KIT | KIT-Bibliothek | Impressum | Datenschutz

Enhancing crack detection in railway tracks through AI-optimized ultrasonic guided wave modes

Liu, Jianjun; Luo, Huan; Hu, Han 1; Li, Jian
1 Institut für Technische Mechanik (ITM), Karlsruher Institut für Technologie (KIT)

Abstract:

The utilization of ultrasonic guided wave technology for detecting cracks in railway tracks involves analyzing echo signals produced by the interaction of cracks with guided wave modes to achieve precise crack localization, which is extremely important in a real-time railway crack robotic detection system. Addressing the challenge of selecting the optimal detection mode for cracks in various regions of railway tracks, this paper presents a method for optimal crack detection mode selection. This method is based on the sensitivity of guided wave modes to cracks. By examining the frequency dispersion characteristics and mode shapes of guided wave modes, we establish indicators for crack zone energy and crack reflection intensity. Our focus is on the railhead of the railway track, selecting guided wave modes characterized by specific cracks for detection purposes. Experimental findings validate the accuracy of our proposed mode selection method in detecting cracks in railway tracks. This research not only enhances crack detection but also lays the groundwork for exploring advanced detection and localization techniques for cracks in railway tracks.


Verlagsausgabe §
DOI: 10.5445/IR/1000173964
Veröffentlicht am 04.09.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Technische Mechanik (ITM)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 09.2024
Sprache Englisch
Identifikator ISSN: 2667-3797
KITopen-ID: 1000173964
Erschienen in Biomimetic Intelligence and Robotics
Verlag Elsevier B.V.
Band 4
Heft 3
Seiten Art.-Nr.: 100175
Vorab online veröffentlicht am 03.08.2024
Nachgewiesen in Scopus
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page