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Abstract

In this work the modeling, optimal and nonlinear control of marine surface vessels (MSVs)
is addressed along with collision avoidance, state and disturbance estimation. The basis
of the control and estimation schemes is the underlying mathematical model. Therefore,
a thorough derivation of the nonlinear dynamical model of MSVs is presented, which
takes into account a combination of rigid body dynamics and hydrodynamic effects. The
former is derived using Newton’s and Euler’s laws of motion and the latter using a Taylor
series expansion of the hydrodynamic forces acting on the vessel hull. Furthermore, the
effect of the propulsion is taken into account, which includes actuation forces caused by
propellers and rudders. A nonlinear control design is presented that is based on feedback
linearization, which transforms the nonlinear system into a decoupled linear system by a
suitable change of coordinates and nonlinear state feedback control. The resulting linear
system is then controlled using a linear pole placement controller. Based on the propulsion
model, a control allocation is presented, which is used for overactuated vessels to distribute
the desired control forces to the actuators and realizes secondary goals such as minimum
wear and tear of the actuators. The control allocation problem constitutes a constrained
static optimization problem that is solved using numerical methods. In this context, an
interior-point sequential quadratic programming (SQP) line search method is proposed
that is able to cope with nonlinear static constrained optimization problems and serves as
an example for state-of-the-art methods of numerical optimization and their complexity.
Additionally, a predictive controller is proposed, which is able to handle constraints on the
control inputs and states. The latter are especially relevant in the context of the control of
MSVs in confined areas, where collision avoidance is a major concern. Usually, obstacles
are handled using potential fields, which are added to the cost function, or by imposing
implicit inequality constraints to the model predictive control (MPC) problem. Most
popularly, ellipsoidal constraints are used that overestimate the obstacle shapes and fail
to include the controlled vessel’s shape. To this end, dual collision avoidance constraints
in combination with culling techniques are introduced that are able to represent convex
vessel shapes efficiently. Moreover, the dual approach is able to include the controlled
vessel’s shape making it especially useful for applications in confined environments.
Both control approaches rely on the full state information. Therefore, state estimation is
addressed by means of an adaptive iterated Extended Kalman Filter (AIEKF). This filter is
able to additionally estimate time-varying noise covariance matrices and disturbances.
The nonlinear controller in combination with the control allocation scheme is used to
illustrate a dynamic positioning problem, where a high fidelity simulation with two
different disturbance observer and measurement models is compared. The optimization-
based control scheme is illustrated by means of a predictive path following collision
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avoidance problem in the Kiel Bay area, where Automatic Identification System (AIS) data
is used to simulate the vessel traffic.

ii



Kurzfassung

In dieser Arbeit wird die Modellierung, optimale und nichtlineare Regelung von Schiffen
behandelt. Darüber hinauswird die Zustands- und Störgrößenschätzung behandelt. Grund-
lage der Regelungs- und Schätzverfahren ist das mathematische Schiffsmodell. Daher er-
folgt eine ausführliche Herleitung des dynamischen Schiffsmodells, das eine Kombination
aus Starrkörperdynamik und hydrodynamischen Effekten darstellt. Erstere wird mithilfe
der Newtonschen und Eulerschen Bewegungsgesetze abgeleitet, während letztere mithilfe
der Taylor-Reihenentwicklung modelliert werden. Darüber hinaus wird die Auswirkung
des Antriebs analysiert, der die Effekte der Aktuatoren mit einbezieht. Das nichtlineare
Regelungskonzept basiert auf einer exakten Linearisierung, die das System durch eine
geeignete Koordinatentransformation und ein nichtlineares Stellgesetz in ein lineares Sys-
tem überführt und entkoppelt. Das resultierende lineare System wird dann mithilfe einer
Polplatzierung stabilisiert. Basierend auf dem Antriebsmodell wird die Control-Allocation
vorgestellt, die bei überaktuierten Schiffen verwendet wird, um die geforderten Kräfte auf
die Aktoren zu verteilen und sekundäre Ziele wie z.B. minimalen Verschleiß zu realisieren.
Die Control-Allocation stellt ein beschränktes statisches Optimierungsproblem dar, das mit
numerischen Methoden gelöst wird. In diesem Zusammenhang wird ein Interior-Point-
SQP-Liniensuchverfahren vorgestellt, das in der Lage ist, Probleme dieser Art zu lösen
und als Beispiel für State-of-the-Art-Methoden der numerischen Optimierung und zur
Veranschaulichung der Komplexität derer dient. Zusätzlich wird eine modellprädiktive
Regelung (MPC) erläutert, die in der Lage ist, Eingangs- und Zustandschranken zu berück-
sichtigen. Letztere sind besonders relevant im Zusammenhang mit der Schiffsführung in
beengten Seegebieten, bei der die Kollisionsvermeidung von entscheidender Bedeutung
ist. Üblicherweise werden Hindernisse mithilfe von Potentialfeldern berücksichtigt oder,
indem demMPC-Problem Ungleichheitsbeschränkungen auferlegt werden. Am häufigsten
werden dabei Ellipsoide verwendet, die die Hindernisformen überschätzen und die Form
des geregelten Schiffs nicht berücksichtigen. Zu diesem Zweck wird ein duales Konzept in
Verbindung mit Culling-Methoden vorgestellt, das konvexe Schiffsformen darstellen und
einbeziehen kann. Darüber hinaus berücksichtigt der duale Ansatz die Form des geregelten
Schiffs, was besonders in beengten Seegebieten nützlich ist. Beide Regelungskonzepte
benötigen die vollständige Zustandsinformation. Daher wird die Zustandsschätzung
mithilfe eines adaptiven iterierten erweiterten Kalman Filters gelöst. Dieses Filter ist in
der Lage, zusätzlich zeitlich veränderliche Rauschkovarianzmatrizen und Störgrößen zu
schätzen. Der nichtlineare Regler in Kombination mit der Control-Allocation wird ver-
wendet, um ein dynamisches Positionierungsproblem zu veranschaulichen, bei dem eine
High-Fidelity-Simulation mit zwei verschiedenen Störgrößenmodellen verglichen wird.
Die optimierungsbasierte Regelung wird anhand eines prädiktiven Pfadfolgeproblems mit
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Kollisionsvermeidung in der Kieler Förde veranschaulicht, das Automatic Identification
System (AIS)-Daten zur Simulation des Schiffsverkehrs verwendet.
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”Learning does not make one learned: there are those who have knowledge and those who
have understanding. The first requires memory, the second philosophy.”’

–Alexandre Dumas, The Count of Monte Cristo

”A little learning is a dangerous thing;
Drink deep, or taste not the Pierian spring:
There shallow draughts intoxicate the brain,
And drinking largely sobers us again.
Fired at first sight with what the Muse imparts,
In fearless youth we tempt the heights of arts,
While from the bounded level of our mind,
Short views we take, nor see the lengths behind,
But more advanced behold with strange surprise,
New distant scenes of endless science rise!”

–Alexander Pope, An Essay on Criticism
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Part I.

Introduction





1. Motivation

The field of autonomous navigation and control of marine surface vessels (MSVs) receives
a growing interest in the research community. This is mainly due to the fact that over
80 % of goods are transported on the seaway [63]. Thus, economic aspects drive the
research and development of autonomous navigation and control techniques of marine
craft to reduce the cost of transportation in freight shipping. The latter includes the
cost of human operators on the ship and the cost of fuel. Both these cost factors can be
mitigated by automation of the navigation and control of the ship. Safety requirements
constitute another driving force for the development of autonomous navigation and control
techniques as most accidents can be traced back to human error. These requirements
include the ability to detect and avoid static and dynamic obstacles taking into account the
International Maritime Organization measures of increasing safety of navigation at sea, in
particular, the International Regulations for Preventing Collisions at Seas (COLREGs) [75].
Other safety-critical factors include the compensation of environmental disturbance forces
and the ability to perform safe and efficient docking maneuvers in confined areas. The
latter is especially relevant in the context of autonomous passenger ferry transportation.
Autonomous systems that cope with these challenges enable safer vessel operation in
many applications such as autonomous passenger ferry operation in remote and isolated
areas [90], autonomous cargo transportation [146], and autonomous offshore operations,
e.g., for wind park installation, oil rig maintenance, drilling, and pipe laying [145, 156].

From a theoretical point of view, the field of autonomous navigation and control of
marine craft is a challenging task due to the wide variety of requirements ranging from
robust and reliable control schemes that need to take into account physical limitations as
well as environmental uncertainties to observer design that needs to be able accurately
reconstruct states, parameters, and disturbances acting on the ship based on noisy and
possibly unreliable sensor measurements. The magnitude of these individual requirements
is linked to their respective application, which range from trajectory tracking [122] and
path following [25] to obstacle avoidance [37] and dynamic positioning [145]. Most if not
all of these approaches rely on the use of amathematical model of the vessel, which includes
the rigid body characteristics of the ship and the effects of the ship displacing water during
maneuvering. Furthermore, a variety of different forces and moments acting on the ship
needs to be considered, such as the hydrodynamic forces and moments effecting from the
vessel’s propulsion system, the environmental forces and moments resulting from wind,
waves, and ocean currents, Coriolis effects, and viscous damping forces and moments. The
complexity of the model is, again, linked to the application it is being used in. It ranges
from simple transfer functions for autopilots [120] to nonlinear maneuvering models
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for dynamically positioned vessels [1, 52]. The complexity and variety of the individual
aspects of autonomous control of MSVs motivate the need of a concise and comprehensive
derivation of the mathematical modeling of MSVs and, furthermore, necessitate the need
for a systematic and structured approach to the design and synthesis of a wide variety of
state-of-the-art control and observer designs techniques.
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Figure 2.1.: Schematic control loop structure with GNC of an MSV (dashed) with reference pose 𝜼∗, feedback,
commanded, and realized control forces 𝝉 fb, 𝝉∗c , and 𝝉 c, respectively, optimal control surfaces 𝒖∗, measurements
𝒚 , measurement noise 𝒗, real and estimated states 𝒙 and �̂� , respectively, and real and estimated disturbances 𝝉d
and 𝝉d, respectively.

In this chapter, an overview of the state of the art in the field of autonomous vessel control
is provided w.r.t the different elements of the control loop that is usually categorized into
guidance, navigation and control (GNC) as depicted in Fig. 2.1. To this end, focus is put
on the navigation and control elements.

2.1. Mathematical Modeling

First attempts to obtain a mathematical model for the dynamic behavior of marine vessels
date back to Davidson and Schiff [33], which has been extended by Nomoto et al. [120]
and where sway-yaw interactions are modeled as a first-order system that is decoupled
from the surge dynamics. These models are still used in many situations [4, 26] today
and can be extended to include higher-order terms [47, Sec. 7.2.3]. A major development
regarding the development of maneuvering models for marine craft constitutes the work
of Abkowitz [1], who derived a nonlinear dynamical model based on the combination
of rigid body dynamics and a Taylor series expansion of forces and moments acting on
the vessel w.r.t. an operating point. The large number of resulting parameters in the
model is greatly reduced by symmetry considerations of the vessel hull. Several variants
arose based on this model, e.g., the so-called modulus model proposed in Fedayevsky and
Sobolev [44], where some of the higher-order terms in Taylor series terms of the Abkowitz
model are replaced with absolute value functions. A more recent development regarding
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the modeling of marine craft is the work of Fossen [48], who introduced the nonlinear
maneuvering model in a structure resembling that of robotic manipulators. This latter
model is very widely-used today. Modeling of marine craft can be distinguished between
Newtonian, Lagrangian, and Kirchoff approaches, all of which are equivalent in the sense
that they yield the same equations of motion [105, 27]. For a detailed overview of different
modeling techniques of marine craft, see Sutulo and Guedes Soares [147].

2.2. Control

In general, the different control algorithms applied to MSVs can be classified into two cate-
gories, namely, classical and optimization-based approaches. Classical control approaches
can be further distinguished into linear and nonlinear methods, where the former rely
on a simplified, linear vessel model which include, e.g., the Nomoto model or linearized
maneuvering models and methods from linear control theory can be utilized for controller
design such as, e.g., Laplace transform, Bode plots, and pole placement [32]. The latter
approaches make use of nonlinear maneuvering models and apply techniques of nonlinear
control theory such as, e.g., feedback linearization, flatness-based feedforward control,
passivity-based approaches, and backstepping [123, 174, 53, 49]. Optimization-based
approaches utilize the theory of dynamic optimization and can handle both linear and
nonlinear mathematical models of the vessel. Depending on the application, different
control approaches are prevalent. Trajectory tracking controllers for MSVs can be de-
signed using Lyapunov’s direct method as shown, e.g., in Breivik and Fossen [22] or
feedback linearization [122, 123] but recently increasingly rely on optimization-based
approaches see, e.g., Kosch et al. [87], Kinjo et al. [83]. Path following controllers are han-
dled very similarly to trajectory tracking controllers. However, in this context, proportial
integral derivative (PID) controllers are also applied to solve the task see, e.g., [47, Sec.
10.3.2],[25, 112]. Furthermore, apart from classical feedback linearization approaches [123],
an extension to the transverse normal form can be used to explicitly include the degrees of
freedom (DOFs) resulting from the path following problem see, e.g., Banaszuk and Hauser
[10], Nielsen and Maggiore [115], Nielsen et al. [116]. Apart from nonlinear control theory
approaches, optimization-based methods can be applied to solve the path following prob-
lem [58, 39, 41, 42]. Moreover, hybrid approaches combine optimization-based methods
with nonlinear approaches such as differential flatness as proposed in [17]. The task of
dynamic positioning can be solved with PID controllers as proposed by [133]. The first
optimization-based approach has been introduced by Balchen et al. [9] where, among
other techniques, wave and wind filtering techniques were integrated into the distur-
bance estimator. Alternatively, nonlinear approaches such as feedback linearization [14],
backstepping [49], and passivity [51] are also widely-used and allow for useful analytical
insights into the control problem. Control allocation, which maps desired control forces
and moments to the actor configuration on the vessel, can be categorized based on the
assumptions of the underlying actor model, i.e., time-varying and time-invariant models.
The former usually results in a dynamic optimization problem see, e.g., Brandner [21],
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whereas the latter results in a static optimization problem. This latter approach is much
more commonly used and can be solved efficiently using a variety of methods as shown,
e.g., in Johansen et al. [79], Bodson [18].

2.3. Obstacle Constraints

Most commonly, obstacles are represented using implicit functions and, more specifically,
ellipsoidal representations [16, 175, 72]. See also Tab. 2.1 for an overview of obstacle
representations and related methods. Alternatively, CSG functions combine geometric
primitives (such as implicit quadric functions) with set operations [129], i.e., set union
and set intersection and allow versatile obstacle shapes but are inherently difficult to
produce and, therefore, are seldom used [174]. For convex polyhedra an extensive amount
of research has been conducted and several very efficient algorithms have been developed
that make extensive use of the convexity property. This is mainly due to the fact that
convexity is very well-studied and understood [20]. Therefore, it is no surprise that the
convex polyhedral representation is a very efficient and accurate obstacle representation
technique that gains popularity in the context of collision avoidance in optimal control
problems (OCPs) [175, 124, 160, 161]. Non-convex polyhedra and other non-convex shapes
are usually decomposed into a set of convex polyhedra and, therefore, are handled with
corresponding methods. Another way to deal with collision avoidance constraints in
the context of polyhedral objects is to associate a binary variable with the polyhedral
faces and formulate the collision avoidance as a mixed-integer linear problem [130].
However, the solution of these types of problems often relies on heuristics and, as the
name suggests, is often restricted to linear costs and constraints [62]. These limitations
restrict the applicability of the mixed-integer approach since the majority of autonomous
vehicle control problems involves nonlinearities in one way or the other. More generally
applicable are (non-integer) optimization-based techniques, where the notion of a distance
function is often used to evaluate collision avoidance. Especially focused on robotics, this
idea originated, e.g., in [59], where the distance constraint is included as part of an OCP
to ensure collision avoidance. Therein, the distance is calculated in each iteration step by
a subordinate algorithm. Not surprisingly, the authors of [59] also proposed the Gilbert-
Johnson-Keerthi (GJK) algorithm, which can be used to calculate the distance between
two objects efficiently [60]. This algorithm is more commonly known in the context
of computer game physics and various improvements have been proposed to improve
efficiency [111]. Since formany applications ameasure of severity of collisions is of interest,
the distance in the OCP (or physics engine) can be replaced with the signed distance, which
also provides a measure of penetration depth in case of collision. To this end, the GJK
algorithm is complemented by the expanding polytopes algorithm (EPA) that evaluates
the penetration depth of overlapping obstacles [151]. This so-called primal approach of
including the (signed) distance as part of the OCP can also be found in, e.g., [101, 136].
However, since the (signed) distance function is not continuously differentiable, problems
may occur in the optimization algorithm using the primal method. Even though empirical
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Mathematical Repre-
sentation

Associated Method(s) Application(s) to collision avoidance

N
on-

polyhedral

Implicit func-
tions [121]

Level Set Method, Fast Marching
Method [139]

Quadric obstacle shapes [175, 16, 72]

Parametric
curves [91]

[135], B-splines, NURBS [125] –

Constructive Solid
Geometry [129]

– Versatile obstacle shapes [174]

Polyhedral

Convex [20] Lagrange Duality [20, 175],
GJK [60], EPA [151], Culling [57,
172]

Polyhedral obstacle
shapes [175, 161, 124, 160]

Non-convex Convex decomposition [57] –

Table 2.1.: Classification of obstacle representations, related methods and example applications for collision
avoidance OCPs.

evidence suggests that this problem seems negligible see, e.g., [101, 136], various measures
have been proposed to circumvent this issue such as in [134], where the (signed) distance
constraint is approximated using a convex free region. Another popular approach is to
reformulate the (signed) distance constraint by making use of the Lagrange dual problem
of the (signed) distance, which is itself an optimization problem, see [20]. This leads to
the dual method that provides an exact, continuously differentiable re-formulation of the
primal (signed) distance OCP but comes at the cost of additional dual decision variables
see, e.g. [124] for its (first) application to aircraft trajectory generation. Recently, this
approach has been adapted and improved for other applications see, e.g., [45, 175, 144, 160],
where the focus lies on multi-robot coordination, autonomous vessel operations, robust
MPC, and autonomous parking, respectively. A further improvement to the dual method
is demonstrated in [57], where a culling procedure is proposed that minimizes the number
of dual decision variables as part of a proprietary active-set SQP algorithm. In [172], this
concept is adapted to perform culling a priori to solving the OCP in order to allow the
use of a variety of general purpose solvers. Along with the use of GJK and EPA in the
primal approach, this technique demonstrates a further connection of optimization-based
autonomous vehicle control to computer graphics principles since it is a fundamental
concept in computer graphics rendering pipelines see, e.g., [36, 74]. In [45], a semi-dual (or
distributed) approach is introduced, where the (signed) distance is not included to the OCP
using dual variables, but is rather calculated as a subordinate optimization problem (similar
to the primal approach) obtained using the Lagrange dual problem of the (signed) distance
definition (different from primal approach). For a more general review of the dual method
and focus on generating a feasible initial guess for the dual variables see [172, 161].
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2.4. Navigation

At the core of the navigation system that collects sensor information is the navigation filter
or observer that takes care of the estimation of the vessel’s position and orientation in the
global reference frame along with its translational and angular velocities, and possibly
also disturbances and system parameters. De-facto standard for this task is the Kalman
Filter (KF) in one of its variants [80], especially the EKF [140, 55] and the Unscented
Kalman Filter (UKF) [34, 35, 118]. However, especially in the context of disturbance
estimation, nonlinear observers become more prevalent [6, 7, 51, 96].
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3. Objectives

This thesis aims to provide a concise overview of several aspects of the GNC loop depicted
in Fig. 2.1. This work aims to analyze, explain, combine, and extend several state-of-the-
art methods for all of the depicted components of the control loop with special focus
on the mathematical model, predictive high-level controller design, obstacle modeling,
collision avoidance, EKF-based state and disturbance estimation, and control allocation.
The basis for most of the components of the control loop is the underlying mathematical
vessel model. Therefore, a thorough derivation of the mathematical vessel model is given
and, based on this, two widely-used high-level controller architectures are introduced
that are able to cover two of the most important applications for marine craft, namely,
path following and dynamic positioning. The control architectures consist of an MPC
controller and a nonlinear controller based on feedback linearization that can be utilized in
combination with a control allocation algorithm. The former constitutes a special type of
OCP that needs to be solved numerically on a receding horizon, which results in an MPC
controller, which is one of the most widely-used control schemes next to PID controllers.
In this context, a typical numerical method to solve the MPC problem is discussed that is
especially suited for collision avoidance applications by making use of a so-called culling
procedure. The latter controller makes use of methods related to more classical approaches
of nonlinear control design and a short but concise overview of these types of methods is
given. In principle, the control allocation can be applied to both control schemes but is
especially suited for the combination with the nonlinear controller in that it distributes
the commanded generalized control forces 𝝉∗c to the actuators 𝒖∗ taking into account actor
constraints. In the context of control allocation, secondary goals apart from realizing the
commanded control force can be introduced such as, e.g., minimum wear of the actuators,
making it especially relevant for practical implementations. The solution to the control
allocation problem relies on a numerical solution to a static constrained optimization
problem. To this end, a novel interior-point SQP line search algorithm is proposed that
captures the essence of these types of solution approaches. A fundamental aspect of the
control loop is the estimation of the states and disturbances to close the control loop. In
this context, the EKF is discussed and several extensions are introduced that elevate the
EKF to a higher-order filter and make it suitable for the estimation of the process and/or
measurement noise covariance, and parameter estimation.

Whenever feasible, this thesis aims to provide theoretical backgrounds of the above-
mentioned approaches that are in itself contained. All in all, the key contributions of this
thesis are summarized as follows:
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• Concise derivation of the mathematical vessel model including the forces acting on
it.

• A novel interior-point SQP line search algorithm suitable for, e.g., the solution of
control allocation and OCPs.

• Derivation of a flat parameterization of fully-actuated surface vessels.

• Dual collision avoidance constraints for MPC problems.

• Size reduction of the underlying collision avoidance MPC problem with culling
techniques.

• Combination of adaptive covariance estimation with an AIEKF.

• Wind disturbance and measurement model for state and disturbance estimation.

The proposed methods are illustrated by means of two high-fidelity simulations. The first
illustrates the MPC control using a simple observer model with dual collision avoidance
and culling techniques. The second simulation illustrates the control allocation using a
nonlinear controller and an AIEKF with adaptive covariance estimation with two differ-
ent observer models, which are used to simultaneously estimate the system states and
disturbances acting on the system.
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This thesis is separated into three parts. The second part of the thesis is the main part and
is concerned with theoretical foundations. To this end, that particular part is separated
into four chapters.

The first chapter of the first part gives a detailed derivation of the mathematical modeling
of MSVs that is the foundation of most of the following concepts and ideas. Therefore, the
mathematical model is derived using rigid body dynamics and, subsequently, introduces
all relevant hydrodynamic forces and moments acting on the hull of the vessel. These may
be separated into acceleration- and velocity-dependent forces and moments as well as
environmental and controlled forces. The resulting mathematical model is then compactly
represented as a first order ordinary differential equation (ODE) in input-affine form.

The second chapter discusses two controller designs. First, it introduces and recalls classi-
cal methods of nonlinear control theory, namely, feedback linearization and differential
flatness, which are usually applied to MSVs in the context of dynamic positioning. This
section then applies the aforementioned concepts to the general structure of the MSV
model to obtain further insight in the model. In this context, optimization-based con-
trol allocation is discussed, which is especially suited to be used in combination with
the nonlinear control design, since it solves the problem of distributing a given, desired
generalized input force to the effectors and actuators of the vessel in an optimal way. This
resulting static optimization problem is taken as a motivation to introduce fundamental
concepts of constrained, static optimization and the numerical solution thereof. Therefore,
a basic interior-point SQP line search method is introduced as an example of the com-
plexity of finding an optimal solution to nonlinear optimization problems. Furthermore,
this chapter reviews the method of optimal control that enables to compensate for the
disadvantages of methods from classical nonlinear control theory by taking into account
input and state constraints. Therefore, the fundamental concepts of constrained, dynamic
optimization problems are discussed, and numerical solution techniques are analyzed,
which, in general, rely on the solution of a large-scale nonlinear program (NLP). Further-
more, the proposed OCP is extended to a nonlinear MPC scheme that is able to deal with
time-varying constraints and disturbances and, essentially, realizes a closed-loop control
by solving the OCP on a finite, receding horizon.

The third chapter focuses on the obstacle modeling and implementation in confined
environments in the context of MPC. To this end, a dual formulation is introduced that
takes into account polyhedral obstacle shapes as well as the geometry of the controlled
vessel. Several variations of these types of constraints are derived depending on whether

13



4. Outline

the controlled vessel is assumed to be a point or its full geometry is considered. Moreover,
a culling procedure is proposed to achieve an efficient solution to the resulting MPC
problem.

The fourth chapter deals with the EKF-based state and disturbance (parameter) estimation.
Several extensions are reviewed and combined to maximize the EKF performance, namely,
an iterative measurement update realizes higher-order filter performance, and adaptive
covariance estimation is proposed to compensate for possible missing knowledge w.r.t.
the process and/or measurement noise covariance matrices.

The third part of the thesis is concerned with the application of the proposed theoretical
concepts to the problem of predictive path-following and dynamic positioning of MSVs by
means of high-fidelity simulations. The first chapter in this part deals with the dynamic
positioning of a MSV and utilizes a nonlinear feedback linearization to achieve this task in
conjunction with a control allocation and AIEKF-based state and disturbance estimation.
Subsequently, the second chapter illustrates a model predictive controller that realizes
a path-following problem in a confined environment using real AIS data and, therefore,
also realizes collision avoidance by means of the dual collision avoidance constraints and
culling techniques.

Finally, conclusions are summarized and directions for future work are outlined in the
fourth part. The appendix provides example solutions of a static and dynamic optimization
problem and compares the performance of the proposed interior-point SQP line search
method to a state-of-the-art solver. Furthermore, analytical Jacobians for the proposed
observer models are provided.
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5. Mathematical Modeling of MSVs

In this chapter the three DOF mathematical model of MSVs is derived, which is modeled
as a set of ODEs. These equations of motion can be separated into a kinematic part
and a kinetic part [47]. The kinematic part relates the ship’s velocities described in an
inertial frame, namely, the North-East-Down (NED) frame, and a body-fixed frame. The
kinetic part describes the dynamics of the vessel based on forces and moments acting on
the hull. Here, focus is put on the derivation of the equations of motion using classical
mechanics. This particular approach involves the description of translational motion using
Newton’s Second Law and the description of rotational motion using Euler’s Second Law.
Alternatively, the equations of motion can be derived using Kirchhoff’s equations [84],
which constitute a special form of the Lagrange formalism, see [132]. However, all three
methods are equivalent see, e.g., [27]. In the following, a thorough derivation of the
equations of motion is presented that first considers the inertial frame as the reference
frame for the ship’s motion and, subsequently, expresses the resulting equations in the
body-fixed frame, which facilitates the formulation of the ship’s actuation forces and
moments.

Notation

In this chapter, a specific notation similar to Hahn [64] is used to clarify quantities
expressed in different frames and to distinguish different reference points.

More specifically, position vectors are expressed using the notation 𝒑from to
expressed in, e.g., a

vector pointing from the body-fixed origin to the center of gravity (CG) expressed in
the inertial frame is denoted using 𝒑𝑏𝑔

𝑖
. Furthermore, angular velocity is expressed with

𝝎of
expressed in, and forces with 𝒇 acting on

expressed in, e.g., a force acting on a vessel’s CG expressed in

the inertial frame is denoted using 𝒇𝑔
𝑖
. For (turning) moments, the notation 𝒎

with respect to
expressed in

is used, e.g., a moment with respect to a vessel’s body-fixed origin expressed in the inertial
frame is expressed using 𝒎𝑏

𝑖 . Unless otherwise noted, a time derivative is always assumed
to be w.r.t. the corresponding frame where the underlying quantity is expressed in, e.g.,
¤𝒂𝑖 , is the time derivative of 𝒂𝑖 (expressed in the inertial frame) w.r.t. the inertial frame.
Therefore, the more explicit but cumbersome notation 𝑖 ¤𝒂𝑖 is avoided when possible. Note
that, accordingly, 𝑏 ¤𝒂𝑖 is the time derivative of the vector 𝒂𝑖 expressed in the inertial frame
w.r.t. the body-fixed frame and, in general, 𝑖 ¤𝒂𝑖 = 𝑏 ¤𝒂𝑖 + 𝝎𝑏𝑖 × 𝒂𝑖 = 𝑅𝑏𝑖 (𝑏𝒂𝑏 + 𝝎𝑏𝑏 × 𝒂𝑏), and
𝑖𝒂𝑏 = 𝑏𝒂𝑏 + 𝝎𝑏𝑏 × 𝒂𝑏 , which is abbreviated to ¤𝒂𝑖 = 𝑅𝑏𝑖 ( ¤𝒂𝑏 + 𝝎𝑏𝑏 × 𝒂𝑏)
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(b) Surge speed 𝑢, sway speed 𝑣 defined in the body-fixed
frame and ¤𝑥 and ¤𝑦 defined in the inertial frame such that
𝒗𝑖𝑏
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Figure 5.1.: Schematic relations of the vessel’s body-fixed frame (0𝑏𝑥𝑏𝑦𝑏𝑧𝑏 ) to the inertial frame (0𝑖𝑥𝑖𝑦𝑖𝑧𝑖 )
in the 2D plane, i.e., for 𝑧 = ¤𝑧 = 0, and with 𝑦𝑔 = 𝑧𝑔 = 0, i.e., the CG lies midships along the 𝑥𝑏 -axis.

5.1. Rigid Body Dynamics

In this section the kinematic relations between the NED- and the body-frame are derived
in 6DOF. Furthermore, Newton’s Second Law is applied to obtain the translational rigid
body dynamics of the MSV about the center of origin w.r.t. the NED frame. Analogously,
Euler’s Second Law is utilized to obtain the rotational rigid body dynamics. The resulting
differential equations are then expressed in the body-fixed coordinates and velocities.
Finally, the equations of motion are reduced to 3DOF and expressed in a matrix-vector
form, which originates in Fossen et al. [47].

5.1.1. Translational Motion – Newton’s Second Law

The equations of motion for MSVs typically rely on a body-fixed coordinate system
(0𝑏𝑥𝑏𝑦𝑏𝑧𝑏) and an inertial coordinate system (0𝑖𝑥𝑖𝑦𝑖𝑧𝑖 ), i.e., the NED coordinate system,
see Fig. 5.1. The MSV can be viewed as a rigid body and, therefore, the translational
motion can be derived based on Newton’s second law

d
d𝑡
𝑚𝒗𝑖𝑔

𝑖
= 𝒇𝑔

𝑖
(5.1)

with velocity 𝒗𝑖𝑔
𝑖

= d
d𝑡 𝒑

𝑖𝑔

𝑖
and vector 𝒑𝑖𝑔

𝑖
to the CG in inertial frame coordinates, i.e.,

relative to 0𝑖 and 𝒇
𝑔

𝑖
is the resultant external force acting on ship’s CG expressed in the

inertial frame. In view of Fig. 5.1, 𝒑𝑖𝑔
𝑖
is given by

𝒑𝑖𝑔
𝑖
= 𝒑𝑖𝑏𝑖 + 𝑅𝑏𝑖 𝒑

𝑏𝑔

𝑏
, (5.2)
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where

𝒑𝑖𝑏𝑖 = [𝑝𝑖𝑏𝑖,𝑥 , 𝑝𝑖𝑏𝑖,𝑦, 𝑝𝑖𝑏𝑖,𝑧]⊤ := [𝑥, 𝑦, 𝑧]⊤ (5.3)

is defined as the position of the MSV in inertial coordinates and for 3DOF models,

𝑅𝑏𝑖 = 𝑅𝑧,𝜓 =


cos(𝜓 ) − sin(𝜓 ) 0
sin(𝜓 ) cos(𝜓 ) 0

0 0 1

 (5.4)

is the elemental rotation matrix about the 𝑧𝑏- or yaw-axis and 𝑅𝑏𝑖 = {𝑅𝑏𝑖 ∈ R3×3 | 𝑅𝑏𝑖 𝑅𝑖𝑏 =

𝐼 , det𝑅𝑏𝑖 = 1}. From this it follows that (𝑅𝑏𝑖 )−1 = (𝑅𝑏𝑖 )⊤ = 𝑅𝑖
𝑏
. Note that (5.2) is often

abbreviated using

𝒑𝑖𝑔
𝑖
= 𝒑𝑖𝑏𝑖 + 𝒑

𝑏𝑔

𝑖
, (5.5)

where the time dependence of 𝒑𝑏𝑔
𝑖
(𝑡) is explicitly stated when expressed in the inertial

frame. Note that, 𝒑𝑏𝑔
𝑖

= 𝑅𝑏𝑖 𝒑
𝑏𝑔

𝑏
, where 𝒑𝑏𝑔

𝑏
= [𝑥𝑔, 𝑦𝑔, 𝑧𝑔]⊤ is expressed in the body-fixed

frame and, therefore, is not time-varying1. Differentiating (5.2) w.r.t. time results in

𝒗𝑖𝑔
𝑖
=

d
d𝑡
𝒑𝑖𝑔
𝑖
= 𝒗𝑖𝑏𝑖 + ¤𝑅𝑏𝑖 𝒑

𝑏𝑔

𝑏
+ 𝑅𝑏𝑖 𝒗

𝑏𝑔

𝑏
= 𝒗𝑖𝑏𝑖 + ¤𝑅𝑏𝑖 𝒑

𝑏𝑔

𝑏
(5.6)

since 𝒗𝑏𝑔
𝑏

= d
d𝑡 𝒑

𝑏𝑔

𝑏
= 0 for a rigid body. For the time derivative of 𝑅𝑏𝑖 it is important to note

that 𝑅𝑏𝑖 𝑅
𝑖
𝑏
= 𝐼 and, therefore d

d𝑡 𝐼 =
d
d𝑡 𝑅

𝑏
𝑖 𝑅

𝑖
𝑏
= ¤𝑅𝑏𝑖 𝑅𝑖𝑏 + 𝑅

𝑏
𝑖
¤𝑅𝑖
𝑏
= 0 and, thus,

𝑆 (𝝎𝑏𝑖 ) = ¤𝑅𝑏𝑖 𝑅𝑖𝑏 = −𝑆⊤ (𝝎𝑏𝑖 ) =


0 −𝜔𝑏𝑖,𝑧 𝜔𝑏𝑖,𝑦
𝜔𝑏𝑖,𝑥 0 −𝜔𝑏𝑖,𝑥
−𝜔𝑏𝑖,𝑥 𝜔𝑏𝑖,𝑥 0

 (5.7)

is a skew-symmetric matrix and 𝝎𝑏𝑖 = [𝜔𝑏𝑖,𝑥 , 𝜔𝑏𝑖,𝑦, 𝜔𝑏𝑖,𝑧]⊤ is the vector of angular velocities.
Additionally, to being skew-symmetric 𝑆 (𝒂) has the properties 𝑆 (𝑅𝑏𝑖 𝒂)𝒃 = 𝑅𝑏𝑖 𝑆 (𝒂)𝑅𝑖𝑏𝒃 , and
𝑆 (𝒂)𝒃 = 𝒂 × 𝒃 . Finally, ¤𝑅𝑏𝑖 = ¤𝑅𝑏𝑖 𝐼 = ¤𝑅𝑏𝑖 (𝑅𝑖𝑏𝑅

𝑏
𝑖 ) = ( ¤𝑅𝑏𝑖 𝑅𝑖𝑏)𝑅

𝑏
𝑖 = 𝑆 (𝝎𝑏𝑖 )𝑅𝑏𝑖 and

𝒗𝑖𝑔
𝑖
= 𝒗𝑖𝑏𝑖 + 𝑆 (𝝎𝑏𝑖 )𝑅𝑏𝑖 𝒑

𝑏𝑔

𝑏
= 𝒗𝑖𝑏𝑖 + 𝝎𝑏𝑖 × 𝒑

𝑏𝑔

𝑖
. (5.8)

Inserting (5.8) in (5.1) yields

d
d𝑡
𝑚[𝒗𝑖𝑏𝑖 + 𝝎𝑏𝑖 × 𝒑

𝑏𝑔

𝑖
] = 𝒇𝑔

𝑖
(5.9)

(5.10)

and hence

𝑚[ ¤𝒗𝑖𝑏𝑖 + ¤𝝎𝑏𝑖 × 𝒑
𝑏𝑔

𝑖
+ 𝝎𝑏𝑖 × (𝝎𝑏𝑖 × 𝒑

𝑏𝑔

𝑖
)] = 𝒇𝑔

𝑖
. (5.11)

1 This explicit statement of time dependence is abandoned henceforth for the sake of simplicity unless emphasis
is put on the time dependence.
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Translational Motion Expressed with Body-Fixed Quantities

Note that all forces and velocities in (5.11) are expressed in the inertial frame. In the
context of MSVs, it is more common to express the forces in the body-fixed frame where

𝒇𝑔
𝑖
= 𝑅𝑏𝑖 𝒇

𝑔

𝑏
, (5.12)

and 𝒇𝑔
𝑏
= [𝜏𝑋 , 𝜏𝑌 , 𝜏𝑍 ]⊤ is the vector of external forces acting on the vessel expressed in

the body-fixed coordinate frame. Furthermore, the velocity components in the inertial
frame 𝒗𝑖𝑏𝑖 = d

d𝑡 𝒑
𝑖𝑏
𝑖 = [ ¤𝑥, ¤𝑦, ¤𝑧]⊤ are related to the velocity components in body-fixed frame

with 𝑢 = cos(𝜓 ) ¤𝑥 + sin(𝜓 ) ¤𝑦 (surge speed), 𝑣 = − sin(𝜓 ) ¤𝑥 + cos(𝜓 ) ¤𝑦 (sway speed), and
𝑤 = ¤𝑧 (heave speed) in 𝑥𝑏-, 𝑦𝑏-, and 𝑧𝑏-direction, respectively, see Fig. 5.1b. Combining
these body-fixed speeds yields 𝒗𝑖𝑏

𝑏
= d

d𝑡 𝒑
𝑖𝑏
𝑏

= [𝑢, 𝑣, 𝑤]⊤ and the relation to the inertial
frame is expressed with 𝒗𝑖𝑏

𝑏
= 𝑅𝑖

𝑏
𝒗𝑖𝑏𝑖 and, vice versa,

𝒗𝑖𝑏𝑖 = 𝑅𝑏𝑖 𝒗
𝑖𝑏
𝑏
. (5.13)

Time differentiation w.r.t. the inertial frame yields [64, Sec. 2.1.2.1]

𝑖 ¤𝒗𝑖𝑏𝑖 = 𝑅𝑏𝑖
𝑏 ¤𝒗𝑖𝑏
𝑏
+ 𝑆 (𝝎𝑏𝑖 )𝑅𝑏𝑖 𝒗𝑖𝑏𝑏 (5.14a)

= 𝑅𝑏𝑖 (𝑏 ¤𝒗𝑖𝑏𝑏 + 𝝎
𝑏
𝑏
× 𝒗𝑖𝑏

𝑏
) (5.14b)

= 𝑅𝑏𝑖
𝑖 ¤𝒗𝑖𝑏
𝑏
, (5.14c)

where 𝑏 ¤𝒗𝑖𝑏
𝑏

= [ ¤𝑢, ¤𝑤, ¤𝑤]⊤, i.e., the time derivative of the body-fixed velocity vector w.r.t.
the body-fixed frame. Note that the frame distinction of the time derivative becomes
necessary in this case as compared to (5.6), since, here, 𝑏 ¤𝒗𝑖𝑏

𝑏
≠ 0 but 𝑏𝒗𝑏𝑔

𝑏
= 0 in (5.6).

Analogously, the angular velocities in the respective frames relate with

𝝎𝑏𝑖 = 𝑅
𝑏
𝑖 𝝎

𝑏
𝑏
, (5.15)

where 𝝎𝑏
𝑏
= [𝑝, 𝑞, 𝑟 ]⊤ is expressed in the body-fixed frame. Differentiating w.r.t. time

yields

𝑖 ¤𝝎𝑏𝑖 = 𝑅𝑏𝑖 𝑏 ¤𝝎𝑏𝑏 + 𝑆 (𝝎
𝑏
𝑖 )𝑅𝑏𝑖 𝝎𝑏𝑏 (5.16a)

= 𝑅𝑏𝑖 (𝑏 ¤𝝎𝑏𝑏 + 𝝎
𝑏
𝑏
× 𝝎𝑏

𝑏
) (5.16b)

= 𝑅𝑏𝑖
𝑏 ¤𝝎𝑏

𝑏
, (5.16c)

since 𝝎𝑏
𝑏
×𝝎𝑏

𝑏
= 0, i.e., the angular acceleration is the same regardless of the frame. Finally,

with (5.12), (5.14b), and (5.16c) Newton’s second law (5.11) for the MSV expressed with
body-fixed velocities and forces become

𝑚[𝑅𝑏𝑖 (𝑏 ¤𝒗𝑖𝑏𝑏 + 𝝎
𝑏
𝑏
× 𝒗𝑖𝑏

𝑏
) + 𝑅𝑏𝑖 ¤𝝎𝑏𝑏 × 𝒑

𝑏𝑔

𝑖
+ 𝝎𝑏𝑖 × (𝝎𝑏𝑖 × 𝒑

𝑏𝑔

𝑖
))] = 𝑅𝑏𝑖 𝒇

𝑔

𝑏
, (5.17)
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Figure 5.2.:A force 𝒇 𝑝 acting at point 𝑃 induces a moment𝒎𝑖
𝑖
= 𝒑

𝑖𝑝

𝑖
×𝒇 𝑝

𝑖
= 𝒑𝑖𝑏

𝑖
×𝒇 𝑝

𝑖
+𝒎𝑏

𝑖
= 𝒑𝑖𝑏

𝑖
×𝒇 𝑝

𝑖
+𝒑𝑏𝑝

𝑖
×𝒇 𝑝

𝑖
w.r.t. the inertial frame. Furthermore, it effects a translational motion of the MSV according to (5.11).

and finally

𝑚[𝑏 ¤𝒗𝑖𝑏
𝑏
+ 𝝎𝑏

𝑏
× 𝒗𝑖𝑏

𝑏
+ ¤𝝎𝑏

𝑏
× 𝒑𝑏𝑔

𝑏
+ 𝝎𝑏

𝑏
× (𝝎𝑏

𝑏
× 𝒑𝑏𝑔

𝑏
)] = 𝒇𝑔

𝑏
, (5.18)

which is obtained by multiplying (5.17) with 𝑅𝑖
𝑏
from the left. Assuming that 𝑦𝑔 = 𝑧𝑔 = 0,

(5.18) is expressed in component form as

𝑚[ ¤𝑢 − 𝑟𝑣 + 𝑞𝑤 − 𝑥𝑔 (𝑞2 + 𝑟 2)] = 𝜏𝑋 , (5.19a)
𝑚[ ¤𝑣 − 𝑝𝑤 + 𝑟𝑢 + 𝑥𝑔 (𝑞𝑝 + ¤𝑟 )] = 𝜏𝑌 , (5.19b)
𝑚[ ¤𝑤 − 𝑞𝑢 + 𝑝𝑣 + 𝑥𝑔 (𝑝𝑟 − ¤𝑞)] = 𝜏𝑍 . (5.19c)

5.1.2. Rotational Motion – Euler’s Second Law

Any force 𝒇𝑝
𝑖
acting on the MSV at a point 𝒑𝑖𝑝

𝑖
induces a moment 𝒎𝑖

𝑖 on the rigid body,
see Fig. 5.2. The resulting rotation is described using Euler’s second law

d
d𝑡

𝑳𝑖 =𝒎𝑖
𝑖 , (5.20)

where 𝒎𝑖
𝑖 is the resultant external moment (torque) acting on the body w.r.t. the inertial

frame, and

𝑳𝑖 =

∫
𝑉

𝒑𝑖𝑝
𝑖
× 𝒗𝑖𝑝

𝑖
𝜌d𝑉 (5.21)

is the total angular momentum w.r.t. to the inertial frame. The latter is expanded using
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the geometric relations observed in Fig. 5.2, i.e.,

𝑳𝑖 =

∫
𝑉

(𝒑𝑖𝑏𝑖 + 𝒑
𝑏𝑝

𝑖
) × (𝒗𝑖𝑏𝑖 + 𝒗

𝑏𝑝

𝑖
)𝜌d𝑉 , (5.22a)

=

∫
𝑉

𝒑𝑖𝑏𝑖 × 𝒗𝑖𝑏𝑖 𝜌d𝑉 +
∫
𝑉

𝒑𝑖𝑏𝑖 × 𝒗
𝑏𝑝

𝑖
𝜌d𝑉

+
∫
𝑉

𝒑𝑏𝑝
𝑖
× 𝒗𝑖𝑏𝑖 𝜌d𝑉 +

∫
𝑉

𝒑𝑏𝑝
𝑖
× 𝒗𝑏𝑝

𝑖
𝜌d𝑉 .

(5.22b)

The four individual summands require further attention:

1. The first summand evaluates to∫
𝑉

𝒑𝑖𝑏𝑖 × 𝒗𝑖𝑏𝑖 𝜌d𝑉 =

∫
𝑉

𝜌d𝑉𝒑𝑖𝑏𝑖 × 𝒗𝑖𝑏𝑖 =𝑚𝒑𝑖𝑏𝑖 × 𝒗𝑖𝑏𝑖 . (5.23)

2. The second summand is simplified using∫
𝑉

𝒑𝑖𝑏𝑖 × 𝒗
𝑏𝑝

𝑖
𝜌d𝑉 = 𝒑𝑖𝑏𝑖 ×

∫
𝑉

𝒗𝑏𝑝
𝑖
𝜌d𝑉 , (5.24a)

= 𝒑𝑖𝑏𝑖 ×
∫
𝑉

𝝎𝑏𝑖 × 𝒑
𝑏𝑝

𝑖
𝜌d𝑉 , (5.24b)

= 𝒑𝑖𝑏𝑖 ×
(
𝝎𝑏𝑖 ×

∫
𝑉

𝒑𝑏𝑝
𝑖
𝜌d𝑉

)
, (5.24c)

=𝑚𝒑𝑖𝑏𝑖 × (𝝎𝑏𝑖 × 𝒑
𝑏𝑔

𝑖
). (5.24d)

3. The third summand simplifies to∫
𝑉

𝒑𝑏𝑝
𝑖
× 𝒗𝑖𝑏𝑖 𝜌d𝑉 =

∫
𝑉

𝒑𝑏𝑝
𝑖
𝜌d𝑉 × 𝒗𝑖𝑏𝑖 , (5.25a)

=𝑚𝒑𝑏𝑔
𝑖
× 𝒗𝑖𝑏𝑖 . (5.25b)

4. Finally, the fourth summand yields∫
𝑉

𝒑𝑏𝑝
𝑖
× 𝒗𝑏𝑝

𝑖
d𝑉 =

∫
𝑉

𝒑𝑏𝑝
𝑖
× 𝑅𝑏𝑖 𝑆 (𝝎𝑏𝑏)𝒑

𝑏𝑝

𝑏
𝜌d𝑉 , (5.26a)

= 𝑅𝑏𝑖

∫
𝑉

𝒑𝑏𝑝
𝑏
× (𝝎𝑏

𝑏
× 𝒑𝑏𝑝

𝑏
)𝜌d𝑉 , (5.26b)

= 𝑅𝑏𝑖

∫
𝑉

((𝒑𝑏𝑝
𝑏
)⊤𝒑𝑏𝑝

𝑏
)𝝎𝑏

𝑏
− ((𝒑𝑏𝑝

𝑏
)⊤𝝎𝑏

𝑏
)𝒑𝑏𝑝
𝑏
𝜌d𝑉 , (5.26c)

= 𝑅𝑏𝑖

∫
𝑉


(𝜉2 + 𝜐2 + 𝜁 2)𝑝
(𝜉2 + 𝜐2 + 𝜁 2)𝑞
(𝜉2 + 𝜐2 + 𝜁 2)𝑟

 −

(𝜉𝑝 + 𝜐𝑞 + 𝜁𝑟 )𝑥
(𝜉𝑝 + 𝜐𝑞 + 𝜁𝑟 )𝑦
(𝜉𝑝 + 𝜐𝑞 + 𝜁𝑟 )𝑧

 𝜌d𝑉 , (5.26d)

= 𝑅𝑏𝑖 𝐽𝑏𝝎
𝑏
𝑏
, (5.26e)

= 𝐽𝑖𝝎
𝑏
𝑖 , (5.26f)
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5.1. Rigid Body Dynamics

where

𝐽𝑏 =

∫
𝑉


(𝜐2 + 𝜁 2) −𝜉𝜐 −𝜉𝜁
−𝜉𝜐 (𝜉2 + 𝜁 2) −𝜐𝜁
−𝜉𝜁 −𝜐𝜁 (𝜉2 + 𝜐2)

 𝜌d𝑉 (5.27)

is the mass moment of inertia tensor w.r.t. the body-fixed frame, and 𝐽𝑖 = 𝑅𝑏𝑖 𝐽𝑏𝑅
𝑖
𝑏
is

the (time dependent) mass moment of inertia w.r.t. the inertial frame.

Finally, inserting (5.23), (5.24d), (5.25b), and (5.26f) in (5.22) the total angular momentum
reads

𝑳𝑖 =𝑚[𝒑𝑖𝑏𝑖 × 𝒗𝑖𝑏𝑖 + 𝒑𝑖𝑏𝑖 × (𝝎𝑏𝑖 × 𝒑
𝑏𝑔

𝑖
) + 𝒑𝑏𝑔

𝑖
× 𝒗𝑖𝑏𝑖 ] + 𝐽𝑖𝝎𝑏𝑖 , (5.28a)

=𝑚[𝒑𝑖𝑏𝑖 × (𝒗𝑖𝑏𝑖 + 𝝎𝑏𝑖 × 𝒑
𝑏𝑔

𝑖
) + 𝒑𝑏𝑔

𝑖
× 𝒗𝑖𝑏𝑖 ] + 𝐽𝑖𝝎𝑏𝑖 , (5.28b)

=𝑚[𝒑𝑖𝑏𝑖 × 𝒗
𝑖𝑔

𝑖
+ 𝒑𝑏𝑔

𝑖
× 𝒗𝑖𝑏𝑖 ] + 𝐽𝑖𝝎𝑏𝑖 . (5.28c)

Differentiating (5.28c) w.r.t. time yields

d
d𝑡

𝑳𝑖 =𝑚[𝒗𝑖𝑏𝑖 × 𝒗
𝑖𝑔

𝑖
+ 𝒑𝑖𝑏𝑖 × ¤𝒗

𝑖𝑔

𝑖
+ 𝒗𝑏𝑔

𝑖
× 𝒗𝑖𝑏𝑖 + 𝒑

𝑏𝑔

𝑖
× ¤𝒗𝑖𝑏𝑖 ] + 𝝎𝑏𝑖 × 𝐽𝑖𝝎𝑏𝑖 + 𝐽𝑖 ¤𝝎𝑏𝑖 , (5.29a)

d
d𝑡

𝑳𝑖 =𝑚[(𝒗𝑏𝑔𝑖 − 𝒗
𝑖𝑔

𝑖
) × 𝒗𝑖𝑏𝑖 + 𝒑𝑖𝑏𝑖 × ¤𝒗

𝑖𝑔

𝑖
+ 𝒑𝑏𝑔

𝑖
× ¤𝒗𝑖𝑏𝑖 ] + 𝝎𝑏𝑖 × 𝐽𝑖𝝎𝑏𝑖 + 𝐽𝑖 ¤𝝎𝑏𝑖 , (5.29b)

d
d𝑡

𝑳𝑖 =𝑚[𝒑𝑖𝑏𝑖 × ¤𝒗
𝑖𝑔

𝑖
+ 𝒑𝑏𝑔

𝑖
× ¤𝒗𝑖𝑏𝑖 ] + 𝝎𝑏𝑖 × 𝐽𝑖𝝎𝑏𝑖 + 𝐽𝑖 ¤𝝎𝑏𝑖 , (5.29c)

since (𝒗𝑏𝑔
𝑖
− 𝒗𝑖𝑔

𝑖
) × 𝒗𝑖𝑏𝑖 = −𝒗𝑖𝑏𝑖 × 𝒗𝑖𝑏𝑖 = 0. Inserting (5.29c) into (5.20),

𝑚[𝒑𝑖𝑏𝑖 × ¤𝒗
𝑖𝑔

𝑖
+ 𝒑𝑏𝑔

𝑖
× ¤𝒗𝑖𝑏𝑖 ] + 𝝎𝑏𝑖 × 𝐽𝑖𝝎𝑏𝑖 + 𝐽𝑖 ¤𝝎𝑏𝑖 =𝒎𝑖

𝑖 (5.30)

is obtained. Furthermore, taking into account that 𝒎𝑖
𝑖 = 𝒑𝑖𝑏𝑖 × 𝒇

𝑔

𝑖
+𝒎𝑏

𝑖 = 𝒑𝑖𝑏𝑖 ×𝑚 ¤𝒗
𝑖𝑔

𝑖
+𝒎𝑏

𝑖

(5.30) can be simplified as

𝐽𝑖 ¤𝝎𝑏𝑖 + 𝝎𝑏𝑖 × 𝐽𝑖𝝎𝑏𝑖 +𝑚𝒑𝑏𝑔
𝑖
× ¤𝒗𝑖𝑏𝑖 =𝒎𝑏

𝑖 . (5.31)

Rotational Motion Expressed with Body-Fixed Quantities

Multiplying with 𝑅𝑖
𝑏
from the left

𝐽𝑏 ¤𝝎𝑏𝑏 + 𝝎
𝑏
𝑏
× 𝐽𝑏𝝎𝑏𝑏 +𝑚𝒑𝑏𝑔

𝑏
× 𝑖 ¤𝒗𝑖𝑏

𝑏
=𝒎𝑏

𝑏
, (5.32)

is obtained and, finally, in view of (5.14),

𝐽𝑏 ¤𝝎𝑏𝑏 + 𝝎
𝑏
𝑏
× 𝐽𝑏𝝎𝑏𝑏 +𝑚𝒑𝑏𝑔

𝑏
× (𝑏 ¤𝒗𝑖𝑏

𝑏
+ 𝝎𝑏

𝑏
× 𝒗𝑖𝑏

𝑏
) =𝒎𝑏

𝑏
, (5.33)
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where 𝒎𝑏
𝑏
= [𝜏𝐾 , 𝜏𝑀 , 𝜏𝑁 ]⊤. Assuming that 𝑦𝑔 = 𝑧𝑔 = 𝐽𝑥𝑦 = 𝐽𝑥𝑧 = 𝐽𝑦𝑧 = 0, i.e., the CG

is somewhere along the 𝑥𝑏-axis and the body-fixed origin coincides with a main axis of
inertia, (5.33) expressed in component form reads

𝐽𝑥𝑥 ¤𝑝 − (𝐽𝑦𝑦 − 𝐽𝑧𝑧)𝑞𝑟 = 𝜏𝐾 , (5.34)
𝐽𝑦𝑦 ¤𝑞 −𝑚𝑥𝑔 ¤𝑤 + (𝐽𝑥𝑥 − 𝐽𝑧𝑧)𝑝𝑟 +𝑚𝑥𝑔 (𝑞𝑢 − 𝑝𝑣) = 𝜏𝑀 , (5.35)
𝐽𝑧𝑧 ¤𝑟 +𝑚𝑥𝑔 ¤𝑣 − (𝐽𝑥𝑥 − 𝐽𝑦𝑦)𝑝𝑞 +𝑚𝑥𝑔 (𝑟𝑢 − 𝑝𝑤) = 𝜏𝑁 . (5.36)

5.1.3. Matrix-Vector Representation

The kinetic relations (5.18), and (5.33) are expressed in matrix-vector notation by re-
arranging as follows

𝑚 ¤𝒗𝑖𝑏
𝑏
−𝑚𝑆 (𝒑𝑏𝑔

𝑏
) ¤𝝎𝑏

𝑏
−𝑚𝑆 (𝒗𝑖𝑏

𝑏
)𝝎𝑏

𝑏
−𝑚𝑆 (𝝎𝑏

𝑏
)𝑆 (𝒑𝑏𝑔

𝑏
)𝝎𝑏

𝑏
= 𝒇𝑔

𝑏
, (5.37a)

𝑚𝑆 (𝒑𝑏𝑔
𝑏
) ¤𝒗𝑖𝑏
𝑏
+ 𝐽𝑏 ¤𝝎𝑏𝑏 +𝑚𝑆 (𝒑

𝑏𝑔

𝑏
)𝑆 (𝝎𝑏

𝑏
)𝒗𝑖𝑏
𝑏
− 𝑆 (𝐽𝑏𝝎𝑏𝑏)𝝎

𝑏
𝑏
=𝒎𝑏

𝑏
. (5.37b)

from which the representation

𝑀rb

[
¤𝒗𝑖𝑏
𝑏

¤𝝎𝑏
𝑏

]
= −𝐶rb (𝒗𝑖𝑏𝑏 ,𝝎

𝑏
𝑏
)
[
𝒗𝑖𝑏
𝑏

𝝎𝑏
𝑏

]
+
[
𝒇𝑔
𝑏

𝒎𝑏
𝑏

]
(5.38)

is derived. Therein,

𝑀rb =

[
𝑚𝐼 −𝑚𝑆 (𝒑𝑏𝑔

𝑏
)

𝑚𝑆 (𝒑𝑏𝑔
𝑏
) 𝐽𝑏

]
, (5.39)

is the mass matrix, and

𝐶rb (𝒗𝑖𝑏𝑏 ,𝝎
𝑏
𝑏
) =

[
0 −𝑚𝑆 (𝒗𝑖𝑏

𝑏
) −𝑚𝑆 (𝝎𝑏

𝑏
)𝑆 (𝒑𝑏𝑔

𝑏
)

−𝑚𝑆 (𝒗𝑖𝑏
𝑏
) +𝑚𝑆 (𝒑𝑏𝑔

𝑏
)𝑆 (𝝎𝑏

𝑏
) −𝑆 (𝐽𝑏𝝎𝑏𝑏)

]
, (5.40)

is the Coriolis matrix with 𝐶rb (𝒗𝑖𝑏𝑏 ,𝝎
𝑏
𝑏
) = −𝐶⊤rb (𝒗

𝑖𝑏
𝑏
,𝝎𝑏

𝑏
), i.e., it is skew-symmetric2.

In the following, focus is put exclusively on the 3DOF case, i.e., when 𝑝 = 𝑞 = 𝑤 =

0 or, in other words, the pitch, roll, and heave motions are assumed to be negligible,
which also signifies 𝑅𝑏𝑖 = 𝑅𝑧,𝜓 . To this end, the pose of the ship 𝜼 = [𝑥, 𝑦, 𝜓 ]⊤, the
body-fixed velocities 𝝂 = [𝑢, 𝑣, 𝑟 ]⊤, and the vector of external forces and moment 𝝉 =

[𝜏𝑋 , 𝜏𝑌 , 𝜏𝑁 ]⊤ are considered. Furthermore, assuming that the body-fixed origin coincides

2 Note that the term −𝑚𝑆 (𝒗𝑖𝑏
𝑏
) does not appear in (5.37b) and needs to be added to retain skew-symmetry of

𝐶rb (𝒗𝑖𝑏𝑏 ,𝝎
𝑏
𝑏
) , which is only possible since 𝑆 (𝒗𝑖𝑏

𝑏
)𝒗𝑖𝑏

𝑏
= 0.
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with a principal axis of inertia, 𝐽𝑥𝑦 = 𝐽𝑥𝑧 = 𝐽𝑦𝑧 = 0, the 3DOF equations of motion in
matrix-vector form become

¤𝜼 = 𝑅𝑧,𝜓𝝂, (5.41a)
𝑀rb ¤𝝂 = −𝐶rb (𝝂)𝝂 + 𝝉 , (5.41b)

where

𝑀rb =


𝑚 0 0
0 𝑚 𝑚𝑥𝑔
0 𝑚𝑥𝑔 𝐽𝑧𝑧

 , 𝐶rb (𝝂) =


0 0 −𝑚(𝑣 + 𝑥𝑔𝑟 )
0 0 𝑚𝑢

𝑚(𝑣 + 𝑥𝑔𝑟 ) −𝑚𝑢 0

 (5.42)

are the 3DOF mass and Coriolis matrices, respectively, and 𝐶rb (𝝂) = −𝐶⊤rb (𝝂).

5.2. External Forces and Moments

In this section, the vector of external forces and moments 𝝉 is further investigated. Apart
from the MSV behaving as a rigid body it is evident that a vessel moves through water
that needs to be displaced. This, among others, induces hydrodynamic forces to the vessel,
which can be split into acceleration-dependent terms (so-called added mass), and into
velocity-dependent terms, which represent damping effects such that 𝝉hy = 𝝉a ( ¤𝝂) + 𝝉v (𝝂)
is the vector of hydrodynamic forces and moments. Furthermore, the vessel is subject to
environmental forces such as wind, waves, and ocean currents, which act as forces on the
vessel hull. Here, emphasis is put on wind effects 𝝉w. Lastly, the vessel can be controlled
by means of propellers, rudders, tunnel thrusters, and other actuators, which exert a force
𝝉 c. All in all, the sum of all external forces yields

𝝉 = 𝝉a + 𝝉v + 𝝉w + 𝝉 c . (5.43)

5.2.1. Acceleration-Dependent Forces

The acceleration-dependent forces 𝝉a ( ¤𝝂) can be approximated using a first-order Taylor
polynomial around ¤𝝂 = ¤𝝂0 = [0, 0, 0]⊤ , i.e.,

𝝉a ( ¤𝝂) ≈ 𝝉 (0) +
𝜕𝝉

𝜕 ¤𝝂 (0) ¤𝝂 =𝑀am ¤𝝂, (5.44)

where

𝑀am =


𝜕𝑋
𝜕 ¤𝑢

𝜕𝑋
𝜕 ¤𝑣

𝜕𝑋
𝜕 ¤𝑟

𝜕𝑌
𝜕 ¤𝑢

𝜕𝑌
𝜕 ¤𝑣

𝜕𝑌
𝜕 ¤𝑟

𝜕𝑁
𝜕 ¤𝑢

𝜕𝑁
𝜕 ¤𝑣

𝜕𝑁
𝜕 ¤𝑟

 =

𝑋 ¤𝑢 𝑋 ¤𝑣 𝑋 ¤𝑟
𝑌 ¤𝑢 𝑌¤𝑣 𝑌¤𝑟
𝑁 ¤𝑢 𝑁 ¤𝑣 𝑁 ¤𝑟

 , (5.45)

25



5. Mathematical Modeling of MSVs

Coefficient Typical Value Coefficient Typical Value

𝑀am

𝑋 ¤𝑢 ∈ R− 𝑋 ¤𝑢 ∈ [−0.05𝑚,−0.1𝑚]

𝐷l

𝑋𝑢 ∈ R−0
𝑌¤𝑣 ∈ R− −𝑚 𝑌𝑣 ∈ R−0
𝑌¤𝑟 ∈ R |𝑌¤𝑟 −𝑚𝑥𝑔 | ≪ 1 𝑌𝑟 ∈ R |𝑌𝑟 | ≪𝑚𝑢0
𝑁 ¤𝑣 ∈ R |𝑁 ¤𝑣 −𝑚𝑥𝑔 | ≪ 1 𝑁𝑣 ∈ R
𝑁 ¤𝑟 ∈ R− 𝑁 ¤𝑟 − 𝐽𝑧𝑧 ≈ −1.8𝐽𝑧𝑧 𝑁𝑟 ∈ R−0 𝑁𝑟 −𝑚𝑥𝑔𝑢0 ≪ 0

Table 5.1.: Coefficient domains and typical relations w.r.t. fundamental vessel parameters𝑚, 𝑥𝑔, 𝐽𝑧𝑧 , i.e., with
constant forward surge speed 𝑢0 according to [1, Chap. 4].

is the added mass matrix, and the notation 𝑋 ¤𝑢 = 𝜕𝑋
𝜕 ¤𝑢 is used [94, Sec. 3.4], which indicates,

e.g., how the surge force changes if an acceleration in the 𝑥𝑏-axis is present. The name
added mass arises due to the unit of mass/inertia of the hydrodynamic derivatives in
the added mass matrix. The added mass matrix can be further simplified because these
derivatives are evaluated at ¤𝝂 = 0 and, for port-starboard symmetric vessels, it can be
deduced that 𝑋 ¤𝑣 must be a symmetric (even) function 𝑋 ( ¤𝑣) = 𝑋 (−¤𝑣) such that 𝑋 ¤𝑣 = 0.
The same holds true for 𝑋 ( ¤𝑟 ) such that 𝑋 ¤𝑟 = 0, and for 𝑌 ¤𝑢, 𝑁 ¤𝑢 . On the other hand, it
is argued in [94, Sec. 8.1] that 𝑌 ( ¤𝑣), 𝑌 ( ¤𝑟 ), 𝑁 ( ¤𝑣), 𝑁 ( ¤𝑟 ) must be odd functions such that
𝑌¤𝑣 ≠ 0, 𝑌¤𝑟 ≠ 0, 𝑁 ¤𝑣 ≠ 0, 𝑁 ¤𝑟 ≠ 0, i.e.,

𝑀am =


𝑋 ¤𝑢 0 0
0 𝑌¤𝑣 𝑌¤𝑟
0 𝑁 ¤𝑣 𝑁 ¤𝑟

 , (5.46)

and, furthermore it is often assumed that 𝑌¤𝑟 = 𝑁 ¤𝑣 . The individual coefficients can be
determined using

𝑀𝑖 𝑗 = −𝜌𝑤
∮
𝑆

𝜑𝑖
𝜕𝜑 𝑗

𝜕𝒏
d𝑆, (5.47)

for 𝑖 = 1, 2, 3, 𝑗 = 1, 2, 3, and where 𝜌𝑤 is the water density, 𝑆 is the whetted surface area, 𝒏
is the outward normal vector of the surface area, and 𝜑𝑖 is the 𝑖-th velocity potential of the
surrounding fluid that needs to fulfill the Laplace equation ∇2𝜑𝑖 = 0. This expression is,
in general, hard to evaluate, and, therefore, approximations are needed. These are usually
one of the following. The method of an equivalent ellipsoid [86, Sec. 3.1] approximates the
entire vessel as an elongated ellipsoid, where an analytical solution to (5.47) is available
[138]. Alternatively, the strip theory method [86, Sec. 3.5.1] separates the vessel into thin
transversal strips, such that each coefficient in the added mass matrix can be approximated
by an integral along the length of the hull that depends on the geometry of the respective
strip, which in turn is expressed using the draft and width of the ship. Lastly, experimental
identification of the added mass matrix coefficients can be applied. Typical values of the
added mass coefficients are given in Tab. 5.1.
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5.2.2. Velocity-Dependent Forces

The velocity-dependent forces 𝝉d (𝝂) can be approximated using a third-order Taylor
polynomial that is denoted using 𝑇𝑘𝒇 (𝒙 ; 𝒙0) around 𝝂 = 𝝂0 = [0, 0, 0]⊤, which is reduced
in complexity by taking into account that 𝑋 (𝑣) and 𝑋 (𝑟 ) must be even functions, and
𝑌 (𝑣), 𝑌 (𝑟 ), 𝑁 (𝑣), 𝑁 (𝑟 ) must be odd functions in their respective arguments, see also [94,
Sec. 8.1] [1, Chap. 10], [149, Sec. 3.2], [147, Sec. 3.3.1], which eliminates several terms.
With this

𝝉v (𝝂) ≈
∑︁
|𝛼 | ≤3

𝐷𝛼𝝉v (𝝂)
𝛼!

(𝝂 − 𝝂0)𝛼 =


𝜏v,𝑋 (𝝂)
𝜏v,𝑌 (𝝂)
𝜏v,𝑁 (𝝂)

 , (5.48)

where

𝜏v,𝑋 (𝝂) = 𝑋0 + 𝑋𝑢𝑢 + 𝑋𝑢𝑢𝑢2 + 𝑋𝑣𝑣𝑣2 + 𝑋𝑟𝑟𝑟 2 + 𝑋𝑣𝑟𝑣𝑟
+ 𝑋𝑢𝑢𝑢𝑢3 + 𝑋𝑢𝑣𝑣𝑢𝑣2 + 𝑋𝑢𝑣𝑟𝑢𝑣𝑟 + 𝑋𝑢𝑟𝑟𝑢𝑟 2, (5.49a)

𝜏v,𝑌 (𝝂) = 𝑌𝑣𝑣 + 𝑌𝑟𝑟 + 𝑌𝑢𝑣𝑢𝑣 + 𝑌𝑢𝑟𝑢𝑟 + 𝑌𝑣𝑟𝑣𝑟
+ 𝑌𝑣𝑣𝑣𝑣3 + 𝑌𝑣𝑣𝑟𝑣2𝑟 + 𝑌𝑣𝑟𝑟𝑣𝑟 2 + 𝑌𝑟𝑟𝑟𝑟 3, (5.49b)

𝜏v,𝑁 (𝝂) = 𝑁𝑣𝑣 + 𝑁𝑟𝑟 + 𝑁𝑢𝑣𝑢𝑣 + 𝑁𝑢𝑟𝑢𝑟 + 𝑁𝑣𝑟𝑣𝑟
+ 𝑁𝑣𝑣𝑟𝑣2𝑟 + 𝑁𝑣𝑟𝑟𝑣𝑟 2 + 𝑁𝑟𝑟𝑟𝑟 3. (5.49c)

Note that this generalization of a Taylor polynomial for vector-valued functions makes
use of multi-index notation, i.e., 𝛼 = (𝛼1, 𝛼2, . . . , 𝛼𝑛𝑥 ), |𝛼 | = 𝛼1 + 𝛼2 + . . . + 𝛼𝑛𝑥 , 𝐷𝛼 =
𝜕𝛼1/𝜕𝑥𝛼1

1
𝜕𝛼1/𝜕𝑥𝛼2

2 . . . 𝜕
𝛼2/𝜕𝑥𝛼𝑛𝑥𝑛𝑥 , 𝒙𝛼 = 𝑥

𝛼1
1 𝑥

𝛼2
2 . . . 𝑥

𝛼𝑛𝑥
𝑛𝑥 , and 𝛼! = 𝛼1!𝛼2! . . . 𝛼𝑛𝑥 !. Furthermore,

according to [47, Sec. 7.1.2] and [131] the following substitutions can be made 𝑋𝑣𝑟 =

−𝑌¤𝑣, 𝑋𝑟𝑟 = −𝑌¤𝑟 , 𝑌𝑢𝑟 = 𝑋 ¤𝑢, 𝑁𝑢𝑟 = 𝑌¤𝑟 , 𝑁𝑢𝑣 = −(𝑋 ¤𝑢 − 𝑌¤𝑣) such that (5.49) can be simplified
as

𝜏v,𝑋 (𝝂) = 𝑋𝑢𝑢 + 𝑋𝑢𝑢𝑢2 + 𝑋𝑣𝑣𝑣2 − 𝑌¤𝑟𝑟 2 − 𝑌¤𝑣𝑣𝑟
+ 𝑋𝑢𝑢𝑢𝑢3 + 𝑋𝑢𝑣𝑣𝑢𝑣2 + 𝑋𝑢𝑣𝑟𝑢𝑣𝑟 + 𝑋𝑢𝑟𝑟𝑢𝑟 2, (5.50a)

𝜏v,𝑌 (𝝂) = 𝑌𝑣𝑣 + 𝑌𝑟𝑟 + 𝑌𝑢𝑣𝑢𝑣 + 𝑋 ¤𝑢𝑢𝑟 + 𝑌𝑣𝑟𝑣𝑟
+ 𝑌𝑣𝑣𝑣𝑣3 + 𝑌𝑣𝑣𝑟𝑣2𝑟 + 𝑌𝑣𝑟𝑟𝑣𝑟 2 + 𝑌𝑟𝑟𝑟𝑟 3, (5.50b)

𝜏v,𝑁 (𝝂) = 𝑁𝑣𝑣 + 𝑁𝑟𝑟 − (𝑋 ¤𝑢 − 𝑌¤𝑣)𝑢𝑣 − 𝑌¤𝑟𝑢𝑟 + 𝑁𝑣𝑟𝑣𝑟
+ 𝑁𝑣𝑣𝑟𝑣2𝑟 + 𝑁𝑣𝑟𝑟𝑣𝑟 2 + 𝑁𝑟𝑟𝑟𝑟 3 (5.50c)
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for𝑋0 = 0, which can then be further simplified bymeans of amatrix-vector representation,
i.e., 𝝉v (𝝂) = 𝐷l𝝂 + 𝐷nl (𝝂)𝝂 +𝐶am (𝝂)𝝂 , where

𝐷l =


𝑋𝑢 0 0
0 𝑌𝑣 𝑌𝑟
0 𝑁𝑣 𝑁𝑟

 , (5.51a)

𝐷nl (𝝂) =

𝑋𝑢𝑢𝑢 + 𝑋𝑢𝑢𝑢𝑢2 0 0

0 𝑌𝑣𝑣𝑣𝑣
2 + 𝑌𝑣𝑣𝑟𝑣𝑟 𝑌𝑟𝑟𝑟𝑟

2 + 𝑌𝑣𝑟𝑟𝑣𝑟
0 𝑁𝑣𝑣𝑣𝑣

2 + 𝑁𝑣𝑣𝑟𝑣𝑟 𝑁𝑟𝑟𝑟𝑟
2 + 𝑁𝑣𝑟𝑟𝑣𝑟

 (5.51b)

denote the linear and nonlinear damping matrix, respectively, for 𝑋𝑣𝑣 = 𝑋𝑢𝑣𝑣 = 𝑋𝑢𝑟𝑟 =
𝑋𝑢𝑣𝑟 = 0. Typical values of the linear damping matrix can be seen in Tab. 5.1. Further-
more,

𝐶am (𝝂) =


0 0 −𝑌¤𝑣𝑣 − 𝑌¤𝑟𝑟
0 0 𝑋 ¤𝑢𝑢

𝑌¤𝑣𝑣 + 𝑌¤𝑟𝑟 −𝑋 ¤𝑢𝑢 0

 (5.52)

is a Coriolis matrix of the added mass.

Remark 1 (Nonlinear Damping Terms) The nonlinear dampingmatrix𝐷nl (𝝂) in (5.51)
is often approximated by means of so-called second-order modulus terms

𝑋𝑢𝑢𝑢𝑢
3 ≈ 𝑋 |𝑢 |𝑢 |𝑢 |𝑢, 𝑌𝑣𝑣𝑟𝑣2𝑟 ≈ 𝑌|𝑣 |𝑟 |𝑣 |𝑟, (5.53)

etc., such that an alternative representation

𝐷nl (𝝂) =

𝑋 |𝑢 |𝑢 |𝑢 | 0 0

0 𝑌|𝑣 |𝑣 |𝑣 | + 𝑌|𝑟 |𝑣 |𝑟 | 𝑌|𝑟 |𝑟 |𝑟 | + 𝑌|𝑣 |𝑟 |𝑣 |
0 𝑁 |𝑣 |𝑣 |𝑣 | + 𝑁 |𝑟 |𝑣 |𝑟 | 𝑁 |𝑟 |𝑟 |𝑟 | + 𝑁 |𝑣 |𝑟 |𝑣 |

 (5.54)

can be obtained. This representation is not continuously-differentiable, but has a directional
derivative and appears to fit empirical data more accurately [142, Sec. B.1.2].

Remark 2 (Added Mass Coriolis Matrix) Themotivation for the substitutions suggested
by, e.g., [131] in the damping term (5.50) resulting in the added mass Coriolis matrix (5.52)
appear to be somewhat arbitrary. However, they are motivated by derivation of the forces
induced due to the water based on Kirchhoff’s equations as shown in, e.g., [109, Sec 18.43], and
[132, Sec. 3.1], where (5.44) and (5.52) are considered independently of the Taylor polynomial
of the velocity-dependent forces (5.48).

5.2.3. Wind Forces

The wind forces acting on the ship can be calculated using

𝝉w =
1
2
𝜌a𝑉

2
w,a


𝐶𝑋 (𝛾w,a)𝐴t
𝐶𝑌 (𝛾w,a)𝐴l

𝐶𝑁 (𝛾w,a)𝐴l𝐿oa

 , (5.55)
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Figure 5.3.: Relations of true and apparent wind w.r.t. the NED frame and the body frame, where 𝛽w,t, 𝛽w,a is the
angle of attack of the true and apparent wind in the NED frame, respectively, 𝛾w,t, 𝛾w,a are the respective angles
of attack of the true and apparent wind w.r.t. the body frame, 𝛽 is the drift angle, 𝒗w,t is the true wind velocity
𝒗w,h = −[ ¤𝑥, ¤𝑦 ]⊤ is the headwind velocity, and 𝒗w,a is the apparent wind velocity with𝑉w,t = | |𝒗w,t | |2, 𝑉w,a =
| |𝒗w,a | |2.

where 𝑉w,a is the apparent wind speed, 𝐴t is the transversal projected area, 𝐴l the lateral
projected area, 𝐿oa the length over all of the ship, and 𝜌a is the air density. The wind
coefficients𝐶𝑋 (𝛾w,a),𝐶𝑌 (𝛾w,a),𝐶𝑁 (𝛾w,a) are functions of the angle of attack of the apparent
wind 𝛾w,a and can be calculated using the empirical formulas stated by Isherwood [76].
Often the much simpler approximation

𝝉w =
1
2
𝜌a𝑉

2
w,a


−𝑐𝑥 cos(𝛾w,a)𝐴t
−𝑐𝑦 sin(𝛾w,a)𝐴l
𝑐𝑛 sin(2𝛾w,a)𝐴l𝐿oa

 , (5.56)

is used [see 47, Sec. 8.1.2]. Another prevalent approximation is given by

𝝉w =
1
2
𝜌a𝑉

2
w,a


−𝑐𝑥 cos(𝛾w,a)𝐴t
−𝑐𝑦 sin(𝛾w,a)𝐴l

−𝑐𝑦 sin(𝛾w,a)
(
𝑥𝐴,0
𝐿𝑜𝑎
+ 1

4 −
|𝛾w,a |
2𝜋

)
𝐴l𝐿oa

 , (5.57)

where 𝑥𝐴,0 is the distance to the center of the lateral projected area of the ship, see
also Wnęk et al. [159], and Höffmann [71]. The true wind direction w.r.t. the north axis is
denoted using 𝛽w,t ∈ [−𝜋, 𝜋), see Fig. 5.3. The true wind can be expressed with the true
wind speed 𝑉w,t and the true wind direction 𝛽w,t using

𝒗w,t = −
[
𝑉w,t cos(𝛽w,t)
𝑉w,t sin(𝛽w,t)

]
. (5.58)
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Based on this and the headwind 𝒗w,h = −[ ¤𝑥, ¤𝑦]⊤ the apparent wind is given by

𝒗w,a = 𝒗w,t + 𝒗w,h = −
[
¤𝑥 +𝑉w,t cos(𝛽w,t)
¤𝑦 +𝑉w,t sin(𝛽w,t)

]
. (5.59)

From this, the apparent wind speed is given by

𝑉w,a = | |𝒗w,a | |2 =
√︃
𝑉 2
w,t +𝑈 2 + 2𝑉w,t𝑢 cos(𝛽w,t −𝜓 ) + 2𝑉w,t𝑣 sin(𝛽w,t −𝜓 ) (5.60)

where𝑈 =
√
𝑢2 + 𝑣2 is the vessel speed, and the apparent wind direction w.r.t. the north

axis is calculated using

𝛽w,a = atan2( ¤𝑦 +𝑉w,t sin(𝛽w,t), ¤𝑥 +𝑉w,t cos(𝛽w,t)) ∈ [−𝜋, 𝜋). (5.61)

such that the relative angle of attack w.r.t. the 𝑥𝑏-axis is given by

𝛾w,a = 𝛽w,a −𝜓 ∈ [−𝜋, 𝜋). (5.62)

5.2.4. Control Forces

In this section, the control forces 𝝉 c are analyzed based on actuators, which make up the
propulsion (or actuator configuration) of a vessel and take into account both the geometric
configuration of the actuators and the (nonlinear) relationship of the control surfaces and
the provided thrust of the actuators. To this end, these terms are defined as follows.

Definition 1 (Actuator) A pneumatic, electric, piezo-electric, hydraulic, or a combination
the aforementioned device(s) that relates an (environmental) state, its activating/deflecting/-
switching mechanisms (control surfaces) such as valves, pistons, or solenoids, and its orien-
tation (which, depending on the actuator, may be part of the control surfaces) and location
w.r.t. to a (body-fixed) coordinate frame to a generalized force (if a location is defined) or
thrust vector (if no location is defined). Also called actor or effector.

Definition 2 (Propulsion System) A system that consists a set of actuators in a certain
geometric constellation and calculates the total generalized force exerted by the individual
actuators that results on a (rigid) body. Also called actuator configuration.

In the general, nonlinear equations of motion of an MSV, (5.72) the vector of generalized
input forces 𝝉 c can be studied in more detail. If the actuator configuration is known as,
e.g., shown in Fig. 5.4, the relationship between the actual control inputs, i.e., the control
surfaces (or manipulated variables) of the vessel 𝒖 (𝑡) ∈ R𝑛𝑢 and the generalized input
forces can be formulated mathematically using the actuator configuration model

𝝉 c = 𝒈(𝒙, 𝒖), (5.63)
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Figure 5.4.: Example actuator configuration with 𝑛𝑎 = 3 actuators, namely, a combined propeller-rudder system
with rudder angle 𝛿 and two tunnel thrusters with actuator location 𝒑

𝑏𝑎 𝑗

𝑏
= [𝑙𝑥,𝑗 , 𝑙𝑦,𝑗 ]⊤ shown for the bow

tunnel thruster 𝑻 1.

which is, in general, nonlinear. In view of the derivation of dynamical vessel model, the
force and moment generated by each actuator must be expressed w.r.t. the body-fixed
frame. To this end, the geometric location 𝒑

𝑏𝑎 𝑗

𝑏
= [𝑙𝑥,𝑗 , 𝑙𝑦,𝑗 ]⊤, 𝑗 = 1, . . . , 𝑛𝑎 of the 𝑛𝑎

individual actuators is defined such that the respective thrust 𝑻 𝑗 (𝒙, 𝒖 𝑗 ) = [𝑇𝑥,𝑗 , 𝑇𝑦,𝑗 ]⊤ ∈
R2, 𝑗 = 1, . . . , 𝑛𝑎 generated by each actuator can be described depending on the system
states and on a set of 𝑛𝑢 𝑗

control surfaces, i.e., 𝒖 𝑗 (𝑡) ∈ R𝑛𝑢𝑗 for the 𝑗-th actuator. Note
that the actuator’s orientation 𝛼 𝑗 is either considered to be constant in time or part of
the control surfaces. The geometric actuator locations are combined in the so-called
thrust-configuration matrix

𝐵𝑇 =
[
𝐵𝑇,1 . . . 𝐵𝑇,𝑛𝑎

]
∈ R3×2𝑛𝑎 , 𝐵𝑇,𝑗 =


1 0
0 1
−𝑙𝑦,𝑗 𝑙𝑥,𝑗

 , 𝑗 = 1, . . . , 𝑛𝑎, (5.64)

which effectively translates the respective actuator’s thrust to a force acting in the CG of
the vessel according to Newton’s second law, and a resultant moment w.r.t. the body-fixed
frame according to Euler’s second law, i.e.,

𝝉𝑐,𝑗 =


𝑇𝑥,𝑗
𝑇𝑦,𝑗

𝒑
𝑏𝑎 𝑗

𝑏
× 𝑻 𝑗

 = 𝐵𝑇,𝑗𝑻 𝑗 (𝒙, 𝒖 𝑗 ). (5.65)
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With this𝝉 c = 𝒈(𝒙, 𝒖) = 𝐵𝑇𝑻 (𝒙, 𝒖) gives the sum off all forces resulting from the individual
actuator, where

𝑻 (𝒙, 𝒖) =

𝑻 1 (𝒙, 𝒖1)

...

𝑻𝑛𝑎 (𝒙, 𝒖𝑛𝑎 )

 , (5.66)

with 𝑻 (·, ·) ∈ R2𝑛𝑎 , 𝒖 (𝑡) = [𝒖⊤1 (𝑡), . . . , 𝒖⊤𝑛𝑎 (𝑡)]
⊤ ∈ R𝑛𝑢 such that 𝑛𝑢 =

∑𝑛𝑎
𝑗
𝑛𝑢 𝑗

is the total
number of control surfaces.

Tunnel Thruster

The thrust generated by a tunnel thruster, which usually generates thrust in the direction
of the positive or negative 𝑦𝑏-axis, i.e., its orientation 𝛼tt = 𝜋/2 = const. can be modeled
using 𝑛𝑢,tt = 1 control surface, i.e., the rotational speed of the impeller 𝜔tt, which yields

𝑻 tt (𝒙, 𝒖tt) =
[

0
𝑇|𝜔tt |𝜔tt |𝜔tt |𝜔tt

]
, (5.67)

where 𝑇|𝜔tt |𝜔tt > 0 is a thrust coefficient.

Propeller-Rudder System

A propeller-rudder system can be modeled as a combined actuator. As can be seen from
Fig. 5.4, this constellation has two inputs, namely, the rotational speed of the propeller and
the rudder angle 𝛿pr. The orientation of the system is usually constant in time and aligned
with the 𝑥𝑏-axis, i.e., 𝛼pr = 0 = const.. The total thrust generated by this propeller-rudder
configuration can be calculated with

𝑻 pr (𝒙, 𝒖pr) =
[
𝑇 𝑥,pr −𝑇D (𝑢, 𝛿pr)

𝑇L (𝑢, 𝛿pr)

]
, (5.68)

where 𝑇D (𝑢, 𝛿pr) is the drag force caused by a nonzero rudder angle, which impedes the
nominal thrust

𝑇 𝑥,pr =

{
𝑇 +|𝜔pr |𝜔pr

|𝜔pr |𝜔pr −𝑇 +|𝜔pr |𝑢 |𝜔pr |𝑢, if 𝜔pr ≥ 0
𝑇 −|𝜔pr |𝜔pr

|𝜔pr |𝜔pr −𝑇 −|𝜔pr |𝑢 |𝜔pr |𝑢, else
(5.69)

generated by the propeller. Compared to a tunnel thruster setup with impeller the nominal
thrust generated by the propeller in this configuration must take into account the relative
speed of the vessel through the water. Furthermore, this configuration generates a lift
force𝑇L (𝑢, 𝛿pr) induced due to a nonzero rudder angle that is used to turn or brake the ship.
The lift force depends on the nominal thrust generated by its preceding propeller, which
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accelerates the water toward the rudder. This only takes effect if the vessel moves forward
through the water. Otherwise, the rudder influence becomes very small for generating lift.
This can be expressed mathematically using

𝑢rud,pr =

{
𝑢 + 𝑘𝑢

(√︃
8

𝜋𝜌𝑑2
pr
𝑇 𝑥,pr + 𝑢2 − 𝑢

)
if 𝑢 ≥ 0

𝑢 else
, (5.70)

where 𝑢rud,pr is the water velocity at the rudder, 𝜌 is the water density, 𝑑pr is the propeller
diameter, and 𝑘𝑢 ≈ 0.5 if the propeller is close to the rudder. In total, the generated lift is
expressed in terms of the rudder angle and the water speed at the rudder as

𝑇L (𝑢, 𝛿pr) =
{
(𝐿+
𝛿pr
𝛿pr − 𝐿+|𝛿pr |𝛿pr |𝛿pr |𝛿pr) |𝑢rud,pr |𝑢rud,pr if 𝑢rud,pr ≥ 0

(𝐿−
𝛿pr
𝛿pr − 𝐿−|𝛿pr |𝛿pr |𝛿pr |𝛿pr) |𝑢rud,pr |𝑢rud,pr else

. (5.71)

The drag force 𝑇D (𝑢, 𝛿pr) can be seen as an additional contribution in the damping matrix
𝐷 (𝝂) and is therefore ignored in the actuator model.

5.3. Nonlinear Input-Affine Ordinary Differential Equation

All in all, the equations of motion for the MSV can be expressed mathematically as

¤𝜼 = 𝑅𝑧,𝜓𝝂, 𝑡 > 𝑡0, 𝜼(𝑡0) = �̂�0, (5.72a)
𝑀 ¤𝝂 = −(𝐶 (𝝂) + 𝐷 (𝝂))𝝂 + 𝝉 c, 𝑡 > 𝑡0, 𝝂 (𝑡0) = �̂�0, (5.72b)

where 𝜼 = [𝑥, 𝑦, 𝜓 ]⊤ is the pose of the MSV, 𝝂 = [𝑢, 𝑣, 𝑟 ]⊤ are the body-fixed velocities,
𝝉 c ∈ R3 is the vector of generalized input forces,

𝑀 =𝑀rb −𝑀am, (5.73a)
𝐶 (𝝂) =𝐶rb (𝝂) −𝐶am (𝝂), (5.73b)
𝐷 (𝝂) = 𝐷l + 𝐷nl (𝝂), (5.73c)

are the mass-, Coriolis-, and damping matrix, respectively. Depending on the application,
the actuator configuration according to Sec. 5.2.4 may or may not be substituted for the
vector of control forces 𝝉 c in the ODE. For the general case, when the actuator models
are not explicitly included, (5.72a) can be expressed as a general, nonlinear input-affine
ODE

¤𝒙 = 𝒇 (𝒙) + 𝐵𝜏𝒖, 𝑡 > 𝑡0, 𝒙 (0) = �̂�0, (5.74)

where

𝒇 (𝒙) =
[

𝑅𝑧,𝜓𝝂
−𝑀−1 (𝐶 (𝝂) + 𝐷 (𝝂))𝝂

]
, 𝐵𝜏 =

[
0

𝑀−1

]
, (5.75)

and 𝒙 = [𝜼⊤, 𝝂⊤]⊤ is the state vector and 𝒖 = 𝝉 c is the input with 𝐵𝜏 ∈ R𝑛𝑥×3.

33



5. Mathematical Modeling of MSVs

5.4. Autopilot (Nomoto) Model

The nonlinear model (5.72), or (5.74) is useful for control design and simulation. However,
simplified models can be used to provide further insight to the behavior of marine craft and
can also be used to design simple controllers such as autopilots. For a vessel moving at a
constant forward speed, i.e., 𝝂0 = [𝑢0, 0, 0]⊤ and 𝝉 c,0 = (𝐶 (𝝂0) +𝐷 (𝝂0))𝝂0 a linearization
of the kinetic equation (5.72b) leads to a decoupled surge and sway-yaw system

𝑀Δ ¤𝝂 =

[
𝑎11 (𝑢0) 0⊤

0 𝑁 (𝑢0)

]
Δ𝝂 + Δ𝝉 c, (5.76)

where Δ𝝂 = 𝝂 − 𝝂0, Δ𝝉 c = 𝝉 c − 𝝉 c,0, and

𝑁 (𝑢0) =
[

𝑌𝑣 𝑌𝑟 + (𝑋 ¤𝑢 −𝑚)𝑢0
𝑁𝑣 + (𝑌¤𝑣 − 𝑋 ¤𝑢)𝑢0 𝑁𝑟 + (𝑌¤𝑣 −𝑚𝑥𝑔)𝑢0

]
. (5.77a)

Based on this, an autopilot model can be derived with 𝝉 c = [Δ𝜏c,𝑣, Δ𝜏c,𝑟 ]⊤ = [𝜏c,𝑣, 𝜏c,𝑟 ]⊤ =

𝒃𝛿 , i.e., the sway-yaw dynamics are controlled using a rudder with ruder angle 𝛿 . Further-
more, introducing 𝝂 = [Δ𝑣, Δ𝑟 ]⊤ = [𝑣, 𝑟 ]⊤,

�̄� =

[
𝑚22 𝑚23
𝑚32 𝑚33

]
,

and assuming that the yaw rate is measured, the kinetic autopilot model can be written as

�̄� ¤̄𝝂 = 𝑁 (𝑢0)𝝂 + 𝒃𝛿, (5.78a)
𝑦 = 𝒄⊤𝝂, (5.78b)

where 𝒄⊤ = [0, 1]. Therefore, the input-output behavior can be expressed using the
Laplace transform of (5.78), i.e.,

𝑔(𝑠) = 𝑟 (𝑠)
𝛿 (𝑠) = 𝒄⊤ (𝑠�̄� − 𝑁 (𝑢0))−1𝒃 =

𝐾 (1 +𝑇3𝑠)
(1 +𝑇1𝑠) (1 +𝑇2𝑠)

(5.79)

which is known as the Nomoto model.

Based on the Nomoto model, the characteristic polynomial of the system matrix can be
used to determine the directional stability of the vessel. More specifically, this evaluates
to

det(𝑠�̄� − 𝑁 (𝑢0)) = 𝑎𝑠2 + 𝑏𝑠 + 𝑐 = 0 (5.80a)
= det�̄�𝑠2 + tr(adj(�̄�)𝑁 (𝑢0))𝑠 + det𝑁 (𝑢0) = 0 (5.80b)
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and the directional stability of the vessel model can be assessed based on the zeros of this
particular polynomial. Therein,

𝑎 = (𝑚 − 𝑌¤𝑣) (𝐽𝑧𝑧 − 𝑁 ¤𝑟 ) − (𝑚𝑥𝑔 − 𝑁 ¤𝑣) (𝑚𝑥𝑔 − 𝑌¤𝑟 ), (5.81a)
𝑏 = (𝑚 − 𝑌¤𝑣) (𝑁𝑟 + (𝑌¤𝑣 −𝑚𝑥𝑔)𝑢0) + 𝑌𝑣 (𝐽𝑧𝑧 − 𝑁 ¤𝑟 )
− (𝑚𝑥𝑔 − 𝑌¤𝑟 ) (𝑁𝑣 + (𝑌¤𝑣 − 𝑋 ¤𝑢)𝑢0)
− (𝑌𝑟 + (𝑋 ¤𝑢 −𝑚)𝑢0) (𝑚𝑥𝑔 − 𝑁 ¤𝑣),

(5.81b)

𝑐 = 𝑌𝑣 (𝑁𝑟 + (𝑌¤𝑣 −𝑚𝑥𝑔)𝑢0) − (𝑌𝑟 + (𝑋 ¤𝑢 −𝑚)𝑢0) (𝑁𝑣 + (𝑌¤𝑣 − 𝑋 ¤𝑢)𝑢0), (5.81c)

where it can be shown that both 𝑎 and 𝑏 are large positive quantities, see [1, Chap. 4], [93,
Sec. 10.2.1]. For a second order polynomial to have only negative eigenvalues and, thus,
implying a directionally stable vessel, it is sufficient that all coefficients have the same
sign [100, Sec. 8.3.2]. As a consequence, the directional stability of the vessel depends on
the coefficient (5.81c) that can be rewritten as

𝑐 = 𝑌𝑣 (𝑁𝑟 −𝑚𝑥𝑔𝑢0 + 𝑌¤𝑣) − 𝑁𝑣 (𝑌𝑟 −𝑚𝑢0 + 𝑋 ¤𝑢𝑢0)︸                 ︷︷                 ︸
(∗)

− ((𝑌¤𝑣 − 𝑋 ¤𝑢)𝑢0)︸           ︷︷           ︸
(∗∗)

(𝑌𝑟 −𝑚𝑢0 + 𝑋 ¤𝑢𝑢0)︸                 ︷︷                 ︸
(∗)

, (5.82)

where it can be deduced using, e.g., Tab. 5.1 that the first term is a positive quantity, the
sign of the second term depends solely on the sign of 𝑁𝑣 since (∗) is a large negative
quantity. Therefore, if 𝑁𝑣 > 0, 𝑐 increases and course stability is improved. On the other
hand, (∗∗) ≈ −0.9𝑚𝑢0 is a large negative quantity that has a destabilizing effect on the
vessel’s course. It is also known as the Munk moment that tends to rotate the vessel,
which arises due to pressure differences along the vessel hull.

In conclusion, the course stability of a vessel depends largely on the sign and magnitude of
𝑁𝑣 and its relation to the Munkmoment (𝑌¤𝑣−𝑋 ¤𝑢)𝑢0. Furthermore, note that the directional
stability can be greatly increased by means of the location of the CG: Increasing 𝑥𝑔, i.e.,
putting the CG further forward in the vessel, directly affects the first term in (5.82).
However, note that this may not be desirable since a very course-stable vessel is not as
maneuverable as a less stable one.
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6. Nonlinear and Optimization-Based
Control Design

This chapter deals with the synthesis of nonlinear and optimization-based control laws
for the MSV model (5.74). The former typically relies on a nonlinear state transformation
that yields a linear transformed dynamical system under a nonlinear feedback law. Subse-
quently, concepts from linear control theory can be utilized to stabilize the system and
track reference trajectories see, e.g., [2, 77]. As an example, the method of exact feedback
linearization and flatness-based control for MSVs is presented that is especially suited for
dynamic positioning of MSVs.

The latter control method can be further divided into two categories, namely, control
allocation and optimal control problems. On the one hand, control allocation deals with
the assignment of control inputs of overactuated systems to the individual actuators of the
vessel’s propulsion system and usually achieves this task by means of a static constrained
optimization problem [78, 68]. Therefore, the underlying control allocation problem is
introduced and present a numerical solution method based on an interior-point SQP
line-search algorithm similar to the algorithms presented in Wächter [153], Byrd et al.
[24], Bonnans [19], Chachuat [28].

On the other hand, the theory of optimal control constitutes a special class of a dynamic
optimization problem, which is a very powerful alternative to the classical nonlinear
approaches such as the exact feedback linearization in the sense that it is able to take into
account physical limitations of the system in the form of constraints. These constraints
are usually imposed on the input of the system, e.g., to take into account rate constraints
or other actuator limitations. However, OCPs are also able to handle state constraints that
represent static/dynamic obstacles and traffic-restricted areas on the water. For this reason
optimal control problems gain popularity in the context of autonomous surface vessels
and are applied in a variety of different applications, e.g., dynamic control allocation [21],
dynamic positioning [104], trajectory planning [92], and path following [172]. In this
context, the theory of OCPs is presented and its solutions methods along with MPC, which
extends the concept of OCPs to a receding horizon control scheme and thus achieves
closed-loop control of the system.
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6.1. Feedback Linearization

Feedback linearization is a control method that aims to transform the nonlinear system
(5.74) into a linear system by introducing a nonlinear state transformation and a nonlinear
control law that compensates for the nonlinearities in the transformed system dynamics.
This transformation can be found using the concept of the relative degree of a system. In
this context it is common (although not necessary) to describe the system dynamics in
general input-affine form

¤𝒙 = 𝒇 (𝒙) +
𝑛𝑢∑︁
𝑖=1

𝒈𝑖 (𝒙)𝑢𝑖 , 𝑡 > 𝑡0, 𝒙 (0) = �̂�0 ∈ R𝑛𝑥 , (6.1a)

𝒚 = 𝒉(𝒙), (6.1b)

where 𝒇 : R𝑛𝑥 ↦→ R𝑛𝑥 , 𝒈𝑖 : R𝑛𝑥 ↦→ R𝑛𝑥 , 𝑖 = 1, . . . , 𝑛𝑢 are the drift and input vector fields,
respectively, and 𝒉 : R𝑛𝑥 ↦→ R𝑛𝑦 is the measurement function, 𝒖 ∈ R𝑛𝑢 is the control input,
and 𝒚 ∈ R𝑛𝑦 is the output of the system. In the following, it is assumed that 𝑛𝑦 = 𝑛𝑢 . To
construct the nonlinear state transformation that transforms the system into the nonlinear
equivalent of the controller canonical form, a few concepts of nonlinear control theory
are in order [77, 117].

Definition 3 (Lie Derivative) The Lie derivative of a function ℎ(𝒙) along a vector field
𝒇 (𝒙) is defined as

(i) 𝐿𝑘𝒇 ℎ(𝒙) =
(
𝜕
𝜕𝒙 𝐿

𝑘−1
𝒇 ℎ(𝒙)

)
𝒇 (𝒙), 𝑘 ∈ N.

(ii) 𝐿0
𝒇
ℎ(𝒙) = ℎ(𝒙).

Definition 4 (Vector Relative Degree) A system of the form (6.1) has vector relative
degree 𝒓 = [𝑟1, 𝑟2, . . . , 𝑟𝑛𝑦 ]⊤ and relative degree 𝑟 =

∑𝑛𝑦

𝑖=1 𝑟𝑖 if

(i) 𝐿𝒈 𝑗
𝐿𝑘𝒇 ℎ𝑖 (𝒙) = 0, 𝑖, 𝑗 = 1, . . . , 𝑛𝑦, 𝑘 = 0, 1, . . . , 𝑟𝑖 − 2.

(ii) the coupling matrix

D(𝒙) =


𝐿𝒈1𝐿

𝑟1−1
𝒇

ℎ1 . . . 𝐿𝒈𝑛𝑦
𝐿
𝑟1−1
𝒇

ℎ1
...

...

𝐿𝒈1𝐿
𝑟𝑛𝑦 −1
𝒇

ℎ𝑛𝑦 . . . 𝐿𝒈𝑛𝑦 𝐿
𝑟𝑛𝑦 −1
𝒇

ℎ𝑛𝑦

 ∈ R
𝑛𝑦×𝑛𝑦

is regular.
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6.1. Feedback Linearization

Based on this, suppose there is a (fictitious) output 𝒚 = 𝝀(𝒙) with relative degree 𝑟 = 𝑛𝑥 .
Then the nonlinear transformation

𝒛 =


𝒛1
...

𝒛𝑛𝑦

 =



𝑧1,1
𝑧1,2
...

𝑧1,𝑟1

...

𝑧𝑛𝑦 ,1
𝑧𝑛𝑦 ,2
...

𝑧𝑛𝑦 ,𝑟𝑛𝑦



= 𝚽(𝒙) =

𝚽1 (𝒙)
...

𝚽𝑛𝑦 (𝒙)

 =


𝜆1 (𝒙)
...

𝐿
𝑟1−1
𝒇

𝜆1 (𝒙)
...

𝜆𝑛𝑦 (𝒙)
...

𝐿
𝑟𝑛𝑦 −1
𝒇

𝜆𝑛𝑦 (𝒙)


(6.2)

transforms the system (6.1a) into the nonlinear controller canonical form

¤𝑧1,1 = 𝑧1,2 (6.3a)
¤𝑧1,2 = 𝑧1,3 (6.3b)
...

¤𝑧1,𝑟1 = 𝐿
𝑟1
𝒇
𝜆1 (𝒙) + [𝐿𝒈1𝐿

𝑟1−1
𝒇

𝜆1 (𝒙), . . . , 𝐿𝒈𝑛𝑦
𝐿
𝑟1−1
𝒇

𝜆1 (𝒙)]𝒖 (6.3c)

...

¤𝑧𝑛𝑦 ,1 = 𝑧𝑛𝑦 ,2 (6.3d)
¤𝑧𝑛𝑦 ,2 = 𝑧𝑛𝑦 ,3 (6.3e)

...

¤𝑧𝑛𝑦 ,𝑟𝑛𝑦 = 𝐿
𝑟𝑛𝑦

𝒇
𝜆𝑛𝑦 (𝒙) + [𝐿𝒈1𝐿

𝑟𝑛𝑦 −1
𝒇

𝜆𝑛𝑦 (𝒙), . . . , 𝐿𝒈𝑛𝑦
𝐿
𝑟𝑛𝑦 −1
𝒇

𝜆𝑛𝑦 (𝒙)]𝒖 (6.3f)

with transformed state 𝒛, see [23]. Also refer to [2, 77] on more information about the
existence and calculation of a fictitious output 𝝀(𝒙) with relative degree 𝑟 = 𝑛𝑥 and
the case where 𝑟 < 𝑛𝑥 , i.e., the case when there is no such fictitious output. Using the
transformation (6.2) it is evident that the nonlinear control law

𝒖 =D−1 (𝒙) (−𝒂(𝒙) + 𝒗), (6.4)

exactly linearizes and decouples the nonlinear system, where

𝒂(𝒙) =


𝐿
𝑟1
𝒇
𝜆1 (𝒙)
...

𝐿
𝑟𝑛𝑦

𝒇
𝜆𝑛𝑦 (𝒙)

 (6.5)
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v1

Integrator Chain λ1

∫ ∫ξ1,r1 ξ1,r1−1 ∫ ∫ξ1,2
λ1

ξ1,1

v2

Integrator Chain λ2

∫ ∫ξ2,r2 ξ2,r2−1 ∫ ∫ξ2,2
λ2

ξ2,1

...

vny

Integrator Chain λny

∫ ∫ξny,r3 ξny,r3−1 ∫ ∫ξny,2
λny

ξny,1

Figure 6.1.: Brunovsky canonical form of the nonlinear system (6.1) under the nonlinear control law (6.4) with
new input 𝒗, vectorial relative degree 𝒓 = [𝑟1, 𝑟2, . . . , 𝑟𝑛𝑦 ]⊤ and (fictitious) output 𝝀 (𝒙 ) .

and 𝒗 ∈ R𝑛𝑦 is a new input such that the closed-loop dynamics in the transformed state is
in Brunovsky canonical form

¤𝒛 =


¤𝒛1
¤𝒛2
...

¤𝒛𝑛𝑦


=


𝐴1 0 . . . 0
0 𝐴2 . . . 0
...

...
. . .

...

0 0 . . . 𝐴𝑛𝑦


𝒛 +


𝒆1 0 . . . 0
0 𝒆2 . . . 0
...

...
. . .

...

0 0 . . . 𝒆𝑛𝑦


𝒗, (6.6)

where

𝐴𝑖 =



0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
0 0 0 . . . 0


∈ R𝑟𝑖×𝑟𝑖 (6.7)

and 𝒆𝑖 = [0, . . . , 0, 1]⊤ ∈ R𝑟𝑖 for 𝑖 = 1, . . . , 𝑛𝑦 . The Brunovsky canonical form is illustrated
in Fig. 6.1.
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6.1. Feedback Linearization

For the vessel model (5.74), it is evident that 𝒈𝑖 (𝒙), 𝑖 = 1, 2, 3 is the 𝑖-th column of 𝐵𝜏 .
Furthermore, 𝝀(𝒙) = 𝜼 is an output with relative degree of 𝑟 = 𝑟1 + 𝑟2 + 𝑟3 = 𝑛𝑥 , where
𝑟1 = 𝑟2 = 𝑟3 = 2. This can be verified by differentiating 𝜼 w.r.t. time twice, i.e.,

¤𝜼 = 𝑅𝑧,𝜓𝝂 =:


𝐿
𝑟1−1
𝒇

𝜆1 (𝒙)
𝐿
𝑟2−1
𝒇

𝜆2 (𝒙)
𝐿
𝑟3−1
𝒇

𝜆3 (𝒙)

 , (6.8a)

¥𝜼 =
𝜕𝑅𝑧,𝜓

𝜕𝜓
¤𝜓𝝂 + 𝑅𝑧,𝜓 ¤𝝂

=
𝜕𝑅𝑧,𝜓

𝜕𝜓
¤𝜓𝝂 − 𝑅𝑧,𝜓𝑀−1 (𝐶 (𝝂) + 𝐷 (𝝂))𝝂 + 𝑅𝑧,𝜓𝑀−1𝝉 fb

= 𝒂(𝒙) + D(𝒙)𝒖,

(6.8b)

where

𝒂(𝒙) =
𝜕𝑅𝑧,𝜓

𝜕𝜓
𝑟𝝂 − 𝑅𝑧,𝜓𝑀−1 (𝐶 (𝝂) + 𝐷 (𝝂))𝝂 (6.9)

is the compensation term (6.5) and

D(𝒙) = 𝑅𝑧,𝜓𝑀−1 (6.10)

is the coupling matrix in Def. 4, which is invertible and D−1 (𝒙) =𝑀𝑅⊤
𝑧,𝜓

.

Thus, the feedback law

𝝉 fb =D−1 (𝒙) (−𝒂(𝒙) + 𝒗)

= −𝑀𝑅⊤
𝑧,𝜓

𝜕𝑅𝑧,𝜓

𝜕𝜓
𝑟𝝂 + (𝐶 (𝝂) + 𝐷 (𝝂))𝝂 +𝑀𝑅⊤

𝑧,𝜓
𝒗 (6.11)

exactly linearizes the system and 𝒗 is the new control input that can be designed to
realize an output tracking of the desired target trajectory 𝝀∗ = 𝜼∗ or, more explicitly,
𝜆∗1 (𝒙) = 𝑥∗, 𝜆∗2 (𝒙) = 𝑦∗, 𝜆∗3 (𝒙) = 𝜓 ∗, using methods from linear control theory such as,
e.g., a pole placement controller of the form

𝒗 =


𝜆
∗(𝑟1 )
1 −∑𝑟1−1

𝑗=0 𝑝1, 𝑗 (𝐿 𝑗𝒇 𝜆1 (𝒙) − 𝜆∗( 𝑗 )1 )
𝜆
∗(𝑟2 )
2 −∑𝑟2−1

𝑗=0 𝑝2, 𝑗 (𝐿 𝑗𝒇 𝜆2 (𝒙) − 𝜆∗( 𝑗 )2 )
𝜆
∗(𝑟3 )
3 −∑𝑟3−1

𝑗=0 𝑝3, 𝑗 (𝐿 𝑗𝒇 𝜆3 (𝒙) − 𝜆∗( 𝑗 )3 )

 =

𝑥∗(𝑟1 ) − 𝒑⊤1 (𝚽1 (𝒙) − 𝝃 ∗)
𝑦∗(𝑟2 ) − 𝒑⊤2 (𝚽2 (𝒙) − 𝚼∗)
𝜓 ∗(𝑟3 ) − 𝒑⊤3 (𝚽3 (𝒙) − 𝚿∗)

 , (6.12)

where 𝒑⊤𝑖 = [𝑝0, . . . , 𝑝𝑟𝑖 ], 𝑖 = 1, 2, 3 are coefficients of a Hurwitz polynomial. Further-
more,

𝝃 ∗ =


𝑥∗

¤𝑥∗
...

𝑥∗(𝑟1−1)


, 𝚼

∗ =


𝑦∗

¤𝑦∗
...

𝑦∗(𝑟2−1)


, 𝚿

∗ =


𝜓 ∗

¤𝜓 ∗
...

𝜓 ∗(𝑟3−1)


(6.13)
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6. Nonlinear and Optimization-Based Control Design

are the respective target trajectories, which need to be 𝑟𝑖 -times continuously differentiable,
and 𝚽𝑖 (𝒙), 𝑖 = 1, 2, 3 defined according to (6.2).

This pole placement controller dictates the eigenvalues of the trajectory error dynamics
in Brunovsky canonical form (6.6).

Remark 3 (Differential Flatness) Since the vessel model is feedback-linearizable, it is
also differentially flat, i.e., 𝒛 = 𝜼 is also a flat output of the system. Thus, the system states
and inputs can be expressed in terms of the flat output and its time derivatives, i.e.,

𝒙 = 𝜽𝒙 (𝒛, ¤𝒛, ..., 𝒛 (𝛽−1) ), (6.14a)

𝒖 = 𝜽𝒖 (𝒛, ¤𝒛, ..., 𝒛 (𝛽 ) ). (6.14b)

Based on (5.72a) it is evident that

𝒙 = 𝜽𝒙 (𝒛, ¤𝒛, ..., 𝒛 (𝛽−1) ) =
[

𝒛
𝑅⊤𝑧,𝑧3
¤𝒛

]
, (6.15)

Moreover, by differentiating 𝝂 = 𝑅⊤𝑧,𝑧3
¤𝒛 w.r.t. time ¤𝝂 =

𝜕𝑅𝑧,𝑧3
𝜕𝑧3
¤𝑧3 ¤𝒛 + 𝑅⊤𝑧,𝑧3

¥𝒛 is obtained, which
can be substituted into (5.72b) to yield the input parameterization

𝝉 c = 𝜽𝒖 (𝒛, ¤𝒛, ..., 𝒛 (𝛽 ) )

=𝑀𝑅⊤𝑧,𝑧3
¥𝒛 −𝑀

𝜕𝑅𝑧,𝑧3

𝜕𝑧3
¤𝑧3 ¤𝒛 + (𝐶 (𝝂) |𝝂=𝑅⊤𝑧,𝑧3 ¤𝒛 + 𝐷 (𝝂) |𝝂=𝑅⊤𝑧,𝑧3 ¤𝒛)𝑅

⊤
𝑧,𝑧3
¤𝒛 . (6.16)

This parameterization can be used to design a feedforward control based on the desired
output 𝜼∗ that must be twice continuously differentiable. Efforts have also been made in, e.g.,
Agrawal and Sira-Ramirez [3, Sec. 9.5] to derive a flat parameterization of (5.72) for the
underactuated case. However, this parameterization relies on several unrealistic assumptions
on the parameters and, furthermore, includes a variety of singularities that would render the
resulting flat parameterization of the system useless in a real application. An optimization-
based control for underactuated systems can be achieved using constraints as shown in
[174].

6.2. Control Allocation

Overactuated mechanical systems are defined by having more independent actuators
or control inputs, compared to their DOFs [81]. Suppose the desired generalized force
vector 𝝉∗c for the ship model (5.74) has been calculated by a high-level controller. In this
context, (·)∗ denotes the desired value (as calculated by, e.g., a high-level controller) of
the respective variable. If the ship is overactuated, the desired generalized force can
be realized with several combinations of the individual actuators of the vessel. The
overactuation can thus be viewed as a degree of freedom of the controller in the sense
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6.2. Control Allocation

that additional goals such as minimum wear of the actuators can be realized. Furthermore,
it is often assumed that the actuator dynamics can be neglected since most actuators are
provided with low level controllers. In that case, the control allocation problem can be
formulated as a static optimization problem, which is the topic of this chapter. Therefore,
the principal concepts of control allocation are introduced and an interior-point SQP line-
search algorithm for solving the control allocation problem is presented with illustrative
examples in Appendix A.

6.2.1. Problem Formulation

The control allocation calculates set points for subordinate or low-level controllers based
on the relationship between the generalized forces of the vessel’s propulsion system and
the thrust provided by the individual actuators that can be stated mathematically using
the nonlinear propulsion model as in (5.63), which is stated here again for clarity

𝝉 c = 𝒈(𝒙, 𝒖). (6.17)

With this, the principal goal of control allocation consists in solving the equation

𝝉∗c − 𝒈(𝒙, 𝒖) = 0, (6.18)

for 𝒖 that has multiple solutions due to the overactuation. In reality, the linear case

𝒈(𝒙, 𝒖) = 𝐵𝒖 (6.19)

can be solved more efficiently and is more widely-studied. Therein, 𝐵 ∈ R3×𝑛𝑢 is the
(linear) control effectiveness matrix. It is therefore desirable to simplify the nonlinear
model. In a digital system, a successive linearization around the previously realized control
input 𝒖−1 = 𝒖 (𝑡 − Δ𝑡), where Δ𝑡 is the fundamental step time of the digital system, yields
the linearized propulsion model

𝝉∗c = 𝒈(𝒙, 𝒖) ≈ 𝒈(𝒙, 𝒖−1) +
𝜕𝒈

𝜕𝒖
(𝒙, 𝒖−1)︸       ︷︷       ︸
𝐵 (𝒙 )

(𝒖 − 𝒖−1) (6.20)

such that the linear relation

𝒗∗ = 𝐵(𝒙)𝒖, (6.21)

is obtained using the new virtual desired input

𝒗∗ = 𝝉∗c − 𝒈(𝒙, 𝒖−1) + 𝐵(𝒙)𝒖−1 (6.22)

and a linear control allocation can be performed using this model. Note that the control
effectiveness matrix of the linearized model 𝐵(𝒙) can be state-dependent in the nonlinear
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6. Nonlinear and Optimization-Based Control Design

case. Based on this, a control allocation can be performed if rank𝐵𝑢 < 𝑛𝑢 , where 𝐵𝑢 = 𝐵𝜏𝐵

with 𝐵𝜏 defined in (5.75). In that case 𝐵𝑢 has a null space of dimension 3 − rank𝐵𝑢 or, in
other words, there exist different assignments of the actuators 𝒖 that do not alter the rate of
change of the system states, which is the underlying idea of a control allocation algorithm.
Therefore, secondary goals apart from providing the desired generalized forces 𝝉∗c (or 𝒗∗)
can be taken into account including actuator bounds, rate constraints, prioritized actuators,
etc. More specifically, if the propulsion model is obtained using a thrust-configuration
matrix as described in Sec. 5.2.4, the nonlinear model reads

𝒈(𝒙, 𝒖) = 𝐵𝑇𝑻 (𝒙, 𝒖), (6.23)

and (6.22) evaluates to 𝒗∗ = 𝝉∗c − 𝐵𝑇𝑻 (𝒙, 𝒖−1) + 𝐵𝑇 𝜕𝑻𝜕𝒖 (𝒙, 𝒖−1)𝒖−1 such that 𝐵(𝒙) =

𝐵𝑇
𝜕𝑻
𝜕𝒖 (𝒙, 𝒖−1) is the (linearized) control effectiveness matrix.

Based on the linear or linearized actuator model, the control allocation can be formulated
using a (quadratic) optimization problem1

min
𝒖, 𝒔

𝑐 (𝒖, 𝒔) = 1
2
| |𝒖 − 𝒖ref | |2𝑊𝑢

+ 𝛾
2
| |𝒔 | |2𝑊𝜏

(6.24a)

s.t.
𝒗∗ = 𝐵(𝒙)𝒖 + 𝒔 (6.24b)
𝒖− ≤ 𝒖 ≤ 𝒖+ (6.24c)
− Δ𝑡 ¤𝒖max ≤ 𝒖 − 𝒖−1 ≤ Δ𝑡 ¤𝒖max, (6.24d)

where (6.24a) is the cost function to be minimized, (6.24b) is the fundamental control
allocation constraint in the virtual input, (6.24c) are bound constraints with lower and
upper bounds 𝒖−, 𝒖+, respectively, and (6.24d) are rate constraints of the control inputs,
where 𝒖−1 are the inputs of the previous iteration. Moreover, 𝒖ref is a user-defined reference
value for the actuators that is used, e.g., to define preferred, trimmed, or previous control
surface values [78]. Furthermore,𝒘 = [𝒖⊤, 𝒔⊤]⊤ ∈ R𝑛𝑤 is the vector of decision variables,
𝒔 ∈ R3 is a vector of slack variables, ¤𝒖max is the maximum rate of change of the control
surfaces. Additionally,𝑊𝑢 ∈ R𝑛𝑢×𝑛𝑢 is the control weighting matrix, and𝑊𝜏 ∈ R3×3

is the input weighting matrix. Both these matrices must be positive definite and the
former is used to prioritize individual actuators and the latter penalizes deviations from
the individual desired general forces, respectively. Furthermore, 𝛾 ≫ 1 is a user-defined
control allocation weight that emphasizes the importance of fulfilling the fundamental
control allocation constraint (6.24b) over achieving the reference control input 𝒖ref. See
also Härkegård [67] for more details and how𝑊𝜏 can be chosen. The optimization problem
(6.24) is a special case of the more general nonlinear constrained program that is discussed
in the following section.

1 This is only the case due to the assumption that actuator dynamics can be neglected. If this is not a viable
assumption, methods as shown in, e.g., [21] can be used, is where the control allocation is formulated as an
OCP, i.e., a dynamic optimization problem.
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6.2.2. Numerical Solution

The control allocation relies on a static optimization problem to be solved. In this section,
the main theoretical results of nonlinear constrained static optimization problems are
discussed. Moreover, numerical methods to solve these types of problems are discussed
using an exemplary line search interior-point algorithm. An NLP has the form

min
𝒘

𝑐 (𝒘) (6.25a)

s.t.
𝒈(𝒘) = 0 (6.25b)
𝒉(𝒘) ≤ 0, (6.25c)

where 𝑐 : R𝑛𝑤 ↦→ R is the cost function to be minimized, 𝒘 ∈ R𝑛𝑤 are the decision
variables, 𝒈 : R𝑛𝑤 ↦→ R𝑛𝑔 are the equality and 𝒉 : R𝑛𝑤 ↦→ R𝑛ℎ are the inequality
constraints. An inequality constraint ℎ𝑖 (𝒘) is said to be inactive if at the solution 𝒘∗ it
holds that ℎ𝑖 (𝒘∗) < 0. Likewise, an inequality constraint ℎ𝑖 (𝒘) is said to be active if at the
solution𝒘∗ it holds that ℎ𝑖 (𝒘∗) = 0. Thus, every equality constraint is active. A point𝒘 is
said to be feasible, if (6.25b) and (6.25c) are satisfied.

The (first order necessary) optimality Karush-Kuhn-Tucker (KKT) conditions for problems
of the form (6.25) are based on the introduction of Lagrange multipliers 𝝀, 𝝁 associated
with the equality and inequality constraints, respectively. They are formulated as

∇𝒘𝑐 (𝒘∗) + ∇𝒘𝒈(𝒘∗)𝝀∗ + ∇𝒘𝒉(𝒘∗)𝝁∗ = 0 (6.26a)
𝒉⊤ (𝒘∗)𝝁∗ = 0 (6.26b)

𝝁∗ ≥ 0 (6.26c)
𝒈(𝒘∗) = 0 𝒉(𝒘∗) ≤ 0, (6.26d)

where (6.26a) signifies that at the optimal solution the gradient of the cost function is a
linear combination (expressed using the Lagrange multipliers) of the constraint gradients.
Furthermore, (6.26b) is known as the complementary slackness condition, implying that
all Lagrange multipliers of inactive constraints must be zero. Finally, (6.26c), and (6.26d)
ensure feasibility of the solution.

There are several strategies to solve the optimization problem (6.25) numerically. For ex-
ample, active set methods aim to iteratively identify the set of active inequality constraints
at the solution and solve a sequence of reduced equality constrained problems with this
so-called working set. After each iteration, the working set is updated and the problem
solved anew. Alternatively, interior-point methods incorporate the inequality constraints
into the cost function, which also results in a sequence of equality constrained problems.
However, the cost function is modified in such a way that the solution of the problem is
always feasible, which is not the case for active set methods. For a thorough overview
of different numerical algorithms see Nocedal and Wright [119], Chachuat [28], Betts
[15], Bonnans [19], Conn et al. [30], Luenberger and Ye [99]. In the following, a merit
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Input: 𝒘0, 𝜇0, 𝑚𝑎𝑥𝐼𝑡𝑒𝑟, 𝜖opt, 𝜖con
Output: 𝒘∗,𝝀∗,𝝈∗

1 𝑖 ← 1
2 𝒔0 ← max(1e−1,−𝒉(𝒘0))
3 (𝝀0,𝝈0) ← argmin𝝀,𝝈

1
2 | |L(𝒘0, 𝒔0,𝝀,𝝈) | |22

4 𝑖𝑠𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑 ← false

5 while 𝑖 <=𝑚𝑎𝑥𝐼𝑡𝑒𝑟∧ !𝑖𝑠𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑 do
6 solve the underlying subproblem using algorithm 2
7 if (6.56)-(6.58) are fulfilled then
8 𝑖𝑠𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑 ← true

9 end
10 calculate 𝜇𝑖+1 according to (6.29) or (6.30)
11 𝑖 ← 𝑖 + 1
12 end
Algorithm 1: The outer loop of the merit function-based interior-point line
search SQP algorithm.

function-based line search interior-point algorithm is presented that is based on the ideas
presented in Nocedal and Wright [119], Bonnans [19], Waltz et al. [154], Wächter [153].
The algorithm consists of an outer loop, which is illustrated in Algorithm 1, and an inner
loop, which is summarized in Algorithm 2.

6.2.2.1. Barrier Problem

The general nonlinear program (6.25) can be transformed into a box- and equality con-
strained nonlinear program

min
𝒘,𝒔

𝑐 (𝒘) (6.27a)

s.t.
𝒈(𝒘) = 0 (6.27b)
𝒉(𝒘) + 𝒔 = 0 (6.27c)
𝒔 ≥ 0 (6.27d)
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at the cost of additional slack variables 𝒔 and box constraints (6.27d). However, the box
constraint can be dealt with by means of a logarithmic barrier function that is augmented
to the cost function, i.e.,

min
𝒘,𝒔

𝜑𝜇 (𝒘, 𝒔) = 𝑐 (𝒘) − 𝜇
𝑛ℎ∑︁
𝑗

log(𝑠 𝑗 ) (6.28a)

s.t.
𝒈(𝒘) = 0 (6.28b)
𝒉(𝒘) + 𝒔 = 0, (6.28c)

where 𝜑𝜇 is the barrier cost function which approaches infinity as the slack variables reach
their lower bound of zero. Therefore, a barrier parameter 𝜇 is introduced and a sequence
of problems of the form (6.28) is solved for decreasing values of the barrier parameter 𝜇.
The barrier parameter is reduced according to [154, Sec.3.5.]

𝜇 ← 𝜇

100
(6.29)

if the underlying sub-problem has been solved in less than four iterations, and

𝜇 ← 𝜇

5
(6.30)

otherwise. With this, an equality-constrained NLP is obtained and it can be shown that
lim𝑖→∞ 𝜇 = 0 =⇒ 𝒘 → 𝒘∗, where 𝑖 indicates the iteration count [153, Sec. 2.7],[127].
Introducing the Lagrangian of (6.28), i.e.,

L(𝒘, 𝒔,𝝀,𝝈) = 𝜑𝜇 + 𝝀⊤𝒈 + 𝝈⊤ (𝒉 + 𝒔)

the first order necessary optimality conditions, i.e.,

∇L = [(∇𝒘L)⊤, (∇𝒔L)⊤, (∇𝝀L)⊤, (∇𝝈L)⊤]⊤ = 0 (6.31)

then read

∇𝒘𝑐 + (∇𝒘𝒈)⊤𝝀 + (∇𝒘𝒉)⊤𝝈 = 0 (6.32a)
−𝜇𝑆−1𝒆 + 𝝈 = 0 (6.32b)

𝒈 = 0 (6.32c)
𝒉 + 𝒔 = 0, (6.32d)

where 𝑆 = diag(𝑠1, . . . , 𝑠𝑛ℎ ) and 𝒆 = [1, . . . , 1]⊤ ∈ R𝑛ℎ . Multiplying (6.32b) by 𝑆 yields a
modified KKT system

∇𝒘𝑐 + (∇𝒘𝒈)⊤𝝀 + (∇𝒘𝒉)⊤𝝈 = 0 (6.33a)
−𝜇𝒆 + 𝑆𝝈 = 0 (6.33b)

𝒈 = 0 (6.33c)
𝒉 + 𝒔 = 0. (6.33d)
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From this it is clear that, in the limit, as 𝜇 → 0 (6.33b) together with (6.33d) approaches
the complementary slackness condition for inequality-constrained nonlinear programs.
In summary, (6.33) constitutes the first order necessary optimality conditions for the
barrier problem (6.28). Finding a solution to the KKT equations, therefore, reduces to
a multivariate zero-finding problem in the variables 𝒘, 𝒔, 𝝀, 𝝈 that can be achieved by
means of the Newton’s method and any variant thereof, i.e., iterate

�̃�𝑘+1 = �̃�𝑘 + �̃�𝑘 ,= �̃�𝑘 − (∇2L𝑘 )−1∇L𝑘 (6.34)

until some stopping criterion is met, where �̃�𝑘 = −(∇2L𝑘 )−1∇L𝑘 is the Newton method
search direction and where �̃� = [𝒘⊤, 𝒔⊤, 𝝀⊤, 𝝈⊤]⊤. The Newton iteration (6.34) is also
known as a local SQP method and can be extended to a global line search method by
means of a merit function or a filter in order achieve global convergence. In the following,
focus is put on the merit function-based line search method. To this end, the subsequent
sections discuss calculating the search direction, extending the local SQP method with
a merit function-based line search, taking into account second order corrections, and
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replacing the Newton method with a quasi-Newton method.
Input: 𝒘0, 𝒔0, 𝝀0, 𝝈0, 𝜇𝑖 , 𝑚𝑎𝑥𝐼𝑡𝑒𝑟, 𝜂 ∈ (0, 1), 𝜌 ∈ [0.5, 1), 𝜏 ∈ [0, 1), 𝐵(optional)
Output: Solution𝒘∗, 𝒔∗, 𝝀∗, 𝝈∗, 𝐵

1 𝑗 ← 1
2 if useQuasiNewton then
3 if 𝐵 given by user then
4 𝐵0 ← user-supplied matrix
5 else
6 approximate Hessian of Lagrangian 𝐵0 using finite differences
7 𝐵0 ← 1

2 (𝐵0 + 𝐵⊤0 )
8 if 𝐵0 is not positive definite then
9 𝐵0 ← 𝐼

10 end
11 end
12 end
13 𝑖𝑠𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑 ← false

14 while 𝑗 <=𝑚𝑎𝑥𝐼𝑡𝑒𝑟∧!𝑖𝑠𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑 do
15 check and possibly correct matrix inertia of ∇2L 𝑗
16 calculate primal and dual Newton search directions 𝒅p, 𝒅d by solving (6.36)
17 apply the fraction-to-the-boundary rule (6.42) to obtain 𝛼+p , 𝛼+d
18 update the dual variable estimates 𝝀 𝑗 ← 𝝀 𝑗 + 𝛼+d 𝒅d, and 𝝈 𝑗 ← 𝝈 𝑗 + 𝛼+d 𝒅d
19 perform the step length computation according to algorithm 3 to obtain 𝛼p
20 perform the Newton step for the primal variables, i.e., 𝒛 𝑗 ← 𝒛 𝑗 + 𝛼p𝒅p
21 if useQuasiNewton then
22 update Hessian of Lagrangian approximation according to (6.54) with (6.55)
23 end
24 if (6.56)-(6.58) are fulfilled then
25 𝑖𝑠𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑 ← true

26 end
27 𝑗 ← 𝑗 + 1
28 end

Algorithm 2: The inner loop, i.e., the globalized line search SQP algorithm.
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Input: 𝒘0, 𝒔0, 𝝀0, 𝝈0, 𝜇𝑖 , 𝑚𝑎𝑥𝐼𝑡𝑒𝑟, 𝜂 ∈ (0, 1), 𝜌 ∈ [0.5, 1), 𝜏 ∈ [0, 1)
Output: Step length 𝛼p

1 𝑗 ← 1
2 if min(𝛼+p , 𝛼+d ) > 1e−6 then
3 update the penalty parameter 𝜈 according to (6.47)
4 calculate directional derivative 𝐷𝜙𝜈 (𝒛 𝑗 ; 𝜇𝑖 , 𝒅p ) of the merit function using (6.45)
5 if 𝐷𝜙𝜈 (𝒛 𝑗 ; 𝜇𝑖 , 𝒅p ) ≥ 0 then
6 𝑙𝑖𝑛𝑒𝑆𝑒𝑎𝑟𝑐ℎ𝐹𝑖𝑛𝑖𝑠ℎ𝑒𝑑 ← true

7 else
8 𝑙𝑖𝑛𝑒𝑆𝑒𝑎𝑟𝑐ℎ𝐹𝑖𝑛𝑖𝑠ℎ𝑒𝑑 ← false

9 end
10 𝑙 ← 0
11 while ¬𝑙𝑖𝑛𝑒𝑆𝑒𝑎𝑟𝑐ℎ𝐹𝑖𝑛𝑖𝑠ℎ𝑒𝑑 ∧ 𝑙 ≤ 25 do
12 if Armijo-type condition (6.44) is fulfilled then
13 𝑙𝑖𝑛𝑒𝑆𝑒𝑎𝑟𝑐ℎ𝐹𝑖𝑛𝑖𝑠ℎ𝑒𝑑 ← true

14 else
15 if 𝑙 = 0∧ decrease in (𝜑𝜇𝑖

) 𝑗 does not compensate increase in 𝜈 | |�̃� 𝑗 | | then
16 perform SOC according to (6.50) to obtain 𝒅soc, �̃�soc
17 apply the fraction-to-the-boundary rule (6.42) to update 𝛼+p , 𝛼+d
18 if corrected actual reduction is better than uncorrected actual reduction then
19 𝒅p ← 𝛼+p 𝒅p + 𝒅soc

20 𝒅d ← 𝛼+d 𝒅d + �̃�soc − �̃� 𝑗

21 update the dual variable estimates 𝝀 𝑗 ← 𝝀𝑖 + 𝛼+d 𝒅d , and 𝝈 𝑗 ← 𝝈𝑖 + 𝛼+d 𝒅d
22 if Armijo-type condition (6.44) is fulfilled for corrected step then
23 𝑙𝑖𝑛𝑒𝑆𝑒𝑎𝑟𝑐ℎ𝐹𝑖𝑛𝑖𝑠ℎ𝑒𝑑 ← true

24 else
25 𝛼p ← 𝜌𝛼p
26 end
27 else
28 reject the SOC step and 𝛼p ← 𝜌𝛼p
29 end
30 else
31 𝛼p ← 𝜌𝛼p
32 end
33 end
34 𝑙 ← 𝑙 + 1
35 end
36 𝛼p ← 𝛼+p 𝛼p
37 else
38 𝛼p ← 𝛼+p
39 end

Algorithm 3:Merit function-based step length computation.

6.2.2.2. Search Direction

Applying the Newton method to (6.33) the search direction �̃�𝑘 = [𝒅⊤p , 𝒅⊤d ]⊤ is obtained,
where 𝒅p = [𝒅⊤𝑤, 𝒅⊤𝑠 ]⊤ is the primal search direction and 𝒅d = [𝒅⊤

𝜆
, 𝒅⊤𝜎 ]⊤ is the dual

search direction by means of the asymmetric, linear system of equations

∇2L𝑘 �̃�𝑘 = −∇L𝑘 , (6.35)
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where

∇2L𝑘 =


∇2
𝒘𝒘L𝑘 0 ∇𝒘𝒈𝑘 ∇𝒘𝒉𝑘

0 Σ𝑘 0 𝑆𝑘
(∇𝒘𝒈𝑘 )⊤ 0 0 0
(∇𝒘𝒉𝑘 )⊤ 𝐼 0 0

 (6.36a)

∇L𝑘 =


∇𝒘𝑐𝑘 + (∇𝒘𝒈𝑘 )⊤𝝀𝑘 + (∇𝒘𝒉𝑘 )⊤𝝈𝑘

−𝜇𝒆 + 𝑆𝑘𝝈𝑘
𝒈𝑘

𝒉𝑘 + 𝒔𝑘

 , (6.36b)

with Σ = diag(𝜎1, . . . , 𝜎𝑛ℎ ), and �̃�𝑘 = [𝒅⊤𝑤, 𝒅⊤𝑠 , 𝒅⊤𝜆 , 𝒅
⊤
𝜎 ]⊤. Note that several modifications

can be made in attempt to make use of symmetric solvers for linear systems, e.g., the
second row of (6.35) can be multiplied by 𝑆−1 to obtain the equivalent, symmetric, linear
system of equations

∇2L̄𝑘 =


∇2
𝒘𝒘L𝑘 0 ∇𝒘𝒈𝑘 ∇𝒘𝒉𝑘

0 𝑍𝑘 0 𝐼

(∇𝒘𝒈𝑘 )⊤ 0 0 0
(∇𝒘𝒉𝑘 )⊤ 𝐼 0 0

 (6.37)

∇L̄𝑘 =


∇𝒘𝑐𝑘 + (∇𝒘𝒈𝑘 )⊤𝝀𝑘 + (∇𝒘𝒉𝑘 )⊤𝝈𝑘

−𝜇𝑆−1
𝑘
𝒆 + 𝝈𝑘
𝒈𝑘

𝒉𝑘 + 𝒔𝑘

 , (6.38)

where 𝑍𝑘 = 𝑆−1
𝑘

Σ𝑘 . The symmetric system of equations can be expressed in a more
compact form, i.e., [

𝑊𝑘 �̃�⊤
𝑘

�̃�⊤
𝑘

0

] [
𝒅p
𝒅d

]
= −

[
∇𝒛L𝑘
�̃�𝑘

]
, (6.39)

where

𝒛 =

[
𝒘
𝒔

]
, �̃�(𝒛) =

[
𝒈(𝒘)

𝒉(𝒘) + 𝒔

]
, �̃�(𝒛) =

[
(∇𝒘𝒈)⊤ (𝒘) 0
(∇𝒘𝒉)⊤ (𝒘) 𝐼

]
, 𝑊 =

[
∇2
𝒘𝒘L 0
0 𝑍

]
.

Furthermore, rearranging (6.39) yields the equivalent linear system of equations but in
terms of the updated Lagrange multiplier �̃�𝑘+1 and the augmented cost 𝜑𝜇 , i.e.,[

𝑊𝑘 �̃�⊤
𝑘

�̃�⊤
𝑘

0

] [
𝒅p
�̃�𝑘+1

]
= −

[
(∇𝒛𝜑𝜇)𝑘

�̃�𝑘

]
, (6.40)

where �̃� = [𝝀⊤, 𝝈⊤]⊤. It can be shown that the KKT matrix ∇2L is positive definite
if the so-called matrix inertia is given by (𝑛𝑤 + 𝑛ℎ, 𝑛𝑔 + 𝑛ℎ, 0) see, e.g., Nocedal and
Wright [119], where the first element is the number of positive, the second the number
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of negative, and the last the number of zero-eigenvalues, which must be zero. Due to
the nature of the Hessian of the Lagrangian, which may be indefinite, the KKT matrix is
replaced by ∇𝒘𝒘L + 𝛿𝐼 with increasing 𝛿 before the search direction is computed until
the inertia condition is met. Furthermore, the gradient of the equality constraints may
be rank deficient, which can also be taken in the inertia correction by introducing an
additional correction term 𝛾𝐼 , i.e.,

∇2
𝒘𝒘L𝑘 + 𝛿𝐼 0 ∇𝒘𝒈𝑘 ∇𝒘𝒉𝑘

0 Σ𝑘 0 𝑆𝑘
(∇𝒘𝒈𝑘 )⊤ 0 𝛾𝐼 0
(∇𝒘𝒉𝑘 )⊤ 𝐼 0 0

 (6.41)

where the choice of 𝛿, 𝛾 is done according to the algorithm in Nocedal and Wright [119,
App. B].

6.2.2.3. Step Length

Taking the full Newton step �̃�𝑘+1 = �̃�𝑘 + �̃�𝑘 obtained with (6.36) or (6.39) may lead to
constraint violations, especially with regard to the slack variables 𝒔 and the Lagrange
multipliers 𝝈 , which, as 𝜇 ↓ 0, must remain non-negative. It is therefore common to
employ a so-called fraction-to-the-boundary rule

𝛼+p = max{𝛼 ∈ (0, 1] : 𝒔𝑘 + 𝛼𝒅𝑠 ≥ (1 − 𝜏)𝒔𝑘 } (6.42a)

𝛼+d = max{𝛼 ∈ (0, 1] : 𝝈𝑘 + 𝛼𝒅𝜎 ≥ (1 − 𝜏)𝝈𝑘 } (6.42b)

where typically 𝜏 = 0.995 to restrict the maximum step length for the primal and dual
variables, and thus to avoid the respective variables to approach their boundaries too fast
see, e.g., Nocedal and Wright [119, Sec. 19.2]. Therein, 𝛼+p and 𝛼+d are the maximum primal
and dual step length, respectively. Furthermore, a merit function

𝜙𝜈 (𝒛; 𝜇) = 𝜑𝜇 (𝒛) + 𝜈 | |�̃�(𝒛) | |. (6.43)

is used to ensure global convergence using a backtracking line search, that is, accept the
largest step length for which the Armijo-type condition

𝜙𝜈 (𝒛𝑘 ; 𝜇) − 𝜙𝜈 (𝒛𝑘 + 𝛼 (𝑙 )p 𝒅p; 𝜇) ≥ −𝜂𝛼 (𝑙 )p 𝐷𝜙𝜈 (𝒛𝑘 ; 𝜇, 𝒅p) (6.44)

is fulfilled. Therein, 𝛼 (𝑙 )p = 𝜌𝛼
(𝑙−1)
p , 𝑙 ∈ N with 𝛼 (0)p = 𝛼+p , 𝜂 ∈ (0, 1), and 𝐷𝜙𝜈 (𝒛𝑘 ; 𝜇, 𝒅p)

is the directional derivative of the merit function. In other words, the merit function
monitors the progress of the underlying local SQP (Newton) method by means of a trade-
off between decreasing the (barrier) cost function and minimizing the constraint violation.
The directional derivative is used since the merit function is, in general, non-differentiable
due to the presence of the norm but has a directional derivative for which

𝐷𝜙𝜈 (𝒛𝑘 ; 𝜇, 𝒅p) ≤ (∇𝒛𝜑𝜇)⊤𝑘 𝒅p − 𝜈 | |�̃�𝑘 | | = −𝒅
⊤
p𝑊𝑘𝒅p + �̃�⊤𝑘 �̃�𝑘+1 − 𝜈 | |�̃�𝑘 | |, (6.45)
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holds. Equality holds in (6.45) if the NLP is merely equality constrained. The latter form
is obtained from (6.40), where (∇𝒛𝜑𝜇)⊤𝑘 𝒅p = −𝒅⊤p𝑊𝑘𝒅p − 𝒅⊤p �̃�

⊤
𝑘
�̃�𝑘+1 and �̃�𝑘 = −�̃�𝑘𝒅p.

Furthermore, the merit function (6.43) is known to be exact if

𝜈 ≥ ||�̃�𝑘+1 | |∗ (6.46)

where | | · | |∗ is the dual norm w.r.t. the norm used in (6.43) [20]. Essentially, the local
minimizer of an exact merit function coincides with the minimizer𝒘∗ of (6.25). In other
words, the condition (6.46) ensures that a deviation from the local minimum is so heavily
penalized that𝜙𝜈 (𝒘∗, 𝒔∗; 𝜇) ≥ 𝑐 (𝒘∗). To ensure that (6.46) is fulfilled, the penalty parameter
𝜈 is updated each iteration using

𝜈𝑘 =


𝜈𝑘−1+| |�̃�𝑘+1 | |∗

2 , if 𝜈𝑘−1 ≥ 1.1( | |�̃�𝑘+1 | |∗ + 𝜈)
𝜈𝑘−1, if | |�̃�𝑘+1 | |∗ + 𝜈 ≤ 𝜈𝑘−1 < 1.1| |�̃�𝑘+1 | |∗ + 𝜈,
max(1.5𝜈𝑘−1, | |�̃�𝑘+1 | |∗ + 𝜈), else,

(6.47)

where 𝜈 is a positive constant [see 19, Sec. 17.1].

6.2.2.4. Maratos Effect and Second Order Corrections

The Maratos effect is a phenomenon that hinders convergence of a merit function-based
line search algorithm. Usually, a new step is chosen such that any possible increase in the
constraint violation is compensated for by a larger decrease in the barrier function value.
The Maratos effect occurs when this is no longer satisfied, i.e., close to a local minimizer, a
unit step (taking into account the maximal step length due to the fraction-to-the-boundary
condition) increases the constraint violation more than it decreases the barrier function
value. Thus, the step length would be decreased leading to slower convergence. This is
especially relevant for highly nonlinear constraints. A remedy to this problem is given by
a so-called second order correction (SOC). This is motivated by the observation that the
increase in the constraint violation is mainly due to the error induced by the linearized
constraints �̃�𝑘 +�̃�𝑘𝒅p = 0, which are unable to capture any curvature information. Thus, a
SOC step 𝒅soc aims to take into account this information by means of a Taylor polynomial
approximation at the current (new) iterate 𝒛𝑘 + 𝛼+p 𝒅p, which yields

�̃�(𝒛𝑘 + 𝛼+p 𝒅p + 𝒅soc) ≈ �̃�(𝒛𝑘 + 𝛼+p 𝒅p) + �̃�(𝒛𝑘 + 𝛼+p 𝒅p)𝒅soc + O(||𝒅soc | |2). (6.48)

The SOC step should also satisfy 𝒅soc = 𝑜 ( | |𝒅p) | |), i.e., it should not alter the original step
too much. Requiring that

�̃�(𝒛𝑘 + 𝛼+p 𝒅p) + �̃�(𝒛𝑘 + 𝛼+p 𝒅p)𝒅soc = 0 (6.49)

results in �̃�(𝒛𝑘 + 𝛼+p 𝒅p + 𝒅soc) = O(||𝒅soc | |2). One possible solution of (6.49) is the given
by the least squared approximation[

𝐼 �̃�⊤ (𝒛𝑘 + 𝛼+p 𝒅p)
�̃�(𝒛𝑘 + 𝛼+p 𝒅p) 0

] [
𝒅soc
�̃�soc

]
= −

[
0

�̃�(𝒛𝑘 + 𝛼+p 𝒅p)

]
. (6.50)
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See Conn et al. [30, Sec. 15.3.2.3] and Wächter [153, Sec. 3.4.3] for alternative solutions.
Typically, the fraction-to-the-boundary (6.42) is recalculated based on the corrected step
𝒛𝑘+1 = 𝒛𝑘 + 𝛼+p 𝒅p + 𝒅p and is accepted if the Armijo-type condition (6.44) is fulfilled.

6.2.2.5. Hessian Approximations

In the Newton method (6.34), the KKT matrix ∇2L𝑘 requires knowledge of the Hessian of
the Lagrangian, i.e., ∇2

𝒘𝒘L𝑘 , which is often expensive to compute. For this reason, the
Hessian of the Lagrangian is often replaced with an approximation 𝐵𝑘 , which results in a
Quasi-Newton method. The underlying idea is to only make small changes to update the
approximation iteratively in the sense that

𝐵𝑘+1 = argmin𝐵 | |𝐵 − 𝐵𝑘 | | (6.51a)
s.t.
𝐵 = 𝐵⊤ (6.51b)
𝐵𝒅𝑤 = 𝒚𝑘 (6.51c)

where 𝒅𝑤 =𝒘𝑘+1 −𝒘𝑘 , and

𝒚𝑘 = ∇𝒘L(𝒘𝑘+1, 𝒔𝑘+1,𝝀𝑘+1,𝝈𝑘+1) − ∇𝒘L(𝒘𝑘 , 𝒔𝑘+1,𝝀𝑘+1,𝝈𝑘+1) . (6.52)

Depending on the norm chosen in (6.51), different Hessian approximations are obtained
such as the DFP and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update. Another
requirement is that 𝐵𝑘+1 must be positive definite, which is ensured by the so-called
curvature condition

𝒅⊤𝑤𝒚𝑘 > 0, (6.53)

thatmust hold for a positive definitematrix𝐵𝑘+1 and that can be verified by pre-multiplying
the secant equation (6.51c) with 𝒅⊤𝑤 . The most commonly used Hessian approximation is
the BFGS update, which is given by

𝐵𝑘+1 = 𝐵𝑘 −
𝐵𝑘𝒅𝑤𝒅

⊤
𝑤𝐵𝑘

𝒅𝑤𝐵𝑘𝒅
⊤
𝑤

+
𝒚𝑘𝒚

⊤
𝑘

𝒚⊤
𝑘
𝒅𝑤

. (6.54)

Note that the inverse 𝐻𝑘+1 = 𝐵
−1
𝑘+1 can be updated using the matrix inversion lemma [see

119, Sec. 6.1]. However, the curvature condition may not always be satisfied when BFGS
updating is applied to constrained optimization problems. For this reason, a damped BFGS
updated is proposed in Nocedal and Wright [119, Sec. 18.3], where 𝒚𝑘 is replaced in (6.54)
by 𝒓𝑘 = 𝜃𝑘𝒚𝑘 + (1 − 𝜃𝑘 )𝐵𝑘𝒅𝑤 and

𝜃𝑘 =

{
1 if 𝒅⊤𝑤𝒚𝑘 ≥ 0.2𝒅⊤𝑤𝐵𝑘𝒅𝑤,

0.8𝒅⊤𝑤𝐵𝑘𝒅𝑤

𝒅⊤𝑤𝐵𝑘𝒅𝑤−𝒅⊤𝑤𝒚𝑘

otherwise.
(6.55)
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This is motivated by the fact that when 𝜃𝑘 = 0 =⇒ 𝐵𝑘+1 = 𝐵𝑘 and 𝜃𝑘 = 1 gives the
unmodified, possibly indefinite BFGS update (6.54). Therefore, the choice of 𝒓𝑘 and 𝜃𝑘
therein interpolates between the possibly indefinite update and keeping the approximation
unchanged.

6.2.2.6. Stopping Criterion

An important aspect of numerical methods is the choice of a suitable stopping criterion.
Convergence is typically assessed based on optimality, complementarity, and feasibility.
In other words, optimality is achieved if����∇𝒘𝑐𝑘 + (∇𝒘𝒈𝑘 )⊤𝝀𝑘 + (∇𝒘𝒉𝑘 )⊤𝝈𝑘 ����∞ ≤ 𝜖opt (6.56)

where 𝜖opt is a user-defined optimality tolerance. Complementarity is obtained if

| |𝑆𝑘𝝈𝑘 − 𝜇𝒆𝑘 | |∞ ≤ 𝜖opt (6.57)

Feasibility is assessed by checking if the constraints are satisfied, i.e., if�������� [ 𝒈𝑘
𝒉𝑘 + 𝒔𝑘

] ��������
∞
≤ 𝜖con, (6.58)

where 𝜖con is a user-defined constraint tolerance. Based on this, convergence is achieved
if optimality, complementarity and feasibility are given w.r.t. the user-defined tolerances.
See, e.g., Waltz et al. [154, Sec. 3.4.], for details on the stopping criterion assessment.

6.2.2.7. Example

The presented algorithm is illustrated by means of two examples in Appendix A.1. The first
example consists of a hanging chain as presented by Bonnans [19], where the potential
energy of the chain is minimized. This results in a static optimization problem where
the cost function is subject to nonlinear equality constraints that ensure that the length
of each individual chain element is taken into account. Furthermore, linear inequality
constraints ensure that the chain is above or on the user-defined floor. The solution is
obtained using the presented algorithm and is compared to the solution obtained with
fmincon, which is a state-of-the-art SQP solver. In this example, the proposed algorithm
is able to find a feasible solution with a lower cost than fmincon.

In the second example a swing-up of an inverted pendulum on a cart is considered. This
problem is modeled as an OCP that is solved using a direct multiple shooting method that,
in turn, results in a large-scale NLP. The cost to be minimized is the energy required to
move pendulum. The problem’s (nonlinear) equality constraints ensure that the pendulum
dynamics are satisfied. Linear inequality constraints take into account the input bounds,
and linear equality constraints ensure that the boundary conditions are satisfied. The
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solution obtained with the proposed algorithm is compared to the solution obtained using
an indirect collocation method. For different final times of the problem, the proposed
algorithm is able to find a feasible solution with a lower cost than the indirect collocation
method.

6.3. Optimal and Model Predictive Control

In this section, the theoretical basis of OCPs is discussed along with approaches to obtain
numerical solutions for this type of problem. The numerical solution methods can be
categorized into indirect and direct methods, where the former attempts to iteratively and
approximately solve the necessary conditions for optimality of the OCP and the latter
discretizes the original OCP in time to obtain a large-scale NLP that can be solved with
methods discussed in Sec. 6.2. Moreover, the OCP is extended to a MPC problem to achieve
closed-loop control. Therein, similar variants of an OCP are solved on a fixed time horizon
repeatedly. Finally, efficient handling of obstacle constraints in the underlying OCPs is
discussed in detail.

6.3.1. Problem Formulation

OCPs aim to minimize a cost functional 𝐽 : R𝑛𝑢 ↦→ R subject to the system dynamics, ter-
minal constraints and general state and input constraints. This is expressedmathematically
as

min
𝒖

𝐽 (𝒖) = 𝜑 (𝑡f, 𝒙 (𝑡f)) +
∫ 𝑡f

𝑡0

𝑙 (𝒙 (𝑡), 𝒖 (𝑡))d𝑡 (6.59a)

s.t.
¤𝒙 = 𝒇 (𝒙, 𝒖), 𝑡 > 𝑡0, 𝒙 (𝑡0) = �̂�0 (6.59b)
𝒉(𝒙, 𝒖) ≤ 0 (6.59c)
𝝍 (𝑡f, 𝒙 (𝑡f)) = 0 (6.59d)
𝜿 (𝑡f, 𝒙 (𝑡f)) ≤ 0, (6.59e)

where 𝜑 : R × R𝑛𝑥 ↦→ R is the terminal cost, 𝑙 : R𝑛𝑥 × R𝑛𝑢 ↦→ R is the running cost,
𝝍 : R × R𝑛𝑥 ↦→ R𝑛𝜓 , 𝜿 : R × R𝑛𝑥 ↦→ R𝑛𝜅 are terminal equality and inequality constraints,
respectively. Note that, if present, the terminal constraints (6.59d),(6.59e) imply that
𝒙 (𝑡f) ∈ Xf, i.e., the final state is constrained to a terminal setXf. The path constraints (6.59c)
are used to express state and/or input constraints, i.e., they imply that 𝒙 ∈ X and 𝒖 ∈ U,
respectively, where X is the set of feasible states andU is the set of admissible inputs.
This also implies that not all components of (6.59c) are assumed to explicitly depend
on the input 𝒖, i.e., there may be components ℎ 𝑗 (𝒙, 𝒖) = ℎ 𝑗 (𝒙) ≤ 0 and vice versa
ℎ𝑖 (𝒙, 𝒖) = ℎ𝑖 (𝒖) ≤ 0, 𝑖 ≠ 𝑗 . The latter is used to realize input bound and rate constraints.
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Assuming that an optimal solution exists, it is denoted using 𝒖∗ (𝑡) and the resulting
optimal state trajectory is denoted with 𝒙∗ (𝑡).

Similar to the static optimization case, the first order necessary optimality conditions
of (6.59) are formulated by following, e.g., [85, 28, 69] where the fundamental idea is that
for a candidate optimal input the first variation (or Gâteaux derivative of 𝐽 (𝒖)) 𝛿 𝐽 must
vanish. This leads to the Euler-Lagrange equations, whose derivation can be found, e.g.,
in Kirk [85], Hartl et al. [69]. They are summarized here in terms of the Hamiltonian
associated with (6.59), i.e.,

H(𝒙, 𝒖,𝝀) = 𝑙 (𝒙, 𝒖) + 𝝀⊤𝒇 (𝒙, 𝒖), (6.60)

where 𝝀 is called the adjoint state, the Lagrangian

L(𝒙, 𝒖,𝝀, 𝝁) =H(𝒙, 𝒖,𝝀) + 𝝁⊤𝒉(𝒙, 𝒖), (6.61)

for some Lagrange multiplier 𝝁, and the auxiliary function

Φ(𝑡f, 𝒙 (𝑡f)) = 𝜑 (𝑡f, 𝒙 (𝑡f)) + (𝝂∗)⊤𝝍 (𝑡f, 𝒙 (𝑡f)) + (𝜻 ∗)⊤𝜿 (𝑡f, 𝒙 (𝑡f)), (6.62)

with additional (time-invariant) Lagrange multipliers 𝝂∗, 𝜻 ∗ in the compact form

¤𝒙∗ = ∇𝝀L(𝒙∗, 𝒖∗,𝝀∗, 𝝁∗), 𝒙 (0) = �̂�0, (6.63a)
¤𝝀∗ = −∇𝒙L(𝒙∗, 𝒖∗,𝝀∗, 𝝁∗), 𝝀∗ (𝑡f) = ∇𝒙 (𝑡f )Φ(𝑡f, 𝒙∗ (𝑡f)), (6.63b)
0 = ∇𝒖L(𝒙∗, 𝒖∗,𝝀∗, 𝝁∗). (6.63c)

Furthermore, it must hold that

H(𝒙∗, 𝒖∗,𝝀∗) ≤ H (𝒙∗, 𝒗,𝝀∗), ∀𝒗 ∈ U, (6.64)

i.e., the Hamiltonian is minimized w.r.t. 𝒖 over the set of all admissible inputs,

(𝝁∗)⊤𝒉(𝒙∗, 𝒖∗) = 0 (6.65a)
𝝁∗ ≥ 0 (6.65b)
(𝜻 ∗)⊤𝜿 (𝑡f, 𝒙∗ (𝑡f)) = 0 (6.65c)
𝜻 ∗ ≥ 0, (6.65d)

which can be understood as a complementary slackness condition similar to (6.26b), and

𝝍 (𝑡f, 𝒙∗ (𝑡f)) = 0 (6.66)

needs to be fulfilled. This set of equations constitutes a two-point boundary value problem
and is, in general, very hard to solve. This can be attributed to several factors. First, the
nonlinearity that is often induced by the system dynamics and/or inequality constraints
greatly complicates the process of finding an analytical solution, which is usually only
possible for a few special cases, e.g., when the system has linear dynamics or the problem
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infinite-dimensional
dynamic optimiztaion
problem

OCP

Hamilton-Jacobi-
Bellman PDE

Dynamic Program-
ming

Two-Point BVP

Indirect

large-scale NLP

Direct

ODE solved exter-
nally

Sequential

ODE part of NLP

Simultaneous

parameterize input

Single Shooting

enforce continuity at
stage boundaries

Multiple Shooting

enforce ODE’s slope
of polynomial at col-
location points

Collocation

(a) Structural overview of numerical solution methods of OCPs. Note
that indirect and direct methods can both be solved with the same
algorithms. Dynamic programming relies on the principle of optimality,
which involves solving the Hamilton-Jacobi-Bellman equations, which
constitute a partial differential equation (PDE). Pontryagin’s Maximum
Principle is a special case of the Hamilton-Jacobi-Bellman equations.

Sequential Simultaneous

Single Shooting Collocation

Multiple Shooting

(b) Venn diagram of sequential and simultaneous
methods. Overlap between collocation and
multiple shooting methods (dotted area) occurs
when the collocation points coincide with the
stage boundaries. Overlap between single and
multiple shooting (diagonal lines) is given
when the number of stages in the multiple
shooting method is equal to one.

Figure 6.2.: Overview of solution approaches to OCPs. On the left, a structured overview is given. See also
appendix A.4 for further insights into that topic. On the right, a Venn diagram is shown highlighting similarities.

at hand solely introduces bound constraints on the input. Second, pure state inequality-
constrained optimization problems introduce an additional layer of complexity since the
constraints need to be differentiated in time repeatedly until the input appears explicitly
in one of the time derivatives (and, thus, the degree of the respective constraint similar to
Definition 4 is motivated). Finally, the quality of and convergence to a numerical solution
is highly dependent on the provided initial guess, which is often not known or hard to
obtain. Usually, large efforts are made for two-point boundary value solvers to generate a
feasible initial guess, see, e.g., Kierzenka and Shampine [82] for a detailed discussion. Any
attempt to solve the necessary optimality conditions is categorized as an indirect method.
For the above-mentioned reasons, the arising difficulties lead to the fact that the majority
of numerical solutions of (6.59) rely on so-called direct methods, which are discussed in
the following.

6.3.2. Numerical Solution

Alternatively to solving the two-point boundary value problem associated with the first
order necessary optimality conditions of (6.59), which would result in an indirect method,
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a direct method discretizes the OCP in time using 𝑁 ∈ N discretization steps and evaluates
the constraints and costs in (6.59) at the discrete time steps

𝑡𝑘 = 𝑡0 + 𝑘Δ𝑡, 𝑘 = 0, . . . , 𝑁 , Δ𝑡 =
𝑡hor

𝑁
(6.67)

where Δ𝑡 is the discretization time step. In this way a large scale NLP of the form (6.25) is
obtained that can be solved using methods presented in, e.g., Sec. 6.2.2. To achieve this,
the infinite-dimensional control input is discretized in time using

𝒖 (𝑡) = 𝑼 (𝑘 ) (𝑡,𝒘 (𝑘 )𝑢 ), 𝑡𝑘−1 ≤ 𝑡 ≤ 𝑡𝑘 , (6.68)

for each stage [𝑡𝑘−1, 𝑡𝑘 ], 𝑘 = 1, . . . , 𝑁 , e.g., using a piece-wise linear parameterization2

𝒖 (𝑡) = 𝑼 (𝑘 ) (𝑡,𝒘 (𝑘 )𝑢 ) = 𝒖 (𝑘 )
𝑘−1 +

𝑡 − 𝑡𝑘−1

𝑡𝑘 − 𝑡𝑘−1
(𝒖 (𝑘 )
𝑘
− 𝒖 (𝑘 )

𝑘−1), 𝑡𝑘−1 ≤ 𝑡 ≤ 𝑡𝑘 , (6.69)

where 𝒘 (𝑘 )𝑢 = [(𝒖 (𝑘 )
𝑘−1)

⊤, (𝒖 (𝑘 )
𝑘
)⊤]⊤ and 𝒘𝑢 = [(𝒘 (1)𝑢 )⊤, . . . , (𝒘 (𝑁 )𝑢 )⊤]⊤, 𝑘 = 1, . . . , 𝑁 are

a finite set of decision variables. Note that a piece-wise linear continuous input can be
realized by enforcing 𝒖 (𝑘 )

𝑘
= 𝒖 (𝑘+1)

𝑘−1 . With this, the set of input decision variables may
be reordered (and reduced) into 𝒘𝑢 = [𝒖⊤0 , . . . , 𝒖⊤𝑁 ]⊤ ∈ R𝑛𝑤𝑢 , where 𝑛𝑤𝑢

= (𝑁 + 1)𝑛𝑢
and 𝒖𝑘 = 𝒖 (𝑡𝑘 ). With this, depending on how the ODE constraint is handled, one can
further split direct methods into sequential and simultaneous methods. In the former,
which is also known as single shooting or control vector parameterization, only the input
is parameterized and the solution of the ODE is not part of the OCP, i.e., it is handled
by an external solver to obtain the state trajectory. Thus, each time the input parameter
weights𝒘𝑘𝑢, 𝑘 = 1, . . . , 𝑁 are altered by the algorithm, the ODE needs to be re-solved to
evaluate the costs and constraints, hence, the name sequential method. In the latter, the
solution to the ODE is included to the OCP explicitly and, hence, the name simultaneous
methods. To this end, equality constraints are imposed in the resulting NLP to obtain
continuity of the individual solutions of the stages over the entire horizon. Note that
depending on how the ODE solution of the stages is handled, simultaneous methods are
further distinguished into multiple shooting and collocation methods. Multiple shooting
follows the same principle as single shooting but solves the ODE externally for each stage
[𝑡𝑘−1, 𝑡𝑘 ], 𝑘 = 1, . . . , 𝑁 instead of the entire interval [𝑡𝑖 , 𝑡f]. Subsequently the respective
initial conditions of the stages are added as additional decision variables to the NLP.
Collocation methods rely on a polynomial parameterization of the states and typically
solve the ODE in the individual stages by further dividing the stages into collocation
points. The polynomial parameters are found by ensuring that the time derivative of the
polynomial coincides with the theoretical value given by the right-hand-side of the ODE.
Continuity w.r.t. the stage boundaries is again enforced with equality constraints in the
NLP. An attempt to visualize the different solution approaches is given in Fig. 6.2.

2 See, e.g., Chachuat [28, Sec. 5.4.1] for a detailed discussion of different polynomial approximations.
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Remark 4 (Ambiguity of Classification) Often ambiguity w.r.t. the classification of
numerical solution methods arises. For example, in the context of multiple shooting if the
external solver is a one-step explicit method (such as the explicit Euler) for each stage, this
results in what is typically understood as a full discretization [28, Sec. 5.4.2], where the set of
continuity constraints essentially realizes an 𝑁 -step integration of the entire horizon with
this method. On the other hand, if each stage is handled by, e.g., a step-size controlled Runge-
Kutta method of higher order, this would not be understood as a classical full discretization
and, furthermore, obtaining an analytic expression for the respective gradients could only be
done numerically or, alternatively, relies on the capability of the underlying Runge-Kutta
implementation to return this information.

Furthermore, note that depending on the choice of the integration method used in multiple
shooting it may be equivalent to a direct collocation since every collocationmethod corresponds
to a Runge-Kutta method (but not vise-versa) with coefficients

𝑎𝑖 𝑗 =

∫ 𝑐𝑖

0
𝑙 𝑗 (𝜏)d𝜏, 𝑏𝑖 =

∫ 1

0
𝑙𝑖 (𝜏)d𝜏, (6.70)

where 𝑙𝑖 (𝜏) = Π𝑙≠𝑖 (𝜏 − 𝑐𝑖 )/(𝑐𝑖 − 𝑐𝑙 ) is the Lagrange polynomial (not to be confused with the
stage cost) and 𝑎𝑖 𝑗 , 𝑏𝑖 , 𝑐𝑖 are entries of the Butcher tableau of the corresponding Runge-Kutta
method [65, Sec. II.1.2]. See also Fig. 6.2 for an overview of numerical solution methods of
OCPs. Prevalent examples of collocation methods are the explicit and implicit Euler methods,
the mid-point rule, and the trapezoidal method.

In the following, focus is put on direct multiple shooting using the piece-wise linear
continuous input parameterization (6.69) and one-step ODE integration methods of the
form

𝒙𝑘+1 = 𝑭 (𝒙𝑘 , 𝒙𝑘+1, 𝒖𝑘 , 𝒖𝑘+1), (6.71)

where 𝑭 (·) is known as the discrete propagation function that is given, e.g., by 𝑭 (·) =
𝒙𝑘 + 𝑡f

𝑁
𝒇 (𝒙𝑘+1, 𝒖𝑘+1) for the implicit Euler, and3 𝒘𝑥 = [𝒙⊤0 , 𝒙⊤1 , . . . , 𝒙⊤𝑁 ]⊤ ∈ R(𝑁+1)𝑛𝑥 is

the vector of initial conditions for the shooting intervals or, in other words, the vector
of state decision variables. With this, the cost functional is approximated numerically
using a (possibly different compared with the ODE) numerical quadrature rule, e.g., the
trapezoidal rule, i.e.,

𝐽 (𝒖) ≈ 𝑐 (𝒘) = 𝜑 (𝑡𝑁 , 𝒙𝑁 ) +
𝑡f

2𝑁

𝑁−1𝑙∑︁
𝑘=0

(
𝑙𝑘 + 𝑙𝑘+1

)
, (6.72)

3 Note that strictly speaking 𝒙0 is not a decision variable but is added here to avoid confusion.

60



6.3. Optimal and Model Predictive Control

. . .
i− 1 i i + 1

. . .

past future

∆tmpc

thor

Iteration

St
at

e
an

d
In

pu
t

Figure 6.3.: Illustration of the MPC approach with the true state (solid red), estimated state (red pluses), predicted
states (red crosses) with interpolated values (dashed red), applied control (solid blue), predicted inputs (blue
circles) and piece-wise linear interpolation (dashed blue), prediction horizon 𝑡hor and MPC sample time Δ𝑡mpc.

where 𝑙𝑘 = 𝑙 (𝒙𝑘 , 𝒖𝑘 ), and𝒘⊤ = [𝒘⊤𝑥 , 𝒘⊤𝑢 ]⊤ is the vector of total decision variables. Finally,
the infinite-dimensional OCP (6.59) is approximated as a static constrained and, in general,
large-scale nonlinear program of the form as in (6.25), i.e.,

min
𝒘

𝑐 (𝒘) = 𝜑 (𝑡𝑁 , 𝒙𝑁 ) +
𝑡f

2𝑁

𝑁−1∑︁
𝑘=0

(
𝑙𝑘+1 + 𝑙𝑘

)
, (6.73a)

s.t.
𝒙0 = �̂�𝑖 (6.73b)
𝒙𝑘+1 = 𝑭 (𝒙𝑘 , 𝒙𝑘+1, 𝒖𝑘 , 𝒖𝑘+1), 𝑘 = 0, . . . , 𝑁 − 1 (6.73c)
𝒉(𝒙𝑘 , 𝒖𝑘 ) ≤ 0, 𝑘 = 0, . . . , 𝑁 (6.73d)
𝝍 (𝑡𝑁 , 𝒙𝑁 ) = 0 (6.73e)
𝜿 (𝑡𝑁 , 𝒙𝑁 ) ≤ 0, (6.73f)

which can be solved numerically using, e.g., the interior-point method presented in
Sec.6.2.2. Note that there exist interesting connections between the solution of the
NLP (6.73) and the solution to the Euler-Lagrange equations, which are further discussed,
e.g., in Betts [15, Sec. 4.2]. Furthermore, several strategies and insights into the structure
of the resulting NLP can be exploited to further reduce the complexity of the numerical
solution, which is also discussed extensively in Betts [15].
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6.3.3. Model Predictive Control

In contrast to OCPs, which are solved once for the specified horizon and, therefore, yield
an open loop optimal control input, MPC relies on repeatedly solving OCPs (with usually
shorter horizon) online to take into account measurement information. The optimal
solution is applied for a specific time interval and then the OCP is solved again using any
new available information.

min
𝒖∈U

𝐽 (𝒖) = 𝜑 (𝑇𝑖 , 𝒙 (𝑇𝑖 )) +
∫ 𝑇𝑖

𝑡𝑖

𝑙 (𝒙 (𝑡), 𝒖 (𝑡)) d𝑡 (6.74a)

s.t.
¤𝒙 = 𝒇 (𝒙, 𝒖) , 𝑡 > 𝑡𝑖 , 𝒙 (𝑡𝑖 ) = �̂�𝑖 (6.74b)
𝒙 ∈ X (6.74c)
𝒙 (𝑇𝑖 ) ∈ Xf (6.74d)

for 𝑡 ∈ [𝑡𝑖 ,𝑇𝑖 ] with 𝑇𝑖 = 𝑡𝑖 + 𝑡hor, where 𝑡𝑖 is the current iteration time and 𝑡hor is the
prediction horizon. Furthermore, �̂�𝑖 is the state estimate corresponding to 𝑡𝑖 , X ⊂ R𝑛𝑥 is
the state constraint set,U ⊂ R𝑛𝑢 defines the set of feasible inputs, and Xf is a terminal
region. Note that (6.74) is a finite horizon OCP, i.e., similar to (6.59) with abbreviated state
and input constraints using the sets X, U, respectively, for notational convenience. See
Fig. 6.3 for an illustration of the MPC approach. In the context of OCPs, it is well-known
that the solution to an infinite horizon OCP is stabilizing if it exists see, e.g., Mayne et al.
[107]. For MPC problems, however, the horizon is finite and one can, in general, not expect
that the closed-loop MPC solution is equivalent to the stabilizing infinite horizon OCP
solution and the stability of the MPC depends on the specific choice of design parameters,
i.e., the finite horizon length 𝑡hor, the terminal set Xf, and running and terminal costs
𝑙 (·), 𝜑 (·), respectively. For the sake of completeness, these conditions are stated in the
following, which hold under mild assumptions on the right-hand-side of the ODE see, e.g.,
Fontes [46].
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7. Collision Avoidance

In this chapter a set of constraints is derived that can be used to achieve collision avoidance
in the context of MPC. In the context of MPC, collision avoidance for MSVs is formulated
using the set of feasible states X. Based on the MSV system dynamics of the form (6.74b)
collision avoidance constraints can be derived that are embedded into the OCP and MPC
problems to realize collision-free trajectories. To achieve collision-free trajectories, the
input 𝒖 in (6.74) must be calculated in a way so that the controlled object represented using
the setV(𝜼) ⊂ R2 does not collide with an obstacle represented using the set O ⊂ R2.
The state 𝒙 contains the MSV’s pose 𝜼 = [𝒑V (𝑡)⊤, 𝜓V (𝑡)]⊤, which in turn consists of the
vessel’s position 𝒑V (𝑡) = [𝑥 (𝑡), 𝑦 (𝑡)]⊤ ∈ R2 and its heading (w.r.t. the 𝑥𝑖-axis) denoted
using𝜓V (𝑡) ∈ R. Based on this, collision avoidance is expressed mathematically as

V(𝜼) ∩ O = ∅, (7.1)

which must hold for the entire prediction horizon in the MPC problem. Since V(𝜼)
depends on the pose it is time-varying due to (6.59b). For the sake of clarity the time
dependence of O is omitted. Subsequently, two cases are distinguished to formulate
suitable collision avoidance constraints:

• Singleton case, i.e., Ṽ = {0}.

• Full body case, i.e, Ṽ is nonempty and convex.

In the following, based on the general collision avoidance condition (7.1) and the assumed
shape of the controlled object three types of dual collision avoidance constraints are
derived using Farkas’ Lemma, the distance, and signed distance between two convex sets.
The latter two make explicit use of Lagrange multipliers and the principle of duality in
order to reformulate the arising primal problems [20] while the former is also known to
have a strong connection to the concept of duality for linear programs and proving first
order necessary optimality conditions [119]. These dual reformulations are motivated
by the fact that in the context of MPC the general condition (7.1) is hard to implement
and often non-differentiable. Due to the assumption of convex shapes the proposed re-
formulations are exact and, furthermore, constitute a set of constraints that can easily be
included to the OCPs.

The presented concepts are published in a shorter form in Helling and Meurer [168].
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Figure 7.1.: Illustration of the base shape Ṽ (solid blue) and the affine transformation V(𝜼) of the controlled
object (hatched blue).

7.1. Geometric Ship Model

The space occupied by the MSV is denoted using the set V(𝜼) ⊂ R2 and is described
mathematically by means of the affine mapping

V(𝜼) = 𝑅𝑧,𝜓 Ṽ + {𝒑V }, (7.2)

where Ṽ ⊂ R2 is the convex set describing the base shape of the controlled object as
illustrated in Fig. (7.2). Here, a notation similar to Gilbert and Johnson [59] is used, e.g., (7.2)
denotes a matrix multiplication with every element in Ṽ to which the element {𝒑V }
added. In the full body case the controlled object is assumed to be a convex polyhedron1,
which is expressed using a linear matrix inequality such that

V(𝜼) = {𝒑 ∈ R𝑛 : 𝐶 (𝜼)𝒑 ≤ 𝒅 (𝜼)}, (7.3)

where 𝐶 (𝜼) = [𝒄1 (𝜼), . . . , 𝒄𝐿 (𝜼)]⊤ ∈ R𝐿×2 is a matrix collecting the normal vectors of the
edges of the controlled object, and 𝒅 (𝜼) ∈ R𝐿 is a vector that includes the 𝑥𝑖-axis offsets
and 𝐿 is the number of edges. For the sake of clarity the state-dependence of 𝐶 (·), 𝒅 (·) is
not denoted explicitly unless helpful in the context. Moreover, 𝒄⊤𝑗 and 𝑑 𝑗 denote the 𝑗-th
row vector in 𝐶 and the 𝑗-th entry in 𝒅, respectively. Likewise, the space occupied by the
obstacle is represented using the set

O = {𝒑 ∈ R𝑛 : 𝐴𝒑 ≤ 𝒃}, (7.4)

1 It is also possible to describe nonconvex geometries with this assumption by approximating the nonconvex
space as the union of multiple convex polyhedra, i.e., V ≈ ⋃

𝑖 V̄𝑖 , where V̄𝑖 = {𝒑 ∈ R2, : 𝐶𝑖𝒑 ≤ �̄�𝑖 }.
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Figure 7.2.: Visualization of the underlying concepts of convex analysis, where O is defined as a square (red
area) with outward normal vectors 𝒂 𝑗 , 𝑗 = 1, . . . , �̆� and �̆� = 4, H− (𝒂1, 𝑏1 ) is a half-space (shaded gray area)
such that O ⊂ H− (𝒂1, 𝑏1 ) , H(𝒂1, 𝑏1 ) is the corresponding (supporting) hyperplane (dashed black line), and
𝒔O (𝒂1 ) is a support point (green circle), which, in this case, is not unique.

where 𝐴 = [𝒂1, . . . , 𝒂�̆�]⊤ ∈ R�̆�×𝑛 and 𝒃 ∈ R�̆� . Similar to the controlled objectV(𝜼), 𝒂⊤𝑗
and 𝑏 𝑗 denote the 𝑗-th row vector in 𝐴 and the 𝑗-th entry in 𝒃 , respectively.

An important property of convex polyhedra is that the obstacle can be viewed as the inter-
section of all 𝑗 = 1, . . . , �̆� (closed lower) half-spaces that contain it, i.e., O =

⋂
𝑗 H− (𝒂 𝑗 , 𝑏 𝑗 ),

where

H− (𝒂 𝑗 , 𝑏 𝑗 ) = {𝒑 ∈ R𝑛 : 𝒂⊤𝑗 𝒑 ≤ 𝑏 𝑗 } (7.5)

is the half-space with outward normal vector 𝒂 𝑗 , i.e., the 𝑗-th face of the convex polyhedron
of O. If | |𝒂 𝑗 | |2 = 1, then 𝑏 𝑗 is the signed distance of the hyperplane from the coordinate
origin, i.e.,

sd(0,H(𝒂 𝑗 , 𝑏 𝑗 )) = 𝑏 𝑗 , | |𝒂 𝑗 | |2 = 1 (7.6)

to be defined later and where H(𝒂 𝑗 , 𝑏 𝑗 ) = {𝒑 ∈ R𝑛 : 𝒂⊤𝑗 𝒑 = 𝑏 𝑗 } denotes a hyperplane,
which is intrinsically connected to the half-spaceH− (𝒂 𝑗 , 𝑏 𝑗 ). A hyperplaneH(·, ·), where
V(𝜼) ⊂ H− (·, ·) and O ⊄ H− (·, ·) is called a separating hyperplane. Furthermore, if
∃𝒑 ∈ H (·, ·) : 𝒑 ∈ V(𝜼)∧V(𝜼) ⊂ H− (·, ·), thenH(·, ·) is called a supporting hyperplane
ofV(𝜼). In other words, the supporting hyperplane is tangent toV(𝜼) and 𝒑 lies on the
boundary ofV(𝜼).

Another very important concept is the support mapping

𝒛⊤𝒔V (𝒛) = sup
𝒑
{𝒛⊤𝒑 : 𝒑 ∈ V(𝜼)} (7.7)

of an objectV(𝜼), which maps any vector 𝒛 to a point inV(𝜼) that gives the maximum
inner product and thus defines the support point 𝒔V (𝒛) as the point inV(𝜼) corresponding
to this inner product given 𝒛. IfV(𝜼) is convex, the support mapping implicitly describes
the shape since it must always lie on its boundary. This is readily exploited in, e.g., the
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7. Collision Avoidance

GJK algorithm [98, 150]. As the name suggests, the support mapping can be used to define
a supporting hyperplane ofV , i.e.,H(𝒛, 𝒛⊤𝒔V (𝒛)). In this context, it is also observed that
𝒔O−V(𝜼) (𝒛) = 𝒔O (𝒛) − 𝒔V (−𝒛), where

O −V(𝜼) = {𝒑1 − 𝒑2 : 𝒑1 ∈ O,𝒑2 ∈ V(𝜼)} (7.8)

is the Minkowski sum2 [151]. It is also pointed out that if the origin 0 is contained in the
Minkowski sum (7.8), thenV(𝜼) and O intersect [98]. See also Fig. 7.2 for an illustration of
an example obstacle shape including the most important principles of convex analysis.

Finally, we state Farkas’ Lemma for later reference.

Lemma 1 (Farkas’ Lemma [38]) Let 𝐴 ∈ R𝑛×𝑚 and 𝒃 ∈ R𝑛 . Then exactly one of the
following sets must be empty:

(i) {𝒑 ∈ R𝑚 : 𝐴𝒑 ≤ 𝒃}.

(ii) {𝝁 ∈ R𝑛 : 𝐴⊤𝝁 = 0, 𝒃⊤𝝁 < 0, 𝝁 ≥ 0}.

7.2. Indicator Constraints

The simplest approach in order to evaluate collision avoidance is by constructing a set
of constraints that must be fulfilled in the case of a collision. Collision avoidance is thus
proved by showing that no solution exists for the resulting system of equations by means
of Lemma 1. Since the same results can be derived using the notion of an indicator function,
see, e.g., [20], we call this approach indicator approach. The indicator conditions provide
the simplest means to include dual collision avoidance into the MPC problem. This is due
to the fact that no norm constraint arises in the conditions, see also Tab. 7.1. This comes
at the price of not being able to determine proximity between the controlled object and
obstacles.

7.2.1. Singleton Case

GivenV(𝜼) = {𝒑V } and O according to (7.4), then (7.1) is equivalent to
𝐴

𝐼

−𝐼

 𝒑 ≤


𝒃
𝒑V

−𝒑V

 (7.9)

2 Note that strictly-speaking, the Minkowski difference is defined as O⊖V(𝜼) = (O𝑐+ (−V(𝜼) ) )𝑐 . Therefore,
we refer to (7.8) as a sum.
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7. Collision Avoidance

having no solution, i.e., there is no point that is simultaneously element of O and equal
to 𝒑V (expressed using two inequalities). In this case, according to Lemma 1, the (dual)
system of equations

[
𝐴⊤ 𝐼⊤ −𝐼⊤

] 
𝝁
𝝈1
𝝈2

 = 0 (7.10a)

[
𝒃⊤ (𝒑V)⊤ −(𝒑V)⊤

] 
𝝁
𝝈1
𝝈2

 < 0, (7.10b)


𝝁
𝝈1
𝝈2

 ≥ 0 (7.10c)

must have a solution. Upon further inspection (see Appendix A.2), it becomes clear
that (7.10) reduces to

(𝐴𝒑V − 𝒃)⊤𝝁 > 0, 𝝁 ≥ 0. (7.11)

Finally, (7.1) can be expressed as follows using (7.11).

Proposition 1 Suppose V(𝜼) = {𝒑V } and O = {𝒑 ∈ R𝑛 : 𝐴𝒑 ≤ 𝒃}, then (7.1) can be
re-formulated as the feasibility problem

V(𝜼) ∩ O = ∅ ⇔ ∃𝝁 ≥ 0 : (𝐴𝒑V − 𝒃)⊤𝝁 > 0 (7.12)

using Lemma 1.

In other words, if 𝒑V ∉ O, then ∃ 𝑗 ∈ {1, . . . , �̆�} : 𝒑V ∉ H− (𝒂 𝑗 , 𝑏 𝑗 ), which can also be
expressed as ∃ 𝑗 ∈ {1, . . . , �̆�} : (𝒂⊤𝑗 𝒑V − 𝑏 𝑗 )𝜇 𝑗 > 0. Consequently, there must be a scalar
𝜇 𝑗 > 0 such that (7.12) holds.

IfV(𝜼) = {𝒑V }, Prop. 1 can be used to formulate the feasible set of states, i.e.,

X =
{
(𝒙 (𝑡), 𝝁 (𝑡)) ∈ R𝑛𝑥 × R�̆� : (𝐴𝒑V − 𝒃)⊤𝝁 ≥ 𝜖, 𝝁 ≥ 0

}
, (7.13)

where 𝜖 ∈ R+ is used to obtain a non-strict inequality constraint. This is reasonable
since if 𝒑V ∉ O, then ∃ 𝑗 ∈ {1, . . . , �̆�} : (𝒂⊤𝑗 𝒑V − 𝑏 𝑗 )𝜇 𝑗 > 0 and 𝜇 𝑗 can be scaled to give
(𝒂⊤𝑗 𝒑V − 𝑏 𝑗 )𝜇′𝑗 ≥ 𝜖 with 𝜖 ∈ R+ and 𝜇′𝑗 = 𝛾𝜇 𝑗 , 𝛾 > 1. Since the feasibility problem (7.12)
is included by means of (7.13), 𝝁 is an additional decision variable in the MPC.

68



7.3. Distance Constraints

7.2.2. Full Body Case

Given the convex polyhedronV(𝜼) and O, then (7.1) is equivalent to[
𝐴

𝐶 (𝜼)

]
𝒑 ≤

[
𝒃

𝒅 (𝜼)

]
(7.14)

having no solution. In other words, there is no point 𝒑 that is simultaneously element of
V(𝜼) and element of O. Subsequently, according to Lemma 1, the system of equations[

𝐴⊤ 𝐶⊤ (𝜼)
] [𝝁

𝝀

]
= 0 (7.15a)[

𝒃⊤ 𝒅⊤ (𝜼)
] [𝝁

𝝀

]
< 0, (7.15b)[

𝝁
𝝀

]
≥ 0 (7.15c)

must have a solution. As a consequence, (7.1) can be summarized as follows using (7.15).

Proposition 2 SupposeV(𝜼) = {𝒑 ∈ R2 : 𝐶 (𝜼)𝒑 ≤ 𝒅 (𝜼)} and O = {𝒑 ∈ R2 : 𝐴𝒑 ≤ 𝒃},
then (7.1) can be re-formulated as the feasibility problem

V(𝜼) ∩ O = ∅
⇔ ∃𝝀 ≥ 0, 𝝁 ≥ 0 : −𝒃⊤𝝁 − 𝒅⊤ (𝜼)𝝀 > 0 ∧𝐴⊤𝝁 +𝐶⊤ (𝜼)𝝀 = 0

(7.16)

using Lemma 1.

IfV(𝜼) is given as a convex polytope, Prop. 2 can be used to formulate the feasible set of
states with

X =
{
(𝒙 (𝑡), 𝝁 (𝑡),𝝀(𝑡)) ∈ R𝑛𝑥 × R�̆� × R𝐿 :
− 𝒃⊤𝝁 − 𝒅⊤ (𝜼)𝝀 ≥ 𝜖, 𝝁 ≥ 0, 𝝀 ≥ 0, 𝐴⊤𝝁 +𝐶⊤ (𝜼)𝝀 = 0

}
,

(7.17)

where 𝜖 ∈ R+ is used to obtain a non-strict inequality constraint and the same reasoning
as in the singleton case can be applied. In contrast to the singleton case, the consistency
constraint 𝐴⊤𝝁 + 𝐶⊤ (𝒙)𝝀 = 0 needs to be taken into account additionally. Note that
the state-dependence of 𝐶 (𝒙) and 𝒅 (𝒙) is denoted explicitly to avoid confusion. Since
the feasibility problem (7.16) is included by means of (7.17), 𝝁,𝝀 are additional decision
variables in the MPC.

7.3. Distance Constraints

Applying Lemma 1 to assess collision avoidance betweenV(𝜼) and O as demonstrated
in the previous section, no measure of proximity between the objects is involved. The
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7. Collision Avoidance

distance conditions (7.31) and (7.38) provide a more flexible way to include dual collision
avoidance into the MPC problem. Since the distance provides a means to evaluate the
proximity betweenV(𝜼) and O, the solution of the feasibility problem yields the distance
and, thus, provides information that can be further processed if needed. However, if such
a measure is important, collision avoidance can be formulated using the distance between
two objects, defined as

dist(V(𝜼),O) = dist(0,O −V(𝜼)) = inf
𝒑
{| |𝒑 | |2 : 𝒑 ∈ O −V(𝜼)}. (7.18)

With this, (7.1) can be expressed using (7.18) as

V(𝜼) ∩ O = ∅ ⇔ dist(V(𝜼),O) ≥ 𝑑safe, (7.19)

where 𝑑safe ∈ R+ is a safety distance. If V(𝜼) and O collide, dist(V(𝜼),O) = 0 and,
thus, the distance approach can be used if no measure for penetration is needed. Note
that (7.18) is a continuous, convex, see [70, Chap. 4], but not continuously differentiable
function. Furthermore, observe that (7.18) constitutes an optimization problem, where
the optimal solution yields the distance between the two objects. Thus, including (7.18)
in an MPC setup in order to evaluate collision avoidance leads to a constraint that is
itself an optimization problem. The lack of continuous differentiability of (7.18) can lead
to difficulties in constraint gradient evaluation [45, 15]. Therefore, the Lagrange dual
problem is used that allows a re-formulation as a feasibility problem, which can be included
into the MPC setup directly. Therefore, the subsequent sections rely on the following
definitions.

Definition 5 (Lagrange Dual Problem [20]) Given a general NLP of the form (6.25), the
Lagrange dual problem is given by

sup
𝝀,𝝁

𝑔(𝝀, 𝝁) (7.20a)

s.t. 𝝁 ≥ 0, (7.20b)

where 𝑔(𝝀, 𝝁) is the dual function, which is defined as

𝑔(𝝀, 𝝁) = inf
𝒘
{𝑐 (𝒘) + 𝝀⊤𝒈(𝒘) + 𝝁⊤𝒉(𝒘)}. (7.21)

Definition 6 (Conjugate Function [20]) Let 𝑓 : R𝑛 → R be a function, then the conju-
gate function 𝑓 ∗ : R𝑛 → R is defined as

𝑓 ∗ (𝒚) = sup
𝒙∈R𝑛

{𝒚⊤𝒙 − 𝑓 (𝒙)}. (7.22)

Note that 𝑓 ∗ is convex even if 𝑓 is not.
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7.3.1. Singleton Case

IfV(𝜼) = {𝒑V }, then (7.18) reduces to

dist(𝒑V ,O) = inf
𝒑
{| |𝒑V − 𝒑 | |2 : 𝐴𝒑 ≤ 𝒃}. (7.23)

Following, e.g., Boyd and Vandenberghe [20, Sec. 8.1.2], the Lagrange dual problem
according to Definition 5 of (7.23) is derived. To this end, the primal problem (7.23) is
formulated as the auxiliary optimization problem

inf
𝒑,𝒚
| |𝒚 | |2 (7.24a)

s.t. 𝐴𝒑 ≤ 𝒃, (7.24b)

𝒑V − 𝒑 = 𝒚, (7.24c)

which allows to express the Lagrangian function mathematically as

L(𝒑,𝒚,𝝀, 𝝁) = | |𝒚 | |2 + 𝝁⊤ (𝐴𝒑 − 𝒃) + 𝝀⊤ (𝒑V − 𝒑 −𝒚), (7.25)

where 𝝁 ≥ 0 and 𝝀 ∈ R2 are the Lagrange multipliers. The dual function is then given
by

𝑔(𝝀, 𝝁) = inf
𝒑,𝒚
L(𝒑,𝒚,𝝀, 𝝁) = inf

𝒑,𝒚
{| |𝒚 | |2 + 𝝁⊤ (𝐴𝒑 − 𝒃) + 𝝀⊤ (𝒑V − 𝒑 −𝒚)} (7.26)

which, after re-arranging and algebraic manipulation, yields

𝑔(𝝀, 𝝁) = inf
𝒚
{| |𝒚 | |2 − 𝝀⊤𝒚} + inf

𝒑
{(𝝁⊤𝐴 − 𝝀⊤)𝒑} − 𝝁⊤𝒃 + 𝝀⊤𝒑V . (7.27)

In view of Definition 6, the first term in (7.27) corresponds to the (negative value of the)
conjugate function of the norm, i.e.,

inf
𝒚
{| |𝒚 | |2 − 𝝀⊤𝒚} =

{
0 if | |𝝀 | |2 ≤ 1,
−∞ otherwise.

(7.28)

The second term in (7.27) corresponds to a plane in space, which has no global minimum
unless all coefficients are zero, i.e.,

inf
𝒑
{(𝝁⊤𝐴 − 𝝀⊤)𝒑} =

{
0 if 𝝁⊤𝐴 = 𝝀⊤,

−∞ otherwise.
(7.29)

With these implicitly defined constraints, the Lagrange dual problem of (7.23) can be
expressed as

sup
𝝁

𝝁⊤ (𝐴𝒑V − 𝒃) (7.30a)

s.t. | |𝐴⊤𝝁 | |2 ≤ 1, (7.30b)
𝝁 ≥ 0. (7.30c)

This allows to express (7.1) as the following proposition.
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7. Collision Avoidance

Proposition 3 Suppose V(𝜼) = {𝒑V } and O = {𝒑 ∈ R𝑛 : 𝐴𝒑 ≤ 𝒃}, then (7.1) can be
re-formulated as the feasibility problem

dist(𝒑V ,O) ≥ 𝑑safe ⇔ ∃𝝁 ≥ 0 : (𝐴𝒑V − 𝒃)⊤𝝁 ≥ 𝑑safe ∧ ||𝐴⊤𝝁 | |2 ≤ 1 (7.31)

using the Lagrange dual problem of (7.23) with 𝑑safe ∈ R+.

Note that if dist(𝒑V ,O) ≥ 𝑑safe, then 𝒛 = 𝐴⊤𝝁 defines a separating hyperplaneH(𝐴⊤𝝁, 𝒃⊤𝝁)
of 𝒑V and O.

IfV(𝜼) = {𝒑V }, Prop. 3 can be used to formulate the feasible set of states, i.e.,

X =
{
(𝒙 (𝑡), 𝝁 (𝑡)) ∈ R𝑛𝑥 × R�̆� : (𝐴𝒑V − 𝒃)⊤𝝁 ≥ 𝑑safe, 𝝁 ≥ 0, | |𝐴⊤𝝁 | |2 ≤ 1

}
, (7.32)

where 𝑑safe ∈ R+ provides a safety distance between 𝒑V and O. Similar to the indicator
approach, the feasibility problem (7.31) is included bymeans of (7.32) and 𝝁 is an additional
decision variable in the MPC. Here, the additional norm inequality constraint | |𝐴⊤𝝁 | | ≤ 1
needs to be taken into account and, therefore, the distance approach constitutes a more
complex MPC problem compared with the indicator approach.

7.3.2. Full Body Case

If V(𝜼) = {𝒑 ∈ R𝑛 : 𝐶 (𝜼)𝒑 ≤ 𝒅 (𝜼)}, following [20, Sec. 8.2.2], analogously to the
previous section, the Lagrange dual problem of (7.18) is derived. To this end, the primal
problem (7.18) is formulated as the auxiliary optimization problem

inf
𝒙,𝒚,𝒛
| |𝒛 | |2 (7.33a)

s.t. 𝐴𝒙 ≤ 𝒃, (7.33b)
𝐶𝒚 ≤ 𝒅, (7.33c)
𝒙 −𝒚 = 𝒛, (7.33d)

which allows to express the Lagrangian function mathematically as

L(𝒙,𝒚, 𝒛,𝝀, 𝝁,𝝈) = | |𝒛 | |2 + 𝝁⊤ (𝐴𝒙 − 𝒃) + 𝝀⊤ (𝐶𝒚 − 𝒅) + 𝝈⊤ (𝒙 −𝒚 − 𝒛), (7.34)

where 𝝁 ≥ 0, 𝝀 ≥ 0, and 𝝈 ∈ R2 are the Lagrange multipliers. The dual function is then
defined as

𝑔(𝝀, 𝝁,𝝈) = inf
𝒙,𝒚,𝒛
L(𝒙,𝒚, 𝒛,𝝀, 𝝁,𝝈)

= inf
𝒙,𝒚,𝒛
{| |𝒛 | |2 + 𝝁⊤ (𝐴𝒙 − 𝒃) + 𝝀⊤ (𝐶𝒚 − 𝒅) + 𝝈⊤ (𝒙 −𝒚 − 𝒛)},

(7.35)
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which, after algebraic manipulation, yields

𝑔(𝝀, 𝝁,𝝈) = inf
𝒛
{| |𝒛 | |2 − 𝝈⊤𝒛} − 𝝁⊤𝒃 − 𝝀⊤𝒅

+ inf
𝒙
{(𝝁⊤𝐴 + 𝝈⊤)𝒙} + inf

𝒚
{(𝝀⊤𝐶 − 𝝈⊤)𝒚}. (7.36)

Analogously to the previous section, these terms can be simplified, which, finally, results
in the Lagrange dual problem

sup
𝝀,𝝁
− 𝝁⊤𝒃 − 𝝀⊤𝒅 (7.37a)

s.t. 𝐴⊤𝝁 +𝐶⊤𝝀 = 0, (7.37b)
| |𝐴⊤𝝁 | |2 ≤ 1, (7.37c)
𝝀 ≥ 0, 𝝁 ≥ 0. (7.37d)

This allows to express (7.1) as the following proposition.

Proposition 4 SupposeV(𝜼) = {𝒑 ∈ R𝑛 : 𝐶 (𝜼)𝒑 ≤ 𝒅 (𝜼)} and O = {𝒑 ∈ R𝑛 : 𝐴𝒑 ≤ 𝒃},
then (7.1) can be re-formulated as the feasibility problem

dist(V(𝜼),O) > 𝑑safe ⇔∃𝝀 ≥ 0, 𝝁 ≥ 0 :
− 𝒅⊤ (𝜼)𝝀 − 𝒃⊤𝝁 ≥ 𝑑safe
∧𝐴⊤𝝁 +𝐶⊤ (𝜼)𝝀 = 0
∧ ||𝐴⊤𝝁 | |2 ≤ 1.

(7.38)

using the Lagrange dual problem of (7.18) with 𝑑safe ∈ R+.

Note that if dist(V(𝜼),O) > 𝑑safe, then 𝒛 = 𝐴⊤𝝁 = −𝐶⊤ (𝜼)𝝀 defines a separating
hyperplaneH(𝐴⊤𝝁, 𝒃⊤𝝁) ofV(𝜼) and O.

IfV(𝜼) is given as a convex polytope, Prop. 4 can be used to formulate the feasible set of
states

X =
{
(𝒙 (𝑡), 𝝁 (𝑡),𝝀(𝑡)) ∈ R𝑛𝑥 × R�̆� × R𝐿 : − 𝒃⊤𝝁 − 𝒅⊤ (𝜼)𝝀 ≥ 𝑑safe,

𝝁 ≥ 0, 𝝀 ≥ 0,
𝐴⊤𝝁 +𝐶⊤ (𝜼)𝝀 = 0,

| |𝐴⊤𝝁 | |2 ≤ 1
}
,

(7.39)

where 𝑑safe ∈ R+ provides a safety distance. Since the feasibility problem (7.38) is included
by means of (7.39), 𝝁,𝝀 are additional decision variables in the MPC. Compared to the
singleton distance constraints (7.32), the full body distance constraints are more complex
due to the additional consistency equality constraint.
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7.4. Signed Distance Constraints

The signed distance conditions (7.50) and (7.55) provide the most flexible way to include
dual collision avoidance into the MPC problem since the signed distance provides a means
to evaluate the proximity between V(𝜼) and O as well as the penetration in case of a
collision. Thus, the severity of a collision can be processed as part of the MPC using
soft-constraints, see, e.g., [175, 161, 137]. A fundamental concept for evaluating if two
objects, e.g.,V(𝜼) and O, intersect is the signed distance function that extends the concept
of the distance between convex sets using a measure of penetration in case of collision. It
is defined as

sd(V(𝜼),O) =
{
dist(V(𝜼),O), ifV(𝜼) ∩ O = ∅
−pen(V(𝜼),O), ifV(𝜼) ∩ O ≠ ∅

, (7.40)

where dist(V(𝜼),O) is the distance betweenV(𝜼) andO according to (7.18). Furthermore,
the signed distance makes use of the penetration depth, which can be defined as3

pen(V(𝜼),O) = dist(0,R𝑛 \ (O − V(𝜼))) . (7.41)

Thus, on the one hand,V(𝜼) ∩ O = ∅ gives

dist(V(𝜼),O) > 0, pen(V(𝜼),O) = 0. (7.42)

On the other hand,V(𝜼) ∩ O ≠ ∅ gives

dist(V(𝜼),O) = 0, pen(V(𝜼),O) > 0. (7.43)

Consequently, (7.40) can be compactly written as

sd(V(𝜼),O) = dist(V(𝜼),O) − pen(V(𝜼),O). (7.44)

Based on this, (7.1) can be expressed using the signed distance function, i.e.,

V(𝜼) ∩ O = ∅ ⇔ sd(V(𝜼),O) ≥ 𝑑safe (7.45)

where 𝑑safe ∈ R. In contrast to the distance formulation (7.18), the signed distance
allows for 𝑑safe < 0 such that a certain amount of overlap between V(𝜼) and O can
still be considered as not colliding. Similar to the distance function, the signed distance
function shares the same caveats of being not continuously differentiable and imposing
an optimization problem as a constraint within an MPC setup.

3 Note that for the distance the infimum and the minimum coincide, but for the penetration depth it is actually
necessary to use the infimum in the definition since R2 \ (O − V(𝜼) ) is an open set.
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7.4.1. Singleton Case

IfV(𝜼) = {𝒑V }, then (7.6) can be adapted to give the signed distance between 𝒑V and a
supporting hyperplaneH(�̂�, �̂�⊤𝒔O (�̂�)), i.e.,

sd(𝒑V ,H(�̂�, �̂�⊤𝒔O (�̂�))) = �̂�⊤ (𝒑V − 𝒔O (�̂�)), (7.46)

where �̂� = 𝒛/| |𝒛 | |2 is the normalized vector with direction 𝒛. Due to the fact that O =⋂
𝑗 H− (�̂� 𝑗 , �̂�⊤𝑗 𝒔O (�̂� 𝑗 )), (7.40) can be expressed as

sd(𝒑V ,O) = sup
�̂�

{
sd(𝒑V ,H(�̂�, �̂�⊤𝒔O (�̂�)))

}
(7.47a)

= sup
�̂�

{
�̂�⊤ (𝒑V − 𝒔O (�̂�))

}
. (7.47b)

Inserting the definition of the support mapping (7.7) in (7.47b) yields

sd(𝒑V ,O) = sup
�̂�

{
�̂�⊤𝒑V + inf

𝒑∈O
{−�̂�⊤𝒑}

}
. (7.48)

The associated Lagrange dual problem of the inner minimization in (7.48) finally leads
to

sd(𝒑V ,O) = sup
𝝁≥0

{
(𝐴𝒑V − 𝒃)⊤𝝁
| |𝐴⊤𝝁 | |2

}
. (7.49)

Note that in, e.g., Boyd and Vandenberghe [20, Ex. 8.5], [161] an alternative formulation
is given where | |𝐴⊤𝝁 | |2 = 1 is set explicitly in (7.49). In summary, the collision avoid-
ance conditions for the singleton case using the dual signed distance approach can be
summarized as follows.

Proposition 5 Suppose V(𝜼) = {𝒑V } and O = {𝒑 ∈ R𝑛 : 𝐴𝒑 ≤ 𝒃}, then (7.1) can be
re-formulated as the feasibility problem

sd(𝒑V ,O) ≥ 𝑑safe ⇔ ∃𝝁 ≥ 0 :
(𝐴𝒑V − 𝒃)⊤𝝁
| |𝐴⊤𝝁 | |2

≥ 𝑑safe, (7.50)

using the Lagrange dual problem (7.49).

Note that if 𝒑V ∉ O, then 𝒛 = 𝐴⊤𝝁 defines a separating hyperplaneH(𝐴⊤𝝁, 𝒃⊤𝝁) of 𝒑V
and O. IfV(𝜼) = {𝒑V }, Prop. 5 can be used to formulate the feasible set of states

X =

{
(𝒙 (𝑡), 𝝁 (𝑡)) ∈ R𝑛𝑥 × R�̆� :

(𝐴𝒑V − 𝒃)⊤𝝁
| |𝐴⊤𝝁 | |2

≥ 𝑑safe, 𝝁 ≥ 0
}

(7.51)

where 𝑑safe ∈ R provides a safety distance if 𝑑safe > 0 and the maximum acceptable
penetration depth if 𝑑safe ≤ 0. Similar to the indicator and distance approach, the feasibility
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problem (7.50) is included by means of (7.51) and 𝝁 is an additional decision variable in
the MPC. In contrast to the distance approach, the inequality norm constraint can be
included to the collision avoidance inequality constraint. Alternatively, as proposed in,
e.g., [161] the norm can be explicitly set, i.e., | |𝐴⊤𝝁 | |2 = 1. This constraint defines a
non-convex feasible set for 𝝁 and is therefore more complex than the distance constraint
formulation. The proposed approach avoids including this non-convex equality constraint
at the cost of including the norm to the collision avoidance inequality constraint by means
of a fraction.

7.4.2. Full Body Case

IfV(𝜼) = {𝒑 ∈ R2 : 𝐶 (𝜼)𝒑 ≤ 𝒅 (𝜼)}, then (7.40) can be expressed using

sd(V(𝜼),O) = sd(0,O −V(𝜼)) (7.52a)
= sup

�̂�
{sd(0,H(�̂�, �̂�⊤𝒔O−V (�̂�)))} (7.52b)

= sup
�̂�
{0 − �̂�⊤𝒔O−V (�̂�)}. (7.52c)

In other words, (7.52a) calculates the signed distance between the origin and the support
point of the Minkwowski sum of V(𝜼) and O. Inserting the definition of the support
mapping (7.7) in (7.52c) yields

sd(V(𝜼),O) = sup
�̂�

{
inf

𝒑1∈O, 𝒑2∈V(𝜼)

{
�̂�⊤ (𝒑2 − 𝒑1)

}}
. (7.53)

With this, the Lagrange dual problem of the inner minimization in (7.53) can be derived,
which leads to

sd(V(𝜼),O) = sup
𝝀≥0, 𝝁≥0

{
−𝒅⊤ (𝜼)𝝀 − 𝒃⊤𝝁
| |𝐴⊤𝝁 | |2

: 𝐴⊤𝝁 +𝐶⊤ (𝜼)𝝀 = 0
}
. (7.54)

Again, note that in, e.g., [161] an alternative formulation is given where | |𝐴⊤𝝁 | |2 = 1 is
set explicitly in (7.54). The dual signed distance collision avoidance conditions for the full
body case can be summarized as follows.

Proposition 6 SupposeV(𝜼) = {𝒑 ∈ R𝑛 : 𝐶 (𝜼)𝒑 ≤ 𝒅 (𝜼)} and O = {𝒑 ∈ R𝑛 : 𝐴𝒑 ≤ 𝒃},
then (7.1) can be re-formulated as the feasibility problem

sd(V(𝜼),O) ≥ 𝑑safe

⇔ ∃𝝀 ≥ 0, 𝝁 ≥ 0 :
−𝒅⊤ (𝜼)𝝀 − 𝒃⊤𝝁
| |𝐴⊤𝝁 | |2

≥ 𝑑safe ∧𝐴⊤𝝁 +𝐶⊤ (𝜼)𝝀 = 0.
(7.55)

using the Lagrange dual problem (7.54).
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Note that ifV(𝜼) and O do not overlap, 𝒛 = 𝐴⊤𝝁 = −𝐶⊤𝝀 defines a separating hyperplane
H(𝐴⊤𝝁, 𝒃⊤𝝁) ofV(𝜼) and O.

IfV(𝜼) is given as a convex polytope, Prop. 6 can be used to formulate the feasible set of
states

X =

{
(𝒙 (𝑡), 𝝁 (𝑡),𝝀(𝑡)) ∈ R𝑛𝑥 × R�̆� × R𝐿 :

−𝒃⊤𝝁 − 𝒅⊤ (𝜼)𝝀
| |𝐴⊤𝝁 | |2

≥ 𝑑safe, 𝝁 ≥ 0, 𝝀 ≥ 0, 𝐴⊤𝝁 +𝐶⊤ (𝜼)𝝀 = 0
}
,

(7.56)

where 𝑑safe ∈ R provides a safety distance if 𝑑safe > 0 and the maximum acceptable
penetration depth if 𝑑safe ≤ 0. Since the feasibility problem (7.55) is included by means of
(7.56), 𝝁,𝝀 are additional decision variables in the MPC. Compared to the signed distance
singleton constraints, the full body constraints are more complex due to the additional
consistency constraint.

7.5. Culling Procedure

Due to the disproportionate effect of an increasing number of obstacles on the number
of dual decision variables see, e.g., [101, 45, 175], a culling procedure can be applied
to the NLP to reduce its complexity, see, e.g., [74]. This concept is a crucial aspect in
computer graphics and is inherently connected to the viewpoint and perspective of the
object of interest. The culling concept can be divided into (view) frustum , occlusion,
and backface culling. The first is based on what is in the field of view of the object of
interest, the so-called view frustum, which, in computer graphics, is typically defined
using a pyramid from which the frustum is cut out using a near and a far clipping plane.
The second deals with inter-object relations, i.e., is an object occluded by another object
(that is typically closer to the viewpoint compared to the occluded object). The third
operates on an intra-object level, i.e., is an object blocking the sight of other parts of
itself in relation to a viewpoint. Any thus identifiable, un-visible parts of obstacles or
the object of interest itself need not be considered for rendering in a computer graphics
context which translates to ignoring the identified objects/faces in a collision avoidance
MPC problem since those parts cannot contribute to the rendering of the scene, and the
collision evaluation, respectively. In Fig. 7.3 an example illustration of the three culling
principles is given. The culling procedure identifies faces of the detected obstacles that can
be neglected in the optimization such that only a minimal set of dual decision variables
(and normal vectors) is passed to the optimization, thereby largely reducing NLP problem
size. Note that the frustum, occlusion, and backface conditions are evaluated in logical
(inclusive) disjunction, i.e., they can be evaluated in any order and if any of the individual

3 Note that for the signed distance, this depends on 𝑑safe. If 𝑑safe < 0, overlapping of V(𝜼) and O is considered
as not colliding.
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(a) Illustration of a view frustum culling
procedure. The near clipping plane
of the view frustum is defined using
a supporting hyperplane associated
with the apparent velocity ¤𝒑V of the
controlled object (blue). Faces lying
entirely outside the view frustum,
i.e., in one of the four half-spaces
(shaded gray areas) associated with
it, are ignored. In this example O2
is completely culled and, for O1 ,
the face associated with the normal
vector 𝒂4 can be ignored as well as
the face associated with the normal
vector 𝒂1 of O3 .
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(b) Illustration of an occlusion (shadow)
culling procedure with obstacle
O1 as the occluder with the face
associated with 𝒂3 defining the near
clipping plane. Based on the current
position 𝒑V all obstacle faces, which
lie in the shadow (shaded gray area)
of the occluder can be culled. In this
example (the rest of) all faces of
obstacle O3 can be culled and the
face of the occluder O1 associated
with 𝒂1 can also be ignored in this
step.
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(c) Illustration of the backface culling
procedure for obstacle O4 (red)
and the controlled object (blue).
All vertices of the latter lie in the
half-space H− (𝒂3, 𝑏3 ) (shaded
gray area) such that this particular
face is not visible to the controlled
object and can thus be culled. This
does not hold for, e.g., the half-space
associated with 𝒂4 (diagonal gray
lines) of O4 , i.e. that face must
not be culled. This procedure is
evaluated for each obstacle.

Figure 7.3.: Illustration of the three culling techniques. First, a frustum culling procedure is used (Fig. 7.3a).
Subsequently, occlusion (shadow) culling is evaluated (Fig. 7.3b) and lastly, backface culling is applied to the
scenario (Fig. 7.3c). Faces identified by any previous step are denoted using dashed gray lines while faces
identified by the current step are indicated using dashed red lines.

conditions identifies a particular face as unnecessary for evaluating collision avoidance, it
can be neglected.

For ease of notation, in the following we assume 𝐾 = 1. Subsequently, the associated (dis-
cretized) dual decision variables arising from the collision avoidance constraints in (6.73)
are denoted using 𝝁𝑘 , 𝝀𝑘 . Furthermore, 𝜇 𝑗, 𝑘 , 𝜆 𝑗, 𝑘 correspond to the 𝑗-th face of O𝑘 and
V𝑘 and, therefore, to the normal vectors 𝒂 𝑗, 𝑘 in 𝐴⊤

𝑘
and 𝒄 𝑗, 𝑘 in 𝐶⊤

𝑘
, at predicted time

instants 𝑡𝑘 , respectively. If dual variables are found that satisfy any of the three different
constraint cases for a given 𝒙𝑘 , then 𝒛𝑘 = 𝐴⊤

𝑘
𝝁𝑘 = −𝐶⊤

𝑘
𝝀𝑘 defines a separating hyperplane

H(𝒛𝑘 , 𝒃⊤𝑘 𝝁𝑘 ) of O𝑘 and V𝑘 . In other words, e.g., 𝝁𝑘 defines the linear combination of
normal vectors in𝐴⊤

𝑘
such that 𝒛𝑘 = 𝐴⊤

𝑘
𝝁𝑘 and O ∈ H− (𝒛𝑘 , 𝒃⊤𝑘 𝝁𝑘 ), V ∉ H− (𝒛𝑘 , 𝒃⊤𝑘 𝝁𝑘 ).

The culling procedure needs to be evaluated using predicted positions of both the controlled
object and any obstacle. Since this information is not necessarily known a priori to solving
the MPC NLP problem, it is assumed that a (conservative) guess is available for these
quantities such that no faces are culled that might become relevant for the collision
avoidance constraint calculations. To this end, the possible states need to be evaluated
which, e.g., can be achieved based on the inputs of the system. For instance, if one of
the inputs in 𝒖 is primarily associated with forward motion, this input will be kept at its
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maximum value. Furthermore, if one of the inputs in 𝒖 is associated with a rotation of the
controlled object, the inputs

𝑢
(1)
𝑘

= 𝑢 (𝑡𝑖−1) (7.57a)

𝑢
(2)
𝑘

= max{𝑢−, 𝑢 (𝑡𝑖−1) − 𝑘Δ𝑡 ¤𝑢max} (7.57b)

𝑢
(3)
𝑘

= min{𝑢+, 𝑢 (𝑡𝑖−1) + 𝑘Δ𝑡 ¤𝑢max} (7.57c)

for 𝑘 = 0, . . . , 𝑁 can be used to obtain the possible system states as described in [172].
Therein, 𝑢−, 𝑢+ denote the lower and upper input bound and ¤𝑢max the maximum rate of
change of the input, respectively. Furthermore, (7.57a) applies the previous input for the
entire prediction horizon, (7.57b) applies the lower input bound as quickly as possible
(taking into account rate constraints and the previously-applied input) and (7.57c) achieves
the same as (7.57b) except for the upper input bound. Alternatively, the previous (optimal)
prediction could be used instead of using the last applied input (7.57a).

7.5.1. View Frustum Culling

The view frustum is typically defined using four half-spaces (in 2D), namely, the near, far,
left, and right clipping planes, see Fig. 7.3a. As can be seen, the near (and far) clipping
plane is defined using a supporting hyperplane with the direction of travel ¤𝒑V as its
normal (and the far clipping plane being parallel to the near clipping plane). Therefore,
suppose | | ¤𝒑V

𝑘
| |2 > 0 and, for better readability, let ¤𝒑𝑘 := ¤𝒑V

𝑘
for time step 𝑘 . With this,

the view frustum condition can be expressed mathematically using

Neglect 𝜇 𝑗, 𝑘 in (6.73) if 𝒗O
𝑗, 𝑘

∉ F𝑘 ∧ 𝒗O𝑗+1, 𝑘 ∉ F𝑘 , (7.58)

where F𝑘 =H+near, 𝑘∩H
+
far, 𝑘∩H

+
left , 𝑘∩H

+
right , 𝑘 defines the view frustum and, e.g., the near

clipping plane defined asHnear, 𝑘 =H( ¤𝒑𝑘 , ¤𝒑⊤𝑘 𝒔V𝑘
(− ¤𝒑𝑘 )). Furthermore, 𝒗V

𝑗, 𝑘
, 𝑗 = 1, . . . , 𝐿

denote the (predicted) vertices of the controlled object, where each face defined, e.g., by
the normal vectors 𝒂 𝑗, 𝑘 is associated with two vertices 𝒗𝑙, 𝑘 , 𝑙 = 𝑗, 𝑗 + 1. The left- and right
clipping plane is defined such that a user-defined view angle is obtained based on the
direction of travel. In other words, it is to be checked if the vertices 𝒗O

𝑗, 𝑘
, 𝒗O

𝑗+1, 𝑘 associated
with the 𝑗-th face with normal vector 𝒂 𝑗, 𝑘 lie outside the view frustum defined using the
near, far, left, and right clipping plane. Since that particular face is associated with the
decision variable 𝜇 𝑗, 𝑘 it can be neglected. Note that if (7.58) applies to all vertices at a
given time step, the corresponding obstacle is completely omitted from the NLP for that
time step.

7.5.2. Occlusion Culling

Shadow occlusion culling as depicted in Fig. 7.3b is applied to the scenario in order to
determine occluded obstacles and/or obstacle faces in the shadow frustum. The shadow
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frustum is defined using three hyperplanes, namely, the near, left, and right clipping plane
of the shadow frustum. With this, the occlusion condition can be expressed mathematically
using

Neglect 𝜇 𝑗, 𝑘 in (6.73) if 𝒗O
𝑗, 𝑘
∈ SF 𝑘 ∧ 𝒗O𝑗+1, 𝑘 ∈ SF 𝑘 , (7.59)

where SF 𝑘 =H−near, 𝑘 ∩H
−
left, 𝑘 ∩H

−
right , 𝑘 defines the shadow frustum. The difficulty for

(shadow) occlusion culling lies in determining a good occluder, i.e., finding an obstacle
which is likely to cast a large shadow and, therefore, has the potential to occlude as
many other obstacle faces as possible. Among other principles which can be found, e.g.,
in [31, 73] possible occluders can be identified using the solid angle (measured in steradian)
of all obstacles and choosing those obstacles as occluders which possess a solid angle
greater than a user-defined threshold Ωmin. The solid angle can be approximated using

Ω = 𝑎𝑘
𝒏⊤
𝑘
(𝒑O
𝑘
− 𝒑V

𝑘
)

| |𝒑O
𝑘
− 𝒑V

𝑘
| |22
, (7.60)

where 𝑎𝑘 is the area of the occluder and 𝒏𝑘 is the normal vector of the obstacle [73]. Here,
𝒏𝑘 is the normal vector also defining the near clipping plane of the shadow frustum. This
plane is defined using two vertices of an obstacle which are furthest apart from each other
and whose corresponding normals (i.e. 𝒂𝑖, 𝑘 in 𝐴𝑘 ) are facing towards the position 𝒑V

𝑘
of

the controlled object which serves as the apex of the shadow frustum. Consequently, 𝑎𝑘 is
the length of the difference vector of these particular vertices. The left and right clipping
plane are defined such that they pass through the near clipping plane’s vertices and the
apex, respectively. As can be seen, the solid angle takes into account multiple factors.
First, a large obstacle will have a large area 𝑎𝑘 . Second, an obstacle closer to the apex is
more likely to be a good occluder and, third, how much of the area is head-on w.r.t. the
apex.

7.5.3. Backface Culling

Backface culling is evaluated to identify faces that are hidden by other faces of the same
object as seen from the perspective of the controlled object’s vertices. Those hidden faces
need not be considered in the NLP since they do not affect the imminent situation. This is
formulated mathematically as

Neglect 𝜇 𝑗, 𝑘 in (6.73) ifV𝑘 ∈ H− (𝒂 𝑗 , 𝑏 𝑗 ) (7.61a)

or, in other words, check if all vertices of the controlled object 𝒗V
𝑙, 𝑘
, 𝑙 = 1, . . . , 𝐿 lie in the

supporting half-spaceH− (𝒂 𝑗, 𝑘 , 𝑏 𝑗, 𝑘 ) defined by the 𝑗-th face with normal vector 𝒂 𝑗, 𝑘 . In
that case, this face is hidden by other faces of the obstacle and the associated decision
variable 𝜇 𝑗, 𝑘 can be neglected. Analogously, the same idea can be applied to faces of the
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controlled object from the perspective of the obstacle in order to reduce the number of
dual object decision variables𝒘𝜆 in (6.73), i.e.,

Neglect 𝜆 𝑗, 𝑘 in (6.73) if O𝑘 ∈ H− (𝒄 𝑗, 𝑘 , 𝑑 𝑗, 𝑘 ). (7.61b)

In Fig. 7.3c, this procedure is demonstrated for the obstacle faces.
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8. Kalman Filter-Based Estimation

Typically, a control loop includes a state observer as depicted in Fig. 2.1. The task of the
observer is to reconstruct state information needed by the control algorithms based on
(usually noisy) measurements. The de-facto standard algorithm used in this context is the
KF that exists in a variety of different formulations. The classical KF equationswere derived
for linear time invariant systems and have since then been adapted to nonlinear models,
where, among other approaches, the nonlinear model is either successively linearized, or
the so-called unscented transformation is used. The former leads to the EKF formulation
while the latter is known as the Unscented Kalman Filter. In this chapter, we focus on the
EKF equations that are presented in the predictor-corrector form. Furthermore, various
extensions are introduced, such as adaptive covariance estimation, iterative measurement
updates, and multi rate Kalman Filtering. For a thorough discussion of the Kalman filter
and its variants see, e.g., [12, 56, 61, 141, 155].

8.1. Extended Kalman Filter

The KF is a statistically optimal filter in the sense that it minimizes the error covariance
𝑃 = 𝐸 [(𝒙 − �̂�) (𝒙 − �̂�)⊤] of the estimate �̂� . To this end, the filter assumes that the dynamics
of the system can be described mathematically with

¤𝒙 = 𝒇 (𝒙, 𝒖) +𝐺𝒘, 𝑡 > 𝑡0, 𝒙 (𝑡0) = �̂�0 (8.1a)
𝒚 = 𝒉(𝒙) + 𝒗, 𝑡 ≥ 𝑡0, (8.1b)

i.e., it is the nominal model (6.59b) augmented with additive process noise𝒘 ∈ R𝑛𝑤 and
where 𝐺 ∈ R𝑛𝑥×𝑛𝑤 is the process noise gain matrix, and 𝒗 ∈ R𝑛𝑦 is additive measurement
noise. Since the EKF is, in essence, a discrete filter, it makes use of a discretization of the
dynamical model, i.e.,

𝒙𝑘+1 = 𝑭 (𝒙𝑘 , 𝒖𝑘 ) +𝐺𝒘𝑘 , 𝒙0 = �̂�0, 𝒘𝑘 ∼ N(0, 𝑄), (8.2a)
𝒚𝑘 = 𝒉(𝒙𝑘 ) + 𝒗𝑘 , 𝒗𝑘 ∼ N(0, 𝑅), (8.2b)

for 𝑘 ∈ N0, where 𝑭 : R𝑛𝑥 × R𝑛𝑢 ↦→ R𝑛𝑥 is the discrete propagation function depending
on the particular discretization at hand, 𝒘𝑘 ∼ N(0, 𝑄) is the discrete additive process
noise, 𝑄 is the process noise covariance matrix, and 𝒗𝑘 ∼ N(0, 𝑅) is the discrete additive
measurement noise with the measurement noise covariance matrix 𝑅. With this, it is
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not necessary that Δ𝑡𝑦 = Δ𝑡ekf, i.e., the measurement update rate can be different from
the propagation rate. For example the forward Euler discrete propagation function reads
𝑭 (𝒙𝑘 , 𝒖𝑘 ) = 𝒙𝑘 + Δ𝑡ekf𝒇 (𝒙𝑘 , 𝒖𝑘 ), where Δ𝑡ekf is the discretization step size.

Based on this, the EKF equations read

�̂�−
𝑘
= 𝑭 (�̂�+

𝑘−1, 𝒖𝑘−1), (8.3a)
𝑃−
𝑘
= 𝐴𝑘−1𝑃

+
𝑘−1𝐴

⊤
𝑘−1 +𝐺𝑄𝑘−1𝐺

⊤, (8.3b)

which is known as the prediction, and

𝐾𝑘 = 𝑃−
𝑘
𝐶⊤
𝑘
(𝐶𝑘𝑃−𝑘 𝐶

⊤
𝑘
+ 𝑅𝑘 )−1, (8.3c)

�̂�+
𝑘
= �̂�−

𝑘
+ 𝐾𝑘 (𝒚𝑘 − 𝒉(�̂�−𝑘 )), (8.3d)

𝑃+
𝑘
= (𝐼 − 𝐾𝑘𝐶𝑘 )𝑃−𝑘 (𝐼 − 𝐾𝑘𝐶𝑘 )

⊤ + 𝐾𝑘𝑅𝑘𝐾⊤𝑘 , (8.3e)

which is known as the correction, and where 𝑘 ∈ N0. Furthermore, �̂�−
𝑘
is the a priori state

estimate, i.e., before any measurement is taken into account, �̂�+
𝑘
is the a posteriori state

estimate, i.e., the estimate including the current measurement. It is also important to note
that the correction step is only performed if a measurement becomes available, i.e., 𝒚𝑘 is
not necessarily defined for all 𝑘 ∈ N but is assumed to be an integer multiple of the base
sample time Δ𝑡ekf, i.e., Δ𝑡𝑦 =𝑚Δ𝑡ekf, 𝑚 ∈ N. Furthermore,

𝑃−
𝑘
= 𝐸 [(𝒙 − �̂�−

𝑘
) (𝒙 − �̂�−

𝑘
)⊤] (8.4)

is the state error covariance of the a priori estimate, and

𝑃+
𝑘
= 𝐸 [(𝒙 − �̂�+

𝑘
) (𝒙 − �̂�+

𝑘
)⊤] (8.5)

is the a posteriori state error covariance. The filter is initialized with �̂�+0 = 𝐸 [�̂�0] and
𝑃+0 = 𝐸 [(𝒙 − �̂�0) (𝒙 − �̂�0)⊤]. The quantity

𝜺−
𝑘
= 𝒚𝑘 − 𝒉(�̂�−𝑘 ) (8.6)

is called the innovation as illustrated in Fig. 8.1. Finally,

𝐴𝑘−1 =
𝜕𝑭

𝜕𝒙
(�̂�+
𝑘−1, 𝒖𝑘−1), 𝐶𝑘 =

𝜕𝒉

𝜕𝒙
(�̂�−
𝑘
), (8.7)

are the Jacobian of the discrete propagation and measurement function, respectively.
In other words, the prediction and correction of the error covariance is based on the
linearization of the discrete propagation function and the measurement model around the
current best estimate and the previous input (for 𝐴𝑘−1).

8.2. Iterated Extended Kalman Filter

The EKF propagates the error covariances based on a linearization of the discrete prop-
agation function and the measurement model around the current best estimate and the
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Figure 8.1.: Qualitative illustration of EKF and smoother quantities with a priori state 𝑥−
𝑘
(plus), a posteriori

state 𝑥+
𝑘
(cross), smoothed state 𝑥𝑘 (circle), and measurement 𝑦𝑘 (filled dots), respective innovation 𝜀−

𝑘
, 𝜀+

𝑘
, 𝜀𝑘

(for 𝑘 = 0), and real state (unmarked line), EKF sample time Δ𝑡ekf, measurement sample time Δ𝑡𝑦 = 2Δ𝑡ekf, and
smoothing window 𝑡𝑠 = 2Δ𝑡𝑦 .

previous input. However, for highly nonlinear systems the linearization error can become
relatively large. This motivates the use of a higher order extension of the EKF [see 141,
Sec. 13.3.1]. After performing the measurement update (8.3c)-(8.3e), we get an improved
estimate of the state, i.e., �̂�+

𝑘
. This estimate can be further improved by re-evaluating the

measurement update with this new estimate. This procedure can be repeated as often
as desired, typically, until the improvement of the new state estimate is negligible. It
turns out that this procedure is equivalent to applying the Gauss-Newton method to the
maximization problem of finding the maximum likelihood a posteriori state estimate for
the given measurement making the iterated Extended Kalman Filter (IEKF) a simple but
effective higher order extension to the EKF [13]. The measurement update is then given
by

𝐾𝑘,𝑖 = 𝑃
−
𝑘
𝐶⊤
𝑘,𝑖
(𝐶𝑘,𝑖𝑃−𝑘 𝐶

⊤
𝑘,𝑖
+ 𝑅𝑘 )−1 (8.8)

�̂�+
𝑘,𝑖+1 = �̂�−

𝑘
+ 𝐾𝑘,𝑖 (𝒚𝑘 − 𝒉(�̂�+𝑘,𝑖 ) −𝐶𝑘,𝑖 (�̂�

−
𝑘
− �̂�+

𝑘,𝑖
)) (8.9)

𝑃+
𝑘,𝑖+1 = (𝐼 − 𝐾𝑘,𝑖𝐶𝑘,𝑖 )𝑃

−
𝑘
(𝐼 − 𝐾𝑘,𝑖𝐶𝑘,𝑖 )⊤ + 𝐾𝑘,𝑖𝑅𝑘𝐾⊤𝑘,𝑖 (8.10)

for 𝑖 = 1, . . . , 𝑁iekf, where 𝑁iekf is the number of measurement update iterations and
�̂�𝑘,1 = �̂�−

𝑘
, 𝑃+
𝑘,1 = 𝑃

−
𝑘
. Note that for 𝑁iekf = 1 the IEKF reduces to the EKF.
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8.3. Extended Kalman Smoother

The EKF in (8.3) provides state estimates up to and including (for the a posteriori estimate)
measurements at time 𝑡 = 𝑡𝑘 . In principle, an estimate at 𝑡 = 𝑡𝑘 can be further improved if
future measurements at times 𝑡 > 𝑡𝑘 were known. This information is, in fact, available,
e.g., after an experiment/simulation has been conducted or (in a running experiment) for
past estimates. This is known as a smoothing problem. To obtain a smoothed estimate, a
second EKF is run backwards in time to calculate estimates based on future measurements
w.r.t. a certain point in time. The forward and backwards estimates are then combined to
yield a smoothed estimate. There are three types of smoothing, namely

1. fixed-point smoothing, where 𝑘 is fixed and 𝑁𝑦 = 𝑘 + 1, . . . is ongoing.

2. fixed-lag smoothing, where 𝑘 ∈ N0 is ongoing and 𝑁𝑦 = 𝑘 + 𝐿, where 𝐿 is the
constant lag.

3. fixed-interval smoothing, where 𝑘 = 0, . . . , 𝑁𝐼 , with the interval length 𝑁𝐼 .

In other words, the fixed-point smoother improves a single estimate for a fixed point
in time while more and more measurements become available. The fixed-lag smoother
utilizes measurements that are available in a time window of constant length to improve
the estimate at the beginning of this window. The fixed-interval smoother improves
every estimate in a window of constant length. Note that the fixed-lag and fixed-interval
smoother are very similar and may be combined to yield improved estimates for every
time instant within a fixed-lag interval.

The overall smoothed estimate relies on computing the optimal combination of the forward
and backward filter estimates using the so-called fusion equations (see also [12, Sec.
12.10.4])

𝑃𝑘 =

[
(𝑃 𝑓
𝑘
)−1 + (𝑃𝑏

𝑘
)−1

]−1
, (8.11)

where 𝑃 𝑓
𝑘
is the error covariance of the (forward) EKF, i.e. (8.3), 𝑃𝑏

𝑘
is the error covariance

of the backward filter, and 𝑃𝑘 is the error covariance of the smoothed estimate. From
this it is also evident that 𝑃𝑘 ≤ 𝑃 𝑓𝑘 in the sense of a matrix inequality, i.e., the smoothed
error covariance must always be equal to or less than the forward error covariance. The
smoothed state estimate is computed using

�̆�𝑘 = 𝐾
𝑓

𝑘
�̂� 𝑓
𝑘
+ (𝐼 − 𝐾 𝑓

𝑘
)�̂�𝑏
𝑘

(8.12)

𝐾
𝑓

𝑘
= 𝑃𝑏

𝑘
(𝑃 𝑓
𝑘
+ 𝑃𝑏

𝑘
)−1 . (8.13)

See Simon [141, Sec. 9.4.1] for an in-depth discussion and derivation.

In the following, we are concerned with the fixed-interval smoothing procedure that can
also run online, i.e., at the current time instant 𝑘 the smoothed estimate is computed using
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8.3. Extended Kalman Smoother

the previous 𝑁 estimates and, the corresponding measurements within that interval. To
this end, the backward filter essentially consists of a EKF that runs backwards in time, i.e.,
from 𝑗 = 𝑘 to 𝑗 = 𝑘 − 𝑁 . However, the backwards filter must be initialized with values
that are independent of the solution of the forward filter [141, Sec. 9.4.1]. Therefore,
the backward filter is initialized with 𝑃−𝑗 =∞, which is not feasible in a computational
sense. Instead, the backward filter needs to be formulated as an information filter, i.e.,
the error covariance is replaced by its inverse, which is called the information matrix,
i.e., 𝑆−

𝑘
= (𝑃−

𝑘
)−1 = 0 [95, Sec. 2.8.1]. Accordingly, an auxiliary information state can be

defined as 𝒔−𝑗 = 𝑆−𝑗 �̂�
−
𝑗 such that 𝒔𝑘 = 0. With this, the information filter is given by the

correction step

𝒔+𝑗 = 𝒔−𝑗 +𝐶⊤𝑗 𝑅−1
𝑗 𝒚 𝑗 (8.14a)

𝑆+𝑗 = 𝑆−𝑗 +𝐶⊤𝑗 𝑅−1
𝑗 𝐶 𝑗 (8.14b)

and the prediction step

𝐾𝑏𝑗 = 𝑆
+
𝑗 𝐺 (𝐺⊤𝑆+𝑗 𝐺 +𝑄−1

𝑗−1)−1 (8.14c)

𝒔−𝑗 = 𝐴⊤𝑗−1 (𝐼 − 𝐾𝑏𝑗 𝐺⊤) (𝒔+𝑗 − 𝑆+𝑗 𝐵 𝑗−1𝑢 𝑗−1) (8.14d)

𝑆−𝑗 = 𝐴⊤𝑗−1 (𝐼 − 𝐾𝑏𝑗 𝐺⊤)𝑆+𝑗 𝐴⊤𝑗−1 (8.14e)

for 𝑗 = 𝑘, . . . , 𝑘 − 𝑁 + 1 [see 106, Sec. 8.4]. In order to obtain a smoothed estimate, three
passes are necessary, i.e., the forward EKF pass (8.3), the backward EKF pass (8.14), and
the smoothing pass (8.11), which imposes a significant computational burden. A much
more efficient alternative is given by the Rauch-Tung-Striebel (RTS) smoother [128] that
combines the backward and smoothing pass into a set of recursive equations, which only
require saving the forward filter estimates and the corresponding error covariances (see
also [56, Chapter 5], [141, Sec. 9.4.2])

�̆� 𝑗 = 𝑃
+
𝑗 𝐴
⊤
𝑗

(
𝑃−𝑗+1

)−1 (8.15a)

�̆� 𝑗 = �̂�+𝑗 + �̆� 𝑗 (�̆� 𝑗+1 − �̂�−𝑗+1) (8.15b)

𝑃 𝑗 = 𝑃
+
𝑗 + �̆� 𝑗 (𝑃 𝑗+1 − 𝑃−𝑗+1)�̆�⊤𝑗 (8.15c)

for 𝑗 = 𝑘 − 1, . . . , 𝑘 − 𝑁 , which is initialized with �̆�𝑘 = �̂�+
𝑘
, 𝑃𝑘 = 𝑃+

𝑘
.

Remark 5 (Handling Different Sampling Times) The RTS algorithm is usually based
on the assumption that the measurements have the same sampling time as the (forward)
EKF (8.3), i.e., Δ𝑡ekf = Δ𝑡𝑦 . However, if Δ𝑡𝑦 is an (integer) multiple of Δ𝑡ekf, applying the
RTS algorithm (8.15) to obtain a smoothed estimate for all time steps corresponding to the
forward filter, i.e., for each 𝑡𝑘 = 𝑘Δ𝑡ekf, 𝑘 ∈ N is not obvious since the measurements are
only available at 𝑡𝑦 = 𝑖Δ𝑡ekf =𝑚𝑘Δ𝑡ekf, where𝑚 is the (integer) multiple. This can be seen,
e.g., in Fig. 8.1 for 𝑘 = 4, where no measurement and, therefore, also no a posteriori state
estimate is available, which is needed in (8.15b). It is therefore the most straight-forward
solution to use the a priori state estimate �̂�𝑘 |𝑘−1 = �̂�−

𝑘
and covariance 𝑃−

𝑘
of the forward filter
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as a proxy for �̂�−
𝑘+1 and 𝑃

+
𝑘
in (8.15b) and (8.15a)-(8.15c), respectively. This corresponds to

interpolating the smoothed solution between the available measurements as mentioned in
Rauch et al. [128].

8.4. Adaptive Noise Covariance Estimation

In the EKF equations (8.3), the principal DOFs are given by the process noise covariance
matrix 𝑄𝑘 and the measurement noise covariance matrix 𝑅𝑘 . Usually, the measurement
noise covariance matrix 𝑅𝑘 is known and depends on the used sensor. Moreover, it can be
assumed that the measurement noise covariance matrix is constant over time. Determining
the process noise covariance matrix 𝑄𝑘 , on the other hand, is not as straightforward and
usually requires intricate knowledge of the system. In the following, we will show how
the process noise covariance matrix 𝑄𝑘 can be estimated online in the EKF based on
the innovations sequence that is the principal source of new information. An adaptive
process is motivated by the fact that the system dynamics can change over time, e.g., due
to aging of the system or due to changes in the environment. In the Kalman gain (8.3c),
the denominator yields the theoretical covariance of the innovations matrix, i.e.,

𝐸 [𝜺−
𝑘
(𝜺−
𝑘
)⊤] =𝐶𝑘𝑃−𝑘 𝐶

⊤
𝑘
+ 𝑅𝑘 . (8.16)

In this section, we will make use of the unbiased estimate of the innovations covariance
matrix, i.e., the sampled innovations covariance matrix Σ̂−

𝑘 |𝑁 see, e.g., [103, Sec. 3.3.2] that
can be calculated with

𝐸 [𝜺−
𝑘
(𝜺−
𝑘
)⊤] ≈ Σ̂−

𝑘 |𝑁 =
1
𝑁

𝑘∑︁
𝑖=𝑘−𝑁+1

(𝜺−𝑖 − 𝜺) (𝜺−𝑖 − 𝜺)⊤, (8.17)

where 𝜺 is the mean of the innovations sequence, and 𝑁 is the number of samples in
the window. Making use of the fact that the innovations sequence has zero mean for a
correctly working EKF (see [108, Sec. 5], [54, Sec. 4.4.1]), (8.17) can be simplified to

Σ̂−
𝑘 |𝑁 =

1
𝑁

𝑘∑︁
𝑖=𝑘−𝑁+1

𝜺−𝑖 (𝜺−𝑖 )⊤ . (8.18)

Note that the sample innovations covariance matrix can be updated iteratively, i.e.,

Σ̂−
𝑘 |𝑁 = Σ̂−

𝑘−1 |𝑁 +
1
𝑁

(
𝜺−
𝑘
(𝜺−
𝑘
)⊤ − 𝜺−

𝑘−𝑁+1 (𝜺
−
𝑘−𝑁+1)

⊤) , (8.19)

for 𝑘 ∈ N0 and where Σ̂−−1 |𝑁 is the initial sampled innovations covariance matrix typically
chosen to be Σ̂−−1 |𝑁 = 𝜺−0 (𝜺−0 )⊤. This is essentially a moving average filter for the innova-
tions covariance matrix. Alternatively, an exponentially-weighted moving average filter
can be used, i.e.,

Σ̂−
𝑘 |𝑁 = 𝛼𝜺−

𝑘
(𝜺−
𝑘
)⊤ + (1 − 𝛼)Σ̂−

𝑘−1 |𝑁 , (8.20)

88
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Note that the latter takes into account all observations 𝜺𝑘 , 𝑘 ∈ N0 while the former only
takes into account the last 𝑁 observations 𝜺𝑘−𝑁+1, . . . , 𝜺𝑘 . However, the exponentially-
weighted moving average has the advantage that no past observations need to be stored
in memory. The moving average and exponentially-weighted moving average have the
same average age of the samples (see [113, Sec. 2.7]) when

𝛼 =
2

𝑁 + 1
. (8.21)

In order to make use of (8.18) with regard to process noise covariance estimation, (8.2) is
rearranged and the time index shifted, so that

𝐺𝒘𝑘−1 = 𝒙𝑘 − 𝑭 (𝒙𝑘−1, 𝒖𝑘−1), (8.22)

and, in view of (8.3a) and (8.3d), we can construct an estimation of the process noise as

𝐺�̂�𝑘−1 = �̂�+
𝑘
− 𝑭 (�̂�+

𝑘−1, 𝒖𝑘−1) (8.23a)
= �̂�+

𝑘
− �̂�−

𝑘
(8.23b)

= 𝐾𝑘 (𝑦𝑘 − 𝒉(�̂�−𝑘 )) (8.23c)
= 𝐾𝑘𝜺

−
𝑘

(8.23d)

such that �̂�𝑘−1 =𝐺
†𝐾𝑘𝜺

−
𝑘
, where 𝐺† = (𝐺⊤𝐺)−1𝐺⊤ is the left pseudo-inverse of 𝐺 . With

this and taking into account (8.17), the process noise covariance matrix can be estimated
with

�̂�𝑘−1 = 𝐸 [�̂�𝑘−1�̂�
⊤
𝑘−1] = 𝐸 [𝐺

†𝐾𝑘𝜺
−
𝑘
(𝜺−
𝑘
)⊤𝐾⊤

𝑘
(𝐺†)⊤] (8.24a)

=𝐺†𝐾𝑘𝐸 [𝜺−𝑘 (𝜺
−
𝑘
)⊤]𝐾⊤

𝑘
(𝐺†)⊤ (8.24b)

=𝐺†𝐾𝑘 Σ̂
−
𝑘 |𝑁𝐾

⊤
𝑘
(𝐺†)⊤ . (8.24c)

If the process noise covariance matrix is known a priori, an estimate of the measurement
noise covariance matrix can be obtained by rearranging (8.16), i.e.,

𝑅𝑘 = Σ̂−
𝑘 |𝑁 −𝐶𝑘𝑃

−
𝑘
𝐶⊤
𝑘
, (8.25)

however, this estimate does not guarantee that 𝑅𝑘 is positive definite. Therefore, it can be
shown that

𝑅𝑘 = Σ̂+
𝑘 |𝑁 +𝐶𝑘𝑃

+
𝑘
𝐶⊤
𝑘
, (8.26)

yields better estimates, where Σ̂+
𝑘 |𝑁 = 1/𝑁 ∑𝑘

𝑖=𝑘−𝑁+1 𝜺
+
𝑖 (𝜺+𝑖 )⊤ is the sample residual covari-

ance matrix, and 𝜺+𝑖 = 𝒚𝑖 − 𝒉(�̂�+𝑖 ) is the residual [110, Sec 3.2]. Another alternative to
(8.19) and (8.20) is to make use of the Kalman smoother for the calculation of the sampled
innovations covariance matrix [54]. This is motivated by the fact that, in principle, if the
sample innovations covariance matrix is not updated iteratively using (8.19) a fixed-length
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8. Kalman Filter-Based Estimation

memory is required to store the innovations. Therefore, a further improvement in accuracy
can be obtained by utilizing the smoothed innovations in (8.18), i.e.,

Σ̂ ˘
𝑘 |𝑁 =

1
𝑁

𝑘∑︁
𝑖=𝑘−𝑁+1

�̆�𝑖 �̆�
⊤
𝑖 =

1
𝑁

𝑘∑︁
𝑖=𝑘−𝑁+1

(𝒚𝑖 − 𝒉(�̆�𝑖 )) (𝒚𝑖 − 𝒉(�̆�𝑖 ))⊤, (8.27)

see also Fig. 8.1.

Remark 6 (Simultaneous 𝑄 and 𝑅 estimation) It is important to note that the process
and measurement noise covariance matrices are not independent of each other. Therefore, the
adaptive estimation techniques presented in this section are not suitable for simultaneous
estimation of both the process and measurement noise covariance matrix see Mohamed and
Schwarz [110], Fraser [54, Sec. 3.2], and Maybeck [106, Sec. 10.7]. Also note that similar
results can be obtained by deriving the adaptive estimation of the process and measurement
noise covariance matrices by maximizing the maximum likelihood function of the respective
unknown covariance matrix given the measurement sequence [see 106].
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Simulative Studies





9. Dynamic Positioning

In this chapter a dynamic positioning problem is developed using a nonlinear feedback
linearization according to Sec. 6.1 with control allocation according to Sec. 6.2 and extended
with an AIEKF-based state and disturbance estimation according to Chapter 8. To this end,
the nonlinear feedback controller calculates the control input 𝝉 fb that stabilizes the origin
of the inertial frame and its poles are chosen such that the control effort does not exceed
their respective maximum values. For the combined state and disturbance estimation,
the dynamic vessel model (5.74) is extended to take into account disturbances acting on
the ship. The disturbances are usually modeled in the inertial frame, where they are
assumed to be constant or slowly time varying with perturbations driven by a Gaussian
white noise random process. In the following, we will distinguish between two different
disturbance and measurement models. The first model is called the lumped disturbance
model that represents all disturbances using a single lumped disturbance vector 𝒅. The
second model extends the lumped model using the wind model (5.56) to explicitly take
into account knowledge of the wind effects and which enables a distinction between wind
disturbances and any other disturbances arising from different sources. Here, it is assumed
that the apparent wind velocity and direction can be measured using an anemometer. The
estimated disturbance is taken into account in the high level controller by means of a
feedforward control that compensates for the disturbance. Finally, a simulative validation
of the proposed concepts is presented and discussed.

9.1. Problem Formulation

In the following, the individual parts of the dynamic positioning problem are presented
and applied to theMSV, namely, the underlying model is discussed, followed by a synthesis
of the feedback linearization controller. Subsequently, the control allocation problem
is defined, finally, the state and disturbance estimation problem is formulated using
the AIEKF. The latter is presented for two different measurement models, namely, the
lumped disturbance model, where the vessel’s pose is measured, and the combined lumped
and wind disturbance model that explicitly takes into account the wind when apparent
wind direction and speed is measured additionally to the pose. All parameters regarding
the simulation, the controller, the control allocation, and the estimator are summarized
in Tab. 9.2 and Tab. 9.3 for the first and second estimator and measurement model,
respectively.
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9. Dynamic Positioning

9.1.1. Vessel Model

The vessel model used in this simulative study is the Cybership II taken from Lin-
degaard [97], Skjetne [142] since it provides a fully parameterized, nonlinear 3DOF
maneuvering model in the form (5.74) with a propulsion model that consists of two
propeller-rudder systems and a bow thruster, i.e., the vector of control surfaces is given
by 𝒖 = [𝜔pr,l, 𝛿pr,l, 𝜔pr,r, 𝛿pr,r, 𝜔tt]⊤, where 𝜔pr,l and 𝜔pr,r are the rotational speeds of the
left and right propeller, respectively, 𝛿pr,l and 𝛿pr,r are the rudder angles of the left and
right rudder, respectively, and 𝜔tt is the rotational speed of the bow (tunnel) thruster.
The individual models of the thrusters are given in Sec. 5.2.4. All relevant geometric,
hydrodynamic, and propulsion parameters of the Cybership model are summarized in
Tab. 9.1.

Group Symbol Value Symbol Value Symbol Value

General
𝐿𝑜𝑎 1.2 𝑚 23.8
𝐵 0.5 𝐽𝑧𝑧 1.76
𝑥𝑔 0.046

Added
Mass

𝑋 ¤𝑢 −2.0
𝑌¤𝑣 −10.0 𝑌¤𝑟 0.0
𝑁 ¤𝑣 0.0 𝑁 ¤𝑟 −1.0

Damping

𝑋𝑢 −0.72 𝑋 |𝑢 |𝑢 −1.33 𝑋𝑢𝑢𝑢 −5.87
𝑌𝑣 −0.89 𝑌|𝑣 |𝑣 −36.47 𝑌|𝑣 |𝑟 0.08
𝑌𝑟 0.11 𝑌|𝑟 |𝑣 −0.81 𝑌|𝑟 |𝑟 −3.45
𝑁𝑣 0.03 𝑁 |𝑣 |𝑣 3.96 𝑁 |𝑣 |𝑟 0.08
𝑁𝑟 −1.9 𝑁 |𝑟 |𝑣 0.13 𝑁 |𝑟 |𝑟 −0.75

Propeller-
Rudder
System(s)

𝑙𝑥,pr −0.549 𝑇+|𝜔pr |𝜔pr
3.65e−3 𝐿+

𝛿pr
6.43

𝑙𝑦,pr ±0.078 𝑇+|𝜔pr |𝑢 1.52e−4 𝐿+|𝛿pr |𝛿pr 5.84
𝑘𝑢 0.5 𝑇 −|𝜔pr |𝜔pr

5.10e−3 𝐿−
𝛿pr

3.20
𝑑pr 0.06 𝑇 −|𝜔 |pr𝑢 4.56e−2 𝐿−|𝛿pr |𝛿pr 2.34
𝜔+pr 33 𝜔−pr −33 ¤𝜔max

pr 15
𝛿+pr 35 𝜋

180 𝛿−pr −35 𝜋
180

¤𝛿max
pr 7 𝜋

180

Bow
(Tunnel)
Thruster

𝑙𝑥,tt 0.466 𝑇|𝜔tt |𝜔tt 1.57e−4
𝑙𝑦,tt 0
𝜔+tt 83 𝜔−tt −83 ¤𝜔max

tt 25

Table 9.1.: Parameters of the Cybership II MSV in (unscaled) SI units according to Lindegaard [97] and Skjetne
[142]. Note that there’s two propeller rudder systems, one on each side of the ship.
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9.1.2. Nonlinear Feedback Controller

The dynamic positioning problem is solved based on a nonlinear feedback linearization as
presented in Sec. 6.1. The task of dynamic positioning usually requires but is not limited
to a static reference trajectory of the form

𝜼∗ (𝑡) =

𝑥∗ (𝑡)
𝑦∗ (𝑡)
𝜓 ∗ (𝑡)

 =

0
0
0

 , (9.1)

such that the higher order derivatives of the reference trajectory (6.13), i.e.,

𝝃 ∗ =


𝑥∗

¤𝑥∗
...

𝑥∗(𝑟1−1)


= 0, 𝚼

∗ =


𝑦∗

¤𝑦∗
...

𝑦∗(𝑟2−1)


= 0, 𝚿

∗ =


𝜓 ∗

¤𝜓 ∗
...

𝜓 ∗(𝑟3−1)


= 0, (9.2)

for 𝑟1 = 𝑟2 = 𝑟3 = 2, which holds without loss of generality, i.e., is not limited to the origin
of the NED frame. The poles of the stabilizing linear controller

𝒗 =


𝑥∗(𝑟1 ) − 𝒑⊤1 (𝚽1 (𝒙) − 𝝃 ∗)
𝑦∗(𝑟2 ) − 𝒑⊤2 (𝚽2 (𝒙) − 𝚼∗)
𝜓 ∗(𝑟3 ) − 𝒑⊤3 (𝚽3 (𝒙) − 𝚿∗)

 , (9.3)

are chosen such that the force limits of the Cybership II vessel are not exceeded [142, Sec.
5.2.1]. Since the feedback linearization decouples the individual DOFs, the pole placement
is directly linked to the transient behavior of the respective DOF. Thus, a slight preference
of the heading dynamics over the surge and sway dynamics is expressed by choosing
the corresponding poles further to the left in the complex plane compared with the poles
of the decoupled surge and sway dynamics which, in principle, should result in a faster
convergence of the heading angle.

9.1.3. Control Allocation

The control allocation problem is solved using the linearization of the propulsion model
of the Cybership II in every iteration, which results in a quadratic optimization problem
as discussed in Sec. 6.2. However, as discussed in Härkegård [67, Sec. 7.2.3], lineariza-
tion of the nonlinear propulsion model can result in erroneous behavior of the control
allocation when the relationship between any control surface and the resulting thrust
is non-monotonic. In this particular case, the solution of the underlying quadratic opti-
mization problem may not reflect the actual optimal solution. As a safeguard, we keep
track of the accuracy of the linearization and, in case it fails to provide a sensible out-
put, the control allocation is solved using the nonlinear propulsion model instead using
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SNOPT. The input weighting matrix is set to𝑊𝜏 = diag(1, 10, 10), which is motivated by
the fact that it is more important to achieve the commanded sway force and the yaw
moment than the surge force. Furthermore, the controls weighting matrix is chosen as
𝑊𝝉∗c = diag(1, 4, 1, 4, 2), which is motivated by the fact that the rudders should be kept in
place as much as possible.
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Name Symbol Value

Sim
ulation

Model – Cybership II, see Tab.9.1
Initial state �̂�0 [−1, −1, 30 𝜋

180 , 0, 0, 0]⊤
Final time 𝑇 35
True wind speed 𝑉w,t 2
True wind angle of attack 𝛽w,t − 𝜋

2
Posemeasurement noise standard
deviation

√︁
𝑅c,𝜂 1e−2 diag(5, 5, 5)

Controller

Control law – (6.11), (6.12)
Desired pose 𝜼∗ [0, 0, 0]⊤
Desired north position poles 𝜆∗𝑥 −[0.2, 0.2]
Desired east position poles 𝜆∗𝑦 −[0.2, 0.2]
Desired heading poles 𝜆∗

𝜓
−[0.6, 0.7]

Relative degree [𝑟1, 𝑟2, 𝑟3 ] [2, 2, 2]

Control
A
llocation

Input weighting matrix 𝑊𝜏 diag(1, 10, 10)
Controls weighting matrix 𝑊𝑢 diag(1, 4, 1, 4, 2)
Initial controls 𝒖0 [15, 0.1 𝜋

180 , 15, 0.1 𝜋
180 , −10]⊤

Reference Values 𝒖ref,𝑘 [𝜔pr,l,𝑘−1, 0, 𝜔pr,r,𝑘−1, 0, 𝜔tt,𝑘−1 ]⊤
Control allocation weight 𝛾 1e4

Estim
ator

Model – Lumped, see (9.4)
Discretization timea Δ𝑡ekf 1e−2
Discrete propagation function 𝑭 (𝒙𝑘 , 𝒖𝑘 ) Euler forward
Measurement sample time Δ𝑡𝑦 5Δ𝑡ekf
Initial state error standard devia-
tion

√︁
𝑃0,𝑥 1e−3 diag(1, 1, 1, 1, 1, 5)

Initial disturbance error standard
deviation

√︁
𝑃0,d 1e−3diag(5, 5, 5)

Initial state estimate �̂�+−1 N(�̂�0, 𝑃0,𝑥 )
Initial disturbance estimate �̂�

+
−1 N(𝒈 (�̂�0, 𝒖0 ), 𝑃0,d )

Process noise gain 𝐺𝜈 𝑀−1

Disturbance process noise gain 𝐺d diag(1, 1, 1)
Process noise standard deviation

√︁
𝑄𝑐,𝜈 1e−2 diag(1, 1, 2.5)

Disturbance process noise stan-
dard deviation

√︁
𝑄𝑐,d 1e−2 diag(5, 5, 0.5)

Posemeasurement noise standard
deviation

√︁
𝑅c,𝜂 1e−2 diag(10, 10, 8.83)

Adaptation method Exponentially-weighted moving average
Adaptation time windowb 𝑡s 1
Number of measurement update
iterations

𝑁iekf 2

Table 9.2.: Scenario parameters for the lumped disturbance estimation using the Cybership model with a
nonlinear feedback controller and an adaptive EKF. All units are SI. All covariance matrices are given in their
square root form, i.e., they are represented using their respective standard deviations and, thus, preserve the
unit of the underlying quantity.
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9. Dynamic Positioning

9.1.4. State and Disturbance Estimation

The AIEKF discussed in Sec. 8 is used to estimate the state vector 𝒙 and all disturbances. To
estimate the disturbance, all disturbances are lumped into the vector 𝒅 = [𝑑𝑋 , 𝑑𝑌 , 𝑑𝑁 ]⊤,
which is expressed in the NED frame where it is usually assumed to be time invariant or
slowly changing [47]. Therefore, the disturbance acting on the ship is transformed to the
body frame using 𝝉d = 𝑅⊤𝑧,𝜓𝒅, which is added to the nominal model [50]. In the following,
this approach is discussed in detail. Furthermore, an extension is presented when wind
measurements are available that distinguishes disturbances caused by wind and all other
disturbances are lumped into the vector 𝒅. In both these approaches the resulting estimate
for the disturbance vector 𝒅 or 𝝉d is used to compensate the disturbance by adding it
to the feedback control input 𝝉 fb, i.e., 𝝉∗c = 𝝉 fb + 𝝉d, where 𝝉d = −𝑅⊤

𝑧,𝜓
�̂�. The high level

controller does not include any integral action, which, in turn, results in an offset from the
desired steady state. In both approaches, we make use of the adaptive measurement noise
covariance estimation technique to improve the performance. Additionally, the iterated
EKF variant is used, which results in a higher-order EKF. The EKF sample time is chosen
as Δ𝑡ekf = 0.01 s and the measurement sample time is chosen as Δ𝑡meas = 5Δ𝑡ekf. The
discrete propagation function is based on the forward Euler method and initial estimator
values are chosen based on the true values with initial errors added based on the respective
initial error covariance matrices. The initial measurement noise covariance matrices are
initialized with a larger deviation from their true values to emphasize the convergence of
the adaptive measurement noise covariance estimation technique.

Lumped Disturbance Model

In the lumped disturbance model, the vessel model (5.74) is extended with the lumped
disturbance vector 𝒅 and the EKF model is represented mathematically using

¤𝜼 = 𝑅𝑧,𝜓𝝂, (9.4a)
¤𝝂 = −𝑀−1 (𝐶 (𝝂) + 𝐷 (𝝂))𝝂 +𝑀−1𝝉 c +𝑀−1𝑅⊤

𝑧,𝜓
𝒅 +𝐺𝜈𝒘𝜈 , 𝒘𝜈 ∼ N(0, 𝑄c,𝜈 ), (9.4b)

¤𝒅 =𝐺d𝒘d, 𝒘d ∼ N(0, 𝑄c,d), (9.4c)
𝒚 = 𝒉(𝒙ext) + 𝒗𝜂 = 𝜼 + 𝒗𝜂, 𝒗𝜂 ∼ N(0, 𝑅c,𝜂). (9.4d)

Therein the process noise weighting matrices 𝐺𝜈 and 𝐺d are chosen based on [35]. The
extended observer model (9.4) can be compactly written as

¤𝒙ext = 𝒇 ext (𝒙ext) + 𝐵𝜏,ext𝒖 +𝐺𝒘ext, 𝒘ext ∼ N(0, 𝑄c,ext) (9.5a)
𝒚 = 𝒉(𝒙ext) + 𝒗𝜂, 𝒗𝜂 ∼ N(0, 𝑅c,𝜂), (9.5b)

where 𝒙ext = [𝒙⊤, 𝒅⊤]⊤ is the observer state, 𝒘ext = [𝒘⊤𝜈 , 𝒘⊤d ]
⊤ is the process noise,

𝑄c,ext = diag(𝑄𝑐,𝜈 , 𝑄𝑐,d) is the process noise covariance matrix of the extended system, 𝒗𝜂
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9.1. Problem Formulation

Name Symbol Value

Sim
ulation

Model – Cybership II, see Tab.9.1
Initial state �̂�0 [−1, −1, 30 𝜋

180 , 0, 0, 0]⊤
Final time 𝑇 35
True wind speed 𝑉w,t 2
True wind angle of attack 𝛽w,t − 𝜋

2
Pose measurement standard deviation

√︁
𝑅c,𝜂 1e−2 diag(5, 5, 5)

Wind measurement standard deviation
√︁
𝑅c,w 1e−2 diag(10, 5)

Estim
ator

Model Combined lumped and wind, see (9.10)
Discretization time Δ𝑡ekf 1e−2
Discrete propagation function 𝑭 (𝒙𝑘 , 𝒖𝑘 ) Euler forward
Measurement sample time Δ𝑡𝑦 5Δ𝑡ekf
Initial state error standard deviation

√︁
𝑃0,𝑥 1e−3 diag(1, 1, 1, 1, 1, 5)

Initial disturbance error standard devia-
tion

√︁
𝑃0,d 1e−4diag(5, 5, 5)

Initial wind error standard deviation
√︁
𝑃0,w 1e−3diag(5, 5)

Initial state estimate �̂�+−1 N(�̂�0, 𝑃0,𝑥 )
Initial disturbance estimate �̂�

+
−1 N(0, 𝑃0,d )

Initial wind estimate �̂�+−1,w N([𝑉w,t, 𝛽w,t ]⊤, 𝑃0,d )
Process noise gain 𝐺𝜈 𝑀−1

Disturbance process noise gain 𝐺d diag(1, 1, 1)
Wind process noise gain 𝐺w diag(1, 1)
Process noise standard deviation

√︁
𝑄𝑐,𝜈 1e−2 diag(1, 1, 2.5)

Disturbance process noise standard devia-
tion

√︁
𝑄𝑐,d 1e−2 diag(5, 5, 0.5)

Wind process noise standard deviation
√︁
𝑄𝑐,w 1e−2 diag(5, 5)

Pose measurement noise standard devia-
tion

√︁
𝑅c,𝜂 1e−2 diag(10, 10, 8.83)

Wind measurement noise standard devia-
tion

√︁
𝑅c,w 1e−2 diag(10, 5)

Adaptation method Exponentially-weighted moving average
Adaptation time window 𝑡s 1
Number of measurement update iterations 𝑁iekf 2

Table 9.3.: Scenario parameters for the combined lumped and wind disturbance estimation using the Cybership
II model with a nonlinear feedback controller and an adaptive EKF. All units are SI. All covariance matrices are
given in their square root form, i.e., they are represented using their respective standard deviations and, thus,
preserve the unit of the underlying quantity. Controller and control allocation parameters are identical to the
lumped estimation scenario described in Tab. 9.2.

is the measurement noise, and 𝑅c,𝜂 is the corresponding measurement noise covariance
matrix. Furthermore,

𝒇 ext (𝒙ext) =
[
𝒇 (𝒙)
0(3×1)

]
+


0(3×1)

𝑀−1𝑅⊤
𝑧,𝜓

𝒅

0(3×1)

︸         ︷︷         ︸
𝒇 d (𝒙ext )

, 𝐵𝜏,ext =

[
𝐵𝜏

0(3×3)

]
, 𝐺 =

[
0(3×6)

diag(𝐺𝜈 , 𝐺d)

]
(9.6)
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9. Dynamic Positioning

are the drift vector field with disturbance model 𝒇 d (𝒙ext), the input matrix with

𝒇 (𝒙) =
[

𝑅𝑧,𝜓𝝂
−𝑀−1 (𝐶 (𝝂) + 𝐷 (𝝂))𝝂

]
, 𝐵𝜏 =

[
0

𝑀−1

]
, (9.7)

defined in (5.75), and the process noise gain matrix of the extended system, respectively.
The latter are chosen based on [35].

The observability of this system can be analyzed locally, i.e., based on the rank of the
Jacobian of the observability map1, where

𝒒(𝒙ext) =

𝐿0
𝒇 ext

𝒉(𝒙ext)
𝐿1
𝒇 ext

𝒉(𝒙ext)
𝐿2
𝒇 ext

𝒉(𝒙ext)

 =

𝐿0
𝒇 ext

𝜼(𝑡)
𝐿1
𝒇 ext

𝜼(𝑡)
𝐿2
𝒇 ext

𝜼(𝑡)

 ∈ R
9, 𝑂 (𝒙ext) =

𝜕𝒒

𝜕𝒙ext
∈ R9×9 (9.8)

such that

det𝑂 (𝒙ext) =
[ (
𝑋 ¤𝑢 −𝑚

) (
𝐽𝑧𝑧 𝑌¤𝑣 +𝑚2 𝑥𝑔

2 − 𝑁 ¤𝑟 𝑌¤𝑣 − 𝐽𝑧𝑧𝑚

+ 𝑁 ¤𝑟 𝑚 + 𝑁 ¤𝑣2 − 2𝑁 ¤𝑣𝑚𝑥𝑔
) ]−1

, (9.9)

is nonzero ∀𝑡 ∈ R. Hence (9.6) is locally observable. Note that the (local) observability is
not required by the EKF.

Since the EKF relies on Jacobian information of the observer model, the Jacobian of the
extended drift vector field 𝒇 ext (𝒙ext) is needed, which can be found in Appendix A.3.

Combined Lumped and Wind Disturbance Model

Alternatively, the wind model as described in (5.56) can be incorporated into the distur-
bance estimator model as

¤𝜼 = 𝑅𝑧,𝜓𝝂, (9.10a)
¤𝝂 = −𝑀−1 (𝐶 (𝝂) + 𝐷 (𝝂))𝝂 +𝑀−1𝝉 c +𝑀−1𝝉w (𝒙, 𝒙w) +𝑀−1𝑅⊤

𝑧,𝜓
𝒅 +𝐺𝜈𝒘𝜈 , (9.10b)

¤𝒅 =𝐺d𝒘d, (9.10c)
¤𝒙w =𝐺w𝒘w, (9.10d)
𝒚 = 𝒉(𝒙ext) = 𝜼 + 𝒗𝜂 (9.10e)

𝒚w =

[
𝑉w,a
𝛾w,a

]
= 𝒉w (𝒙ext) + 𝒗w (9.10f)

1 Note that for nonlinear multiple input multiple output systems, the choice of the observability map is not
unique but rather a DOF see, e.g., [see 77].
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9.1. Problem Formulation

with

𝒉w (𝒙ext) =
[√︃
𝑉 2
w,t + 𝑢2 + 𝑣2 + 2𝑉w,t (𝑢 cos(𝛽w,t −𝜓 ) + 𝑣 sin(𝛽w,t −𝜓 ))
atan2( ¤𝑦 +𝑉w,t sin(𝛽w,t), ¤𝑥 +𝑉w,t cos(𝛽w,t)) −𝜓

]
, (9.11)

and ¤𝑥 = cos(𝜓 )𝑢 − sin(𝜓 )𝑣 , and ¤𝑦 = sin(𝜓 )𝑢 + cos(𝜓 )𝑣 , i.e., it is assumed that the apparent
wind speed and direction can be measured, e.g., using an anemometer. Furthermore,
𝒙w = [𝑉w,t, 𝛽w,t]⊤, i.e., the true respective wind speed and direction are combined in the
additional wind observer state such that 𝒙ext = [𝒙⊤, 𝒅⊤, 𝒙⊤w]⊤ is the total observer state.
Additionally, 𝒘𝜈 ∼ N(0, 𝑄c,𝜈 ), 𝒘d ∼ N(0, 𝑄c,d), 𝒘w ∼ N(0, 𝑄c,w), 𝒗𝜂 ∼ N(0, 𝑅c,𝜂), 𝒗w ∼
N(0, 𝑅c,w), and recall that the wind force is calculated using (5.56), i.e.,

𝝉w (𝒙, 𝒙w) =
1
2
𝜌a𝑉

2
w,a


−𝑐𝑥 cos(𝛾w,a)𝐴t
−𝑐𝑦 sin(𝛾w,a)𝐴l
𝑐𝑛 sin(2𝛾w,a)𝐴l𝐿oa

 . (9.12)

Similar to the previous section, (9.10) can be compactly written in the form (9.5), i.e.,

¤𝒙ext = 𝒇 ext (𝒙ext) + 𝐵𝜏,ext𝒖 +𝐺𝒘ext, 𝒘ext ∼ N(0, 𝑄c,ext), (9.13a)
𝒚ext = 𝒉ext (𝒙ext) + 𝒗ext 𝒗ext ∼ N(0, 𝑅c,ext) (9.13b)

where𝒘ext = [𝒘⊤𝜈 , 𝒘⊤d , 𝒘
⊤
w]⊤ is the process noise, 𝑄c,ext = diag(𝑄c,𝜈 , 𝑄c,d, 𝑄c,w) is the pro-

cess noise covariance matrix, 𝑅c,ext = diag(𝑅c,𝜂, 𝑅c,w) is the measurement noise covariance
matrix of the extended system, respectively. Moreover, 𝒚ext = [𝒚⊤, 𝒚⊤w]⊤ is the extended
measurement vector, 𝒉ext (𝒙ext) = [𝒉⊤ (𝒙ext), 𝒉⊤w (𝒙ext)]⊤ is the extended measurement
function, and

𝒇 ext (𝒙ext) =
[
𝒇 (𝒙)
0(5×1)

]
+


0(3×1)

𝑀−1 (𝝉w (𝒙, 𝒙w) + 𝑅⊤𝑧,𝜓𝒅)
0(5×1)

︸                             ︷︷                             ︸
𝒇 d (𝒙ext )

, 𝐵𝜏,ext =

[
𝐵𝜏

0(5×3)

]
, (9.14)

and

𝐺 =

[
0(3×8) ,

diag(𝐺𝜈 , 𝐺d, 𝐺w)

]
(9.15)

are the drift vector field with disturbance model 𝒇 d (𝒙ext), the input matrix, and the process
noise gain matrix of the extended system, respectively.
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In principle, the observability of this system can be analyzed locally, i.e., based on the
rank of the Jacobian of the observability map, i.e.,

𝒒(𝒙ext) =


𝐿0
𝒇 ext

𝒉(𝒙ext)
𝐿1
𝒇 ext

𝒉(𝒙ext)
𝐿2
𝒇 ext

𝒉(𝒙ext)
𝐿0
𝒇 ext

𝒉w (𝒙ext)


=



𝐿0
𝒇 ext

𝜼(𝑡)
𝐿1
𝒇 ext

𝜼(𝑡)
𝐿2
𝒇 ext

𝜼(𝑡)
𝐿0
𝒇 ext
𝑉w,a (𝑡)

𝐿0
𝒇 ext
𝛾w,a (𝑡)


∈ R11, 𝑂 (𝒙ext) =

𝜕𝒒

𝜕𝒙ext
∈ R11×11 (9.16)

where det𝑂 (𝒙ext) ≠ 0, ∀𝑡 ∈ R is required. However, due to the highly nonlinear
relationship between the relative and the absolute wind quantities in the measurement
function 𝒉w, this expression cannot be analyzed in constructive manner. A simpler
analysis is given, e.g., using the structural observability, a necessary condition for local
observability, of the system but is omitted in this case [8]. Instead, we assume that the
system is observable, since, as a rule of thumb, for any additional estimated state (in this
case 𝑉w,t, 𝛽w,t) an additional measurement (in this case 𝑉w,a, 𝛾w,a) is needed REF, and the
system’s observability without wind measurements is proven in the previous section.

Analogously to the lumped disturbance model, the Jacobian matrices of the extended
model are needed for the EKF iterations and are presented in Appendix A.3.
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(a) Target pose 𝜼∗ (violet), simulated state 𝒙 (black), estimated
state �̂� (blue), and smoothed state �̆� (dashed orange) with
noisy measurements 𝒚 (red crosses).
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(b) Square root of diagonal elements of state error covariance
matrix 𝑃𝑥 (blue) and corresponding smoothed values 𝑃𝑥
(dashed orange).

Figure 9.1.: Vessel states 𝒙 (left) and corresponding estimation error standard deviation 𝑃𝑥 (right) for the
lumped estimation with disturbance compensation for the scenario in Tab. 9.2.
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9.2. Results and Discussion

The following sections describe the performance of the dynamic positioning controller
with control allocation using the lumped disturbance model and the combined lumped
and wind disturbance model, respectively. The former combines all forces and model
uncertainties into the lumped disturbance vector 𝒅 and the latter distinguishes between
disturbances caused by wind and all other disturbances and uncertainties. This combined
approach also makes use of wind measurements and an underlying model for the wind
force.

9.2.1. Lumped Disturbance Model

The primary control goal of stabilizing the origin of the pose, i.e., dynamic positioning is
achieved by the proposed EKF-based controller. In Fig. 9.1a the vessel states are depicted
along with the corresponding square root of the diagonal elements of the state error
covariance matrix 𝑃𝑥 in Fig. 9.1b. In the former figure the true (black) and estimated
(blue) states are depicted with the desired pose (violet) and measurements (red). As a post-
processing step, the RTS smoother is applied to verify its performance and the smoothed
estimates are also shown (dashed orange). As can be seen, the primary goal of 𝜼∗ = 0
is achieved by the nonlinear controller after about 25 s. The vessel’s heading converges
slightly faster after about 10 s, which is due to the fact that the corresponding poles of the
stabilizing controller (6.11) are chosen further to the left in the complex plane compared
with the poles of the position controller, see Tab. 9.2. Note that this behavior is desired in
this case, since the correct heading angle is deemed more important compared with the
position of the vessel. However, this behavior can easily be changed by choosing different
poles for the position and/or heading.

Furthermore, the state error standard deviation (and covariance) converges to nearly steady
state, which corresponds to the steady state solution 𝑃𝑥,∞ of the algebraic matrix Riccati
equation [141, Sec. 7.3] calculated using the linearization of the dynamic model around the
origin 𝜼 = 0. This also implies that the proposed adaptation process according to Sec. 8.4
of the measurement noise covariance matrix 𝑅c has converged. Since the fundamental
sample time of the EKF is different from the measurement sample time, ripples in the state
error standard deviation are observed, which is magnified for 𝜎𝑥𝑥 in Fig. 9.1b at 𝑡 = 5 s.
This is because, in general, the state error covariance increases in between measurements
because the prediction error covariance 𝑃−

𝑘
is propagated to the next time instant with,

essentially, infinite measurement error covariance. More specifically, the matrix Riccati
equation (in continuous time) is expressed mathematically using

¤𝑃 = 𝐴𝑃 + 𝑃𝐴⊤ +𝐺𝑄𝐺⊤ − 𝑃𝐶𝑅−1𝐶⊤𝑃, 𝑃 (𝑡0) = 𝑃0, (9.17)

with𝐴 calculated based on (8.7). In betweenmeasurements, the last term vanishes such that
this differential equation is driven by the positive semidefinite matrix𝐺𝑄𝐺⊤ and, therefore,
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covariance matrix 𝑃𝑑 (blue) and corresponding smoothed
values (orange).

Figure 9.2.: Disturbances 𝒅 acting on the vessel (left) and corresponding diagonal elements of the estimation
error standard deviation

√
𝑃d (right) for the lumped estimation with disturbance compensation for the scenario

in Tab. 9.2.

increases over time. As soon as a measurement is available, the state error covariance is
reduced. Additionally, the RTS smoother is applied to the EKF estimates to further reduce
the state error covariance as a post-processing step. Typical behavior is observed, i.e.,
it holds that 𝑃 ≤ 𝑃 ∀𝑡 ∈ R and 𝑃 (𝑇 ) = 𝑃 (𝑇 ) since there is no additional measurement
available for the smoother to increase the estimate at the end of the simulation.

Apart from the vessel states, the lumped estimation model (9.4) is used to estimate the
lumped disturbance expressed in the NED frame, i.e., 𝒅 = 𝑅𝑧,𝜓𝝉d, which is shown in
Fig. 9.2a, where the simulated (black), estimated (blue), and smoothed (dashed orange)
values are depicted. In Fig. 9.2b the corresponding standard deviation is shown similarly
as the vessel states error standard deviation. As expected, the disturbance estimate �̂� is
less accurate compared with the vessel state estimates, which can be attributed to the
erroneous disturbance model, i.e., ¤𝒅 = 𝐺d𝒘d, which does not reflect the true dynamics
of the simulated disturbance (black) in Fig. 9.2a. Other approaches [47, Sec.11.3.6],[35]
employ a first order Markov model

¤𝒅 = −𝑇 −1𝒅 +𝐺d𝒘d, (9.18)

to reflect the time varying behavior, but this requires additional tuning of the added
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(b) Optimal control surfaces 𝒖∗ (blue) as the solution of (6.24)
of the Cybership II propulsion model.

Figure 9.3.: Control input 𝝉 c (left) and control surfaces 𝒖 (right) of for the scenario in Tab. 9.2.

DOF, namely, the time decay matrix 𝑇 that includes the time constants of the assumed
(exponential) decay. Changes in the surge and sway disturbance 𝑑𝑋 , 𝑑𝑌 , respectively, are
estimated with a sufficiently small time delay and accuracy compared with the simulated
value. In the case of the yaw moment, a certain time delay is observed, which, in this case,
is still sufficiently small to allow the disturbance compensation to take the desired effect.
Note, however, that the delay disappears using the smoothed values of the disturbance
estimate and the error covariance significantly improves. This also motivates the use
of the RTS smoother in the context of parameter estimation, which essentially employs
the same dynamical model as the disturbance model, i.e., no change over time but, in
that case, the estimation model is accurate and enables the on- and offline parameter
estimation [52].

In Fig. 9.3a the control inputs are depicted. Therein, the nonlinear controller input 𝝉 fb
is depicted (orange) along with the total desired input 𝝉∗c = 𝝉 fb − 𝑅⊤

𝑧,𝜓
�̂� (black), i.e., the

sum of the nonlinear controller input and the (negative) estimated disturbance, and the
realized input after the control allocation, i.e., 𝝉 c = 𝒈(�̂�, 𝒖∗), where, 𝒈(·) represents the
nonlinear propulsion model of the Cybership II, and 𝒖∗ is set of optimal control inputs
as the solution of (6.24), which are visualized in Fig. 9.3b. In that particular figure, it can
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Figure 9.4.: Square root of diagonal elements of the pose measurement noise covariance matrix 𝑅c,𝑒𝑡𝑎 that is
adaptively adjusted using an EWMA for the lumped estimation with disturbance compensation for the scenario
in Tab. 9.2.

be seen that both rudder angles 𝛿pr,l, 𝛿pr,r are kept at zero if possible, which validates the
weighting of the control surface weighting matrix𝑊𝑢 in Tab. 9.2. Moreover, the total
commanded input in Fig. 9.3a shows a significant deviation from the commanded virtual
input calculated by the nonlinear controller in the sway force, which is due to the true
wind angle of attack 𝛽w,t = −𝜋/2, i.e., the wind is coming from the west, pressing the
vessel to its starboard side in the desired pose 𝜼∗ = 0. This force is counteracted by the
disturbance compensation and, in view of the control surfaces in Fig. 9.3b, realized mainly
by means of the bow thruster, which generates a negative sway force for 𝜔tt < 0 and
also a negative yaw moment. This yaw moment is counteracted by the left and right
main propellers of the propulsion, where the left propeller is used to generate a forward
thrust and the right propeller is used to generate a (similar) backward thrust, which, in
combination with (approximately) zero rudder angles, results in a positive yaw moment
induced by the main propellers. This behavior can be changed, e.g., by assigning different
reference values 𝒖ref and corresponding weights to the individual control surfaces in the
control surface weighting matrix𝑊𝑢 in Tab. 9.2 as now, the desired rudder angles are zero.
In principle, a sway force can be induced by the main propellers with nonzero rudders,
but this is not desired in this particular example. In that case, the resulting yaw moment
would then be counteracted by the bow thruster.
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9. Dynamic Positioning

In Fig. 9.4 the square root of the diagonal elements of the measurement noise covariance
matrix 𝑅c are depicted, which is calculated using the EWMA filter from Sec. 8.4 and,
more specifically, using (8.26). Therein, the true measurement noise standard deviation is
depicted (black) with the estimated value (blue), see also Tab. 9.2. The estimated value
is initialized with a relatively large error and converges to the true respective value in
approximately 5 s. This is also about the time when the EKF state and disturbance error
covariance matrices converge to nearly steady state.
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(b) Square root of diagonal elements of state error covariance
matrix 𝑃𝑥 (blue) and corresponding smoothed values 𝑃𝑥
(dashed orange).

Figure 9.5.: Vessel states (left) and corresponding estimation error standard deviation (right) for the combined
lumped and wind estimation with disturbance compensation for the scenario in Tab. 9.3.

9.2.2. Combined Lumped and Wind Disturbance Model

The combined estimation model (9.10) shows similar qualitative behavior as the lumped
estimation model (9.4). In particular, the main controller goal to stabilize the vessel at
the target pose is achieved, see Fig. 9.5a. The main difference lies in the time in that the
pose converges to the target value, which, in this case, takes about 10 s compared to 25 s
for the lumped estimation model, even though both controllers operate with the same
poles, see Tab. 9.2 and Tab. 9.3. The state error standard deviation is depicted in Fig. 9.5b
also converge to steady state values and reach almost identical values compared with the
lumped estimation model.
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9. Dynamic Positioning

The faster convergence to the desired pose compared with the lumped estimation approach
can be attributed the fact that the wind model (5.56) is included in the combined approach,
which enables the observer to estimate the true wind speed and direction accurately,
see Fig. 9.6a, which can be translated into the approximate wind force using the wind
model to counteract the actual wind disturbance. The additional estimates �̂�w of the true
wind speed and angle are very accurate and the corresponding error standard deviation
approximately approaches the simulated measurement noise added to the apparent wind
values, see Tab. 9.3. Note that the error standard deviation of the true wind speed and
angle oscillate rapidly such that the plot appears to be a wide band. For this reason, the
segment where 𝑡 ∈ [5 s, 6 s] is magnified in Fig. 9.6b for 𝜎𝛾w,t𝛾w,t . The lumped disturbance
estimate �̂� in Fig. 9.6a oscillates around the true additional disturbance, which, in this
case, is zero.

The control input 𝝉 c and the control surfaces 𝒖 are depicted in Fig. 9.7. Therein, the total
commanded input is much more aggressive in magnitude compared with the lumped
approach, which can be attributed to the inclusion of the wind model to the disturbance
estimation. This aggressive behavior also explains the faster convergence to the desired
pose. The control surfaces also show similar qualitative behavior compared with the
lumped estimation approach. However, in the first 10 s the control allocation only partly
achieves the commanded sway force and yaw moment but, afterwards, converges to the
commanded inputs. The more aggressive behavior is also reflected in the use of the control
surfaces, which is particularly visible in the bow thruster rotational speed 𝜔tt and the
larger magnitudes of the rudders.

In Fig. 9.8 the square root of the diagonal elements of the measurement noise covariance
matrices 𝑅c,𝜂 and 𝑅c,w are depicted, which are calculated using the EWMA filter from
Sec. 8.4 and, more specifically, using (8.26). Therein, the true measurement noise standard
deviation is depicted (black) with the estimated value (blue), see also Tab. 9.3. The estimated
values are initialized with a relatively large error and converges to the true respective
value in approximately 5 s. While the pose measurement standard deviation approach
the true values, the wind measurement standard deviation is slightly underestimated in
both the speed and the direction measurement, which is attributed to the highly nonlinear
relationship between the measured apparent and the true wind speed and direction. This
nonlinearity might be poorly approximated using the Jacobian matrix that is used by the
EKF.
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(b) Square root of diagonal elements of disturbance error
covariance matrix 𝑃𝑑 and wind error covariance matrix 𝑃w
(blue), respectively, and corresponding respective smoothed
values 𝑃d, 𝑃w (orange).

Figure 9.6.: Disturbances 𝒅 and winda 𝒙w acting on the vessel (left) and corresponding respective square root
of diagonal elements of the estimation error covariance matrices 𝑃d, 𝑃w (right) for the combined lumped and
wind estimation with disturbance compensation for the scenario in Tab. 9.3.
a Note that since the apparent wind is measured and not the true wind the measurements of the wind are not

depicted in this plot to avoid confusion.
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(a) Nonlinear control input 𝝉 fb (orange), total control input
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(b) Optimal control surfaces 𝒖∗ (blue) as the solution of (6.24)
of the Cybership II propulsion model.

Figure 9.7.: Control input 𝝉 c (left) and control surfaces 𝒖 (right) of for the combined lumped and wind estimation
with disturbance compensation for the scenario in Tab. 9.3.
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10. Predictive Path Following

In this chapter a path-following problem for a mariner class vessel [29] is solved in a
confined environment in the Kiel Canal, one of the most frequented canals in the world,
where AIS data is used to obtain obstacle information. To this end, a nonlinear MPC
controller according to Sec. 6.3 is proposed, where the reference path is given by piece-
wise linear segments. In this simulative study, the timing law is chosen such that realistic
behavior of the vessel is realized by taking into account the vessel’s service (surge) speed
𝑢0 and its distance to current line segment, thereby achieving slow progress on the path if
the vessel is far away from the current line segment and fast progress if the vessel is close
to the current line segment [123]. Furthermore, the MPC takes into account obstacles
using the dual collision avoidance constraints as presented in Sec. 7 in combination with
frustum-, occlusion-, and backface culling, as well as input bound and rate constraints.
An EKF according to Chapter 8 is used to reconstruct the vessel’s state based on pose
measurements. The presented approach is illustrated by means of a simulative study that
realizes the path following in a confined environment in the Kiel Canal. Obstacle data is
obtained from real AIS data.

10.1. Problem Formulation

In the following section the individual segments of the control loop as depicted in Fig. 2.1
are discussed for the predictive path following task. To this end, the underlying vessel
model and its parameterization is introduced. Furthermore, the path following MPC
controller is presented, which gives a brief overview of the theory and concepts of predic-
tive path following. Additionally, dual collision avoidance constraints are used to avoid
obstacles in the environment and the particular. Lastly, the EKF observer model is pre-
sented where we assume that noisy measurements of the vessel’s pose are available. From
these measurements, the vessel state is reconstructed. In this example, no disturbance
estimation and/or compensation is used, but wind is added as a disturbance based on a
Weibull distributed wind speed and a normally distributed wind direction. All relevant
parameters regarding the scenario, controller, and observer are summarized in Tab. 10.2.
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10. Predictive Path Following

Symbol Value Symbol Value Symbol Value Symbol Value

G
eneral

𝐿oa 160.93 𝑚 798e−5
𝐵 23.17 𝐽𝑧𝑧 39.2e−5
𝑥𝑔 −0.023

A
dded

M
ass

𝑋 ¤𝑢 −42e−5
𝑌 ¤𝑣 −748e−5 𝑌 ¤𝑟 −9.34e−5
𝑁 ¤𝑣 4.65e−5 𝑁 ¤𝑟 −43.8e−5

D
am

ping

𝑋𝑢 −184e−5 𝑋𝑢𝑢 −110e−5 𝑋𝑣𝛿 93e−5 𝑋𝑢𝑢𝑢 −215e−5
𝑋𝑣𝑣 −899e−5 𝑋𝑟𝑟 18e−5 𝑋𝑢𝑣𝛿 93e−5
𝑋𝛿𝛿 −95e−5 𝑋𝑟𝑣 798e−5 𝑋𝑢𝛿𝛿 −190e−5

𝑌0 −4e−5 𝑌0𝑢 −8e−5 𝑌0𝑢𝑢 −4e−5
𝑌𝑣 −1160e−5 𝑌𝑣𝑢 −1160e−5 𝑌𝑣𝑣𝑟 15 356e−5 𝑌𝑣𝑣𝑣 −8078e−5
𝑌𝑟 −499e−5 𝑌𝑟𝑢 −499e−5 𝑌𝑢𝑢𝛿 278e−5 𝑌𝑣𝛿𝛿 −4e5
𝑌𝛿 278e−5 𝑌𝑢𝛿 556e−5 𝑌𝛿𝛿𝛿 −90e−5 𝑌𝑣𝑣𝛿 1190e−5
𝑁0 3e−5 𝑁0𝑢 6e−5 𝑁0𝑢𝑢 3e−5
𝑁𝑣 −264e−5 𝑁𝑣𝑢 −264e−5 𝑁𝑣𝑣𝑟 −5483e−5 𝑁𝑣𝑣𝑣 1636e−5
𝑁𝑟 −166e−5 𝑁𝑟𝑢 −166e−5 𝑁𝑢𝑢𝛿 −139e−5 𝑁𝑣𝛿𝛿 13e−5
𝑁𝛿 −139e−5 𝑁𝑢𝛿 −278e−5 𝑁𝛿𝛿𝛿 45e−5 𝑁𝑣𝑣𝛿 −489e−5

Table 10.1.: Parameters of the Mariner Class MSV in dimensionless units according to [29]. Note that there’s
only one rudder to steer the ship.

10.1.1. Vessel Model

A mariner class model is used in this simulative study, which constitutes a 3DOF model
as described in (5.72) with the exception that the velocity-dependent forces acting on the
ship are fitted to a third-order Taylor polynomial, which consists of numerous coefficients
given in Tab. 10.1. In total, the mathematical model is expressed using

¤𝜼 = 𝑅𝑧,𝜓 ( [𝑢0, 0, 0]⊤ + �̃�), 𝑡 > 𝑡0, 𝜼(𝑡0) = 𝜼0 (10.1a)
¤𝝂 =𝑀−1𝝉 (�̃�, 𝛿), 𝑡 > 𝑡0, 𝝂 (𝑡0) = 𝝂0, (10.1b)

where �̃� = [Δ𝑢, 𝑣, 𝑟 ]⊤ and Δ𝑢 = 𝑢 − 𝑢0 is the constant surge speed 𝑢0. This model is, in
essence, an autopilot model with only one control surface, namely, the rudder angle 𝑢 = 𝛿

that is subject to the constraints

U = {𝛿 ∈ R| − 30◦ ≤ 𝛿 ≤ 30◦, | ¤𝛿 | ≤ 5 ◦ s−1}. (10.2)

In the simulation, a disturbance is acting on the vessel that is calculated based on
(5.56) with true wind velocity 𝑉w,t ∼ W(2, 1) and true wind angle of attack 𝛽w,t ∼
N(𝜋, 10 𝜋

180 ). Noise is added to the pose measurement such that 𝒗𝜂 ∼ N(0, 𝑅c,𝜂) with
𝑅c,𝜂 = diag(3.872, 3.872, 0.322).
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10.1. Problem Formulation

10.1.2. Model Predictive Controller

Path following is distinguished from trajectory tracking in that no time information is
given a priori for the former, whereas the latter includes this information of when the
system should be where in the state space in the target trajectory. In a sense, path following
introduces another DOF to the control problem, namely, the path parameter 𝜃 , whose
time evolution is given by a user-defined ODE of the form

¤𝜃 = 𝑞(𝒙, 𝜃, 𝑣), 𝑡 > 𝑡0, 𝜃 (𝑡0) = 𝜃0 (10.3)

with the timing law 𝑞 : R𝑛𝑥 × R × R ↦→ R that dictates the time evolution of the path pa-
rameter and, indirectly, of the predicted path points [39]. Output path following problems
aim to achieve

lim
𝑡→∞

𝒉(𝒙 (𝑡)) − 𝒑(𝜃 ) = 0, (10.4)

where P = {𝒚 ∈ R𝑛𝑦 |𝜃 ∈ [0, 𝜃+] ↦→ 𝒑(𝜃 )} is the path defined in the output space,
and 𝒑(𝜃 ) is the path parameterization. Path following problems can be tackled using
nonlinear control theory, where, e.g., a transverse normal form, i.e., a variant of the
Brunovsky canonical form introduced in Chapter 6.1, is used to stabilize the tangential
and transverse error dynamics, respectively [10, 114, 115, 116]. Recently, predictive path
following controllers have been developed that combine the concepts of path following
with the benefits of optimization-based control approaches to take into account state and
input constraints [40, 39]. This combined approach can also be further improved with
differentially flat systems to transform the path into corresponding desired states [43, 17].
In the context of predictive path-following control, it is common to formulate the timing
law (10.3) as an integrator chain 𝜃 (𝑟𝜃 ) = 𝑣 of length 𝑟𝜃 with virtual input 𝑣 that is treated as
a design parameter and added as an additional decision variable to the MPC problem [17].
This particular choice also simplifies the stability analysis of the closed-loop system and
allows for an intuitive connection to the transverse normal form [42] that is especially
useful for controller synthesis.

In this example, a nonlinear MPC control problem (6.74) is used to solve this task with
running cost

𝑙 (𝒙, 𝒖, 𝒔) = | |𝒆 | |22 + ||𝒔 | |2𝑆 , (10.5)

where

𝒆 = 𝒑V − 𝒑(𝜃 ) (10.6)

is the error between the current position of the vessel and the reference path

𝒑(𝜃 ) = 𝒑
wp
𝑖
+ 𝛼 (𝜃 )

(
𝒑
wp
𝑖+1 − 𝒑

wp
𝑖

)
(10.7)
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10. Predictive Path Following

Name Symbol Value

Sim
ulation

Model – Mariner Class, see Tab.10.1
Initial state �̂�0 [54.36658◦N, 10.13914◦E, −75 𝜋

180 ]
⊤

�̂�0 [0, 0, 0]⊤
Final time 𝑇 400
True wind speed 𝑉w,t W(2, 1)
True wind angle of attack 𝛽w,t N(𝜋, 10 𝜋

180 )
Posemeasurement noise standard
deviation

√︁
𝑅c,𝜂 diag(3.87, 3.87, 0.32)

Controller

Control law –
Prediction Horizon 𝑡hor 32
Discretization Steps 𝑁 13
Solver – SNOPT
Discrete propagation function 𝑭 (𝒙𝑘 , 𝒖𝑘 ) Trapezoidal
Slack Weighting Matrix 𝑆 100diag(8, 8, 8)

Waypoints

𝒑
wp
1 [54.36631◦N, 10.14026◦E]

𝒑
wp
2 [54.36677◦N, 10.13753◦E]

𝒑
wp
3 [54.36825◦N, 10.13468◦E]

𝒑
wp
4 [54.36847◦N, 10.12809◦E]

𝒑
wp
5 [54.36870◦N, 10.12417◦E]

Tuning Parameter 𝜎 1

O
bstacle

Constraints

Dual constraints – (7.56)
Safety Distance 𝑑safe 3
Occlusion Culling Solid Angle
Threshold

Ω 15

View Frustum Angle – 45 𝜋
180

View Frustum Far Plane Offset – 200
View Frustum Side Plane Offset – 50

Estim
ator

Model – (10.11)
Discretization time 𝑡ekf 5e−2
Discrete propagation function 𝑭 (𝒙𝑘 , 𝒖𝑘 ) Euler forward
Measurement sample time Δ𝑡𝑦 Δ𝑡ekf
Initial state error standard devia-
tion

√
𝑃0 10 diag(1, 1, 1, 1, 1, 1)

Initial state estimate �̂�+−1 N(�̂�0, 𝑃0 )
Process noise gain 𝐺 diag(1, 1, 1, 1, 1, 1)
Process noise standard deviation

√
𝑄𝑐 1e−2diag(1, 1, 1, 1, 1, 1)

Posemeasurement noise standard
deviation

√︁
𝑅c,𝜂 diag(3.87, 3.87, 0.32)

Adaptation method – none
Adaptation time window – n.A.
Number of measurement update
iterations

𝑁iekf 1

Table 10.2.: Scenario parameters for the path following scenario the Mariner model with a model predictive
controller and an EKF. All units are SI. All covariance matrices are given in their square root form, i.e., they are
represented using their respective standard deviations and, thus, preserve the unit of the underlying quantity.
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10.1. Problem Formulation

at the 𝑖-th iteration, i.e., a piece-wise linear path between the waypoints 𝒑wp
𝑖

and 𝒑
wp
𝑖+1,

and

𝛼 (𝜃 ) =
𝜃 −∑𝑖−1

𝑗=1 | |𝒑
wp
𝑗+1 − 𝒑

wp
𝑗
| |2

| |𝒑wp
𝑖+1 − 𝒑

wp
𝑖
| |2

(10.8)

achieves that 𝜃 ∈ [0, ∑𝑖 | |𝒑
wp
𝑖+1 − 𝒑

wp
𝑖
| |2] is parameterized as the arc length of the entire

reference path. Based on this, the time evolution of the path is dictated using the timing
law based on [123]

¤𝜃 = 𝑢0

[
1 − 𝜎 tanh

(
𝒆⊤𝒆

𝐿2
oa

)]
, 𝑡 > 0, 𝜃 (𝑡𝑖 ) = 𝜃𝑖 , (10.9)

where 𝐿oa is the length of the vessel, see Tab. 10.1, and 𝜎 ∈ [0, 1] is a tuning parameter. The
initial state 𝜃𝑖 for each iteration is initialized using the cross-track error calculated based
on �̂�𝑖 . Note that the timing law (10.9) is a nonlinear function of the state 𝒙 and the path
parameter 𝜃 that is added to the MPC problem as an additional constraint. Furthermore,
we point out that the path-following error (10.6) is only defined using the respective
positions, whereas it is more common to define it in the entire state or output space.
However, the proposed combination of the timing law and the running cost yields a good
performance and also avoids extending the vector of decision variables with the virtual
input 𝑣 and the additional states representing the time derivatives up to order 𝑟𝜃 of the
path parameter 𝜃 .

Collision avoidance is realized using the dual approach as presented in Chapter 7 for
all different collision avoidance constraint methods in the full body case. For a concise
overview of the different constraints, recall Tab. 7.1. To this end, the simulation is repeated
using the proposed scenario for each of the different collision avoidance constraints, i.e.,
indicator, distance, and signed distance according to [161] and proposed signed distance
constraints. For the indicator constraint case, the obstacles are artificially enlarged prior
to adding them to the OCP to take into account the safety distance since, in that case,
the safety distance can not be included directly. The safety distance is set to 𝑑safe = 3 m,
the ship length is 𝐿oa = 169.93 m, and the MPC problem is solved on a receding horizon
with 𝑁 = 13 steps with a horizon length of 𝑡hor = 32 s. The slack variable 𝑠 is used to
ensure feasibility of the MPC problem and is penalized in the cost function (10.5) with the
weighting matrix 𝑆 = diag(800, 800, 800), see Maciejowski and Kerrigan [102] for more
information on soft constrained MPC.

The dynamical equations (6.74c) and the integral in (6.74a) are discretized in time using
the trapezoidal scheme, i.e., the discrete propagation function (6.71) is given by

𝑭 (𝒙ext,𝑘 , 𝒙ext,𝑘+1, 𝒖𝑘 , 𝒖𝑘+1) = 𝒙𝑘 +
Δ𝑡mpc

2
(
𝒇 ext (𝒙ext,𝑘 , 𝒖𝑘 ) + 𝒇 ext (𝒙ext,𝑘+1, 𝒖𝑘+1)

)
, (10.10)

where 𝒙ext = [𝒙⊤, 𝜃 ]⊤ is the augmented state vector, 𝒇 ext = [𝒇⊤, 𝑞]⊤ is the augmented
right-hand-side. The input is interpolated as a piece-wise linear continuous function.
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10. Predictive Path Following

pwp
2

200m

50m

22.5◦

Figure 10.1.: Illustration of the possible predicted vessel states calculated using (7.57) (black crosses, circles,
and asterisks, respectively) for the first iteration with view frustum, optimal path points (small black dots), and
optimal vessel positions (green circles) for the first MPC iteration.

This results in a total of 𝑁 (𝑛𝑥 + 𝑛𝜃 ) defect constraints, where 𝑛𝜃 is the dimension of
the path parameter 𝜃 and 𝑛𝜃 = 1 in this case. Furthermore, the problem consists of
𝑛𝑤𝑥

= (𝑁 + 1) (𝑛𝑥 +𝑛𝜃 ) state decision variables, 𝑛𝑤𝑢
= (𝑁 + 1)𝑛𝑢 input decision variables.

Since all other constraints are evaluated at the discrete time steps, 4(𝑁 + 1) (linear)
input inequality constraints resulting from the feasible set (10.2), and 𝑁 + 1 (nonlinear)
collision avoidance (state inequality) constraints, 2(𝑁 + 1)𝐾 consistency (state equality)
constraints, and (𝑁 + 1) (𝐿 + �̆�)𝐾 non-negativity (linear inequality) constraints resulting
from the collision avoidance constraints are added to the problem, where 𝐾 is the number
of obstacles considered in the current iteration.

To improve efficiency, the culling procedure according to Sec. 7.5 is used to reduce the
number of collision avoidance constraints and dual decision variables that are considered
in the MPC problem. To this end, the view frustum far clipping plane is set at a distance
of 200 m from the body coordinate origin of the controlled vessel. The corresponding view
angle of the view frustum is set to 45◦ with the left and right clipping planes offset by
50 m, see Fig. 10.1. Occluders are chosen based on a solid angle threshold of Ωmin = 15 sr.
Furthermore, the predicted vessel’s positions needed to evaluate the culling conditions for
every predicted time step are estimated using (7.57), which is depicted in Fig. 10.1 for the
first iteration along with the optimal predicted vessel positions (green circles), i.e., the
solution of the MPC problem.
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10.2. Results and Discussion

10.1.3. State Estimation

A standard EKF as discussed in Sec. 8 is used to estimate the state of the controlled
vessel based on noisy pose measurements. In this context a standard EKF signifies an
estimator without adaptive covariance estimation and without iterative measurement
update. The EKF operates with a sampling time of Δ𝑡ekf = and measurement sample time
Δ𝑡meas = Δ𝑡ekf and applies the Euler forward discrete propagation function. The observer
model is expressed mathematically as

¤𝜼 = 𝑅𝑧,𝜓 ( [𝑢0, 0, 0]⊤ + �̃�) +𝐺𝜂𝒘𝜂, 𝒘𝜂 ∼ N(0, 𝑄c,𝜂), (10.11a)
¤𝝂 =𝑀−1𝝉 (�̃�, 𝛿) +𝐺𝜈𝒘𝜈 , 𝒘𝜈 ∼ N(0, 𝑄c,𝜈 ), (10.11b)
𝒚 = 𝒉(𝒙) + 𝒗𝜂 = 𝜼 + 𝒗𝜂, 𝒗𝜂 ∼ N(0, 𝑅c,𝜂). (10.11c)

which can be depicted more compactly using

¤𝒙 = 𝒇 (𝒙, 𝑢) +𝐺𝒘, 𝒘 ∼ N(0, 𝑄c), (10.12a)
𝒚 = 𝒉(𝒙) + 𝒗𝜂, 𝒗𝜂 ∼ N(0, 𝑅c,𝜂). (10.12b)

Therein, 𝒙 = [𝑥, 𝑦, 𝜓, 𝑢, 𝑣, 𝑟 ]⊤ is the observer state,𝒘 is the process noise,𝑄c = diag(𝑄c,𝜂,

𝑄c,𝜈 ) is the process noise covariance matrix, 𝐺 = diag(𝐺𝜂, 𝐺𝜈 ) is the process noise gain
matrix. The latter is chosen to be a unit matrix, which corresponds to the assumption
that every noise component affects the system equally. Furthermore, 𝒗𝜂 in (10.12) is
the measurement noise and 𝑅c,𝜂 is the corresponding measurement noise covariance
matrix. The initial state estimates differ significantly from the true state to illustrate the
convergence of the EKF. The observer pose measurement noise covariance matrix 𝑅c,𝜂 is
equal to the true noise covariance, which makes the adaptive noise covariance estimation
obsolete. Furthermore, no iterative measurement update is used in the EKF correction
step.

10.2. Results and Discussion

The predictive controller realizes the path following with the controlled vessel with a
varying RMS cross track error 𝑒rms =

√︃
1
𝑁

∑𝑁
𝑖 𝑒

2
cte = {14.46 m, 15.47 m, 17.78 m, 18.04 m}

for the indicator, distance, signed distance according to [161], and proposed signed distance
constraints, respectively, see Fig. 10.2. Therein, the cross track error is defined as

𝑒cte = cos(𝜓wp
𝑖
) (𝑦 (𝑡) − 𝑦wp

𝑖
) − sin(𝜓wp

𝑖
) (𝑥 (𝑡) − 𝑥wp

𝑖
), (10.13)

where

𝜓
wp
𝑖

= atan2(𝑦wp
𝑖+1 − 𝑦

wp
𝑖
, 𝑥

wp
𝑖+1 − 𝑥

wp
𝑖
) (10.14)
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(a) Overview and results of the path-following simulation in the Kiel Canal. Obstacle outlines (dark red) are depicted at the
start time of the maneuver with their respective future paths (dashed light blue) along with the controlled vessel’s path
for the indicator (red), distance (dashed green), signed distance [161] (dash-dotted orange), and proposed signed distance
(dotted purple) according to (7.56).
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(b) Cross-track error of simulation using indicator (red), distance (dashed green), signed distance according to [161] (dash-
dotted orange), and signed distance (dotted purple) constraints according to (7.56) along with their respective root-mean-
square errors of 𝑒rms = {14.46 m, 15.47 m, 17.78 m, 14.13 m}.

Figure 10.2.: Path following performance in the north-east-plane (above) and corresponding cross track error
(below) for the scenario summarized in Tab. 10.2.

is the desired heading angle of the vessel at waypoint 𝑖 = 1, . . . , 5. The cross track error
is depicted in Fig. 10.2b. In Fig. 10.2a the solutions are depicted for the starting time
in the north-east-plane with a map of the Kiel Canal and the relevant obstacles during
the maneuver. The (true) future trajectories of the obstacles are depicted in dashed light
blue. Note that the predicted future positions of the obstacles are estimated for each MPC
iteration based on their respective currently observed heading angle and average observed
speed within the last minute of AIS data transmission if that particular vessel lies in the
simulated radar range of the controlled vessel for that amount of time. Otherwise, the
speed is estimated based on the most recent transmitted data transmitted using AIS. The
actual extrapolation of future positions is done using a linear prediction for the horizon

120



10.2. Results and Discussion

20 40 60 80 100 120 140 160
0

500

1,000

MPC Iteration

θ
in

m

(a) Path parameter that is strictly monotonically increasing,
i.e., ¤𝜃 > 0, ∀𝑡 and which is parameterized by the arc
length of the path.
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(b) Rudder angle (blue) with actor limits (dashed red).

Figure 10.3.: Time evolution of path parameter (left) and rudder angle (right) for the scenario summarized in
Tab. 10.2 for the indicator approach.

Without culling With culling Reduction in %

𝑛𝑤𝜆
133.79 60.08 55.09

𝑛𝑤𝜇
133.79 38.72 71.06

𝑛𝑤𝜆
+ 𝑛𝑤𝜇

267.58 98.80 63.08

𝐾 1.44 1.16 19.44

Table 10.3.: Comparison of average (taken over all iterations where obstacles are present) number of dual
decision variables associated with the controlled vessel �̄�𝑤𝜆

and with the obstacles �̄�𝑤𝜇 and number of obstacles
per MPC iteration �̄� before and after the culling procedure for the indicator constraint simulation.

time. The rudder input that realizes the depicted trajectory is shown in Fig. 10.3 for the
indicator approach along with the time evolution of the path parameter 𝜃 . As can be seen,
the path parameter is strictly monotonically increasing, i.e., ¤𝜃 > 0, ∀𝑡 or, in other words,
the reference path points 𝒑(𝜃 ) always progress in the direction of the path.

The collision avoidance task is also achieved by the predictive controller with slightly
different trajectories depending on the specific implementation of the collision avoidance
constraints. In this context, it is always assumed that the obstacles are non-cooperative,
i.e., they do not actively try to avoid a collision with the controlled vessel. Also note
that we do not take into account the COLREGs in this simulation but rather consider
each (possible) encounter as a last minute maneuver to avoid collision at any cost. The
vessel "Elvi Kull" is seen to block the path of the controlled vessel, which results in a
collision avoidance maneuver where the cross track error increases as seen in Fig. 10.2b
at approximately 𝑡 = 210 s. The only major difference of trajectories w.r.t. the collision
avoidance constraint implementation is seen for the signed distance constraint according
to [161] where the controlled vessel needs to evade a collision with the obstacle "Noname"
and is seen to pass that particular obstacle with a larger cross track error than for the
other implementations.
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pwp
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Noname

MS ACON

(a) Evading maneuver for the obstacle "Elvi Kull". The further
the predicted controlled vessel’s position (green circles)
deviates from the reference path (black line) the slower
the predicted path points (bold black dots) progress,
which is due to (10.9).

pwp
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MS ACON

(b) Transition from the first line segment defined by (𝒑1, 𝒑2 )
to the next line segment with the obstacle "Adler I" that
crosses the path.

Figure 10.4.: Snapshot of MPC iteration 𝑖 = 85 (left) and 𝑖 = 45 (right) for the indicator simulation with predicted
controlled vessel positions (green circles), radar radius (dark blue), reference path points (bold black dots), and
obstacles (dark red) with obstacles’ past path (light blue), predicted positions (black dots), and future path (dashed
light blue).

The performance of the culling procedure is depicted for the indicator approach in Fig. 10.5,
which shows the reduction of the number of decision variables considered in the MPC
problem. In Fig. 10.5a the total number of dual decision variables without culling is shown
in blue and the number of dual decision variables after the culling procedure is shown
in orange. In Tab. 10.3 the average number of dual decision variables associated with
the controlled vessel 𝑛𝑤𝜆

and with the obstacles 𝑛𝑤𝜇
and the number of obstacles 𝐾 per

MPC iteration before and after the culling procedure is shown together with the overall
reduction in decision variables and obstacles. The culling procedure is seen to reduce the
number of decision variables by approximately 63.08 % and the number of obstacles by
19.44 %. Figure 10.5b shows the number of culled dual decision variables for each of the
four culling conditions namely, the frustum- (blue), occlusion- (red), obstacle backface
(yellow), and controlled vessel backface (purple) condition. The majority of culled decision
variables is due to the backface conditions.
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(a) Total number of dual decision variables before (blue) and after (orange) the culling procedure or each iteration with
averages (taken over all iterations where obstacles are present) (dashed blue and orange, respectively).
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(b) Number of faces culled by frustum- (blue), occlusion- (red), obstacle backface (yellow), and controlled object backface
(purple) condition.

Figure 10.5.: Performance of the culling procedure for the indicator approach.

The EKF is initialized with a large initial state error and converges to the true state as
seen in Fig. 10.6.
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(a) Target pose 𝜼∗ (violet), simulated state 𝒙 (black), estimated
state �̂� (blue), and noisy measurements 𝒚 (red crosses).
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(b) Square root of diagonal elements of state error covariance
matrix 𝑃 (blue).

Figure 10.6.: Vessel states 𝒙 (left) and corresponding estimation error standard deviation 𝑃 (right) for the
predictive path following with full body indicator obstacle constraints for the scenario in Tab. 10.2.
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11. Conclusions

In this thesis the mathematical models of MSVs with 3DOF by means of Newton’s and
Euler’s second law of motion are derived rigorously. Application of these laws results in
a coupled ODE describing the rigid body dynamics of the vessel. Additional forces and
moments are taken into account and separated into acceleration- and velocity-dependent
forces and moments as well as environmental and controlled forces. Investigation of the
acceleration-dependent forces and moments by means of a Taylor series approximation
motivate the notion of an added mass matrix that is included to the rigid body mass
matrix. Analogously, velocity-dependent forces and moments result in a damping matrix
that is a sum of linear and nonlinear damping terms. Furthermore, the analysis of the
velocity-dependent terms results in the notion of a so-called added mass Coriolis matrix
that is included in the rigid body Coriolis matrix. A link between the classical Abkowitz
model and the second-order modulus model is established by means of this Taylor series
approximation of the nonlinear damping terms. In this work, focus is put on on wind
forces as environmental disturbances and moments acting on the vessel. To this end, the
relationship between the MSVs geometry, its relative motion through the wind and the
resulting forces and moments that can be approximated mathematically as a function
of the relative quantities and the ships geometric dimensions is analyzed. Forces and
moments due to the propulsion system are also modeled. To this end, the notion of
effectors and actuators is introduced, which map the actual control surfaces such as,
e.g., propeller revolutions per minute and rudder angles and their respective locations
w.r.t. the CG of the vessel to the resulting forces and moments. Two of the most widely-
used effectors are introduced and modeled, namely, propeller-rudder systems and tunnel
thrusters. Furthermore, the conditions for course stability of the resulting nonlinear model
are derived.

A nonlinear controller is proposed that is used to achieve a dynamic positioning task. It is
based on the feedback linearization of the nonlinear 3DOF vessel model that consists of a
state feedback law, which linearizes and decouples the nonlinear system dynamics and
enables the use of a linear controller. The latter is designed using pole placement of the
resulting linear system. In this context the property of differential flatness is discussed
and it is shown that the 3DOF vessel model is differentially flat with the pose as a flat
output, which is a side effect of the system being feedback linearizable.

Control allocation plays an important part in the control loop especially in dynamic
positioning problems. In this thesis, the concept of control allocation is introduced that is
used to link commanded generalized forces to actual control inputs. To this end, focus is
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11. Conclusions

put on time invariant actor models, i.e., it is assumed that underlying low-level controllers
are used to achieve the commanded set points of the control allocation. With this, the
control allocation problem consists of a constrained static optimization problem that can
be solved using numerical methods such as, e.g., interior-point methods. Therefore, a
general purpose interior-point SQP line search algorithm is proposed to highlight the
complexity involved in solving these types of problems.

An alternative high-level control concept is proposed which is based on the optimization-
based approach. To this end, a nonlinear MPC problem is formulated that is solved at each
sampling time to minimize a user-defined cost function subject to the nonlinear system
dynamics input and state constraints. The latter constraints are primarily important
and used achieve collision avoidance with other vessels and obstacles. To this end, a
dual approach is proposed to incorporate collision avoidance constraints that are able to
represent the obstacles’ and controlled vessel’s geometry by means of convex polyhedra.
This makes the proposed method especially suited for applications in confined areas. The
resulting dynamic optimization problem is solved on a receding horizon using a direct
simultaneous method, which transcribes the continuous-time OCP into a large finite-
dimensional nonlinear programming problem. The latter, in turn, is solved using state-
of-the-art software packages such as, e.g., SNOPT. To reduce complexity, a culling method
is proposed that is able to reduce the number of constraints and dual decision variables
associated with the collision avoidance constraints in the resulting NLP problem.

A fundamental part of the control loop is the reconstruction of the vessels state, which is
used in both of the high-level control schemes. To this end, the EKF, the de-facto standard
for nonlinear state estimation, is summarized and several extensions to the standard EKF
are discussed such as an iterated EKF, which re-iterates the measurement update step
of the EKF to improve the accuracy of the state estimate and, essentially, constitutes a
higher-order filter estimate. Furthermore, we enhance the IEKF with an adaptive strategy
to estimate diagonal elements of the process and measurement noise covariance matrices
based on the filter innovation sequence, which results in an AIEKF. To this end, the
sampled covariance matrix of the innovations sequence is approximated using either a
moving average filter or a recursive exponentially-weighted moving average filter. The
former approximation can be further improved by, e.g., making use of the RTS smoother,
which improves the accuracy of the innovation sequence for the moving average filter.

The proposed high-level controllers, the control allocation and the proposed EKF and its
extensions are evaluated in two simulation studies. The first simulative study illustrates a
dynamic positioning problem of the Cybership II, which is modeled with a nonlinear 3DOF
model and includes a propulsion model that consists of two propeller-rudder systems and
a bow tunnel thruster. To this end, the proposed nonlinear feedback linearization is used in
conjunction with the control allocation to achieve stabilize the vessel’s pose at the origin.
Furthermore, the proposed AIEKF is used to estimate the vessel’s state and disturbances
acting on the vessel. The latter estimate is then used to compensate for the disturbances in
the control loop. In this context, two different observer models are used, namely, a lumped
model and a combined lumped and wind disturbance model, where the former assumes
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that all disturbances acting on the vessel can be modeled as one time invariant quantity,
and the latter separates the disturbances into forces and moments caused by wind and
other forces. In this context, the wind direction and speed are assumed to be measurable
and an approximate wind model is added to the estimator. The second simulative study
is based on a nonlinear autopilot model that is used to perform a path-following task in
the Kiel Bay Area using AIS data to obtain obstacle information. This study makes use of
the MPC controller with dual collision avoidance constraints and culling to reduce the
complexity of the resulting NLP problem.
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The focus on this thesis lies on 3DOF surface vessel models, which neglect, e.g., wave-
induced motions of the vessel. However, the concepts presented in this thesis can be
applied to 6DOFmodels as well where extensions to the observer model are necessary such
as, e.g., estimating the amplitude and frequency of the wave-induced motions [50, 126].
Furthermore, the actor models presented in this thesis are tailored to the specific thruster
configuration of the Cybership II, which consists of two propeller-rudder systems and a
bow tunnel thruster. Therefore, analysis can be extended to include other types of effectors,
such as azimuth thrusters, and Voith-Schneider propellers, which are especially complex.
Additionally, the presented control algorithms assume that the model and propulsion
parameters are known. However, in practice, this is not the case, and the parameters have
to be estimated online or identified offline using methods presented in, e.g., Fossen et al.
[52], Wirtensohn et al. [157], Skjetne et al. [143], Skjetne [142].

In this thesis, a control allocation is used, i.e., the explicit actor models are taken into
account in the static optimization problem as is typical, e.g., in aircraft applications [66,
67, 68]. Alternatively, a thrust allocation can be applied, where only the geometric
arrangement of the effectors is considered as part of the optimization problem and the
actual control surfaces are extracted separately from the solution of the optimization
problem [142, Sec. B.1.4], [89, 88]. On the one hand, this latter approach simplifies the
complexity of the thrust allocation problem but, on the other hand, shifts part of the
complexity downstream of the control loop. However, this approach may be suitable to
avoid the pitfall of non-monotonicity that results in occasional erroneous solutions [67].
Furthermore, the actor dynamics can be taken into account, which reflects the fact that
the actuators are not able to change their set points instantaneously. When this is taken
into account, the control allocation problem is represented as an OCP [21], i.e., a dynamic
optimization problem.

The proposed predictive dual collision avoidance scheme proves to be a promising solution
for confined environments and is used in the context of, e.g., autonomous parking [160].
The combination with the proposed culling techniques enables a more efficient solution
of the resulting OCP. However, the culling conditions need to be evaluated based on
predictions of the other obstacles and the controlled vessel’s movement both of which are
subject to uncertainties. This uncertainty becomes more and more prevalent for increasing
prediction horizons. Therefore, the culling conditions are evaluated in a very conservative
manner to avoid collisions, i.e., only if all conditions agree that an obstacle face fulfills all
conditions for all predicted time steps is it culled from the OCP. A remedy to this problem
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is to evaluate the proposed culling conditions in each iteration of the numerical procedure
instead of evaluating it based on predictions [57]. However, this comes with the drawback
of increasing the computational complexity of the numerical procedure and raises the
question of the applicability of this approach.

Furthermore, estimation of the vessel states and disturbances is investigated using an
AIEKF. This approach can be extended to estimate vessel parameters, as shown in, e.g., Fos-
sen et al. [52], where time invariance of the parameters is added in form of an ODE to the
observer model similar to the disturbance estimation approach in this thesis. Furthermore,
the AIEKF could be employed to estimate wave-induced motion of the vessel, as shown
in Popov et al. [126], where the observer model is extended with a second order system
and the wave frequency in each DOF. This information is especially relevant in higher
seas. In the context of real world applicability, sensor fusion, sensor placement, faulty mea-
surements, and missing measurements are important topics to be investigated [148, 11, 12].
The proposed observer models can also be included using the UKF, which copes with non-
linear models using the unscented transformation instead of successive linearization [152],
which might improve the estimation accuracy in the context of parameter estimation
since this inherently induces nonlinearities to any dynamic model.

The simulative studies show promising results for both the predictive path following and
the nonlinear dynamic positioning control designs. In the dynamic positioning problem,
the fact that tunnel thrusters are only effective for low speeds, say, around five knots for a
passenger ferry of normal size is ignored [21]. Furthermore, the effect of wave-induced
motions of the vessel is neglected, which is especially relevant in higher seas [50, 158, 126].
A very important extension to the proposed control designs is to take into account the
COLREGs, which are not considered in this thesis. Different approaches to tackle this
problem in the context of optimal control usually involves altering the cost function
appropriately and introducing a module that detects situations in which the cost function
must be altered to achieve the desired COLREGs-compliant maneuver [37]. Moreover, an
interesting next step is the real world application of the proposed schemes, which comes
with a variety of different challenges.
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A. Appendix

This chapter provides additional information that is not part of the main part of the thesis.
In particular, two example applications for the interior-point SQP line search method
proposed in Sec. 6.2.2 are presented and compared with fmincon, a state-of-the-art general
purpose numerical solver embedded in MATLAB. Furthermore, an extensive derivation of
the proof used in Chapter 7 is provided. Lastly, further insight is given into the Jacobian
matrices needed by the AIEKF proposed in Chapter 8 and used in the simulative studies
in Chapter 9.

A.1. Example Problems for the Numerical Solution of NLPs

In this section we present two example problems that are solved with the algorithm pre-
sented in Sec. 6.2.2. To this end, the solution of a hanging chain is presented that represents
a relatively small static optimization problem with linear cost function, nonlinear equality,
and linear equality constraints [19]. Furthermore a solution to an energy-optimal dynamic
optimization problem is presented that calculates a swing-up of an inverted pendulum on
a cart. The latter represents a direct simultaneous approach that discretizes the dynamic
quantities in time, which results in a medium-scale static optimization problem with
nonlinear cost and equality constraints, and linear inequality constraints.

A.1.1. Static Optimization: Hanging Chain

The hanging chain problem consists of multiple linked segments that are fixed at the
first and second suspension points of the chain 𝒑0 = [𝑥0, 𝑦0]⊤ and 𝒑𝑛𝑠 = [𝑥𝑛𝑠 , 𝑦𝑛𝑠 ]⊤,
respectively. The goal of this optimization is to minimize the potential energy

𝐸pot (𝒘) =
𝑛𝑙∑︁
𝑖=1

𝐿𝑖
𝑦𝑖 + 𝑦𝑖−1

2
(A.1)

of the chain, where 𝑛𝑠 is the number of segments, and 𝐿𝑖 is the length of the 𝑖-the chain
segment. See also Fig. A.1 for an illustration of the variables. Since the chain is rigid, the
length of the individual segments is fixed, which is expressed using equality constraints,
i.e.,

(𝑥𝑖 − 𝑥𝑖−1)2 + (𝑦𝑖 − 𝑦𝑖−1)2 − 𝐿2
𝑖 = 0, 𝑖 = 1, . . . , 𝑛𝑠 . (A.2)
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Figure A.1.: Example solution of the hanging chain problem with initial guess (dashed black), fmincon’s solution
(orange), where 𝑐 (𝒙∗ ) = −0.4346, proposed algorithm’s solution (blue) with 𝑐 (𝒙∗ ) = −0.4456 , and the inequality
constraints modeling the floor (shaded gray).

Furthermore, if there is a floor, the solution must ensure that the chain is above or on the
floor, i.e.,

𝑚 𝑗𝑥𝑖 + 𝑏 𝑗 − 𝑦𝑖 ≤ 0, 𝑖 = 1, . . . , 𝑛𝑠 , 𝑗 = 1, . . . , 𝑛𝑓 , (A.3)

where 𝑚 𝑗 is the slope and 𝑏 𝑗 the ordinate offset of the 𝑗-th floor segment and 𝑛𝑓 is
the number of floor segments. In principle 𝑥0, 𝑦0, 𝑥𝑛𝑠 , 𝑦𝑛𝑠 can be excluded from the
optimization problem since they are fixed to their respective suspension points 𝒑0, 𝒑𝑛𝑠 .
With this, the optimization problem is expressed mathematically as

𝑐 (𝒘) = 𝐸pot (𝒘) (A.4a)
s.t.

𝒈(𝒘) =



(𝑥1 − 𝑥0)2 + (𝑦1 − 𝑦0)2 − 𝐿2
1

...

(𝑥𝑛𝑠 − 𝑥𝑛𝑠−1)2 + (𝑦𝑛𝑠 − 𝑦𝑛𝑠−1)2 − 𝐿2
𝑛𝑠

𝑥𝑛𝑠 − 𝑥𝑛𝑠
𝑦𝑛𝑠 − 𝑦𝑛𝑠


= 0, (A.4b)

𝒉(𝒘) =



𝑚1𝑥1 + 𝑏1 − 𝑦1
...

𝑚1𝑥𝑛𝑠 + 𝑏1 − 𝑦𝑛𝑠
...

𝑚𝑛𝑓
𝑥1 + 𝑏𝑛𝑓

− 𝑦1
...

𝑚𝑛𝑓
𝑥𝑛𝑠 + 𝑏𝑛𝑓

− 𝑦𝑛𝑠


≤ 0 (A.4c)
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with𝒘 = [𝑥1, . . . , 𝑥𝑛𝑠 , 𝑦1, . . . , 𝑦𝑛𝑠 ]⊤. In Fig. A.1, the solution of this problem is shown for
a chain with 𝑛𝑠 = 5 segments and 𝑛𝑓 = 3 floor segments. The initial guess is shown as
a dashed black line. Note that this initial solution is not feasible, e.g., it does not take
into account the fixed segment lengths or the floor constraints. The solution of fmincon
is also depicted in Fig. A.1 as an orange line, and the solution of proposed algorithm
as a blue line. As can be seen, the install guess is not feasible, i.e., the chain is below
the floor and, thus, violates the inequality constraints. Furthermore, the chain links
lengths violate the equality constraints that ensure the correct length. In this particular
example, the proprietary algorithm achieves a slightly better solution than fmincon, i.e.,
𝑐 (𝒙∗) = −0.4456 vs. 𝑐 (𝒙∗) = −0.4346 obtained by fmincon.

A.1.2. Dynamic Optimization: Inverted Pendulum on a Cart

In this example solve an optimal control swing-up problem of an inverted pendulum on a
cart, i.e., we aim to find an input𝑢 to the underlying dynamical system such that the energy
of the control effort is minimized. The system states 𝒙 = [𝑥1, 𝑥2, 𝑥3, 𝑥4]⊤ = [𝑠, 𝑣, 𝜃, 𝜔]⊤
are the time-varying quantities and describe the cart position and velocity w.r.t. the 𝑦
axis, and angle and angular velocity of the pole w.r.t. the 𝑧 axis. Note that 𝜃 = 𝜑 − 𝜋 . The
system dynamics are expressed in terms of these states and the input to the system 𝑢,
which is the force applied to the cart, i.e.,

¤𝒙 = 𝒇 (𝒙, 𝑢), 𝑡 > 𝑡0, 𝒙 (𝑡0) = �̂�0, (A.5)

where �̂�0 is the initial state of the system, 𝒙 (𝑡) ∈ R𝑛𝑥 , and 𝑢 (𝑡) ∈ R𝑛𝑢 and

𝒇 (𝒙, 𝑢) =


𝑥2

− (𝑙
3𝑚2+𝐽 𝑙𝑚) sin (𝑥3 )𝑥4

2+𝑔 𝑙2𝑚2 cos (𝑥3 ) sin (𝑥3 )+(−𝑏 𝑙2𝑚− 𝐽 𝑏) 𝑥2+(𝑙2𝑚+𝐽 )𝑢
𝑙2𝑚2 cos (𝑥3 )2−𝑙2𝑚2+(−𝑀 𝑙2− 𝐽 )𝑚− 𝐽 𝑀

𝑥4
𝑙2𝑚2 cos (𝑥3 ) sin (𝑥3 )𝑥4

2+(𝑔𝑙 𝑚2+𝑀𝑔𝑙𝑚) sin (𝑥3 )+(𝑙𝑚𝑢−𝑏𝑙𝑚 𝑥2 ) cos (𝑥3 )
𝑙2𝑚2 cos (𝑥3 )2−𝑙2𝑚2+(−𝑀 𝑙2− 𝐽 )𝑚− 𝐽 𝑀


. (A.6)

In the following, we consider the energy-optimal swing-up OCP

min
𝑢

𝐽 (𝑢) =
∫ 𝑡f

0

1
2
𝑢2 (𝑡)d𝑡 (A.7a)

s.t.
¤𝒙 = 𝒇 (𝒙, 𝑢), 𝒙 (0) = �̂�0, 𝒙 (𝑡f) = 𝒙 f (A.7b)
𝑢− ≤ 𝑢 ≤ 𝑢+, (A.7c)

where

�̂�0 =
[
0 0 0 0

]⊤
, 𝒙 f =

[
−1 0 𝜋 0

]⊤
. (A.8)
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An approximate solution to this problem is obtained using a direct multiple shooting,
where the system dynamics are discretized using a trapezoidal scheme, i.e.,

𝒙𝑘+1 = 𝒙𝑘 +
𝑡f

2𝑁

[
𝒇 (𝒙𝑘 , 𝑢𝑘 ) + 𝒇 (𝒙𝑘+1, 𝑢𝑘+1)

]
. (A.9)

We also need to approximate the integral, which we also achieve with the trapezoidal rule,
i.e., ∫ 𝑡f

0
𝑙 (𝒙, 𝑢)d𝑡 ≈ 𝑡f

2𝑁

𝑁−1∑︁
𝑘=0

𝑙 (𝒙𝑘 , 𝑢𝑘 ) + 𝑙 (𝒙𝑘+1, 𝑢𝑘+1) (A.10)

Furthermore, we model the input 𝑢 (𝑡) as a piece-wise linear function for each time step
𝑡f
𝑁

which leads to an NLP

min
𝒘∈R𝑛𝑤

𝑐 (𝒘) (A.11)

s.t. (A.12)
𝒈(𝒘) = 0, (A.13)
𝒉(𝒘) ≤ 0, (A.14)

where 𝒘 = [𝒘⊤𝑥 , 𝒘⊤𝑢 ]⊤ = [𝒙⊤0 , . . . , 𝒙⊤𝑁 , 𝑢0, . . . , 𝑢𝑁 ]⊤ are the decision variables and 𝑁 is
the number of discretization steps. Furthermore,

𝒈(𝒘) =
[
𝒈bc (𝒘)
𝒈ode (𝒘)

]
, (A.15)

where

𝒈bc (𝒘) =
[
𝒙0 − �̂�0
𝒙𝑁 − 𝒙 f.

]
(A.16)

is the vector of boundary constraints, and

𝒈ode (𝒘) =


𝒈ode
0 (𝒙1, 𝒙0, 𝑢0, 𝑢1)

...

𝒈ode
𝑁−1 (𝒙𝑁 , 𝒙𝑁−1, 𝑢𝑁−1, 𝑢𝑁 )

 , (A.17)

is the vector of ODE (defect) constraints, where

𝒈ode
𝑘
(·) = −𝒙𝑘+1 + 𝒙𝑘 +

𝑡f

2𝑁

[
𝒇 (𝒙𝑘 , 𝑢𝑘 ) + 𝒇 (𝒙𝑘+1, 𝑢𝑘+1)

]
(A.18)

for 𝑘 = 0, . . . , 𝑁 −1 realizes the trapezoidal integration of the ODE. The bound constraints
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(a) Input constraints 𝑢+ = −𝑢− = 10 N with 𝑐 (𝒙∗ ) = 58.73
(fmincon) and 𝑐 (𝒙∗ ) = 58.73 (proposed algorithm).
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(b) Input constriants 𝑢+ = −𝑢− = 3 N with 𝑐 (𝒙∗ ) = 9.89
(fmincon), 𝑐 (𝒙∗ ) = 9.33 (proposed algorithm).

Figure A.2.: Solutions to the energy optimal swing-up problem of the inverted pendulum on a cart for 𝑡f = 1s
(left) and 𝑡f = 3s (right) with fmincon’s solution (dashed orange), proposed algorithm’s solution (blue), final
values 𝒙 f (violet), and bvp4c’s solution (dash-dotted black).

from the swing-up problem can be expressed in the general NLP form

𝒉(𝒘) =



𝑢0 − 𝑢+
...

𝑢𝑁 − 𝑢+
𝑢− − 𝑢0

...

𝑢− − 𝑢𝑁


. (A.19)

If we set 𝑁 = 100, this leads to 𝑛𝑔 = 2𝑛𝑦 + 𝑁𝑛𝑦 = 408 (nonlinear) equality constraints and
𝑛ℎ = 2𝑁 = 200 (linear) inequality constraints with 𝑛𝑤 = (𝑁 + 1) (𝑛𝑦 + 𝑛𝑢) = 505 decision
variables. As can be seen in Fig. A.2, the solutions of fmincon and the proposed algorithm
coincide for 𝑡f = 1s but differ for 𝑡f = 3s, where the proposed algorithm obtains a slightly
lower cost function value (at the price of taking much more time to solve...). It is also
not very surprising, that the energy is an order of magnitude larger if the final time is
smaller, i.e., much more energy is needed for that maneuver. Furthermore, if you plot
the Lagrange multipliers for the defect constraints over time, we get an estimate of the

137



A. Appendix

4

5

6

λ
1

−6

−4

−2

λ
2

−40

0

40

λ
3

0 0.2 0.4 0.6 0.8 1
−10

−5

0

5

Time in s

λ
4

(a) Final value for Lagrange multipliers 𝝀 (𝑡f ) = 𝝁 =

[5, −6.81, −27.87, −5.17]⊤ .

0.6

0.7

λ
1

−1

0

1

λ
2

−4

0

4

λ
3

0 0.5 1 1.5 2 2.5 3

−1

0

1

Time in s

λ
4

(b) Final value for Lagrange multipliers 𝝀 (𝑡f ) = 𝝁 =

[0.64, −1, −4, 0.78]⊤ .

Figure A.3.: Lagrange multipliers for the defect constraints using the proposed algorithm (blue) and bvp4c’s
costate variables (black) for 𝑡f = 1s (left) and 𝑡f = 3s (right).

adjoint states 𝝀 that arise as part of the necessary optimality conditions of the dynamic
optimization problem, the so-called Euler-Lagrange Equations (ELG)

¤𝒙∗ = ∇𝝀H(𝒙∗, 𝑢∗,𝝀∗) 𝒙 (0) = �̂�0, 𝒈(𝑡f, 𝒙 (𝑡f)) = 0 (A.20)
¤𝝀∗ = −∇𝒙H(𝒙∗, 𝑢∗,𝝀∗) 𝝀(𝑡f) = ∇𝒙 (𝑡f )𝜓 (𝑡f, 𝒙∗ (𝑡f), 𝝁), (A.21)
𝑢∗ = argmin𝑣{H (𝒙, 𝑣,𝝀) : 𝑢− ≤ 𝑣 ≤ 𝑢+}, (A.22)

which must be fulfilled for a (local) optimizer 𝑢 and where

H(𝒙, 𝑢,𝝀) = 𝑙 (𝒙, 𝑢) + 𝝀⊤𝒇 (𝒙, 𝑢) (A.23)

is the Hamiltonian and

𝜓 (𝑡f, 𝒙 (𝑡f), 𝝁) = 𝜑 (𝑡f, 𝒙 (𝑡f)) + 𝝁⊤𝒈(𝑡f, 𝒙 (𝑡f)) (A.24)

an auxiliary function. Therein, 𝜑 (·, ·) is the final cost (which is equal to zero in the
above example). These first order necessary optimality conditions constitute a two point
boundary value problem (TPBVP) and are hard to solve, especially in the presence of
inequality constraints. However, solving for the optimal input with 𝑙 (𝒙, 𝑢) = 1

2𝑢
2 for

input-affine systems, i.e., 𝒇 (𝒙, 𝑢) = 𝒇 0 (𝒙) + 𝒇 1 (𝒙)𝑢 leads to

𝑢 =


𝑢−, if − 𝝀⊤𝒇 1 (𝒙) ≤ 𝑢−

−𝝀⊤𝒇 1 (𝒙) else
𝑢+, if − 𝝀⊤𝒇 1 (𝒙) ≥ 𝑢+

(A.25)
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This has also been implemented in the example MATLAB file for sake of completeness.
Essentially, solving the ELG using bvp4c is an indirect numerical method in that it solves the
ELG equations instead of directly addressing the OCP. More specifically, bvp4c realizes an
indirect collocation to solve the OCP and the optimal input can be expressed as𝑢 = 𝑘 (𝒙,𝝀)
that is inserted to the ELG, which yields the TPBVP

¤𝒙∗ = ∇𝝀H(𝒙∗, 𝑘 (𝒙∗,𝝀∗),𝝀∗) 𝒙 (0) = �̂�0, 𝒈(𝑡f, 𝒙 (𝑡f)) = 0 (A.26)
¤𝝀∗ = −∇𝒙H(𝒙∗, 𝑘 (𝒙∗,𝝀∗),𝝀∗) 𝝀(𝑡f) = ∇𝒙 (𝑡f )𝜓 (𝑡f, 𝒙∗ (𝑡f), 𝝁). (A.27)

The unknown constant 𝝁 can be determined by bvp4c. Alternatively, the TPBVP can be
augmented by ¤𝝁 = 0. Indirect methods are known to be highly-reliant on a good initial
guess. The often-used linear interpolation between �̂�0 and 𝒙 f for the individual states
with all initial adjoint states zeros as an initial guess failed to result in convergence of the
solver. Therefore, for the states, fmincon’s solution, which is not as good as the proposed
algorithm’s, has been passed as an initial guess to bvp4c with zero costates.

A.2. Proof of (7.11) using Farkas’ Lemma

Expanding (7.10) with 𝐼 = 𝐼⊤ gives

𝐴⊤𝝁 + 𝝈1 − 𝝈2 = 0, (A.28a)

𝒃⊤𝝁 + (𝒑V)⊤𝝈1 − (𝒑V)⊤𝝈2 < 0, (A.28b)
𝝁 ≥ 0, 𝝈1 ≥ 0, 𝝈2 ≥ 0. (A.28c)

Subsequenty, (A.28a) is solved for 𝝈2, i.e.,

𝝈2 = 𝝈1 +𝐴⊤𝝁,

which is inserted in (A.28b) to give

𝐴⊤𝝁 + 𝝈1 − 𝝈2 = 0, (A.29a)

(𝒃 −𝐴𝒑V)⊤𝝁 < 0, (A.29b)
𝝁 ≥ 0, 𝝈1 ≥ 0, 𝝈2 ≥ 0. (A.29c)

Apparently, 𝒛 (𝑡) = 𝝈2 (𝑡) − 𝝈1 (𝑡) ∈ R𝑛 is an arbitrary vector and can thus be ignored.
Multiplying (A.29b) by minus one gives the desired result

𝒑V ∉ O ⇔ ∃𝝁 ≥ 0 : (𝐴𝒑V − 𝒃)⊤𝝁 > 0. (A.30)
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A.3. EKF Jacobian Matrices for the Dynamic Positioning
Simulation

In the following, the Jacobian matrices for the EKF in Sec. 9 are given as far as this is
reasonably possible. If a Jacobian is not given explicitly here, it is generated using CasADi,
a symbolic framework for automatic differentiation [5].

A.3.1. Lumped Disturbance Estimation Model

The analytical Jacobians for the lumped estimation model (9.4) are given by

𝜕𝒇 ext
𝜕𝒙ext

=

[ 𝜕𝒇
𝜕𝒙 0(6×3)

0(3×6) 0(3×3)

]
︸               ︷︷               ︸

∈R9×9

+
[
𝜕𝒇 d
𝜕𝒙

𝜕𝒇 d
𝜕𝒅

]
(A.31)

with 𝜕𝒇 d
𝜕𝒙 ,

𝜕𝒇 d
𝜕𝒅 given by

𝜕𝒇 d
𝜕𝒙

=


0(3×2) 0 0(3×3)

0(3×2) 𝑀−1 𝜕𝑅
⊤
𝑧,𝜓

𝜕𝜓
𝒅 0(3×3)

0(3×2) 0 0(3×3)

 ∈ R
9×6,

𝜕𝒇 d
𝜕𝒅

=


0(3×3)

𝑀−1𝑅⊤
𝑧,𝜓

0(3×3)

 ∈ R9×3, (A.32)

respectively. Furthermore the measurement function Jacobian and input Jacobian evaluate
to

𝜕𝒉

𝜕𝒙ext
=
[
𝐼 (3×3) 0(3×6) ], 𝜕𝒇 ext

𝜕𝒖
= 𝐵𝜏,ext, (A.33)

respectively.

A.3.2. Combined Lumped and Wind Disturbance Estimation Model

Analogously to the previous subsection the analytical Jacobians for the combined lumped
and wind disturbance model (9.10) are given by

𝜕𝒇 ext
𝜕𝒙ext

=

[ 𝜕𝒇
𝜕𝒙 0(6×5)

0(5×6) 0(5×5)

]
︸               ︷︷               ︸

∈R11×11

+
[
𝜕𝒇 d
𝜕𝒙

𝜕𝒇 d
𝜕𝒅

𝜕𝒇 d
𝜕𝒙w

]
. (A.34)
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A.4. On Numerical Methods for Solving Optimal Control Problems

Therein, 𝜕𝒇 d
𝜕𝒙 ,

𝜕𝒇 d
𝜕𝒅 ,

𝜕𝒇 d
𝜕𝒙w

are very cumbersome expressions such that the explicit structure
is not explicitly given here but generated using CasADi [5]. Lastly, the measurement and
input Jacobians are formally given by

𝜕𝒉ext
𝜕𝒙ext

=

[
𝜕𝒉
𝜕𝒙ext
𝜕𝒉w
𝜕𝒙ext

]
,

𝜕𝒇 ext
𝜕𝒖

= 𝐵𝜏,ext, (A.35)

respectively, where

𝜕𝒉

𝜕𝒙ext
=
[
𝐼 (3×3) 0(3×8) ] , 𝜕𝒉w

𝜕𝒙ext
=

[
𝜕𝑉w,a
𝜕𝒙ext
𝜕𝛾w,a
𝜕𝒙ext

]
, (A.36)

which is also are generated using CasADi.

A.4. On Numerical Methods for Solving Optimal Control
Problems

To expand on Sec. 6.3.2 and Fig. 6.2, refer to Fig. A.4 that categorizes different mechanisms,
which are involved in solving OCPs numerically, namely, solving ODEs numerically,
solving NLPs numerically, handling inequality constraints (within an NLP), ensuring
(NLP) convergence, providing a search direction, providing gradient information, solving
implicit equations, and evaluating integral costs and constraints. Furthermore, it relates
these mechanisms to the overarching concepts of numerical integration methods, indirect
and direct methods, NLP methods, inequality constraints and root finding methods.
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In this work, the modeling, optimal and nonlinear control of marine surface vessels 
is addressed along with collision avoidance, state and disturbance estimation.
The nonlinear dynamical vessel model is presented, which forms the basis for 
subsequent analysis of nonlinear and optimization-based control designs. A 
nonlinear feedback linearization controller is presented that is combined with 
a control allocation, which optimally distributes the desired control forces to 
actuators. The control allocation problem constitutes a constrained static opti-
mization problem. In this context, an interior-point SQP line search method is 
derived. Additionally, a predictive controller is proposed that is able to handle 
state and input constraints. The former are used to achieve collision avoidance. 
To this end, a dual approach in combination with culling techniques is presented 
that is especially suited for confined environments. 
The two control designs are combined with a Kalman Filter-based state and dis-
turbance estimator to solve a dynamic positioning and path following problem, 
respectively, and are illustrated using high fidelity simulations.
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