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1 Introduction

Texts occur in many different domains, ranging from natural language texts over source
code to DNA and protein sequences, and their amount is ever-increasing. The field of
algorithm and data structure research on strings is often referred to as Stringology. One
important aspect within this line of research is the efficient construction of text indices.
A text index is a data structure that provides additional information for a given text to
speed up answering different types of queries, e.g., pattern matching queries that ask
if (or how often, or where) a pattern occurs in the text. We focus on full-text indices
for possibly unstructured texts, which allow the user to query for arbitrary patterns
(this excludes, e.g., inverted indices). Real-world applications of text indices can be
found, for example, in computational biology where text indices are a crucial part of the
software for DNA alignment [134]. However, the amount of textual data is increasing
significantly faster than the computational capacity of ordinary computers. For example,
in 2008 the 1000 Genomes Project (1KGP) was launched to collect and sequence the
genomes of thousands of people, whereas, in 2020, the 1+Million Genomes Initiative
(1+MG) started to collect at least one million genomes, making this collection 1000
times larger. Therefore, scalable construction algorithms that can handle the massively
growing amount of text are necessary.

In this survey, we discuss the current state of the art in scalable text index construc-
tion. We focus on distributed, external, and shared memory construction algorithms for
different text indices and their applications. While there already exist surveys focussing
on particular indices (e.g., suffix arrays [28,172] or wavelet trees [149,160,63 SPP]),
or models of computation (e.g., external memory [23,56]), this chapter tries to give
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Fig. 1. Relations of text indices. In this article, we consider text indices that have scalable con-
struction algorithms. The labels SM, DM, EM mark whether such construction algorithms in shared,
distributed, and external memory exist. Note that the LZ77 factorization itself is a text compres-
sion and not an index. We use arrows ( ) to denote indices that are used (in practice) to compute
the targeted text index or if they are a special case ( ) of the targeted index. Diamonds ( ) are
used to denote indices that are part of the targeted text index.

a more unified view. To this end, we point out common techniques that are used in
different models of computation or in the computation of different text indices.

This survey is structured as follows. First, in Sect. 2, we introduce models of com-
putation and give an overview of (string) sorting algorithms and further building blocks
that are required as basic tools for text index construction. The main body of work can
be found in Sect. 3. Here, we discuss the scalable construction of different text indices.
We start with the suffix array (SA), one of the most well-researched text indices, and the
longest common prefix (LCP) array, which often accompanies the SA. Next, we take a
look wavelet trees (WT ) and the Burrows-Wheeler Transform (BWT ), which both are
important parts of the FM-index, a compressed text index frequently used in practice.
Then, we discuss algorithms for the suffix tree (ST ) and space efficient representations
thereof. See Fig. 1 for an overview of the text indices and their relations. While most of
the discussed work solely focuses on the construction of the text indices, we also show
approaches to answer queries on text indices in distributed memory. Finally, in Sect. 4,
we show real-world applications of text indices in bioinformatics and text compression
before we address future challenges in Sect. 5.

2 Preliminaries

Let T = T [0] . . .T [n− 2]$ be a text of length n over an alphabet Σ = [0,σ), where
we assume that T is terminated with an end-of-file or sentinel symbol $ with $ /∈ Σ and
$ < α for all α ∈ Σ . A text over an alphabet of size σ = 2 is called bit vector. Usually, bit
vectors do not contain a sentinel. We call T [i.. j) = T [i] . . .T [ j−1] a substring of T for
i, j ∈ [0,n]. The substrings T [0..i) and T [ j..n) are called prefix and suffix for i, j ∈ [0,n].

2.1 Models of Computation

In this section, we introduce models of computation that are relevant for the rest of this
chapter and give pointers to software libraries that are commonly used to implement
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algorithms in those models. The starting point is the sequential random access machine
(RAM) model [182], where we have a single processing element (PE) that contains
multiple registers to perform operations on data and a main memory, which can be
accessed in constant time. However, real-world systems are often more complex and
require more sophisticated models.

One of these models is the external memory (EM) model [4]. Here, we have an
internal memory of size M words and an external memory of unlimited size that is
much slower to access randomly. To compensate for this, transfer between EM and
RAM happens in blocks of B consecutive words. Such a transfer is called I/O operation
(I/O for short). The cost of external memory algorithms is then described by the number
of required I/Os, e.g., scanning through N elements requires Θ

(
N
B

)
I/Os, and sorting N

elements requires sort(N) := Θ
(
N
B logM

B

N
B

)
I/Os. The software libraries STXXL [57]

and TPIE [9] implement the most commonly used external memory algorithms and
data structures. A (practical) relaxation of the model is the semi-external model, where
we allow random access to either the input or output, but not both. The Succinct Data
Structure Library (SDSL) [94] provides implementations of semi-external construction
algorithms for various data structures.

We also consider two parallel machine models, where by p we always denote the
number of available PEs. The first is the parallel random access machine (PRAM),
where all PEs have access to the same (shared) memory. There are various PRAM
variants differentiating between which types of concurrent memory reads/writes are
allowed; for practical algorithms on a multi-core processor one should only use exclu-
sive writes, implying that the Concurrent Read Exclusive Write (CREW) model is best
for analyzing algorithms. In the analysis, the work and depth are of interest. The former
is the total number of operations performed, and the latter is the longest sequence of
sequential dependencies in the algorithm. When implementing shared memory algo-
rithms, Cilk [38] (now deprecated), OpenMP [53], Intel’s TBB [174], Microsoft’s Par-
allel Patterns Library (PPL), or built-in concurrency features of the programming lan-
guage, e.g., thread in C++11, are often used to express parallelism. The Multi-Core
Standard Template Library (MCSTL) [188] provides parallel algorithms and can be
used as the parallel mode of the GNU C++ Standard Library. Recently, ParlayLib [36]
was introduced as a library containing efficient implementations of the parallel algo-
rithms in the C++ Standard Library.

The distributed memory model is our second parallel machine model. Here, com-
munication between different PEs is conducted by sending messages over a network,
and PEs have only local memory. Often, the cost of such a message is given as a startup
cost plus a cost that depends on the size of the message. This is also reflected in the
bulk-synchronous parallel model [200], where algorithms are divided into a sequence
of supersteps consisting of three phases: local work, communication, and synchroniza-
tion. The cost of an algorithm is then the sum of the costs of all supersteps. In prac-
tice, there are two flavors of frameworks for developing distributed algorithms: low-
level interfaces provided by the message passing interface (MPI)1 with its open-source
implementations Open MPI [89] and MPICH [98], and frameworks providing a more

1 MPI standard: https://www.mpi-forum.org/docs (last accessed 2020-07-14).

https://www.mpi-forum.org/docs
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high-level functionality, e.g., Apache Flink [5], Apache Hadoop (based on MapRe-
duce [54]), Apache Spark [210], and Thrill [29 SPP].

2.2 Building Blocks

Sorting. Sorting is a fundamental and well-studied topic in computer science, and
the many results fill entire volumes [129,146] of related work. Hence, we will only
review recent results for sorting integers in this section, which can be used in vari-
ous of the following text indexing algorithms. In applications, sorting is most often
still performed using classic sequential algorithms [107,159], despite existing more
cache- or instruction-efficient variants [12,65,180,205] and well-developed modern
parallel algorithms for shared-memory machines such as IPS4o [17], or the sorters in
the MCSTL [188], Intel’s TBB [174], the PBBS [186], ParlayLib [36], or Microsoft’s
PPL. Another method of accelerating sorting is by vectorizing comparisons or opera-
tions using SIMD instructions [35,41,87,108,110,207,209].

For sorting integers, there is also the option of using radix sort algorithms, which
have to be implemented carefully for modern CPUs [123,152,173]. Many parallel radix
sorts for shared-memory machines are also available [138,165,192,203], and are most
prominent on GPUs [101,109,154,181,194].

Sorting of data on external memory is a classic subject [4,58], and implementations
are available in specialized libraries like TPIE [8] or STXXL [57].

An entirely different challenge is sorting on highly-scalable distributed shared-
nothing machines, where load balancing, communication, and data redistribution have
to be devised carefully, as PEs do not share memory. Most distributed memory sort-
ing algorithms are based on either Quicksort [1,13,16,133,178,196] or sample sort
[13,15,37,60,96,106,193,14 SPP].

Sorting is often used as a black box for text indexing algorithms, but depending
on the model, machine, or scenario, large performance gains are possible by picking a
better sorting implementation.

String Sorting. Sorting strings is an interesting special case of sorting, especially
for text indexing algorithms, and most classical sorting algorithms have been adapted
to multi-component objects or multi-key data [26,33,123,152,162,189]. Early par-
allel algorithms were formulated in the PRAM model and are based on merging
of tries [102,113]. For external memory, theoretical algorithms were proposed, dis-
tinguishing short and long strings [7], or using hashing [70]. Many well-developed
cache-efficient sequential and shared-memory parallel string sorting algorithms [28,
33,30 SPP] are available in the TLX C++ library2. The fastest sequential ones are engi-
neered variants of radix sort with very little memory overhead, and the fastest shared-
memory parallel one is a string-aware sample sort implementation. These implemen-
tations also support outputting the lengths of the longest common prefixes (LCPs) of
lexicographically adjacent strings at next to zero extra cost.

2 TLX website: https://panthema.net/tlx/ (last accessed 2020-10-18).

https://panthema.net/tlx/
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While in principle the shared-memory parallel algorithms could be adapted to
shared-nothing distributed supercomputers, they neglect that communication volume
is the limiting factor for the scalability of algorithms to large systems [6,39]. The first
distributed string sorting algorithm we developed was a straight-forward adaptation of
merge sort for use in a distributed suffix array construction algorithm [78 SPP]. This
first version still considered strings as unbreakable objects.

Bingmann et al. therefore developed genuine distributed string sorting algorithms
based on multi-way merge sort [34 SPP], which break up the strings into characters. The
strings on each PE are first sorted locally. The PEs then collectively execute a distributed
partitioning algorithm which yields p ranges of equal size with respect to the entire data.
Each range is spread across the p machines in p fragments, and in the next step, each
PE sends its misplaced p− 1 fragments to the corresponding target machine. Finally,
each PE merges the received partition fragments. The appeal of multi-way merging for
communication-efficient sorting is that the local sorting exposes common prefixes of
the local input strings. The Distributed String Merge Sort (MS) exploits this by only
communicating the length of the common prefix with the previous string followed by
the remaining characters. Here, the LCP values also allow us to use the multiway LCP-
merging technique previously developed by Bingmann et al. [30 SPP] in such a way
that characters are only inspected once.

The second algorithm, Distributed Prefix-Doubling String Merge Sort (PDMS), fur-
ther improves communication efficiency by only communicating characters that may
be needed to establish the global ordering of the data (the distinguishing prefix). The
algorithm also has optimal local work for a comparison-based string sorting algorithm.
The key idea is to apply the communication-efficient duplicate detection algorithm by
Sansers et al. [179] to geometrically growing prefixes of each string. Once a prefix has
no duplicate anymore, we know that it is sufficient to transmit only this prefix. The same
idea was also used to make any PRAM algorithm LCP-aware [68 SPP].

An experimental evaluation of MS and PDMS (which are implemented in MPI) on
up to 1280 cores shows that these algorithm are often more than five times faster than
previous non-string-aware algorithms. In the future, we hope that these algorithms will
find their way into general purpose distributed toolkits such as Apache Spark [210] or
Thrill [29 SPP].

Further Building Blocks. The prefix sum (w.r.t. a binary associative operator ⊕) of
n elements A[0], . . . ,A[n− 1] is an array B of n elements with B[i] =

⊕i
k=0A[k] for

i∈ [0,n). In the PRAM model, the prefix sum of n elements can be computed in O (lgn)
depth and O (n) work [112, p. 47]. Due to their ubiquity, algorithms for prefix sums
are part of frameworks used in different parallel models, e.g., distributed [29 SPP] and
shared memory [188].

Rank and select data structures for a bit vector of length n allow us to compute the
number of set (or unset) bits up to position i ∈ [0,n) (rank), and the position of the j-th
set (or unset) bit for j ∈ [1,n] (select), respectively. They are an important ingredient
of wavelet trees (see Sect. 3.2). To the best of our knowledge, the only parallel con-
struction algorithms for rank and select data structures are described by Shun [185] and
require O (lgn) depth and O (n/lgn) work if the n bits are packed into �n/lgn� words.
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Fig. 2. Suffix array and longest common prefix array (see Sect. 3.1) for the text T =
mississippi$. Below, we also show the suffixes in lexicographical order, i.e., the suffixes
represented in the suffix array. There, we also visualize the longest common prefixes of two lexi-
cographically consecutive suffixes in green ( ). (Color figure online)

In practice, only sequential construction has been considered, e.g., [46,147,211]. How-
ever, the construction of the data structures proposed by Zhou et al. [211] heavily relies
on prefix sums and could thus easily be parallelized.

We can generalize binary rank and select queries for a text T . Then, the function
rankα(T, i) counts, for some character α ∈ Σ and a text position i ∈ [0,n), the number
of occurrences of α in T [0..i], whereas selectα (T,k), for some k > 0, finds the position
of the k-th occurrence of α in T . Generalized rank/select queries can be answered effi-
ciently using wavelet trees, which reduce them to O (lgσ) binary rank/select queries
(see Sect. 3.2).

3 Text Indices

A text index provides additional information for a text to speed up answering differ-
ent types of queries. In the following, we give an overview of different construction
algorithms for text indices in the models that we describe in Sect. 2.1.

3.1 Scalable Suffix Array Construction

One of the best-researched text indices is the suffix array (SA), which has been intro-
duced by Manber and Myers [150] and independently by Gonnet et al. [95] as the PAT
array. The SA of a text T of length n is a permutation of [0,n) such that T [SA [i],n) <
T [SA [ j],n) for all 0 ≤ i < j < n, i.e., it lists all suffixes lexicographically. See Fig. 2
for an example. Suffix arrays are a space efficient replacement of suffix trees (ST ) (see
Sect. 3.3). To obtain the same functionality as the STs, SAs are often accompanied by
additional arrays containing further information. Since suffix array construction algo-
rithms sort all suffixes of a text, we use the term suffix sorting synonymously with suffix
array construction.
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When both the text and the SA fit into memory, the SA can be computed in linear
time using the difference cover algorithm [124]. The idea is to sample suffixes and sort
the samples. Using the sorted samples, we can lexicographically compare two suffixes
in constant time. First, we compute SA12 containing all suffixes starting at positions that
are not a multiple of three, i.e., suffixes starting at positions that are congruent to 1 and
2 modulo 3. To this end, we interpret three characters as one (increasing the alphabet
size) and recursively call this algorithm until all characters are unique. Then, the SA0

of all other suffixes is computed using the already computed SA12. To obtain the final
SA, SA0 and SA12 are merged. The algorithm described above is called DC3. It can be
generalized to other difference covers modulo X > 3; then we refer to it as DCX. The
DCX algorithm can easily be adapted to several models of computation where it also is
asymptotically optimal [124]. However, it often impractical due to substantial constant
factor overheads, while induced sorting algorithms (Sect. 3.1) are superior, at least in the
sequential computations. But the latter are hard to parallelize. Closing this gap between
theory and practice is an interesting open problem for algorithm engineering. Note that
all but one [20] sequential linear time suffix sorting algorithms rely on recursion. The
SA can be constructed sequentially with only constant space overhead while retaining
a linear running time [97,141]. For more information on sequential suffix sorting, we
point to two extensive surveys [28,172] and a practical evaluation [19 SPP].

We now give an overview of suffix sorting algorithms in external memory, in shared
memory (briefly touching also GPUs), and in distributed memory. Later, we take a look
at the LCP array, one of the arrays often supplementing the SA.

External Memory. Crauser and Ferragina [52] and Dementiev et al. [56] present EM
prefix doubling algorithms with discarding. The idea of prefix doubling [150] is to
sort all suffixes based on the h-order ≤h, defined by T [i,n) ≤h T [ j,n) ⇔ T [i, i+ h) ≤
T [ j, j+ h) (=h and <h are defined analogously). The h-rank of a suffix is the number
of suffixes that are strictly smaller w.r.t. the h-order. Now, during the k-th iteration, we
compute the 2k-ranks using the 2k−1-ranks: for all suffixes T [i,n), we use the ranks of
T [i, i+2k−1) and T [i+2k−1, i+2k), which are known from the previous iteration. We
stop when ranks are unique; then, each rank is the position of that suffix in the SA. In
practice, we can discard those h-ranks that are unique and not needed to compute other
ranks any more, which can speed up the sorting, as it reduces the number of elements
that we have to sort. For texts with small alphabets, prefix doubling algorithms are in
practice often sped up by alphabet reduction in combination with word packing, e.g.,
[56,81,32 SPP,78 SPP]. Here, an alphabet of size σ is first mapped to [0,σ ′) such that
σ ′ ≤ σ each character of the new alphabet occurs at least once in the text and they retain
their original order. Then, each character is augmented such that it not only stores T [i],
but also the following 	b/lgσ ′
 characters for some suitable bit-width b. This makes
sense, for example, when there are unused bits already reserved in the binary repre-
sentation of the characters, as with DNA (σ ′ = 4) stored in bytes (b = 4). This allows
prefix doubling algorithms to skip the first 	lg(	b/lgσ ′
)
 iterations. Dementiev et
al. [56] also generalize prefix doubling to α-tupling, i.e., considering αk-ranks during
the (k+1)-th iteration and present experimental results for their implementations. Here,
EM DC3 is superior to all prefix doubling/quadrupling (α = 2 and α = 4) algorithms
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w.r.t. running time and I/Os. They also show that for small alphabets, DCX can yield
further improvements when using difference covers of size 31.

Induced sorting (see [144] for a detailed overview) is another prominent approach
for EM suffix sorting. It is also used in the fastest sequential main memory suffix sorting
algorithms [19 SPP] that are called SAIS [164] and DivSufSort3. This technique has
also been generalized to compute the SA of collections of strings [145]. The general
idea of all EM induced sorting suffix sorting algorithms is to: (1) classify all suffixes into
two classes, which can be done in a single scan of the text, (2) sort at most n/2 special
suffixes, which are suffixes from one of the classes that are (in text order) next to a suffix
from the other class, and (3) induce the lexicographical order of all other suffixes using
an EM priority queue. The two most prominently used classification schemes are by
Itoh and Tanaka [111] and Nong et al. [164]. All following external memory algorithms
make use of the latter classification scheme.

Bingmann et al. [31] propose eSAIS following the ideas described above. Addition-
ally, eSAIS can also be used to compute the LCP array, which we define later in this
section. Another EM induced sorting algorithm DSAIS is presented by Nong et al. [163].
However, this algorithm assumes that n=O (M2/B), which limits the scalability, as the
input size is still bounded by the size of the main memory (it is also not faster in prac-
tice than eSAIS [122]). An improved version DSAIS+ by Wu et al. [206] is reported to
be faster than eSAIS and also requires around half the disk space. Another EM induced
sorting algorithm, called fSAIS, is presented by Kärkkäinen et al. [122]. The fSAIS
algorithm introduces multiple improvements compared with eSAIS and DSAIS. First,
it uses the classification by Nong et al. [164] but switches the classes when it comes
to determining the special class, which resolves some corner cases, because now the
last suffix T [n− 1..n) cannot be in the special class. Then, a stable priority queue is
used, making timestamps to keep track of the order of the induced suffices unneces-
sary (compared to eSAIS) and thus reducing the I/O volume. Finally, to avoid random
access on the text, a simplified blockwise preinducing [163] is used, i.e., the text is split
into fixed sized blocks and the characters in each block are ordered in the same way
they are accessed during the inducing phase. In addition to fewer random access, this
makes it unnecessary to store the text positions from which the suffixes is induced. All
these improvements halve the I/O volume of the algorithm compared to eSAIS. Han
et al. [103] recently presented nSAIS, which reduces the I/O volume and required disk
space even further.

Another idea for EM suffix sorting is to split the text into consecutive blocks such
that the SA of the block can be computed in main memory. These partial SAs (plus
additional information that helps later on) are then merged to obtain the final SA [117].
This approach can be parallelized [121] in EM.

Shared Memory and GPGPU. On a PRAM, we are only aware of induced sorting
algorithms. Labeit et al. [132] present a parallel implementation of DivSufSort. Lao et

3 Original implementation without publication: https://github.com/y-256/libdivsufsort (last
accessed 2020-10-18). Fischer and Kurpicz give a detailed description of the algorithm and
extend it to also compute the LCP array [77 SPP].

https://github.com/y-256/libdivsufsort
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al. present a parallel version of SAIS [136] and SACAK [137], the latter being a sim-
plified version of SAIS. Both are faster on repetitive texts than the parallel DivSufSort.
An improved parallel SACAK algorithm, by Xie et al. [208], is the fastest algorithm
on most inputs (in their evaluation, the parallel DivSufSort is only faster on two of the
non-repetitive inputs).

Finally, we also want to mention SA construction using graphics cards (general pur-
pose computation on graphics processing unit, GPGPU). Due to the limited amount
of memory available on graphics cards, these algorithms do not scale well. The domi-
nant techniques used in GPGPUs are prefix doubling: either heavily relying on prefix
sums [195] or using radix sort [169,202]. DCX algorithms have been presented by Deo
and Keely [59] and Wang et al. [202] but are outperformed in practice by the prefix
doubling approaches. The latter also present a DCX-prefix-doubling hybrid, which is
the fastest GPGPU suffix sorting algorithm.

Distributed Memory. In distributed memory, suffix sorting becomes harder than in
RAM, as we have to communicate to obtain access to text that is not locally available
on a PE; we want to avoid random access on data that is not local. There exist distributed
suffix sorting algorithms that are based on merge-sort [128], quicksort [161], and radix
sort [2,88]. The DCX algorithm has also been practically evaluated in distributed mem-
ory [131,155,32 SPP]4.

In practice, variants of prefix doubling are most often used, with different imple-
mentations of how the new ranks are computed. Kitajima and Navarro [127] presented
an early distributed version of Manber and Myers’s [150] prefix doubling algorithm,
but it requires a lot of bookkeeping. Flick and Aluru’s distributed prefix doubling algo-
rithm [81] makes use of the inverse SA that is partly computed based on the currently
considered h-ranks. A further practical improvement is that the algorithm switches to
a different strategy for refining the ranks for small groups of suffixes with the same
rank; this reduces communication even further. In addition, this algorithm is the only
distributed algorithms that supports the computation of the LCP array. Two distributed
prefix doubling algorithm are presented by Bingmann et al. [32 SPP]. Those algorithms
have been implemented in the Thrill framework [29 SPP], which results in some restric-
tions regarding the access to the distributed data. The first algorithm makes use of a
window of size 2k (in the k-th iteration) to obtain the required rank, whereas the second
one is a prefix doubling with discarding algorithm. This idea was later revisited and
implemented using MPI [78 SPP]. Here, the prefix doubling algorithm and distributed
string sorting (see Sect. 2.2) are used as building blocks for a distributed induced sorting
suffix sorting algorithm, which is the most memory efficient distributed suffix sorting
algorithms currently available, but only works efficiently for small alphabets due to a
σ2-factor in space and the number of synchronization steps.

Longest Common Prefix Array. The SA is often accompanied by different arrays
containing useful information to speed up different types of queries. One of the most

4 DC3/7/13 implementation without publication is available at
https://github.com/bingmann/pDCX (last accessed 2020-09-25).

https://github.com/bingmann/pDCX
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important ones is the longest common prefix (LCP) array. It contains the lengths of
the longest common prefixes of lexicographically consecutive suffixes. More formally,
LCP [0] = 0 and LCP [i] =max{� ≥ 0: T [SA [i] ,SA [i]+�)= T [SA [i−1] ,SA [i−1]+�)},
see Fig. 2. The LCP array can be computed sequentially in linear time [125].

There exist LCP array construction algorithms based on prefix doubling in dis-
tributed memory [81]. In external memory, the LCP array can be constructed while
executing eSAIS [31]. Alternatively, it can be computed after the computation of the
SA [115,116]. This EM computation can also be parallelized [118,119]). In GPGPUs,
there exists a parallel version of Kasai et al.’s [125] algorithm [59]. We refer to [183] for
a extensive evaluation of different shared memory LCP array construction algorithms.
The LCP array construction has also been generalized to collections of strings [67,145].

3.2 Compressed Full-Text Index

In the following, we consider a space-efficient alternative to the SA, the FM-index. We
first look at the construction of its two main building blocks, the Burrows-Wheeler
transform and the wavelet tree, and then how it can be combined to finally obtain the
FM-index.

Burrows-Wheeler Transform. The Burrows-Wheeler transform (BWT ) [42] of a text
T of length n is defined by BWT [i] = T [SA [i]−1 mod n]. A different, more verbatim
definition of the BWT is that we sort the strings S0 = T [0] . . .T [n− 1],S1 = T [1] . . .
T [n− 1]T [0], . . . , Sn−1 = T [n− 1]T [0] . . .T [n− 2] (the shifts of T ) lexicographically.
Then BWT is the last character of each of the shifts, when the shifts are read in lexico-
graphic order. We call this the naive approach. See Fig. 3a for an example of the BWT .
The first definition of the BWT can be translated to a simple construction algorithm
based on the SA—for which we have seen many construction algorithms in different
models of computation in Sect. 3.1. However, there are many algorithms that do not
require the computation of the SA. In RAM, the best main memory algorithm can com-
pute the BWT in time O (nlgσ/

√
lgn) for alphabets of size σ ≤ √

lgn [126].
On a PRAM, Hayashi and Taura [104] present a construction algorithm that is based

on the divide-and-conquer paradigm. They first recursively split the text into consecu-
tive slices (until the size of a slice falls below a threshold). After that, partial BWTs
are computed for the slices. These partial BWTs are then merged in parallel. To speed
up merging, additional information, like SA samples and WTs, is used. Liu et al. [143]
present an algorithm that does not merge the partial BWTs directly, but only computes
partial SAs and merges those. However, unlike Hayashi and Taura, they use a single
dedicated PE to merge the partial SAs, which are computed by all other PEs. Again,
additional information, like the LCP array (see Sect. 3.1), is used. The BWT is then
obtained using the final SA. Fuentes-Sepúlveda et al. [86] present a parallel version of
[157] that considers consecutive slices of size Δ = �lg σn� as meta-symbols. The SA
of the concatenation of S1 and S2 (of size 2n/Δ ) is used to compute a partial BWT .
Then, all other shifts Si (Δ −2 many) are merged (each in parallel) with S1. Additional
information obtained by the merging is used to update the partial BWT .
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Fig. 3. Burrows-Wheeler transform of the text T = mississippi$ in (a). In (b), we show the
wavelet tree (assuming σ = 8) of the Burrows-Wheeler transform depicted in (a). The binary
representation of the characters is given in (c). Together, the Burrows-Wheeler transform and the
wavelet tree are the FM-index, which we briefly describe in Sect. 3.2.

Ohlebusch et al. [167] consider the reverse BWT (BWT rev), i.e., the BWT of the
reverse text T rev = T [n− 1]T [n− 2] . . .T [0] that is of interest for short read mapping
(cf. Sect. 4). The sequential version of the algorithm makes use of the wavelet tree of
the BWT of the text, the SA, and the text itself. This leads to independent intervals in
BWT rev that can easily be computed in parallel. Gilchrist and Cuhadar [93] show that
for many applications (cf. Sect. 4.2), the BWT is only required for slices of the text. The
BWT construction for independent slices of the text is easy to parallelize.

Menon et al. [153] give a distributed BWT construction algorithm based on MapRe-
duce. Another distributed algorithm based on merging is presented by Wang et al. [201].
This algorithm is tuned for large collection of DNA reads and first partitions the text
with respect to a common prefix, and then computing the BWT for partitions with a
common prefix—similar to the domain decomposition for wavelet trees (cf. Sect. 3.2).
Ferragina et al. [72] present an EM version of [104] that is based on merging. Also in
EM, prefix free parsing [40,130] is used, which is a technique similar to the one used for
the asymptotically best sequential BWT construction algorithm [126]. The naive BWT
construction has also been parallelized with FPGAs by Trinidad et al. [198]. Here, the
disadvantage is that we actually have to store all shifts Si. This approach is also consid-
ered on GPGPUs by Patel et al. [170].

As with SA and the LCP array, the BWT has also been generalized for a collection
of strings and there exist external memory algorithms for its construction [67,145].
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Wavelet Trees. For our compressed full-text index, we need to answer generalized
rank and select queries (see Sect. 2.2) on the BWT efficiently. The wavelet tree (WT ),
introduced by Grossi et al. [99], is a binary tree data structure that allows answering
both queries in time O (lgσ) and can be stored in n�lgσ�(1+ o(1)) bits of memory.
Each node of the tree represents an interval [a,b] ⊆ Σ and is labeled by a bit vector that
contains one bit for each text position i, in text order, where T [i] ∈ [a,b]. The bit is set
iff T [i] > 	(a+ b)/2
. The root node represents the entire alphabet [a,b] = Σ and is
therefore labeled by n bits, corresponding to the entire text T . A node has two children
if |[a,b]| ≥ 2. Then, recursively, the left child represents the interval [a,	(a+ b)/2
],
and the right child represents [	(a+b)/2
+1,b]. Finally, the leaves represent intervals
of size one or two. Because the alphabet is split in two halves at every node, the tree
has height �lgσ�. Figure 3b shows an example.

Instead of comparing a character to the interval’s middle to determine its bit in a
node, it is more common to look at the �lgσ� bits of the characters’ binary represen-
tations, starting with the most significant bit. Each bit tells whether to go left (zero)
or right (one), i.e., characters encode a path down the WT starting from the root. In
that regard, different codes can be used. A prominent example for using a code other
than binary is the Huffman-shaped WT , which is constructed based on the characters’
canonical Huffman codes. The bit vectors labelling the nodes then require only as much
space as the Huffman-compressed text.

Apart from text indexing, the WT has applications in more areas, as described in
various surveys on the topic [73,100,149,160]. An alternative representation of the
WT—the wavelet matrix (WM)—introduced by Claude et al. [47], is a more efficient
choice when dealing with large alphabets. It only requires negligible extra space com-
pared to the WT and can be used to answer the same queries in the same asymptotic
time. However, when answering queries, fewer constant-time binary rank queries are
needed on the bit vectors than in the WT , making it faster in practice. The similarities
and differences between WT and WM are studied in more in detail by Dinklage [61].
The remainder of this section focuses on algorithms to construct the WT in the compu-
tational models introduced in Sect. 2.1. We will refer to levels of the WT , where level �
describes the set of nodes with depth �.

We first consider sequential construction algorithms. There are various improve-
ments to naïve algorithms to construct the WT : Claude et al. [48] and Tischler [197]
give the most space-efficient algorithms using only O (lgn) bits, but do not provide a
competitive implementation. Da Fonseca and da Silva [84] give an online construction
algorithm, i.e., one where no prior knowledge of the input alphabet is required, that
runs in time O (nlgσ) and uses n�lgσ�+ o(nlgσ) bits of space. The fastest known
algorithms in theory require time O (nlgσ/

√
lgn) and were given by Babenko et al.

[18] and Munro et al. [158]. The latter was implemented by Kaneta [114], proving
that the use of modern CPU instructions can reflect theoretical improvements also in
practice. Kaneta’s results are competitive with the currently known fastest and most
space-efficient algorithm to construct the WT , which has been developed by Fischer et
al. [79 SPP]: it is based on prefix counting and, except for the topmost level, constructs
the WT bottom-up as described in the following. In a first scan of T , we compute the
histogram of T , i.e., the frequencies of all characters, as well as the topmost level of the
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WT , which consists of the characters’ most significant bits in the same order in which
they occur in T . For each remaining level � ∈ [2,�lgσ�), starting with the bottommost
level, we first compute the histogram of T . This is done by combining the frequencies
of every pair in the previous histogram: because a node combines the two intervals of
the alphabet represented by its children, the total frequency of its represented characters
is the sum of the respective frequencies of its children. The histogram for level � allows
us to easily compute the positions of the first bit for every node on level �. In one scan
of T , we can then compute the bits for all nodes on level � and directly write them to the
correct positions. The algorithm requires total time O (nlgσ) and σ�lgn� bits of space
in addition to the input and output. The same technique can be used to construct the
Huffman-shaped WT , where it also yields the best practical results in terms of speed
and space usage.

We now regard the parallelWT construction in the shared memory model. Labeit et
al. [132] gave a recursive algorithm based on the parallel split operation. Here, the avail-
able PEs process T in parallel to compute the bits for the root node. These bits are then
used to perform a parallel split of T for the left and right child, which are recursively
processed in parallel. The number of PEs used to process each child is proportional to
the sizes of the children. Two further techniques for parallelWT construction stand out:
domain decomposition and an algorithm based on sorting. The use of domain decom-
position forWT construction has first been proposed by Sepúlveda et al. [85]. The input
T is partitioned such that every PE receives a slice of size n/p. and computes the entire
WT for its slice using any sequential algorithm, e.g., prefix counting. In a subsequent
step, these WT are merged into the WT for T , which can be done efficiently by con-
catenating the bit vectors contained in the corresponding nodes. Because an arbitrary
sequential construction algorithm can be used locally, domain decomposition can be
tuned to have a very low memory footprint. The algorithm based on sorting, first pro-
posed by Shun [184], constructs the WT top-down, level by level, and makes use of
stable integer sorters, which are well studied for all practically relevant computational
models. The bits of the topmost level can be computed in an initial parallel scan of T ,
similar to the (sequential) prefix counting algorithm. Then, before proceeding to some
level � > 1, the text is reordered by stably sorting the characters according to their �-bit
prefixes, which puts them in the correct positions to compute that level’s bit vector in
a parallel scan of the reordered text. To that end, the algorithm only requires �lgσ�
parallel scans of T . For both algorithms, Shun presents techniques that allow for dif-
ferent trade-offs between work and time [185]. The best known implementations were
given by Fischer et al. [79 SPP], concluding that domain decomposition is the fastest
approach in practice, also for constructing the Huffman-shaped WT .

The parallel construction in distributed memory has been studied by Dinklage et al.
[64 SPP], confirming the practical relevance of domain decomposition, which yields the
fastest running times and best memory efficiency in practice. An important measure for
distributed memory algorithms is the communication volume. During the distributed
domain decomposition, only the merging phase requires communication between the
PEs. They also adapted Shun’s parallel sorting algorithm [184] to distributed mem-
ory and achieved nearly as good running times, albeit requiring more communication.
Because the individually constructed levels need not be partitioned into nodes, the sort-
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ing algorithm has furthermore been found to be better suited than domain decomposi-
tion for constructing the WT for large alphabets.

Finally, we look at WT construction in external memory. Ellert and Kurpicz
[69 SPP] present sequential and parallel external memory algorithms. The sequential
algorithm is based on sorting and works similar to the corresponding parallel algorithm.
Using only a constant amount of main memory, it requires two scans of T for each level
of the WT . They also provide various semi-external algorithms with similar properties,
all of which outperform the semi-external WT construction algorithms from the Suc-
cinct Data Structure Library (SDSL) [94]. Finally, their parallel algorithm makes use of
domain decomposition to distribute work on the available PEs, each PE using a sequen-
tial in-memory algorithm (e.g., prefix counting) to construct a partial WT . Because the
p parts of T may not fit into main memory, each PE furthermore partitions its part into
segments of size k such that a segment and its WT does fit in main memory. They then
process their part segment by segment. The algorithm requires four scans over T for
each level, plus σ random I/O operations for each segment. Naturally, because of the
necessary synchronizations with external memory, the algorithm only scales well up to
a limited number of PEs. Yet, the parallelization achieves a notable speedup in practice.

FM-Index. The FM-index [74] combines the BWT and (Huffman shaped) WTs to a
compressed full-text index. It is widely used, in particular in most DNA read aligners
[134] and in Bioinformatics in general (cf. Sect. 4.1).

To locate a pattern using the FM-index, a backward search is performed. Using
the C array (for each α ∈ Σ , C[α] is the overall number of occurrences of characters
in BWT that are strictly smaller than α , i.e., the rank of α in Σ ) and the WT of the
BWT to answer rankα(i) (on the BWT , cf. Fig. 3) it is possible to search backwards for
a pattern in T [74]: Given an ω-interval [i, j] (i.e., ω is a prefix of T [SA[k] ..n) if and
only if i≤ k ≤ j) and α ∈ Σ , the procedure called backwardSearch(α, [i, j]) returns the
αω-interval [lb,rb], where lb =C[α]+ rankα [i]+ 1 and rb =C[α]+ rankα [ j+ 1]. If
lb > rb, the pattern does not occur in T .

Note that any combination of BWT and WT construction algorithms can be com-
bined to compute the FM-index (in any model of computation). Still, there exist ded-
icated practical PRAM FM-index construction algorithms by Labeit et al. [132] and
Lio et al. [143]. The former combines their parallel SA (see Sect. 3.1) and WT (see
Sect. 3.2) construction algorithms to compute an FM-index (in parallel), whereas the
latter provides a parallel algorithm that computes both the BWT and the FM-index.

3.3 Suffix Trees

A suffix tree (ST ) for a string of length n is a compact trie storing all the suffixes of
T , i.e., the concatenation of the edge labels on the path from the root to leaf i exactly
spells out the suffix T [i..n); see Fig. 4a for an example. Weiner [204] showed that it can
be constructed in linear time provided that the underlying alphabet has constant size.
Farach-Colton et al. [71] gave the first suffix tree construction algorithm that is optimal
for all alphabets. It has linear run-time for alphabets consisting of integers in a poly-
nomial range. The ST is one of the most powerful data structures in string processing,
with applications in fields like bioinformatics or information retrieval, e.g., [21,45].
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Abouelhoda et al. [3] showed that there is a one-to-one correspondence between the
set of all lcp-intervals and the set of all internal nodes of the ST of T . Let us define the
concept of lcp-intervals (see Fig. 4a). An interval [i, j] in the LCP array—for simplicity,
we now assume that LCP [0] = −1 = LCP [n]—is called an lcp-interval of lcp-value � if
(1) LCP [i] < �, (2) LCP [k] ≥ � for all k with i < k ≤ j, (3) LCP [k] = � for at least one
k with i < k ≤ j, and (4) LCP [ j+1] < �. Every index k (i < k ≤ j) with LCP [k] = � is
called �-index or lcp-index. A leaf in the ST corresponds to a singleton interval [k,k].
The parent interval of an lcp-interval [i, j] (or a singleton interval) is the smallest lcp-
interval that contains [i, j] but does not coincide with [i, j].

The drawback of STs is their huge space consumption: even carefully engineered
implementations require 8–20 bytes per input character. It is possible to save a lot of
space by representing the ST topology by a sequence of balanced parentheses. The
sequence BPS, for instance, can be constructed by a depth first search traversal of the
(uncompressed) ST as follows. At each node v (starting at the root), write an opening
parenthesis, recursively process the child nodes of v, and write a closing parenthesis
afterwards (see Fig. 4b). Since the ST has n leaves and up to n− 1 internal nodes, the
BPS needs up to 4n− 2 bits. Based on the BPS, all navigational operations on the ST
can be supported with data structures that require only o(n) bits [177].

The BPS can be constructed in parallel on a shared memory architecture in the
CRCW PRAM model with the help of the LCP array as follows; see [22] for details,
where also the necessary adjustments for the CREW model are explained. Create
two arrays Co and Cc of size n, enumerate all lcp-intervals in parallel, and increment
Co[i] and Cc[ j] for each lcp-interval [i, j]. After that, compute the prefix sum PS of
sum[i+1] =Co[i]+Cc[i], and write Co[i] opening followed by Cc[i] closing parenthesis
at position PS[i] into the bitvector BPS (in parallel). It is possible to enumerate all lcp-
intervals (in parallel) with the help of the arrays PSV (previous smaller value) and NSV
(next smaller value), which are defined as follows:

PSV [i] = max{ j | 0 ≤ j < i and LCP [ j] < LCP [i]}
NSV [i] = min{ j | i < j ≤ n and LCP [ j] < LCP [i]}

Table 1 shows an example (an entry ⊥ means that the value is undefined). The
key observation is that for any index i with 0 < i < n and LCP [i] = � the interval
[PSV [i],NSV [i]− 1] is an lcp-interval of lcp-value � and i is one of its lcp-indices;
for a proof see, e.g., [166, Lemma 4.3.8]. A problem of this approach is that an lcp-
interval with multiple �-indices will occur more than once in the enumeration. To
overcome this problem, such an interval is reported if and only if i is the first (left-
most) �-index of the interval. To this end, previous smaller values (PSV ) are replaced
with previous smaller or equal values (PSEV ), where the array PSEV is defined by
PSEV [i] =max{ j | 0 ≤ j < i and LCP [ j]≤ LCP [i]}. Then [PSV [i] ,NSV [i]−1] appears
in the enumeration if and only if LCP [i] �= LCP [PSEV [i]].

The problem of computing previous smaller and next smaller values, also known
as the all-nearest-smaller-value problem (ANSV), was already solved by Berkman et
al. [27] with O (n) work and in O (log logn) time using O (n/ log logn) processors on a
CRCW PRAM.
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Fig. 4. In (a), the suffix tree for T = mississippi$ (an annotation �-[i, j] within a node shows
the corresponding lcp-interval, i.e., � is the string-depth of the node and [i, j] is the corresponding
interval). The number below the leafs is the starting position of the corresponding suffix. For the
corresponding SA and LCP array see Fig. 2. The BPS of the suffix tree is shown in (b). Matching
parentheses are connected by dotted lines. A leaf in the suffix tree is represented by an opening
parenthesis that is immediately followed by a closing parenthesis; its leaf number (leaf i repre-
sents suffix T [i..n)) is depicted above the two parentheses. The last row shows the positions of
the parentheses in the BPS.

In the following, we will focus on distributed memory. He and Huang [105] pre-
sented a bulk-synchronous parallel adaption of the algorithm invented by Berkman et
al. [27]. Flick and Aluru [82] improved their work in various directions by introducing
a generalized version of the ANSV problem. They showed how to handle duplicate
values, generalized the communication structure, and provided novel proofs. Based
on the improvements on the ANSV problem, they presented a parallel ST construc-
tion algorithm using the suffix- and LCP array that runs in O (n/p+ p) time, which
is work optimal for p = O (

√
n). In a first phase, they represent the ST as an array E
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Table 1. The LCP array with LCP [0] = −1 = LCP [n] for T = mississippi$ (cf. LCP array
in Fig. 2) and the corresponding arrays NSV , PSV , PSEV , and PFE.

0 1 2 3 4 5 6 7 8 9 10 11 12

LCP −1 0 1 1 4 0 0 1 0 2 1 3 −1

NSV ⊥ 12 5 5 5 12 12 8 12 10 12 12 ⊥
PSV ⊥ 0 1 1 3 0 0 6 0 8 8 10 ⊥
PSEV ⊥ 0 1 2 3 1 5 6 6 8 8 10 ⊥
PFE ⊥ ⊥ 1 2 2 1 1 1 1 1 1 10 ⊥

of edges (i, parent(i)). This approach requires a unique representative index for each
node v in the ST . Since v corresponds to an lcp-interval, one can choose the first (left-
most) lcp-index of that lcp-interval as a representative. Moreover, Lemma 1 shows that
the representative of the parent interval can be computed with the help of “previous-
furthest-equal” values, defined for all i with 1 < i < n as follows:

PFE[i] = min{ j | PSV [k] < j < i and LCP [ j] = LCP [k], where k = PSEV [LCP [i]]}

Lemma 1. Recall that, for any index i with 1 < i < n, the interval [lb,rb], where lb =
PSV [i] and rb = NSV [i]− 1, is an lcp-interval and i is an lcp-index of [lb,rb]. In the
following, let m = PFE[i]. If LCP [m] = LCP [i], then m is the representative lcp-index
and i is a different lcp-index of [lb,rb]. From now on we assume LCP [m] < LCP [i].
In this case, we have LCP [m] = LCP [PSV [i]]. If LCP [PSV [i]] < LCP [NSV [i]], then
NSV [i] is the representative lcp-index of the parent interval of [lb,rb]; see [166, Lemma
4.3.9]. Otherwise, PSV [i] is an lcp-index of the parent interval of [lb,rb] and m is the
representative lcp-index of that parent.

Flick and Aluru’s algorithm assumes that all inputs are distributed equally across pro-
cessors with n/p elements per process. It computes PFE and NSV in O (n/p+ p) time.
Since the processor for the range [ np j,

n
p ( j+ 1)− 1] has the corresponding portions of

LCP, PFE, and NSV in local memory, it can compute edges (i, parent(i)) in its range
based on Lemma 1. The parents of leaf nodes in its range can be computed similarly;
see [82] for details. In the second phase of their algorithm, Flick and Aluru show how
edges can be inverted (and analyse the communication complexity). This is because
for pattern matching applications, instead of having parent pointers, each internal node
should point to its children. Other algorithms for distributed ST include [44,50,212].

3.4 Query Answering

Up to this point, we only have considered the construction of different full-text indices.
Since all full-text indices that we have looked at have their origin in RAM, they can
easily be used there by allocating the incoming queries in a round robin fashion to
the PEs. However, in external or distributed memory, the obstacle is that neither the
whole text nor the whole index can be accessed in a random access manner, as in the
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construction algorithms. In this section, we take a look at different approaches to answer
queries in such a setting.

Clifford [49] show how to use a suffix tree in distributed memory to answer different
types of queries. They build the suffix tree using Ukkonen’s algorithm [199]. For this
purpose, the whole text is required at each PE, limiting the scalability of this approach
significantly.

Mäkinen et al. [148] use the compressed suffix array (CSA) [176] in distributed and
external memory. The CSA requires roughly the same space as the compressed text but
also does not need the text to answer queries (unlike the SA); it is a self-index. In main
memory, queries of length m can be answered in O (mlgn) time. They improve query
times by sampling �-length strings instead of characters and encoding the supporting
data structures using Elias delta encoding in combination with lookup tables. This allow
for constant time access to the supporting data structures (not queries). In EM, their
approach can search for a pattern of length m in O (mlgBn) I/Os (which can be reduced
to O ((mlgn)/B) if O (n) bits can be stored in main memory). In distributed memory, m
supersteps are required to answer such a query. During each superstep only a constant
number of words have to be communicated and O (lgn) local work is required.

Arroyuelo et al. [10] compare different layouts of the SA for pattern matching in
distributed memory. When each PE holds a consecutive slice of the SA, we have the
global layout. In addition to the SA, pruned suffixes are stored to speed-up querying at
the local PE. To speed up queries, a trie for the suffixes at the beginning and end of
each slice is built at each PE in order to distribute queries to the PE that can answer it
locally. Next, in the local layout, each PE holds a consecutive slice of the text and builds
a SA only for this local slice. Here, each PE must answer the query locally and return
the result, requiring only a constant number of supersteps but significant local work (as
all PEs always have to search for the query). The multiplex layout is an intermingled
global layout, where the i-th entry of the global SA is stored at PE i mod p in consec-
utive fashion, i.e., the i-th and (i+ p)-th entry are stored consecutively at the same PE.
Corresponding pruned suffixes are stored as in the global layout. The multiplex layout
(and in some cases the global layout) is the most efficient one in their experiments. They
also propose two additional layouts that, however, perform not as well in practice.

The global layout is extended by Fischer et al. [80 SPP]. Instead of answering the
query directly on the SA, a Patricia trie [156] is constructed for each local slice. To
this end, the LCP array (see Sect. 3.1) is required. Furthermore, a global trie is used to
distribute the query to the corresponding PE. These two tries together allow queries to
be answered with a constant number of supersteps.

Flick and Aluru [83] further improve the above two-level designs by developing
the distributed enhanced SA (DESA). One improvement of DESA is to eliminate the
explicitly stored tree structure of the two-level indices. Also, the DESA does not par-
tition the text into consecutive slices of the same size (where queries may have to be
answered on multiple PEs) but partitions the text into more fine grained intervals, such
that all intervals can be processed on a single PE. This approach currently scales best
in practice. The local search is an adapted version of Fischer and Heun’s [75] query
algorithm for enhanced SAs [3]. Hence, they only need the SA, LCP array, range mini-
mum queries (RMQs, returning the positions of the smallest element in a given range),
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and some additional information. To help load balancing queries, the top level trie is
dynamically (based in the input) constructed such that each bottom level index, corre-
sponding to a leaf in the top level trie, covers intervals of size n/cp for a constant c.
To this end, the ANSV problem (cf. Sect. 3.3) is solved. This approach is significantly
better than a static top level lookup table and overall the best in practice.

4 Applications

All previously described text indices have more applications than (exact) pattern match-
ing. They can also be used to answer approximate queries, i.e., when allowing differ-
ences between the pattern and the matched positions. Pockrandt [171] shows how to
transform those queries into exact queries. This is also used in practice in the SeqAn
library [175], which contains efficient algorithms and data structures for the analysis
of biological data (and strings in general). Furthermore, they can be used to compute
succinct de Bruijn graphs, all pairs suffix-prefix overlaps, and maximal repeats [67]. In
the following, we take a more detailed look into two fields where text indices are of
great importance—Bioinformatics (Sect. 4.1) and lossless compression (Sect. 4.2).

4.1 Bioinformatics

The most successful application of index structures in bioinformatics is backward
search based on an FM-index [74] (e.g., in form of the WT of the BWT of the input
string [99], cf. Sect. 3.2). For information on k-mer-based tools, we refer to the recent
survey by Marchet et al. [151].

The most important application of backward search in bioinformatics is read map-
ping. Ultra-high-throughput next-generation sequencing technologies (NGS) have been
commercially available since 2005. In NGS, DNA is fragmented into small pieces, of
which the first few bases are sequenced, yielding several millions of short “reads”, each
30 to 400 base pairs (“DNA characters”) long. The read mapping task is now to align
these reads to a reference genome, i.e., to the known, nearly complete chromosomal
DNA sequences of the organism in question (which may be up to several billion base
pairs long); see [43] for an overview article.

Short read mappers like Bowtie [135] or BWA [140] must be able to deal with
(sequencing) errors. Inexact matching is either based on recursive algorithms that use
backtracking or on the seed-and-extend strategy (exact matches are used as seeds and
the shared seeds are then extended into longer, inexact alignments). The same approach
has also been successfully applied in genome assembly [187] (sequence assembly refers
to aligning and merging reads in order to reconstruct the original sequence). Here, the
fastest implementations only utilize a few threads [24]. Those read mappers usually do
not use parallel construction algorithms, as the reference sequences are short, allowing
a space-efficient sequential algorithm to compute the index in less than an hour.

Alignments of longer sequences (ranging from long read mapping to whole genome
alignment) are also obtained by exact matching and the seed-and-extend method. One
of the earliest tools in comparative genomics is based on suffix trees (and later on suf-
fix arrays) [55], but there are also tools using the BWT [142]. The major principle of
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comparative genomics is that common features of two organisms will often be encoded
within the DNA that is evolutionarily conserved between them. Therefore, comparative
genomic approaches start with making some form of alignment of genome sequences.
Then, they look for orthologous sequences (sequences that share a common ancestry)
in the aligned genomes and check to what extent those sequences are conserved. Nowa-
days, one tries to take multiple genomes simultaneously into account; see [51] for an
overview of pangenomics. When it comes to the alignment of longer sequences, scaling
algorithms are used, e.g., multithreaded semi-external prefix-doubling algorithms [190]
or building multiple partial indices (in parallel) and merging them [191]. Compressed
suffix trees and FM-indices have been used in indexing variation graphs [92] and for
graphical pangenome analysis [21]. In particular, the balanced parentheses sequence
BPS from Sect. 3.3 was used for indexing variation graphs [190] (using the algorithm
described in [168]). Using a dynamic FM-index, sequences can be inserted in batches,
which can easily be parallelized [139].

4.2 Compression

Text indices have been successfully applied to text compression, most notably to com-
pressors based on the BWT (see Sect. 3.2) and on different variants of the Lempel-Ziv
parsing of the text. Intuitively, this link between indexing and compression seems plau-
sible, as in both cases one tries to ‘group’ similar substrings; in the former for listing
occurrences, in the latter for exploiting the repetitiveness to somehow save space. We
only consider compressors that operate over the full text (not restricted to small sliding
windows/blocks); this is important for highly repetitive texts such as DNA collections
of individuals from the same species.

Lempel-Ziv in External Memory. The LZ77-factorization [213] of a text T is defined
as follows: suppose T [0..i) has already been parsed into LZ77-phrases. Then the next
LZ77-phrase is the longest prefix of T [i..n) that has an occurrence in T starting strictly
before i (but possibly ending in T [i..n)), or a single character if T [i] does not occur
before. Given a text index on T , this prefix can be located by iteratively querying for
T [i..i+ 1), T [i..i+ 2), . . . , as long as an occurrence starting before i exists. In main
memory, Fischer et al. [76] have the most space efficient implementation of this idea
using compressed variants of the suffix tree, needing only (1+ ε)n logn+O (n) bits
of space and running in O (n/ε) time. The difficulty in EM is, of course, that such
repeated querying causes too many I/Os. Kärkkäinen et al. [120] avoid this in two ways:
in their EM-LPF algorithm, they first compute the array of longest previous factors in
EM, from which the LZ77 factorization is easily obtained in total sort(n) I/Os. Their
second algorithms, EM-LZScan, divides T into blocks of size Θ (M) and then computes
matching statistics [166, Sect. 5.5.4] of the current block w.r.t. the prefix of T up to the

current block. EM-LZScan needs O
(

n2 logσ
BM logn

)
I/Os in theory, but is significantly faster

in practice than EM-LPF for highly repetitive texts. A different approach was taken by
Dinklage et al. [62 SPP], who show that the flexibility of allowing factor occurrences
also be to the right of their starting position (so-called bidirectional parsings) leads
to a much better throughput than EM-LZScan, while achieving similar compression
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rates. Their algorithm plcpcomp has been successfully applied to texts of size 128 GiB
on a machine with just 16 GiB of RAM. Considering decompression, Belazzougui et
al. [25] show the I/O-complexity to be sort(n/ logσ n) I/Os and also give a practical
implementation; however, this algorithm cannot be applied to the bidirectional variant,
which is much slower at decompression. Other variants of LZ exist, but have so far
not been successfully applied to large datasets, although promising approaches exist for
LZ78 that might lead to semi-external solutions [11].

Parallel Burrows-Wheeler-Based Compression. In Sect. 3.2, we already mentioned
the relevant literature for computing the BWT L. This output can be postprocessed to
compute a compressed version of T , as characters following a similar preceding context
are grouped in L. The postprocessing consists of computing the move-to-front numbers
when processing L from left to right, followed by a Huffman encoding of the resulting
numbers. On the PRAM, Edwards and Vishkin [66] show how to perform those latter
steps in O (logn) parallel time and O (n) work, and report good speedups on FPGA-
hardware over popular tools such as bzip2, although only using moderately-sized inputs.
They also show how to decompress the resulting file within the same complexities. At
their core, the algorithms are reduced to the building blocks prefix sums (cf. Sect. 2.2)
and list ranking. Geared more towards practice, Patel et al. [170] have similar ideas and
show GPGPU implementations; however, they use mergesort for computing the BWT
and report this as their main bottleneck.

We are not aware of any algorithms in external or distributed memory implementing
the full BWT compression pipeline, despite that algorithms for computing the BWT
exist in these models of computation (see Sect. 3.2).

5 Conclusion and Future Work

Advanced text index data structures such as suffix trees, suffix arrays and wavelet trees
are key to handling large data sets in a range of important applications. A combination
of parallel, external, and compressed implementations can approach the requirements
for handling the exploding amounts of available data.

In this short survey, we have discussed a number of techniques for building and
using such data structures. Our impression is that memory hierarchies and compression
by themselves are fairly well understood by now. A range of parallelization approaches
are known but they suffer from a tradeoff between asymptotic scalability and effi-
ciency. In particular, the most efficient sequential and external techniques are inherently
sequential. Hence, a number of important open problems remain. These involve highly
scalable techniques with good constant factors (e.g., for constructing suffix arrays and
LCP arrays with linear work) as well as integration of parallelism, memory hierarchies,
compression and applications. Another interesting research direction is to engineer
recent text indices for highly repetitive data [91] for handling large texts. In principle,
big data frameworks such as Thrill [29 SPP] can handle parallelization and memory
hierarchies automatically but the question remains whether the involved overheads are
acceptable.
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