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1. Introduction

In recent years, the concept of maintenance has been more 
comprehensive, with the aim of reducing the incidence of 
breakdowns and extending the life cycle of industrial 
equipment. Common maintenance strategies are preventive, 
which are carried out periodically and condition-based or in a 
corrective manner, which means it is done after a fault has 
occurred and therefore this method contains unexpected faults, 
causing an increase in costs and changes in the production 
chain. 

Hence, preventive maintenance is more effective than 
corrective maintenance, it can prevent most faults, yet 
unexpected faults can occur. Also, especially labor costs, 
inventory, and unnecessary replacement of equipment or 
components are costly [1].

Apart from these, predictive maintenance analyses the 
condition of the equipment, and a possible failure can be 

detected at an early stage. Predictive maintenance aims to 
predict the abnormality occurring in a machine element without 
causing catastrophic damages. It is usually conducted in the 
form of signal capture, signal analysis, and decision making, 
and usually in real-time. Common signal sources are vibration, 
temperature, pressure, acoustic emission, or electric current [2]. 

For this reason, acquisition and processing methods have 
been developed in order to increase the availability of the 
machines and to minimize the loss of money and time due to 
faults. Monitoring such signals or parameters to verify the 
operating status of a machine is called condition monitoring 
[1]. The most important of these, condition monitoring is 
frequently used in critical systems to avoid unexpected events, 
detect and identify failures, and protect against catastrophic 
breakdown.

Linear feed axes are one of those critical systems. Used 
wherever rotational motion is translated into linear motion, 
they ensure positional accuracy of workpieces and tools alike. 
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Their positional accuracy directly affects the load capacity, 
quality, and efficiency of the production processes.  On this 
machine, part faults occur due to pitting, crack, corrosion, and 
wear problems [3-4]. As the size of the problems increases, the 
possibility of axis errors increases, and eventually large wear 
and distortion of the linear axis will occur. This causes faults to 
affect the other machine parts and loss of production quality [3-
4].

In the literature, few works have been done on the 
diagnostics of linear axes. The most important resource for this 
study, Putz et al. have presented a new condition monitoring 
system for sensorless fault detection in dynamic linear axes and 
used motor current. They used the Choi-Williams distribution 
signal processing algorithm on the motor current of the 
investigated linear axis. An algorithm for fault detection was 
not used, and only a study on gear damage was carried out in 
this work. The performance of the different signal processing 
algorithms have not been tested [5].    

Besides natural wear, misalignment and arising lateral 
forces have a large impact on feed axis failure. As a result of 
the misalignment of one machine with another machine, 
unpredictable radial forces occur in the bearings of both
machines. Misaligned components are more prone to failure 
due to increased load on bearings and seals. Misalignment may 
result from many problems such as the assembly of unsuitable 
machine parts, asymmetrically applied loads, and improper
seating of the machine part on the base part [6-7]. Therefore,
the detection of misalignment on the industrial drive is very 
valuable for the robustness and reliability of the machine [8]. 
As a result, industrial and academic studies have been done to 
detect misalignment in various ways and amongst these are 
vibration, current signature, acoustic analysis temperature, 
flux, laser systems analysis, and so on. 

STFT is a popular algorithm in time-based signal 
processing. In addition, frequency-based methods do not give
good results due to the short sampling time and the waiting time 
of the table at the start and endpoints. Because of these 
problems, it is more appropriate to use a time-frequency-based 
algorithm[9-11].

When literature is reviewed on linear feed axis fault 
detection. These are studies based on vibration, dynamic loads, 
gyroscope, pressure, and linear potentiometer data. There is no 
motor current-based operation. All of these techniques fall 
under sensor-based diagnostics. A study is a sensorless 
approach. When its performance was compared with other 
studies, in most of the studies, axial misalignment at different 
levels, and the right side was not diagnosed. With this study, it 
is possible to detect axial misalignment at different levels [3, 
12-13]. The biggest advantage of this system is that there is no 
need for sensors and an economical approach when many 
machines are used. For this reason, the paper presents a new 
Condition Monitoring System for sensorless fault diagnosis on 
linear feed axes with the motor current signal. The main goal 
of the study is real-time detection of the misalignment on the 
linear axes without using external sensors.

In this study, the axial misalignment of the table is determined 

by using the motor current data from the PLC. Since signals are 
complex, they are processed with time-frequency-based STFT.

2. Theoretical Background

2.1. Short Time Fourier Transform(STFT)

Sometimes, frequency-based feature selection can give 
wrong results. Because the time-dependent variation of the 
signal is not visible in this. For this, time-frequency-based
techniques are used. It is also possible to detect when the 
problem occurs with time-based feature selection techniques. 
This is because the STFT is applied over the entire time frame, 
it must be calculated in the specific time frame. Its signal of 
certain sizes splits into windows. Applies the Fourier transform 
to each window. And it places them vertically according to 
time. The X-axis shows time, the y-axis shows frequency 
change with time, and the color change shows frequency 
amplitude value [14-15]. Fourier Transformation of windowed 
signal in STFT is done as in equation 1. The spectrogram is 
derived by equation 2.

𝐹𝐹 (τ, 𝑓𝑓)𝑥𝑥
γ = ℱ{𝑥𝑥(𝑡𝑡)γ∗(𝑡𝑡 − τ)} = ∫ 𝑥𝑥(𝑡𝑡)γ∗(𝑡𝑡 − τ)𝑒𝑒−𝑗𝑗2π𝑓𝑓𝑓𝑓𝑑𝑑𝑡𝑡∞

−∞
(1)
𝑆𝑆𝑥𝑥γ(τ, 𝑓𝑓) = |𝐹𝐹𝑥𝑥γ(τ, 𝑓𝑓)|

2 = |∫ 𝑥𝑥(𝑡𝑡)γ∗(𝑡𝑡 − τ)𝑒𝑒−𝑗𝑗2π𝑓𝑓𝑓𝑓∞

−∞ 𝑑𝑑𝑡𝑡|2(2)

3. Experimental Setup

The experimental setup at WBK institute consists of a ball 
screw feed drive system. This experimental setup allows to 
carry out experiments, analyse the system, and introduce
misalignment in the assembly. The experiment setup has the 
ball screw mechanism, fixed and loose bearings with their 
housings, the table, ball rails, guideways, the nut bracket, the 
coupling, and the servo motor with its controller. The assembly
is installed on the machine Pillow Blocks. Beckhoff brand 
servo motor turns the screw drive. As a result of its rotation, the 
table attached to it moves linearly. With the Twincat PLC suite, 
the raw current data is captured and processed with the signal 
processing algorithm. The experimental setup is shown in 
figure 1. In addition, the working principle of the study is 
shown in figure 2. The table goes at a constant speed of 
100mm/s. It pauses for a short time due to the communication 
delays of the PLC at the start and endpoints.

Each experiment was repeated twenty-one times while these 
data were taken. It was seen that the data obtained for each 
condition were similar. The screw drive of the table is bedded 
with two Pillow Blocks. The Pillow Block1 was fixed. 
However, this Pillow Block has 1 mm right axis misalignment 
caused by the assembly. This is a good example to show that it 
is possible to diagnose more than one axis misalignment. 
Misalignment problems are simulated by shifting the Pillow 
Block2 to the right and left. The technical drawing for the 
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detailed representation of the experimental set is shown in 
Figure 3.

Fig. 1. Experimental setup.

Fig. 2. Working principle of study.

Fig. 3. Technical drawing of the experimental setup.

4. Results

When we look at the results of the study. The current data 
received from the servo motor is shown in figure4. As shown
in the figure, in the normal situation, 0.5 and 1 mm axis 
misalignments are not fully separable. Hence, further signal 
processing is required. As seen in the signal, there were small 
increases in amplitude value when there was axial 
misalignment. Experiments were carried out by taking stroke 
100 mm and table speed 100 mm/s.

Fig. 4. The current value of servomotor read from PLC

Current values processed with STFT are shown in Figures
5-7. The figure shows 5 seconds of operation. The time is 
depicted on the x-axis, the frequency change accordingly on the 
y-axis, and the frequency amplitude change is encoded in the 
heat map colors. The unit of Amplitude is Amper(A). As can 
be seen from the parameters, the frequency of the system is 
very low. The table waits briefly at the start and endpoints. 
Moving periodically from start to endpoint and is doing the 
cycle process. When these are evaluated, the frequency 
amplitude value increases during the table return. It is possible 
to find the axial misalignment on the machine by following 
these changes. Figure 5 normal state, Figures 6 and 7 are the 
results of 0.5mm and 1 mm left axis misalignment respectively.
The color contrast in the region indicated by the red rectangle 
changes depending on the axial misalignment. 

Fig. 5. Normal state
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Fig. 6. 0.5mm left side misalignment

Fig. 7. 1mm left side misalignment

Fig. 8. 0.5mm right side misalignment

When we introduce axial misalignment to the right of the 
experimental setup, the amplitude value decreases. This is 
evident from the color contrast. Right axis misalignment results 
are given in Figures 8 and 9. The reason for this is the right axis 
misalignment in Pillow Block1 at the beginning of the 
experimental setup. When the axial misalignment is given to 
the right, this angle value is reduced and the amplitude 
decreases. 

Normally, the amplitude should increase in the right axis 
misalignment. Since the angle value increases more in the axial 
misalignment to the left, it increases in amplitude.

Fig. 9. 1mm right side misalignment

In order to understand the change more clearly, Figure 
10 was made by taking the maximum magnitude values. 
Different axis misalignments and normal state are shown on the 
x-axis, and the maximum magnitude values in these cases are 
shown on the y-axis.

Fig.10 Maximum Magnitude for every situation
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5. Conclusion

We showed that it is possible to detect axial misalignment in 
linear feeding axes by receiving the current data from the servo 
motor with the help of PLC and by signal processing. Also, 
there is no need for data collection systems and sensors for this 
process. We aspire to make sensorless condition monitoring 
more prominent and valuable by removing the need or 
expensive data capturing equipment. When the left and right 
axis misalignment values are increased, it is seen that the color 
contrast in the marked regions changes. When we give these 
pictures to machine learning and deep learning algorithms[16-
18]. The results of the signal processing algorithm can be 
classified by machine learning and deep learning methods. 
Thus, it is possible to find these problems that occur in the 
machines automatically. It is also thought that this method can 
be used to find many mechanical problems. It will contribute 
to the spread of fault diagnosis in machinery in the industry.
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