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Odd-frequency superfluidity from a particle-number-conserving perspective
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We investigate odd-in-time—or odd-frequency—pairing of fermions in equilibrium systems within the
particle-number-conserving framework of Penrose, Onsager, and Yang, where superfluid order is defined
by macroscopic eigenvalues of reduced density matrices. We show that odd-frequency pair correlations are
synonymous with even fermion-exchange symmetry in a time-dependent correlation function that generalises
the two-body reduced density matrix. Macroscopic even-under-fermion-exchange pairing is found to emerge
from conventional Penrose-Onsager-Yang condensation in two-body or higher-order reduced density matrices
through the symmetry-mixing properties of the Hamiltonian. We identify and characterize a transformer matrix
responsible for producing macroscopic even fermion-exchange correlations that coexist with a conventional
Cooper-pair condensate, while a generator matrix is shown to be responsible for creating macroscopic even
fermion-exchange correlations from hidden orders such as a multiparticle condensate. The transformer scenario
is illustrated using the spin-balanced s-wave superfluid with Zeeman splitting as an example. The generator
scenario is demonstrated by the composite-boson condensate arising for itinerant electrons coupled to magnetic
excitations. Structural analysis of the transformer and generator matrices is shown to provide general conditions
for odd-frequency pairing order to arise in a given system. Our formalism facilitates a fully general derivation
of the Meissner effect for odd-frequency superconductors that holds also beyond the regime of validity for
mean-field theory.
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I. INTRODUCTION

Superconductivity is a striking phenomenon whose macro-
scopic consequences include zero electric resistivity, the
Meissner and Josephson effects, and magnetic-flux quantiza-
tion [1]. The mechanism of conventional superconductivity
is well understood [2]: bosonic Cooper pairs with s-
wave symmetry are formed by phononmediated attraction
between electrons, and these bosons condense at low tem-
peratures. Unconventional superconductors, which do not
conform to the same pattern, have been the subject of active
research for decades [3,4]. Known unconventional supercon-
ductors involve Cooper pairs with different orbital symmetry
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(e.g., p-wave or d-wave), or alternative pairing mecha-
nisms like repulsive electron-electron interactions or spin
fluctuations. Odd-frequency superconductivity is an exotic
hypothesized form of unconventional superconductivity [5].
Going back to an attempt by Berezinskii to explain super-
fluidity in 3He [6], odd-frequency superconductivity is based
on the mathematical possibility that natural systems might be
described by a finite anomalous pair correlation function [7,8]

Fij(t1, t2) = 〈T c†
i (t1) c†

j (t2)〉 (1)

with odd symmetry under exchange of the time arguments,
which also implies an even symmetry under exchange of the
fermion indices. This is in contrast to the standard theories
of superconductivity (both conventional and unconventional),
which are based on equal-time pair correlation functions with
odd pair-exchange symmetry. Here i and j denote sets of in-
dices used for labeling single-fermion quantum numbers, and
T is the time-ordering operator. The name “odd-frequency”
refers to the fact that an odd symmetry under exchange
of the time arguments [i.e., Fij(t1, t2) satisfying Fij(t1, t2) =
−Fij(t2, t1)] implies an odd symmetry in the frequency
domain.
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Even though some theoretical models suggest that odd-
frequency superconductivity may exist in bulk materials and
in the absence of conventional (even-frequency) supercon-
ductivity [6,9–21], and despite an intense search for such
phases, no conclusive evidence has been found to date [5].
In a separate scenario, odd-frequency pair correlations have
been proposed to occur in the presence of a conventional
even-frequency Cooper-pair condensate when translational
and/or spin-rotational symmetries are broken [22–30]. This
alternative is supported by indirect experimental evidence
for odd-frequency correlations in heterostructures and near
defects, through spectroscopic measurements and observa-
tions of the density of states [31–33]. Some theoretical
understanding of the apparent absence of bulk odd-frequency
superconductors has been obtained through a discussion about
the thermodynamic stability of odd-frequency superconduct-
ing states [34–37] and the recent development of no-go
theorems within the framework of Eliashberg theory [38–40].
Thus, whether odd-frequency superconductivity is realized in
nature still remains an open question.

Existing theories of odd-frequency superconductivity are
deeply rooted in the formalism of anomalous Green’s func-
tions [8], which violates particle-number conservation for
electrons. This is potentially problematic, as the electron
number is fundamentally expected to be conserved [41].
While number-nonconserving theories of superconductivity
and superfluidity have been very successful in describing and
predicting many important phenomena [42], they are at odds
with nature [43] and thus not fully satisfactory. Moreover,
with the recent development of ultracold-atom experiments in
optical lattices and microtraps, it has become possible to study
superfluidity in systems where the particle number is fixed
[44–47] and small, even down to single digits [48], such that
the consequences of number fluctuations—or their absence—
matter. It is thus important to ask whether odd-frequency
superconductivity can be described using a particle-number
conserving formalism, and what this would look like. It is
the purpose of this paper to take the first step in answering
this question. To this end, we develop a number-conserving
formalism of superfluid and superconducting states based on
a time-dependent two-particle correlation function. This work
generalizes the Penrose-Onsager-Yang criterion for fermionic
superfluidity [49,50], which is based on the presence of a
macroscopic eigenvalue of the two-particle reduced density
matrix, i.e., one that scales linearly with the particle number
N [51]. Our extension includes a relative-time dependence
of pairing between two particles. It thus provides a natural
framework for the study of odd-frequency superfluidity, while
it reduces to the usual criterion in the case of even-frequency
superfluidity [52]. The relative time in this formalism refers to
a time delay for probing the fermion-pair correlations and not
the timescale of nonequilibrium dynamics of the host system.

A particle-number-conserving description also pertains to
the important concept of off-diagonal long-range order [50],
which not only demonstrates that a superconductor is a state of
macroscopic quantum coherence, but also allows one to draw
conclusions about phenomena such as flux quantization, the
Meissner effect, and related phenomena, even if conventional
mean-field approaches do not apply. This aspect is particularly
important for states with exotic order, such as odd-frequency

pairing states. In fact, an important conclusion drawn from our
formalism is the existence of a diamagnetic Meissner effect
for (even- and) odd-frequency superconductors. Generalizing
well-known arguments for conventional superconductors [53],
we find that the presence of off-diagonal long-range order
at any value of the relative time implies the absence of a
(near-) homogeneous magnetic field. In particular, this means
that odd-frequency superconductors exhibit a diamagnetic
Meissner effect even if no even-frequency superconducting
order is concurrently present.

There are additional fundamental open questions in the
context of odd-frequency pairing that require a new perspec-
tive and where our approach could offer new insights. For
example, the relation of the anomalous Green’s functions of
Eq. (1) that describes the creation of a Cooper pair, and

F ij(t1, t2) = 〈T ci(t1) cj(t2)〉 (2)

that stands for the annihilation of a pair, is nontrivial [34,35].
Using the Lehmann or spectral representation of correla-
tion functions, adapted to anomalous correlation functions
[7,54,55], it follows after Fourier transformation that Fij(ω) =
F

∗
ji(−ω). On the other hand, for states with well-defined

symmetry under time exchange, i.e., for either even- or
odd-frequency superconductors, it was shown in Ref. [35]
that Fij(ω) = F

∗
ji(ω) yields consistent solutions. Only if the

second relation holds is the thermodynamic stability of odd-
frequency pairing at a continuous transition guaranteed, and
the superfluid stiffness possesses the correct sign. While
both expressions agree for even-frequency pairing, they are
inconsistent for odd-frequency pairing. Even though a consis-
tency argument was made in Ref. [35], there exists no proof
that the second relation is correct for a given microscopic
Hamiltonian. If it is, one might have to revise the spectral
representation of the Gor’kov function [7,54,55], even for
systems of infinite size. Addressing these crucial issues ul-
timately requires a particle-number-conserving description as
presented in this paper.

Finally, having a particle-conserving description of macro-
scopic pairing order is extremely important if one wants
to employ numerical approaches, such as density matrix
renormalization group or Monte Carlo simulations, which
are performed for a fixed particle number [56–62]. With
our approach, we offer a first direct and unbiased way to
probe odd-frequency superconductivity using these numerical
methods.

To provide the reader with a general outline and moti-
vation for the main part of this article, the fundamentals
of our theoretical formalism and the obtained results are
briefly summarized in Sec. II. This is followed by a thorough
development of the particle-conserving theory describing
time-dependent pair correlations, presented in Sec. III. The
rigorous formalism discussed in Sec. III rests on minimal
assumptions about basic properties of the physical system
and is therefore widely applicable. As a first demonstra-
tion of its utility, a fully general derivation of the Meissner
effect for odd-frequency superconductors is presented in
Sec. IV. Section V is devoted to further illustrating the
formalism by its application to two generic systems ex-
hibiting symmetric-pairing order. The spin-balanced s-wave
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Fermi superfluid subject to Zeeman splitting considered in
Sec. V A serves as an example for the case where symmet-
ric pair correlations arise in conjunction with conventional
(antisymmetric-pairing, even-frequency) superfluidity. We re-
fer to this situation as the transformer scenario. In contrast,
the emergence of symmetric-pairing correlations in the ab-
sence of ordinary superfluidity is referred to as the generator
scenario. We elucidate this alternative situation using the
composite-boson condensate as an example (Sec. V B). Our
conclusions are presented in Sec. VI. Details of some mathe-
matical derivations are provided in Appendixes.

II. OUTLINE OF THEORETICAL APPROACH
AND OVERVIEW OF MAIN RESULTS

A system of N fermions realizes a Cooper-pair condensate
when the two-body reduced density matrix ρij,kl = 〈c†

i c†
j clck〉

has an eigenvalue of order N [50], which is generally referred
to as a macroscopic eigenvalue [41]. In this case, the density
matrix factorizes to leading order in N :

ρij,kl = φij φ
∗
kl + ρ̃ij,kl, (3)

where the dominant eigenvector φij is the pair-condensate
order parameter with eigenvalue n0 = ∑

ij |φij|2 ∼ O(N ). The
remaining part ρ̃ij,kl of the two-body reduced density matrix
has no macroscopic eigenvalue. The pair-condensate order
parameter φij is the fixed-N analog of the anomalous pair
correlator Fij(0, 0) of Eq. (1) at equal time. Both φij and Fij
may equally serve as a starting point for the approximate de-
scription of superfluidity and superconductivity [41], but only
φij is well defined (and finite) when the number of particles is
fixed.

In this work, we study the properties of the time-dependent
two-body correlation matrix (T2bCM)

ρij,kl(t1, t2) = 〈c†
i (t1) c†

j (t2) cl(t2) ck(t1)〉. (4)

This two-particle correlation function with a specific choice
of the time arguments serves as a useful generalization of
the two-body reduced density matrix, to which it reduces
when t1 = t2 = 0. Because the T2bCM is a Hermitian and
positive-semidefinite matrix in the fermion-pair index space
(see Sec. III C), we know that its eigenvalues are real and non-
negative, and its eigenvectors are orthogonal. The T2bCM
is a natural quantity for introducing time dependence into
the description of superfluidity and superconductivity in a
number-conserving formalism. We show that the T2bCM pro-
vides a general framework for the study of odd-frequency
pairing of fermions.

Assuming systems governed by a time-independent and
Hermitian Hamiltonian, the T2bCM depends only on the rela-
tive time t = t1 − t2. A macroscopic pairing order is signified
by the presence of a macroscopic eigenvalue of the T2bCM.
In this case, we find a time-dependent factorization to leading
order in N ,

ρij,kl(t, 0) = φij(t ) φ∗
kl(t ) + ρ̃ij,kl(t ), (5)

which is analogous to the time-independent case of
Eq. (3). The time-dependent dominant eigenvalue is n0(t ) =∑

ij |φij(t )|2 ∼ O(N ), and the remaining part ρ̃ij,kl(t, 0) has

nonmacroscopic eigenvalues ∼O(N0) or smaller. The time-
dependent pair-condensate order parameter φij(t ) is the
fixed-N analog of the anomalous pair correlator Fij(t, 0) at
relative time t . Equation (5) is the starting point for our study
of odd-frequency pairing of fermions. It is reminiscent of the
factorization of the two-body correlation function postulated
by Gorkov [7] in the context of superconductivity, but it is rig-
orous and applies to any finite and number-conserving system.

In order to study odd-frequency superfluidity, we introduce
the symmetric and antisymmetric parts of the time-dependent
pair-condensate order parameter

φij(t ) = φ
(a)
ij (t ) + φ

(s)
ij (t ), (6)

where φ
(a)
ij (t ) = −φ

(a)
ji (t ) is antisymmetric under index ex-

change i ↔ j, and φ
(s)
ij (t ) = φ

(s)
ji (t ) is symmetric. For the

time-ordered correlation function Fij(t1, t2) of Eq. (1), even
symmetry under the exchange of fermion indices is equivalent
to odd symmetry in the relative time due to the properties of
the time-ordering operator. We thus take the emergence of
a macroscopic symmetric part φ

(s)
ij (t ) ∼ O(

√
N ) as synony-

mous with the existence of odd-frequency pairing order. If a
macroscopic antisymmetric part φ

(a)
ij (t ) exists, it indicates the

presence of (conventional) even-frequency pairing order.
The time dependence of the pair-condensate order param-

eter is also important. Specifically, at relative time t = 0, it is
purely antisymmetric, φij(0) = −φji(0). A nonzero value of
the symmetric part φ

(s)
ij (t ) can develop only at t �= 0. Thus,

we can distinguish two distinct scenarios for the presence
of macroscopic symmetric-pairing (i.e., odd-frequency) order,
depending on whether a nonzero and macroscopic φ

(a)
ij (0)

exists.
Coexistence of symmetric and antisymmetric pairing—

Transformer scenario. A finite φ
(a)
ij (0) ≡ φij signals the

presence of an ordinary Cooper-pair condensate. At finite rela-
tive time t , a macroscopic symmetric-pairing order can coexist
with the ordinary Cooper-pair condensate. A small-t expan-
sion reveals that the symmetric part of the pair-condensate
order parameter is related to the conventional Cooper-pair
order parameter φij by a transformation matrix,

φ
(s)
ij (t ) = −i

t

h̄

1

n0

∑
kl

τij,kl φkl + O(t2), (7a)

τij,kl = 1

2
〈(c†

i H c†
j + c†

j H c†
i ) clck〉. (7b)

This transformation matrix evidently depends not only on
the properties of the underlying quantum state, but also on
the Hamiltonian H of the system. We refer to this situation
as the transformer scenario. We derive more general ex-
pressions for arbitrary time dependence in Sec. III E 1 and
illustrate the transformer scenario using the spin-balanced
s-wave Fermi superfluid with finite Zeeman splitting as an
example in Sec. V A.

Emergence of symmetric pairing from hidden orders—
Generator scenario. In the absence of a conventional
Cooper-pair condensate, i.e., when φij(0) ≡ φij = 0, macro-
scopic pairing order can emerge only at t �= 0 and is embodied
in an order parameter whose leading time dependence is
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linear in t ,

φij(t ) = t√
2

√
n′′

0 (0) χ0,ij + O(t2), (8)

where n′′
0 (0) is the second derivative of the dominant eigen-

value with respect to t , and χ0,ij are the elements of a
normalized eigenvector of the T2bCM at t = 0. Symmetric-
pairing order is present when the order parameter (8) has
a nonvanishing symmetric part φ

(s)
ij (t ) �= 0. We refer to this

situation as the generator scenario. In the special case when
the order parameter is fully symmetric, i.e., φij(t ) = φ

(s)
ij (t ),

the eigenvalue equation determining n′′
0 (0) and χ0,ij simplifies

to
∑

kl γij,kl χ0,kl = [h̄2 n′′
0 (0)/2] χ0,ij, with generator matrix

elements

γij,kl = 1
4 〈(c†

i H c†
j + c†

j H c†
i )(cl H ck + ck H cl)〉 + O(N0).

(9)

These results are derived in a more general setting in
Sec. III E 2. Normally, a macroscopic n′′

0 (0) can arise if the
underlying quantum state has a composite, multiparticle con-
densate. Such a hidden order is not visible in the conventional
two-body reduced density matrix. We illustrate the generator
scenario in Sec. V B, using the composite-boson conden-
sate formed by Cooper pairs coupled to magnons as an
example.

The transformer and generator scenarios exhaust all pos-
sibilities for symmetric-pairing order with leading linear-in-t
dependence to emerge in any system. Thus, analyzing
the structure of the transformer and generator matrices
for a particular physical situation provides the means to
identify necessary and sufficient conditions under which
odd-frequency superfluidity may be realized. Our theory
could be extended to discuss the potential for uncon-
ventional pairing orders to manifest via a higher-order t
dependence.

Using the generalized Penrose-Onsager-Yang formalism,
we show that macroscopic quantum coherence in the T2bCM
implies the conventional (diamagnetic) Meissner effect in
both the transformer and generator scenarios.

III. PENROSE-ONSAGER-TYPE FORMALISM FOR
TIME-DEPENDENT PAIR CORRELATIONS

A. Basic definitions and assumptions

Our starting point is the time-dependent two-particle corre-
lation function (four-point function) with a specific choice for
the time arguments. Equation (4) defines the matrix elements
of the time-dependent two-body correlation matrix (T2bCM)
ρ(t1, t2). In this article, we generally denote a matrix in two-

particle index space that has matrix elements Mij,kl by the
symbol M. Each individual index i labels a single-particle
state that is created (annihilated) at time t by its corresponding

fermion operator c†
i (t ) [ci(t )]. An index pair ij refers to the

fermionic two-particle state where one of the fermions is in
state i and the other in state j.

The expectation value in Eq. (4) is to be taken with respect
to the system’s many-body ground state (if we consider the
zero-temperature limit) or a thermal mixture of many-body
states (when considering a system at finite temperature). Since
we are interested in describing superfluidity from a particle-
conserving perspective, we furthermore restrict ourselves, in
the zero-temperature case, to situations where the ground
state is an eigenstate of the fermion-number operator N̂ =∑

i c†
i ci with eigenvalue N . [Here and in the following, we

use the shorthand notation where ci ≡ ci(0).] In the finite-
temperature case, we work over statistical ensembles in which
the microstates all have the same particle number N . We also
assume that the Hamiltonian H itself commutes with N̂ . These
assumptions underlie the majority of the discussion in this
article, and it will be explicitly stated whenever we deviate
from them.

Vectors in two-particle index space are denoted as f and
have components fij. Vectors that are invariant (invariant up
to a minus sign) under the particle-index exchange i ↔ j are
called symmetric (antisymmetric). An arbitrary vector can
be projected onto its symmetric and antisymmetric parts by
applying the projectors S and A respectively, which have the
matrix elements

Sij,kl = 1
2 (δi,k δj,l + δi,l δj,k ), (10a)

Aij,kl = 1
2 (δi,k δj,l − δi,l δj,k ). (10b)

Here δa,b is a multidimensional Kronecker delta function with
discrete vector arguments a and b. The definitions in Eq. (10)
yield the following properties of the projector matrices:

A + S = 1, A2 = A, S2 = S, A S = S A = 0, (11)

where 0 and 1 are the zero and unit matrices in two-particle
index space, respectively.

B. The two-body reduced density matrix

Setting all time arguments in Eq. (4) to zero shows that
ρ(0, 0) ≡ ρ, with its matrix elements

ρij,kl(0, 0) ≡ ρij,kl = 〈c†
i c†

j clck〉, (12)

corresponds to the two-body reduced density matrix
(2bRDM), which is central to the standard discussion of
Cooper-pair condensation [41,50].

The 2bRDM is Hermitian and positive-semidefinite. For
systems where the total particle number N is fixed, the trace
evaluates to Tr ρ = N (N − 1). As a consequence, the eigen-

values of the 2bRDM are non-negative and sum to the constant
N (N − 1); hence, they can be interpreted as occupation num-
bers of fermion-pair states that relate to the eigenvectors of ρ.
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Yang [50] further showed that the eigenvalues are bounded
from above by N . Following Leggett [41], and based on
the ideas of Penrose, Onsager, and Yang [49,50], we define
pseudo-Bose-Einstein condensation (pseudo-BEC) of fermion
(Cooper) pairs by the presence of at least one eigenvalue that
is macroscopic, i.e., of order N . This becomes a rigorous
definition in the thermodynamic limit, i.e., when the number
of particles N is taken to infinity while keeping the fermion
number density constant.

We will usually be concerned with the situation where only
a single eigenvalue of ρ is macroscopic, realizing a simple

pseudo-BEC [63]. The fact that the sum over all eigenvalues is
O(N2) implies that there are typically many remaining eigen-
values of order unity. The pseudo-BEC has to be contrasted
with the situation where all the eigenvalues are of order unity,
which would represent an uncondensed system configuration
with no macroscopic order [49,50].

C. General properties of the time-dependent two-body
correlation matrix

Evidently, the Hermiticity, positive-semidefiniteness and
trace properties of the 2bRDM ρ ≡ ρ(0, 0) are instrumen-

tal in drawing conclusions about the macroscopicity of its
eigenvalues and, thus, the possibility of time-independent
conventional macroscopic order. It is now demonstrated that
the T2bCM ρ(t1, t2) defined in Eq. (4) satisfies these same

three properties, even for nonzero and generally distinct time
arguments t1 and t2.

(i) Hermiticity: We have

ρ∗
kl,ij(t1, t2) = 〈c†

i (t1) c†
j (t2) cl(t2) ck(t1)〉

= ρij,kl(t1, t2), (13)

so that ρ†(t1, t2) = ρ(t1, t2) for all t1 and t2. Thus, the T2bCM

(4) is Hermitian.
(ii) Positive semidefiniteness: For an arbitrary vector f in

two-particle index space, we have

f † ρ(t1, t2) f =
∑

ij,kl,α

f ∗
ij 〈c†

i (t1) c†
j (t2)|α〉〈α|cl(t2) ck(t1)〉 fkl

=
∑

α

∣∣∣∣∣∣
∑

ij

f ∗
ij 〈c†

i (t1) c†
j (t2)|α〉

∣∣∣∣∣∣
2

� 0, (14)

where a resolution of the identity in the (N − 2)-particle
Hilbert space was inserted. Thus, ρ(t1, t2) is positive-

semidefinite, and its eigenvalues are always non-negative.
(iii) Time-independent trace: Lastly, for a system with fixed

particle number N , and a number-conserving Hamiltonian H ,
we have N̂ (t ) = ∑

i c†
i (t ) ci(t ) = N̂ (0) ≡ N̂ . It follows that

the trace of the T2bCM is equal to the time-independent
constant N (N − 1):

Trρ(t1, t2) =
∑

ij

〈
c†

i (t1) c†
j (t2) cj(t2) ci(t1)

〉

=
∑

i

〈
c†

i (t1) N̂ ci(t1)
〉 = N (N − 1). (15)

Given points (i), (ii), and (iii) above, it is assured that
the T2bCM ρ(t1, t2) has non-negative eigenvalues that sum

to N (N − 1). Thus, the interpretation of the eigenvalues as
occupation numbers of generalized fermion-pair orbitals is
also valid for the T2bCM.

In the following, we assume that the system’s time
evolution is determined by a Hermitian time-independent
Hamiltonian H that commutes with the fermion-number op-
erator N̂ , and that the system is in an equilibrium state with
fixed particle number N . This may be the ground state of
H or a thermal mixture. In this case, the T2bCM depends
only on the relative time t = t1 − t2, and we will denote it by
ρ(t ) ≡ ρ(t, 0). The matrix elements of this quantity are then

given by

ρij,kl(t ) = 〈
c†

i exp
(−i t

h̄ H
)

c†
j cl exp

(
i t
h̄ H

)
ck

〉
, (16)

specializing to the 2bRDM (12) when t = 0; ρ(0) ≡ ρ. We

note that expressions that we derive for the short-time ex-
pansion of this correlation function might prove very useful
for numerical approaches that want to probe whether a given
many-body state displays odd-frequency pairing correlations.

D. Index-exchange symmetry of the time-dependent two-body
correlation matrix

The number-conserving formalism leads us to reconsider
the question of what odd-frequency pairing correlations mean.
Let us first establish that permuting the time arguments in the
pair correlation function of Eq. (1) is equivalent to permuting
the fermion operators with a change of sign, i.e.,

Fij(t1, t2) = −Fji(t2, t1). (17)

This follows directly from the definition of the time-ordering
operator T [5,6,19]. As a consequence, any odd-in-time
component of the pair correlation function (equivalent to
odd-frequency in the frequency domain) is even under ex-
change of the fermion indices. The search for odd-in-time
(or odd-frequency) pairing correlations is thus equivalent to
the search for even-under-fermion-exchange pairing correla-
tion. We argue that the latter is a more natural way to think
about this type of unconventional pairing than the symme-
try of the pairing correlations in time or frequency, and we
will use this formulation in the following. Moreover, the
exchange-symmetry concept can be meaningfully applied also
to correlation functions that are defined without time ordering,
such as the T2bCM introduced in Eq. (4). As shown in our
analysis presented below, the T2bCM exhibits its own partic-
ular correspondence between index-exchange symmetry and
time dependence. To be specific, we focus our discussion on
the t dependence of ρ(t ) defined in Eq. (16), reminding the

reader that t denotes the relative time t ≡ t1 − t2.
The resolution of the identity in Eq. (11) can be used to

decompose ρ(t ) into its parts that are either fully symmetric,

fully antisymmetric, or have mixed symmetry under index
exchange,

ρ(t ) = A ρ(t ) A + A ρ(t ) S + S ρ(t ) A + S ρ(t ) S. (18)

033165-5



K. THOMPSON et al. PHYSICAL REVIEW RESEARCH 6, 033165 (2024)

It is easy to show (see the previous section) that both matrices
A ρ(t ) A and S ρ(t ) S are Hermitian and positive-semidefinite,

and thus have real and non-negative eigenvalues. Furthermore,
TrA ρ(t ) A + TrS ρ(t ) S = Trρ(t ) = N (N − 1). At t = 0, all

terms in Eq. (18) containing the projector S vanish because
S ρ(0) = ρ(0) S = 0 due to the anticommutation relations

satisfied by fermion operators. Thus, the only nonzero contri-
bution to the 2bRDM ρ(0) is the purely antisymmetric block:

ρ(0) = A ρ(0) A. (19)

The part in Eq. (18) that is fully symmetric under index ex-
change, as well as the parts that have mixed symmetry, emerge
only at t �= 0. To illustrate this more clearly, it is useful to
consider the small-t expansion

ρ(t ) = ρ(0) + t ρ ′(0) + t2

2
ρ ′′(0) + O(t3), (20)

where the terms ρ ′(0) and ρ ′′(0) have matrix elements

given by

ρ ′
ij,kl(0) = ∂t ρij,kl(t )|t=0

= i

h̄
(〈c†

i c†
j clHck〉 − 〈c†

i Hc†
j clck〉), (21a)

ρ ′′
ij,kl(0) = ∂2

t ρij,kl(t )|t=0

= 1

h̄2 (〈c†
i Hc†

j clHck〉 − 〈c†
i H2c†

j clck〉

− 〈c†
i c†

j clH
2ck〉). (21b)

Inspection of Eqs. (21) reveals that ρ ′(0) and ρ ′′(0) obey the

symmetry constraints

ρ ′(0) = A ρ ′(0) A + A ρ ′(0) S + S ρ ′(0) A, (22a)

ρ ′′(0) = A ρ ′′(0) A + A ρ ′′(0) S + S ρ ′′(0) A + S ρ ′′(0) S.

(22b)

Therefore, the small-t limit for the fully symmetric block
of the T2bCM is S ρ(t ) S = t2S ρ ′′(0) S /2 + O(t3), while

the mixed-symmetry blocks A ρ(t ) S and S ρ(t ) A are O(t ).

See Fig. 1 for an illustration of this general structure. The
relationship between index-exchange symmetry and leading-
order t dependence signals the relevance of certain blocks
of the T2bCM for the description of odd-frequency pairing
correlations.

E. Index-exchange symmetry of eigenvectors

Our discussion in the previous Sec. III D elucidated the
connection between index-exchange symmetry and t depen-
dence of the T2bCM ρ(t ). In particular, it was shown that

ρ(0) is purely antisymmetric, as required for a 2bRDM, and

that the part S ρ(t ) S is O(t2) in the limit t → 0. We now

explore ramifications of this structure for the eigenvectors of
the T2bCM, which are essential for describing pairing correla-
tions present in the system [41]. Insights obtained here about
general properties of T2bCM eigenvectors underpin the de-
scription of macroscopic symmetric-pairing order in terms of

ρ(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∫ ∫ x

∫ ∫ x

A ρ(t)A = O(t0)∫ ∫ x

∫ ∫ x

∫ ∫ x

∫ ∫ x

A ρ(t)S = O(t1)∫ ∫ x

∫ ∫ x

∫ ∫ x

∫ ∫ x

S ρ(t)A = O(t1)∫ ∫ x

∫ ∫ x

∫ ∫ x

∫ ∫ x

S ρ(t)S = O(t2)∫ ∫ x

∫ ∫ x

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

¯̄̄̄
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
P̂

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

A

1¯̄̄̄
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
P̂

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

S

FIG. 1. General structure of the time-dependent two-body corre-
lation matrix (T2bCM) ρ(t ). Here A and S denote the projectors onto

subspaces spanned by two-particle basis states that are antisymmetric
and symmetric, respectively, under particle exchange. See Eq. (10).

a single eigenvector with macroscopic eigenvalue, developed
in the subsequent Sec. III F.

We start with the spectral decomposition

ρ(t ) =
∑

α

nα (t ) χ
α

(t ) χ†
α

(t ), (23)

where the nα (t ) are eigenvalues of the T2bCM, and χ
α

(t )
the corresponding normalized eigenvectors. The eigenvalues
nα (0) of the 2bRDM ρ(0) are usually interpreted as occu-

pation numbers for two-fermion states described by wave
functions χ

α
(0) [41]. In fact, as shown in more detail in

Appendix B, the vectors χ
α

(0) with nonzero eigenvalue nα (0)
are fully antisymmetric; χ

α
(0) ≡ A χ

α
(0), and so possess the

crucial property of two-fermion wavefunctions to be anti-
symmetric under index exchange i ↔ j, required by Fermi
statistics. As was demonstrated in Sec. III C, the eigenvalues
nα (t ) of the T2bCM defined in Eq. (16) are also non-negative
and can therefore be interpreted as occupation numbers for
the generalized natural pair orbitals χ

α
(t ). However, due

to the form of Eq. (18), the eigenvectors χ
α

(t ) for t �= 0
are not constrained to have an identically zero symmetric
part and, therefore, can encode symmetric pair correlations
that do not correspond to any ordinary two-fermion bound
state. One of the important observations resulting from the
number-conserving formalism is that there are two distinct
mechanisms for symmetric components S χ

α
(t ) of T2bCM

eigenvectors χ
α

(t ) to exist. We elucidate these two mecha-
nisms in turn below.

1. Transformer mechanism

The transformer mechanism applies to T2bCM eigenvec-
tors χ

α
(t ) with a nonzero eigenvalue nα (0) > 0 at t = 0.

In this case, the eigenvector belongs to the A ρ A block and

satisfies the eigenvalue equation of the 2bRDM

ρ χ
α

(0) = nα (0) χ
α

(0). (24)

While being antisymmetric at t = 0, χ
α

(0) ≡ A χ
α

(0), such
eigenvectors generally develop a finite symmetric part for t �=
0. A Taylor expansion of the eigenvalue equation for χ

α
(t ) in

small t reveals that a symmetric component appears in first
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order (see Appendix B 1 for details),

χ
α

(t ) =
(

1 − i t

h̄ nα (0)
τ

)
A χ

α
(t ) + O(t2). (25)

The leading-order transformer matrix τ transforms the an-
tisymmetric eigenvector into the symmetric subspace. It is
defined by

τ = i h̄ S ρ ′(0) A, (26)

and its matrix elements are given by Eq. (7b). As is evident
from Eq. (25), the part S χ

α
(t ) of the eigenvector χ

α
(t ) that

is symmetric under index exchange has a leading O(t ) depen-
dence on relative time t . Thus, symmetric-pairing correlations
that are necessarily odd-in-t to leading order are a feature of
any system for which the transformer τ with matrix elements
given in Eq. (7b) is finite.

As shown in Appendix A, the transformer scenario can
be generalized to all orders in t . The symmetric part of the
eigenvector χ

α
(t ) may be written as

S χ
α

(t ) = −i t

h̄ nα (t )
τ

α
(t ) A χ

α
(t ), (27)

with the generalized transformer τ
α

(t ) for the αth eigenstate
that is given formally by

τ
α

(t ) =
[

1 − 1

nα (t )
S ρ(t ) S

]−1 i h̄

t
S ρ(t ) A. (28)

Expanding these equations to leading order in t readily yields
Eqs. (25) and (26).

2. Generator mechanism

The transformer mechanism discussed above is not the
only way in which symmetric pair correlations can arise. In
addition, we have to consider eigenvectors χ

β
(t ) with vanish-

ing eigenvalues at zero time; nβ (0) = 0. To make this explicit,
we rewrite the spectral decomposition (23) of the T2bCM as
follows:

ρ(t ) =
′∑
α

nα (t ) χ
α

(t ) χ†
α

(t ) +
′′∑
β

nβ (t ) χ
β

(t ) χ†
β

(t ). (29)

Here
∑′

α is the restricted sum over eigenvectors that have
nonzero eigenvalues nα (0) > 0. They are antisymmetric at
t = 0 and may or may not develop symmetric parts for t �=
0, depending on the structure of the transformer τ

α
(t ). In

contrast,
∑′′

β contains only eigenvectors whose associated
eigenvalues vanish at t = 0. Those eigenvalues grow quadrat-
ically as a function of t ; nβ (t ) ∼ O(t2), because nβ (t ) �
0 for all times. The eigenvectors χ

β
(t ) are of unknown

symmetry but may have a symmetric component S χ
β

(t ) �=
0. To identify these specific contributions, we consider the
symmetric-pair-correlation generator

γ (t ) = h̄2
′′∑
β

nβ (t )

t2
S χ

β
(t ) [S χ

β
(t )]† (30a)

= h̄2

t2
S ρ(t ) S −

′∑
α

τ
α

(t )

×
A χ

α
(t )[A χ

α
(t )]†

nα (t )
τ †

α
(t ), (30b)

where the form given in (30b) follows using Eqs. (27) and
(29). By construction, γ (t ) can only be finite if the fully sym-

metric part S ρ(t ) S of the T2bCM is not entirely accounted for

by the transformer mechanism, i.e., the generator embodies
any and all symmetric-pairing correlations arising by comple-
mentary mechanisms. Its t = 0 limit is given by

γ = h̄2

2

′′∑
β

n′′
β (0) S χ

β
(0)[S χ

β
(0)]† (31a)

= h̄2

2
S ρ ′′(0) S − τ Q[ρ(0)]−1Q τ †. (31b)

Here we introduced the projector Q = ∑′
α χ

α
(0) χ†

α
(0) onto

the subspace where the 2bRDM has no zero modes. See Fig. 2
for a refinement of the T2bCM structure presented earlier in
Fig. 1. The expression given in Eq. (31b) enables straight-
forward calculation of γij,kl after diagonalizing the 2bRDM,
using also the transformer matrix elements from Eq. (7b), and

h̄2

2
[S ρ ′′(0) S]ij,kl

= 1

4
〈(c†

i H c†
j + c†

j H c†
i )(cl H ck + ck H cl)〉. (32)

Inspecting γ for a given system of interest provides basic

insights into the nature of its generated symmetric-pairing
correlations, i.e., those arising beyond the transformer mech-
anism.

It can be shown that the χ
β

(0) having nβ (0) = 0 are the
solutions of the eigenvalue equation

{P ρ ′′(0)P − 2P ρ ′(0)Q[ρ(0)]−1Q ρ ′(0)P}χ
β

(0)

= n′′
β (0) χ

β
(0), (33)

where P ≡ ∑′′
β χ

β
(0) χ†

β
(0) = 1 − Q. (See Appendix B 2 for

details, and Fig. 2 for an illustration of the subspaces projected
on by P and Q.) As per Eq. (31a), finiteness of the generator
matrix γ is an indicator for one or more of the eigenvectors

χ
β

(0) to have a symmetric part S χ
β

(0) �= 0. In the particular
case where χ

β
(0) is fully symmetric, i.e., χ

β
(0) = S χ

β
(0),

Eq. (33) becomes an eigenvalue equation for γ (see further

discussion in Appendix B 2),

γ χ
β

(0) = h̄2

2
n′′

β (0) χ
β

(0). (34)

Thus, T2bCM eigenvectors that are fully symmetric in the t =
0 limit become also eigenvectors of the generator matrix γ in

that same limit.

F. Macroscopic symmetric-pairing order

Generalizing the conventional Penrose-Onsager-Yang ap-
proach [49,50], we associate pair condensation into a super-
fluid state with having a single term in the T2bCM’s spectral
decomposition (23) with a macroscopic eigenvalue, n0(t ) ∼
O(N ), signifying that the pair orbital χ

0
(t ) has a macroscopic

occupation number. The physical properties of the system are
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R† ρ(t)R =

Q

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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⎞
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

S

FIG. 2. Structure of the time-dependent two-body correlation matrix (T2bCM) ρ(t ) in the representation where ρ(0) is diagonal. The form

shown here is related to the form shown in Fig. 1 by a unitary transformation R, where the columns of R are the normalized eigenvectors of ρ(0).

Labels t n in the various blocks indicate their leading-order small-t dependence. The operators A and S project onto subspaces of two-particle
states that are antisymmetric and symmetric, respectively, under particle exchange. The subspace where ρ(0) has positive eigenvalues is singled

out by the projector Q, and P = 1 − Q projects onto the nullspace of ρ(0).

then dominated by the condensate order parameter [41]

φ(t ) =
√

n0(t ) χ
0
(t ), (35)

as the quantity φ(t )/
√

N remains finite in the thermodynamic
limit N → ∞. Thus, to leading order in large N , the T2bCM
factorizes as expressed in Eq. (5), in generalization of the
analogous factorization in Gorkov’s time-ordered four-point
function [7].

In the t = 0 limit, our criterion for superfluid order to
exist, and the definition (35) of the associated order parameter,
recover the case of conventional even-frequency pair conden-
sation. Clearly, finiteness of φ(0) requires n0(0) > 0. In this
case, χ

0
(0) is a macroscopic eigenvector of the 2bRDM and,

thus, necessarily antisymmetric. The order parameter then
specializes to the form φ(0) = √

n0(0) χ
0
(0) that is familiar

from the particle-number-conserving description of ordinary
Cooper-pair condensates [41].

For t �= 0, φ(t ) as defined in Eq. (35) will have a finite
symmetric part S φ(t ) whenever S χ

0
(t ) �= 0. However, to be

properly part of the macroscopic pairing order parameter,
finiteness of S φ(t )/

√
N as N → ∞ is required. As we now

show, the two mechanisms identified in Sec. III E lead to
two possible scenarios for a system to develop a macroscopic
S φ(t ), indicating the presence of symmetric-pairing order.

Finite and macroscopic n0(0): Transformer scenario. As
discussed above, in the case where n0(0) is finite, the
macroscopic eigenvector χ

0
(t ) is antisymmetric at t = 0,

and the system exhibits conventional antisymmetric-pairing

(even-frequency) superfluid order. By virtue of the trans-
former mechanism, the order parameter (35) generally has
a symmetric part S φ(t ) whose leading-order small-t depen-

dence is linear. The conditions under which S φ(t )/
√

N will
also be finite in the thermodynamic limit depend on specifics
of the physical system. Assuming this to be the case, we define
φ(s)(t ) ≡ S φ(t ) and find

φ(s)(t ) = −i
t

h̄

1√
n0(0)

τ A χ
0
(0) + O(t2). (36)

Thus, in the presence of conventional antisymmetric-pair
condensation signaled by a macroscopic eigenvalue n0(0) ∼
O(N ) with associated antisymmetric eigenvector χ

0
(0) ≡

A χ
0
(0), the symmetric-pairing order parameter φ(s)(t ) de-

fined according to (36) emerges alongside the conventional
superfluid order. The transformer scenario covers the existing
proposals for odd-frequency superconductivity to occur in
conjunction with conventional even-frequency order [22–30].
We present an illustrative example in Sec. V A.

Vanishing n0(0), macroscopic n′′
0 (0): Generator scenario.

In the absence of conventional macroscopic pair condensation
at t = 0, the generator mechanism of Sec. III E provides an
avenue for a macroscopic n0(t ) ∼ O(N ) to emerge at t �=
0 and to cause symmetric-pairing order. As a prerequisite,
Eq. (33) must have a single macroscopic eigenvalue n′′

0 (0) ∼
O(N ). The small-t limit for the macroscopic eigenvalue of the
T2bCM is then of the form n0(t ) = t2 n′′

0 (0)/2 + O(t3). In this
situation, the order parameter (35) has a leading-order small-t
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dependence ∼t , and its symmetric component

φ(s)(t ) = t√
2

√
n′′

0 (0) S χ
0
(0) + O(t2) (37)

represents symmetric-pairing order. Note that the symmetric
order parameter φ(s)(t ) can be obtained from the dominant
eigenpair of the generator matrix γ (t ) in the special case

where the eigenvector χ
0
(t ) is fully symmetric. More gener-

ally, a macroscopic eigenvalue of the generator matrix implies
a macroscopic symmetric order parameter φ(s)(t ) under weak
additional assumptions. For a detailed discussion and proof,
see Appendix C.

The generator scenario applies to instances of bulk odd-
frequency order where fermion-pair correlations exist only
at t �= 0 [6,9–21]. An example of such a case is discussed
in Sec. V B. Having a macroscopic eigenvalue n′′

0 (0) arising
from Eq. (33) [or, if applicable, Eq. (34)] generally implies the
existence of some type of hidden order [64] in the system of
interest, and the generator scenario describes how symmetric-
pairing order arises as its manifestation. The order parameter
φ(t ) ∝ t

√
n′′

0 (0)/2 in this case and, thus, the fermion-pair

condensate fraction scales as (t/t∗)2 for t < t∗ ≡ √
2/n′′

0 (0).
While this reduction may create practical difficulties for re-
vealing symmetric-pairing order [65] for too small values
of t/t∗, the T2bCM is nonetheless dominated by the single
macroscopic contribution as per Eq. (5) and, thus, exhibits
the hallmarks of macroscopic quantum coherence [41,50]. We
leave a more detailed discussion of physical consequences
associated with the timescale t∗ and a condensate fraction
∝ (t/t∗)2 for future research. In this context, it is important
to keep in mind that the time t = t1 − t2 in Eq. (4) describes
the internal dynamics of the Cooper pair, akin to the time
argument in the dynamical Eliashberg formalism [66,67] of
superconductivity, and not the out-of-equilibrium dynamics
that enters, e.g., a formulation in terms of a time-dependent
Ginzburg-Landau theory. The former is the relative time t of
the two fermions forming the pair, while the latter is the total
time (t1 + t2)/2 [68].

Higher-order scenario. In the transformer and generator
scenarios described so far, macroscopic pairing order mani-
fests already in the leading-order-in-t contribution to n0(t ).
For the transformer scenario, this is n0(0), the dominant eigen-
value of the 2bRDM as per Eq. (24). In the generator scenario
where n0(0) = 0, the leading term n′′

0 (0) t2/2 in the small-t
limit is macroscopic because n′′

0 (0) is the single macroscopic
eigenvalue of the generator matrix γ [or, more generally,

Eq. (33)]. Other scenarios are possible, where the macroscopic
nature (i.e., scaling with particle number ∼N) develops solely
at finite t and becomes apparent only at higher orders in the
small-t expansion of n0(t ).

Our formalism describes odd-frequency superfluidity in
terms of the symmetric-pairing order parameter φ(s)(t ), as de-
fined in Eqs. (36) and (37) for the transformer scenario and the
generator scenario, respectively. How φ(s)(t ) can be related
to order parameters from number-nonconserving theories is
discussed in Appendix D.

IV. MEISSNER EFFECT

One of the most striking applications of the Penrose-
Onsager-Yang formalism for conventional superfluids is the
possibility to derive the Meissner effect and flux quanti-
zation solely from macroscopic quantum coherence in the
2bRDM, without strong assumptions about system properties
[53,69–72]. Here we show how the analogous description
for the T2bCM developed in Sec. III similarly lends itself
to discussing the Meissner effect for odd-frequency super-
conductors, which has been a hotly debated issue [5,18,
34–37,73].

The general approach is based on the observation that a
spatial translation in a uniform and time-independent mag-
netic field B is equivalent to a gauge transformation of the
magnetic vector potential A(r) [74]. Specifically, for the sym-
metric gauge A(r) = 1

2 B × r, it is straightforward to show the
relation

A(r + a) = A(r) + ∇�a(r), (38a)

�a(r) = −a · A(r). (38b)

Gauge invariance of the overall system dynamics then implies

cr+a = exp
[
i

q

h̄
�a(r)

]
cr, (39)

where cr denotes the annihilation operator for a fermion with
charge q in real-space representation. The relation (39) can be
used to infer the transformational behavior of the 2bRDM

ρri r j , rk rl = 〈
c†

ri
c†

r j
crl crk

〉
(40)

under translations. Together with the approximate factor-
ization (3) that represents off-diagonal long-range order
(ODLRO) in an ordinary Cooper-pair condensate [50], this
leads to the condition B = 0, embodying the familiar diamag-
netic Meissner effect [53,69–72].

Here we are interested in discussing the implications of
macroscopic coherence in the real-space representation of the
T2bCM

ρri r j , rk rl (t ) = 〈
c†

ri
(t ) c†

r j
crl crk (t )

〉
(41)

instead of the 2bRDM ρri r j , rk rl ≡ ρri r j , rk rl (0). Due to the
gauge invariance of the system Hamiltonian H and, therefore,
of the time-evolution operator exp ( −i t

h̄ H ), the relation (39)
generalizes to

cr+a(t ) = exp
[
i

q

h̄
�a(r)

]
cr(t ). (42)

As a result, the T2bCM satisfies

ρri+a r j+a, rk+a rl +a(t ) = exp
{
−i

q

h̄
[�a(ri ) + �a(r j ) − �a(rk ) − �a(rl )]

}
ρri r j , rk rl (t ). (43)
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The approximate factorization (5) of the T2bCM due to the existence of a macroscopic eigenvalue implies that the T2bCM is
dominated by the macroscopically coherent contribution at large length scales. Specifically,

ρri r j , rk rl (t ) → φri r j (t ) φ∗
rk rl

(t ) (44)

is valid for

|ri + r j − rk − rl |/2 � L � |ri − r j | ≈ |rk − rl |. (45)

This is the generalization of the concept of ODLRO [50] to the situation where t �= 0, with L denoting the length scale beyond
which the part ρ̃ij,kl(t ) in Eq. (5) has decayed and only the contribution from the macroscopic eigenvector of the T2bCM remains.
Let us now assume that the factorization (44) is valid at a particular value of the relative time t . Consistency of (44) with (43)
then requires that the order parameter transforms under translations as

φri+a r j+a(t ) = fa exp

{
− i

q

h̄
[�a(ri ) + �a(r j )]

}
φri r j (t ), (46)

with a displacement-dependent phase factor fa. Performing two consecutive translations, first along vector a then along vector
b, leads to the order-parameter transformation

φri+a+b r j+a+b(t ) = fb fa exp
{
−i

q

h̄
[�b(ri + a) + �b(r j + a) + �a(ri ) + �a(r j )]

}
φri r j (t ), (47a)

= exp

[
i

q

h̄
B · (a × b)

]
fa+b exp

{
−i

q

h̄
[�a+b(ri ) + �a+b(r j )]

}
φri r j (t ). (47b)

To obtain (47b), we made use of the identity �b(r + a) + �a(r) = �a+b(r) − 1
2 B · (a × b). Performing the two translations in

opposite order yields, however,

φri+a+b r j+a+b(t ) = fa fb exp

{
−i

q

h̄
[�a(ri + b) + �a(r j + b) + �b(ri ) + �b(r j )]

}
φri r j (t ), (48a)

= exp

[
−i

q

h̄
B · (a × b)

]
fa+b exp

{
−i

q

h̄
[�a+b(ri ) + �a+b(r j )]

}
φri r j (t ). (48b)

The required consistency of the results (47b) and (48b) leads
to the condition

2 q

h̄
B · (a × b) = 2πs, (49)

with integer s. Arbitrariness of the displacements a and b
appearing on the left-hand side of Eq. (49) makes it impossible
for the requirement to be generally satisfied, except for B = 0.
For systems with discrete translation invariance, the smallest
field allowed would amount to placing a flux quantum in the
unit cell, often corresponding to extremely large magnetic-
field values.

In the derivation of the Meissner effect from ODLRO for
conventional superconductors [53,69–72], the factorization
(44) is used at t = 0. However, as our arguments show, it is
sufficient if this factorization is valid at any particular value
of t , as the conclusion of Eq. (49) is independent of time. Re-
markably, the diamagnetic Meissner effect then follows even
for purely odd-frequency superconductors in the generator
scenario.

We have explicitly demonstrated the incompatibility of a
translationally invariant quantum state exhibiting macroscopic
pairing order in the T2bCM with a homogeneous magnetic
field, generalizing the line of reasoning originally advanced
by Sewell [53,71]. However, our analysis including the de-
pendence on relative time extends also to related applications
of Sewell’s arguments, e.g., to discuss flux quantization in

multiply connected geometries [69], the incompatibility of
magnetic fields that vary slowly in space [70], and the exis-
tence of vortex lattices [72].

The above derivation of the Meissner effect applies to the
system as a whole, described by the full order parameter
φri r j (t ). Within our formalism, it is thus impossible to discuss
individual contributions to the Meissner response arising from
the antisymmetric-pairing and symmetric-pairing parts in the
transformer scenario [73].

Our formalism establishes on very general grounds the
connection between macroscopic pairing order in the T2bCM
and the conventional diamagnetic Meissner effect, extending
the previous understanding [53,69–72] about conventional
antisymmetric-pairing orders to symmetric-pairing order,
even in the case where no ODLRO is present in the 2bRDM.
These arguments extend beyond the range of validity for
particle-nonconserving approaches and are valid even in cases
that cannot be described by approximate theories, or by
Gorkov’s anomalous pair-correlation function (1). On the
other hand, the formalism cannot yield direct insight about
whether the macroscopic order constitutes the energetically
stable phase of the system [72] and is thus unable to re-
solve on its own the ongoing stability debate [34–37]. But, as
outlined briefly in Sec. I, the particle-conserving theory is still
crucial for testing the validity of basic arguments aimed at
establishing thermodynamic stability of odd-frequency paring
order.
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V. APPLICATION TO SPECIFIC INSTANCES
OF SYMMETRIC-PAIRING ORDER

We illustrate the strength of the particle-conserving for-
malism developed in the previous section by applying it
to particular physical realizations of symmetric-pairing (i.e.,
odd-in-time; odd-frequency) order. In Sec. V A the trans-
former scenario underlying odd-frequency pair correlations
emerging in a spin-balanced s-wave Fermi superfluid with
Zeeman splitting is discussed. Section V B examines the gen-
erator scenario realized for a composite-boson condensate
that has been proposed [12–19] as a generic type of system
exhibiting odd-frequency superconductivity in the absence of
ordinary (i.e., antisymmetric-pairing) superfluid order.

A. Zeeman-spin-split Fermi superfluid: Example of
transformed antisymmetric-to-symmetric pairing

Motivated by the emergence of odd-frequency supercon-
ductivity in superconductor-ferromagnet hybrid structures
[22], the s-wave Fermi superfluid subject to Zeeman spin
splitting has been studied as a model system for bulk odd-
frequency order [30]. This system also constitutes a particular

realization of a generic multiband superconductor where
odd-frequency pairs are expected to exist [27–29]. Its many-
particle Hamiltonian is given by

H =
∑
qσ

εqσ c†
qσ cqσ − U

∑
qq′

c†
q↑c†

−q↓c−q′↓cq′↑, (50)

where q and σ ∈ {↑,↓} denote quantum numbers of a
fermion’s linear momentum and spin-1/2 degrees of freedom,
respectively, and U > 0 is the strength of the spin-singlet
orbital-s-wave pairing interaction. The single-particle energy
dispersion is given by

εq↑(↓) = ε|q| −
(+) h, (51)

where h is the Zeeman spin-splitting energy, and the
q-dependence is assumed to be isotropic.

Explicit calculation of the transformer matrix elements de-
fined by Eq. (7b), using the Hamiltonian H from Eq. (50) and
identifying general fermion-state indices i with the combined
momentum and spin quantum numbers qi and σi, yields

τ = τ (sp) + τ (int), (52)

with the single-particle and interaction-related contributions
to the transformer given by

τ (sp)
qiσi q jσ j , qkσk ql σl

= 1

2

(
εq jσ j − εqiσi

)
ρqiσi q jσ j , qkσk ql σl (0), (53a)

τ (int)
qiσi q jσ j , qkσk ql σl

= −U

2

∑
q

〈
c†

q↑ c†
−q↓

(
ς j c†

qiσi
c−q j σ̄ j + ςi c†

q jσ j
c−qi σ̄i

)
cql σl cqkσk

〉
. (53b)

For the compact notation of Eq. (53b), we use σ̄ to de-
note the opposite of σ ; i.e., σ̄ = ↓ (↑) if σ = ↑ (↓), and
ς takes the values +1 (−1) when σ = ↑ (↓). The structure
of the expressions from Eqs. (53a) and (53b) suggests that
the transformer is generally finite for a system described
by the Hamiltonian (50), implying that symmetric-pairing
correlations exist. However, for actual symmetric-pairing
order to emerge, these correlations must become a macro-
scopic property of the system so that φ(s)(t ) given by

Eq. (36) satisfies φ(s)(t ) ∼ O(
√

N ) in the large-N limit. As
we now show, the macroscopicity of symmetric-pairing cor-
relations derives from the antisymmetric-paring order in the
superfluid.

In the absence of a Zeeman term (i.e., h = 0), the ground
state of a fermion system with Hamiltonian (50) is known to
be a condensate of s-wave spin-singlet Cooper pairs. For finite
values of h, this may remain the case, as long as the Zeeman
splitting h is smaller than a critical value (the Chandrasekhar-
Clogston limit [75,76]), or at arbitrary values of h in the
absence of spin-relaxation processes where the populations of
spin-↑ and spin-↓ particles are separately conserved and ad-
justed to be equal, as is typical for ultracold-atom experiments
[77–80]. In either case, the zero-temperature ground state of
the Zeeman-spin-split Fermi gas remains unpolarized with all
macroscopic properties unchanged from the superfluid phase
at h = 0 [81–84]. This superfluid state thus has a conventional
Cooper pair condensate [50] with a 2bRDM with a single

macroscopic eigenvector χ
0

corresponding to spin-singlet
s-wave pairing. Specifically, the 2bRDM factorizes to leading
order in N [see Eq. (3)],

ρqiσi q jσ j , qkσk ql σl

= n0 χ0,qiσi q jσ j χ
∗
0,qkσk ql σl

+ ρ̃qiσi q jσ j , qkσk ql σl , (54a)

with n0 ∼ O(N ), and

χ0,qiσi q jσ j

= δq j ,−qi

(
χ0,qi

δσi,↑ δσ j ,↓ − χ0,−qi
δσi,↓ δσ j ,↑

)
. (54b)

Substituting the expression (53a) of τ (sp) for τ in the for-
mula (36) of the symmetric-pairing order parameter, using
also (54b) for the macroscopic eigenvector χ

0
, we find to

leading order in small t

φ(s)
qiσi q jσ j

(t ) = − i
t

h̄
h

√
n0 δq j ,−qi

× (
χ0,qi

δσi,↑ δσ j ,↓ + χ0,−qi
δσi,↓ δσ j ,↑

)
.

(55)

Thus, for finite Zeeman splitting h, odd-frequency spin-triplet
s-wave order emerges alongside even-frequency spin-singlet
s-wave superfluidity in a Fermi gas [30].
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In the derivation of (55), only the single-particle contribu-
tion τ (sp) to the transformer was included, and this yielded
the form of symmetric-pairing order consistent with previ-
ous studies of the Zeeman-spin-split Fermi superfluid [30].
Intriguingly, this result emerged as a direct consequence
of the Zeeman splitting in the single-particle term of the
Hamiltonian (50), while the interaction term was only im-
plicitly relevant as the source of conventional antisymmetric-
pairing order in the Fermi superfluid. In principle, an
explicitly interaction-dependent contribution to symmetric-
pairing order may arise based on the part τ (int) of the
transformer, adding to the Zeeman-splitting-facilitated portion
(55). While this possibility cannot be ruled out completely,
we expect it to be rarely relevant. See Appendix E for a more
detailed discussion.

B. Composite-boson condensate: Example of generated
symmetric-pairing order

Early studies of odd-frequency superfluidity envisioned
situations where it appears on its own, i.e., not alongside
ordinary antisymmetric (even-frequency) Cooper pairing of
fermions as in the transformer scenario discussed in the
previous section. Nevertheless, the possibility of another
type of even-frequency order being the fundamental origin
of odd-frequency pair correlations has tantalized ongoing
research efforts [5]. In particular, a relationship between
symmetric-pairing (odd-frequency) order and composite-
boson condensation has been actively investigated [12–19].

Here we consider a one-dimensional-lattice realization of
the model proposed in Refs. [16–19]. A system of itinerant
electrons coupled to bosonic spin excitations (magnons) is

described by the Hamiltonian

H = −K
∑
rσ

(c†
r+1 σ crσ + c†

rσ cr+1 σ )

+ J
∑

r

(c†
r↑cr↓ br + c†

r↓cr↑ b†
r ), (56)

where c†
rσ creates an electron with spin σ at lattice position r,

and K > 0 is the nearest-neighbor electron-hopping energy.
Creation and annihilation of a magnon at site r [described
by boson operators b†

r and br , respectively] incurs a spin flip
of electrons at the same site, with an associated (exchange-)
energy scale J . In the following, we assume that the ground
state used to calculate the expectation values determining the
2bRDM [Eq. (12)], the transformer τ [Eq. (7b)], and the
generator γ [Eq. (31b) with (32)] exhibits no independent

electron-pair or magnon condensates. This implies that the
2bRDM has no macroscopic eigenvalue.

Without a macroscopic eigenvalue of the 2bRDM, there
is no possibility for symmetric-pairing order to arise via the
transformer scenario. Generated symmetric-pairing order,
on the other hand, emerges when the generator γ has an

eigenvector with macroscopic eigenvalue. See Eq. (34) [more
generally, Eq. (33) and further discussion in Appendix C].
Calculation of the generator, defined in Eq. (31b), still requires
knowledge of the system’s transformer matrix τ . We present
details of how τ and γ are obtained in Appendix F 1. With

the assumption that the system ground state is an eigenstate
of both the electron number operator N̂ ≡ ∑

rσ c†
rσ crσ and

the magnon number operator N̂b ≡ ∑
r b†

rbr , the generator
matrix for the system described by the Hamiltonian (56) is
found to only have terms dependent on the exchange-coupling
strength J;

γriσi r jσ j , rkσk rl σl = J2

4

[
δσi,↑ δσ j ,↑ δσk ,↑ δσl ,↑

〈(
c†

ri↑ c†
r j↓ b†

r j
− c†

ri↓ c†
r j↑ b†

ri

) (
brl crl ↓ crk↑ − brk crl ↑ crk↓

) 〉
+ δσi,↓ δσ j ,↓ δσk ,↓ δσl ,↓

〈 (
c†

ri↑ c†
r j↓ bri − c†

ri↓ c†
r j↑ brj

) (
b†

rk
crl ↓ crk↑ − b†

rl
crl ↑ crk↓

) 〉
+ 〈

c†
ri↑ c†

r j↑
(
δσi,↑ δσ j ,↓ brj − δσi,↓ δσ j ,↑ bri

) (
δσk ,↑ δσl ,↓ b†

rl
− δσk ,↓ δσl ,↑ b†

rk

)
crl ↑ crk↑

〉
+ 〈

c†
ri↓ c†

r j↓
(
δσi,↑ δσ j ,↓ b†

ri
− δσi,↓ δσ j ,↑ b†

r j

) (
δσk ,↑ δσl ,↓ brk − δσk ,↓ δσl ,↑ brl

)
crl ↓ crk↓

〉 ]
. (57)

The right-hand side of Eq. (57) contains various generalized three-body reduced density matrices describing correlations between
an itinerant-electron pair and a magnon. A macroscopic eigenvalue of γ would have to arise from a hidden order [5,64]

involving such combinations of electronic and magnetic degrees of freedom. Our particle-number-conserving formalism enables
a detailed discussion of the possibility that condensation of bosonic fermion pairs coupled with bosonic spin excitations underpin
symmetric-pairing order in the system under consideration.

The generator’s connection with composite-boson condensation is made particularly apparent by focusing on its matrix
elements satisfying ri = r j = r and rk = rl = r′,

γrσi rσ j , r′σk r′σl = J2
[
δσi,↑ δσ j ,↑ δσk ,↑ δσl ,↑〈c†

r↑ c†
r↓ b†

r br′ cr′↓ cr′↑〉 + δσi,↓ δσ j ,↓ δσk ,↓ δσl ,↓〈c†
r↑ c†

r↓ br b†
r′ cr′↓ cr′↑〉]. (58)

The combinations of electron-pair operators with spin
excitations appearing on the right-hand-side of Eq. (58)
correspond to the order-parameter structure of the
composite-boson condensate proposed, e.g., in Refs. [18,19].

Hypothesizing a form of the fixed-particle-number ground
state that maximizes the composite-boson condensate
(generalizing an approach pioneered by Yang [50]), we
find that the three-body reduced density matrix with
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elements

ρ (3b)
riσi r jσ j ro, rkσk rl σl rp

= 〈
c†

riσi
c†

r jσ j
b†

ro
brp crl σl crkσk

〉
(59)

factorizes to leading order in N (see Appendix F 2)

ρ (3b)
riσi r jσ j ro, rkσk rl σl rp

= n(3b)
0 χ

(3b)
0,riσi r jσ j ro

χ
(3b)∗
0,rkσk rl σl rp

+ ρ̃ (3b)
riσi r jσ j ro rkσk rl σl rp

. (60a)

Here n(3b)
0 ∼ O(N ), the residual matrix ρ̃ (3b) has no

macroscopic contribution, and the macroscopic eigenvector
of the three-body reduced density matrix has the form

χ
(3b)
0,riσi r jσ j ro

= χ
(3b)
0 δr j ,ri δro,ri

(
δσi,↑ δσ j ,↓ − δσi,↓ δσ j ,↑

)
. (60b)

As a result, the generator (57) satisfies the eigenvalue
equation (34) with a symmetric eigenvector χ

0
(0);

χ0,riσi r jσ j (0) = χ
(3b)
0 δr j ,ri δσi,↑ δσ j ,↑, (61a)

n′′
0 (0) = 2J2

h̄2 n(3b)
0 . (61b)

The generated symmetric-pairing order parameter defined in
Eq. (37) then takes the form

φ(s)
riσi r jσ j

(t ) = t

h̄
J

√
n(3b)

0 χ
(3b)
0 δr j ,ri δσi,↑ δσ j ,↑ (62)

to leading order in small t . Thus, odd-frequency spin-
polarized-triplet pairing of electrons emerges from the con-
densation of s-wave singlet electron pairs coupled to magnons
[16–18].

The formalism illustrated here provides a general recipe
for systematically identifying avenues toward generating
symmetric-pairing order. Given a microscopic model, the re-
duced density matrices making up the generator designate the
channels for equal-time many-particle condensation that un-
derpins symmetric-pairing order. In the above consideration,
we assumed condensation of singlet-fermion pairs coupled
to magnons and found symmetric-pairing correlations in the
spin-polarized triplet channel. In this scenario, the relevant
terms of the generator (57) are those from the first two lines.
Alternatively, the structure of terms in the last two lines of
Eq. (57) implies that composite-boson condensation involving
triplet fermion pairs would generate symmetric-singlet pairing
order.

Here we have established a direct causal link between the
presence of a composite-boson condensate and macroscopic
symmetric-pairing correlations. This example demonstrates
how generated symmetric-pairing order is generally a con-
sequence of some type of hidden multi-particle condensation
ensuring a macroscopic eigenvalue of the generator matrix.
The general form of the generator as given in Eq. (31b), in
conjunction with the matrix elements (32), should enable a
comprehensive classification of system Hamiltonians that can
give rise to generated odd-frequency superfluidity.

VI. CONCLUSIONS

We present a formalism to describe odd-in-time (also
called odd-frequency) pairing, i.e., pair correlations that are
occurring only between two fermions present at different
times t1 and t2. Our approach is based on a thorough study

of the time-dependent two-body correlation matrix (T2bCM)
ρ(t1, t2) [Eq. (4)]. The T2bCM is well defined in real physical

systems that conserve particle number and could therefore,
in principle, be probed directly in experiments similar to
those that have recently been performed [48] or proposed
[85] to measure even-in-time (t1 = t2) pair correlations. In
addition, the T2bCM has the required properties for being
a suitable generalization of the two-body reduced density
matrix (2bRDM) ρ ≡ ρ(0, 0) utilized in particle-conserving

descriptions of conventional fermion superfluidity [41,50].
While the formalism applies more generally, we have focused
on equilibrium situations described by a time-independent
Hermitian Hamiltonian H conserving fermion number N .
In that case, the T2bCM depends only on the relative time
t = t1 − t2; ρ(t1, t2) = ρ(t, 0) ≡ ρ(t ), and ρ(0) corresponds

to the 2bRDM. Generalizing the particle-number-conserving
description of fermion-pair condensation [41,49,50], the ex-
istence of a pair condensate is signaled by ρ(t ) having

an eigenvector χ
0
(t ) with macroscopic eigenvalue n0(t ) ∼

O(N ). The condensate order parameter φ(t ) [Eq. (35)] then

satisfies φ(t ) ∼ O(
√

N ) in the large-N (i.e., the thermo-
dynamic) limit. We establish odd-in-t pairing order to be
associated with the symmetric part φ(s)(t ) of the order pa-
rameter, i.e., the part that does not change sign under fermion
exchange. Our derivation of the diamagnetic Meissner effect
from off-diagonal long-range order at any value of t suggests
that the presence of a macroscopic eigenvalue of the T2bCM
implies superfluid phenomena, even if no macroscopic pairing
is present in the 2bRDM. Two scenarios are identified for
symmetric-pairing order embodied by φ(s)(t ) to exist.

The transformer scenario can occur when n0(0) �= 0 is
macroscopic and, thus, χ

0
(0) is an antisymmetric eigenvector

of the 2bRDM. In such a case, φ(s)(t ) arises from the trans-
formation of even-in-t order into odd-in-t order, facilitated
by the transformer matrix τ [Eq. (36) with Eq. (26)]. We
illustrate the transformer scenario using the spin-polarized
Fermi superfluid as an example [Sec. V A]. The trans-
former matrix τ provides a natural way to quantify the
propensity for symmetric-pairing (i.e., odd-frequency) order
to emerge in the presence of an even-frequency Cooper-
pair condensate. It is thus similar to the recently proposed
superconducting-fitness measure [86,87] whose connection
with odd-frequency superconductivity has been established
within Bogoliubov–de Gennes mean-field theory [29]. Our
formalism could be utilized for further detailed investigation
of the superconducting-fitness concept, especially its general-
ization beyond mean-field theory.

The alternative to the transformer scenario is the generator
scenario, where symmetric-pairing order emerges without an
ordinary Cooper-pair condensate present. The order parameter
φ(s)(t ) is then associated with an eigenvector χ

0
(t ) of the

T2bCM ρ(t ) that has a symmetric part at t = 0 [Eq. (37)]

and satisfies the eigenvector equation (33) with a macroscopic
eigenvalue n′′

0 (0) ∼ O(N ). The propensity of a system to host
generated symmetric-pairing order is embodied in the gen-
erator matrix γ [Eq. (31)]. We elucidate how the generator

scenario transpires in a model system of itinerant electrons
coupled to magnons due to the presence of a composite-boson
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(fermion pair + magnon) condensate [Sec. V B]. Our for-
malism lends itself to establishing the direct link between
a system’s hidden order [64] and odd-frequency supercon-
ductivity. Future research could perform a systematic search
for realizations of symmetric-pairing order in other many-
particle model systems [88] based on consideration of their
generator matrices. Exotic multiparticle condensates [89,90]
are particularly promising candidates for unveiling generated
odd-frequency order.

Extensions of the present theoretical description could con-
sider symmetric-pairing order associated with a higher-order t
dependence. Further investigation of the transformer and gen-
erator matrices would also inform efforts to design systems
with odd-frequency superfluid order present. A search for
measurable quantities whose response functions are related
to a system’s generator matrix may yield indirect experi-
mental probes of generated symmetric-pairing order. More
generally, due to its focus on physically realistic particle-
number-conserving quantities, we expect our work to boost
the overall development of direct detection schemes for odd-
in-t pairing. In addition, the fixed-N theory developed here is
ideally suited to study fermion pairing occurring in cold-atom
gases [48,85] and nuclear matter [91–93], which are new
platforms for realizing and investigating symmetric-pairing
order [5,94,95].
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APPENDIX A: DERIVATION OF GENERAL
TRANSFORMER

We start by applying the symmetrizer S on both sides of
the eigenvalue equation for χ

α
(t ), which yields

nα (t ) S χ
α

(t ) = S ρ(t ) χ
α

(t )

= S ρ(t ) [S χ
α

(t ) + A χ
α

(t )]. (A1)

Assuming a nonvanishing antisymmetric contribution
A χ

α
(t ), the implicit relation (A1) between an eigenvector’s

symmetric and antisymmetric parts is formally resolved as

S χ
α

(t ) = [nα (t ) 1 − S ρ(t ) S ]−1S ρ(t ) A χ
α

(t ). (A2)

Here the invertibility of the expression between the square
brackets requires nα (t ) to be distinct from any eigenvalues of
S ρ(t ) S. This can be guaranteed for any nα (0) > 0 and small

enough t because all eigenvalues of S ρ(t ) S are ∼O(t2) and,

thus, can become degenerate with nα (t ) only at strictly finite
t . In the physically relevant transformer scenario where nα (t )

is the only macroscopic eigenvalue both at zero and finite t ,
the invertibility of the bracketed expression is guaranteed.

The derived expression (A2) resolves to Eq. (27), with
Eq. (28) defining the general form of the transformer matrix
τ

α
(t ) under the additional assumption that the eigenvalue

nα (t ) does not vanish. The definition of the transformer ma-
trix τ

α
(t ) ensures that it has an α-independent zero-t limit

τ
α

(0) = τ as given in Eq. (26), with matrix elements given
by Eq. (7b).

APPENDIX B: SMALL-t EXPANSION FOR T2BCM
EIGENVECTORS AND EIGENVALUES

We consider a general eigenvalue equation ρ(t ) χ
α

(t ) =
nα (t ) χ

α
(t ) for the T2bCM ρ(t ). Inserting the expansion of

ρ(t ) up to O(t2) given in Eq. (20), as well as analogous

expansions for the eigenvector χ
α

(t ) and eigenvalue nα (t ),

χ
α

(t ) = χ
α

(0) + t χ ′
α

(0) + t2

2
χ ′′

α
(0) + O(t3), (B1a)

nα (t ) = nα (0) + t n′
α (0) + t2

2
n′′

α (0) + O(t3), (B1b)

and equating coefficients of powers t0, t1, and t2, yields the
relations

[nα (0) − ρ(0)]χ
α

(0) = 0, (B2a)

[nα (0) − ρ(0)]χ ′
α

(0) = [ρ ′(0) − n′
α (0)]χ

α
(0), (B2b)

[nα (0) − ρ(0)]χ ′′
α

(0) = [ρ ′′(0) − n′′
α (0)]χ

α
(0)

+ 2[ρ ′(0) − n′
α (0)]χ ′

α
(0). (B2c)

Relations involving higher-order t-derivatives can be straight-
forwardly obtained by expanding each quantity up to a higher
power of t , but any features we are interested in as part of the
present work can be readily illustrated based on Eqs. (B2a),
(B2b), and (B2c). The formal structure of these relations is
analogous to that emerging in the context of time-independent
perturbation theory in quantum mechanics [96]. However, in
the situation focused on here, the perturbation is controlled
by the small parameter t . A further twist on the familiar
perturbation-theory approach is that we are interested in sep-
arating symmetric and antisymmetric contributions to the
eigenvector χ

α
(t ).

Multiplication of Eq. (B2a) from the left with S and using
S ρ(0) = 0 yields

nα (0) S χ
α

(0) = 0. (B3)

Thus, in the t = 0 limit, eigenvectors are purely antisymmet-
ric if the eigenvalue is nonzero, because nα (0) �= 0 implies
S χ

α
(0) = 0 based on Eq. (B3). As finite-t corrections can

contain both antisymmetric and symmetric contributions,
χ

α
(t ) could remain purely antisymmetric or become a mixture

of antisymmetric and symmetric parts. We discuss this case in
Appendix B 1 below.

The case of nα (0) = 0 has to be treated carefully because
of the potential for degeneracy between symmetric and anti-
symmetric subspaces. The degeneracy may be lifted at finite t ,
where mixing between the two sectors may occur, which will
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affect the t → 0 limit. We use degenerate perturbation theory
to treat this case in Appendix B 2.

1. Eigenvectors with finite eigenvalues at t = 0

Equation (B2a) constitutes the eigenvalue equation for the
2bRDM ρ(0). We assume that the eigenvalue problem for

ρ(0) has been solved for a particular system of interest. Here

we focus on the set of nonzero eigenvalues, nα (0) > 0, and
their associated χ

α
(0). As discussed above, these are fully

antisymmetric; χ
α

(0) ≡ A χ
α

(0).
Multiplying Eq. (B2b) with S from the left and remember-

ing S ρ(0) = 0, as well as S χ
α

(0) = 0, we find

nα (0) S χ ′
α

(0) = S ρ ′(0) A χ
α

(0). (B4)

Multiplying instead with A and remembering ρ(0) =
A ρ(0) A, from which follows A ρ(0) = ρ(0) A, and using also

A χ
α

(0) = χ
α

(0), one obtains

[nα (0) − ρ(0)]A χ ′
α

(0) = [A ρ ′(0) A − n′
α (0)]χ

α
(0). (B5)

Lastly, multiplication of (B2b) with χ†
α

(0) from the left, using
the zero-mode property of χ

α
(0) [Eq. (B2a)], yields

n′
α (0) = χ†

α
(0) ρ ′(0) χ

α
(0). (B6)

Thus, we obtain implicit determining relations for S χ ′
α

(0),
A χ ′

α
(0) and n′

α (0) in terms of the eigenvector χ
α

(0) and
eigenvalue nα (0) > 0 of the 2bRDM.

Rearranging Eq. (B4) straightforwardly yields

S χ ′
α

(0) = − i

h̄ nα (0)
τ χ

α
(0) (B7)

in terms of the universal transformer from Eq. (26).
Equation (B7) is indeed the t → 0 limit of the more general
relation (27). The explicit expression for A χ ′

α
(0) is found

from Eq. (B5), but we omit this here.
We continue by analyzing Eq. (B2c). Multiplying from the

left with S and using the relations S ρ(0) = 0, S χ
α

(0) = 0,

and S ρ ′(0) S = 0, we obtain

nα (0) S χ ′′
α

(0) = S ρ ′′(0) A χ
α

(0) + 2 S ρ ′(0) A χ ′
α

(0)

− 2 n′
α (0) S χ ′

α
(0). (B8)

Multiplying instead with A, we find

[nα (0) − ρ(0)]A χ ′′
α

(0)

= [A ρ ′′(0) A − n′′
α (0)]χ

α
(0)

+ 2 A ρ ′(0) χ ′
α

(0) − 2 n′
α (0) A χ ′

α
(0). (B9)

Finally, multiplying (B2c) with χ†
α

(0) from the left, using also
Eq. (B2a), we find

n′′
α (0) = χ†

α
(0) ρ ′′(0) χ

α
(0) + 2 χ†

α
(0)[ρ ′(0) − n′

α (0)]χ ′
α

(0).

(B10)

Thus, we have obtained implicit relations for all relevant quan-
tities to order t2. In particular, Eq. (B8) yields

S χ ′′
α

(0) = 1

nα (0)
[S ρ ′′(0) A χ

α
(0) + 2 S ρ ′(0) A χ ′

α
(0)

− 2 n′
α (0) S χ ′

α
(0)], (B11)

consistent with the general relation (27).
The perturbative scheme with small parameter t for ob-

taining eigenvectors and eigenvalues of the T2bCM that have
nα (0) > 0 sketched above can be straightforwardly extended
to higher orders. The general structure of the obtained per-
turbative expressions is analogous to those found for the
eigenvalues and eigenvectors of the Hamiltonian in time-
independent nondegenerate perturbation theory of quantum
mechanics [96]. Results found for the symmetric contribution
to the eigenvector accord with its general t dependence dis-
cussed in Appendix A.

2. Eigenvectors with vanishing eigenvalues at t = 0

We now consider eigenvectors of the T2bCM whose eigen-
value vanishes in the t = 0 limit; nα (0) = 0. Due to the
positive-semidefiniteness of T2bCM eigenvalues, i.e., nα (t ) �
0, n′

α (0) = 0 must also hold in this case, and Eq. (B1b) spe-
cializes to

nα (t ) = t2

2
n′′

α (0) + O(t3). (B12)

The fact that S ρ(t ) S = t2S ρ ′′(0) S /2 + O(t3) implies

that eigenvectors that are entirely in the fully symmetric sector
of the T2bCM must have vanishing eigenvalues in the t = 0
limit. However, eigenvectors with nα (0) = 0 may also exist in
the antisymmetric sector, which would be signaled by having
zero modes in the 2bRDM ρ(0). We now present a careful

treatment of the most general case where there exists such a
degeneracy between symmetric and antisymmetric subspaces.

We start by defining projectors onto the degenerate and
nondegenerate subspaces. Specifically, we introduce

Q =
′∑
α

χ
α

(0) χ†
α

(0), (B13)

where
∑′

α indicates the restricted sum over states having
nα (0) > 0. Its complement is

P ≡ 1 − Q =
′′∑
β

χ
β

(0) χ†
β

(0), (B14)

with
∑′′

β being the restricted sum over states having nβ (0) =
0. Eigenvectors from the degenerate subspace satisfy χ

α
(0) =

P χ
α

(0). Also, by construction, we have ρ(0) ≡ Q ρ(0)Q
and

P ρ(0) = ρ(0)P = 0. (B15)

We now analyze Eq. (B2) using the projectors P and Q,
having set nα (0) = 0 and n′

α (0) = 0.
Multiplying Eq. (B2b) from the left by P , using also the

relations (B15) and remembering that both nα (0) and n′
α (0)

033165-15



K. THOMPSON et al. PHYSICAL REVIEW RESEARCH 6, 033165 (2024)

vanish, we find P ρ ′(0) χ
α

(0) = 0 for any eigenvector from

the degenerate subspace, implying

P ρ ′(0)P = 0. (B16)

Muliplying (B2b) with Q instead and rearranging yields

Qχ ′
α

(0) = −Q [ρ(0)]−1Q ρ ′(0)P χ
α

(0), (B17)

where the inverse on the r.h.s. is well defined because Q
projects onto the subspace where ρ(0) has no zero modes and

is thus invertible.
Inserting nα (0) = 0 and n′

α (0) = 0 into Eq. (B2c), multi-
plying from the left with P and using the relation (B16), we
find

n′′
α (0) χ

α
(0) = P ρ ′′(0)P χ

α
(0) + 2P ρ ′(0)Qχ ′

α
(0).

(B18)

Utilising the explicit expression for Qχ ′
α

(0) given in
Eq. (B17) yields the eigenvalue equation (33) whose solution
determines all the χ

α
(0) and their associated n′′

α (0).
In principle, the eigenvector χ

α
(t ) can be constructed or-

der by order in t by continuing the perturbative treatment.
However, for our purposes, knowledge of χ

α
(0) suffices. In

particular, if a single eigenvalue n′′
0 (0) among those obtained

via Eq. (33) turns out to be macroscopic, then pairing or-
der exists in the system at finite t , even though no order is
present for t = 0. Most generally, the macroscopic eigenvec-
tor χ

0
(0) can be an arbitrary superposition of symmetric and

antisymmetric parts. The system exhibits symmetric-pairing
(i.e., odd-frequency) order when S χ

0
(0) is finite.

Further simplifications arise for eigenvectors that are fully
symmetric in the t = 0 limit. Left-multiplying Eq. (33) by S,
assuming χ

β
(0) = S χ

β
(0), and using S P = P S = S gives{

S ρ ′′(0) S − 2

h̄2 τ Q[ρ(0)]−1Q τ †

}
χ

β
(0) = n′′

β (0) χ
β

(0),

(B19)

which is equivalent to the eigenvalue equation for the genera-
tor matrix γ [Eq. (34) from the main text].

APPENDIX C: RELATING EIGENVALUES OF THE
GENERATOR MATRIX TO EIGENVALUES OF THE T2bCM

A fundamental connection can be established between the
eigenvalues of the generator matrix γ and the eigenvalues

n′′
β (0) from Eq. (33). Considering the spectral decomposition

γ =
∑

ν

gν λν λ†
ν (C1)

in conjunction with the expression given in Eq. (31a), one
obtains the sum rule

gν = h̄2

2

′′∑
β

n′′
β (0) |λ†

ν χ
β

(0)|2. (C2)

For the special case where an eigenvector λν coincides with
one of the χ

β
(0) and is therefore orthogonal to all the others,

Eq. (C2) yields gν = h̄2n′′
β (0)/2, consistent with Eq. (34).

More generally, specifics of the relationship between the gν

and the n′′
β (0) are encoded by the overlap matrix |λ†

ν χ
β

(0)|2.
Here we will prove that a macroscopic eigenvalue of γ (t )

implies the existence of a macroscopic eigenvalue nβ (t ) ∼
N O(t2) of the T2bCM, under the further assumption that
the corresponding eigenvector has a finite overlap with some
eigenvector of the T2bCM. More specifically, the assumption
is that the overlap of the respective eigenvectors remains finite
for large N . As the image of the generator matrix coincides
with the entire symmetric subspace of the T2bCM, this as-
sumption is reasonable.

We start by defining more precisely what we mean by a
macroscopic eigenvalue of γ (t ). Let us assume that there is

a systematic way to change the number N of fermions in the
system. Then an eigenvalue gν (t ) of γ (t ) is macroscopic if

gν (t )

N
� c > 0, (C3)

for all N > Nc for some constants c and Nc.
Now let g0(t ) be a macroscopic eigenvalue of γ (t ), with

constants c and Nc as explained above, satisfying

γ (t ) λ0(t ) = g0(t ) λ0(t ). (C4)

Let χ
β

(t ) be an eigenvector of the T2bCM with a vanishing
eigenvalue nβ (0) at t = 0. Let us further assume that the
overlap of χ

β
(t ) with λ0(t ) is bounded from below,

|λ†
0(t ) χ

β
(t )|2 � δ > 0, (C5)

for all N > Nδ for some constants δ and Nδ .
We can now derive an inequality for the eigenvalue nβ (t )

of the T2bCM:

nβ (t ) = χ†
β

(t ) ρ(t ) χ
β

(t )

� χ†
β

(t ) S ρ(t ) S χ
β

(t )

� t2

h̄2 χ†
β

(t ) γ (t ) χ
β

(t )

� g0
t2

h̄2 |λ†
0(t ) χ

β
(t )|2

� g0
t2

h̄2 δ

� N t2 c δ

h̄2 , (C6)

where the last two lines only hold for sufficiently large N .
We have made use of the properties of ρ(t ) and γ (t ) being

positive-semidefinite, as well as the fact that S is a projector.
If we have to weaken the assumptions to hold only for t →
0, then, by continuity, the last line will still hold for a small
interval around t = 0.
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APPENDIX D: RELATING ORDER-PARAMETER
DEFINITIONS OF NUMBER-CONSERVING

AND NONCONSERVING FORMALISMS

Particle-nonconserving descriptions of pairing focus on
the anomalous pair-correlation function F (t1, t2) defined via
Eq. (1). This quantity emerges from postulating [7,97] the
factorization of the time-ordered two-particle correlation
function,

〈T c†
i (t1) c†

j (t2) cl(t2) ck(t1)〉 → Fij(t1, t2) F ∗
kl(t1, t2), (D1)

in the presence of a pair condensate. In contrast, the gener-
alized Penrose-Onsager-type approach developed here con-
siders the approximate factorization of the T2bCM ρ(t, 0) ≡
ρ(t ) to leading order in N [Eq. (5)] in terms of the order

parameter φ(t ) [Eq. (35)].
Although F (t, 0) and φ(t ) are very different quantities,

they can be linked conceptually [41]

F (t, 0) ←→ φ(t ). (D2)

The even-frequency and odd-frequency parts of F (t, 0) corre-
spond to its antisymmetric and symmetric contributions [5,6],

F (e)(t, 0) ≡ A F (t, 0) ←→ φ(a)(t ), (D3a)

F (o)(t, 0) ≡ S F (t, 0) ←→ φ(s)(t ). (D3b)

In situations where only leading-order terms in the limit
t → 0 are considered relevant, the quantities

�(e) ≡ F (0, 0) ←→ φ(a)(0), (D4a)

�(o) ≡ ∂t F (t, 0)|t=0 ←→ lim
t→0

φ(s)(t )/t (D4b)

are sometimes used as the order parameters [5,18,19].

APPENDIX E: INTERACTION-RELATED CONTRIBUTION
TO TRANSFORMER-INDUCED SYMMETRIC-PAIRING

ORDER

We consider the specific case of a Zeeman-spin-split
Fermi superfluid discussed in Sec. V A. Using Eq. (52), the
symmetric-pairing order parameter (36) for this model system
can be decomposed as

φ(s)(t ) = φ(s,sp)(t ) + φ(s,int)(t ), (E1)

where the leading-order small-t expression of φ(s,sp)(t ) is
given in Eq. (55), and

φ(s,int)(t ) = −it

h̄

1√
n0(0)

τ (int) A χ
0
(0) (E2)

to leading order in small t . Taking the explicit form of the
interaction part of the transformer τ (int) from Eq. (53b) and
utilizing also Eq. (54b), we obtain

φ(s,int)
qiσi q jσ j

(t ) = i U
t

h̄

1√
n0(0)

〈∑
q

c†
q↑ c†

−q↓
(
ς j c†

qiσi
c−q j σ̄ j + ςi c†

q jσ j
c−qi σ̄i

)∑
q′

χ0,q′ c−q′↓ cq′↑

〉
. (E3)

Here we used again our compact notation where σ̄ denotes the opposite of σ ; i.e., σ̄ = ↓ (↑) if σ = ↑ (↓), and ς takes the
values +1 (−1) when σ = ↑ (↓).

To gain further insight into the general form of φ(s,int), we adopt the Yang-model description of a Fermi superfluid [50], where
the ground state is the pair-condensate state

|�N 〉 = NN (B†)
N
2 |vac〉, (E4)

involving the pair-creation operator

B† = 1√
m

∑
q

c†
q↑ c†

−q↓. (E5)

Here m � N indicates the number of single-particle modes (excluding spin), |vac〉 is the vacuum state, and the normalization
factor NN is in principle known but does not need to be specified here. For our purposes, we only need to employ the relation

B|�N 〉 =
[

N

2
− N (N − 2)

4m

] 1
2

|�N−2〉 (E6)

and the known form of entries in the macroscopic eigenvector of the 2bRDM [see Eq. (54b)],

χ0,q = 1√
2m

. (E7)

With the input of Eqs. (E6) and (E7), assuming also that the expectation value on the r.h.s. of Eq. (E3) is calculated in the
Yang state |�N 〉, the interaction contribution to the symmetric-pairing order parameter becomes

φ(s,int)
qiσi q jσ j

(t ) = i U
t

h̄

1√
n0(0)

√
2m 〈�N |B†

(
ς j c†

qiσi
c−q j σ̄ j + ςi c†

q jσ j
c−qi σ̄i

)
B|�N 〉, (E8a)

= i m U
t

h̄

N√
n0(0)

[
1 − N − 2

2m

]
1√
2m

〈�N−2|
(
ς j c†

qiσi
c−q j σ̄ j + ςi c†

q jσ j
c−qi σ̄i

)|�N−2〉. (E8b)
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On the r.h.s. of Eq. (E8b), normalization factors have been
distributed such that the result emerging in the limits of
m → ∞ and large N � m is readily apparent. In particular,
with n0(0) ∼ O(N ), it appears that, as far as the scaling as
a function of N is concerned, φ(s,int)(t ) could be a relevant
contribution to the symmetric-pairing order parameter.

The vector entries of φ(s,int)(t ) given in Eq. (E8b)
are related to a combination of entries from the single-
particle reduced density matrix for the N − 2-particle Yang
state. This again illustrates the general importance of single-
particle physics for facilitating the transformation of antisym-
metric pairing order into symmetric pairing order. Within the
Yang-model description, exact results for the single-particle
reduced density matrix yield

〈�N−2|c†
qiσi

c−q j σ̄ j |�N−2〉 = 〈�N−2|c†
q jσ j

c−qi σ̄i |�N−2〉

= N − 2

2m
δq j ,−qi

δσ j ,σ̄i , (E9)

and we find

φ(s,int)
qiσi q jσ j

(t ) ∝ −ςi〈�N−2|
(
c†

qiσi
cqiσi − c†

−qi σ̄i
c−qi σ̄i

)
|�N−2〉 δq j ,−qi

δσ j ,σ̄i = 0. (E10)

Thus, within the Yang-model description, the interaction part
of the transformer does not cause symmetric-pairing order,
and the latter originates entirely from the single-particle por-
tion of the transformer that gives rise to the order parameter
from Eq. (55).

The fundamental reason why the interaction-related part
of the transformer yields no symmetric-pairing order can be
gleaned from inspecting the correlation function appearing
on the r.h.s. of Eq. (E10). The two terms being subtracted
are related via the time-reversal operation, which inverts both
the spin and orbital momentum. This observation leads us to
surmise that the vanishing of φ(s,int)(t ) holds more generally
on symmetry grounds, even beyond the strict limits of appli-
cability for the Yang model.

APPENDIX F: GENERATED SYMMETRIC-PAIRING
ORDER IN A SYSTEM OF ITINERANT ELECTRONS

COUPLED TO MAGNONS

1. Form of the transformer and generator matrices

Using the definition Eq. (7b), with H given by Eq. (56), we
find the expression

τriσi r jσ j , rkσk rl σl = K

2

[
ρri+1 σi r jσ j , rkσk rl σl (0) + ρri−1 σi r jσ j , rkσk rl σl (0) + ρr j+1 σ j riσi, rkσk rl σl (0) + ρr j−1 σ j riσi, rkσk rl σl (0)

]
+ J

2

[
δσi,↑

〈
c†

r jσ j
c†

ri↓ b†
ri

crl σl crkσk

〉 + δσi,↓
〈
c†

r jσ j
c†

ri↑ bri crl σl crkσk

〉
+ δσ j ,↑

〈
c†

riσi
c†

r j↓ b†
r j

crl σl crkσk

〉 + δσ j ,↓
〈
c†

riσi
c†

r j↑ brj crl σl crkσk

〉]
(F1)

for the transformer. The terms ∝ J in Eq. (F1) are expectation values involving unbalanced boson creation and annihilation
operators b†

r and br . If the state defining the expectation values in Eq. (F1) is an eigenstate of the boson number operator
N̂b = ∑

r b†
rbr , then these terms must vanish identically.

Expectation values involving unbalanced boson operators also arise in the calculation of the part ∝ S ρ ′′(0) S of the generator

[see the first term in Eq. (31b)], and they are neglected on the same grounds in that context. The remaining terms ∝ K2 arising
due to the S ρ ′′(0) S part are cancelled by the quadratic-in-τ contribution to the generator [see the second term in Eq. (31b)]. The

result for the generator depends only on terms ∝ J2, and can be expressed as Eq. (57).

2. Reduced density matrices for the composite fermion-pair–magnon condensate

To demonstrate the typical behavior of reduced density matrices corresponding to composite-condensate systems [19], we
consider a Yang-type state for composite bosons,

∣∣� (3b)
N

〉 = NN (B†
fb)

N
2 |vac〉, (F2a)

B†
fb = 1√

m

∑
r

c†
r↑c†

r↓b†
r , (F2b)

Bfb

∣∣� (3b)
N

〉 =
[

N

2
− N (N − 2)

4m

] 1
2 ∣∣� (3b)

N−2

〉
, (F2c)

where m is the total number of one-dimensional lattice sites. Equations (F2) constitute a particular example of a composite-boson
condensate that is an eigenstate of both the fermion and boson number operators N̂ and N̂b.

In the limit of a large lattice, i.e., for m � N , the system’s 2bRDM and the three-body reduced density matrix defined by
Eq. (59), respectively, take the form

〈
�

(3b)
N

∣∣c†
riσi

c†
r jσ j

crl σl crkσk

∣∣� (3b)
N

〉 ≈ N

2m
δσ j ,σ̄i δri,r j δrl ,rk (δriσi, rkσk δr jσ j , rl σl − δr jσ j , rkσk δriσi, rl σl ), (F3a)
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〈
�

(3b)
N

∣∣c†
riσi

c†
r jσ j

b†
ro

brp crl σl crkσk

∣∣� (3b)
N

〉 ≈ N

2m
ςi ςk δri,r j δrl ,rk δri,ro δrp,rk δσ j ,σ̄i δσl ,σ̄k

≡ N

[
1√
2m

ςi δr j ,ri δro,ri δσ j ,σ̄i

][
1√
2m

ςk δrl ,rk δrp,rk δσl ,σ̄k

]∗
. (F3b)

We utilized again the notation where σ̄ is the opposite of σ ;
i.e., σ̄ = ↓ (↑) if σ = ↑ (↓), and ς takes the values +1 (−1)
when σ = ↑ (↓). The 2bRDM (F3a) is a block-diagonal ma-
trix in two-particle index space with degenerate eigenvalues
0 and N/m � 1 that are nonmacroscopic. It can be verified

that the vectors from three-body index space appearing in
Eq. (F3b) are normalized. The rank-1 three-body reduced
density matrix thus has eigenvalue N , which is consequently
macroscopic, in the limit m � N . Identifying 1/

√
2m = χ

(3b)
0

yields Eq. (60b).
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