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Abstract—In recent years, the electricity supply has become
more volatile, and advanced real-time controllers are needed to
manage the grid safely. Demand-side management represents a
promising solution, where regulating load consumption through
controlled voltage variations offers a valuable approach, which
can be applied using power electronics actuators. This approach
relies on understanding how power consumption reacts to changes
in voltage magnitude or frequency. One proposed method is
perturbation-based load sensitivity identification, which intro-
duces controlled perturbation into the grid, for instance through
a Solid-State Transformer, and calculates load parameters via
power measurements. However, existing methods often require
synchronization with the perturbation actuator and lack re-
siliency to noise or uncorrelated power variations, limiting their
practical applicability. This paper proposes a novel approach
for perturbation-based load sensitivity identification, utilizing
a pre- and post-filtering process. This method has been tested
under realistic grid conditions, with autonomous computation
of the load sensitivity, triggered by variation-based perturbation
detection. It offers more global and flexible control possibilities,
and eliminates the need for complex communication layers.

Index Terms—Solid-State Transformer, Load sensitivity,
Demand-side management, Microgrids, Power control.

I. INTRODUCTION

THE energy system is moving toward a high penetration of
power electronics-based and intermittent energy sources

such as photovoltaic and loads, e.g., electric vehicles. As a
consequence, the electricity supply becomes less predictable,
and advanced real-time controllers are needed to manage
the grid operations within the operational limits. A potential
solution is the smart load control, wherein grid operators adjust
not only generation but also consumption to align with the
supply [1], [2]. However, this approach faces hurdles like
limited communication infrastructure and privacy concerns
related to user information [3]–[5].

As an alternative solution, Conservation Voltage Reduction
(CVR) influences load consumption by changing the voltage
ratio in transformers by means of on-load tap-changers [6]–
[8]. Although effective, CVR operates with slow dynam-
ics (depending on the tap-changer technology) and coarse
granularity. In contrast, Solid-State Transformer (SST) offers
finer granularity and faster dynamic characteristics for active
and reactive power modulation [9]. The SST, working as a
grid-forming unit, can dynamically adjust voltage waveform
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characteristics enabling a voltage (or frequency)-based load
control [10]–[12].

However, enhanced control actions can be achieved with
accurate knowledge of the load sensitivity to voltage and
frequency, wherein the load sensitivity represents the per-
centage of power change resulting from a change in voltage
characteristics. Two common models for estimating the load
sensitivity are the polynomial model (ZIP model) [13] and
the exponential model [14]. This paper adopts the exponential
load model due to its simplicity and straightforward interpre-
tation for future control [15]. The load model parameters are
evaluated by means of a measurement-based approach involv-
ing fitting algorithms to quantify active and reactive power
variations resulting from voltage or frequency changes [16],
[17]. These changes can be either natural such as tap-changer
adjustments [18], [19], or triggered perturbations (introduced
by Solid-State Transformer (SST) [20], [21]). Our approach
employs an actuator capable of generating disturbances, as
represented by the AC/AC converter in Fig. 1. Measurement
devices analyze recorded voltage and power during these
disturbances to calculate the load sensitivity. When measure-
ment devices are strategically positioned at different locations,
the load sensitivity can be assessed across multiple nodes.
Most of the works use a voltage threshold to detect the
voltage perturbations. However, a fixed threshold may not
be applicable for different measurement points, especially in
case of voltage drop along electrical lines. This limitation
makes global control challenging, as no information about the
load sensitivity across connected nodes would be available.
Furthermore, only a few published works consider power
variations influenced by external factors (human behavior,
intrinsic load behavior), which often invalidate simple voltage-
power correlations [22], [23].

This study introduces a perturbation-based load sensitivity
algorithm designed for real-world scenarios. Unlike existing
methods limited by their dependency on precise synchroniza-
tion and their inability to handle noise and unintended power
changes effectively, our approach detects the disturbance and
analyzes the correlation of voltage and power. Moreover,
experimental validation is conducted in the Energy Smart
Home Lab at the Karlsruhe Institute of Technology, accurately
reproducing daily load scenarios while offering testing flexi-
bility.

With respect to the existing literature (see Table I), key
contributions of this work include:

∙ A disturbance detection method based on variation crite-
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ria, eliminating the need for synchronization with main
actuators and consequently time delay issues.

∙ Reliable load sensitivity calculation, resilient to noise and
unintended power changes via pre- and post-processing
filtering, ensuring good performance in unpredictable
real-world scenarios.

∙ Realistic experimental validation in household conditions,
offering a higher degree of realism and flexibility in
testing, which was missing in field measurements and
simulations.

Fig. 1: Examples of voltage-based power controls, where the
load sensitivities are used for the actuator’s voltage set-point
calculation, showing the unlocked flexibility offered by the
proposed disturbance detection method.

In summary, this paper presents an approach to estimate
load sensitivity through a perturbation-based algorithm
suitable for real-world application. The experimental
validation not only showcases its effectiveness but also
demonstrates its practical applicability. The work is structured
as follows: Section II elucidates voltage-based load control
using Solid-State Transformers and outlines the methodology
for perturbation-based load parameter calculation. Section
III provides a comprehensive background on load sensitivity
identification. Section IV delves into the algorithm and
presents simulation results. Real-world load sensitivity
computation outcomes are showcased in Section V. Finally,
the conclusions are drawn in Section VI.

II. SOLID-STATE TRANSFORMER-BASED LOAD CONTROL
The efficacy of voltage-based load management has been

substantiated by its successful implementation in initiatives
like CVR [7], [36] and the CLASS project [12]. A pivotal ele-
ment within this framework is the online tap-changer (OLTC),
responsible for regulating the voltage amplitude within the

low-voltage (LV) grid. This investigation has paved the way for
the emergence of an alternative actuator, known as the Solid-
State Transformer (SST). Functioning as a power electronic-
based AC/AC converter, the SST presents, among various ad-
vantages, a heightened capability for precise voltage amplitude
regulation [37].

The SST aims to replace the conventional transformers and
to provide ancillary services, like power quality improvement,
EV charging station integration, or soft load reduction [38],
also including the ability to interface with DC microgrids.
Although the SST is not yet commercialized, much work has
been done on its topology design and efficiency, which has
already been experimentally proven with prototypes [39], [40].

The SST typically has a 3-stage converter configuration
[38]. This configuration involves a medium voltage (MV)
converter balancing the MV DC link voltage, the DC/DC
converters transforming the voltage from MV to LV, and
the LV converter grid-forming the LV voltage under specific
voltage waveform set-points (e.g. amplitude, frequency or
phase) [41].

As demonstrated in the literature [10], [42]–[44], voltage
amplitude and frequency variations can be used to influence
the load consumption in an active way, enabling a new
approach to obtain power flexibility. However, it must be
noted that its control accuracy is highly dependent on the
load sensitivities and their estimation approaches. Indeed, the
sensitivities’ values are used as a reference to calculate the
effect of the voltage variation on the power consumption [10],
allowing the actuator to apply a precise load reduction when
required. As shown in the grey control area of Fig. 1, the
SST voltage set-point 𝑉 ∗ is calculated based on the required
power variation Δ𝑃 ∗ and the load sensitivity 𝑛𝑝𝑣. This set-
point provided for the load control is based on three steps:

∙ LV side measurements: Voltage amplitude and power are
measured during a disturbance.

∙ Load sensitivity estimation: The load sensitivity param-
eter is calculated from the measured power and voltage
amplitude.

∙ Voltage set-point calculation: The voltage set-point, fed
to the SST controller, is given by (1), which is based on
the power set-point and the load sensitivity value.

Δ𝑉 ∗∕𝑉0 =
Δ𝑃 ∗∕𝑃0

𝑛𝑝𝑣
(1)

where 𝑉 ∗ is the output voltage set-point, Δ𝑃 ∗ is the input
power set-point, 𝑛𝑝𝑣 is the load sensitivity, and 𝑉0 and 𝑃0 are
the rated voltage and power.

Remark: The SST is presented here as an example of an
actuator providing ancillary services [45]. In fact, some works
are already using the load sensitivity in various applications
and actuators types, such as CVR [8], frequency support
for asynchronous grid [43], [44], frequency support through
HVDC-based load control [46], [47], load-control approach in
MV grid with Fast Charging Stations [48], [49], or voltage-
led control [11], [12]. We also highlight that the method can
detect voltage amplitude disturbances as well as frequency
disturbances at any node, as both voltage amplitude and
frequency can be set by an SST unit.
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TABLE I: Existing works on load parameter calculation and disturbance detection.

Event

Required
disturbance

shape
(voltage

amplitude)

Disturbance
repeatability(𝑎)

Disturbance
detection
criteria *

Uncorrelated
power

changes
filtered

Computational
autonomy

and flexibility
of the

detection(𝑏)

Online
experimental

validation
Focus of the

work References

Natural
event

(incl. tap
change)

Variations
(any kind)

/
{corr(𝑉 , 𝑃 ) > 0
Δ𝐹𝑇 > 𝑇ℎ

✓ + + ✗

Machine
learning-based

steady-state ZIP
parameters and
load sensitivity

estimation

[24],
[25], [22]

/ |(𝑉 )| ≠ 0 ✓ + + ✗

Time-varying
ZIP parameters
calculation for

CVR
[26],

[27], [23]

- -
Δ𝑉 > 𝑇ℎ
Δ𝐼 > 𝑇ℎ
𝑛𝑝𝑣 > 𝑇ℎ

✗ + ✗
Event filtering

for load
modeling

[28]

- -
{

Δ𝑉𝑡𝑘 > 𝑇ℎ
Δ𝑉𝑡𝑘+1 > 𝑇ℎ

✗ - - ✗
Hybrid state

estimation and
load modeling

[29]

- - ⎧

⎪

⎨

⎪

⎩

Δ𝑉 > 𝑇ℎ
𝑛𝑝𝑣 > 𝑇ℎ
Δ𝑃∕Δ𝑉 > 0

✗ - ✗
Load modeling

for CVR [30]

Step - - Δ𝑉 > 𝑇ℎ ✗ - ✗
Statistical load

modeling [31]
- - Δ𝑉 > 𝑇ℎ ✗ - ✗ Load modeling [32]

On-demand
tap change Step -

{

Δ𝑉 > 𝑇ℎ
Δ𝑃∕Δ𝑉 > 0

✗ - ✗
Effet of events

on load
modeling

[18]
- Δ𝑉 > 𝑇ℎ ✗ - ✗ Load modeling [33], [34]

On-demand
SST-based
disturbance

Ramp
+ Synchronization

signal ✗ - - ✓

Load modeling
for voltage-based

load control
[10],

[20], [21]

+ Synchronization
signal ✗ - - ✗

Load modeling
for voltage-based

load control
[35]

Variations
Paper: Sinus
Tested: Step,

Ramp,
Triangular

+ +

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜎(𝑉 ) > 𝑇ℎ
𝜎(𝑃 ) < 𝑇ℎ
Δ𝜎(𝑃 ) < 𝑇ℎ
𝑛𝑝𝑣 > 𝑇ℎ

✓ + + ✓

Load modeling
for voltage-based

load control
This paper

* Notations corr(𝑉 , 𝑃 ): correlation matrix; 𝑇ℎ: threshold;
𝐹𝑇 : features matrix; |(𝑉 )|: determinant of the voltage measurements matrix

(𝑎) Disturbance repeatability indicates how often a disturbance can be replicated in a system.
(𝑏) Computational autonomy and flexibility of the detection refers to the ability to operate without human intervention and adapt to various disturbances.

(𝑎) and (𝑏): ++ : High, + : Moderate, - : Low, - - : Very low

III. LOAD SENSITIVITY IDENTIFICATION

In order to assess the load sensitivity, the exponential load
model with frequency dependency has been chosen in this
work [17]. This model was selected for its simplicity and
coherence for voltage-based control purposes. Unlike the ZIP
model, which requires estimating at least two independent
variables, the exponential model involves only one variable
per equation. Moreover, the exponent directly reflects the
sensitivity of power to voltage changes [14], [15].

It is well known that load model parameters vary with time
as the load consumption is constantly evolving due to factors
such as human interaction, weather conditions, or internal
load behavior [26]. To avoid overloading the notation, the
time variable is omitted, and the exponential load model with
frequency dependency can be written as follows:

𝑃 = 𝑃0 ⋅ (
𝑉
𝑉0

)𝑛𝑝𝑣 ⋅ (
𝑓
𝑓0

)𝑛𝑝𝑓 (2)

𝑄 = 𝑄0 ⋅ (
𝑉
𝑉0

)𝑛𝑞𝑣 ⋅ (
𝑓
𝑓0

)𝑛𝑞𝑓 (3)
where 𝑉 is the RMS voltage, 𝑓 is the current frequency, 𝑉0and 𝑓0 are the rated voltage and frequency respectively, 𝑃0 and
𝑄0 are the active and reactive power taken at 𝑉0 and 𝑓0, and
𝑛𝑝𝑣, 𝑛𝑞𝑣, 𝑛𝑝𝑓 , 𝑛𝑞𝑓 describe active and reactive power-to-voltage
and frequency sensitivities respectively, which are ratios and
therefore dimensionless quantities.

A. Perturbation-Based Load Sensitivity Identification
The measurement-driven technique computes load param-

eters by analyzing power measurements within the grid.
The data is refined to identify a pertinent time interval,
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such as when a voltage fluctuation has occurred, leading
to a discernible change in power [18]. More recently, an
extension of the measurement-based method, the perturbation-
based method, avoids this post-data processing and has been
proposed in [20]. In this method, a small artificial amplitude
or frequency variation of the voltage is applied to a part of the
grid by means of an actuator, such as an SST. Using inten-
tional perturbations, the load sensitivity calculation window is
actually the perturbation window known to the actuator. The
load sensitivity can then be calculated in real time from the
measurements. Since SST can emulate any perturbation [44],
in this work, it is decided to emulate sinusoidal variations in
voltage amplitude or frequency.

The load power is always a function of voltage and fre-
quency. However, for studies, the power sensitivity to voltage
and frequency are usually decoupled: either a voltage or a
frequency perturbation is introduced, and the second variable
(voltage or frequency) is kept constant during the perturba-
tion. Thus, the power sensitivity-to-voltage is calculated for
a constant frequency, while the power-to-frequency sensitivity
is calculated for a constant voltage. This assumption can be
considered generally valid for two reasons: it is rare for both
variations to occur naturally at the same time; and if they are
intentional (e.g., with a tap-changer or a SST), they can be
controlled to remain constant.

In this work, a sinusoidal disturbance signal of 0.8Hz is
applied every 15 s for a duration of 5 s. This perturbation
is applied on the voltage, where the nominal magnitude is
𝑉0=230V and the nominal frequency 𝑓0=50Hz. In order
to comply with the European grid standards, the pertur-
bation amplitudes remain in the following ranges: Δ𝑓 ∈
[±0.1Hz; ±1Hz] and Δ𝑉 ∈ [±1%;±5%] of 𝑉0. The load
parameter values are then calculated during the perturbation,
as described in the following section, and averaged to build
the load sensitivity.

B. Load Sensitivity Calculation
This section presents the basics of load sensitivity

identification, as introduced in [20]. This method consists of
generating a disturbance in voltage magnitude or frequency
and recording the active and reactive power. From the
measured voltage, frequency, and power, the load sensitivities
are calculated using the method explained in this section.

1) Sensitivity to voltage: In case of the exponential model,
the power-to-voltage sensitivity 𝑛𝑝𝑣 can be calculated as fol-
lows:

𝑛𝑝𝑣 =
d𝑃∕𝑃𝑖
d𝑉 ∕𝑉𝑖

|

|

|

|𝑉 =𝑉𝑖
(4)

where the normalization point 𝑉𝑖 can be chosen arbitrarily, and
𝑃𝑖 = 𝑃 |𝑉 =𝑉𝑖 .Following the theory in [20], (4) can be rewritten as:

𝑛𝑝𝑣 =
(𝑃𝑘 − 𝑃𝑘−1)∕𝑃𝑘−1
(𝑉𝑘 − 𝑉𝑘−1)∕𝑉𝑘−1

(5)
where 𝑃𝑘 and 𝑉𝑘 are power and voltage at current time
step 𝑡𝑘. The reactive power-to-voltage sensitivity 𝑛𝑞𝑣 can be

calculated in the same way.
2) Sensitivity to frequency: Similarly to the voltage sensi-

tivity, the power-to-frequency sensitivity can be expressed as:
𝑛𝑝𝑓 =

d𝑃∕𝑃𝑖
d𝑓∕𝑓𝑖

|

|

|

|𝑓=𝑓𝑖
(6)

where the normalization point 𝑓𝑖 can be chosen arbitrarily, and
𝑃𝑖 = 𝑃 |𝑓=𝑓𝑖 .The sampled 𝑛𝑝𝑓 can be written as:

𝑛𝑝𝑓 =
(𝑃𝑘 − 𝑃𝑘−1)∕𝑃𝑘−1
(𝑓𝑘 − 𝑓𝑘−1)∕𝑓𝑘−1

(7)
where 𝑃𝑘 and 𝑓𝑘 are power and frequency at current time step
𝑡𝑘. The sensitivity calculation approach using (7) are presented
in Fig. 2.

Fig. 2: Load sensitivity calculation error for an ideal frequency
disturbance of ±0.5% and an ideal power waveform with 𝑛𝑝𝑓normalized at 𝑛𝑝𝑓 0 = 3.

C. Systematical Calculation Error
The load sensitivity calculation using (5) and (7) are based

on the linearization of the load model. This can lead to
calculation errors depending on several parameters such as
the disturbance amplitude, the base load sensitivity, or the
measurement sampling time [35]. These errors are quantified
here by simulation. Two types of error are considered: the
error computed after averaging over a perturbation interval
and the maximum deviation from the correct value. Both of
them are relative errors, normalized at the base sensitivity
value 𝑛𝑝𝑣 0. They represent the percentage deviation from the
base value, where 𝑛𝑝𝑣⋅raw are the raw calculations of the load
sensitivity during the disturbance time window and 𝑛𝑝𝑣⋅Avg is
the average of 𝑛𝑝𝑣⋅raw during the disturbance.

1) Error after averaging: The error after averaging rep-
resents the deviation of the calculated sensitivity from the
base sensitivity. The calculated sensitivity is the average of all
sensitivities calculated during the disturbance time window.
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𝑛𝑝𝑣⋅Avg is the estimate of the base value by averaging, and its
estimation error can be written as follows:

𝐸𝑟𝑟Avg =
𝑛𝑝𝑣⋅Avg − 𝑛𝑝𝑣 0

𝑛𝑝𝑣 0
(8)

2) Maximum deviation error: The maximum deviation er-
ror is the maximum difference between the raw sensitivity
calculated during the disturbance and the base sensitivity. This
gap has a direct effect on the average sensitivity, especially in
the case of asymmetric results (different deviations for over-
and underestimated sensitivities). The maximum deviation can
be expressed as follows:

𝐸𝑟𝑟max =
max(𝑛𝑝𝑣⋅raw − 𝑛𝑝𝑣 0)

𝑛𝑝𝑣 0
(9)

The calculation error can be seen in Fig. 2, where two
successive measurements of frequency and power are used as
in (7) to calculate the load sensitivity (the power-to-frequency
sensitivity in this case). In the graphs, 𝑓 , 𝑃 and 𝑛𝑝𝑓 are
normalized at 𝑓0, 𝑃0 and 𝑛𝑝𝑓 0 to make the calculation error
more intuitive. The selected red point on the load sensitivity
graph shows the location of the largest calculation error for
a frequency disturbance of 0.5% and a base sensitivity of
𝑛𝑝𝑓 0 = 3. The grey area actually shows that the load sensitivity
calculation based on (5) or (7) always introduces a calculation
error.

Fig. 3: Load sensitivity identification error for different distur-
bance amplitudes and load sensitivities.

In fact, the calculation error depends on several parameters,
including the actual load sensitivity and the disturbance am-
plitude. The influence of these two parameters can be seen
in Fig. 3. The figure shows the maximum calculation error
of (9) and the error after averaging of (8) for different base
load sensitivities (x-axis) and different perturbation amplitudes
(color variation). The load sensitivity range [−5; 10] has
been chosen according to some previous results found in the
literature [50], [51]. The computational error comes from the
linearization of the load model, which leads to the fact that
a load sensitivity of 𝑛𝑝 = 1 makes the load model linear.
Therefore, the approximation of (5) becomes a real slope
calculation without any error. Thus, the identification accuracy

depends on the actual load sensitivity value and amplitude of
the disturbance, where the error can be significantly reduced
by averaging the calculated sensitivity over the disturbance
time window.

IV. IMPLEMENTATION OF THE DISTURBANCE DETECTION
FOR LOAD SENSITIVITY CALCULATION

Previous section has highlighted that the load sensitivity
calculation introduces a systematic error, which can be sig-
nificantly reduced by averaging the calculated values over an
entire number of disturbance periods. Previous works [10],
[35] used a synchronization signal, coming from the actuator
itself (real-time simulator), while this work has created a math-
ematical tool able to detect the start and end of the disturbance
without external synchronization. The disturbance detection
and data processing after the load sensitivity calculation are
shown in Fig. 4 and described in the following sections.

Fig. 4: Perturbation detection and data processing for real
applications of load sensitivity identification.

As already mentioned in Section III-A, the load sensitivity
calculation takes place during a voltage (or frequency)
disturbance. In this work, the perturbation is a sinusoidal
change in voltage amplitude or in frequency. The disturbance
parameters are fixed for the demonstration, but the detection
works for different disturbance frequencies and lengths.

1 Disturbance detection
The detection consists of comparing the voltage (or fre-

quency) variation with a defined limit 𝑙𝑑𝑖𝑠𝑡.This section describes the detection of the perturbation us-
ing only voltage measurements without any external synchro-
nization signal. The detection of a disturbance in frequency
is equivalent to the detection of a disturbance in voltage
amplitude.
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i) Definition of 𝐸̂𝑑𝑖𝑠𝑡: To detect a perturbation, this work
uses a created estimator, which quantifies the voltage ampli-
tude variation. The normalized standard deviation 𝜎𝑁 is first
considered, which is calculated over 𝑁 points. The idea of
the detection is to create an estimator based on the standard
deviation, where the estimator values are higher than a defined
limit 𝑙𝑑𝑖𝑠𝑡 when a perturbation occurs. The estimator of voltage
variation 𝐸̂𝑑𝑖𝑠𝑡 is defined as:

𝐸̂𝑑𝑖𝑠𝑡 =
̂𝜎𝑁

𝑉0 ⋅ 𝑎𝑑𝑖𝑠𝑡∕%
(10)

where ̂𝜎𝑁 is the calculated standard deviation of the
signal over 𝑁 points, 𝑉0 is the rated voltage, and 𝑎𝑑𝑖𝑠𝑡∕%is the percentage of the amplitude variation of the disturbance.

ii) Disturbance detection condition: Using the voltage varia-
tion estimator of (10), a disturbance is detected if the condition
of (11) is fulfilled.

𝐸̂𝑑𝑖𝑠𝑡 > 𝑙𝑑𝑖𝑠𝑡 (11)
where 𝑙𝑑𝑖𝑠𝑡 is set between 0.2 and 0.5 in this work, regardless
of the disturbance characteristics. Fig. 5 shows the comparison
of the estimator 𝐸̂𝑑𝑖𝑠𝑡 with the limit 𝑙𝑑𝑖𝑠𝑡 during a disturbance.
2 Filtering of uncorrelated power variations

The variation of power is measured and compared to
another variation limit 𝑙𝑠𝑡𝑎𝑡𝑒, indicating a discontinuity. While
the power variations are below the discontinuity limit, the load
sensitivity is being calculated (see 3 ).

Appliances such as washing machines, dishwashers, or
ovens have different working states depending on their cur-
rent working cycle. Each state is recognizable by its power
consumption. The power-to-voltage or power-to-frequency de-
pendencies are also affected by the operating state (different
components in use). Thus, the load sensitivity identification
algorithm must be able to distinguish power fluctuations
originating from the internal load behavior versus those caused
by introduced disturbances. For example, a state change is
considered as a power discontinuity.

i) Definition of 𝐸̂𝑝𝑜𝑤𝑒𝑟: The power variation estimator 𝐸̂𝑝𝑜𝑤𝑒𝑟of (12) differentiates the case of power variations created by
the voltage perturbation from the case of loads internal state
changes.

𝐸̂𝑝𝑜𝑤𝑒𝑟 =
̂𝜎𝑁

𝑃𝑚𝑎𝑥 ⋅ 𝑎𝑑𝑖𝑠𝑡∕% ⋅ 𝑛𝑝0
(12)

where ̂𝜎𝑁 is the power standard deviation calculated over
𝑁 values, 𝑎𝑑𝑖𝑠𝑡∕% is the perturbation amplitude variation in
percent, 𝑃𝑚𝑎𝑥 is the maximum power value measured in
the last time window, and 𝑛𝑝0 is the previously calculated
load sensitivity. The two additional normalization parameters
in comparison to (11), 𝑃𝑚𝑎𝑥 and 𝑛𝑝0 , are required as they
represent the current load state.

ii) Discontinuity detection condition: The condition of no
discontinuity is written in (13):

𝐸̂𝑝𝑜𝑤𝑒𝑟 < 𝑙𝑠𝑡𝑎𝑡𝑒 (13)
where 𝑙𝑠𝑡𝑎𝑡𝑒 can be chosen depending on the system setups
(number of loads and nominal power).

Based on the estimator value, the method can classify
the power variation into different categories, namely a state
change or a reaction to the perturbation in voltage or frequency.

Remarks on 1 and 2 : The variable 𝑁 influences the value
of the standard deviation ̂𝜎𝑁 , making the detection more or
less precise as shown in Fig. 5. Actually, the choice of 𝑁
is influenced by the sampling rate of the measurements. We
define 𝛼, representing the ratio of the number of samples in
the calculation window 𝑁 , to the number of samples in one
period of the disturbance 𝑁𝑝𝑡∕𝑇 as:

𝛼 = 𝑁
𝑁𝑝𝑡∕𝑇

(14)

𝑁𝑝𝑡∕𝑇 =
𝑇𝑑𝑖𝑠𝑡
𝑡𝑠

(15)
where the disturbance period 𝑇𝑑𝑖𝑠𝑡 = 1∕𝑓𝑑𝑖𝑠𝑡 = 1.25 s, and the
time step 𝑡𝑠 = 50ms, in this work.
𝛼 ≃ 1 offers a good choice for the perturbation detection,

where (11) is used for the disturbance detection, regardless
of the perturbation characteristics. This makes the detection
criteria flexible and usable for different disturbances
amplitudes and types (sinusoidal, triangular, ramp, or step).
Moreover, the detection is resilient to noise, as demonstrated
in Fig. 5, where the voltage is represented with a signal-to-
noise ratio (SNR) of 15dB.

Fig. 5: Influence of the number of samples 𝑁 in the calculation
window (e.g. the ratio 𝛼) on the disturbance detection, with
SNR=15 dB.

3 Filtered Load Sensitivity Calculation
Since the load sensitivity calculation is highly sensitive to

measurement noise, the input signals (voltage RMS and active
power, for example) must be filtered with a low-pass filter
before the calculation. Then, a second filter is applied to the
calculated load sensitivity values to remove eventual outliers.
The data processing of the load sensitivity calculation (step 3
of Fig. 4) is detailed in Fig. 6 and explained in the following.

The voltage RMS (or frequency) and active (or reactive)
power are considered as the input measurement magnitudes
used for the load sensitivity calculation.

This article has been accepted for publication in IEEE Transactions on Power Delivery. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPWRD.2024.3453270

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



7

Fig. 6: Data processing for identification and result example.

i) Moving Average Filter: The moving average filter, de-
scribed in (16), provides a smoothed and delayed version of
the input signals and has been applied to both voltage and
power signals. The window size for the average has been
chosen for an optimal balance between noise reduction and
signal distortion. The filter’s response can be written as:

𝑦(𝑘) = 1
𝑁

⋅
𝑁
∑

𝑛=1
𝑥(𝑘 − 𝑛) (16)

where 𝑁 is the considered window size, 𝑥(𝑛) are the real
measurements, and 𝑦 is the new value of the signal 𝑥 at the
time 𝑡𝑘, after the application of the filter.

It must be noted that the shape of the filtered signal does
not impact the load sensitivity calculation, provided the same
filter parameters are used for both input signals. The filtered
power signal is shown in green in Fig. 6, where the output
signal has been obviously smoothed.

ii) Load Sensitivity Calculation: The load sensitivity is
calculated over the disturbance window, where the detection
has been explained in 1 and 2 . The calculation of (5) uses
filtered voltage and input power. After the raw calculation,
the average error of the calculation is 𝐸𝑟𝑟Avg = 10.5% for
this showcase.

iii) Hampel-Filter: Even if the identification method uses
filtered signals for the calculation of load sensitivities, some
outliers are still observed, moving the final load sensitivity
average away from the actual sensitivity value. Therefore,
calculated load sensitivities are filtered with a Hampel-filter.
This filter removes outliers by calculating the median value
of the data set [52]. It considers as an outlier all points that
deviate from the median more than the estimated standard

deviation. The filter’s response is given as:

𝑦(𝑘) =

{

𝑚𝑘, if |𝑥(𝑘) − 𝑚𝑘| > 𝑡 ⋅ 𝑆𝑘
𝑥(𝑘), otherwise (17)

where 𝑦 is the filtered value of 𝑥, 𝑚𝑘 is the median value over
the moving data window, and 𝑆𝑘 is the standard deviation
estimator, using the Median Absolute Deviation (MAD), and
defined as:

𝑆𝑘 = 1.4826 ⋅ MAD (18)
The factor 1.4826 makes 𝑆𝑘 an unbiased estimator of the
standard deviation for Gaussian data. The threshold parameter
𝑡 is set, giving a more (𝑡 = 0) or less aggressive filter (𝑡 > 0).
The filtered load sensitivity is drawn in green in Fig. 6.

iv) Average over the disturbance window: Because of
the systematic sensitivity identification error described in
section III-C, the calculated values are averaged over the
entire perturbation window after having been filtered with
the Hampel-filter. The maximum error is reduced, and the
identification error after averaging falls from 𝐸𝑟𝑟Avg = 10.5%
without filter to 𝐸𝑟𝑟Avg = 0.5% with the Hampel-filter,
proving its effectiveness.
4 Reliability of Calculated Load Sensitivity

The reliability of the calculation is determined based on
the two aspects described below.

i) Low surrounding noise: The load sensitivity is calculated
when the power shows simultaneous variations with the volt-
age perturbation, which may be due to the load sensitivity.
However, the power variations can be uncorrelated to the
voltage disturbance, especially in cases of measurement noise
or internal load behavior. In this work, the estimator of the
power variation 𝐸̂𝑝𝑜𝑤𝑒𝑟 is used as a measure of the surrounding
noise. The variation of power before the disturbance 𝐸̂𝑝𝑜𝑤𝑒𝑟𝐵is compared with the variation of power during the disturbance
𝐸̂𝑝𝑜𝑤𝑒𝑟𝐷. If the variation before the disturbance is bigger
than the variation during it, as shown in (19), the impact
of surrounding noise on the load sensitivity calculation is
neglected. Otherwise, the calculated sensitivity is considered
unreliable.

𝐸̂𝑝𝑜𝑤𝑒𝑟𝐷 > 𝑚 ⋅ 𝐸̂𝑝𝑜𝑤𝑒𝑟𝐵 (19)
where the factor 𝑚 is equal to 2 in this work, and the variation
estimators 𝐸̂𝑝𝑜𝑤𝑒𝑟𝐵 and 𝐸̂𝑝𝑜𝑤𝑒𝑟𝐵 are calculated based on (12).

ii) Small load sensitivity: Because of the remaining
measurement noise, the calculation uncertainties require
setting a minimum value for the load sensitivity calculation.
Especially in case of no sensitivity, the algorithm is unable
to differentiate very small load sensitivity (e.g. ∣ 𝑛𝑝 ∣< 0.05)
from no sensitivity at all. Consequently, only load sensitivity
greater than 0.05 is considered. This criterion will not
influence further control based in the estimated sensitivity,
as the controller lacks controllability on the grid power
consumption in cases of excessively small load sensitivity.
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iii) Average over the disturbance window After this filtering
process, the load sensitivity is averaged over the disturbance
window. This value is used for the voltage control described
in Section II.

V. VALIDATION OF THE IDENTIFICATION APPROACH IN
REALISTIC EXPERIMENTAL CONDITIONS

To prove its performance, the proposed algorithm has been
tested in realistic grid conditions, implementing it at the
Energy Smart Home Lab (ESHL) at the Karlsruhe Institute
of Technology (KIT) as in Fig. 7.

A. Energy Smart Home Lab Experimental Setup
The ESHL is a 60m2 intelligent residential building, with

two bedrooms and a 20m2 technical room [53], see Fig. 7.
Electrical commercial devices such as a washing machine,
clothes dryer, dishwasher, coffee machine, boiler, vacuum
cleaner, microwave, or oven are installed in the apartment,
as described in Table II. Each phase has been measured
individually, and the power measurement in one phase is equal
to the power consumption of the connected loads to this phase.
The house has been supplied by a three-phase four-quadrant
voltage amplifier that operates as a controlled voltage source
and has been connected to a real-time simulator, which pro-
vides output of the voltage signals with desired magnitude and
frequency disturbances. For performing the experiments, the
amplifier was tasked to apply the desired disturbance in voltage
amplitude, while the frequency and active and reactive power
were recorded with 20Hz (𝑡𝑠 = 50ms). The same operation
has been repeated, considering frequency perturbations only.

B. Experimental Results
Figures 8a and 8b show two examples of load sensitivity

calculation of a vacuum cleaner, with a frequency perturbation
of Δ𝑓 = ±0.5Hz. The first graph shows the evaluation of the
active power sensitivity to frequency 𝑛𝑝𝑓 , whereas the second
one shows the calculation of 𝑛𝑞𝑓 . The raw identification is
drawn in grey, whereas the green curve depicts the results
obtained after filtering. Similarly, figures 9a and 9b show the
power-to-voltage sensitivities calculated with measurements

TABLE II: Rated power of residential appliances, defined as
the average power before the disturbance

.

Load 𝐏𝟎(W)
𝐐𝟎(var) Load 𝐏𝟎(W)

𝐐𝟎(var)
Back oven 3450 46 Toaster 713 7
Washing
machine 2150 210 Halogen light 556 115
Cloth dryer 2100 66 Vacuum cleaner 401 420
Dishwasher 2000 100 Cooker hood 214 221
Water kettle 1963 14 Freezer 108 21
Induction stove 1935 288 Fridge 41 52
Coffee
machine 1000 13 Electrical

shutter 123 113

of an oven, where the voltage amplitude has been varied by
Δ𝑉 = ±0.5% of the rated voltage. The first graph represents
the active power sensitivity to voltage 𝑛𝑝𝑣, while the second
one depicts the reactive power measurements, giving 𝑛𝑞𝑣.

1) Example of the calculation implementation for real
loads: The algorithm computes the load sensitivity exclusively
during detected disturbances. As depicted in figures 8a and
8b, and figures 9a and 9b, the sensitivity calculation window
perfectly aligns with the disturbance window, showcasing
the effectiveness of the detection method in distinguishing
between baseline measurements and disturbances. In the third
graph representing the load sensitivity, the grey curve repre-
sents the raw calculation, while the green curve shows the
filtered load sensitivity using the Hampel-filter. The single
point separated from the calculation window represents the
average of the filtered calculation. Figures 8a and 8b show the
results of three independent calculations of the vacuum cleaner
load sensitivity to frequency: 𝑛𝑝𝑓 = −1.89 and 𝑛𝑞𝑓 = −0.49.

Similarly, figures 9a and 9b show the calculation of the load
sensitivity to voltage of an oven, despite the state change (at
𝑡 ≃ 20 s). The first graph depicts a step in the oven’s active
power, occurring during the perturbation generated for the load
sensitivity calculation. After the filtering stage, the algorithm
still gives a reliable value, as the load sensitivity average of the

Fig. 7: Set-ups for real measurements in the Energy Smart Home Lab
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second voltage perturbation is identical to both the previous
and the following one. The oven’s active power sensitivity
to voltage identification gave 𝑛𝑝𝑣 = 2.00. The second graph
shows the reactive power peak due to the active power sudden
change. The power discontinuity detection recognizes that this
high power variation does not come from the created voltage
disturbance and stops the load sensitivity identification. The
oven’s reactive power sensitivity to voltage has been accurately
evaluated: 𝑛𝑞𝑣 = 3.05.

The algorithm is thus able to perform the load sensitivity
calculation with realistic household load behaviors and can
reject unwanted power variations, avoiding identification
errors.

2) Validation of the load parameter identification by means
of power reconstruction: Working with real loads, the actual
load sensitivity is unknown. The comparison of the measured

(a)

(b)
Fig. 8: Vacuum cleaner active (a) and reactive (b) power
sensitivities to frequency for 1% frequency disturbance: 𝑛𝑝𝑓 =
−1.89 and 𝑛𝑞𝑓 = −0.49. For 𝑛𝑝𝑓 and 𝑛𝑞𝑓 , the raw calculation
is represented in grey and the filtered values in green.

power and the reconstructed power provides information on
the calculation’s reliability.

First, the load sensitivity calculation is consistent, giving
the same results for all independently made calculations. Then,
the measured oven’s powers of figures 9a and 9b have been
compared to a reconstructed power based on the exponential
load model and the calculated load sensitivity of the oven.
Fig. 10 provides this comparison, where the reconstructed
power is shown in green, and the measured power is plotted
in grey.

During power variations, the reconstructed power magnitude
matches the measured power magnitude of the disturbance.
Indeed, the relative error of the reconstructed power to the
measurements is smaller than 0.15%. Since the actual load
sensitivity is unknown, the calculated value is varied by
±0.1 to assess the accuracy of the estimated sensitivity. The
results shown in Fig. 11 highlight that the reconstruction error

(a)

(b)
Fig. 9: Oven active (a) and reactive (b) power sensitivities to
voltage for 0.5% voltage disturbance: 𝑛𝑝𝑣 = 2.00 and 𝑛𝑞𝑣 =
3.05. For 𝑛𝑝𝑣 and 𝑛𝑞𝑣, the raw calculation is represented in
grey and the filtered values in green.
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increases when the load sensitivity deviates from the estimated
value 𝑛𝑝𝑣⋅𝐴𝑣𝑔 = 2.00, indicating that the sensitivity has been
calculated with an accuracy better than 0.1. Thus, the proposed
identification approach is resilient to unwanted disturbances
and accurately identifies the load dependency on voltage and
frequency.

(a)

(b)
Fig. 10: Oven active (a) and reactive (b) power reconstruction
for 0.5% voltage disturbance, showing the initial power mea-
surements in grey, and the reconstructed power using the load
sensitivity identification algorithm in green.

Fig. 11: Mean average percentage error (MAPE) of the recon-
structed power of the oven, for the calculated load sensitivity
𝑛𝑝𝑣⋅𝐴𝑣𝑔 = 2.00 and deviations of ±0.1 (see Fig. 9a and 10a).

3) Summary of the results:
∙ The load sensitivity is calculated only during distur-

bances, demonstrating the method’s ability to distinguish
disturbances from baseline measurements.

∙ The method effectively differentiates between distur-
bances caused by on-demand voltage (or frequency) vari-

ations and those due to measurement noise or load state
changes.

∙ Despite internal load behavior or measurement noise, the
calculated load sensitivity remains reliable, with consis-
tent values and accurate power reconstruction.

VI. CONCLUSION
This paper proposes a perturbation-based load sensitivity

calculation method, suitable for realistic household scenarios,
using a variation-based perturbation detection algorithm. The
algorithm accurately identify the load sensitivity within the
range [−5; 10]. It detects frequency or voltage disturbances
within Δ𝑓 ∈ [± 0.1Hz; ± 1Hz] and Δ𝑉 ∈ [± 1%;± 5%]
of 𝑉0, distinguishing them in real-time from baseline mea-
surements. The disturbance detection has been successfully
applied to noisy measurements, making it suitable for on-
field applications. The computational autonomy and manage-
ment of uncorrelated power variations ensure consistent and
reliable load sensitivity calculations. The accuracy has been
demonstrated by reconstructing the measured power using the
calculated load sensitivity with less than 2% error.
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