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Efficient modeling and simulation of uncertainties in computational fluid dynamics (CFD) remains 
a crucial challenge. In this paper, we present the first stochastic Galerkin (SG) lattice Boltzmann 
method (LBM) built upon the generalized polynomial chaos (gPC). The proposed method offers 
an efficient and accurate approach that depicts the propagation of uncertainties in stochastic 
incompressible flows. Formal analysis shows that the SG LBM preserves the correct Chapman–

Enskog asymptotics and recovers the corresponding macroscopic fluid equations. Numerical 
experiments, including the Taylor–Green vortex flow, lid-driven cavity flow, and isentropic vortex 
convection, are presented to validate the solution algorithm. The results demonstrate that the 
SG LBM achieves the expected spectral convergence and the computational cost is significantly 
reduced compared to the sampling-based non-intrusive approaches, e.g., the routinely used Monte 
Carlo method. We obtain a speedup factor of 5.72 compared to Monte Carlo sampling in a 
randomized two-dimensional Taylor–Green vortex flow test case. By leveraging the accuracy and 
flexibility of LBM and the efficiency of gPC-based SG, the proposed SG LBM provides a powerful 
framework for uncertainty quantification in CFD practice.

1. Introduction

Uncertainty quantification (UQ) focuses among others on characterizing and analyzing uncertainties present in mathematical mod-

els and simulations. It plays a crucial role in providing a comprehensive understanding of the reliability and robustness of predictions 
and decisions based on these models. Uncertainties can be classified into two main categories: aleatory and epistemic uncertainties. 
Aleatory uncertainties arise from inherent variability and randomness in the system. For instance, unpredictable turbulence patterns 
in the atmosphere introduce aleatory uncertainty when simulating airflow over an aircraft wing [1]. Epistemic uncertainties, on the 
other hand, result from a lack of knowledge or understanding about certain parameters or processes. In the modeling of combustion 
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within an engine, uncertainties in precise chemical reaction rates introduce epistemic uncertainty [2]. The goal of UQ is to quantify 
the impact of these uncertainties on the output of the model and to provide measures of confidence or probability associated with 
the predictions [3,4].

In the field of computational fluid dynamics (CFD), UQ is receiving increasing attention. CFD simulations encompass various 
sources of uncertainty, including model parameters, initial conditions, geometry, and boundary conditions [5]. Depending on the 
coupling approach with CFD, UQ methods can be classified as intrusive or non-intrusive. The non-intrusive method offers a straight-

forward approach to investigating the forward propagation of uncertainty. Monte Carlo simulation (MCS) is a simple to realize 
non-intrusive method, where the uncertain parameters are assumed to follow a specific probability distribution, and samples are 
drawn from the corresponding random space. The deterministic model is then executed using these different samples, and uncertain-

ties are estimated through post-processing. In UQ, MCS results are often regarded as a benchmark for comparison [6]. Although MCS 
is easy to implement in the deterministic model, its convergence rate remains limited. To address this limitation, alternative methods 
such as quasi Monte Carlo [7] and multi-level Monte Carlo [8] have been proposed. These methods differ in sample selection and the 
weights used in the post-processing stage.

Generalized polynomial chaos (gPC) is a widely used UQ method that involves projecting the random solution onto a basis of 
orthogonal polynomials with respect to the probability distribution of the input random variables [9]. When integrating gPC with the 
CFD method, two approaches can be adopted. The first approach, similar to MCS [10–13], is stochastic collocation (SC)-based gPC, 
which utilizes quadrature nodes as samples, performs deterministic model evaluations, and employs weights in the post-processing 
stage [14–16]. While SC-based gPC improves efficiency compared to MCS, it still faces the challenge of the curse of dimensionality, 
i.e., the computational cost to reach a certain accuracy exponentially increases with respect to the number of uncertain parameters. 
In contrast, the stochastic Galerkin (SG)-based gPC method is an intrusive UQ technique that modifies the original numerical model 
to achieve spectral accuracy [17–21]. Compared to SC-based gPC, SG-based gPC provides a more efficient approximation of uncertain 
solutions as the residual of the governing equations is orthogonal to the linear space spanned by the polynomial chaos, and the spectral 
convergence can be achieved provided that the solution depends smoothly on the random parameters [9]. Successful applications 
in various physical and engineering problems have been demonstrated [22,23]. Moreover, advanced method variants have been 
proposed, such as the hybrid particle-SG scheme that preserves the main physical properties and the positivity of the reconstructed 
distribution function, which are often lost in intrusive approaches [24].

The lattice Boltzmann method (LBM) is an efficient mesoscopic CFD method widely used for approximating weakly compressible 
and incompressible Navier–Stokes equations (NSE) [25–28]. Compared to direct NSE solvers, LBM offers several advantages, including 
its simplicity in modeling particle interactions rather than solving complex NSE, computational efficiency, and the ability to efficiently 
handle complex fluid flow phenomena and boundary conditions [29–33]. It is particularly well-suited for simulating flows with 
intricate geometries, such as those around obstacles [34] or through porous media [35]. Moreover, LBM can effectively leverage 
parallel computing, enabling the saturation of modern heterogeneous high-performance computing (HPC) machines [36,37]. Although 
new efficient UQ methods have emerged, UQ still imposes high computational cost requirements. Therefore, it is essential to select 
a highly efficient CFD solver for studying uncertainty in CFD cases. In this regard, we have chosen LBM due to its remarkable 
efficiency. To realize this potential, we utilize the platform-agnostic LBM open source framework OpenLB [38,39]. Among others, 
OpenLB has been used for efficient simulations of turbulent fluid flows [29,40], advection–diffusion processes [41–43] up to ternary 
fluid mixture flows [39,44], coupled radiative transfer [45], volume-averaged fluid flow [46], fluid–structure interaction [47,48], 
and indoor thermal comfort [49]. Thus, to feasibly obtain the consistent benchmark UQ data, we implement MCS within the OpenLB 
framework as the deterministic kernel (see also [42,50]).

Efforts have been made in building intrusive and non-intrusive methods on top of LBM to investigate stochastic flow problems [51,

52]. As the LBM is an established CFD solver, and has the advantage of efficiency, it is mostly used in a non-intrusive approach to, 
for example in combination with MCS. To overcome the high computational cost of MCS, many alternative approaches have been 
developed so far, for example using stochastic quadrature points with individual weights to improve the convergence rate [53]. Other 
UQ methods to substitute the MCS have been proposed for example by Jacob et al. [54] using a c-APK method to study the uncertainty 
in the urban flow simulation. Wang et al. [55] combined SC-based gPC with LBM to investigate stochastic porous media problems. For 
the intrusive approach, which has been marginally explored in the context of LBM. For example Fu et al. [51] introduce the SG-based 
gPC to the finite difference LBM to investigate incompressible viscous flows. Zhao et al. [52] have proposed an LBM approach for 
the stochastic convection-diffusion equation, employing SG-based gPC on the macroscopic target equations. While previous works 
demonstrate that LBM can serve as an accurate and efficient CFD solver for stochastic CFD problems, research on an intrusive UQ 
method for the standard lattice Boltzmann equation remains limited.

In this paper, we extend the LBM by directly implementing the SG method. The key idea is to decompose LBM into polynomials 
and apply an SG projection to transform the iteration of the velocity distribution function into the iteration of the Fourier coefficients 
associated with each parameter in LBM. However, there are certain challenges in implementing the SG method in LBM. For instance, 
the equilibrium distribution function may involve different polynomials. Here, we calculate the product of multiple polynomials at 
the quadrature points and then derive the Fourier coefficients as a first possible approach. Another consideration is related to the 
collision term in the SG LBM, which can be solved using either a constant or stochastic relaxation time, depending on the specific 
requirements of the problem. If we consider viscosity as stochastic, the collision term will inherently become stochastic as well. Given 
that dimensionless numbers are typically constrained in incompressible laminar scenarios, considering viscosity as stochastic is viable 
when conducting UQ studies. Therefore, in our study, we uniformly treat the collision term as stochastic. The combination of these 
two highly efficient methods may offer a promising approach for efficient UQ CFD applications. For this purpose, the present work 
2

provides a first proof-of-concept via deriving an intrusive SG LBM and comparing it to non-intrusive MC LBM for simulating viscous 
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incompressible fluid flow with stochastic initial and boundary conditions. For the latter, we use OpenLB as a deterministic kernel to 
efficiently produce the MCS reference results and numerically approve the spectral convergence of the SG LBM and show its increased 
efficiency compared to MC LBM.

This paper is organized as follows: Section 2 presents the incompressible NSE with uncertainty. Section 3 provides a brief introduc-

tion to the LBM. Section 4 presents the derivation of applying the SG method on LBM. The numerical results of four test cases, namely 
the Taylor-Green vortex flow with one and four dimension uncertainty, lid-driven cavity flow, and isentropic vortex convection, are 
presented in Section 5. Finally, conclusions are drawn in Section 6.

2. Incompressible Navier-Stokes equation with uncertainty

The incompressible NSE is represented as follows:

𝜕𝑡𝒖+ (𝒖 ⋅𝛁)𝒖− 𝜈𝛁2𝒖 = −1
𝜌
𝛁𝑝+ 𝒇 , (1)

𝛁 ⋅ 𝒖 = 0. (2)

Here, 𝜌 denotes fluid density, 𝒖 represents the velocity vector, 𝑝 stands for pressure, 𝜈 is the dynamic viscosity, and 𝒇 represents 
an external force. In our study, the external force is ignored.

The incompressible NSE with uncertainty models fluid flow while considering uncertain parameters. This extension introduces 
stochastic terms into the deterministic incompressible NSE to account for the variability or lack of precise knowledge in certain 
parameters.

Hence, we employ the LBM as the discretization method to study the incompressible NSE with uncertainty, which is expressed as:

𝜕𝑡𝒖(𝒁) + (𝒖(𝒁) ⋅𝛁)𝒖(𝒁) − 𝜈(𝒁)𝛁2𝒖(𝒁) = −1
𝜌
𝛁𝑝(𝒁), (3)

𝛁 ⋅ 𝒖(𝒁) = 0, (4)

where, the random vector 𝒁 = (𝑍1, ..., 𝑍𝑑 ) ∈ ℝ𝑑𝑍 defined on a probability space (Ω,  , ℙ) and taking values in ℝ𝑛, characterizes 
the uncertainties of the system. In our paper, both one-dimensional and multi-dimensional uncertainty are studied, we consider two 
different cases: the velocity 𝒖 or the viscosity 𝜈, each treated as a separate uncertainty, following the uniform distribution. These can 
be represented by 𝒖(𝒁) and 𝜈(𝒁). Due to the fact that we consider gPC expansions in the methodology derived below, the validity 
of our derivations might be restricted to specific probability distributions  which are summarized for example in [9, Table 5.1].

3. Lattice Boltzmann methods

Forming the centerpiece of any deterministic LBM, the lattice Boltzmann equation (LBE) reads

𝑓𝑖
(
𝒙+ 𝒄𝑖Δ𝑡, 𝑡+Δ𝑡

)
− 𝑓𝑖 (𝒙, 𝑡) = Ω𝑖(𝒇 (𝒙, 𝑡)), (5)

where 𝑖 = 0, 1, … , 𝑞 − 1, the population vector 𝒇 ∈ ℝ𝑞 represents the discretized particle distribution function, 𝒄𝑖 ∈ ℝ𝑑 denotes the 
particle speed in the 𝑖th velocity direction, and 𝛀(𝒇 ) ∈ ℝ𝑞 represents the collision term. Here, the latter is simplified using the 
Bhatnagar–Gross–Krook (BGK) [56] model

Ω𝑖(𝒇 (𝒙, 𝑡)) = −1
𝜏

(
𝑓𝑖 (𝒙, 𝑡) − 𝑓

eq
𝑖 (𝒙, 𝑡)

)
. (6)

In (6), 𝜏 > 0.5 denotes the relaxation time, while 𝑓 eq
𝑖 represents the equilibrium distribution function given by

𝑓
eq
𝑖 =𝑤𝑖𝜌

(
1 +

𝒖 ⋅ 𝒄𝑖
𝑐2𝑠

+
(
𝒖 ⋅ 𝒄𝑖

)2
2𝑐4𝑠

− 𝒖 ⋅ 𝒖
2𝑐2𝑠

)
, (7)

where 𝑤𝑖 is the weight of each discrete velocity, 𝒖 denotes the velocity of the particle at position 𝒙 and time 𝑡, and 𝑐𝑠 represents the 
sound speed. The discrete velocity models used in the LBM are characterized by the spatial dimension 𝑑 and the number of discrete 
velocities 𝑞. Commonly used discrete velocity sets in the form of 𝐷𝑑𝑄𝑞 are 𝐷1𝑄3, 𝐷2𝑄9, 𝐷3𝑄19. The present study is based on the 
𝐷2𝑄9 velocity discrete model, where the nine lattice velocities are expressed as

𝒄𝑖 =
⎧⎪⎨⎪⎩
(0,0) if 𝑖 = 0,
(±1,0), (0,±1) if 𝑖 = 1,2,… ,4,
(±1,±1) if 𝑖 = 5,6,… ,8,

(8)

with corresponding weights

𝑤𝑖 =𝑤
⎧⎪⎨⎪

4
9 if 𝑖 = 0,
1
9 if 𝑖 = 1,2,… ,4,
1

(9)
3

⎩ 36 if 𝑖 = 5,6,… ,8,
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where 𝑤 is the classical weight function in LBM [27]. Based on the above, the flow field is discretized into a square lattice through 
the space-time variables 𝒙 and 𝑡. Finally, the density 𝜌 and momentum density 𝜌𝒖 approximating the macroscopic unknowns, can be 
calculated as moments of 𝑓𝑖 via

𝜌 (𝒙, 𝑡) =
𝑞−1∑
𝑖=0
𝑓𝑖 (𝒙, 𝑡) , (10)

𝜌𝒖 (𝒙, 𝑡) =
𝑞−1∑
𝑖=0

𝒄𝑖𝑓𝑖 (𝒙, 𝑡) . (11)

Resulting in a perfectly parallelizable numerical scheme, the lattice Boltzmann equation can be decomposed into two distinct steps, 
reading

collision: 𝑓⋆𝑖 (𝒙, 𝑡) = 𝑓𝑖 (𝒙, 𝑡) −
Δ𝑡
𝜏

(
𝑓𝑖 (𝒙, 𝑡) − 𝑓

eq
𝑖 (𝒙, 𝑡)

)
, (12)

streaming: 𝑓𝑖
(
𝒙+ 𝒄𝑖Δ𝑡, 𝑡+Δ𝑡

)
= 𝑓⋆𝑖 (𝒙, 𝑡) , (13)

respectively, where the upper index ⋅⋆ denotes post-collision variables. In summary, from a kinetic viewpoint, the LBM discretizes 
velocity, space, and time of the continuous BGK Boltzmann equation. The space-time advancement is achieved through successive 
evolution of collision and streaming processes, allowing the simulation of fluid flow phenomena with high computational efficiency 
and mostly second order consistency in space with respect to the incompressible NSE [27,57].

4. Stochastic Galerkin lattice Boltzmann method

4.1. Generalized polynomial expansion of the lattice Boltzmann equation

The generalized polynomial chaos (gPC) method is a numerical technique widely used for uncertainty quantification in complex 
systems. The gPC method is based on approximating the system’s response by expanding it as a polynomial series using orthogo-

nal polynomials. In this study, we consider the model response 𝑔 as a function of a random vector 𝒁 and construct a surrogate 
representation of 𝑔 using a truncated series of orthogonal basis functions Φ𝛼 reading

𝑔(𝒁) ≈ 𝑔𝑁 (𝒁) =
𝑁∑
𝛼=0

𝑔𝛼Φ𝛼 (𝒁) . (14)

In (14), 𝑔𝛼 represents the 𝛼th coefficient of the polynomial expansion, which can be determined through the quadrature rule

𝑔𝛼 =
1
𝛾𝛼
𝐸
[
𝑔𝑁 (𝒁)Φ𝛼 (𝒁)

]
= 1
𝛾𝛼 ∫ 𝑔𝑁 (𝒁)Φ𝛼 (𝒁)ℎ (𝒁) d𝒁, (15)

where 𝛾𝛼 = 𝐸
[
Φ2
𝛼

]
are the normalization factors, ℎ (𝒁) is the probability density function, the measure d𝒁 is given by d𝒁 =

d𝑍1⋯ d𝑍𝑛.
For a discrete distribution,

𝑔𝛼 =
1
𝛾𝛼
𝐸
[
𝑔𝑁 (𝒁)Φ𝛼 (𝒁)

]
≈ 1
𝛾𝛼

𝑀∑
𝑗=0

𝑎𝑗𝑔
(
𝑸𝑗

)
Φ𝛼

(
𝑸𝑗

)
, (16)

where 𝑎𝑗 are weights, and 𝑀 is the total number of quadrature points, i.e. the size of the vector 𝑸 ∈ℝ𝑀 .

The statistics of the model response 𝑔 are readily available. In our study, we focus on the mean, denoted as �̄�, and the variance, 
denoted as 𝜎2(𝑔). 𝜎(𝑔) is the standard deviation of the 𝑔. These statistics can be calculated as follows:

�̄� = ∫ 𝑔𝛼Φ𝛼(𝒁) d𝒁 = 𝑔0 (17)

𝜎2(𝑔) =𝐸
[
(𝑔(𝒁) − �̄�)2

]
≈

𝑁∑
𝛼=1

𝑔2𝛼 (18)

Considering the LBE as a stochastic model, we form the stochastic evolution equation

𝑓𝑖
(
𝒙+ 𝒄𝑖Δ𝑡, 𝑡+Δ𝑡,𝒁

)
− 𝑓𝑖 (𝒙, 𝑡,𝒁) = Ω𝑖 (𝒇 (𝒙, 𝑡,𝒁)) , (19)

where 𝑍 denotes the random input to the model. For all 𝑖, we form the gPC expansion of the particle distribution 𝑓𝑖 with degree 𝑁 , 
so that

𝑓𝑖 (𝒙, 𝑡,𝒁) ≈ 𝑓𝑁𝑖 (𝒙, 𝑡,𝒁) =
𝑁∑
𝑓𝑖𝛼 (𝒙, 𝑡)Φ𝛼 (𝒁). (20)
4

𝛼=0
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Notably, a gPC approximation of the distribution function 𝑓𝑖 could lead to the loss of the positivity of the reconstructed 𝑓𝑁𝑖 , which 
might cause instability in the gPC system. In some specific configurations of the numerical tests presented in Section 5, non-positivity 
of populations indeed occurs. From another perspective, hyperbolicity is based on non-negative physical quantities. The LBM does 
not inherently preserve the hyperbolic nature of the underlying equations, so the non-negativity problem in our proposed system is 
negligible. To still enforce the positivity of physical quantities, existing filtering strategies could be used [20,24,58].

The stochastic LBM can be expressed in terms of the nonprojected gPC expansion via

collision: 𝑓𝑁,⋆𝑖 (𝒙, 𝑡,𝒁) = 𝑓𝑁𝑖 (𝒙, 𝑡,𝒁) − Ω𝑁𝑖
(
𝒇𝑁 (𝒙, 𝑡,𝒁)

)
, (21)

streaming: 𝑓𝑁𝑖
(
𝒙+ 𝒄𝑖Δ𝑡, 𝑡+Δ𝑡,𝒁

)
= 𝑓𝑁,⋆𝑖 (𝒙, 𝑡,𝒁) . (22)

By performing the standard SG projection on (21) and (22), we obtain

collision: 𝑓⋆𝑖𝛼 (𝒙, 𝑡) = 𝑓𝑖𝛼 (𝒙, 𝑡) + Ω̂𝑖𝛼
(
𝒇𝑁 (𝒙, 𝑡,𝒁)

)
, (23)

streaming: 𝑓𝑖𝛼
(
𝒙+ 𝒄𝑖Δ𝑡, 𝑡+Δ𝑡

)
= 𝑓⋆𝑖𝛼 (𝒙, 𝑡) , (24)

respectively. Note that in the collision step (23), the expansion coefficients 𝑓𝑛𝑖𝛼 are updated by adding the contribution from the 
collision term �̂�𝛼(𝒇 𝑛,𝑁 ). The streaming step (24) only propagates the post-collision expansion coefficients ̂𝒇

𝑛,⋆

𝛼 . In summary, equations 
(23) and (24) describe the Galerkin projection of the LBM using the gPC expansion, allowing for the representation and manipulation 
of the stochastic variables within the simulation.

4.2. Collision term in generalized polynomial chaos

Regarding the collision term (6), the relaxation time 𝜏 and thus the corresponding relaxation frequency 𝜔 = 1∕𝜏 is determined by 
the kinematic viscosity 𝜈 via

𝜈 = 𝑐2𝑠
(
𝜏 − 1

2

)
. (25)

In the present setting, the following two distinct cases are to be considered:

1. Deterministic relaxation time: If we assume that the collision frequency is constant, using Galerkin projection the coefficient of 
the collision term can be easily calculated as

Ω̂𝑖𝛼
(
𝒇 𝛼 (𝒙, 𝑡)

)
= −𝜔

(
𝑓𝑖𝛼 (𝒙, 𝑡) − 𝑓

eq
𝑖𝛼 (𝒙, 𝑡)

)
. (26)

2. Stochastic relaxation time: If we consider the kinematic viscosity 𝜈 as stochastic, the collision frequency is stochastic, too, and 
thus should be decomposed with the same polynomial basis and order, i.e.

𝜔𝑁 (𝒁) =
𝑁∑
𝛼=0

�̂�𝛼Φ𝛼 (𝒁), (27)

where �̂�𝛼 are the expansion coefficients. In this case, the collision term is expanded in a different form, namely

Ω𝑁𝑖
(
𝒇𝑁 (𝒙, 𝑡,𝒁)

)
= 𝜔𝑁 (𝒁)

(
𝑓
eq,𝑁
𝑖 (𝒙, 𝑡,𝒁) − 𝑓𝑁𝑖 (𝒙, 𝑡,𝒁)

)
. (28)

Using SG projection once again

Ω̂𝑖𝛼
(
𝒇 𝛼

)
= 1
𝛾𝛼

(
𝑁∑
𝑗=0

𝑁∑
𝑘=0

�̂�𝑗𝑓
eq
𝑖𝛼 𝐸

[
Φ𝑗Φ𝑘Φ𝛼

]
−

𝑁∑
𝑗=0

𝑁∑
𝑘=0

�̂�𝑗𝑓𝑖𝛼𝐸
[
Φ𝑗Φ𝑘Φ𝛼

])
. (29)

In Equation (29), the collision term coefficients �̂�𝛼(𝒇 𝛼) are calculated based on the expansion coefficients �̂�𝑗 and 𝑓𝑖𝛼 , as well 
as the quadratures of the products of the orthogonal basis functions Φ𝑗 , Φ𝑘, and Φ𝛼 . This formulation allows for the treatment 
of stochastic kinematic viscosity and provides a novel way to incorporate the stochastic nature of the collision term in the LBM. 
Note that the methodology is similar to the one proposed in [20] for the gas kinetic scheme.

4.3. Moments and equilibrium populations in generalized polynomial chaos

In the deterministic LBE (5), obtaining the equilibrium distribution function is straight-forward using (7). However, in the stochas-

tic system, direct multiplication and division cannot be applied to the stochastic moments. Therefore, we propose a method to obtain 
stochastic moments based on the existing stochastic distribution function and lattice velocity. The moments are defined as

𝑁
8∑ 𝑁∑

̂

5

𝜌 (𝒁) =
𝑖=0 𝛼=0

𝑓𝑖𝛼Φ𝛼 (𝒁) , (30)



Journal of Computational Physics 517 (2024) 113344M. Zhong, T. Xiao, M.J. Krause et al.

(𝜌𝒖)𝑁 (𝒁) =
8∑
𝑖=0

𝑁∑
𝛼=0

𝑓𝑖𝛼𝒄𝑖Φ𝛼 (𝒁) . (31)

By calculating the moments on quadrature points 𝑄𝑗 , for 𝑗 = 0, 1, … , 𝑀 we can directly obtain the velocity on those quadrature 
points via

𝒖𝑁
(
𝑄𝑗

)
=

(𝜌𝒖)𝑁
(
𝑄𝑗

)
𝜌𝑁

(
𝑄𝑗

) . (32)

To calculate the equilibrium populations on the quadrature points 𝑄𝑗 , we use the velocity and density on the same quadrature points, 
so that

𝑓
eq,𝑁
𝑖

(
𝒙, 𝑡,𝑄𝑗

)
=𝑤𝑖𝜌𝑁 (𝑄𝑗 )

(
1 +

𝒖𝑁 (𝑄𝑗 ) ⋅ 𝒄𝑖
𝑐2𝑠

+
(
𝒖𝑁 (𝑄𝑗 ) ⋅ 𝒄𝑖

)2
2𝑐4𝑠

−
𝒖𝑁 (𝑄𝑗 ) ⋅ 𝒖𝑁 (𝑄𝑗 )

2𝑐2𝑠

)
. (33)

Next, we decompose the equilibrium distribution into a gPC expansion

𝑓
eq,𝑁
𝑖 (𝒙, 𝑡,𝒁) =

𝑁∑
𝛼=0

𝑓
eq
𝑖𝛼 Φ𝛼 (𝒁) (34)

The coefficients of the equilibrium distribution function are calculated using a quadrature rule

𝑓
eq
𝑖𝛼 =

𝐸
[
𝑓
eq,𝑁
𝑖 (𝒙, 𝑡,𝒁)Φ𝛼 (𝒁)

]
𝐸
[
Φ2
𝛼 (𝒁)

] , (35)

for all 𝑖 = 0, 1, … 𝑞−1. When combined, the above expressions (30), (31), (32), (33), (34), and (35) provide a clear description of the 
moments and the computation of the equilibrium distribution function within the gPC expansion.

4.4. Chapman–Enskog expansion analysis

We use the Chapman–Enskog (CE) expansion to provide a formal consistency analysis of the proposed SG LBM in terms of orders 
of magnitude (⋅) obtained in a multi-scale expansion. To the knowledge of the authors, this is the first CE expansion analysis of an 
SG LBM. For simplicity, we assume deterministic relaxation according to (25) and nondimensionalize the relaxation time. Since LBE 
asymptotically approaches the incompressible NSE, we directly make the incompressibility assumption.

With that, we start with the gPC expanded SG LBE

𝑓𝑖𝛼
(
𝒙+ 𝒄𝑖Δ𝑡, 𝑡+Δ𝑡

)
= 𝑓𝑖𝛼 (𝒙, 𝑡) − Δ𝑡𝜔

(
𝑓𝑖𝛼 (𝒙, 𝑡) − 𝑓

eq
𝑖𝛼 (𝒙, 𝑡)

)
. (36)

The expansion coefficients of the density distribution function, the temporal and the spatial derivatives are expanded as

𝑓𝑖𝛼 =
∞∑
𝑘=0

𝜀𝑘𝑓 (𝑘)
𝑖𝛼 , (37)

𝜕𝑡 = 𝜀𝜕
(1)
𝑡 + 𝜀2𝜕(2)𝑡 , (38)

𝛁 = 𝜀𝛁(1), (39)

respectively, where 𝜕⋅ = 𝜕∕(𝜕⋅) denotes the partial derivative with respect to ⋅, and 𝜀 > 0 is an expansion parameter which indicates 
the terms of order (𝐾𝑛) with the Knudsen number denoted as 𝐾𝑛. Using a Taylor expansion, the SG LBE (36) becomes

Δ𝑡
(
𝜕𝑡 + 𝒄𝑖 ⋅𝛁

)
𝑓𝑖𝛼 +

Δ𝑡2
2

(
𝜕𝑡 + 𝒄𝑖 ⋅𝛁

)2
𝑓𝑖𝛼 +Δ𝑡𝜔

(
𝑓𝑖𝛼 − 𝑓

eq
𝑖𝛼

)
=(

Δ𝑡3
)
. (40)

Neglecting terms of (Δ𝑡3) and higher, and substituting the multi-scale expansions (37), (38), and (39) into (40), we can split the 
equation in terms of orders of magnitudes (𝜀𝑘). For 𝑘 = 0, 1, 2, we obtain

(
𝜀0
)
∶ 𝑓 (0)

𝑖𝛼 − 𝑓 eq
𝑖𝛼 = 0, (41)

(
𝜀1
)
∶

(
𝜕(1)𝑡 + 𝒄𝑖 ⋅𝛁(1)

)
𝑓 (0)
𝑖𝛼 = −𝜔𝑓 (1)

𝑖𝛼 , (42)

(
𝜀2
)
∶ 𝜕(2)𝑡 𝑓

(0)
𝑖𝛼 +

(
1 − 1

2
Δ𝑡𝜔

)(
𝜕(1)𝑡 + 𝒄𝑖 ⋅𝛁(1)

)
𝑓 (1)
𝑖𝛼 = −𝜔𝑓 (2)

𝑖𝛼 , (43)

respectively. Obviously, from (41), we have that 𝑓 (0)
𝑖𝛼 = 𝑓 eq

𝑖𝛼 . To proceed with the CE analysis, we form a gPC expansion of the stochastic 
density and the stochastic momentum density via

𝑁
𝑁∑
6

𝜌 (𝒙, 𝑡,𝒁) =
𝛼=0

𝜌𝛼 (𝒙, 𝑡)Φ𝛼 (𝒁) , (44)
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(𝜌𝒖)𝑁 (𝒙, 𝑡,𝒁) =
𝑁∑
𝛼=0

(
𝜌𝒖

)
𝛼
(𝒙, 𝑡)Φ𝛼 (𝒁) , (45)

respectively, where

𝜌𝛼 (𝒙, 𝑡) =
𝑞−1∑
𝑖=0
𝑓𝑖𝛼 (𝒙, 𝑡) , (46)

(
𝜌𝒖

)
𝛼
(𝒙, 𝑡) =

𝑞−1∑
𝑖=0

𝒄𝑖𝑓𝑖𝛼 (𝒙, 𝑡) . (47)

To restore the stochastic macroscopic equation, the equilibrium distribution should meet the requirements of the following equations:∑
𝑖

𝑓 𝑒𝑞𝑖𝛼 = 𝜌𝛼, (48)∑
𝑖

𝒄𝑖𝑓
𝑒𝑞
𝑖𝛼 = 𝜌𝒖𝛼. (49)

Here, we make an assumption that the density is asymptotically constant in incompressible fluids, which yields

�̂�𝛼 =

(
𝜌𝒖

)
𝛼

𝜌𝛼
. (50)

Simultaneously, with equations (46), (47), (48), and (49), we can easily obtain∑
𝑛

𝑓 (𝑛)
𝑖𝛼 = 0, ∀𝑛 ≠ 0, (51)∑

𝑛

𝒄𝑖𝑓
(𝑛)
𝑖𝛼 = 0, ∀𝑛 ≠ 0. (52)

Thus, the zeroth and first order moment summation (42) are

𝜕(1)𝑡 𝜌+𝛁(1) ⋅ (𝜌𝒖) = 0, (53)

𝜕(1)𝑡 𝜌𝒖𝑏 +𝛁(1) ⋅
(
𝜌𝒖𝑎𝒖𝑏

)
= −𝛁(1)𝑝. (54)

The zeroth and first order moment summation (43) are

𝜕(2)𝑡 𝜌 = 0, (55)

𝜕(2)𝑡 𝜌𝒖𝑏 +
(
1 − 𝜔

2

)
𝛁(1) ⋅

(∑
𝑖

𝒄𝑖𝑎𝒄𝑖𝑏𝑓
(1)
𝑖𝛼

)
= 0. (56)

Finally, with the help of (42), we obtain∑
𝑖

𝒄𝑖𝑎𝒄𝑖𝑏𝑓
(1)
𝑖𝛼 = − 1

𝜔

[
𝜕(1)𝑡

(
(𝜌𝒖𝑎𝒖𝑏)𝛼 + 𝜌𝛼𝑐2𝑠 𝛿𝑎𝑏

)
+𝛁(1) ⋅

(∑
𝑖

𝒄𝑖𝑎𝒄𝑖𝑏𝒄𝑖𝑐𝑓
𝑒𝑞
𝑖𝛼

)]
(57)

𝜕(1)𝑡
(
(𝜌𝒖𝑎𝒖𝑏)𝛼 + 𝜌𝛼𝑐2𝑠 𝛿𝑎𝑏

)
= 𝜕(1)𝑡

(
𝜌𝒖𝑎𝒖𝑏

)
𝛼
+ 𝑐2𝑠𝛁

(1) ⋅ (𝜌𝒖𝛼)𝛿𝑎𝑏. (58)

Note that the deterministic term 𝜕(1)𝑡
(
𝜌𝒖𝑎𝒖𝑏

)
can be expanded as

𝜕(1)𝑡
(
𝜌𝒖𝑎𝒖𝑏

)
= −𝑐2𝑠𝒖𝑎𝛁 ⋅ 𝜌− 𝑐2𝑠𝒖𝑏∇ ⋅ 𝜌−𝛁 ⋅ (𝜌𝒖𝑎𝒖𝑏𝒖𝑐). (59)

In (59), under the incompressibility assumption, the density is asymptotically constant, allowing for the cancellation of the first two 
terms on the right. Moreover, the velocity in incompressible flow is significantly lower than the sound speed. By using the sound 
speed to make the last term dimensionless, it becomes a third-order small quantity, which can also be neglected. This implies that 
the term 𝜕(1)𝑡

(
𝜌𝒖𝑎𝒖𝑏

)
can be disregarded under the incompressibility assumption. Therefore, its gPC coefficient, 𝜕𝑡(1)(𝜌𝒖𝑎𝒖𝑏)𝛼 , can be 

assumed to be negligible. Considering the latticed equilibrium distribution function, with a simple algebra we have that

𝛁(1) ⋅

(∑
𝑖

𝒄𝑖𝑎𝒄𝑖𝑏𝒄𝑖𝑐𝑓
𝑒𝑞
𝑖𝛼

)
= 𝑐2𝑠𝛁

(1) ⋅ (𝜌𝒖)𝛿𝑎𝑏 + 𝜌𝑐2𝑠 (𝛁 ⋅ 𝒖𝑎 +𝛁 ⋅ 𝒖𝑏). (60)

After sorting terms, we observe that

𝜕𝑡𝜌𝛼 +𝛁 ⋅
(
𝜌𝒖

)
𝛼
= 0, (61)( ) (( ) ) [ ( )T]
7

𝜕𝑡 𝜌𝒖 𝛼
+𝛁 ⋅ 𝜌𝒖

𝛼
⊗ �̂�𝛼 = −𝛁𝑝𝛼 + 𝜇𝛁 ⋅ 𝛁�̂�𝛼 + 𝛁�̂�𝛼 , (62)
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where the pressure expansion coefficient is defined as 𝑝𝛼 = 𝑐2𝑠 𝜌𝛼 . Again, assuming asymptotically incompressible flow, (61) becomes

𝛁 ⋅ �̂�𝛼 = 0. (63)

Then, using the classical simplification steps for modeling deterministic incompressible fluid flow based on the weakly compressible 
NSE, e.g. 𝛁 ⋅

(
𝛁�̂�𝛼

)T = 𝛁 
(
𝛁 ⋅ �̂�𝛼

)
= 0, can be used in (61) and (62). Based on that, it is observed that (61) and (62) structurally 

correspond to the stochastic weakly compressible NSE in terms of expansion coefficient variables 𝜌𝛼 and 
(
𝜌𝒖

)
𝛼
. Conclusively, we 

thus have formally proven the consistency of order two of the proposed SG LBM to stochastic density and density momentum moments 
(30) and (31), respectively.

4.5. Lattice Boltzmann boundary conditions in generalized polynomial chaos

4.5.1. No-slip wall boundary condition

The classical implementation of the mesoscopic bounce-back boundary condition for obtaining a macroscopic no-slip wall for 
the fluid velocity used in the present configuration. The standard streaming is replaced by switching the distribution function in the 
opposite velocity direction (see e.g. [59] and references therein). For our SG LBM, the expansion coefficients are switched instead of 
the distribution function. For example, in a specific setting in two dimensions, the coefficient for the incoming distribution function 
𝑓
eq
2𝛼 is set equal to the coefficient of the outgoing distribution function 𝑓 eq

4𝛼 .

𝑓2𝛼
(
𝐱𝑏, 𝑡+Δ𝑡

)
= 𝑓⋆4𝛼

(
𝐱𝑏, 𝑡

)
, (64)

𝑓5𝛼
(
𝐱𝑏, 𝑡+Δ𝑡

)
= 𝑓⋆7𝛼

(
𝐱𝑏, 𝑡

)
, (65)

𝑓6𝛼
(
𝐱𝑏, 𝑡+Δ𝑡

)
= 𝑓⋆8𝛼

(
𝐱𝑏, 𝑡

)
. (66)

4.5.2. Moving wall boundary condition

For realizing macroscopic moving wall boundary conditions, we adopt the non-equilibrium extrapolation method. In the deter-

ministic non-equilibrium extrapolation method [60], the following steps are performed at time step 𝑡𝑛 , wall node 𝒙wall, and incoming 
node 𝒙in:

𝜌
(
𝒙wall, 𝑡𝑛

)
= 𝜌

(
𝒙in, 𝑡𝑛

)
, (67)

𝒖
(
𝒙wall, 𝑡𝑛

)
= 𝒖wall, (68)

𝑓𝑖
(
𝒙wall, 𝑡𝑛

)
= 𝑓 eq

𝑖

(
𝒙wall, 𝑡𝑛

)
+
(
𝑓𝑖
(
𝒙in, 𝑡𝑛

)
− 𝑓 eq

𝑖

(
𝒙in, 𝑡𝑛

))
, (69)

for all 𝑖 = 0, 1, … 𝑞 − 1, where 𝒖wall denotes the moving wall velocity. To account for the stochastic information, we apply the gPC 
expansion to (67), (68), and (69), respectively. The resulting stochastic non-equilibrium extrapolation method hence reads

𝜌𝛼
(
𝒙wall, 𝑡

)
= 𝜌𝛼

(
𝒙in, 𝑡

)
, (70)

�̂�𝛼
(
𝒙wall, 𝑡

)
= �̂�wall, (71)

𝑓𝑖𝛼
(
𝒙wall, 𝑡

)
= 𝑓 eq

𝑖𝛼

(
𝒙wall, 𝑡

)
+
(
𝑓𝑖𝛼

(
𝒙in, 𝑡

)
− 𝑓 eq

𝑖𝛼

(
𝒙in, 𝑡

))
. (72)

4.6. Implementational details

The deterministic LBE updates the distribution function 𝒇 itself from time step 𝑡𝑛 to 𝑡𝑛+1 (cf. (21) and (22)). However, in the here 
proposed SG LBM, we update the expansion coefficients 𝒇 𝛼 of the approximate stochastic distribution function 𝒇𝑁 (𝒁) instead. The 
updating procedure is summarized as follows:

1. Calculate the expansion coefficients 𝑓 eq
𝑖𝛼 using (35).

2. Compute the collision term using either (26) or (29), depending on whether the collision frequency is constant or stochastic.

3. Perform the collision and streaming by applying (23) and (24), respectively. This step involves combining the collision term with 
the current expansion coefficients to obtain the updated coefficients.

4. Apply the appropriate boundary conditions to ensure the desired behavior at the boundaries of the computational domain.

5. Update the moments of the distribution function using (30), (31) and (32). Based on these equations we calculate the stochastic 
moments, density 𝜌𝑁 (𝒁) and velocity 𝒖𝑁 (𝒁) using the expansion coefficients 𝑓𝑖𝛼 .

5. Numerical experiments

5.1. Taylor-Green vortex flow

To eliminate the influence of boundary conditions, we select a periodic test case with an analytical solution: the two-dimensional 
decaying Taylor-Green vortex (TGV) flow. Based on this periodic test case we assess the accuracy and consistency of the here proposed 
8

SG LBM. The TGV flow [61], given by
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𝒖 (𝑥, 𝑦, 𝑡) =
(
𝑢 (𝑥, 𝑦, 𝑡)
𝑣 (𝑥, 𝑦, 𝑡)

)
=
⎛⎜⎜⎝
−𝑢0 cos

(
𝑘𝑥𝑥

)
sin

(
𝑘𝑦𝑦

)
𝑒
− 𝑡
𝑡𝑑

𝑢0 sin
(
𝑘𝑥𝑥

)
cos

(
𝑘𝑦𝑦

)
𝑒
𝑡
𝑡𝑑

⎞⎟⎟⎠ , (73)

𝑝 (𝑥, 𝑦, 𝑡) = −1
4
𝑢20

[
cos

(
2𝑘𝑥𝑥

)
+
(
𝑘𝑥
𝑘𝑦

)2
cos

(
2𝑘𝑦𝑦

)]
𝑒
− 2𝑡
𝑡𝑑 + 𝑃0, (74)

provides a periodic analytical solution to the two-dimensional incompressible NSE. In (73), the initial velocity amplitude is denoted 
as 𝑢0 = 0.01. Below 𝜈 > 0 represents the shear viscosity. The computational domain Ω𝚫𝐱 ⊆Ω is defined with a resolution of 𝑛𝑥 × 𝑛𝑦. 
In our paper, we choose the same value for 𝑛𝑥 and 𝑛𝑦. The scaling factors 𝑘𝑥 =

2𝜋
𝑛𝑥

and 𝑘𝑦 =
2𝜋
𝑛𝑦

can be used to scale the size of the 

flow domain. The characteristic time scale is defined as 𝑡𝑑 =
1

𝜈(𝑘2𝑥+𝑘2𝑦)
, and the initial pressure 𝑃0 is set to zero.

The characteristic length, denoted as 𝐿, is set to 2𝜋, and the voxel length 𝑑𝑥, determined by the resolution, is calculated as 𝐿∕𝑛𝑥. 
In our study, we use a Reynolds number of 𝑅𝑒 = 15, and the deterministic viscosity 𝜈0 is then defined as 𝜈0 = 𝑢0𝐿∕𝑅𝑒. We have 
chosen a relaxation time of 𝜏 = 𝜈∕𝐶2

𝑠 + 0.5.

Moreover, by using the LBM-specific relation 𝜌 = 𝑝

𝑐𝑠
2 , where 𝑐𝑠 is the speed of sound, we can obtain the initial density condition 

𝜌0.

In this test case, the normalized total kinetic energy is computed as

𝐾(𝑡) = 2|Ω|𝑢20 ∫Ω
(
𝑢2(𝑥, 𝑦, 𝑡) + 𝑣2(𝑥, 𝑦, 𝑡)

)
d𝑥d𝑦, (75)

where the integral is approximated with averaging over the domain constituted by grid nodes (𝑥, 𝑦) ∈ [0, 𝑛𝑥] × [0, 𝑛𝑦]. First, we 
consider the viscosity 𝜈 as an uncertain parameter, denoted as 𝜈 = 𝜉𝜈0, where 𝜉 follows a uniform distribution 𝜉 ∼[0.8,1.2].

Here, we also apply gPC expansion to the normalized total kinetic energy, which is computed as

𝐾𝛼(𝑡) =
2|Ω|𝑢20 ∫Ω

(
(𝑢2)𝛼(𝑥, 𝑦, 𝑡) + (𝑣2)𝛼(𝑥, 𝑦, 𝑡)

)
d𝑥d𝑦, (76)

the gPC coefficient for normalized total kinetic energy 𝐾(𝑡) is calculated based on the gPC coefficients for the squared velocities (𝑢2)
and (𝑣2). These coefficients for the squared velocities are determined as follows:

(𝑢2)𝛼 =
𝑁∑
𝑗=0

𝑁∑
𝑘=0

�̂�𝑗 �̂�𝛼𝐸
[
𝜙𝑗𝜙𝑘𝜙𝛼

]
(77)

(𝑣2)𝛼 =
𝑁∑
𝑗=0

𝑁∑
𝑘=0

𝑣𝑗𝑣𝛼𝐸
[
𝜙𝑗𝜙𝑘𝜙𝛼

]
(78)

Across different resolutions, we compare the computed mean of normalized total kinetic energy with its analytical reference at 
two points in time 𝑡 = 0.2𝑡𝑑 and 𝑡 = 0.5𝑡𝑑 , respectively.

Initially, we perform a stochastic consistency study for SG LBM on the two-dimensional TGV flow. This evaluation is based 
on the relative error, denoted as 𝛿(𝑡), of the mean and standard deviation of normalized total kinetic energy 𝐾(𝑡) concerning the 
results obtained at various points in time, namely, 𝑡 = 0.2𝑡𝑑 and 0.5𝑡𝑑 . We investigate this across different spatial resolutions (here 
𝑛𝑥 = 32, 64, 128, 256) and polynomial orders (𝑁 = 1, 2, 3, … , 8). Hence, we compute

𝛿(𝑡) =
|||�̄�𝑛𝑥

𝑁
(𝑡) − �̄�𝑛𝑥

9 (𝑡)||||||�̄�𝑛𝑥
9 (𝑡)||| , (79)

𝛿(𝑡) =

||||𝜎 (𝐾𝑛𝑥
𝑁
(𝑡)
)
− 𝜎

(
𝐾𝑛𝑥

9 (𝑡)
)||||||||𝜎 (𝐾𝑛𝑥

9 (𝑡)
)||||

, (80)

respectively. The convergence results in terms of the obtained relative error over several resolutions and polynomial orders are 
presented in Fig. 1 for two dedicated points in time. The results show that a polynomial order of 𝑁 = 5 is sufficient for achieving the 
highest accuracy. Hence, all of the following tests use the polynomial order 𝑁 = 5. From Fig. 1, it can be observed that the relative 
errors converge exponentially to machine precision. This indicates that the here proposed SG LBM achieves spectral accuracy in the 
random space.

Moreover, we assess the spatial consistency of SG LBM by measuring the experimental order of convergence (EOC). This is done 
by comparing the results obtained at different resolutions with the analytical solution at the highest resolution. To validate the spatial 
consistency of our proposed method, we implemented it using a polynomial order of 𝑁 = 5 and compute the following error|||�̄�𝑛𝑥

5 (𝑡) −𝐾128(𝑡)|||

9

𝛿 = ||𝐾128(𝑡)|| , (81)
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Fig. 1. Relative error (𝛿(𝑡)) of expectation value (�̄�(𝑡)) and standard deviation (𝜎(𝐾(𝑡))) of normalized total kinetic energy 𝐾(𝑡) for two-dimensional TGV flow 
computed with SG LBM with respect to highest polynomial order results at different points in time 𝑡 = 0.2𝑡𝑑 , 0.5𝑡𝑑 . Several spatial resolutions (𝑛𝑥 = 32, 64, 128, 256) 
and polynomial orders (𝑁 = 1, 2, 3, … , 8) are tested. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Table 1

Spatial EOC results of SG LBM in terms of 𝛿 (see (81)).

Resolution 8 16 32 64 Order

𝛿 0.1512 0.04435 0.01104 0.002262 2.02

Here, �̄�𝑛𝑥
𝑁
(𝑡) represents the total kinetic energy 𝐾(𝑡) using polynomial order 𝑁 with resolution 𝑛𝑥.

The results of this EOC study are summarized in Table 1 and plotted in Fig. 2. The linear regression fit validates a second order 
consistency in space.

Moreover, the EOC study shows that a grid size of 32 × 32 achieved a relative error of 1% compared to the highest resolution. 
Consequently, the computational domain was discretized into a grid size of (𝑛𝑥 = 𝑛𝑦 = 32).

For the purpose of comparison, we analyzed the expectation and standard deviation of the velocity component 𝑢 in the 𝑥-direction 
at 𝑡 = 0.5𝑡𝑑 and compared it with the results obtained from the MCS for different sample sizes (1E2, 1E3, 1E4). These comparison 
results, illustrated in Fig. 3, demonstrate the high accuracy achieved by our proposed method with small polynomial orders and a 
significantly improved convergence rate compared to MCS.

We conducted a comparison of computational time costs among different numerical methods, and the results are presented in 
Table 2. This study was conducted using an 8-core, 16-thread Intel Core i7-10700KF processor with OpenMP support. For the compar-
10

ison, we utilized SG LBM with polynomial orders of 𝑁 = 5 and 𝑀 = 11 to simulate the TGV flow with resolution 𝑁 = 32. The number 
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Fig. 2. Spatial EOC results of SG LBM for TGV flow in terms of 𝛿 (see (81)).

Fig. 3. Expectation values (�̄�) and standard deviations (𝜎(𝑢)) of velocity in the 𝑥-direction along the central vertical line. Spatial resolution 𝑛𝑥 = 32 and polynomial 
order 𝑁 = 5 are used.

Table 2

Computational time costs of several numeri-

cal methods in seconds for TGV flow.

method cpu time [s]

SG LBM (OpenMP) 1.02
MC LBM (OpenMP) 341.05
MC LBM (OpenLB, MPI) 240.395

of quadrature points, 𝑀 = 2𝑁 + 1, ensures that the gPC provides a robust approximation [62]. Additionally, we implemented MCS 
on the deterministic LBM part of our SG LBM code as well as on OpenLB. Both MCS employed 10,000 samples to ensure convergence 
in the TGV flow problem. The results demonstrate that MCS with OpenLB achieves a good speed-up rate (factor eleven) compared 
to the LBM code without any optimization. Moreover, our proposed SG LBM exhibits a significantly high speed-up rate (factor 334) 
compared to the MCS LBM.

It is notable that the computational cost of SG LBM is influenced by the resolution, polynomial order, and quadrature points. While 
the resolution influence is similar to that of the standard LBM, the polynomial order and quadrature points are unique characteristics 
of SG LBM, and their specific impact remains unknown. Therefore, it is imperative to conduct an analysis of these factors. To ensure 
11

sufficient data for an efficiency study, we choose a spatial resolution of 𝑛𝑥 = 64. Subsequently, we investigate the individual influence 
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Fig. 4. Influence of number of quadrature points 𝑀 for different polynomial orders 𝑁 = 1, 2, 3, 4, 5 on time cost of TGV flow simulation with SG LBM at spatial 
resolution 𝑛𝑥 = 64.

Fig. 5. Influence of polynomial order (tested 𝑛 = 1, 2, 3, 4, 5) with number of quadrature points 𝑀 = 640 on time cost of TGV flow simulation with SG LBM at spatial 
resolution 𝑛𝑥 = 64.

of polynomial order and quadrature points separately, and the results are presented in Fig. 4 and Fig. 5, respectively. The results 
demonstrate that both polynomial order and quadrature points exhibit a linear increase in computational cost.

In our analysis, we evaluate and compare the performance of the SG LBM against the MC LBM for simulating TGV flow at 𝑡 = 0.5𝑡𝑑
on an Intel Xeon Platinum 8368 CPU. This comparative study is conducted across various resolutions to understand the efficiency with 
respect to consistency of the here used methods in handling stochastic variables. In the implementation of the SG LBM, polynomial 
orders ranging from 1 to 8 are employed. For the MC LBM, 200 samples are used, with the number of samples denoted as 𝑛. The 
CPU time for 2, 10, and 100 samples is used for comparison. The results (efficiency with respect to consistency), as illustrated in the 
series of plots in Fig. 6, reveal that the SG LBM exhibits strongly increased consistency orders and reduced computational demand, 
compared to the MC LBM. The relative error metric used in this comparison is defined as

𝛿SGLBM =
|||�̄�𝑛𝑥

𝑁
− �̄�𝑛𝑥

8
||||||𝐾𝑛𝑥

8
||| , (82)

𝛿MCLBM =
|||�̄�𝑛𝑥

𝑛 − �̄�𝑛𝑥
200

||||||�̄�𝑛𝑥
200

||| . (83)

To measure the efficiency with respect to accuracy of SG LBM compared to MC LBM, an experimental speedup analysis is con-
12

ducted. For the MC LBM, the resolutions 𝑛𝑥 = 16, 32, 128, 256 are used, with samples numbers of 𝑀 = 12, 25, 50, 100, 200, respectively. 
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Fig. 6. Comparative performance analysis of the SG LBM and MC LBM for the TGV flow at several spatial resolutions 𝑛𝑥 = 32, 64, 128, 256. The error 𝜎 is measured in 
terms of (82) and (83). CPU time in seconds for MC LBM measured for 𝑀 = 2, 10, 100 samples and for SG LBM for polynomial orders from 1 to 8, respectively.

For the SG LBM, polynomial orders 𝑁 = 5, 6, 7 are used. Since exact statistical solutions for a given problem are generally unknown 
[12], we study accuracy with respect to a highest spatial and stochastic resolution MCS. The converged MC LBM results at resolution 
𝑛𝑥 = 256 are considered as the reference solution with a sample number of 𝑀 = 60000. The relative error 𝜎 with respect to this 
reference solution of �̄� has been computed as above. The speedup results according to

speedupSG =
(
𝛿MCLBM
𝛿SGLBM

) 1
2

(84)

are presented in Fig. 7. On average, our novel SG LBM shows a conventional speedup factor of 𝛿MCLBM∕𝛿SGLBM ≈ 5.72.

5.2. Taylor-Green vortex flow with four-dimensional uncertainties

The initial condition of the TGV flow with four-dimensional uncertainties is defined as

𝒖 (𝑥, 𝑦,0) =
(
𝑢 (𝑥, 𝑦,0)
𝑣 (𝑥, 𝑦,0)

)
=
(
−𝑢𝑅0 cos

(
𝑘𝑥𝑥

)
sin

(
𝑘𝑦𝑦

)
𝑢𝑅0 sin

(
𝑘𝑥𝑥

)
cos

(
𝑘𝑦𝑦

) )
, (85)

𝑝 (𝑥, 𝑦,0) = −1 (𝑢𝑅0 )
2

[
cos

(
2𝑘𝑥𝑥

)
+
(
𝑘𝑥

)2
cos

(
2𝑘𝑦𝑦

)]
+ 𝑃0, (86)
13

4 𝑘𝑦
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Fig. 7. Speedup analysis of SG LBM (polynomial orders of 𝑁 = 5, 6, 7) compared to MC LBM (resolutions are 𝑛𝑥 = 16, 32, 128, 256 with corresponding sample numbers 
of 𝑀 = 12, 25, 50, 100, 200) according to (84) measured in terms of to CPU time over accuracy with respect to MC LBM reference solution with resolution 𝑛𝑥 = 256
and 𝑀 = 60000 samples.

where all deterministic parameters are kept the same in the Section 5.1. The difference is that uncertainties are introduced into 
the velocity 𝑢𝑅0 = 𝑢0 + 𝜖𝑑 (𝑥), where the perturbation 𝜖𝑑 is given by the first-order harmonics with four-dimensional i.i.d. uniform 
distributed random amplitude 𝛿𝑑,𝑖,𝑗 ∼ (−0.025, 0.025), i.e.

𝜖𝑑 (𝑥, 𝑦) =
1
4

∑
(𝑖,𝑗)∈{0,1}2

𝛿𝑑,𝑖,𝑗𝛼𝑖(4𝑥)𝛼𝑗 (4𝑦), (87)

where

𝛼𝑖(𝑥) =

{
sin(𝑥) if 𝑖 = 0,
cos(𝑥) if 𝑖 = 1.

(88)

The computational results are shown in Fig. 8 and Fig. 9, demonstrating that the velocity field obtained from the SG LBM are consistent 
with those from the MC LBM.

For the purpose of comparison, we analyze the expectation and standard deviation of the velocity component 𝑢 in the 𝑥-direction 
at 𝑡 = 0.5𝑡𝑑 and compare it with the results obtained from the MC LBM for different sample sizes 1E3, 1E4 and 1E5. These comparison 
results, illustrated in Fig. 10, demonstrate the higher accuracy achieved by our proposed method compared to MC LBM.

We also evaluate and compare the performance of the SG LBM and the MC LBM on an Intel Xeon Platinum 8368 CPU. In the 
implementation of the SG LBM, polynomial orders ranging from 𝑁 = 1 to 𝑁 = 5 are used. For the reference MC LBM, 106 samples are 
used. The CPU time for 𝑛 = 10, 102, 103 samples in MC LBM is used for comparison. The relative error in this comparison is defined 
as follows:

𝛿SGLBM =
|||�̄�32

𝑁
− �̄�32

8
||||||�̄�32

5
||| , (89)

𝛿MCLBM =
|||�̄�32

𝑛 − �̄�32
100000

||||||�̄�32
100000

||| . (90)

The results are illustrated in Fig. 11. It is found that both, the expectation �̄� and the standard deviation 𝜎(𝐾) from the SG LBM 
converge very quickly, indicating that the TGV flow is not sensitive to this four-dimensional uncertainty in velocity. Although the 
computational cost of the SG LBM increases exponentially with the number of uncertainties, for the four-dimensional uncertainty 
case, it remains a superior choice for this test problem compared to the MC LBM.

5.3. Lid-driven cavity flow

The classical incompressible lid-driven cavity (LDC) flow involves a square cavity filled with fluid, where the top wall is driven to 
move while the other three walls remain stationary. The velocity of the top wall is set to a constant value, denoted as 𝑢𝑤 = 1.0, and 
the characteristic length is defined as 𝐿 = 1.0. This case is characterized solely by the Reynolds number 𝑅𝑒 = 𝑢𝑤𝐿∕𝜈 = 1000, which 
14

governs the flow behavior. We have chosen a relaxation time of 𝜏 = 0.5384 for our simulations.
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Fig. 8. Expectation values (�̄�) and standard deviations (𝜎(𝑢)) of velocity in the 𝑥-direction of TGV flow computed with SG LBM and MC LBM (sample numbers 
𝑀 = 10000). Spatial resolution 𝑛𝑥 = 33, polynomial order 𝑁 = 3, and number of quadrature points 𝑀 = 7 are used.

In this test case, we specifically investigate the impact of uncertainty in the boundary condition. By considering the stochastic 
nature of the driven velocity, we aim to understand how variations in the boundary condition affect the flow behavior and its statistical 
properties. The stochastic driven velocity is set as 𝑢𝑤 ∼[0.09,0.11] and we approximate a constant density of 𝜌 = 1.0 [63]. To capture 
the uncertainty in the system, we utilize a polynomial order of 𝑁 = 3 and a set of quadrature points with 𝑀 = 7.

The computational domain in our simulation is discretized into a grid (𝑥, 𝑦) ∈ [0, 𝑛𝑥] × [0, 𝑛𝑦]. The mean and standard deviation 
of velocity in the 𝑥-direction on a grid 𝑛𝑥 = 𝑛𝑦 = 128 are shown in Fig. 12.

To enable a comprehensive comparison, we include benchmark solutions from Ghia et al. [64] and results obtained using the 
MC LBM. Fig. 13 and Fig. 14 illustrate the comparison of the expectation and standard deviation of the velocity in the 𝑥-direction 
along the central vertical line and the 𝑦-direction along the central horizontal line, respectively. The results demonstrate that the 
expectation values of SG LBM approximate the reference result from Ghia et al. [64]. In addition SG LBM exhibits a significantly 
faster convergence rate compared to the MC LBM (tested for sample sizes 1E3 and 1E4) as indicated by the standard deviations 
plotted in Figs. 13 and 14.

We investigate the spatial consistency of SG LBM also for the LDC flow. The relative 𝐿2 -norm error is measured based on the 
15

velocity along the central line, i.e.
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Fig. 9. Expectation values (�̄�) and standard deviations (𝜎(𝑣)) of velocity in the 𝑦-direction of TGV flow computed with SG LBM and MC LBM (sample numbers 
𝑀 = 10000). Spatial resolution 𝑛𝑥 = 33, polynomial order 𝑁 = 3, and number of quadrature points 𝑀 = 7 are used.

𝛿2 =
‖‖‖‖‖‖‖
⎛⎜⎜⎝
|||�̄�𝑛𝑥3 − �̄�5123

||||||�̄�5123
|||

⎞⎟⎟⎠
‖‖‖‖‖‖‖2 , (91)

and plotted in Fig. 15. As expected, the results reveal a second order convergence rate in space.

The stochastic consistency is also investigated for several resolutions based on 𝛿 (see (79) with respect to 𝑢-velocity). The results 
are shown in Fig. 16, which shows that unlike the TGV flow, the LDC flow requires a higher polynomial order to converge. However, 
the spectral convergence rate is also numerically approved for the LDC flow. In case of a polynomial order 𝑁 = 8, the results reach 
machine precision.

5.4. Isentropic vortex convection

As a last test case, the isentropic vortex convection (IVC) by an inviscid uniform flow with a free-stream Mach number of 𝑀𝑎 =
0.042 (𝑢∞ = 0.05) is simulated. The computational domain has dimensions of [0, 10] ×[0, 10] and is discretized into a 100 ×100 uniform 
grid. The characteristic length 𝐿 = 10, the voxel length 𝑑𝑥 = 0.1. The periodic boundary condition is applied to all boundaries of 
16

the domain [65]. The viscosity is set as 𝜈 = 10−15, which leads to a very large Reynolds number Re = 5 × 1014. We have chosen a 
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Fig. 10. Expectation values �̄� (left) and standard deviations (𝜎(𝑢)) (right) of velocity in the 𝑥-direction along the central vertical line computed with MC LBM for 
sample sizes 1E3, 1E4, 1E5 and with SG LBM. The spatial resolution is 𝑛𝑥 = 32 and for SG LBM a polynomial order 𝑁 = 3 and 𝑀 = 7 quadrature points are used.

Fig. 11. Comparative performance analysis of the SG LBM and MC LBM for the TGV flow with spatial resolution 𝑛𝑥 = 32 and four-dimensional uncertainties. The error 
𝜎 is measured in terms of (82) and (83). CPU time in seconds for MC LBM measured for 𝑀 = 10, 100, 1000 samples and for SG LBM for polynomial orders from 1 to 
4, respectively.

relaxation time of 𝜏 = 𝜈∕𝐶2
𝑠 +0.5. The IVC is used to show that SG LBM accurately captures vortical flows. Several conditions are set, 

specifically

𝜌∞ = 1.0, 𝑢∞ = 0.05𝜉, 𝑣∞ = 0.0, (92)

where 𝜉 is the uncertainty parameter and follows a uniform distribution 𝜉 ∼[0.9,1.1]. Based on that, perturbations are introduced to 
the free-stream flow, given by

𝜌 =
[
1 − (𝛾 − 1)𝑏2

8𝛾𝜋2
exp

(
1 − 𝑟2

)] 1
𝛾−1

, (93)

𝑢 = 𝑢∞ − 𝑏

2𝜋
exp

(1
2
(
1 − 𝑟2

))(
𝑦− 𝑦𝑐

)
, (94)

𝑣 = 𝑣∞ − 𝑏

2𝜋
exp

(1
2
(
1 − 𝑟2

))(
𝑥− 𝑥𝑐

)
, (95)

where 𝑏 = 0.05 represents the vortex strength, and 𝑟 =
√
(𝑥− 𝑥𝑐)2 + (𝑦− 𝑦𝑐)2 is the distance from the vortex center located at (𝑥𝑐 , 𝑦𝑐) =
17

(5, 5).
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Fig. 12. Expectation values (�̄�) and standard deviations (𝜎(𝑢)) of velocity in the 𝑥-direction of LDC flow computed with SG LBM. Spatial resolution 𝑛𝑥 = 128, polynomial 
order 𝑁 = 3, and number of quadrature points 𝑀 = 7 are used.

Fig. 13. Expectation values (�̄�) and standard deviations (𝜎(𝑢)) of velocity in the 𝑥-direction along the central vertical line of LDC flow computed with SG LBM. Spatial 
resolution 𝑛𝑥 = 128, polynomial order 𝑁 = 3, and number of quadrature points 𝑀 = 7 are used.

To capture the uncertainty in the system, we utilize a polynomial order of 𝑁 = 4 and a set of quadrature points with 𝑀 = 9. The 
velocity profile is extracted from the flow field evolved for 20 flow-through-times (FFTs) Fig. 17 shows the expectation values and 
standard deviation specifically at 𝑡 = 20FFTs. The SG LBM results for approximating inviscid flows show good agreement to the exact 
prediction as well as to the MCS LBM (OpenLB) results.

6. Conclusion

In conclusion, by decomposing the LBE into polynomials and employing the Galerkin projection, we have first implemented the 
Stochastic Galerkin method on the conventional lattice Boltzmann equation. This work aims to address the need for a more efficient 
and accurate UQ method in CFD problems.

Our numerical results, obtained through simulations of Taylor-Green vortex flow, lid-driven cavity flow, and isentropic vortex 
convection, showcased the accuracy and computational efficiency of the SG LBM approach. The comparison with MC LBM as a 
benchmark demonstrated the superior convergence rate and smaller computational cost of SG LBM. Compared to MC LBM the novel 
18

SG LBM reaches a speedup factor of 5.72 on average in a randomized two-dimensional Taylor–Green vortex flow test case.
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Fig. 14. Expectation values (�̄�) and standard deviations (𝜎(𝑢)) of velocity in the y-direction along the central horizontal line of LDC flow computed with SG LBM. 
Spatial resolution 𝑛𝑥 = 128, polynomial order 𝑁 = 3, and number of quadrature points 𝑀 = 7 are used.

Fig. 15. Spatial EOC results of SG LBM for LDC flow in terms of 𝛿2 (see (91)).

Overall, our study highlights the potential of the SG LBM as an intrusive UQ technique for UQ in CFD simulations. The combination 
of high efficiency, accuracy, and computational effectiveness makes SG LBM a valuable tool for addressing uncertainties arising from 
various sources in CFD.
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Fig. 16. Relative error (𝛿, see (79)) of expectation value (�̄�) and standard deviation (𝜎(𝑢)) of 𝑢-velocity along the central vertical line of LDC flow computed with SG 
LBM. Several spatial resolutions (𝑛𝑥 = 64, 128, 256, 512) and polynomial orders (𝑁 = 1, 2, 3, … , 13) are tested.

Fig. 17. Expectation values (�̄�) and standard deviations (𝜎(𝑢)) of velocity in the 𝑦-direction along the central horizontal line of IVC computed with SG LBM. Spatial 
resolution 𝑛𝑥 = 100, polynomial order 𝑁 = 4, and 𝑀 = 9 quadrature points are tested. MCS LBM (OpenLB) results and an exact prediction are plotted as a reference.
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