KIT | KIT-Bibliothek | Impressum | Datenschutz

Unraveling the impact of therapeutic drug monitoring via machine learning for patients with sepsis

Ates, H. Ceren; Alshanawani, Abdallah; Hagel, Stefan; Cotta, Menino O.; Roberts, Jason A.; Dincer, Can ; Ates, Cihan ORCID iD icon 1
1 Institut für Thermische Strömungsmaschinen (ITS), Karlsruher Institut für Technologie (KIT)

Abstract:

Clinical studies investigating the benefits of beta-lactam therapeutic drug monitoring (TDM) among critically
ill patients are hindered by small patient groups, variability between studies, patient heterogeneity, and inad-
equate use of TDM. Accordingly, definitive conclusions regarding the efficacy of TDM remain elusive. To
address these challenges, we propose an innovative approach that leverages data-driven methods to unveil
the concealed connections between therapy effectiveness and patient data, collected through a randomized
controlled trial (DRKS00011159; 10th October 2016). Our findings reveal that machine learning algorithms can
successfully identify informative features that distinguish between healthy and sick states. These hold prom-
ise as potential markers for disease classification and severity stratification, as well as offering a continuous
and data-driven ‘‘multidimensional’’ Sequential Organ Failure Assessment (SOFA) score. The positive impact
of TDM on patient recovery rates is demonstrated by unraveling the intricate connections between therapy
effectiveness and clinically relevant data via machine learning.


Verlagsausgabe §
DOI: 10.5445/IR/1000173969
Veröffentlicht am 03.09.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Thermische Strömungsmaschinen (ITS)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 20.08.2024
Sprache Englisch
Identifikator ISSN: 2666-3791
KITopen-ID: 1000173969
Erschienen in Cell Reports Medicine
Verlag Elsevier
Band 5
Heft 8
Seiten Art.-Nr.: 101681
Vorab online veröffentlicht am 09.08.2024
Nachgewiesen in Web of Science
Dimensions
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page