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We study the Helmholtz equation with periodic coefficients in a closed waveg-
uide. A functional analytic approach is used to formulate and solve the radi-
ation problem in a self-contained exposition. In this context, we simplify the
non-degeneracy assumption on the frequency. Limiting absorption principles
(LAPs) are studied, and the radiation condition corresponding to the chosen
LAP is derived; we include an example to show different LAPs lead, in general,
to different solutions of the radiation problem. Finally, we characterize the set
of all bounded solutions to the homogeneous problem.
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1 INTRODUCTION

This paper is devoted to the study of equations modelling waves in a periodic waveguide. We consider

−Δu − k2nu = 𝑓 in Ω ∶= R × S . (1.1)

The domain is an unbounded cylinder with a cross-section S; we assume that S ⊂ R
d−1 is a bounded Lipschitz domain,

and d ≥ 2 is the dimension of the waveguide. The wave-number k ∈ C is prescribed and satisfies Im k ≥ 0; the coefficient
function n ∶ Ω → R is assumed to be 2𝜋-periodic in x1; the right-hand side 𝑓 ∈ L2(Ω) is assumed to have compact support
or, more general, decay properties; see (1.3). We treat the homogeneous Dirichlet boundary condition u = 0 on R × 𝜕S.
We are interested in solutions u to (1.1) that satisfy, additionally, a radiation condition.

In this article, we show existence and uniqueness results for (1.1); we investigate different limiting absorption principles
(LAPs), and we characterize function spaces that are related to (1.1). Regarding the LAPs, we show that a vanishing
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2 KIRSCH and SCHWEIZER

absorption can yield, indeed, a (radiating) solution to the original problem; we additionally show that different damping
mechanisms in the LAP can lead to different radiation conditions and, hence, select different solutions to (1.1).

In this work, we treat only the case of a strictly periodic coefficient n = n(x). Nonetheless, we mention that our work
has implications for the case that the medium is only periodic outside a compact set; we comment on this connection at
the end of this introduction.

We always use a weak solution concept. Solutions to (1.1) are functions u ∈ H1
loc

(
Ω̄
)
∶= {u ∶ Ω → C |u|(−R,R)×S ∈

H1 ((−R,R) × S) for every R > 0}, and (1.1) is interpreted in the weak sense: We demand that

∫Ω

{
−k2nu𝜑̄ + ∇u · ∇𝜑̄

}
= ∫Ω

𝑓 𝜑̄ (1.2)

holds for all 𝜑 ∈ H1
0(Ω), and u = 0 on R × 𝜕S in the sense of traces. We assume that the right-hand side is in the space

L2
∗(Ω) ∶=

{
𝑓 |x → (1 + |x1|2)𝑓 (x) ∈ L2(Ω)

}
(1.3)

with the corresponding norm.
In the first step, we construct solutions u ∈ H1(Ω). For wave numbers k ∈ C with Im k > 0, the existence of such

solutions follows for all 𝑓 from the Lax–Milgram theorem. We show that, for real values of k, the existence of H1(Ω)
solutions can be obtained with the Floquet–Bloch transform for right-hand sides 𝑓 that satisfy an orthogonality condition
(we will write g instead of 𝑓 for sources with this property). This construction of solutions u ∈ H1(Ω) can be used to show
existence and uniqueness of a radiating solution u ∈ H1

loc

(
Ω̄
)

for a general right-hand side 𝑓 .
In Section 4, we turn to LAPs. In a first result, we consider a real number k > 0 and use the wave-number k + i𝜂 in the

equation. We find that as 𝜂 > 0 tends to zero, solutions u𝜂 tend to solutions of the limit problem with 𝜂 = 0. It is interesting
to compare this result with other mechanisms of a small absorption: We show that different absorption terms lead, in
general, to different limit solutions. We can characterize the radiation condition for different absorption mechanisms.

The starting point for all these results is the Floquet–Bloch transform. It allows to transform the original Equation (1.1)
to a family of problems on the bounded domain W ∶= (0, 2𝜋) × S. The family of problems is parametrized by a parameter
𝛼 ∈ I ∶= [−1∕2, 1∕2]. Equation (1.1) has then to be solved on W for all 𝛼 ∈ I, demanding the 𝛼-quasi-periodicity of
solutions on the lateral boundaries {0}×S and {2𝜋}×S. To obtain an equivalent formulation of the problem, it is important
to impose, additionally, certain boundedness properties of solutions with respect to the parameter 𝛼.

When a fixed parameter k ∈ R is considered, we obtain a one-parameter family of problems (𝛼 is the only parameter).
For a wave number of the form k + i𝜂, we will deal with a two-parameter family of problems, where 𝜂 > 0 is a second
parameter.

1.1 Known results and literature
The Helmholtz equation is an old and intensively treated research subject. Classical contributions concern homogeneous
media and treat the appropriate radiation conditions in different (unbounded) geometries, the development of appropriate
numerical schemes, and the field of inverse scattering. Here, we refrain from citing any of the corresponding results.

The two simplest cases for heterogeneous media are (a) periodic media and (b) compact perturbations of periodic media.
The methods for the two cases are closely related. In particular, in both cases, one can exploit the tool of the Floquet–Bloch
transform [1, 2]. Within this setting, the simplest geometry is that of a closed waveguide. An important contribution is
[3], where the appropriate radiation condition was specified and an existence and uniqueness proof was presented. A
related work is [4], where a LAP for the periodic waveguide was shown. In [5], the focus is on equivalent descriptions with
Dirichlet-to-Neumann maps, which are useful also in numerical approaches. Such an approach was also used to study,
for example, waveguides with different periodic geometries in the two directions. We refer to [6] for a typical result and
further references.

All of the above articles are based on complex integrals to invert operators or operator families. Another route to exis-
tence and uniqueness results was developed with [7, 8] based on an idea taken from [9]. Essentially, after a Floquet–Bloch
transform of the equations, one has to deal with a family of operators that are, except for a discrete set of exceptional
points, invertible. With an application of the implicit function theorem, one can construct bounded families of solutions.
These provide solutions in periodic waveguides without advanced operator theory. In the paper at hand, we will use this
method. We note that the method can be used also for an analysis of Maxwell's equation; see [10].
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KIRSCH and SCHWEIZER 3

While all of the above approaches are based, in one way of the other, on the Floquet–Bloch transform, [11] is not using it;
an existence result is shown, and in a more general geometry, a Fredholm alternative, the proofs use only energy methods.
The only assumption that is made in [11] is that of a non-degeneracy of 𝜔 (which is essentially k in the article at hand).
With Section 6, we show that our quite classical Assumption 3.5 implies the non-degeneracy that was assumed in [11]. We
note that similar ideas allow to introduce a different radiation condition; see [12], and for a numerical scheme, see [13].

Let us close this overview by mentioning some results beyond closed waveguides. Perturbed periodic geometries in
two dimensions are considered in [14–19]. For open waveguides, by which we mean here a domain that is unbounded in
more than one direction, one has to introduce radiation conditions also in the additional direction; we refer to [20, 21] for
formulations of such conditions.

1.2 Outline of this article and further implications
The present work provides a simplified, direct approach to the Helmholtz equation in periodic media. This comes with a
simplification of the non-degeneracy assumption on frequencies; see Assumption 3.5.

We collect and prove basic facts about the Floquet–Bloch transform in Section 2. Using these tools and a functional
analysis theorem, we show a result on existence and uniqueness for the radiation problem in Section 3. Section 4 is devoted
to limiting absorption principles and the radiation conditions that are obtained from the LAPs. The simple examples of
Section 5 demonstrate how different damping approaches lead to different limit solutions. Section 6 is devoted to the
analysis of two important spaces of homogeneous solutions.

Let us make a comment on the result of Section 6. Let Y be the span of all quasiperiodic homogeneous solutions and
let B be the space of all bounded homogeneous solutions; for precise definitions, see (6.1) and (6.2). We show Y = B in
Theorem 6.2. This means that every bounded homogeneous solution is a linear combination of quasiperiodic solutions.

The result Y = B has an important implication: Under our simple non-degeneracy assumption in 3.5, also, the more
complex non-degeneracy assumption of [11] is satisfied. This means, in particular, that under Assumption 3.5, the exis-
tence result of [11] is valid; it yields an existence result in the case that two different periodic media are given in the left
and in the right half-waveguide.

2 FLOQUET–BLOCH TRANSFORM OF THE EQUATION

This section is devoted to the application of the Floquet–Bloch transform to (1.1). We emphasize that, here, we only study
coefficients that are x1-periodic in all of Ω. Only homogeneous Dirichlet conditions are treated here, but we note that, for
example, homogeneous Neumann conditions can be treated with only notational changes in the proofs. Also, operators of
the form u → −∇ · (a∇u) − k2u with strictly positive and 2𝜋-periodic a ∈ L∞(Ω,Rn×n) can be treated with only notational
changes.

2.1 The Floquet–Bloch transform
We perform the Floquet–Bloch transformation only in the x1-variable. We recall that the interval for the parameter 𝛼 is
I = [−1∕2, 1∕2] and that the periodicity cell is W = (0, 2𝜋) × S. The transformation is a bounded linear map

FB ∶ L2(Ω) → L2 (W × I) , u → û . (2.1)

For smooth functions u with compact support, writing x = (x1, x̃) for the argument, the transformation is defined by

û((x1, x̃), 𝛼) ∶=
∑
𝓁∈Z

u((x1 + 2𝜋𝓁, x̃))e−i𝓁2𝜋𝛼 , (2.2)

for every x1 ∈ (0, 2𝜋), x̃ ∈ S, 𝛼 ∈ R. The map FB of (2.1) is defined as the continuous extension of this map. Proofs
regarding properties of the map FB are given in Appendix A.

We say that a function u ∈ H1(W) is 𝛼-quasiperiodic when u(2𝜋, ·) = e2𝜋i𝛼u(0, ·) holds in the sense of traces. We define
the space H1

𝛼(W) as the subspace of H1(W) that consists 𝛼-quasiperiodic functions. From the definition of FB in (2.2), it
is clear that, for almost every 𝛼, the function û(·, 𝛼) is 𝛼-quasiperiodic.
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4 KIRSCH and SCHWEIZER

A direct consequence of definition (2.2) is that the transformation respects derivatives in the sense that FB(𝜕ku) =
𝜕k(FBu) for u ∈ Hk(Ω) and k ≤ n. This fact implies that we can interpret FB also as a map from H1(Ω) onto

L2 (I,H1
𝛼(W)

)
∶=
{

u ∈ L2 (I,H1(W)
) |||| u(·, 𝛼) is 𝛼 -quasiperiodic

for almost all 𝛼

}
.

Two remarks should be made at this point. One regards a notational difficulty: The target space H1
𝛼(W) depends

on the parameter 𝛼; hence, L2 ((−1∕2, 1∕2),H1
𝛼(W)

)
is not a Bochner-space. Nevertheless, it is a closed subspace of

L2 ((−1∕2, 1∕2),H1(W)
)

and carries the topology of that ambient space. Our second remark is that H1
𝛼(W) does not include

a boundary condition on R × 𝜕S but a boundary condition can and will be included later on.
With the above space, the transformation map FB has a bounded inverse

−1
FB ∶ L2 (I,H1

𝛼(W)
)
→ H1(Ω) . (2.3)

The construction of−1
FB with its easy formula (A4) is provided in Appendix A for convenience of the reader. The method

is quite standard; for generalized approaches, we refer to [1, 2].

2.2 A family of operators
We exploit the Floquet–Bloch transform to analyze equation (1.1). In this subsection, the wave-number can also be com-
plex; we treat an arbitrary k ∈ C. The right-hand side is denoted by g ∈ L2

∗(Ω) and not by 𝑓 ; the reason is that, in this
first step, we construct H1(Ω)-solutions u for right-hand sides g with a particular structure. Later on, we treat general
right-hand sides 𝑓 ∈ L2

∗(Ω). We consider, as in (1.1),

−Δu − k2nu = g in Ω = R × S , (2.4)

with the weak form as in (1.2),

∫Ω

{
−k2nu𝜑̄ + ∇u · ∇𝜑̄

}
= ∫Ω

g 𝜑̄ (2.5)

for all 𝜑 ∈ H1
0(Ω). We always impose Dirichlet boundary conditions without further mentioning: u(·) = 0 on R × 𝜕S

for (2.4) and later on, û(·, 𝛼) = 0 on (0, 2𝜋) × 𝜕S for almost every 𝛼 ∈ I.
With the interval I = [−1∕2, 1∕2], the Floquet–Bloch transform can be applied to g ∈ L2(Ω); it provides ĝ ∶= FB(g) ∈

L2(I,L2(W)). A solution u is transformed to û ∶= FB(u). At least formally, the transformed equation reads

−Δû(·, 𝛼) − k2nû(·, 𝛼) = ĝ(·, 𝛼) (2.6)

for almost every 𝛼 ∈ I. At this point, we exploit the periodicity of the coefficient n, which implies that FB(nu) = nFB(u).
We additionally demand û(·, 𝛼) ∈ H1

𝛼(W) for almost every 𝛼 ∈ I (and vanishing boundary conditions). A weak solution û
is characterized by the equality

∫W

{
−k2n(x) û(x, 𝛼)𝜙(x) + ∇û(x, 𝛼) · ∇𝜙(x)

}
dx = ∫W

ĝ(x, 𝛼)𝜙(x)dx (2.7)

for every 𝜙 ∈ H1
𝛼(W) that vanishes on (0, 2𝜋) × 𝜕S and for almost every 𝛼 ∈ I.

Indeed, the original problem (2.4) is equivalent to the Floquet–Bloch transformed system (2.6) in the following sense.

Lemma 2.1 (Equivalent equation with Floquet–Bloch transform).

(1) Let u ∈ H1
0(Ω) be a weak solution of (2.4). Then the Floquet–Bloch transform û ∶= FB(u) is an element of

L2(I,H1
𝛼(W)); in particular, û(·, 𝛼) ∈ H1

𝛼(W) for almost every 𝛼 ∈ I. The functions û(·, 𝛼) are weak solutions of (2.6).
(2) If û ∈ L2(I,H1

𝛼(W)) and û(·, 𝛼) is a weak solution of (2.6) with homogeneous Dirichlet conditions for almost all
𝛼 ∈ I, then the inverse Floquet–Bloch transform u ∶= −1

FB (û) = ∫I û(·, 𝛼)d𝛼 is in H1
0(Ω), and it is a weak solution

of (2.4).

Proof.
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KIRSCH and SCHWEIZER 5

(1) Let u ∈ H1
0(Ω) be a weak solution of (2.4). Our aim is to derive (2.7) for û ∶= FB(u). To this end, let 𝜙 ∈ H1

𝛼(W)
be a test-function; we write 𝜙 in the form 𝜙(x) = 𝜓(x)ei𝛼x1 with a function 𝜓 ∈ H1(W) that is periodic with
respect to x1. Additionally, we choose a number m ∈ Z.
We can now construct a test-function for u: We define 𝜑 ∈ H1

0(Ω) as the inverse Floquet–Bloch transform of the
function 𝜑̂(𝛼, x) ∶= 𝜙(x)ei𝛼2𝜋m = 𝜓(x)ei𝛼(2𝜋m+x1). By the unitarity of the Floquet–Bloch transform, see (A2), in
the integral equation (2.5), the Ω-integrals transform into I × W -integrals, and we obtain

∫I∫W

{
−k2n(x) û(x, 𝛼) 𝜑̂(x, 𝛼) + ∇û(x, 𝛼) · ∇𝜑̂(x, 𝛼)

}
dx d𝛼 = ∫I∫W

ĝ(x, 𝛼) 𝜑̂(x, 𝛼)dx d𝛼 . (2.8)

Substituting 𝜑̂(x, 𝛼) = 𝜓(x)ei𝛼(2𝜋m+x1) yields

∫I

[
∫W

[
−k2nû(x, 𝛼)𝜓(x)ei𝛼x1 + ∇û(x, 𝛼) · ∇(𝜓(x)ei𝛼x1)

]
dx
]

e−i2𝜋m𝛼 d𝛼 = ∫I

[
∫W

ĝ(x, 𝛼)𝜓(x)ei𝛼x1 dx
]

e−i2𝜋m𝛼 d𝛼 .

Since m was arbitrary, all Fourier coefficients of the two terms in squared brackets coincide. This implies that
the squared brackets coincide for almost every 𝛼 ∈ I. Because of 𝜙(x) = 𝜓(x)ei𝛼x1 , this is (2.7).

(2) Let û ∈ L2(I,H1
𝛼(W)) be a solution of (2.7) for almost every 𝛼 ∈ I. We consider an arbitrary test-function

𝜑 ∈ H1
0(Ω). Using 𝜙 = 𝜑̂(·, 𝛼) in (2.7) and integrating with respect to 𝛼 yields (2.8). Again, by the unitarity of

the Floquet–Bloch transform, this relation is equivalent to (2.5) for u. The unitarity also provides u ∈ H1(Ω);
see (2.3). □

For the further development of the theory, it is useful to have a target space that is independent of parameters. We
introduce

X ∶= H1
per(W) ∶=

{
u ∈ H1(W)|u = 0 on R × 𝜕S and u|x1=0 = u|x1=2𝜋

}
. (2.9)

We denote the canonical inner product in X = H1
per(W) by ⟨·, ·⟩X . Note that we included the Dirichlet boundary condition

into the space H1
per(W). We exploit the following equivalence for U ∈ H1(W):

[x → U(x)] 𝛼-periodic in x1 ⇐⇒ [x → U(x)e−i𝛼x1] periodic in x1 . (2.10)

It allows to map H1
𝛼(W)-functions to H1

per(W)-functions and vice versa. Replacing û(x, 𝛼) by v(x, 𝛼)ei𝛼x1 and 𝜙(x) by
𝜑(x)ei𝛼x1 , we can rewrite the problem described in (2.7) as a family of problems in the space X = H1

per(W): We seek for
v ∈ L2(I,X) such that

∫W

[
−k2n(x)v(x, 𝛼)𝜑(x) + ∇

(
v(x, 𝛼)ei𝛼x1

)
· ∇
(
𝜑(x)ei𝛼x1

)]
dx = ∫W

ĝ(x, 𝛼)𝜑(x)ei𝛼x1 dx for every 𝜑 ∈ X , (2.11)

for almost every 𝛼 ∈ I.
For fixed 𝛼 ∈ I, we can consider the right-hand side of (2.11) as a function of 𝜑, defining a functional on X . We can

also, for fixed v, consider the left-hand side of (2.11) as a functional on X . By the Riesz representation theorem, there exist
𝑦𝛼 ∈ X and L𝛼v ∈ X with

⟨L𝛼v, 𝜑⟩X = ∫W

[
−k2n(x)v(x)𝜑(x) + ∇(v(x)ei𝛼x1) · ∇

(
𝜑(x)ei𝛼x1

)]
dx , (2.12)

⟨𝑦𝛼, 𝜑⟩X = ∫W
ĝ(x, 𝛼)𝜑(x)ei𝛼x1 dx (2.13)

for every 𝜑 ∈ X . With these representations, using Lemma 2.1 (b), the original problem (2.4) is solved when we find, for
almost every 𝛼 ∈ I, a solution v(·, 𝛼) ∈ X = H1

per(W) of

L𝛼v(·, 𝛼) = 𝑦𝛼 , (2.14)

and if this family of solution satisfies v ∈ L2(I,X).
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6 KIRSCH and SCHWEIZER

It is not obvious how to solve (2.14). Indeed, structural assumptions on g will be necessary in order to solve the equation.
The reason for this restriction is that we are looking for solutions u of the original problem in the space H1(Ω), that is, for
solutions with decay properties.

On the other hand, some structural properties of L𝛼 follow immediately from the definition. For fixed 𝛼, the operator
L𝛼 is a linear bounded operator from X = H1

per(W) into itself. The form of L𝛼 shows that L𝛼 is self-adjoint and that we
can write L𝛼 = id + K𝛼 , where K𝛼 is a compact linear operator. Accordingly, every operator L𝛼 is a Fredholm operator
with index 0. Additionally, the definition of L𝛼 extends, for 𝜀 > 0, to the increased interval I𝜀 ∶= (−1∕2 − 𝜀, 1∕2 + 𝜀). The
operators depend continuously differentiable and even analytically on 𝛼.

On the structure of critical values, the definition of L𝛼 and the fact that n and k are real implies the following: v ∈ ker L𝛼
if and only if v̄ ∈ ker L−𝛼 . For the particular value, 𝛼 = 1∕2 holds: ker L1∕2 ⊂ H1

per(W) and ker L−1∕2 ⊂ H1
per(W) represent

the same set (in the sense that v ∈ H1
per(W) represents w(x) = v(x)ei𝛼x1 in H1

𝛼(W)), namely, the space of homogeneous
solutions w with w|x1=2𝜋 = −w|x1=0. We therefore do not want to consider the two values 𝛼 = 1∕2 and 𝛼 = −1∕2 separately.

A remark on notation. When k is replaced by k + i𝜂 with k > 0 and 𝜂 ≥ 0, then we write L𝜂𝛼 to indicate the dependence
on the second parameter 𝜂.

3 EXISTENCE AND UNIQUENESS

In this section, we consider the case of a real wave number k > 0 and Equation (1.1) for arbitrary 𝑓 ∈ L2
∗(Ω); see (1.3) for

the function space. Our approach will be the following. In the first step, we search for solutions u ∈ H1(Ω); we can find
such solutions only when the right-hand side 𝑓 = g has certain orthogonality properties. Roughly speaking, g must be
orthogonal to the space of quasiperiodic solutions of the homogeneous equation. For such g, we will show the existence
of a solution u by a functional analytic singular perturbation theorem which we learned from [9]. In the second step, we
allow general 𝑓 ∈ L2

∗(Ω), but we search for a solution in a larger class of functions u satisfying a radiation condition.

3.1 Functional analysis for one-parameter families
Definition 3.1 (C1-families of operators and regular C1-families). Let X be a Banach space and let I ⊂ R be the
unit interval I ∶= [−1∕2, 1∕2]. We say that (L𝛼)𝛼 is a C1-family of operators when there exists 𝜀 > 0 and a C1-map
I𝜀 ∶= (−1∕2 − 𝜀, 1∕2 + 𝜀) ∋ 𝛼 → L𝛼 ∈ (X ,X) such that, for every 𝛼 ∈ I, the operator L𝛼 is a Fredholm operator with
index 0.

We say that (L𝛼)𝛼 is a regular C1-family of operators when additionally the following two conditions are satisfied for
every 𝛼 ∈ I for which L𝛼 is not invertible: (i) The operator L𝛼 has Riesz number 1, i.e.,  ∶= ker(L𝛼) = ker(L2

𝛼). (ii)
With the range  ∶= L𝛼(X) ⊂ X and the projection P onto  corresponding to X =  ⊕, the operator

M ∶= 𝜕𝛼PL𝛼| ∶  →  (3.1)

is invertible.

Remark 3.1.

1. We demand that every operator L𝛼 is a Fredholm operator with index 0. This implies that, for every 𝛼 and
L = L𝛼 , the subspace  ∶= ker(L) has finite dimension and the subspace  ∶= L(X) is closed and has finite
co-dimension; the latter agrees with the dimension of  since the index is 0. Together with the requirement
ker(L) = ker(L2), we conclude that the space possesses the decomposition X =  ⊕  and corresponding
continuous projections P ∶ X → X onto  and Q = (id − ) onto . We recall the easy argument why the
intersection is trivial: u ∈  ∩ implies u = Lx and Lu = 0; hence, L2x = 0, and thus, Lx = 0, we find x ∈ 
and u = Lx = 0.

2. When X is a Hilbert space with inner product ⟨·, ·⟩X and L is self-adjoint, it has Riesz number 1. Indeed, L2x = 0
implies ⟨Lx,Lx⟩X = ⟨L2x, x⟩X = 0, and thus, x ∈  .

Theorem 3.2 (Functional analysis I). Let (L𝛼)𝛼 be a regular C1-family of operators. There holds the following:

(1) The set  of critical numbers
 ∶= {𝛼 ∈ I | ker(L𝛼) ≠ {0}} (3.2)
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KIRSCH and SCHWEIZER 7

is finite.
(2) Let I𝜀 ∋ 𝛼 → 𝑦𝛼 be a C1-family of right-hand sides such that 𝑦𝛼 ∈ L𝛼(X) holds for every 𝛼 ∈ . Then the family of

solutions
I𝜀∖ ∋ 𝛼 → u𝛼 ∶= (L𝛼)−1(𝑦𝛼)

can be continued to a C0-family on I𝜀. With C independent of the family (𝑦𝛼)𝛼 , there holds

sup
𝛼∈I
||u𝛼||X ≤ C sup

𝛼∈I

[||𝑦𝛼||X + ||𝑦′𝛼||X] . (3.3)

According to assertion (1) of the theorem, the set  is a finite collection of values 𝛼 ∈ I. As indicated above, in our
application, we do not want to enumerate the values −1/2 and 1/2 independently of each other. We therefore enumerate
a (possibly) reduced set as follows:

∗ ∶=  ∩ (−1∕2, 1∕2] ∶= {𝛼𝑗 |0 < 𝑗 ≤ J} . (3.4)

The indices 𝑗 are natural numbers, J is the number of critical values, and J = 0 is allowed. In the case J = 0, the set ∗
is empty.

Proof.

Step 1: An equivalent form of the system.
We start the proof by investigating a point 𝛼0 ∈ I with ker(L𝛼0) ≠ {0}. It is no loss of generality to assume 𝛼0 = 0.

The critical (non-invertible) operator is L ∶= L0. We use X =  × with projections P and Q. We emphasize that
these subspaces and projections are chosen for L and independent of 𝛼 in the following. For 𝛼 close to 𝛼0, we write
the operator L𝛼 as

L𝛼 =
[

PL𝛼| PL𝛼|
QL𝛼| QL𝛼|

]
∶  × →  × . (3.5)

For 𝛼 ≠ 𝛼0 = 0, the equation L𝛼u𝛼 = 𝑦𝛼 for u𝛼 = (uN
𝛼 ,uR

𝛼 ) ∈  × is equivalent to the following set of equations:

L̃𝛼u𝛼 ∶=

[
1
𝛼

PL𝛼
||| 1

𝛼
PL𝛼
|||

QL𝛼| QL𝛼|
](

uN
𝛼

uR
𝛼

)
=
( 1

𝛼
P𝑦𝛼

Q𝑦𝛼 .

)
(3.6)

Relation (3.6) defines linear operators L̃𝛼 ∶ X → X for 𝛼 ≠ 0.
We want to extend this family of operators to the point 𝛼 = 0. With L′ ∶= (𝜕𝛼L𝛼)|𝛼=0 and M = PL′| of (3.1) we set

for arbitrary u = (uN ,uR) ∈  × = X ,

L̃0u ∶=
[

M PL′|
0 QL|

](
uN

uR

)
. (3.7)

We claim that the new operator family (−𝜀, 𝜀) ∋ 𝛼 → L̃𝛼 ∈ (X ,X) is continuous. This is clear by definition in all
points 𝛼 ∈ (−𝜀, 𝜀)∖{0}. Regarding 𝛼 = 0, we note that the operators of (3.6) can be written as difference quotients:
Because of L| ≡ 0, there holds 1

𝛼
PL𝛼
||| = 1

𝛼
P(L𝛼 − L)||| . Since we extended with PL′| = M for 𝛼 = 0, the

resulting family is continuous in 𝛼. The same argument can be performed for the second entry of the matrix: Because
of PL| ≡ 0, we can write 1

𝛼
PL𝛼
||| = 1

𝛼
P(L𝛼 − L)|||. The limit operator is given by the derivative that is used in (3.7).

Finally, regarding the third entry, we note that QL| = 0 by the definition of  . We obtain that the family L̃𝛼 is
continuous in 𝛼.

We next observe that the operator L̃0 is invertible: The operator M ∶  →  is invertible by the definition of
a regular family. The operator QL| ∶  →  is invertible by definition of  and Q. As a triagonal matrix, L̃0 is
invertible.

Continuity of the family L̃𝛼 together with invertibility of L̃0 yields the invertibility of L̃𝛼 ∈ (X ,X) for 𝛼 ∈ (−𝜀, 𝜀),
upon possibly choosing a smaller 𝜀 > 0.

Step 2: Assertion (1).
Since I = [−1∕2, 1∕2] ⊂ R is compact, it is sufficient to show the following claim: For every 𝛼 ∈ I, there exists

𝜀 > 0 such that  ∩ (𝛼 − 𝜀, 𝛼 + 𝜀) contains at most one point.
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8 KIRSCH and SCHWEIZER

For 𝛼 ∉ , the claim holds, since small perturbations of invertible operators are invertible.
We consider now 𝛼0 ∈  and investigate 𝛼 in a neighborhood of 𝛼0. To simplify notation and without loss of

generality, we assume 𝛼0 = 0. In Step 1, we obtained that the equation L𝛼u𝛼 = 𝑦𝛼 has the equivalent form (3.6) and
that L̃𝛼 is invertible for every 𝛼 ∈ (−𝜀, 𝜀). This yields that L𝛼 is invertible for every 𝛼 ∈ (−𝜀, 𝜀)∖{0}.

Step 3: Assertion (2).
We have to consider again the situation of Step 2, with u𝛼 solving L𝛼u𝛼 = 𝑦𝛼 (or, equivalently, (3.6)) for 𝛼 ∈

(−𝜀, 𝜀)∖{0}. Regarding the right-hand side 𝑦𝛼 , we have imposed the property 𝑦𝛼𝑗 ∈ L𝛼𝑗 (X) for all 𝑗. In the local
situation and with our assumption that the critical point is 𝛼0 = 0, we have 𝑦0 ∈ L(X) = . This implies P𝑦0 = 0, and
we can write the first entry of the right-hand side of (3.6) as 1

𝛼
P𝑦𝛼 = 1

𝛼
P(𝑦𝛼−𝑦0), which can be extended continuously

with P𝑦′|0 for 𝛼 = 0.
The fact that the family L̃𝛼 is a continuous family of invertible operators on 𝛼 ∈ (−𝜀, 𝜀) together with the fact

that the right-hand sides of (3.6) can be extended continuously to (−𝜀, 𝜀) shows that the family u𝛼 can be extended
continuously. The proof also provides (3.3).

□
Remark 3.3 (Functional analysis with two parameters). Definition 3.1 can be adapted to define C1-families of oper-
ators L𝜂𝛼 depending on two parameters, 𝛼 ∈ [−1∕2, 1∕2] and 𝜂 ≥ 0. Regarding the definition of a regular C1-family,
requirement (ii) of Definition 3.1 has to be replaced by the requirement that for every 𝛼 for which L0

𝛼 is not invertible
and any direction vector 0 ≠ 𝜉 ∈ R

2 with 𝜉2 ≥ 0, the operator

𝜕𝜉PL0
𝛼| ∶  →  (3.8)

is invertible; here 𝜕𝜉PL0
𝛼 = 𝜉1𝜕𝛼PL0

𝛼 + 𝜉2𝜕𝜂PL0
𝛼 denotes the directional derivative.

With these adaptations, the assertion of Theorem 3.2 holds in a slightly weaker form: For some 𝜀 > 0, the family of
solutions

(I𝜀 × [0, 𝜀)) ∖( × {0}) ∋ (𝛼, 𝜂) → u𝜂𝛼 ∶= (L𝜂𝛼)−1(𝑦𝜂𝛼)
is bounded.

To show this result, one considers, for fixed direction 𝜉, parameters along a semiray: (𝛼, 𝜂) = 𝜏𝜉 with 𝜏 > 0. The
arguments of Theorem 3.2 can be repeated upon replacing the parameter 𝛼 with the new parameter 𝜏.

3.2 Regularity of the C1-family of operators L𝛼
We now consider the one-parameter family L𝛼 of (2.12). This family is a C1-family because of the smooth dependence of
L𝛼 on 𝛼. Using the equivalence (2.10), the kernel 𝛼 ∶= ker(L𝛼) ⊂ X is given by 𝛼 = {e−i𝛼x1 u |u ∈ Y𝛼} with

Y𝛼 ∶= {u ∈ H1
𝛼(W) |(Δ + k2n)u = 0 in W and u = 0 on R × 𝜕S} . (3.9)

Since each L𝛼 is a Fredholm operator, the kernel 𝛼 is finite dimensional, and hence, also, Y𝛼 is finite dimensional.
We are interested in the set of critical points, defined in (3.2),  = {𝛼 ∈ I | ker(L𝛼) ≠ {0}} with I = [−1∕2, 1∕2]. Without
further assumptions, the set  can be finite or infinite. Theorem 3.2 yields that  is finite when we can show that L𝛼 is a
regular C1-family. This is what we will obtain under a certain assumption.

We define a sesqui-linear form E by setting, for u, v ∈ H1(W),

E(u, v) ∶= i∫
W

u𝜕1v̄ − v̄𝜕1u . (3.10)

We emphasize that, typically, the arguments of E are 𝛼-periodic functions but not necessarily elements of X = H1
per(W).

We observe that E is hermitian; thus, E(u,u) ∈ R for all u.
The form E is related to energy fluxes through sections of the form Γt ∶= {t} × S ⊂ Ω for t ∈ R. Indeed, when u and v

are two solutions, (Δ + k2n)u = 0 = (Δ + k2n)v, then an application of Green's theorem in Ws,t ∶= (s, t) × S for arbitrary
s < t yields

∫Γt

{u𝜕1v̄ − v̄𝜕1u} − ∫Γs

{u𝜕1v̄ − v̄𝜕1u} = ∫
𝜕Ws,t

{u𝜕𝜈 v̄ − v̄𝜕𝜈u} = ∫Ws,t

{
u(Δ + k2n)v̄ − v̄(Δ + k2n)u

}
= 0 ,
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KIRSCH and SCHWEIZER 9

where we denoted with 𝜕𝜈 the normal derivatives into the exterior of Ws,t. The calculation shows that the flux quantity

Fu,v,t ∶= i∫Γt

{u𝜕1v̄ − v̄𝜕1u} (3.11)

is independent of t ∈ R. In particular, there holds E(u, v) = ∫ 2𝜋
0 Fu,v,t dt = 2𝜋Fu,v,s for any s ∈ R.

We obtain easily that, for different values of 𝛼 ∈ (−1∕2, 1∕2], the spaces Y𝛼 are orthogonal with respect to the above
sesquilinear form.

Lemma 3.4 (Orthogonality for different quasimoments). Let 𝛼, 𝛽 ∈ (−1∕2, 1∕2] with 𝛼 ≠ 𝛽 be two quasimoments and
let u ∈ Y𝛼 and v ∈ Y 𝛽 be two solutions of the homogeneous equation. Then E(u, v) = 0.

Proof. For quasiperiodic u and v as in the lemma, the expression of (3.11) satisfies, by its definition, Fu,v,t+2𝜋 =
e2𝜋i𝛼e−2𝜋i𝛽Fu,v,t. On the other hand, as noted above, Fu,v,t is independent of t. Because of |𝛼 − 𝛽| < 1, we conclude
Fu,v,t = 0, and thus, E(u, v) = 0. □

We can show that L𝛼 is a regular C1-family under the following assumption.

Assumption 3.5 (Non-degeneracy assumption). For every 𝛼 ∈ , the sesquilinear form E is non-degenerate on Y𝛼

in the following sense: For every 0 ≠ 𝜙 ∈ Y𝛼 , the map E(𝜙, ·) ∶ Y𝛼 → C is a nontrivial form.

Lemma 3.6 (Regularity of the Floquet–Bloch transformed equation). Let L𝛼 be the C1-family of operators constructed
in (2.12) and let Assumption 3.5 hold. Then L𝛼 is a regular C1-family of operators in the sense of Definition 3.1.

Proof. We fix 𝛼 ∈  and consider the operator L ∶= L𝛼 with kernel  ∶= ker(L) and derivative L′ ∶= 𝜕𝛼L𝛼 . We have
to verify that M ∶= PL′| ∶  →  is invertible, where P is the projection onto  . In the subsequent calculation,
the definition of L𝛼 in (2.12) yields the first equality; we use here that ei𝛼x1 e−i𝛼x1 = 1 is independent of 𝛼. In the second
equality, we use that when the derivatives are applied to u(x)ei𝛼x1 and to 𝜑(x)ei𝛼x1 , but not on x1, the terms from the
first and second terms cancel.

⟨L′u, 𝜑⟩X = i∫W
∇
(

u(x)x1 ei𝛼x1
)
· ∇
(
𝜑(x)ei𝛼x1

)
− ∇
(

u(x)ei𝛼x1
)
· ∇
(
𝜑(x)x1 ei𝛼x1

)
dx

= i∫W
u(x)ei𝛼x1 𝜕1

(
𝜑(x)ei𝛼x1

)
− 𝜕1

(
u(x)ei𝛼x1

)
𝜑(x)ei𝛼x1 dx

= E
(

uei𝛼x1 , 𝜑ei𝛼x1
)
.

From this calculation, we can conclude that PL′| is invertible. Indeed, let u ∈  satisfy PL′u = 0. Since L = L𝛼 is
self-adjoint,  and  are orthogonal. In this situation, PL′u = 0 implies that 𝜑 → ⟨L′u, 𝜑⟩X is the trivial form on  .
The above calculation, together with the fact that E is non-degenerate, implies that this is possible only for uei𝛼x1 = 0
and thus for u = 0. We obtain that the kernel of PL′| is trivial and hence that M of (3.1) is invertible. □

Corollary 3.7 (The spaces Y𝑗 and basis functions). We consider a Helmholtz equation for which Assumption 3.5 holds.
In this situation, the family L𝛼 constructed in (2.12) is a regular C1-family of operators. There is a finite (possibly empty)
set of values ∗ = {𝛼𝑗|0 < 𝑗 ≤ J} ⊂ (−1∕2, 1∕2] such that

Y𝑗 ∶= {u ∈ H1
𝛼𝑗
(W) |(Δ + k2n)u = 0 in W and u = 0 on R × 𝜕S} (3.12)

is nontrivial. Every space Y𝑗 has a finite dimension m𝑗 ∈ N, and the spaces Y𝑗 are orthogonal with respect to E. We
introduce the direct sum

Y ∶=
J⨁
𝑗=1

Y𝑗 ⊂ H1(W) . (3.13)

We choose, for every space Y𝑗 , an inner product ⟨·, ·⟩Y𝑗 , and solve the self-adjoint eigenvalue problem

E(𝜙,𝜓) = 𝜆⟨𝜙, 𝜓⟩Y𝑗 for all 𝜓 ∈ Y𝑗 (3.14)
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10 KIRSCH and SCHWEIZER

for 𝜆 ∈ R and 𝜙 ∈ Y𝑗 . This provides an orthogonal basis of Y𝑗 consisting of eigenfunctions 𝜙𝓁,𝑗 , 𝓁 = 1, … ,m𝑗 . The value
𝜆 = 0 is not an eigenvalue.

Proof. Lemma 3.6 provides that L𝛼 is a regular family. The functional analysis Theorem 3.2 provides that the set of
critical 𝛼-values is finite. Because of Lemma 3.4, the spaces Y𝑗 are also orthogonal to each other (with respect to E).
Assumption 3.5 guarantees that 𝜆 = 0 is not an eigenvalue. The other assertions repeat the definitions and follow
from the Fredholm assumption on the family of operators. The solutions 𝜙 of (3.14) are orthogonal to each other in
Y𝑗 by construction. □

3.3 H1(Ω)-solutions
We turn to our first existence result for the Helmholtz equation. We characterize the right-hand sides g such that
equation (2.4) has a solution in H1(Ω).

Theorem 3.8 (Existence of H1(Ω) solutions with Floquet–Bloch theory). We consider the Helmholtz equation (2.4)
with fixed S (geometry), fixed k and n (coefficients), and fixed g ∈ L2

∗(Ω) ⊂ L2(Ω). We demand that Assumption 3.5 is
satisfied.

Existence: Let the Floquet–Bloch transform ĝ(·, 𝛼) have the cell-wise orthogonality property

⟨ĝ(·, 𝛼𝑗), 𝜙⟩L2(W) = 0 for all 𝑗 ∈ {1, … , J} , 𝜙 ∈ Y𝑗 . (3.15)

Then (2.4) has a solution u ∈ H1(Ω) with ||u||H1(Ω) ≤ C||g||L2
∗(Ω) for some constant C = C(S, k,n).

Uniqueness: When u ∈ H1(Ω) is a solution of (2.4), then the orthogonality (3.15) holds. Furthermore, the solution u is
uniquely defined.

Proof. Existence. Using the Floquet–Bloch transform, we have shown that Equation (2.4) is equivalent to the family of
equations L𝛼v(·, 𝛼) = 𝑦𝛼 of (2.14), 𝛼 ∈ I = [−1∕2, 1∕2]. In particular, it is sufficient to find a family v(·, 𝛼) of solutions
to (2.14) and to verify that v ∈ L2 (I,H1

per(W)
)
. By definition of the critical values  in (3.2), a unique solution v(·, 𝛼)

exists for every 𝛼 ∈ I∖. We claim that this family of solutions extends continuously to all of I.
We consider one of the critical values, 𝛼 = 𝛼𝑗 ∈ , and a small interval Ĩ = [𝛼𝑗 − 𝜀, 𝛼𝑗 + 𝜀] that contain no other

critical value. We want to use the functional analysis result of Theorem 3.2. We use the space X of (2.9), the family of
operators L𝛼 of (2.12), and the family of right-hand sides 𝑦𝛼 of (2.13).

We have to check the assumptions of Theorem 3.2. The operators L𝛼 depend smoothly on 𝛼, and they are invertible
for all 𝛼 ∈ Ĩ∖. We turn to the condition 𝑦𝛼𝑗 ∈  = L𝛼𝑗 (X). For an arbitrary element 𝜑 ∈  ∶= ker(L𝛼𝑗 ) ⊂ X , we
note that there holds 𝜙(x) ∶= 𝜑(x)ei𝛼𝑗x1 ∈ Y𝑗 , and by definition of 𝑦𝛼 ,

⟨𝑦𝛼𝑗 , 𝜑⟩X = ∫W
ĝ(x, 𝛼𝑗)e−i𝛼𝑗x1 𝜑(x)dx = ∫W

ĝ(·, 𝛼𝑗) 𝜙̄ = 0 (3.16)

by the orthogonality assumption (3.15). This shows that 𝑦𝛼𝑗 is orthogonal to  . Since L𝛼𝑗 is self-adjoint, the subspaces
 and  are orthogonal. Since L𝛼𝑗 is also Fredholm with index 0, the space X is the orthogonal direct sum  ⊕.
Since we have shown that 𝑦𝛼𝑗 is orthogonal to  , we have found 𝑦𝛼𝑗 ∈ .

Lemma 3.6 provides that L𝛼 is a regular family of operators in the sense of Definition 3.1; hence, Theorem 3.2 can
be applied. We find that I ∋ 𝛼 → v(·, 𝛼) is continuous; hence, in particular, v ∈ L2(I,H1

per(W)). This provides a
H1

0(Ω)-solution of (2.4).
We note that the orthogonality (3.15) is not explicitly demanded in 𝛼 = −1∕2 when this is a point in . On the other

hand, ĝ(·,−1∕2 + 𝛽) = ĝ(·, 1∕2 + 𝛽) for all 𝛽 ∈ R and Y−1∕2 = Y 1∕2, so that the orthogonality holds also in 𝛼 = −1∕2.
We turn to the estimate for the solution. The right-hand side is an element g ∈ L2

∗(Ω). With the func-
tions g𝓁 ∶ W → C, g𝓁(x1, x̃) ∶= g(x1 + 2𝜋𝓁, x̃), we can estimate the corresponding norm as ||g||2L2

∗(Ω)
=∑

𝓁∈Z∫W |g𝓁(x)|2[1 + (x1 + 2𝜋𝓁)2]2dx ≥ c
∑

𝓁∈Z(1 + 𝓁2)2||g𝓁||2L2(W). This allows to calculate, for arbitrary m < M, the
norm of a finite sum, which is related to the derivative 𝜕𝛼 ĝ(·, 𝛼) of the Floquet–Bloch transform of g with respect to 𝛼;
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KIRSCH and SCHWEIZER 11

compare (2.2):

‖‖‖‖‖‖
∑

m≤|𝓁|≤M
𝓁 g(x1 + 2𝜋𝓁, x̃)e−i𝓁2𝜋𝛼

‖‖‖‖‖‖L2(W)

≤ ∑
m≤|𝓁|≤M

|𝓁| ||g𝓁||L2(W) ≤ ∑
m≤|𝓁|≤M

1√
1 + 𝓁2

(1 + 𝓁2) ||g𝓁||L2(W)

≤
√ ∑

m≤|𝓁|≤M

1
1 + 𝓁2

√ ∑
m≤|𝓁|≤M

(1 + 𝓁2)2 ||g𝓁||2L2(W) ≤ Cm,M||g||L2
∗(Ω) ,

where Cm,M is independent of g and tends to zero as m → ∞. The Cauchy argument shows that 𝜕𝛼 ĝ(·, 𝛼) is well-defined
in L2(W) and is bounded by C||g||L2

∗(Ω) for some C > 0. We conclude that, for some C > 0, there holds ||ĝ(·, 𝛼)||L2(W) +||𝜕𝛼 ĝ(·, 𝛼)||L2(W) ≤ C ||g||L2
∗(Ω) for all 𝛼. Theorem 3.2 provides estimate (3.3) for solutions, which is a bound for û ∈

C0(I,H1(W)); hence, in particular, for û ∈ L2(I,H1(W)). This yields the bound for u ∈ H1(Ω), namely, ||u||H1(Ω) ≤
C||g||L2

∗(Ω).
Uniqueness. In order to show unique solvability of (2.4), it is sufficient to show the unique solvability of (2.6) for

almost every 𝛼. For every 𝛼 ∉ , Equation (2.6) can be solved uniquely by definition of the critical 𝛼-values. This
already shows the uniqueness of the solution.

Let u ∈ H1(Ω) be a solution of (2.4). We have to show that the orthogonality (3.15) holds. We use equation (2.7),
which is a consequence of (2.4):

⟨ĝ(·, 𝛼𝑗), 𝜙⟩L2(W) = ∫W

{
−k2n(x) û(x, 𝛼)𝜙(x) + ∇û(x, 𝛼) · ∇𝜙(x)

}
dx = −⟨û(·, 𝛼𝑗), (Δ + k2n)𝜙⟩L2(W) = 0 ,

where we exploited that, for every 𝛼, integration by parts holds without boundary terms for two functions in the space
H1
𝛼(W). This concludes the proof of the theorem. □

Lemma 3.9 (Orthogonality criterion). The orthogonality condition (3.15) is formulated in terms of the Floquet–Bloch
transform of g. With the original function g and the space Y of (3.13), an equivalent condition is

∫Ω
g(x)𝜙(x)dx = 0 for all 𝜙 ∈ Y . (3.17)

Proof. We fix 𝑗 ∈ {1, … , J}, set 𝛼 ∶= 𝛼𝑗 , and choose a function 𝜙 in Y𝑗 . We identify 𝜙 with its 𝛼-quasiperiodic
extension, which satisfies 𝜙(x+2𝜋𝓁e1) = 𝜙(x)ei𝓁2𝜋𝛼 with the unit vector e1 in x1-direction. We calculate for ĝ = FB(g)

⟨ĝ(·, 𝛼), 𝜙⟩L2(W) =

⟨∑
𝓁∈Z

g(· + 2𝜋𝓁e1)e−i𝓁2𝜋𝛼 , 𝜙

⟩
L2(W)

=

⟨∑
𝓁∈Z

g(· + 2𝜋𝓁e1), 𝜙(· + 2𝜋𝓁e1)

⟩
L2(W)

= ∫Ω
g(x)𝜙(x)dx .

We note that the series in the definition of the Floquet–Bloch transform is well-defined because of g ∈ L2
∗(Ω). □

3.4 The radiation problem
In the previous subsection, we have obtained a solution u to (2.4) where g satisfies the orthogonality condition (3.17).
This is not the kind of solution that is typically observed. In the physical problem, we have to consider the equation with
a general right-hand side 𝑓 and obtain solutions that are, approximately, far away from the origin, linear combinations of
outgoing waves. Such solutions are not in the space H1(Ω). We recall that we impose 𝑓 ∈ L2

∗(Ω).
In order to define the radiation condition, we use two cut-off functions.

Definition 3.10 (Cut-off functions 𝜌±). We say that 𝜌+, 𝜌− ∈ C2(R,R) are admissible cut-off functions when they
satisfy 𝜌±(x1) ∈ [0, 1] for every x1 ∈ R and when the limiting behavior is given by 𝜌±(x1) → 1

2
± 1

2
for x1 → ∞ and

𝜌±(x1) → 1
2
∓ 1

2
for x1 → −∞. We additionally demand, for some C > 0, the decay properties 1 − 𝜌+(x1) ≤ C∕|x1| and

𝜌−(x1) ≤ C∕|x1| for x1 > 1, and 𝜌+(x1) ≤ C∕|x1| and 1 − 𝜌−(x1) ≤ C∕|x1| for x1 < −1.
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12 KIRSCH and SCHWEIZER

3.4.1 Remark on cut-off functions
Formally, the radiation condition formulated below depends on the choice of 𝜌±. But we will show later on that the
solution u of the radiation problem does not depend on the choice of 𝜌±.

The requirement 𝜌± ∈ C2(R,R) can be replaced by 𝜌± ∈ C0,1(R,R), that is, Lipschitz continuity of the cut-off func-
tions (we keep the property of the rate of decay). One can argue as follows: The existence result below is performed for
cut-off functions of class C2. Remark 2 after Theorem 3.12 can provide that the constructed solutions are also solutions
for arbitrary cut-off functions of class C0,1. Formally, our proof does not cover this case since we demand g ∈ L2(Ω) in the
uniqueness statement below and therefore need w ∈ H2(Ω). In order to resolve this obstacle, one has to use weak solution
concepts in all equations to conclude that 𝜌± ∈ C0,1(R,R) is sufficient.

From now on, we use the spaces Y𝑗 and the basis functions 𝜙𝓁,𝑗 as chosen in Corollary 3.7. We slightly change notation
at this point: We now collect all basis functions 𝜙𝓁,𝑗 as a new family with only one index and write (𝜙𝓁)𝓁 , where now
1 ≤ 𝓁 ≤ L ∶=

∑J
𝑗=1 m𝑗 . We recall that we have orthogonality with respect to the hermitian sesqui-linear form E, that is,

E(𝜙𝓁 , 𝜙𝓁′ ) = 𝛿𝓁,𝓁′ E(𝜙𝓁 , 𝜙𝓁) for all 𝓁,𝓁′.

Definition 3.11 (Propagating part and radiation condition). We fix admissible cut-off functions 𝜌± as in Definition
3.10. For every 𝓁 ≤ L, the mode𝜙𝓁 is called right-going when E(𝜙𝓁 , 𝜙𝓁) > 0; it is called left-going when E(𝜙𝓁 , 𝜙𝓁) < 0.
Note that when E is non-degenerate, these are the only possible cases. For every 𝓁 such that 𝜙𝓁 is right-going, we set
𝜌𝓁 ∶= 𝜌+; for every 𝓁 for which 𝜙𝓁 is left-going, we set 𝜌𝓁 ∶= 𝜌−.

(i) Propagating part. For complex coefficients (a𝓁)1≤𝓁≤L, we say that

w =
L∑

𝓁=1
a𝓁 𝜌𝓁𝜙𝓁 (3.18)

is the propagating wave function corresponding to a ∈ C
L.

(ii) Radiation condition. We say that a solution u ∈ H1
loc(Ω) of (1.1) satisfies the radiation condition, when there

exists a ∈ C
L such that, with the corresponding propagating wave function w, there holds

v ∶= u − w ∈ H1(Ω) . (3.19)

Definition 3.11 allows to show an existence result with our previously developed methods: We solve the radiation
problem (1.1) by constructing v = u − w ∈ H1

0(Ω) with Theorem 3.8. We can write the equation for v as

−Δv − k2nv = g ∶= 𝑓 + (Δw + k2nw) . (3.20)

We note that the expression Δw + k2nw has bounded support. This implies g ∈ L2
∗(Ω). The function g depends on the

vector of coefficients a ∈ C
L. We will construct a ∈ C

L such that (3.20) has a solution v ∈ H1
0(Ω).

We note that, by definition of the radiation condition in Definition 3.11, there is an equivalence of the solution concepts.
Existence: When we find a ∈ C

L such that (3.20) has a solution v ∈ H1
0(Ω), then u = w+ v ∈ H1

loc

(
Ω̄
)

is a solution of (1.1)
with radiation condition. Uniqueness: When u ∈ H1

loc

(
Ω̄
)

is a nontrivial solution of (1.1) with radiation condition, then
there exists a ∈ C

L and a solution v ∈ H1
0(Ω) of (3.20) such that a or v are nontrivial.

Theorem 3.12 (Existence of radiating solutions). Let S, k, n, and 𝑓 be as above and let 𝜌± be fixed. We demand that
Assumption 3.5 is satisfied. Then (1.1) has a unique solution u ∈ H1

loc

(
Ω̄
)

satisfying the radiation condition. With w, v,
and a from the radiation condition, there holds

||v||H1(Ω) + ||w||H1(W) ≤ C ||𝑓 ||L2
∗(Ω) (3.21)

with C = C(S, k,n, 𝜌±). The coefficients a𝓁 for 𝓁 ∈ {1, … ,L} are given by

a𝓁 = 2𝜋i|E(𝜙𝓁 , 𝜙𝓁)| ⟨𝑓, 𝜙𝓁⟩L2(Ω) . (3.22)
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KIRSCH and SCHWEIZER 13

Proof. Existence. We want to determine a ∈ C
L in the definition of w such that g of (3.20) satisfies the orthogonality

condition (3.17). Using a basis function 𝜙𝓁′ ∈ Y𝑗 for some 𝑗 and extending this basis function to an 𝛼𝑗-quasiperiodic
function on Ω, we can calculate, using (3.17) in the first equality,

−⟨𝑓, 𝜙𝓁′⟩L2(Ω) = ⟨(Δ + k2n)w, 𝜙𝓁′⟩L2(Ω) =
L∑

𝓁=1
a𝓁 ⟨(Δ + k2n)(𝜌𝓁𝜙𝓁), 𝜙𝓁′⟩L2(Ω) . (3.23)

We evaluate

(Δ + k2n)(𝜌𝓁𝜙𝓁) = 𝜌𝓁(Δ + k2n)𝜙𝓁 + ∇𝜌𝓁 · ∇𝜙𝓁 + ∇ · (𝜙𝓁∇𝜌𝓁)
= 𝜌′𝓁 𝜕1𝜙𝓁 + 𝜕1(𝜙𝓁 𝜌

′
𝓁) .

The scalar product can therefore be evaluated with an integration by parts,

⟨
(Δ + k2n)(𝜌𝓁𝜙𝓁), 𝜙𝓁′

⟩
L2(Ω) =

⟨
𝜌′𝓁 𝜕1𝜙𝓁 + 𝜕1(𝜙𝓁𝜌

′
𝓁), 𝜙𝓁′

⟩
L2(Ω) = ∫Ω

𝜙̄𝓁′ 𝜌′𝓁 𝜕1𝜙𝓁 − 𝜕1𝜙̄𝓁′ 𝜌′𝓁𝜙𝓁 = i∫
R

𝜌′𝓁(t)F𝜙𝓁 ,𝜙𝓁′ ,t dt

with the flux quantity F𝜙𝓁 ,𝜙𝓁′ ,t of (3.11). The flux is independent of t and coincides with 1
2𝜋

E(𝜙𝓁 , 𝜙𝓁′ ) =
1

2𝜋
E(𝜙𝓁 , 𝜙𝓁)𝛿𝓁,𝓁′ . We evaluate the right-hand side for a right-going wave 𝜙𝓁 , that is, for 𝜌𝓁 with 𝜌𝓁(−∞) = 0 and

𝜌𝓁(+∞) = 1:

i∫
R

𝜌′𝓁(t)F𝜙𝓁 ,𝜙𝓁′ ,t dt = i
2𝜋

E(𝜙𝓁 , 𝜙𝓁)𝛿𝓁,𝓁′ .

For a left-going wave 𝜙𝓁 , 𝜌𝓁(+∞) − 𝜌𝓁(−∞) = −1 introduces a negative prefactor. We find that the orthogonality
condition (3.23) is

−⟨𝑓, 𝜙𝓁′⟩L2(Ω) = a𝓁′
i

2𝜋
|E(𝜙𝓁′ , 𝜙𝓁′ )| .

This condition is identical to (3.22).
The above calculation also shows that, choosing (a𝓁)𝓁 according to (3.22), the orthogonality condition (3.15) is

satisfied for g. We can therefore solve for v with Theorem 3.8. With C depending on 𝜌±, we have the estimate ||v||H1(Ω) ≤
C||g||L2

∗(Ω) ≤ C(||𝑓 ||L2
∗(Ω) + ||(Δ + k2n)w||L2(Ω)) ≤ C(||𝑓 ||L2

∗(Ω) + |a|CL ) ≤ C||𝑓 ||L2
∗(Ω). This implies (3.21).

Uniqueness. Let u be a solution of the radiation problem with 𝑓 = 0. Our goal is to show that u vanishes. Theorem 3.8
implies that the right-hand side g = −(Δ+k2n)w of the equation for v satisfies the orthogonality condition (3.17). The
existence part of the proof implies that the coefficients a ∈ C

L for which the orthogonality condition is satisfied are
uniquely determined; hence, by 𝑓 = 0, we conclude a = 0. Together with the uniqueness statement of Theorem 3.8,
we find a = 0 and v = 0. This shows that u vanishes. □

Remark 3.4.

1. We note that the decomposition of the propagating modes 𝜙𝓁 into left-going and right-going modes is not
needed from the mathematical point of view. Indeed, the proof works also for the case that we decompose
{1, … ,L} into {1, … ,L} = + ∪ − for disjoint sets ± and set 𝜌𝓁 = 𝜌+ for 𝓁 ∈ + and 𝜌𝓁 = 𝜌− for 𝓁 ∈ −.

A particular choice would be to use + ∶= {1, … ,L} and − ∶= ∅. With this choice, we impose that no
propagating modes (neither left-going nor right-going) can be used on the right, but all propagating modes
(not only outgoing / left-going) can be used on the left.

2. Above, we have constructed, for given 𝜌±, solutions u = v + w. In order to investigate well-posedness of the
radiation condition, let us consider the consequences of choosing another set of admissible cut-off functions;
we denote them as 𝜌̃±.

We denote the corresponding solutions as u = v + w and ũ = ṽ + w̃. We write

u − ũ = v − ṽ +
∑
𝓁

ã𝓁 (𝜌𝓁 − 𝜌̃𝓁)𝜙𝓁 +
∑
𝓁

(a𝓁 − ã𝓁)𝜌𝓁𝜙𝓁 .

We observe that v − ṽ +
∑

𝓁ã𝓁 (𝜌𝓁 − 𝜌̃𝓁)𝜙𝓁 is in H1(Ω). We emphasize that, at this point, we exploited the
decay rate of the cut-off functions that was demanded in Definition 3.10. Therefore, u− ũ satisfies not only the
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14 KIRSCH and SCHWEIZER

homogeneous Helmholtz equation but also the radiation condition with coefficients (a𝓁 − ã𝓁)𝓁 . The unique-
ness result of Theorem 3.12 implies that u = ũ and a𝓁 = ã𝓁 for all 𝓁. In this sense, the choice of the cut-off
functions has no influence on the solution.

3. The radiation condition depends on the choice of the inner product chosen in Y𝛼 . Regarding this point, it is
very illustrative to study a simple example.

Example 3.13 (The standard example). In the two-dimensional case, d = 2, we use the cross-section S = (0, 𝜋), and
the coefficient n ≡ 1, considered as a 2𝜋-periodic function with respect to x1. Since we are interested in eigenspaces
with dimension larger than 1, we choose a specific wave number k in the following.

For 𝛼 ∈ I = [−1∕2, 1∕2] chosen below, we consider

𝜙1(x) ∶= ei𝛼x1 sin(2x2) and 𝜙2(x) ∶= ei(𝛼−2)x1 sin x2 .

The two functions satisfy Δ𝜙1 + (𝛼2 + 4)𝜙1 = 0 and Δ𝜙2 + ((𝛼 − 2)2 + 1)𝜙2 = 0. It is possible to choose 𝛼 such that
the two factors coincide, 𝛼2 + 4 = (𝛼 − 2)2 + 1, namely, 𝛼 = 1∕4. Accordingly, we define the wave number to be
k =

√
𝛼2 + 4 =

√
65∕4. With these choices, we have found two linearly independent, 𝛼-quasiperiodic solutions of

Δ𝜙 + k2𝜙 = 0. Indeed, for 𝛼 = 1∕4, there holds Y𝛼 = span(𝜙1, 𝜙2).
The fluxes of 𝜙1 and 𝜙2 are

E(𝜙1, 𝜙1) = i∫W
𝜙1 𝜕1𝜙̄1 − 𝜙̄1 𝜕1𝜙1 = i(−i𝛼)2∫W

sin2(2x2)dx = 2𝛼𝜋2 > 0 ,

E(𝜙2, 𝜙2) = i(−i(𝛼 − 2))2∫W
sin2(x2)dx = 2(𝛼 − 2)𝜋2 < 0 .

We have therefore found a right-going wave 𝜙1 and a left-going wave 𝜙2.
Let us check the orthogonality and normalization. We have E(𝜙1, 𝜙2) = 0 with ||𝜙𝑗||L2(W) = 𝜋 and ⟨𝜙1, 𝜙2⟩L2(W) = 0.

Therefore, 𝜙1∕
√
𝜋 and 𝜙2∕

√
𝜋 are the normalized eigenfunctions of the two-dimensional eigenvalue problem (3.14)

with 𝜆1 = 2𝛼𝜋2 and 𝜆2 = 2(𝛼 − 2)𝜋2 when ⟨·, ·⟩L2(W) is chosen as the inner product in Y𝛼 . However, if one chooses
a different inner product in Y𝛼 (for which 𝜙1 and 𝜙2 are not orthogonal), then one gets a different basis 𝜙̃1, 𝜙̃2. This
changes the radiation condition.

We will continue the above analysis in Example 5.1 where we show that, indeed, different absorption mechanisms can
lead to different inner products, hence to different basis functions, and hence to different radiation conditions.

4 LAPS

4.1 The operator family in the case with absorption
In the classical LAP, one replaces the real wave-number k > 0 by the complex number k𝜂 ∶= k+ i𝜂 with 𝜂 > 0 and studies
the equation

−Δu𝜂 − (k + i𝜂)2nu𝜂 = 𝑓 in Ω . (4.1)

The boundary condition u𝜂 = 0 on 𝜕Ω remains unchanged. It is well-known that this equation is uniquely solvable in
H1(Ω) for every 𝜂 > 0. This can be shown with an application of the Lax–Milgram theorem; the positivity of 𝜂 implies
that the bilinear form corresponding to (4.1) is coercive.

The rewriting of the equation with the Floquet–Bloch transform can be performed with only minimal notational
changes: Because of 𝑓 ∈ L2

∗(Ω) and u𝜂 ∈ H1(Ω), the Floquet–Bloch transformed functions û𝜂 = FB(u𝜂) ∈
L2((−1∕2, 1∕2),H1

𝛼(W)) and 𝑓 = FB( 𝑓 ) ∈ L2((−1∕2, 1∕2),L2(W)) are well-defined and satisfy, for 𝜂 > 0,

−Δû𝜂(·, 𝛼) − (k + i𝜂)2nû𝜂(·, 𝛼) = 𝑓 (·, 𝛼) in W , (4.2)

with boundary condition û𝜂(·, 𝛼) = 0 on (0, 2𝜋) × 𝜕S.
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KIRSCH and SCHWEIZER 15

We use again the space X = H1
per(W) of (2.9) and the equivalence (2.10); the operator L𝜂𝛼 ∈ (X ,X) and the element

𝑦𝛼 ∈ X are defined by

⟨L𝜂𝛼u, 𝜑⟩H1(W) ∶= −(k + i𝜂)2∫W
nu𝜑̄ + ∫W

∇
(

u(x)ei𝛼x1
)
· ∇
(
𝜑(x)ei𝛼x1

)
dx (4.3)

⟨𝑦𝛼, 𝜑⟩H1(W) ∶= ∫W
𝑓 (x, 𝛼)𝜑(x)ei𝛼x1 dx (4.4)

for u, 𝜑 ∈ X . Then (4.2) is equivalent to L𝜂𝛼u𝜂𝛼 = 𝑦𝛼 for u𝜂𝛼(x) = û𝜂(x, 𝛼)e−i𝛼x1 . We note that the operators L𝜂𝛼 are invertible
from X = H1

per(W) onto itself for all (𝛼, 𝜂) ∈ (I × [0, 𝜀])∖{(𝛼𝑗, 0) |𝑗 = 1, … , J}.
Since the operators L𝜂𝛼 depend on two parameters, we need the partial derivatives with respect to both parameters. The

𝛼-derivative is calculated as in the case 𝜂 = 0:

𝜕𝛼⟨L𝜂𝛼u, 𝜑⟩H1(W) = i∫W
∇
(

u(x)x1ei𝛼x1
)
· ∇
(
𝜑(x)ei𝛼x1

)
− ∇
(

u(x)ei𝛼x1
)
· ∇
(
𝜑(x)x1ei𝛼x1

)
dx

= i∫W
u(x)ei𝛼x1 𝜕1

(
𝜑(x)ei𝛼x1

)
− 𝜕1

(
u(x)ei𝛼x1

)
𝜑(x)ei𝛼x1

= E
(

uei𝛼x1 , 𝜑ei𝛼x1
)
.

Taking the derivative of (4.3) with respect to 𝜂 provides

𝜕𝜂⟨L𝜂𝛼u, 𝜑⟩H1(W) = −2i (k + i𝜂)∫W
nu𝜑̄dx .

We introduce two operators, essentially given by the two derivatives of L𝜂𝛼 . For a given 𝛼𝑗 ∈ , we consider the kernel =
ker
(

L0
𝛼𝑗

)
= {𝜙e−i𝛼𝑗x1 |𝜙 ∈ Y𝑗}, the operator M𝜂 ∶= iP𝜕𝜂L0

𝛼𝑗
| ∶  →  , and the operator M𝛼 ∶= P𝜕𝛼L0

𝛼𝑗
| ∶  →  .

We note that, by the above formulas, M𝜂 is self-adjoint and positive definite (it can be identified with a multiplication
with 2kn), and M𝛼 ∶= P𝜕𝛼L0

𝛼𝑗
| is self-adjoint and one-to-one provided E is non-degenerate on Y𝑗 .

4.2 Functional analysis for two-parameter families
Our aim is now to extend the one-parameter theory of the last section to a theory for two-parameter families.

Definition 4.1 (Two-parameter family of operators). We consider a Banach space X and the unit interval I =
[−1∕2, 1∕2] ⊂ R. We say that (L𝜂𝛼) is a two-parameter family of Fredholm operators when there exists 𝜀 > 0 and a
C2-map

(−1∕2 − 𝜀, 1∕2 + 𝜀) × [0, 𝜀) ∋ (𝛼, 𝜂) → L𝜂𝛼 ∈ (X ,X) , (4.5)

such that every operator L𝜂𝛼 is a Fredholm operator with index 0, and for every 𝛼 ∈ I for which L0
𝛼 is not invertible, the

operator L ∶= L0
𝛼 has Riesz number 1, ker(L) = ker(L2).

Remark 4.1.

1. We actually need less than the C2 property of the operator family. The proof works when in(X ,X) the following
approximation property holds:

‖‖‖L𝜂𝛼 −
[
L𝜂0
𝛼0
+ (𝛼 − 𝛼0)𝜕𝛼L𝜂0

𝛼0
+ (𝜂 − 𝜂0)𝜕𝜂L𝜂0

𝛼0

]‖‖‖ ≤ c
[
(𝛼 − 𝛼0)2 + (𝜂 − 𝜂0)2] .

Here, the norm is the operator norm in (X ,X).
2. An illustrative example is X = C and L𝜂𝛼 = 𝛼 − i𝜂 (this will actually be, for 𝛼𝑗 = 0, the essential action of L𝜂𝛼 on

the kernel of L0
0). For the family of right-hand sides 𝑦𝜂𝛼 = 1, we find the solutions

u𝜂𝛼 = (L𝜂𝛼)−1(𝑦𝜂𝛼) =
1

𝛼 − i𝜂
. (4.6)
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16 KIRSCH and SCHWEIZER

We observe that u𝜂𝛼 has a singularity in (𝛼, 𝜂) = (0, 0). This singular behavior was somehow to be expected,
since 𝑦𝜂𝛼 is not vanishing in (𝛼, 𝜂) = (0, 0). Let us therefore look at a right-hand side that vanishes in the singular
point; we investigate 𝑦𝜂𝛼 = 𝛼 with 𝑦0

0 = 0. The solution for this right-hand side is

u𝜂𝛼 = (L𝜂𝛼)−1(𝑦𝜂𝛼) =
𝛼

𝛼 − i𝜂
. (4.7)

We observe that the solution is bounded. On the other hand, the solution family is not continuous at (0, 0).
Indeed, along the two coordinate axes, we find the following: u0

𝛼 = 1 for all 𝛼 and u𝜂0 = 0 for all 𝜂.
The following theorem considers the local situation with only one critical value 𝛼. Once more, without loss

of generality, we choose the critical point to be 𝛼 = 0.

Theorem 4.2 (Functional analysis II). Let X be a Hilbert space and L𝜂𝛼 be a two-parameter family of Fredholm operators
in the sense of Definition 4.1. Let I ∋ 𝛼 → 𝑦𝛼 ∈ X be a family of right-hand sides that depend on Lipschitz continuously
on 𝛼 ∈ I. Let the following properties be satisfied:

(a) L𝜂𝛼 ∶ X → X is invertible for all (𝛼, 𝜂) ∈ ((−𝜀, 𝜀) × [0, 𝜀))∖(0, 0).
(b) With  ∶= ker(L0

0) and  ∶= L0
0(X) and P ∈ ( , ) the projection onto  corresponding to X =  + ,

the operator M𝜂 ∶= iP𝜕𝜂L0
0| ∈ ( , ) is self-adjoint and positive definite and M𝛼 ∶= P𝜕𝛼L0

0| ∈ ( , )
is self-adjoint and invertible.

Let u𝜂𝛼 ∈ X be the unique solution of L𝜂𝛼u𝜂𝛼 = 𝑦𝛼 for all (𝛼, 𝜂) ∈ ((−𝜀, 𝜀) × [0, 𝜀))∖(0, 0). Then there exists 𝜀1 ∈ (0, 𝜀) such
that u𝜂𝛼 has the form

u𝜂𝛼 = v𝜂𝛼 +
m∑
𝓁=1

⟨P𝑦0, 𝜙𝓁⟩X
𝜆𝓁𝛼 − i𝜂

𝜙𝓁 for (𝛼, 𝜂) ∈ ((−𝜀1, 𝜀1) × [0, 𝜀1))∖(0, 0) . (4.8)

In this representation, ||v𝜂𝛼||X is uniformly bounded with respect to (𝛼, 𝜂). The family {𝜙𝓁 |𝓁 = 1, … ,m}, m = dim ,
is an orthonormal eigensystem with eigenvalues {𝜆𝓁 |𝓁 = 1, … ,m} of the following generalized eigenvalue problem in
the finite dimensional space  :

M𝛼𝜙𝓁 = 𝜆𝓁 M𝜂𝜙𝓁 in  with normalization ⟨M𝜂𝜙𝓁 , 𝜙𝓁′⟩X = 𝛿𝓁,𝓁′ (4.9)

for 𝓁,𝓁′ = 1, … ,m.

Remark 4.2. The difference to Theorem 3.2 is—except of the appearance of the second parameter 𝜂—that we do not
assume 𝑦0 ∈ . This gives the singular behavior of the solution u𝜂𝛼 when (𝛼, 𝜂) tends to (0, 0).

Proof. We obtain the singular part of the solution as the highest order approximation. Considering only the kernel
 and the Taylor expansion PL𝜂𝛼| ∼ 𝛼M𝛼 − i𝜂M𝜂 , we solve

(𝛼M𝛼 − i𝜂M𝜂)w(𝛼, 𝜂) = P𝑦0 (4.10)

in  . The right-hand side can be expanded with the orthonormal basis; we write P𝑦0 =
∑m

𝓁=1 ⟨P𝑦0, 𝜙𝓁⟩X 𝜙𝓁 . The
unique solution w(𝛼, 𝜂) is given by

w(𝛼, 𝜂) =
m∑
𝓁=1

⟨P𝑦0, 𝜙𝓁⟩X
𝜆𝓁𝛼 − i𝜂

𝜙𝓁 , (4.11)

as can be checked by inserting into (4.10).
Similar to the proof of Theorem 3.2, we write u𝜂𝛼 in the form u𝜂𝛼 = w(𝛼, 𝜂) + uN(𝛼, 𝜂) + uR(𝛼, 𝜂), where uN(𝛼, 𝜂) ∈ 

and uR(𝛼, 𝜂) ∈  for every 𝜂 and 𝛼. The equation L𝜂𝛼u𝜂𝛼 = 𝑦𝛼 is then equivalent to

[
PL𝜂𝛼| PL𝜂𝛼|
QL𝜂𝛼| QL𝜂𝛼|

](
w(𝛼, 𝜂) + uN(𝛼, 𝜂)

uR(𝛼, 𝜂)

)
=
(

P𝑦𝛼
Q𝑦𝛼

)
in  × . (4.12)
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KIRSCH and SCHWEIZER 17

The second line can be written as

QL𝜂𝛼uR(𝛼, 𝜂) = −QL𝜂𝛼w(𝛼, 𝜂) − QL𝜂𝛼uN(𝛼, 𝜂) + Q𝑦𝛼 . (4.13)

The operator QL0
0| is an isomorphism from  onto itself. This implies that, for sufficiently small 𝜂 and |𝛼|, the

inverse operators [QL𝜂𝛼|]−1 exist and are bounded from  onto itself. Furthermore, they depend twice continuously
differentiable on 𝜂 and 𝛼 for sufficiently small 𝜂 and |𝛼|. We claim that the first term on the right-hand side of (4.13)
is bounded. Indeed, using w(𝛼, 𝜂) ∈  , we have

QL𝜂𝛼w(𝛼, 𝜂) = Q[L𝜂𝛼 − L0
0]w(𝛼, 𝜂) = O(|(𝛼, 𝜂)|) ||w(𝛼, 𝜂)|| = O(1)

by the differentiability of L𝜂𝛼 and the fact that ||w(𝛼, 𝜂)|| = O(|(𝛼, 𝜂)|−1). This implies that (4.13) can be solved with
uR(𝛼, 𝜂) of the form

uR(𝛼, 𝜂) = −[QL𝜂𝛼|]−1QL𝜂𝛼uN(𝛼, 𝜂) + uR
1 (𝛼, 𝜂) , (4.14)

with a bounded family uR
1 (𝛼, 𝜂) ∈ , which depends only on 𝑦0 and 𝑦𝛼 .

Substituting uR into the first equation of (4.12) yields(
PL𝜂𝛼 − PL𝜂𝛼[QL𝜂𝛼|]−1QL𝜂𝛼

)
uN(𝛼, 𝜂) = P𝑦𝛼 − PL𝜂𝛼w(𝛼, 𝜂) − PL𝜂𝛼uR

1 (𝛼, 𝜂)
= P𝑦𝛼 − P𝑦0 − O(|(𝛼, 𝜂)|2) ||w(𝛼, 𝜂)|| − O(|(𝛼, 𝜂)|) = O(|(𝛼, 𝜂)|) . (4.15)

In the second equality, we used PL𝜂𝛼−(PL0
0+𝛼M𝛼−i𝜂M𝜂) = O(|(𝛼, 𝜂)|2) and the construction of w(𝛼, 𝜂). Furthermore,

for the last term, we exploited PL0
0 = 0 from the definition of P and the differentiability of the family L𝜂𝛼 .

Equation (4.15) has the form L̃𝜂𝛼uN(𝛼, 𝜂) = 𝑦̃
𝜂
𝛼 with an operator L̃𝜂𝛼 from  into itself, with L̃0

0 = 0 and 𝑦̃0
0 = 0. We

claim that the partial derivative 𝜕𝜉L̃0
0 is invertible for every 0 ≠ 𝜉 ∈ R

2 with 𝜉2 ≥ 0. Indeed, differentiating the second
part of L̃𝜂𝛼 with the chain rule gives three terms. Differentiating the first or second factor leaves the third factor QL0

0
unchanged, and this third factor is the trivial map on  . Differentiating the third factor leaves the first two factors
PL0

0
[
QL0

0|]−1 unchanged, but this operator vanishes because of PL0
0 = 0. Therefore, there remains only the derivative

of the first term: 𝜕𝜉L̃0
0 = 𝜕𝜉PL0

0 = 𝜉1M𝛼 − i𝜉2M𝜂 , which is invertible (as seen already in (4.11)).
A theorem like Theorem 3.2 with two parameters (see Remark 3.3) implies that the solution family uN(𝛼, 𝜂) is

bounded. We note that it cannot be expected that the solution family is continuous; see the example in (4.7). □

4.3 Application of the functional analysis result
We want to apply Theorem 4.2 to Equation (4.2), which we write again in the form L𝜂𝛼u𝜂𝛼 = 𝑦𝛼 for u𝜂𝛼(x) = û𝜂(x, 𝛼)e−i𝛼x1 .
We consider a fixed parameter 𝛼𝑗 ∈ I for some 𝑗 ∈ {1, … , J} and recall that ker(L0

𝛼𝑗
) = {𝜙e−i𝛼𝑗x1 |𝜙 ∈ Y𝑗} where Y𝑗 has

been defined in (3.12). Shifting the critical value 𝛼 = 0 in Theorem 4.2 to 𝛼 = 𝛼𝑗 yields the following decomposition.

Proposition 4.3 (Representation of solutions in Floquet–Bloch space). Let Assumption 3.5 hold, let 𝑗 ∈ {1, … , J} be
fixed and let 𝑓 ∈ L2

∗(Ω) be given. Then there exists 𝜀1 ∈ (0, 𝜀) such that for 𝜂 ∈ (0, 𝜀1) and |𝛼 − 𝛼𝑗| < 𝜀1, the unique
solution û𝜂(·, 𝛼) ∈ H1

𝛼(W) of (4.2) has a decomposition in the form

û𝜂(x, 𝛼) = v𝜂
𝑗
(x, 𝛼) +

m𝑗∑
𝓁=1

⟨𝑓 (·, 𝛼𝑗), 𝜙𝓁,𝑗⟩L2(W)

𝜆𝓁,𝑗(𝛼 − 𝛼𝑗) − i𝜂
𝜙𝓁,𝑗(x)ei(𝛼−𝛼𝑗 )x1 , (4.16)

for almost every x ∈ W. Here, ||v𝜂
𝑗
(·, 𝛼)||H1(W) is uniformly bounded with respect to (𝛼, 𝜂), and

{
𝜙𝓁,𝑗 |𝓁 = 1, … ,m𝑗

}
, m𝑗 =

dim Y𝑗 , is an orthonormal eigensystem with eigenvalues
{
𝜆𝓁,𝑗 |𝓁 = 1, … ,m𝑗

}
of the following generalized eigenvalue

problem in the finite dimensional space Y𝑗 :

E(𝜙𝓁,𝑗 , 𝜓) = 𝜆𝓁,𝑗 2k∫W
n𝜙𝓁,𝑗 𝜓̄ for all 𝜓 ∈ Y𝑗 (4.17)

with normalization 2k∫W n𝜙𝓁,𝑗 𝜙𝓁′,𝑗 = 𝛿𝓁,𝓁′ .
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18 KIRSCH and SCHWEIZER

Proof. In the end of subsection 4.1, we have obtained characterizations for M𝛼 and M𝜂; they show that the abstract
eigenvalue problem (4.9) reduces to the problem to determine 𝜆𝓁 and 𝜙𝓁 ∈ ker(L0

𝛼𝑗
) with E

(
𝜙𝓁 ei𝛼x1 , 𝜑ei𝛼x1

)
=

𝜆𝓁 2k∫W n𝜙𝓁 𝜑̄ for all 𝜑 ∈ ker(L0
𝛼𝑗
) which coincides with (4.17) when replacing 𝜙𝓁 ei𝛼x1 and 𝜑ei𝛼x1 by 𝜙𝓁,𝑗 ∈ Y𝑗 and

𝜓 ∈ Y𝑗 , respectively.
Formula (4.8) of Theorem 4.2 (for singularity at 𝛼𝑗 instead of 0) yields the representation

û𝜂(x, 𝛼)e−i𝛼x1 = u𝜂𝛼(x) = v𝜂𝛼(x) +
m𝑗∑
𝓁=1

⟨𝑦𝛼𝑗 , 𝜙𝓁,𝑗e−i𝛼𝑗x1⟩H1(W)

𝜆𝓁,𝑗(𝛼 − 𝛼𝑗) − i𝜂
𝜙𝓁,𝑗(x)e−i𝛼𝑗x1

for x ∈ W . The identity ⟨𝑦𝛼𝑗 , 𝜙𝓁,𝑗e−i𝛼𝑗x1⟩H1(W) = ⟨𝑓 (·, 𝛼𝑗), 𝜙𝓁,𝑗⟩L2(W) follows from the definition of 𝑦𝛼 for 𝜑(x) =
𝜙𝓁,𝑗(x)e−i𝛼𝑗x1 . □

The inverse Floquet–Bloch transform
With (4.16), we have found an expression for the Floquet–Bloch transform û𝜂 of the solution u𝜂 . Using the inverse
transform yields an expression for u𝜂 .

For the subsequent theorem, let 𝜌± be two admissible cut-off functions as described in Definition 3.10

Theorem 4.4 (LAP). We consider solutions u𝜂 ∈ H1
0(Ω) of (4.1) for the right-hand side 𝑓 ∈ L2

∗(Ω). Let Assumption 3.5 be
satisfied. We use the eigenvalues and eigenfunctions 𝜆𝓁,𝑗 and 𝜙𝓁,𝑗 of Proposition 4.3. Then, as 𝜂 tends to zero, u𝜂 ∈ H1

0(Ω)
converge to a solution u ∈ H1

loc

(
Ω
)

of (4.1) with 𝜂 = 0. Denoting cut-off functions as 𝜌𝓁,𝑗 ∶= 𝜌sign(𝜆𝓁,𝑗 ), the limit u can be
written as

u(x) = v(x) +
J∑
𝑗=1

m𝑗∑
𝓁=1

a𝓁,𝑗 𝜌𝓁,𝑗(x1)𝜙𝓁,𝑗(x) with a𝓁,𝑗 = 2𝜋i
⟨𝑓, 𝜙𝓁,𝑗⟩L2(Ω)|𝜆𝓁,𝑗| (4.18)

and v ∈ H1(Ω). The convergence u𝜂 → u is a local convergence: For every R > 0 and ΩR ∶= {x ∈ Ω | |x1| < R}, the
restricted functions converge strongly in H1(ΩR).

Remark 4.3. We will derive the result for a specific pair of cut-off functions, namely, for some suitably chosen 𝜀 > 0,

𝜌±(x) ∶=
1
2
± 1
𝜋 ∫

𝜀x1

0

sin t
t

dt . (4.19)

We note that the integral term behaves like ∫ x1
0

sin t
t

dt = ± 𝜋

2
+(1∕|x1|) as ±x1 → ∞. This implies that the two functions

𝜌± have the required properties of cut-off functions of Definition 3.10.
By Remark 2 after Theorem 3.12, the solution u is independent of the choice of the cut-off functions. This implies the

following: When we verify that the limit solution u satisfies (4.18) with the cut-off functions of (4.19), then u satisfies (4.18)
for every choice of admissible cut-off functions.

Proof. The solution u𝜂 is the inverse Floquet–Bloch transform of û𝜂; hence, it is given by an integral over the interval
I = [−1∕2, 1∕2]; see (A4).

We decompose the interval I in the form I =
⋃J
𝑗=1(𝛼𝑗 − 𝜀, 𝛼𝑗 + 𝜀) ∪U where U ∶= I∖

⋃J
𝑗=1(𝛼𝑗 − 𝜀, 𝛼𝑗 + 𝜀) and where

𝜀 > 0 is chosen such that the intervals (𝛼𝑗 − 𝜀, 𝛼𝑗 + 𝜀) do not intersect each other and allow the representation (4.16).
We have for x ∈ Ω

u𝜂(x) = ∫
1∕2

−1∕2
û𝜂(x, 𝛼)d𝛼 = ∫U

û𝜂(x, 𝛼)d𝛼 +
J∑
𝑗=1 ∫

𝛼𝑗+𝜀

𝛼𝑗−𝜀
û𝜂(x, 𝛼)d𝛼

= ∫U
û𝜂(x, 𝛼)d𝛼 +

J∑
𝑗=1 ∫

𝛼𝑗+𝜀

𝛼𝑗−𝜀
v𝜂
𝑗
(x, 𝛼)d𝛼 +

J∑
𝑗=1

m𝑗∑
𝓁=1
⟨𝑓 (·, 𝛼𝑗), 𝜙𝓁,𝑗⟩L2(W) ∫

𝛼𝑗+𝜀

𝛼𝑗−𝜀

ei(𝛼−𝛼𝑗 )x1

𝜆𝓁,𝑗(𝛼 − 𝛼𝑗) − i𝜂
d𝛼𝜙𝓁,𝑗(x) .

We now consider 𝜂 → 0 in the different terms.
On U we have convergence in the space C0 (U,H1(W)

)
of û𝜂 to some function ŵ ∈ C0 (U,H1(W)

)
. Therefore,

∫U û𝜂(x, 𝛼)d𝛼 converges to w(x) ∶= ∫U w(x, 𝛼)d𝛼 in H1(Ω) by the boundedness of the inverse Floquet-Bloch transform.
In particular, w ∈ H1(Ω).
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KIRSCH and SCHWEIZER 19

For fixed 𝑗 ∈ {1, … , J}, we next treat the integral ∫ 𝛼𝑗+𝜀
𝛼𝑗−𝜀

v𝜂
𝑗
(x, 𝛼)d𝛼. The integrand v𝜂

𝑗
tends to v0

𝑗
in

L2 ((𝛼𝑗 − 𝜀, 𝛼𝑗 + 𝜀),H1(W)
)

by Lebesgue's theorem of dominated convergence because v𝜂
𝑗
(·, 𝛼) tends to v0

𝑗
(·, 𝛼) in

H1(W) for every 𝛼 ≠ 𝛼𝑗 and is uniformly bounded with respect to 𝛼 and 𝜂. Again, the boundedness of the inverse
Floquet-Bloch transform yields convergence of ∫ 𝛼𝑗+𝜀

𝛼𝑗−𝜀
v𝜂
𝑗
(x, 𝛼)d𝛼 to ∫ 𝛼𝑗+𝜀

𝛼𝑗−𝜀
v0
𝑗
(x, 𝛼)d𝛼 in H1(Ω).

Finally, we consider the integral in the last term for fixed 𝑗 and 𝓁. With a parameter transformation, we write the
integral as

∫
𝛼𝑗+𝜀

𝛼𝑗−𝜀

ei(𝛼−𝛼𝑗 )x1

𝜆𝓁,𝑗(𝛼 − 𝛼𝑗) − i𝜂
d𝛼 = ∫

𝜀

−𝜀

ei𝛼x1

𝜆𝓁,𝑗𝛼 − i𝜂
d𝛼 . (4.20)

In the appendix, see (B1); we show that, for 𝜌± from (4.19), this integral converges to 2𝜋i|𝜆𝓁,𝑗 | 𝜌sign(𝜆𝓁,𝑗 )(x1), uniformly
with respect to |x1| ≤ R for every R > 0. Altogether, we have shown the local convergence of u𝜂 to

u(x) = v(x) + 2𝜋i
J∑
𝑗=1

m𝑗∑
𝓁=1

⟨𝑓 (·, 𝛼𝑗), 𝜙𝓁,𝑗⟩L2(W)|𝜆𝓁,𝑗| 𝜌𝓁,𝑗(x1)𝜙𝓁,𝑗(x)

for some v ∈ H1(Ω). It remains to note that ⟨𝑓 (·, 𝛼𝑗), 𝜙𝓁,𝑗⟩L2(W) = ⟨𝑓, 𝜙𝓁,𝑗⟩L2(Ω), which was stated and shown in the
proof of Lemma 3.9, exploiting the quasi-periodicity of 𝜙𝓁,𝑗 . □

5 ALTERNATIVE DAMPING APPROACHES

With Equation (4.1), we have analyzed the LAP for a specific absorption term: k was replaced by k + i𝜂. Other damp-
ing mechanisms are also physically relevant, for example, nonhomogeneous damping in the k-part or damping in the
elliptic-part. We investigate here the LAP for these alternative damping mechanisms.

Nonhomogeneous damping in the k-part
We choose a nonnegative real valued function p ∈ L∞(Ω) that is 2𝜋-periodic with respect to x1 and with a positive lower
bound, p ≥ p0 > 0 on Ω. We consider

−Δu𝜂 − k2(n + i𝜂p)u𝜂 = 𝑓 in Ω (5.1)

with the usual boundary condition u𝜂 = 0 on 𝜕Ω. This is a modification of the homogeneous damping of (4.1). Once more,
an application of the Lax–Milgram theorem yields that the equation is uniquely solvable in H1(Ω) for every 𝜂 > 0. The
variational form of the Floquet–Bloch transformed equation is equivalent to L𝜂𝛼u𝜂𝛼 = 𝑦𝛼 for u𝜂𝛼(x) = û𝜂(x, 𝛼)e−i𝛼x1 , where
𝑦𝛼 is given by (4.4) and L𝜂𝛼 by (4.3), with k + i𝜂 replaced by k and with the refractive index n replaced by n + i𝜂p.

The operator M𝜂 is given by a partial derivative of L𝜂𝛼 with respect to 𝜂. We calculate it to be

⟨M𝜂u, 𝜑⟩ ∶= i𝜕𝜂⟨L𝜂𝛼u, 𝜑⟩H1(W) = k2∫W
pu𝜑̄ .

Therefore, the eigenvalue problem (4.17) has to be replaced by

E(𝜙𝓁,𝑗 , 𝜓) = 𝜆𝓁,𝑗 k2∫W
p𝜙𝓁,𝑗 𝜓̄ for all 𝜓 ∈ Y𝑗 . (5.2)

Nonhomogeneous damping in the elliptic part
As a second form of damping, we consider, for p ∈ L∞(Ω) as above,

−∇ · ((1 − i𝜂p)∇u𝜂) − k2nu𝜂 = 𝑓 in Ω , (5.3)

with the usual boundary condition u𝜂 = 0 on 𝜕Ω. The variational form is to find u𝜂 ∈ H1
0(Ω) with

∫Ω
(1 − i𝜂p)∇u𝜂 · ∇𝜑 − k2nu𝜂𝜑̄ = ∫W

𝑓 𝜑 for all 𝜑 ∈ H1
0(Ω) .
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20 KIRSCH and SCHWEIZER

The theorem by Lax–Milgram yields existence and uniqueness. The periodic form u𝜂𝛼(x) = û𝜂(x, 𝛼)e−i𝛼x1 of the
Floquet–Bloch transform satisfies L𝜂𝛼u𝜂𝛼 = 𝑦𝛼 , where 𝑦𝛼 is again given by (4.4) and L𝜂𝛼 by

⟨L𝜂𝛼u, 𝜑⟩H1(W) = −k2∫W
nu𝜑̄ + ∫W

(1 − i𝜂p)∇
(

u(x)ei𝛼x1
)
· ∇
(
𝜑(x)ei𝛼x1

)
dx

for u, 𝜑 ∈ H1
per(W). The operator M𝜂 is now

⟨M𝜂u, 𝜑⟩ ∶= i𝜕𝜂⟨L𝜂𝛼u, 𝜑⟩H1(W) = ∫W
p∇
(

u(x)ei𝛼x1
)
· ∇
(
𝜑(x)ei𝛼x1

)
dx . (5.4)

Therefore, the eigenvalue problem (4.17) has to be replaced by

E(𝜙𝓁,𝑗 , 𝜓) = 𝜆𝓁,𝑗 ∫W
p∇𝜙𝓁,𝑗 · ∇𝜓 for all 𝜓 ∈ Y𝑗 . (5.5)

Example 5.1 (The standard example continued). We continue Example 3.13, where we have found two linearly
independent eigenfunctions 𝜙1 and 𝜙2 spanning Y𝛼 for 𝛼 = 1∕4. The wave 𝜙1 is right-going, and the wave 𝜙2 is
left-going.

We now investigate different eigenvalue problems that are generated by different LAPs. The abstract eigenvalue
problem is stated in (4.9); it uses the positive definite operator M𝜂 ∶= iP𝜕𝜂L0

0| ∶  →  and the self-adjoint
operator M𝛼 ∶= P𝜕𝛼L0

0| ∶  →  .
For the standard absorption mechanism of (4.1), M𝜂 and M𝛼 are given, loosely speaking, by a multiplication operator

(factor 2kn) and by the form E, respectively. The eigenvalue problem was calculated to be (4.17). For our concrete
example, 𝜙1 and 𝜙2 are indeed eigenfunctions for this problem. The eigenvalues are

𝜆𝑗 =
E(𝜙𝑗, 𝜙𝑗)

2k||𝜙𝑗||2L2(W)

, hence 𝜆1 = 𝛼

k
> 0 and 𝜆2 = 𝛼 − 2

k
< 0 . (5.6)

For a solution u = v + w of the radiation problem, the propagating function w has the form w = a1𝜌+𝜙1 + a2𝜌−𝜙2.
In particular, when 𝜌′± has support in (−L,L), the function w coincides with a multiple of 𝜙1 for x1 ≥ L and with a
multiple of 𝜙2 for x1 ≤ −L.

Let us now choose a different absorption principle. Referring to (5.2), we consider ⟨u, v⟩p = k2∫W puv̄dx with some
positive function p ∈ L∞(W). The eigenvalue problem (3.14) takes the form E(𝜙̃, 𝜙𝑗) = 𝜆̃⟨𝜙̃, 𝜙𝑗⟩p for 𝑗 = 1, 2. Making
the ansatz 𝜙̃ = a1𝜙1 + a2𝜙2 leads to the generalized eigenvalue problem

[
E(𝜙1, 𝜙1) 0

0 E(𝜙2, 𝜙2)

](
a1
a2

)
= 𝜆̃

[ ⟨𝜙1, 𝜙1⟩p ⟨𝜙1, 𝜙2⟩p⟨𝜙2, 𝜙1⟩p ⟨𝜙2, 𝜙2⟩p
](

a1
a2

)
.

Two normalized orthogonal solutions to this problem are given by two complex vectors (a1, a2) and (b1, b2). Accord-
ingly, we find new eigenfunctions 𝜙̃1 = a1𝜙1 + a2𝜙2 and 𝜙̃2 = b1𝜙1 + b2𝜙2. This means that the wave that is outgoing
to the right is, for example, 𝜙̃1 = a1𝜙1 + a2𝜙2. This function is, for a generic coefficient p, neither a multiple of 𝜙1 nor
a multiple of 𝜙2. The limiting absorption process then provides a radiating solution of the limit problem that uses on
the right the function 𝜌+ (a1𝜙1 + a2𝜙2). It is hence different from the previously obtained limit solution.

We obtain that the radiation condition indeed depends on the choice of the inner product or, in other words, on the
damping mechanism.

 10991476, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

m
a.10435 by K

arlsruher Institut F., W
iley O

nline L
ibrary on [09/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



KIRSCH and SCHWEIZER 21

6 TWO SPACES OF HOMOGENEOUS SOLUTIONS

Let us recall the spaces that were used in the above constructions: The space Y𝑗 of (3.12) consists of 𝛼𝑗-quasiperiodic
homogeneous solutions,

Y𝑗 = Y𝛼𝑗 =
{

u ∈ H1
𝛼𝑗
(Ω) |(Δ + k2n)u = 0 in Ω ,u = 0 on R × 𝜕S

}
.

We recall that {𝛼𝑗 |𝑗 = 1, … , J} ⊂ [−1∕2, 1∕2] are the quasi-moments that correspond to nontrivial spaces Y𝛼 . In the
above formula, we identified H1

𝛼𝑗
(W) with H1

𝛼𝑗
(Ω); the canonical identification is given by the 𝛼𝑗-quasiperiodic extension

of a function in H1
𝛼𝑗
(W) (and, vice versa, the restriction to a function on W). We furthermore introduced in (3.13) the

space

Y =
J⨁
𝑗=1

Y𝑗 ⊂ H1(W) , identified with Y ⊂ H1
loc
(
Ω̄
)
. (6.1)

It has a basis {𝜙𝓁 |𝓁 = 1, … ,L} with orthogonality E(𝜙𝓁 , 𝜙𝓁′ ) = 0 for 𝓁 ≠ 𝓁′.
Let us consider another space, the space B of bounded solutions. That space was extensively used in [11] (where it

was named X). In order to impose a boundedness property, we introduce the norm ||U||sL ∶= sup𝓁∈Z||U|W𝓁
||L2(W𝓁) for

functions U ∈ L2
loc(Ω), where W𝓁 ∶= (2𝜋𝓁, 2𝜋𝓁 + 2𝜋) × S. The space of bounded homogeneous solutions is defined as

B ∶=
{

U ∈ H1
loc
(
Ω̄
) |(Δ + k2n)U = 0 in Ω , U = 0 on R × 𝜕S , ||U||sL < ∞

}
. (6.2)

It is clear that every quasiperiodic homogeneous solutions is a bounded homogeneous solution; hence, Y ⊂ B. Our aim
is to show that the spaces Y and B actually coincide.

Before we formulate the corresponding result, we note that an equivalent norm is obtained when we measure the
H1-norm in every cell.

Lemma 6.1 (Equivalent norms). There exists a constant C > 0 such that

sup
𝓁∈Z
||U|W𝓁

||H1(W𝓁) ≤ C||U||sL = C sup
𝓁∈Z
||U|W𝓁

||L2(W𝓁) for all U ∈ B . (6.3)

Proof. The lemma follows from Caccioppoli's inequality for solutions of elliptic problems. □

We can now give the characterization of B.

Theorem 6.2 (Every bounded homogeneous solution is a linear combination of quasiperiodic homogeneous solu-
tions). When Assumption 3.5 holds, then the spaces Y of (6.1) and B of (6.2) coincide,

Y = B . (6.4)

The proof is given in the next subsection. We provide the proof in a more abstract setting such that it covers, e.g., compact
perturbations of periodic media. If the reader wants to see the proof of Theorem 6.2 immediately: It is possible to jump to
the proof of Theorem 6.5 and to read it as a proof of Theorem 6.2.

6.1 A generalized setting
We write A for the underlying self-adjoint differential operator of second order, defined on some domain Ω ⊂ R

d =
R × R

d−1. In the main part of this text, we treat A = −Δ − k2n. By contrast, the next result holds also for compact
perturbations of this operator, for example A = −Δ− k2(n + q) where q has bounded support, or A = −∇ · ((I + Q)∇) − k2

where I is the identity and Q has bounded support. We always assume that the operator is everywhere uniformly elliptic.
The domain Ω is assumed to be cylindrical outside a compact set: For some bounded set S ⊂ R

d−1 and some M > 0,
there holds Ω ∩ {x | |x1| > M} = (R × S) ∩ {x | |x1| > M}. We always assume that the coefficients are 2𝜋-periodic in x1 in
the cylindrical parts, more precisely: We assume that there exists a self-adjoint operator Â of second order in R × S with
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22 KIRSCH and SCHWEIZER

2𝜋-periodic coefficients (in x1) which coincides with A in Ω ∩ {x | |x1| > M}. The space in which we look for solutions is
H1

loc

(
Ω̄
)
.

We consider the space B corresponding to the elliptic operator A, here defined with the norm ||U||sH ∶=
sup𝓁∈Z||U||H1(W𝓁):

B ∶=
{

u ∈ H1
loc
(
Ω̄
) |Au = 0 in Ω , u = 0 on 𝜕Ω , ||u||sH < ∞

}
.

We emphasize that, due to the equivalence of norms of Lemma 6.1, in the setting of the last subsection, the definition of
B was not changed with respect to (6.2).

In the following, we assume that cut-off functions 𝜌± ∈ C2(R) with 𝜌±(x1) = 1 for ±x1 ≥ 1 and 𝜌±(x1) = 0 for ±x1 ≤ −1
are chosen. Let {𝜙𝓁 |𝓁 = 1, … ,L} be quasiperiodic homogeneous solutions to the unperturbed operator Â in R × S with
homogeneous Dirichlet conditions on R× 𝜕S. For two disjoint sets + and − with + ∪− = {1, … ,L}, we set 𝜌𝓁 = 𝜌+
for 𝓁 ∈ + and 𝜌𝓁 = 𝜌− for 𝓁 ∈ −.

Assumption 6.3 (An abstract existence and uniqueness result). We assume the following on the operator A. For
every right-hand side 𝑓 ∈ L2

∗(Ω), there exist uniquely determined functions v ∈ H1
0(Ω) and w =

∑L
𝓁=1 𝜌𝓁a𝓁𝜙𝓁 such

that u = v + w ∈ H1
loc

(
Ω̄
)

satisfies Au = 𝑓 . The map L2
∗(Ω) ∋ 𝑓 → (a𝓁)L

𝓁=1 ∈ C
L is linear and continuous.

We note that Assumption 6.3 is verified in the standard setting of this contribution: For A = −Δ − k2n on the domain
Ω = R×S with S ⊂ R

d−1 a bounded Lipschitz domain, Assumption 3.5 implies Assumption 6.3. This is shown in Theorem
3.12.

For cylindrical domains and periodic coefficients, the space Y is defined in (3.13). When we treat compact perturbations
of this setting (as described above), we have to define the space Y in a different way. We construct as follows: Let 𝜃 ∈ C2(R)
be any function with 𝜃(x1) = 1 for |x1| ≥ M + 1 and 𝜃(x1) = 0 for |x1| ≤ M. For fixed 𝓁 ∈ {1, … ,L}, we define the
incident field uinc(x) ∶= 𝜃(x1)𝜙𝓁(x) and seek for a solution 𝜙t

𝓁 (total field) of A𝜙t
𝓁 = 0 in the form 𝜙t

𝓁 = uinc + 𝜙s
𝓁; here

𝜙s
𝓁 is the scattered field, which has to satisfy the radiation condition. Assumption 6.3 allows to solve for u = 𝜙s

𝓁 , since
A𝜙s

𝓁 = 𝑓 ∶= −A(𝜃𝜙𝓁) has compact support. Performing the construction of 𝜙t
𝓁 for every 𝓁, we can define

Y ∶= span
{
𝜙t
𝓁 |𝓁 = 1, … ,L

}
. (6.5)

The following lemma provides that the dimension of Y is L.

Lemma 6.4 (Dimension of Y in compactly perturbed setting). The total fields (𝜙t
𝓁)1≤𝓁≤L are linearly independent; there

holds dim Y = L.

Proof. Let
∑

𝓁c𝓁𝜙t
𝓁 ≡ 0 be a linear combination of the trivial function. We can consider the incident field uinc ∶=∑

𝓁c𝓁 𝜃𝜙𝓁 and solve for the corresponding total field ut: By linearity of the equation, we find ut ∶=
∑

𝓁c𝓁𝜙t
𝓁 ≡ 0 with

the scattered field us ∶=
∑

𝓁c𝓁𝜙s
𝓁 satisfying 0 = ut = uinc + us.

On this basis, the principle argument is simple: Up to a H1
0(Ω)-function v𝓁 , each function 𝜙s

𝓁 is a linear combination
of the outgoing fields, 𝜙s

𝓁 = v𝓁 +
∑

𝓁′a𝓁,𝓁′ 𝜌𝓁′ 𝜙𝓁′ ; hence, also, us is essentially a linear combination of the outgoing
fields. On the other hand, uinc =

∑
𝓁c𝓁 𝜃𝜙𝓁 contains each field with a factor c𝓁 . Let us study 𝓁 ∈ − and a large

(positive) position x1: In the left-hand side of −uinc = us, the prefactor of𝜙𝓁 is c𝓁; in the right-hand side, it is vanishing.
This shows that c𝓁 = 0. Similarly, one argues for 𝓁 ∈ + by considering positions x1 < 0.

We formalize this argument as follows: With v ∶=
∑

𝓁c𝓁v𝓁 , we calculate

−
∑
𝓁

c𝓁 𝜃𝜙𝓁 = −uinc = us =
∑
𝓁

c𝓁𝜙s
𝓁 = v +

∑
𝓁

∑
𝓁′

c𝓁 a𝓁,𝓁′ 𝜌𝓁′ 𝜙𝓁′

= v +
∑
𝓁′

[∑
𝓁

c𝓁 a𝓁,𝓁′

]
𝜌𝓁′ 𝜙𝓁′ = v +

∑
𝓁

d𝓁 𝜌𝓁𝜙𝓁 ,

where d𝓁 ∶=
∑

𝓁′a𝓁′,𝓁 c𝓁′ . For z = (z1, z̃) ∈ Ω and sufficiently large m ∈ N, we have z1 + 2𝜋m > M + 1. Therefore,
using the quasi-periodicity of 𝜙𝓁 and the evaluation point z = (z1 + 2𝜋m, z̃), we have

−
∑
𝓁

c𝓁 e2𝜋im𝛼𝓁 𝜙𝓁(z) = v(z1 + 2𝜋m, z̃) +
∑
𝓁∈+

d𝓁 e2𝜋im𝛼𝓁𝜙𝓁(z) .
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KIRSCH and SCHWEIZER 23

For a subsequence m → ∞, the factors e2𝜋im𝛼𝓁 converge to some ei𝛾𝓁 , and v(z1 + 2𝜋m, z̃) converges to zero. Therefore,

−
∑
𝓁∈+

c𝓁 ei𝛾𝓁 𝜙𝓁 −
∑
𝓁∈−

c𝓁 ei𝛾𝓁 𝜙𝓁 =
∑
𝓁∈+

d𝓁 ei𝛾𝓁 𝜙𝓁 .

Since the 𝜙𝓁 are linearly independent, we obtain
∑

𝓁∈−c𝓁 ei𝛾𝓁 𝜙𝓁 = 0, and hence, c𝓁 = 0 for 𝓁 ∈ −. Analogously, for
m → −∞, we conclude that c𝓁 = 0 for 𝓁 ∈ +. □

The subsequent theorem provides, in particular, Theorem 6.2.

Theorem 6.5 (Y = B in the abstract setting). When the existence and uniqueness property of Assumption 6.3 hold, then
Y = B.

Proof. The inclusion Y ⊂ B is clear. We know that Y has dimension dim Y = L. In order to show B ⊂ Y , it suffices to
show dim B ≤ L.

In this proof we use, for arbitrary R > M, the piecewise affine cut-off function 𝜗R ∶ R → [0, 1] with 𝜗R(s) = 1 for
every s ∈ [−R,R], 𝜗R(s) = 0 for |s| ≥ R + 1, affine on [−R − 1,−R] and on [R,R + 1]. We interpret 𝜗R also as a function
on Ω by setting 𝜗R(x) ∶= 𝜗R(x1).

Step 1: A representation for the coefficients a𝓁 .
Since every coefficient map L2

∗(Ω) ∋ 𝑓 → a𝓁 ∈ C is linear and continuous, we can represent this map by an element
𝜉𝓁 ∈ L2

∗(Ω). We find a family (𝜉𝓁)1≤𝓁≤L such that, for every 𝑓 ∈ L2
∗(Ω),

a𝓁 = ⟨𝑓 , 𝜉𝓁⟩L2
∗(Ω) = ⟨𝑓 (x) , 𝜉𝓁(x)(1 + |x1|2)2⟩L2(Ω) . (6.6)

Step 2: A scalar product with U ∈ B.
We consider an arbitrary element U ∈ B. We want to calculate, for arbitrary 𝑓 ∈ L2

∗(Ω), the inner product ⟨𝑓,U⟩L2(Ω).
With this aim, we use the solution u = v + w ∈ H1

loc

(
Ω̄
)

of Au = 𝑓 in Ω; see Assumption 6.3 (or in the concrete
setting of Theorems 6.2 and 3.12). We write, for R → ∞,

⟨𝑓,U⟩L2(Ω) ← ⟨𝑓,U𝜗R⟩L2(Ω) = ⟨Au,U𝜗R⟩L2(Ω) = ⟨Av,U𝜗R⟩L2(Ω) + ⟨Aw,U𝜗R⟩L2(Ω) ,

and evaluate the terms separately. By the self-adjointness of A,

⟨Av,U𝜗R⟩L2(Ω) = ⟨v,A(U𝜗R)⟩L2(Ω) → 0 (6.7)

as R → ∞. The convergence follows from AU = 0, the boundedness of ∇U in the cells W𝓁 , and the decay property
of v. The function w =

∑L
𝓁=1 a𝓁 𝜌𝓁𝜙𝓁 satisfies, for U ∈ B and R sufficiently large:

⟨Aw,U𝜗R⟩L2(Ω) =
L∑

𝓁=1
a𝓁 c𝓁 with c𝓁 = ⟨A(𝜌𝓁𝜙𝓁),U⟩L2(Ω) . (6.8)

We therefore obtain

⟨𝑓,U⟩L2(Ω) =
L∑

𝓁=1
c𝓁 a𝓁 . (6.9)

Step 3: Conclusion.
It remains to insert the representation (6.6) of a𝓁 into (6.9). We find

⟨𝑓,U⟩L2(Ω) =
L∑

𝓁=1
c𝓁 ⟨𝑓 , 𝜉𝓁(x)(1 + |x1|2)2⟩L2(Ω) . (6.10)

Since 𝑓 was arbitrary, we find

U(x) =
L∑

𝓁=1
c𝓁 𝜉𝓁(x) (1 + |x1|2)2 (6.11)
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24 KIRSCH and SCHWEIZER

for all x ∈ Ω. We have therefore represented an arbitrary element U ∈ B with the L functions 𝜉𝓁(x) (1 + |x1|2)2. This
implies dim B ≤ L and hence the theorem.

□

6.2 Finite dimension of B in other settings
We return here to the geometry of the main part of this paper, Ω = R×S with S bounded. We note that the space B can be
defined for any (positive) refractive index n ∈ L∞(Ω) without the assumption of periodicity. We ask: Does B have a finite
dimension? We do not know the answer in the general case.

One particular case can be treated with the above methods. When n ∈ L∞(Ω) coincides with a periodic function n+ for
x1 ≥ M and with another periodic function n− for x1 ≤ −M (for some M > 0), then B can be characterization much as
in the previous subsection: B is spanned by the solutions of scattering problems with incident fields 𝜙±

𝓁 (the right-going
modes for index n−) and 𝜙∓

𝓁 (the left-going modes for index n+). In particular, in this case, B is finite dimensional.
Another case that allows to show finite dimensionality of B is the following: Let n ∈ L∞(Ω) be of the form n(x1, x̃) =

n1(x1)+n2(x̃) for x1 ∈ R and x̃ ∈ S. In this case, we can use separation of variables techniques. Let 𝜆𝑗 ∈ R and 𝜙𝑗 ∈ H2(S)
be the eigenvalues and eigenfunctions, respectively, of the self-adjoint operator −Δ̃ − k2n2, that is,

−Δ̃𝜙𝑗(x̃) − k2n2(x̃)𝜙𝑗(x̃) = 𝜆𝑗 𝜙𝑗(x̃) in S , 𝜙𝑗(x̃) = 0 on 𝜕S .

Let U ∈ B be an arbitrary element. For every x1 ∈ R, the function U(x1, ·) can be expanded as

U(x1, x̃) =
∞∑
𝑗=1

u𝑗(x1)𝜙𝑗(x̃)

with some coefficients u𝑗(x1). Inserting this expansion in the differential equation ΔU + k2n1U + k2n2U = 0 yields

u′′
𝑗 (x1) +

(
k2n1(x1) − 𝜆𝑗

)
u𝑗(x1) = 0 for x1 ∈ R .

We know that 𝜆𝑗 → ∞ as 𝑗 → ∞. Therefore, there exists 𝑗0 ∈ N such that k2n1(x1) − 𝜆𝑗 ≤ −1 for all 𝑗 ≥ 𝑗0. Since the
equation u′′ (x1)−a(x1)u(x1) = 0 does not allow any bounded solutions if a > 0, we conclude that only a finite sum appears
in the expansion of U; there holds U ∈ span

{
u𝑗(x1)𝜙𝑗(x̃) |𝑗 = 1, … , 𝑗0

}
. Since the ansatz functions are independent of

U, we conclude that B has finite dimension.
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APPENDIX A: FORMULAS FOR THE FLOQUET-BLOCH TRANSFORM

We treat here only the one-dimensional Floquet–Bloch transform and write x ∈ R for the variable. With W = (0, 2𝜋) and
I = [−1∕2, 1∕2], the transformation FB ∶ L2(R) → L2(W × I), u → û, was defined in (2.2) as the continuous extension of

û(x, 𝛼) ∶=
∑
𝓁∈Z

u(x + 2𝜋𝓁)e−i𝓁2𝜋𝛼 , (A1)
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for x ∈ W and 𝛼 ∈ I. An elementary calculation shows that FB is an unitary transformation to its image:

∫I
⟨û(·, 𝛼), v̂(·, 𝛼)⟩L2(W) d𝛼 = ∫I∫W

∑
𝓁,k∈Z

u(x + 2𝜋𝓁)v(x + 2𝜋k)e−i(𝓁−k)2𝜋𝛼 dx d𝛼

= ∫W

∑
𝓁∈Z

∑
k∈Z

𝛿k𝓁 u(x + 2𝜋𝓁)v(x + 2𝜋k)dx

= ∫W

∑
𝓁∈Z

u(x + 2𝜋𝓁)v(x + 2𝜋𝓁)dx = ∫
R

uv̄ = ⟨u, v⟩L2(R) .

(A2)

This also shows that FB is well-defined on L2(R).
Vice-versa, for û ∈ L2(W × I), we define, for x ∈ W and k ∈ Z,

u(x + 2𝜋k) ∶= ∫I
û(x, 𝛽)eik2𝜋𝛽 d𝛽 . (A3)

We claim that this operation defines an inverse −1
FB ∶ û → u. We start by showing −1

FB◦FB = id. Let u ∈ L2(R) be
arbitrary and let û be defined by (A1). Then, for every k ∈ Z,

∫I
û(x, 𝛽)eik2𝜋𝛽 d𝛽 = ∫I

∑
𝓁∈Z

u(x + 2𝜋𝓁)e−i𝓁2𝜋𝛽 eik2𝜋𝛽 d𝛽

=
∑
𝓁∈Z

𝛿k𝓁 u(x + 2𝜋𝓁) = u(x + 2𝜋k) ;

hence the transformation of (A3) indeed recovers the original function.
It remains to show that −1

FB of (A3) also defines a right inverse, FB◦−1
FB = id. To this end, we consider an arbitrary

function û ∈ L2(W × I). We fix a point x ∈ W and denote the 𝓁-th Fourier coefficient of û(x, ·) by c𝓁 ∈ C such that, for
almost every x, there holds û(x, 𝛼) =

∑
𝓁∈Zc𝓁e−i𝓁2𝜋𝛼 . We consider such a point x ∈ W and evaluate FB(u) for u given

by (A3),

∑
𝓁∈Z

u(x + 2𝜋𝓁)e−i𝓁2𝜋𝛼 =
∑
𝓁∈Z

∫I
û(x, 𝛽)ei𝓁2𝜋𝛽 d𝛽 e−i𝓁2𝜋𝛼

=
∑
𝓁∈Z

c𝓁e−i𝓁2𝜋𝛼 = û(x, 𝛼) .

This shows, in particular, that FB ∶ L2(R) → L2(W × I) is surjective. We conclude that FB is an isometry and that the
inverse is given by (A3).

We close this section with a simplified formula for −1
FB . When û(·, 𝛽) is interpreted as a 𝛽-quasiperiodic function on R,

there holds û(x + 2𝜋k, 𝛽) = û(x, 𝛽)eik2𝜋𝛽 for every k ∈ Z. With this extension of û(·, 𝛽), formula (A3) for the inverse yields,
for arbitrary 𝑦 = x + 2𝜋k ∈ R,

u(𝑦) ∶= ∫I
û(𝑦, 𝛽)d𝛽 . (A4)

APPENDIX B: EVALUATION OF A COMPLEX INTEGRAL

This appendix deals with an integral that appears in an inverse Floquet–Bloch transformation; see (4.20). For the following
calculations, 𝜀 > 0 is an arbitrary number. We calculate

∫
𝜀

−𝜀

ei𝛼x1

𝜆𝛼 − i𝜂
d𝛼 = ∫

𝜀

−𝜀

[cos(𝛼x1) + i sin(𝛼x1)][𝜆𝛼 + i𝜂]
𝜆2𝛼2 + 𝜂2 d𝛼

= 2i𝜂 ∫
𝜀

0

cos(𝛼x1)
𝜆2𝛼2 + 𝜂2 d𝛼 + 2i𝜆∫

𝜀

0

𝛼 sin(𝛼x1)
𝜆2𝛼2 + 𝜂2 d𝛼 ,
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KIRSCH and SCHWEIZER 27

where we used that the integral over odd integrands vanishes. Let us start with an analysis of the first term, using the
substitution 𝛼 = t𝜂∕|𝜆|,

2i𝜂 ∫
𝜀

0

cos(𝛼x1)
𝜆2𝛼2 + 𝜂2 d𝛼 = 2i𝜂2|𝜆| ∫ 𝜀|𝜆|∕𝜂

0

cos(t𝜂x1∕|𝜆|)
t2𝜂2 + 𝜂2 dt = 2i|𝜆| ∫ 𝜀|𝜆|∕𝜂

0

cos(t𝜂x1∕|𝜆|)
1 + t2 dt .

In the limit 𝜂 → 0, we therefore find, for this term,

2i𝜂 ∫
𝜀

0

cos(𝛼x1)
𝜆2𝛼2 + 𝜂2 d𝛼 →

2i|𝜆| ∫ ∞

0

1
1 + t2 dt = 𝜋i|𝜆| .

The convergence is uniform in x1 on compact subsets of R. The second integral satisfies, as 𝜂 → 0,

2i𝜆∫
𝜀

0

𝛼 sin(𝛼x1)
𝜆2𝛼2 + 𝜂2 d𝛼 →

2i
𝜆 ∫

𝜀

0

sin(𝛼x1)
𝛼

d𝛼 = 2i
𝜆 ∫

𝜀x1

0

sin t
t

dt .

We obtain, as 𝜂 → 0,

∫
𝜀

−𝜀

ei𝛼x1

𝜆𝛼 − i𝜂
d𝛼 →

2𝜋i|𝜆|
[

1
2
+ sign(𝜆) 1

𝜋 ∫
𝜀x1

0

sin t
t

dt
]
. (B1)

The convergence is uniform with respect to |x1| ≤ R for every R > 0.
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