intelligent Transportation Systems (ITSC). IEEE. 2022,
pp. 4017–4023.

[KRL21] D. Kamran, Y. Ren, and M. Lauer. “High-level decisions from a
safe maneuver catalog with reinforcement learning for safe and
cooperative automated merging”. In: 2021 IEEE International
Intelligent Transportation Systems Conference (ITSC). IEEE. 2021,
pp. 804–811.

[KZL19] D. Kamran, J. Zhu, and M. Lauer. “Learning Path Tracking
for Real Car-like Mobile Robots From Simulation”. In: 2019
European Conference on Mobile Robots (ECMR). IEEE. 2019,
pp. 1–6.

[Pon+22] C. T. Ponnambalam, D. Kamran, T. D. Simão, F. A. Oliehoek, and
M. T. J. Spaan. “Back to the Future: Solving Hidden Parameter
MDPs with Hindsight”. In: Adaptive Learning Agents Workshop
at the 21st International Conference on Autonomous Agents and
Multiagent Systems (AAMAS). May 2022.

119

Supervised Theses

[Bus20] M. Busch. “Dynamic Input for Deep Reinforcement Learning at
Unsignalized Intersections with Deep Sets”. Master thesis. Karls-
ruhe, Germany: Institute of Measurement and Control Systems,
Karlsruhe Institute of Technology, 2020.

[Eng21] T. Engelgeh. “Risk-Sensitive Behavior Generation for Vehicles
at Partially Occluded Intersections Using Attention-Based Dis-
tributional Reinforcement Learning”. Master thesis. Karlsruhe,
Germany: Institute of Measurement and Control Systems, Karls-
ruhe Institute of Technology, 2021.

[Li22] M. Li. “Decision-Making with Reinforcement Learning based on
Interactive Behavior Predictors”. Master thesis. Karlsruhe, Ger-
many: Institute of Measurement and Control Systems, Karlsruhe
Institute of Technology, 2022.

[Men22] J. Meng. “Improving Generalization in Reinforcement Learning
with Meta-Learning”. Master thesis. Karlsruhe, Germany: Institute
of Measurement and Control Systems, Karlsruhe Institute of
Technology, 2022.

[Ren21] Y. Ren. “Risk-Aware Decision Making for Automated Driving
Under Perception Uncertainty with Model Predictive Control”.
Master thesis. Karlsruhe, Germany: Institute of Measurement and
Control Systems, Karlsruhe Institute of Technology, 2021.

[Xu19] P. Xu. “Behaviour Generation for Overtaking with Deep Rein-
forcement Learning”. Master thesis. Karlsruhe, Germany: Institute
of Measurement and Control Systems, Karlsruhe Institute of Tech-
nology, 2019.

121

	Kurzfassung
	Abstract
	Abbreviations and Symbols
	Introduction
	Motivation
	Safe Reinforcement Learning for Automated Driving
	Interactive Reinforcement Learning under Uncertainty
	Offline Reinforcement Learning using Real-World Observational Datasets

	Contributions
	Safe Reinforcement Learning for Automated Driving under Uncertainty
	Interactive and Transferrable RL Policies under Intention Uncertainty
	Safe and Interactive RL with Real-World Datasets

	Outline

	Fundamentals
	Markov Decision Process (MDP)
	Partially Observable Markov Decision Process (POMDP)
	Hidden Parameter Markov Decision Process (HiP-MDP)
	Block Markov Decision Process (BMDP)
	Hidden Parameter Block Markov Decision Process (HiP-BMDP)

	Reinforcement Learning
	Deep Q-Network (DQN)
	Distributional Reinforcement Learning
	Batch-Constrained Deep Q-learning (BCQ)

	Safe and Risk-Aware RL
	Related Work: Safe Reinforcement Learning
	Penalty-Based Safety Encouragement
	Safety Assessment via Shielding

	Approach
	Problem Formulation
	Observation Space
	k-Markov State Approximation
	Deep Sets for Scalable Intersection State Representation
	Proactive Safety Verification for Safe RL at Intersections
	Safe and Risk-Aware Automated Driving with Distributional Reinforcement Learning

	Evaluations
	Simulation Scenarios
	Baseline Policies
	Evaluation Metrics
	Results

	Conclusions

	Interactive and Transferable RL
	Related Work
	Interactive Merging as Partially Observable MDP
	K-Markov Approximation for Interactive Reinforcement Learning
	Unknown Intentions as Latent Variables
	Generalized Reinforcement Learning

	Problem Formulation
	Drivers' Intention and Behavior Model
	Novel Drivers Behavior in the Transfer Environment
	State Space
	Observation Model

	Approach
	Modelling Unknown Driver Intentions with Hidden Parameters
	Final Model based on Hidden Parameter Block MDPs
	Decoupling Intention Prediction and Decision-Making
	Policy Transfer with Hidden Parameter Adversarial Perturbation (HiP-AP) RL

	Evaluations on Interactive Automated Merging in Simulation
	Simulation Environment and Main Challenges
	Baselines
	Impact of HiP-MDP Modelling on Sample Efficiency During Training
	Policy Transfer in Target Environments with Novel Cooperative Behaviors

	Evaluations on Interactive Automated Merging with Real-World Datasets
	Dataset Preprocessing
	MDP Dataset Generation
	Offline Reinforcement Learning Baselines
	Policy Simulation with Recorded Datasets
	Evaluation Results

	Conclusions

	Conclusions and Future Directions
	Conclusions
	Future Directions

	Bibliography
	Publications by the Author
	Supervised Theses

