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Detection and tracking of ocean 
layers using an AUV with UKF 
based extremum seeking control 
in the Baltic Sea
Tim Benedikt von See 1*, Jens Greinert 1,2 & Thomas Meurer 3

Adaptive sampling and situational awareness are key features of modern autonomous underwater 
vehicles (AUVs) since data quality can be improved while operation time and cost can be reduced. 
An example for adaptive sampling in the marine environmental context is thermocline detection 
and tracking. The thermocline as horizontal ocean layer separates warm and cold water and is a 
key feature in many marine disciplines. For example, it influences the distribution and exchange 
of nutrients and is a habitat for many organisms. In this paper we use an unscented Kalman Filter 
(UKF) based extremum seeking control (ESC) to find and follow ocean layers such as the thermocline. 
Computer simulations and real-world tests show that the method is able to find and track non-trivial 
real-world ocean layers with sensors subject to hysteresis and delay effects.

Ocean layers can be divided into mainly vertical and mainly horizontal zones where horizontal layers are gener-
ally much thinner than vertical ones. Examples for the latter are upwelling fronts or the sides of ocean eddies 
and examples for horizontal ocean layers are the thermocline, halocline, oxycline, and pycnocline. These two 
layer types occur due to different natural phenomena but in principle they are all layers that separate two water 
layers of different water properties and can thus be characterized by a distinct gradient of the particular water 
property with respect to the vertical or horizontal distance. Such layers are key features of many marine dis-
ciplines. Upwelling fronts for example transport cold and often nutrient rich bottom water to the surface and 
thereby lead to increased primary productivity making these regions important fishing grounds1. Eddies often 
form in coastal regions and detach from the coast transporting nutrient-rich water into the open ocean and are 
believed to play an important role in the CO2 uptake of the ocean2,3. Horizontal ocean layers on the contrary do 
not indicate transport of water but in most cases rather minimize the exchange between two water layers. The 
pycnocline, e.g., is the layer that separates two water layers of different densities and can be a barrier for sinking 
particles thus slowing down the nutrient transport towards the seafloor. Similarly the thermocline, halocline, and 
oxycline are the layers that separate water layers of different temperatures, degree of salinity and oxygen content, 
respectively. In the following, horizontal ocean layers are the main focus, nevertheless the method proposed in 
this paper is also applicable to vertical ocean layers.

The first papers that dealt with autonomous detection and tracking of horizontal ocean layers targeted the 
thermocline and aimed at shortening the classical yo-yo trajectory between the surface and seafloor. Petillo 
et al. (2010) propose a method, where first a complete dive of the water column is performed to calculate the 
average gradient of the temperature with respect to depth. The thermocline is defined as the water layer, where 
the temperature gradient is larger than the average gradient. A yo-yo trajectory is planned in this layer and a 
restart with a complete dive is performed at half the characteristic time of the feature to account for large scale 
variations of the thermocline, e.g., due to heating of the water by solar radiation during the day4. The choice of 
the average gradient as characterization of the thermocline can be suboptimal in complex scenarios. If two layers 
are present, divided by a well mixed layer, the method will only cover one of them. In Cruz et al. (2010a) a state 
machine consisting of four states is used to track the thermocline based on the temperature gradient. The upper 
and lower limit of the thermocline are detected via pre-defined thresholds of the gradient that are updated based 
on the maximum gradient found on the last ascent or descent leg, respectively. The method is applied to real 
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conductivity, temperature and depth (CTD) data in a simulation environment5 and in Cruz et al. (2010b) field 
data from a demonstration in a dam reservoir is presented6. Due to the dynamic update of the thresholds this 
method leads to significant changes in the sampled layer depth and is prone to over- or underestimate the layer 
thickness. Zhang et al. (2010) propose a peak gradient method for thermocline detection, where they divide the 
water column into depth bins and calculate the temperature gradient of neighboring bins. The mean thermocline 
depth is defined to be at the largest gradient. A yo-yo trajectory is planned in this depth plus/minus an exten-
sion depth to make sure that the whole thermocline is covered7. Simulation results based on real CTD data are 
presented followed by data from AUV dives in Monterey Bay, CA in Zhang et al. (2012)8. This method yields a 
sampled region that is symmetric around the maximum gradient, which in nature often does not represent the 
actual ocean layer, especially not in the case of complex water layering. Feng et al.9 propose a threshold-based 
method that is more conservative than the ones mentioned so far. Here, the threshold for the temperature gradi-
ent that defines the thermocline is set in advance by the operator. A complete dive is performed and the minimum 
and maximum depth values at which gradients above the threshold were measured are saved. The next ascend or 
descend phase are planed between these depth values plus/minus an extension depth9. Thereby more than one 
boundary layer can be sampled, regardless of the distance between them. The proposed method is compared 
to the approaches of Petillo et al. (2010) and Zhang et al. (2012) in a simulation and results from field tests are 
presented. This approach relies heavily on the correct a priori estimation of the temperature gradient threshold 
as it is not updated or calculated dynamically during the AUV dive as in the approaches above.

The described approaches are similar in that they use direct thresholding of the temperature gradient with 
respect to depth. An approach that differs from this is presented in Antunes and Cruz (2019). The authors pro-
pose to use an ESC loop based on Krstić and Wang (2000)10 in combination with a vertical profiler11. Extremum 
seeking control is a signal based optimization technique that does not require a proper mathematical model of 
the process under consideration. The basic idea of ESC is to add a periodic perturbation signal to the system 
input, which leads to changes of the measurable system output that are mapped to a properly chosen cost func-
tion. The gradient of the cost function with respect to the system input is estimated and used to drive the system 
to the working point corresponding to either the maximum or the minimum of the cost/objective function. In 
Antunes and Cruz (2019) the temperature gradient is used as the cost function for the ESC and it is calculated 
based on a vertical sensor array with two sensors. The approach is applied to two artificial functions and to real 
temperature data in a simulation environment11. However, this data is very smooth, hence a distinct gradient is 
present in nearly all working points, which is often not the case in nature.

The approach presented in this paper is based on our earlier work von See et al. (2021) which also uses an 
ESC scheme for thermocline tracking. Here, an UKF is used as gradient estimator in the ESC loop, which has 
the advantage that the convergence speed does not depend on the amplitude of the perturbation signal as it is the 
case in other commonly used ESC approaches12. Furthermore measures are taken to deal with situations, where 
no gradient is measurable. The contribution of this paper lies in a number of improvements over our previous 
work and the validation of the approach through a field trial. The improvements are that a full dive of the AUV 
is added at the beginning to normalize the cost function, thereby reducing the need for situation dependent 
tuning, and that a state machine is introduced to reset the UKF based ESC in case of a sudden change of the layer 
parameters or if the UKF based ESC has driven the AUV into a local maximum or minimum, thereby increasing 
its robustness and reliability. In addition, the approach is applied to more realistic sensor data. This is achieved 
by analysing the sensor effects of a real CTD, which are similar to magnetic hysteresis. The analysis shows that 
a single temperature-depth profile as used in von See et al. (2021) is not sufficient for a realistic sensor simula-
tion. Consequently, the sensor effects are emulated in the simulation environment in this paper. Furthermore, 
in the raw data used here, there are two ocean layers spanning a larger depth range. This shows that the method 
is capable of detecting and tracking more than one ocean layer, even in the presence of sensor delays. Finally, 
results from a field test with an AUV in the Baltic Sea in the presence of complex water layering are presented, 
which validate the proposed method.

The paper is structured as follows. In the “Methods” section the methodology is shortly explained and adapted 
to the use case of thermocline tracking followed by the AUV dynamics considered in the simulation as well as the 
simulation framework, simulation data and sensor effect emulation. The results of the simulation and the field 
test are presented in the “Results” section followed by their evaluation and comparison with related methods in 
the “Discussion” section.

Methods
Extremum seeking control
To illustrate the operation of the approach a sketch of the autonomous detection and tracking of the thermocline 
is shown in Fig. 1. Here the depth is plotted against the distance with color coded temperature. The boundary 
layer which separates the warmer surface water and the cooler bottom water slightly changes with the distance. 
The region that shall be sampled is bounded by the black dashed lines and the desired AUV path is plotted as 
the black solid line.

The method that is used for this study is the ESC loop shown in Fig. 2, which is based on Lutz et al. (2019)12. 
It is build up of an input/output map at the top and the ESC algorithm at the bottom. The first consists of the 
unknown nonlinear time variant system �(t, u) : R+

0 × R
m → R

p with the system input vector u(t) ∈ R
m and 

the measurement vector y(t) ∈ R
p , the cost function Jc(y) , and the penalty function p(u, y) , which is integrated 

to handle constraints. Two assumptions about the system �(t, u) have to be taken into account:

Assumption 1  The system is either asymptotically stable or stabilized by an underlying control loop.
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Assumption 2  The time scales of the system dynamics and the forcing signal are separable so that the influence 
of the system dynamics on the cost function can be neglected.

A requirement for the application of ESC is that the cost function depends on the system input. By Assumption 
2 the relation Jc(y)+ p(u, y) = J̄(u, y) = J(u) must hold true at least on a small time scale.

The cost function J(u) and the perturbation signal d(t) serve as input for the gradient estimator, here an 
UKF. The output of the UKF is the estimated gradient of the cost function with respect to the system input in 
the current point of operation (∇uJ)est , which is multiplied by the gain k and added to the perturbation signal. 
The sum is integrated and used as the new desired system input to drive the system to the working point cor-
responding to the maximum or minimum of the cost function for k > 0 and k < 0 , respectively. To make this 
work self-contained and to motivate the application, the approach proposed in Lutz et al. (2019)12 is briefly 
recalled and summarized. Starting with the cost function J(u) its rate of change can be determined using the 
chain rule, which yields

Fig. 1.   Illustration of adaptive sampling with an AUV in the case of thermocline tracking with variations in the 
boundary layer. The depth is plotted against the distance with color coded temperature. The black dashed lines 
indicate the region of scientific interest that shall be sampled and the solid black line shows the desired AUV 
path.

Fig. 2.   ESC loop for an asymptotically stable system �(t, u) with input u , output y , cost function J̄(u, y) = J(u) 
and penalty function in gray, proposed in Lutz et al. (2019)12.
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where ∇uJ(u) denotes the gradient of the cost function with respect to the input vector. This vector of partial 
derivatives of the cost function with respect to the m = n− 1 components ui of the input vector appended by 
the cost function is chosen as the states x(t) ∈ R

n of the UKF estimator, thus

In most cases the time variant system �(t, u) is unknown apriori, therefore the gradient’s time derivative ẋ is 
modeled as additive white process noise ŵ = [w1, . . . ,wm]

T with covariance Q ∈ R
m×m
+  . Accordingly the esti-

mator model

with H = [Im, 0m] ∈ R
m×n is obtained, where Im ∈ R

m×m is the identity matrix and 0m is the m-dimensional 
zero vector. The time derivative of the system input u̇(t) ∈ R

m is obtained by integrating (1) and (2) into the ESC 
algorithm according to Fig. 2 and reads

Here d(t) ∈ R
m denotes a periodic perturbation signal. Integrating (4) into (3) with w = [ŵT 0]T leads to the 

full process model of the gradient estimator 

The measurement equation of the system �(t, u) is given by

with l denoting white measurement noise with covariance R > 0 . Consequently the output equation of the 
estimator is chosen as

For state estimation given the nonlinear process model (5) a nonlinear filter is set up and integrated into the 
approach. The UKF is used here because it is easier to implement and promises more accurate capturing of the 
nonlinearities13. The working principle and a discussion of the UKFs properties is given in the Supplementary 
material.

Application of the UKF based ESC for ocean layer detection
Without loss of generality the thermocline is used as an example for an ocean layer. In the context of thermocline 
tracking the system �(t, u) refers to the AUV within the water body. The control input u contains the position 
and pose of the AUV, which are realized by an underlying controller. Since ocean layers are either mainly hori-
zontal or vertical the vector u can be reduced to a scalar, in the case of the horizontal thermocline to the depth 
z, hence u = z . The system output y are the measurements of the water properties, here the temperature T. The 
cost function is chosen as J(u) = |�T|

|�z| =
|Ti−Tj |

|zi−zj |
 where i, j ∈ N are discrete time indices with i > j . In the turning 

points of the AUV at the minimum and maximum of the perturbation signal this would lead to a division by 
very small numbers, in the worst case zero. To avoid this effect, the cost function is implemented as

where zmin is the adjustable minimum depth change. All ESC implementations have in common that a gradient 
of the cost function with respect to the system input has to be present, which cannot always be guaranteed14. 
Therefore the state machine shown in Fig. 3 is implemented with the UKF based ESC as the main working mode.

(1)
dJ(u)

dt
=

�
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(4)u̇ = d + k(∇uJ)est = d + kHx.
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(5b)y = J(u)+ l,
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The AUV starts in the state complete dive in which it performs a complete downcast dive that is used for 
normalization of the cost function. The state changes to ESC when J(y) > Jthr where Jthr ∈ [0, 1] due to the 
normalization. As a result, the approach does not need to be tuned specifically for the situation. Practical values 
for Jthr are in the range between 0.2 and 0.8. The AUV only changes its working mode back to complete dive 
when J(y)max,Tcd

< 0.5 . Here J(y)max,Tcd
 is the maximum cost function within the last Tcd s with Tcd ≫ Tp and 

Tp denoting the period length of the perturbation signal. Such a situation can occur if there is a large or sudden 
change of the environmental conditions or when the ESC drove the AUV into a local maximum/minimum of 
the cost function. If input constraints are known a priori, e.g. depth, velocity or acceleration limits, these could 
be integrated by means of suitable penalty functions, as illustrated in Fig. 2.

AUV dynamics
The AUV considered in this paper is the Girona500 AUV from IQUA Robotics shown in Fig. 4. It measures 
approximately 1 m x 1 m x 1.5 m (H x W x L), weighs between 140 and 200 kg, depending on the configuration 
and can operate in depths of up to 500 m . The AUV has a 35-liter payload area for mission-specific instruments 
and can fly at speeds of up to 2 knots for 6 to 8 h. It is a hovering capable AUV that is equipped with five thrusters, 
two located at the top controlling heave and pitch, two at the back controlling thrust and yaw and the last one 
in the center of the AUV controlling the sway. Due to this configuration the AUV is underactuated and cannot 
control the roll motion but it is constructed such that the roll mode is stable. The mathematical model of the 
AUV dynamics used in this paper reads 

 where η = [x, y, z,φ, θ ,ψ]T denotes the earth fixed position vector15. The coordinates x, y, z are defined in the 
North-East-Down (NED) frame and φ, θ ,ψ are the respective roll, pitch and yaw angles. The body fixed veloci-
ties surge, sway, heave, roll, pitch, and yaw yield the vector ν = [u, v,w, p, q, r]T and τ = [τu, τv , τw , τq, τr]

T is 
the control vector with the forces τu, τv , τw and moments τq, τr , respectively. The input matrix B ∈ R

6×5 reads as

(7a)η̇ = R�(η)ν

(7b)Mν̇ = − C(ν)ν − D(ν)ν + Bτ ,

Fig. 3.   State machine describing the transitions between the two working modes ESC and complete dive.

Fig. 4.   Girona500 AUV from IQUA robotics.
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Equation (7b) describes the AUV dynamics in body fixed coordinates with the inertia matrix M, Coriolis matrix 
C and damping matrix D. The transformation of the body fixed into earth fixed velocities is described in (7a). 
The acquisition of accurate modeling parameters is a very challenging and time consuming task since these 
models typically contain nonlinearities. Therefore M and D are estimated as diagonal matrices based on the 
specifications by IQUA Robotics. The underlying motion control system is chosen as a PID controller for each 
controllable degree of freedom. A thruster allocation matrix is used to convert the desired force of each degree 
of freedom into the required force of each thruster.

Simulation framework
For the simulations a framework is setup, which is based on the Robot Operating System (ROS), Gazebo and 
the Unmanned Underwater Vehicles (UUV) simulator16–18. ROS provides fundamental functionalities such as 
standardized communication among software entities and coordinate transformations and can therefore be 
seen as the middleware for the other two. Gazebo is a robot simulator that promises realistic simulation results 
due to the build in Dynamic Animation and Robotics Toolkit (DART) physics engine. Since Gazebo is built for 
land-based robots the UUV simulator is used which integrates the hydrodynamic forces and moments as custom 
plugins in the physics engine.

Simulation data
In Fig. 5 an example of CTD data is shown as scatter plot of the AUV depth against temperature for a classical 
lawnmower survey mission with the GIRONA500 AUV. It can be seen that there is a distinct difference in the 
measurement between the downcast and upcast, which looks similar to a hysteresis. This could theoretically be 
caused by internal waves but since this effect can be observed in all our AUV missions with CTD measurements 
it has two possible reasons: First the used Seabird scientific sbe49FastCat has a characteristic sensor response 
time. Second and probably equally relevant is that while the AUV is driving downwards the CTD measures the 
undisturbed water, which is in contrast to driving upward, where bottom water is pushed upwards by the two 
hulls at the top of the AUV leading to turbulent mixing of the water. This has the severe consequence that a single 
profile cannot be used to simulate realistic temperature measurements of the GIRONA500 AUV.

Emulation of the sensor effects
To emulate the effects of the CTD sensor an upcast and a downcast profile are used which are linearly interpolated 
at the turning points of the vertical AUV motion. This is realized by the state machine in Fig. 6. Here t is time, 
ts denotes the start time of the transient/interpolation, and w is the heave velocity of the AUV. Furthermore | · | 
denotes the absolute and ·̄  the moving average with length twin of a variable. In the states downcast and upcast 
the temperature measurements are only depending on a single profile. The condition for a state transition from 
downcast to upcast via transient down-up was chosen as |w̄ + 0.1| < 0.05 and ˙̄w > 0 . This describes the situation, 
where the AUV is about to change its vertical driving direction. The condition for a state transition from upcast 
to downcast follows analogously. The interpolation is performed in the states transient down-up and transient 
up-down and takes the time ttransient . The conditions t − ts − ttransient > 0 and t − ts − ttransient < 0 for leaving 
the transient down-up and transient up-down state, respectively, ensure that the interpolation is performed 
completely to prevent the system from oscillating. If desired, an input constraint could be implemented in the 
UKF based ESC for the time of the interpolation by means of a penalty function, as described in the next two 
sections, to prevent unforeseen behavior. The simulated temperature sensor measurement T(z) is computed as

(8)B =






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



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
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


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Fig. 5.   Scatter plot of the AUV depth against temperature for an AUV survey mission in the Baltic Sea, August 
2020.
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where z is the depth, Tdc(z) and Tuc(z) are the original measurement data for downcast and upcast, respectively, 
and ξ is white measurement noise.

Results
Simulation results
As pointed out in the introduction, the data in von See et al. (2021) did not consider the effect described in the 
Simulation data section. In this paper the performance of the UKF based ESC in the case of complex ocean lay-
ers and realistic sensor dynamics is investigated. For the simulation a CTD profile measured with a ship based 
CTD was used because a similarly complex profile was not yet measured with our GIRONA500 AUVs. Since the 
sensor response of our ship based CTD during upcast is different to the response of our AUV’s CTD the effects 
in the upcast data were emulated in the simulation. The upcast CTD data was shifted 1m towards the surface 
and to compensate the shift in the upper and lower regions of the water column the data was saturated close to 
the surface and expanded close to the sea floor.

In Fig. 7 the AUV depth against temperature for the UKF based ESC thermocline tracking simulation is 
shown as a scatter plot. The red dots indicate the first downcast, orange dots the upcasts and blue dots the sub-
sequent downcasts. The starting point of the UKF based ESC is marked by the black circle. It can be seen that 
there are two ocean layers, one from approx. 7 to 8m and the other from approx. 9.5 to 13m . The water between 
15.5 and 20m is not considered an ocean layer because the gradient of temperature with respect to depth is much 
smaller than in the two other regions. The ESC perturbation amplitude and frequency are chosen such that the 
resulting amplitude covers approx 7.5m , thus 1.5m more than the thickness of the warm water intrusion that 
is marked by the two thermoclines. In Fig. 8 the depth of the AUV resulting from the UKF based ESC and the 
corresponding temperature are plotted over time. In the plot at the top it can be seen that the AUV first performs 
the initial dive from 0 to approx. 50 s followed by the upcast until 77 s and corresponding depth of 11.3m . At 
this point the ESC is started, which fine tunes the depth within three perturbation periods such that the range 
from approx. 5.5 to 13m is covered. During the first perturbation period only a small part of the upper layer is 
covered but from approx. 280 s onward also the complete upper layer is tracked. This shows that the UKF based 
ESC is able to track more than one ocean layer even in the presence of sensor delay and hysteresis effects. The 
parameters used in the simulation are listed in Table 1.

Results from AUV dives in the Baltic Sea
On 28th October 2022 the UKF based ESC was used to investigate the water layering in the Lübeck Bay in the 
Baltic Sea. The amplitude of the perturbation signal was chosen such that the AUV covers ≈ 10 m.

Figure 9 shows the depth-temperature profile as scatter plot. The red dots indicate the first downcast, which 
can be seen as the reference for the dive, blue dots represent the measurements during downcasts and the orange 
dots measurements during upcasts. The starting point of the UKF based ESC is marked by the black circle. It can 
be seen that there are two main ocean layers, the upper one from approximately 3 to 7.5 m , where the largest 
gradient is from 6.5 to 7.5 m , and the lower one from 13.5 to 15.5 m . The decrease in temperature close to the 
surface is scientifically not interesting as this is caused by solar radiation making it an unstable ocean layer that 
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Fig. 6.   State machine describing the transitions between the down- and upcast.
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has no persistent effect on the chemical or biological composition of the ocean. The differences of the measure-
ments during upcast and downcast described in the simulation data section are also visible here. Additionally 
it can be observed that the measurement uncertainty for the temperature is larger during upcasts than during 
downcasts. This is also due to the mixing of the water by the two hulls at the top of the AUV. Figure 10 shows 
the depth and temperature measurements over time. An initial complete downcast can be seen from t ≈ 0 to 
100 s . The UKF based ESC is started at t ≈ 175 s in 5.5m depth and within the first perturbation period the range 
from 1.8 to 11m is covered, which represents the upper ocean layer but no part of the lower layer. It can be seen 
that the ESC drives the AUV to greater depth so that at t ≈ 630 s also the lower layer is tracked partly and at 
t ≈ 750 s completely. This comes at the cost that the upper layer is not covered completely anymore but only the 
part with the highest gradient. By construction the ESC drives the AUV to the working point corresponding to 
the largest cost function, which is in this case a trade-off between the two layers. The ESC parameters that were 
used during the AUV dives are listed in Table 2.

Fig. 7.   Scatter plot of the AUV depth against temperature for the UKF based ESC thermocline tracking 
simulation. The black circle marks the point at which the ESC is started.

Fig. 8.   Depth and temperature plotted over time for the UKF based ESC thermocline tracking simulation. Both 
plots are color-coded based on the temperature data..
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Discussion
Signal based optimization techniques such as the proposed UKF based ESC face two challenges. First, a gradi-
ent of the cost function has to be present in the working point of the system and second, prior knowledge of the 
expected dimension of the phenomenon is required. The first is addressed by introducing a two stage approach 
ensuring that the ESC is only started in regions with significant gradient information. The second is less severe in 
the marine context as good estimates of the thickness of most ocean layers can be made. If desired an extension 
can be added to ensure complete sampling of the layer. This implies a trade-off, which bears the risk of either not 
sampling the whole marine water layer or increasing the mission time compared to the ideal case and therefore 
degrading the efficiency. This trade-off applies not only to ESC but also to threshold-based methods, where a 
suboptimal choice of the threshold, which defines the ocean layer, can lead to the same effects. Therefore an 
extension depth is also used in Zhang et al. (2012)8 and Feng et al. (2021)9. In the case of thin ocean layers, e.g. in 
coastal regions as shown in the results above, extending the estimated layer depth does not result in much longer 
mission times compared to the overall mission time and is therefore feasible. In the case of large ocean layers, e.g. 
upwelling fronts, a possible improvement of the presented method could be to implement an automatic tuning of 
the ESC parameters based on the measured data. The tuning is mainly aimed at the frequency and amplitude of 
the perturbation signal. By this, the influence of prior knowledge on the effectiveness of the approach could be 

Table 1.   ESC parameters used in the simulation.

Simulation data parameters

Moving average window length twin 1 s

Transient time ttransient 15 s

ESC parameters

Period perturbation signal Tp 91 s

Amplitude perturbation signal Ap 0.0135m

Signal shape perturbation signal cosine

Optimization gain k 1.5 · 10−4

Covariance R 3 · 10−5

Covariance Q 3 · 10−5

Parameter UKF α 1

Parameters UKF β , γ 0

Minimum depth change zmin 0.05m

AUV surge speed u 0.4 m
s

Moving average window length twin 2 s

Cost function threshold Jthr 0.25

Fig. 9.   Scatter plot of the AUV depth against temperature for the UKF based ESC thermocline tracking dives in 
the Baltic Sea, October 2022. The black circle marks the point at which the ESC is started.
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reduced. Despite the limitations of the proposed method, the data from the simulation and field test show that the 
proposed UKF based ESC is able to detect and track complex ocean layers subject to sensor delays and hysteresis.

All papers mentioned in the introduction except Feng et al. (2021) present very smooth data similar to the 
thermocline shown in Fig. 5 but non-ideal ocean layers, as the one shown in Fig. 9, are typically found in nature, 
particularly in shallower water and when the water layering is changed e.g. during seasonal changes. Compared 
to the methods proposed in these papers the presented approach takes more time until the target layer is com-
pletely sampled. The duration depends on the complexity of the ocean layer and is in the range of 2Tp to 4Tp , 
where Tp is the period length of the perturbation signal. The advantage on the other hand is that the sampling is 
more even, meaning that the depth range that the AUV samples is constant making it more robust against small 
scale fluctuations of the ocean layer and sensor delays. This is advantageous because e.g. in Zhang et al. (2012) 
the sampled depth per ascent or descent leg is variable. For a presented field test the sampled depth range varies 
from approx. 5 to 9 meters, as a result the ocean layer is not covered completely all the time. Additionally, the 
UKF based ESC can easily be tuned for situations with complex water layering, where pure threshold-based 
algorithms reach their limits as pointed out in Feng et al. (2021)9. The method proposed by Feng et al. (2021) 
is also able to find and track complex ocean layers. For environmental situations as shown in Fig. 9 both, the 
method from Feng et al. (2021) and the method presented in this paper, can lead to the same sampling range. 
Due to the different techniques used in these two approaches they are very different in the way they have to be 
tuned. For the approach in Feng et al. (2021) the temperature gradient that defines the thermocline has to be 
estimated apriori whereas in the approach presented in this paper the thickness of the thermocline has to be 
estimated apriori. Both quantities fluctuate seasonally within the year and it depends e.g. on the region, water 
depth and morphology which quantity changes more. A scenario where the approach presented in this paper 
is beneficial is when there are two ocean layers present, one near the surface and another near the seafloor. This 

Fig. 10.   Depth and temperature plotted over time for the UKF based ESC thermocline tracking dives in the 
Baltic Sea, October 2022. Both plots are color-coded based on the temperature data.

Table 2.   ESC parameters used in the filed test in the Baltic Sea.

Period perturbation signal Tp 111 s

Amplitude perturbation signal Ap 0.032m

Signal shape perturbation signal cosine

Optimization gain k 8 · 10−4

Covariance R 5 · 10−6

Covariance Q 5 · 10−5

Parameter UKF α 1

Parameters UKF β , γ 0

Minimum depth change zmin 0.2m

AUV surge speed u 0.4 m
s

Moving average window length twin 2 s

Cost function threshold Jthr 0.6
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can for example happen in the Baltic Sea when there is a salt water intrusion from the North Sea. The saltier 
and therefore denser water from the North Sea does not mix with the water from the Baltic Sea but spreads out 
on the sea floor, filling up deeper basins, an important mechanism to oxygenate the Baltic Sea. This results in a 
boundary layer between the brackish water of the Baltic Sea and the salt water near the sea floor in addition to 
the thermocline near the surface. In such a situation the method from Feng et al. (2021) would sample nearly the 
whole water column. The approach presented in this paper could be tuned to also sample nearly the whole water 
column but can additionally be tuned to sample one of the layers individually which gives the AUV operator more 
flexibility. Especially if only one of these layers is of interest, the AUV mission time can be significantly reduced.

Data availability
The authors declare that the data supporting the findings of this study are available within the paper and its 
supplementary information files.
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