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Automatic heliostat learning for in situ
concentrating solar power plant metrology
with differentiable ray tracing

Max Pargmann 1,6 , Jan Ebert2,3,6, Markus Götz 2,4,
Daniel Maldonado Quinto 1, Robert Pitz-Paal1,5 & Stefan Kesselheim 2,3

Concentrating solar power plants are a clean energy source capable of com-
petitive electricity generation evenduring night time, aswell as the production
of carbon-neutral fuels, offering a complementary role alongside photovoltaic
plants. In these power plants, thousands of mirrors (heliostats) redirect sun-
light onto a receiver, potentially generating temperatures exceeding 1000°C.
Practically, such efficient temperatures are never attained. Several unknown,
yet operationally crucial parameters, e.g., misalignment in sun-tracking and
surface deformations can cause dangerous temperature spikes, necessitating
high safety margins. For competitive levelized cost of energy and large-scale
deployment, in-situ error measurements are an essential, yet unattained fac-
tor. To tackle this, we introduce a differentiable ray tracing machine learning
approach that can derive the irradiance distribution of heliostats in a data-
driven manner from a small number of calibration images already collected in
most solar towers. By applying gradient-based optimization and a learning
non-uniform rational B-spline heliostat model, our approach is able to deter-
mine sub-millimeter imperfections in a real-world setting and predict
heliostat-specific irradiance profiles, exceeding the precision of the state-of-
the-art and establishing full automatization. The new optimization pipeline
enables concurrent trainingof physical anddata-drivenmodels, representing a
pioneering effort in unifying both paradigms for concentrating solar power
plants and can be a blueprint for other domains.

Concentrating solar thermal power plants (CSPs) are an essential part
of the ongoing energy transition1,2. They are not only able to provide
dispatchable electricity, but also direct heat for industrial processes or
the synthesis of carbon-neutral fuels3–6. CSPs particularly standout due
to their power conversion efficiency, competitive levelized cost of
energy, low consumption of rarematerials compared to photovoltaics,
and their ability to store generated energy for several days7–9. In typical
setups, thousands to hundred thousands of mirrors, the heliostats,
reflect sunlight onto an absorbing surface, the receiver. The solar

radiation from the superposition of the individual heliostat focal spots
generates thermal power, reaching radiant fluxes of 400 MW and
temperatures exceeding 1000 °C.

Thereby, the heliostatfield is one of the largest contributors to the
energy yield as well as levelized cost. Heliostat technology is conse-
quently subject to high research interest and rapid engineering
improvements10. High-quality optical heliostat performance at mini-
mal cost is a key design goal to achieve CSPs’ commercial success. For
example, it is estimated that a reduction of the glass thickness from
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4 mm to 3 mm can reduce field cost by 5%, summing up to an
impressive $3 million for a full-size concentrating solar power plant11.

While such cost reductions effectively decrease overall expenses,
they simultaneously increase operational challenges. The tight cost
constraints in heliostat manufacturing manifest in heliostat defi-
ciencies such as surfacedeformations or cause sun tracking errors. The
receiver is then likely to be exposed to thermal stresses and heat
spikes, significantly reducing the components’ longevity. Operators of
CSPs are already forced to run lower temperatures than possible and
thus reduced efficiencies. To safely reach higher radiant fluxes, the
heliostats need to precisely focus on a pre-determined location at the
receiver, while maintaining a specific power distribution. Each indivi-
dual heliostat must hit the receiver at a predetermined aim point,
which is dependent on the one hand on external conditions, such as
the position of the sun, the alignment of the other heliostats, e.g., due
to shading and blocking, or possible cloud passage12. On the other
hand, internal conditions, such as alignment errors or mirror defor-
mations, can lead to deviations in the irradiance in the aim point and
focal spot shape. It is possible to improve the power distributions if
known heliostat deficiencies are taken into account.

For example, heliostatmisalignment canbecorrectedby so-called
heliostat calibration. The most common method is the camera-target
method. In this approach, suggested first by Baheti et al.13, a single
heliostat’s solar reflection is diverted to a calibration target near the
receiver. Due to the heliostat’s inaccuracies, its aim point will differ
from the designated one. This difference from one or more focal spot
images can be used to optimize a geometric model of the heliostat. In
most cases, this is an error-based alignment model minimizing the
distance between the designated and the actual aim point. Refined
over several years, this approach is now the most commonly used
method for heliostat alignment calibration14–26. While several calibra-
tion techniques have been proposed, with varying (dis-)advantages in
terms of cost, accuracy or speed27–30, the camera-target method is the
de facto standard for CSPs across the world.

A heliostat’s deformation, more precisely its slope error, can for
example be determined by stripe pattern deflectometry31. In this
widely used technique32–36, a stripe pattern is projected onto a reflec-
tive object and the resulting projection is measured. From the distor-
tions of the stripe pattern, the surface of the object can be
reconstructed. While this method leads to precise results under
laboratory conditions, the measurement of heliostats directly in the
heliostat field is difficult. At the solar tower, this process is performed
at night. Striped light patterns areprojectedonto the calibration target
and a camera detects the reflected pattern. Although the accuracy is
still high, the reliability of this method is greatly reduced in environ-
mental conditions found at actual solar towers. Besides inherent
instabilities like quantization of the intensity, non-linearity of the
detector, unwanted background variations and other types of optical
and electronic noise37, this task is particularly challenging due to dew,
dust, long exposure times, misplaced or misaligned heliostats, and
wind. Hence, it has not experienced widespread use since its first
publication in 201138. Othermethods for obtaining the heliostat shape,
e.g., photogrammetry, tend not to be as easily implementable or not as
cost effective in the heliostat field compared to deflectometry39.

For optimal power plant control, the irradiance is the most
important input variable. With accurate knowledge of the heliostat
field, heliostat geometry andheliostat surface, it canbepredicted from
simulations for a given distribution of aim points on the receiver. The
knowledge about the irradiance allows for modern aim point
distribution12,15,40,41, accurate model predictive control42–44, and
reduced safety margins in plant operation. For example, only rudi-
mentary improvements of the heliostat geometry model have lead to
power gains of 20% when adjusting the aim point distribution
strategy41. Hence, considerable efforts are made to support aim point
optimization algorithmswith realistic heliostat irradiance profiles. The

approach by Sanchez et al.45 identifies the canting errors of heliostats
to reach a higher overlap of simulation and measurement. Zhu et al.41

created a heliostat model in which four parameters per facet are fit to
observational data. Although the obtained surface is simplistic, the
improved irradiance prediction for distant heliostats led to the reali-
zation of the power gains mentioned above. The need for even better
irradiance predictions is also themotivation behind the recent work of
Martinez et al.46. They were able to show how surfaces can be recon-
structed from focal spot images with an accuracy close to that of
deflectometry measurements during day time. Their main limitation is
that the target-heliostat distance is restricted to roughly 10 m. This
distance is too small to use the existing infrastructure, so they have to
resort on a target moving through the heliostat field.

Heliostat metrology is a key ingredient to establishing the wider
adoption of CSPs. Despite the ongoing efforts, the Roadmap to
Advance Heliostat Technologies for Concentrating Solar-Thermal Power
Plants by the U.S. National Renewable Energy Lab identifies opto-
mechanical error measurement in outdoor environments as a neces-
sary but currently unattained key factor for large-scale commercial
success11. Especially in-situ metrology methods, i.e., measurements
without removing the heliostat from its mount, are desired as they
allow for integrating such measurements into the operation of plants
at low cost and with minimal operational adjustment.

To address these challenges we present a machine-learning solu-
tion facilitating the derivation of heliostat characteristics using the
existing calibration metrology infrastructure. For this, our technique
extends commonly used ray tracing approaches47–54 with a differenti-
ablemodel formulation driven by in-situ acquireddata. This enables us
to compute the derivative of the ray-traced pixel intensities with
respect to all parameters affecting the light direction. In turn, we can
formulate a supervised regression problem that infers the trainable
input parameters byminimizing an objective function (loss) indicating
the difference between the generated ray tracing image and the in-situ
measured calibration data. As the corresponding heliostat surface
model, we additionally propose the use of a differentiable and there-
fore learning non-uniform rational B-spline (NURBS) variant.

This publication concentrates on the reconstruction of surfaces
from focal spots and the prediction of irradiance profiles. However,
every heliostat parameter affecting the direction of the light, e.g., the
geometric model for alignment correction, may be optimized analo-
gously and even simultaneously to the surface reconstruction in the
same manner. Using this method, we are able to determine sub-
millimeter imperfections of nearly planar heliostats in a real-world
setting and predict heliostat-specific irradiance profiles with high
precision in all considered experimental cases. Contrary to the state-
of-the-art approach, i.e., stripe pattern deflectometry, our technique
can be used during regular power plant operation. To assess the
effectiveness of our approach, we conducted a proof-of-concept field
test at a research CSP facility in Jülich, Germany. Our method con-
sistently enhances the annual irradiance forecast, achieving the same
accuracy as simulations leveraging deflectometric measurements,
enabling the implementation ofmodern optimal aimpoint strategies55.
Even for smaller power plants, such as Gemasolar in Almeria, our
approach has the potential to increase yearly revenues by up to 39%,
equating to approximately $3 million56. The employed method there-
fore poses ametrology tool for in-situ heliostat measurement and
operation optimization. In complementary simulations, we show that
our approach generalizes to all heliostats of the whole array. A sche-
matic overview of the process and the main results are depicted
in Fig. 1.

Results
Ray tracing at concentrating solar power plants
Ray tracers have become an invaluable tool for CSPs48,50,57–59. For
example, they are used inplanningfield layouts60, the prediction of the
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annual energy yields61, the design of suitable structures for the
synthesis of climate-neutral fuels62, or flux density predictions63. On a
physio-technical level, the ray tracing problem at CSPs combines
specular reflection of the sunlight on the heliostat and diffuse reflec-
tion at the target. The diffuse reflection requires integration over all
incident angles, corresponding to a high total number of rays. There-
fore, ray tracing simulations typically employ Monte Carlo sampling64

of the rays emitted by the sun proportional to the respective solar
radiance. This importance sampling65 technique allows for a drastic
reduction of the required rays and is also the foundational mechanism
used in our proposed method.

Consider now a single heliostat’s reflected image moved onto a
calibration target, creating an irradiance profile. The calibration tar-
get’s surface is matte, i.e., a diffusely reflecting Lambertian surface66.
Its reflected light is proportional to the surface irradiance, indepen-
dent of an observer’s viewpoint. The irradiance E at position x! on the
calibration target can then be obtained by integrating the radiance L
over all incomingdirections t

!
,multipliedby the cosineof the incident

angle θ. Neglecting ambient lighting, the incident irradiance can be
constructed by finding the intersection h

!
of the incident direction

with the heliostat, and, if within the heliostat surface, constructing the
reflected direction t

!
r by evaluating the local heliostat normal n!h and

the solar radiance L⊙ in the reflected direction:

E x!
� �

=
Z
Ω
L� t

!
r t

!
, h
!� �� �

cosθdt
!

: ð1Þ

Ω denotes the half-sphere of incident rays. This formulation permits
the inclusion of terms to model real-world imperfections, e.g., a
heliostat’s surface deformation from an ideally planar one. We express
this by introducing the reflectivity function t

!
r that depends on the

heliostat surfacepoint h
!

. Then,most ray directionswill not contribute
to the irradianceof a point on the target surface due to the small size of
the solar disk. See Fig. 2a for a schematic visualization of the ray tracing
process and the associated geometry.

Differentiable ray tracing
Inspired by differentiable ray tracers in computer graphics, such as
redner67, RayTracer.jl68 or Sionna69, we reinterpret Eq. (1) as a mathe-
matical function that maps from geometric input parameters to a
matrix-valued output image. Computing the derivative, or more pre-
cisely the Jacobian, of the output image with respect to the input
parameters then allows for solving a wide variety of inverse problems.
In our case, we are interested in determining the geometric para-
meters, e.g., heliostat properties. Thus, we can formulate a supervised
regression problem in which we infer the parameters or, in other
words, the unknown weights of our machine learning model, through
gradient-based minimization of a loss function fitting the ray-traced
image as close aspossible to observational data (cf. Fig. 1b). This allows
us to not only predict heliostat alignments, but also their surface
deformations or any other parameter with a differentiable contribu-
tion to the loss. While these other parameters are not further con-
sidered in this work, their exploration is of great interest for general
CSP operation.

Fig. 1 | Overview of themachine learning pipeline and results on data from the
solar tower in Jülich. a Image of a CSP in Jülich, Germany. The heliostats, shown
frombehind, focus the sunlight on the receiver surface of the tower. Located below
the receiver is the calibration target. The inset (*) shows a focal spot image as taken
during calibration. b Schematic overview of the in-situ optimization of CSPs with
differentiable ray tracing able to learn the heliostat parameters. c Comparison of
the irradiance profiles obtained from (left to right) measurement, calibration
images with naive ray tracing of a planar heliostat, a supporting deflectometry

measurement, and the prediction of the differentiable ray tracer. Deviation
between the measurement and each generated image is quantified using the mean
absolute error (L1 loss, ↓, lower is better). The image marked with * is the nor-
malized calibration target from the inset above.dHeliostat surface reconstructions
from calibration images using learning NURBS. The surfaces are represented by the
deviation inmradof their normals from an ideal planar surface. The heliostatwas at
50 m distance from the receiver.
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The parameter learning procedure is based on reverse-mode dif-
ferentiation andvisualized in Fig. 1b. All operations arefirst executed in
the computational forward direction (solid black edges). For any path
of operations that are connected to a trainable weight (green nodes),
the gradient is subsequently determined in the backward direction
(green dashed edges). This backward direction efficiently calculates
the sequential gradient of the forward operations with respect to the
optimization parameters via backpropagation70,71. This is realized by
continual application of the chain rule from calculus to all nested
functions to be differentiated. The loss propagation happens in
reverse order, i.e., it starts with the calculated loss and ends at the
learnable weights. It is important to emphasize that the backward
direction needs to be executed exclusively for the computational
pathways leading to trainable parameters. Notably, this implies that
only these computations have to be differentiable.

Internally, we are building on the numerical theory of several
current-generation ray tracers like STRAL58,59. This includes for exam-
ple the reduction of the number of necessary reflection calculations by
starting the ray tracing process on a discretized heliostat. For each of
the heliostat points, rays are sent according to the local normal vector
and the sun’s position. As a result, a ray that is reflectedmore thanonce
on the heliostat does not contribute to the receiver image and is not
tracked further (see Fig. 2). One of the usually employed mechanisms
is the so-called hard binning, i.e., the accumulation of rays based on
their intersection point x!of the nearest point on a grid overlaying the
target. While computationally fast, the discretization of the rays is not
differentiable. Therefore, we relax the formulation to a soft binning
scheme, which distributes the rays linearly on the calibration target
(compare Fig. 2a), a common anti-aliasing technique in computer
graphics64. In other contexts, this is also known as a regularization of
the delta function which conserves the first-moment of the ray-target-
intersection72. For this, we introduce a differentiable weighting func-
tion γ x!ij , x

!� �
describing the irradiance contribution of a ray hitting

the target at position x! to the pixel centered at x!ij . Then, the irra-
diance is a weighted sum over all rays cast from heliostat surface point
h
!

l in direction t
!

k . We define the intersection of the reflected raywith

the target as x!ð h!l , t
!

kÞ and write up to a prefactor:

Eij /
X
ray k,

position3l

γ ~xij ,~x
~hl ,~tk

� �� �
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

γijkl

cosθ: ð2Þ

The factor γijkl describes the contribution of ray k, reflected at
discrete position l, to the discrete grid point (pixel) x!ij .

We have implemented the differentiable ray tracer using the
machine learning framework PyTorch73. All computations are com-
posed from differentiable primitives permitting the evaluation of the
Jacobian using PyTorch’s automatic differentiation mechanism in
backward mode. Learning, i.e., adjustment of the trainable weights,
happens through application of the gradient via an optimization
algorithm such as Adam74. A practical side effect of the PyTorch
implementation is the option to accelerate computations with spe-
cialized hardware like GPUs.

Learning NURBS
A key component of our method is a differentiable heliostat surface
model. Physics requires this surface to be smooth. For this, wepropose
a variant of non-uniform rational B-splines (NURBS)75. NURBS are a
mathematical representation of n-dimensional geometry as a linear
combination of a B-spline curve basis. The NURBS control points
directly correspond to the trainable parameters of our machine
learning model (cf. Fig. 2b). This formulation does not only ensure
differentiability and smoothness, but also provides the flexibility to
represent arbitrary surfaces and their deformations with variable
degree of detail based on the chosen polynomial degree of the NURBS.
More specifically, the spline degree controls how many of its neigh-
boringdiscrete points are affectedby themodulationof another point.
We employ the L1 loss, i.e., the mean absolute error, as optimization
criterion due to its high sensitivity to deviations in low-intensity
regions compared to themean square error. We scale the loss with the
number of pixels. This way, the computed losses are comparable even
for different image resolutions.

Fig. 2 | Sketch of the differentiable ray tracing process using NURBS.
a Schematic drawing of the ray tracing process and the binning function. Starting
from a heliostat lattice point with normal n!h, an incoming ray is reflected and
traced ( t

!
) to the target. Its intensity is linearly distributed to the N = 4 nearest

lattice points (black circles). The different coordinate systems are shown in blue.
b Schematic drawing of a heliostat NURBS surface. The control points P (green

dots) are shifted in the z direction (red section on green line) away from the ideal
surface (gray). This deformation modulates the normal vectors n!h (blue). One
discrete point is moved by Δz, which influences the reflected ray direction by the
slope error Δω. The information about the infinitesimal change Δω can be traced
back via automatic differentiation to the change Δz of the NURBS control points.
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For such aNURBSmodel, we also assume that learned parameters
with small deviations from an idealized planar heliostat surface are
more realistic and therefore preferred. Thus, we would like to penalize
large displacements of the NURBS control points from ideal positions
through regularization. For example, employing a term proportional
to the square of the distances of the NURBS control points in the
normal directionΔzof theheliostat requires the solution to employ the
smallest values being compatible with the observed images, as found
in ridge regression76. With a penalty term proportional to the absolute
magnitude, following the idea of Lasso77, only the set of necessary
parameters will converge to a nonzero value, leading to only sparsely
deformed heliostats. Depending on the application, the optimal reg-
ularization factors vary, and even high-order or additional terms may
be beneficial. In our experiments we have found regularization not to
be of importance for simple geometrical problems, such as surface
reconstruction. Yet, formore complex geometrical arrangements, e.g.,
simultaneous surface-heliostat alignment, it is a meaningful tuning
factor.

Comparison with classical ray tracing
For our quantitative comparative analyses, we are confining us to an
evaluation against STRAL63. This choice is premised upon (a) its image
quality, which is able to predict heliostat irradiance profiles with an
exceptionally high level of accuracy compared to real-world observa-
tions. This has been tested for example using highly resolved deflec-
tometric surface profiles measured at the CESAR-1 solar tower power
plant, achieving nearly 98% accuracy overlap to irradiance
measurements63; (b) representative benchmarks for a wide set of
classical ray tracers for solar towers58,59 (c) its high computational
speed59; making it an ideal choice to compare with our deflectometric
simulations.

STRAL and our differentiable ray tracer produce the same irra-
diance images, as the number of traced rays tends towards infinity.
However, in finite regimes, i.e., a low number of rays, the suggested
differentiable soft binning scheme results in imageswith afiner level of
detail with fewer rays while also converging faster. This effect is

illustrated in Fig. 3. Notably, this is only applicable for differentiable
receiver geometry. Discontinuities, e.g., steps on the receiver surface,
are challenging for our proposed approach.

With respect to computational performance, we observe a slight
advantage in wall time when using the proposed differentiable ray
tracer with an equivalent number of rays, despite the higher compu-
tational cost of binning. We want to mention that a fair comparison is
complex and comes with several caveats. While STRAL is a highly
optimized code that parallelizes over all physical simulation objects, it
is only executable on CPUs. In contrast, the differentiable ray tracer
runs unoptimized, parallel code only over the set of rays from a single
heliostat, but is able to leverage acceleration from GPUs.

Field test at a concentrating solar power plant
Wehavebenchmarkedourproposed ray tracing approach againstdata
collected in a field test at a real-world concentrating solar power plant
in Jülich, Germany. This research facility can generate rated electrical
power of up to 1.5 MW by using over 2000 heliostats at a distance
between 25 and 250m. Each heliostat has four individual facets, which
are canted, i.e., tilted inwards to achieve a joint focus, and which have
an astigmatically corrected target alignment78. For the validation pro-
cedure, we selected a heliostat in the first row of the field at 25 m
distance. As a comparative baseline, we measured the heliostat’s sur-
face using deflectometry on October 21st, 2021. Under clear sky con-
ditions on March 4th, 2022, we additionally performed the regular
calibration procedure for the same heliostat at two different times of
the day. These calibration images correspond to our training data.
During the next regular calibration interval, roughly eightmonths later
and ondifferent times of the day, two additional images were acquired
representing our test data.

Figure 1c shows the obtained results on our held-out test data set.
The measured ground truth images, i.e., the regression labels, can be
found in the left-most column denoted as measurement. For training,
the image’smean valuewas subtracted from each pixel and the images
were intensity-normalized. The column planar heliostat displays the
irradiancepredicted by a ray tracingmethod that assumes an idealized
heliostat without any surface deformations. This corresponds to the
current implementation in most operational concentrating solar
power plants. In the third column, flux density predictions obtained
from ray tracing based on real-world deflectometricmeasurements are
depicted. Finally, the right-most column shows the predictions of our
proposed differentiable ray tracer. As expected for a real-world
heliostat calibration image, the focal spot is off-center. This misalign-
ment stems from mechanical errors of the heliostats in Jülich, which
use a primary horizontal axis and a secondary perpendicular axis. This
deviation is learned by our differentiable ray tracer through optimi-
zation of a geometric model by comparing the measured and the
simulated orientation, initially ideally centered. However, for this
publication, we do not use a realistic two-axis geometry model, but
rotate the heliostat in the mirror origin around three axes. The rota-
tions determined in this waymust be determined individually for each
image and cannot be used for heliostat calibration, but guarantee that
each image has the maximum overlap with the measurement. To
achieve better comparability, all non-data-driven approaches use the
same heliostat alignment and rotation correction derived fromour ray
tracing pipeline. The color map image is normalized by the maximum
incoming intensity and spatially scaled to match the calibration target
dimensions.

It is apparent thatbothdeflectometry andour proposed approach
achieve qualitatively and quantitatively significantly better irradiance
profiles compared to the naive assumption of a planar heliostat. The
differentiable ray tracing does not only match deflectometry, but
slightly improves on it. It is important to stress that the images shown
here have not been used for training. Hence, using only the two
training images obtained eight months prior (see the Training Data

Fig. 3 | Comparison to the state-of-the-art ray tracing tool STRAL. a Illustration
of the anti-aliasing property of the differentiable ray tracer compared to STRAL.
Both approaches use a small number of rays (6000) in contrast to a reference,
denoted label, with a large number of rays (1,500,000). Our image is visibly better
resolveddue to the differentiable soft-binning scheme, leading to a lower L1 loss (↓,
lower is better). b Quantitative comparison of the image quality of our proposed
differentiable ray tracer and STRAL measured with the L1 loss (↓, lower is better).
Solid line depicts average values, transparent band the minimum and maximum
values, out of 54 scenarios.
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section in the Supplementary), we achieve a better irradiance predic-
tion than the deflectometry procedure.

Sensitivity analysis on deflectometry-initialized simulations
We have additionally studied the sensitivity of the proposed differ-
entiable ray tracer’s predictive performance with respect to variations
of the non-learnable parameters, i.e., a heliostat’s distance to the
receiver, the position of the light source, as well as the number of
images used in the learning process. The results are summarized in
Fig. 4. For that purpose, we generate synthetic ground truths by
simulating the heliostat geometry obtained from deflectometry mea-
surements in various configurations that are all distinct from those
used for training. The underlying assumption is that thismeasurement
captures the true heliostat deformations to a sufficiently accurate
degree. The heliostats in Jülich are astigmatically corrected and
aligned with the target78. In this parameter study, we do not simulate
this, since on the one hand it reduces the varianceof the solution space
and thusmakes it easier to predict focal spots and on the other hand it
is not implemented in all power plants. In subsequent simulations, we
initialize virtual heliostats with the deflectometric deformations and
compute the corresponding irradiance profiles while varying the non-
trainable parameters.

The left panel (a) shows how the differentiable ray tracing
approach performs on the shortest and the longest day of the year, as
well as at equinox. These are the extremes of the sun’s position over
the course of the year and therefore pose particular challenges. Yet,
when trained on 16 images, the prediction error of our differentiable
ray tracer is roughly an order of magnitude lower compared to simu-
lations with an idealized planar heliostat. Notably, our proposed
approach is also able to nearly perfectly recreate the simulated
deflectometry irradiance profiles.

In the upper right panel (b), the variation of distance to the
receiver is depicted. The geometry obtained from deflectometry is
used in simulations and compared against the prediction of the

differentiable ray tracer trained on two images. As can be seen, the
waviness of the focal spot decreases as the distance increases, result-
ing in blurred images. This phenomenon occurs because the focal spot
is a convolution of the solar intensity distribution function and the
mirror surface profile. At greater distances, the solar intensity function
becomes increasingly dominant, resulting in a nearly circular focal
spot as the distance approaches infinity. This also makes it more dif-
ficult to predict the surface. As will be shown in the following section,
this is also the cause of failure for surface reconstruction at distances
of over 200 m. Nevertheless, the differentiable ray tracer accurately
captures the characteristic variations of the focal spots, largely inde-
pendent of the distance. The differences in L1 loss are negligible and
consistently less than 6 × 10−2 using four or more images. The plot in
panel (c) depicts the predictive performance while varying the helio-
stat distance to the target and the number of training images. Our
method is able to reconstruct the focal spots with high precision with
as few as two training images. A consistent leveled performance is
achieved with four images. In all cases, the averaged test loss has been
calculated on five held-out images not used during training. In sum-
mary, depending on the desired metrology resolution of the plant
operator, roughly 4 images per heliostat would need to be captured.
This would result in full-field resolution, with slight accuracy increases
when using 8 images per heliostat.

Heliostat surface reconstruction with learning NURBS
Thehigh predictive performanceof the differentiable ray tracer and its
reliance on physical principles suggests that the learning NURBS sur-
facemodel also results in a physicallymeaningful set of control points.
Our experiments indicate that under favorable conditions, i.e., the
heliostat being close to the receiver and reconstructed from multiple
images, this holds and the real surface may be obtained (see
Figs. 1a, 5d). However, due to the significant ill-posedness of the pro-
blem, e.g., overlap of the focal spots of the canted facets, or blurring
with increasing receiver distance, it is highly likely that the supervised

Fig. 4 | Hyper-parameter study for the heliostat array. a Comparison of the
irradiance profile on three days of the year, i.e., the shortest, longest and at equi-
nox. The ground truth is a simulation based on a deflectometry measured surface,
contrasted with a perfectly planar heliostat and the proposed differentiable ray
tracer trained on 16 images. Ourmethod predicts complex structures accurately on
a fine-grained level. b Simulated and inferred irradiance profiles at different dis-
tances between heliostat and calibration target. c Quantitative assessment of

prediction quality for varying distances and number of training images. Compar-
isons in all subfigures are made with test images distinct from the training set. To
facilitate an enhanced visual comparison of the focal spot details, the images were
cropped. The depicted loss corresponds to the image of the complete calibration
target. The numerical values can be taken from the Hyperparameter section in the
Supplementary.
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regression problem does not have a unique, physically meaningful
minimum.

We once again consider the heliostat at 25m north of the receiver
and its deflectometry-measured deviation from the ideal planar sur-
face. During the experimental preparation, we have purposely created
a bumpdeformationby tightening the adjustment screws at the center
of all four facets. This way, we can qualitatively judge surface recon-
structions already at first glance. In doing so, we also ensured that the
mean deviation is approximately 2 mm from a planar surface, which is
in the range of typical heliostat surface defects.

The ground truth surface is depicted in Fig. 5a at the top. Below
are two columns with reconstructions learned by our NURBS surface
model. Reconstructions in the left column are obtained by varying the
number of training data, while for the right column, the distance of the
heliostat to the tower was altered. The results are summarized quan-
titatively in Fig. 5b. LearningNURBS can accurately infer the surface up
to a heliostat-receiver distance of 100 m. Beyond that, the recon-
struction quality quickly degrades. Interestingly, the precision of the
irradiance reconstruction (see Fig. 4c) is barely affected. This is a
consequence of the ill-posedness of the problem.

This metrology approach derives precise heliostat surface defor-
mations from focal spots only. Even at heliostat-receiver distances of
several dozen meters, the reconstructed surface model achieves sub-
millimeter precision. Experiments with simpler hypothetical geome-
tries reveal that the reconstructive performance is largely constrained
by the canting ambiguity. Heliostats without canting ormeasurements
taken outside of the focal plane raise the surface reconstruction ability

drastically. So far, wewerenot successful in bi-uniquely reconstructing
surfaces directly from calibration imagery. We assume that we can
alleviate this problem by (a) obtaining more data and (b) carefully
tuning the learning process. Yet, we want to draw the attention to the
fact that a precise surface reconstruction is not essential to the main
objective of irradiance profile prediction.

The above experiments have additionally been repeated for dif-
ferent learning NURBS configurations. We find that for our heliostat
type, 7 × 7 learningNURBS per facet with a cubic spline degree of k = 3
results in most optimal reconstructions. In contrast to that, 11 × 11
learning NURBS with a square spline degree of k = 2 are particularly
well suited for flux density prediction. These results are summarized in
Fig. 5c. These seemingly contradictory findings can be attributed to
sweet spots in the number of trainable parameters. The smaller 7 × 7
NURBS configuration have a higher interlocking enabling the recon-
struction of fine-grained surface features without significantly
increasing the ill-posedness. However, the reduction in degrees of
freedom compared to the 11 × 11 NURBS’ higher number of para-
meters directly affects the predictive performance of focal spot ima-
ges. A higher parameter count leads the optimization to better, but
aphysical minima.

Discussion
We have showcased the enormous potential of differentiable ray tra-
cing for in-situmetrology and the optimization of CSPs. In the forward
direction, our formulation provides a tangible improvement over the
state-of-the-art in classical ray tracing in termsof required calculations.

Fig. 5 | Surface reconstruction capabilities andNURBS study. aHeliostat surface
reconstructions from focal spot images depending on their count (left column) and
the distance to the receiver (right column). The imaged centered at the top shows
the ground truth. The visualizations showdeviations inmradof the surface normals
from the ideal planar surface. b Quantitative assessment of the reconstruction
quality. For distances of up to 100 m, learning NURBS surfaces can be

reconstructed accurately with four or more training images. c Surface recon-
struction and irradiance quality with respect to the learning NURBS parameter
count, polynomial degree, as well as the distance to the receiver. 11 × 11 learning
NURBS excel at predicting irradiances, while 7 × 7 NURBS result in more precise
surface reconstructions.

Article https://doi.org/10.1038/s41467-024-51019-z

Nature Communications |         (2024) 15:6997 7



In the backward direction, the differentiable ray tracer enables learn-
ing of physical characteristics of a modeled system. We demonstrated
this by using images from the fully automated heliostat calibration to
infer heliostat parameters that are otherwise difficult to measure. The
derived information can then be utilized in classical ray-tracing simu-
lations for automatic control purposes. The results from a field test at
an actual CSP confirm that differentiable ray tracing yields high-quality
irradiance predictions in practice. In-silico experiments indicate that
the approach generalizes to entire heliostat fields with tens to hun-
dreds of thousands of heliostats. Compared to deflectometry, we do
not require difficult-to-meet measurement condition, simplifying
operational procedures. The presented approach can be integrated
into existing operating procedures with low to no additional cost
through reuse of the current calibration infrastructure. Moreover,
even on regular off-the-shelf computers, our approach is computa-
tionally fast enough to predict irradiancefluxes aheadof time.Wehave
additionally sketched out our method’s applicability beyond the spe-
cific use cases of surface reconstruction and irradiance prediction.
Next to the discussed optimization of alignments for calibration, dif-
ferentiable ray tracers at solar towers may also be used to improve
canting, focus, shape or positioning of the heliostat, allowing for
completely new applications, reaching from heliostat to field design.
Fromamachine learningperspective, one of themajor strengths of the
proposed method is the combination of a physical simulation model
with real-world data. On the one hand, the resulting model requires
only a small number of trainable parameters, directly mapping to
reality with sufficient detail, i.e., the learning NURBS. On the other
hand, the amount of data necessary to train them is small due to the
model being informed by the underlying physical principles. As a
result, we can observe strong predictive performance of differentiable
ray tracing even in ill-posed and underdetermined regimes. The
approach can be easily extended to other use cases due to its flex-
ibility. The physically motivated model combined with automatic dif-
ferentiation techniques enables the easy integration of different
geometries, e.g., heliostat archetypes, or diverse regularization tech-
niques. Such adaptations permit the use of ourmethod at a wide range
of CSPs, possibly with different data quality and availability.

The currently employed physical model captures only a subset of
the real-world effects. Some of the important, yet missing, factors are
heliostat deformations, e.g., under gravitational load79, or environ-
mental influences like (partial) cloud12 or fog cover, can affect irra-
diance prediction during data collection over the year. Additionally,
soiling and air pollution may also negatively impact irradiance pre-
dictions and surface reconstruction. If such conditions were to be
consistentlymeasured, they could be accounted for. Tomitigate these
disturbances, it is necessary to expand the dataset to maintain pre-
dictive accuracy. The extent to which this affects both the dataset and
the accuracy requires further investigation in future research. In our
experimental setup, omitting these complexities is justified, due to
clear sky weather conditions. In principle, these should be incorpo-
rated into the physical modeling pipeline whenever feasible. Practi-
cally, this is inherently difficult due to the high cost and complexity of
the physical modeling approaches. For example, external conditions,
such as wind, may not be entirely known or change over time. A pos-
sible alternative to this physically-informeddesignprocess is extended
data-driven modeling. The differentiable ray tracing formulation
facilitates the inclusion of other machine learning techniques. For
example, a neural network could be used to predict the localized
external conditions, e.g., wind gusts. Due to the differentiable ray
tracer formulation, it is possible to train the physical and data-driven
models simultaneously with gradient-based optimization. The degree
to which both are leveraged can be tuned as part of the power plant
engineering process.

This metrology bridges the gap between data-driven modeling
and physical modeling in the field of CSPs. Thus, we firmly believe we

have made a significant contribution in achieving one of the CSP
metrology goals of the Roadmap to Advance Heliostat Technologies for
Concentrating Solar-Thermal Power Plants11. Beyond CSPs, our pro-
posed method may be an inspiration for other fields, such as the
automotive or aircraft industry and non-line-of-sight imaging. Train-
able, data-driven models that are not black boxes, but founded on
physical principles can be robust, interpretable tools for improving
real-world processes.

Methods
Differentiable ray tracing formalism
This section describes the key equations for our proposed differenti-
able ray tracer in depth. The main physical quantity is the radiance L,
whichdescribes the radiation field in terms of power per area and solid
angle (W/ M2sr). It depends on the position x! and the direction t

!
. In

non-absorbing media, the radiance is constant along any line:

L x!, t
!� �

= L x!+ λ t
!

, t
!� �

8 λ: ð3Þ

parameterized by the scalar λ. The radiance field L⊙ created by the sun
and which is visible in direction t

!
� may be well approximated by a

Gaussian distribution of the form

L� / e
� arccos t

!
� t
!

�
θ�

� �2

,
ð4Þ

with an aperture angle of θ⊙ = 0.00025∘. In order to obtain the irra-
diance E x!

� �
, the power per surface area at a surface position x! is

obtained by integrationover the solid angleΩ. This includes the cosine
factor that is well known from, e.g., the rendering equation80,81:

E x!
� �

=
Z
Ω
L x!, t

!
r

� �
n!c � t

!
dΩ, ð5Þ

with n!c the normal vector of the calibration target and t
!

the con-
sidered directional unit vector of the ray after the reflection at the
heliostat. For a given point on the target, this integral can be evaluated
in the following way. For each direction on the unit hemisphere, the
corresponding intersection h

!
with the heliostat is calculated. Based

on the normal vector, the reflection towards the sun is calculated with
the reflection matrix (see Equation (6)). Depending on the system’s
geometry, a large fraction of the evaluated direction vectors may
either not intersect with the heliostat surface or will lead to directions
with negligible solar radiance.We therefore transform the integral into
a surface integral across the heliostat surface Ah,

E x!
� �

=4π
Z
A
L� t

!� �
n!r � t

!
r

n!h � t
!

r

x!� h
!��� ������ ���2

dAh, ð6Þ

where t
!

is the unit vector pointing from the target point x! to the

heliostat intersection point h
!

. We will call the directional vector, which

is obtained by reflecting t
!

on the surface, t
!

r . On curved heliostats, the

evaluation of t
!

r requires the heliostat normal n!h = n1,n2,n3

� 	t at

position h
!

and the construction of the reflection matrix Mð h!Þ as fol-
lows:

M h
!� �

=

1� 2n2
1 �2n1n2 �2n1n3

�2n1n2 1� 2n2
2 �2n2n3

�2n1n3 �2n2n3 1� 2n2
3

0
B@

1
CA: ð7Þ

Then, the reflected direction is t
!

=M � t
!

r . By introducing
the Dirac δ-function, we can formalize the integration over all
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directions t
!

r :

E x!
� �

= c
Z
Ah

Z
Ω0
L� t

!� �
δ x!� x!t

� �
dΩ0dAh, ð8Þ

where x!t is the intersection of an incident ray from the sun with the
direction t

!
r on the target plane after reflection. Its evaluation is

complex, as it not only depends on t
!

, but also on the heliostat point
h
!

, the normal vector n! and the position and orientation of the
heliostat. Due to the largedistance of theheliostat to the target and the
small change of normal of the heliostat, the other terms in the integral
canbeconsidered constant and collapsedwith theother prefactor into
a coefficient c. The transformation leading to the double-integral
seems at first like a mathematical trick, but has a simple physical
interpretation. In the initial formulation, rays have been traced for all
directions from the target surface to the sun. Now, for all positions h

!

on the heliostat surface, we cast rays in all possible directions towards
the sun t

!
r and evaluate each ray’s contribution to the surface

irradiance. The vast majority of directions t
!

will still lead to a
negligible irradiance contribution. Therefore, we evaluate the integral
over incident direction through importance sampling65. All rays are
sampled from a directional distribution proportional to L⊙. In order to
evaluate the surface integral, we discretize the heliostat with a
rectangular grid. So far, the presented ray tracing scheme is well-
known and commonly used in other state-of-the-art ray tracers47–54.
The crucial step to achieve differentiability is the discretization of the
target surface. For this, we interpret the δ function as a set of
coefficients, which is non-zero for grid points in the vicinity of x!t . We
relax this hard binning scheme and propose a soft differentiable
binning scheme instead. The idea illustrated in Fig. 2a. If x!ij is the grid
point to the lower left of the intersection point x!t , the ray is
distributed to the four nearest neighbors:

γi, j = 1� Δx


 �
1� Δy

� �
γi + 1, j =Δx 1� Δy

� �
γi, j + 1 = 1� Δx


 �
Δy

γi+ 1, j + 1 =ΔxΔy

where Δx and Δy measure the distance of x!t to x!ij in units of the grid
constant. With this formulation, each ray carries an irradiance con-
tribution that is differentiable with respect to the ray’s direction. By
introducing these coefficients, we conclude the final differentiable ray
tracing formulation in Eq. (2).

Surface model
In modeling the surfaces, we have aimed to replicate the conditions of
the CSP in Jülich as close as possible to ease comparison with the field
tests. Each heliostat has two angular degrees of freedom in its move-
ment and consists out of four canted facets, i.e., nearly planar square
surfaces arranged in a twoby twogrid. For thepurposeof thiswork,we
assume the canting angles to be fixed and known.

The heliostat’s surface, or, more precisely, its local normal vector
n!h, is thedecisive element for thedirection inwhich rays are reflected.
Due to the large distances between heliostat and target, the corre-
sponding irradiance E x!

� �
is highly sensitive to changes of n!h.We are

thereforemodeling each facet initially as ideally planar. The placement
of a facet in the heliostat’s coordinate system is chosen such that given
a solar position, the line connecting the sun and the heliostat is
reflected exactly into the target.

Due to the physicality, and therefore, mechanical stiffness, of the
reflective surface, it is justified to assume that curvature of the helio-
stat facets is marginal. Our smooth learning NURBS models therefore
starts an optimization procedure with its control points set in a

singular plane. The NURBS surface is composed of different B-splines.
Each point on theNURBS surface is thereby uniquely definedby the set
of control points P, control point weights W, knot vectors U and V as
follows82:

S= f P,W ,U,Vð Þ: ð9Þ

A surface is parametrized by the variables u and v, with 0≤u, v≤1.
For a given point u,vð Þ, the corresponding surface point in three-
dimensional space is obtained as follows (also compare Fig. 2b):

S u,vð Þ=
Pn

i=0

Pm
j =0 N

p
i uð ÞNq

j vð ÞWijPijPn
i=0

Pm
j =0 N

p
i uð ÞNq

j vð ÞWij
: ð10Þ

In that, we assume a regular square grid of control points indexed
by i and j. The polynomials Np

i are defined recursively:

Np
i uð Þ= u� ui

ui+p � ui
Np�1

i uð Þ

+
ui +p+ 1 � u

ui +p+ 1 � ui+ 1
Np�1

i+ 1 uð Þ

N0
i uð Þ= 1 if ui ≤ u< ui+ 1

0 otherwise:

� ð11Þ

Ni,Nj are the B-spline basis functions in the representation ofCurry and
Schoenberg83. The degree of the polynomial can be chosen freely and
determines howmany nodes are affected by another node’s variation.
The smaller the degree, the more local the modification is. For a
heliostat facet, a higher degree can therefore be interpreted as a
regularizer counteracting strong local curvature. High learning NURBS
degrees have proven useful in reconstructing surfaces from a small
numbers of observed images. Tangential vectors of a learning NURBS
surface can be obtained by computing the derivative with respect to u
and v and corresponding normal vectors as their cross product.

Within the ray tracing environment, the initial NURBS surface is
chosen so that the control points P are evenly distributed over the
heliostat’s surface. This is schematically visualized in Fig. 2b by green
points. For the ray tracing process, any number of pointsM is sampled
along the surface (blue points), subject to P ≪ M. For several applica-
tions, we found it sufficient to set all weights to unity, effectively
rendering our surface a conventional B-splines, and to keep the in-
plane positions of the control points fixed.

Loss formulation
Our loss function is defined in the following way:

L=αrawLraw +αalignLalign ð12Þ

where

Lraw =
1

ni � nj

X
i, j

Eij � Êij

��� ���praw
, ð13Þ

with Eij the irradiance of a ground truth image and Êij the irradiance of
an image obtained from ray tracing a learned heliostat, each at pixel
position i,jð Þ of an image of size ni,nj

� �
.

Lalign =
1

∣ z!∣

X
i

∣zi � ẑi∣
palign , ð14Þ

with z! and
^
z! giving the ground truth and learned heliostat’s align-

ment, respectively.
Focal spot images are normalizedwith regard to the target plane’s

area per pixel to keep the loss independent of the resolution of our
image. For our predictions on real data, we used αalign = αraw = 1 for
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prealignment and αalign = 0 and αraw = 1 for surface reconstruction.
palign = praw = 1 in both cases.

We additionally incorporated weight decay and other penalty
terms, e.g., for missing the calibration target area. However, as these
were not essential for achieving the results presented herein, their
detailed description is omitted. These terms remain available in the
Supplementary section Full Loss Formulation for potential application
in other contexts.

Data availability
Data for the results presented in this study is available at Zenodo
(https://doi.org/10.5281/zenodo.11047453).

Code availability
The code for results presented in this study is available at Zenodo
(https://doi.org/10.5281/zenodo.11047453). Subsequent versions will
be shared at https://github.com/ARTIST-Association/ARTIST.
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