KIT | KIT-Bibliothek | Impressum | Datenschutz

Random Forests’ Postprocessing Capability of Enhancing Predictive Skill on Subseasonal Timescales - a Flow-Dependent View on Central European Winter Weather

Kiefer, Selina M. 1; Lerch, Sebastian ORCID iD icon 2; Ludwig, Patrick ORCID iD icon 1; Pinto, Joaquim G. 1
1 Institut für Meteorologie und Klimaforschung Troposphärenforschung (IMKTRO), Karlsruher Institut für Technologie (KIT)
2 Institut für Statistik (STAT), Karlsruher Institut für Technologie (KIT)

Abstract:

Weather predictions two to four weeks in advance, called the subseasonal timescale, are highly relevant for socio-economic decision makers. Unfortunately, the skill of numerical weather prediction models at this timescale is generally low. Here, we use probabilistic Random Forest- (RF) based machine learning models to postprocess the Sub-seasonal to Seasonal (S2S) reforecasts of the European Centre for Medium-Range Weather Forecasts (ECMWF). We show, that these models are able to improve the forecasts slightly in a 20-winter mean at lead times of 14 , 21 and 28 days for wintertime Central European mean 2-meter temperatures compared to the lead-time-dependent mean bias corrected ECMWF’s S2S reforecasts and RF-based models using only reanalysis data as input. Predictions of the occurrence of cold wave days are improved at lead times of 21 and 28 days. Thereby, forecasts of continuous temperatures show a better skill than forecasts of binary occurrences of cold wave days. Furthermore, we analyze if the skill depends on the large-scale flow configuration of the atmosphere at initialization, as represented by Weather Regimes (WR). We find that the WR at the start of the forecast influences the skill and its evolution across lead times. ... mehr


Download
Originalveröffentlichung
DOI: 10.1175/AIES-D-24-0014.1
Dimensions
Zitationen: 1
Zugehörige Institution(en) am KIT Institut für Meteorologie und Klimaforschung Troposphärenforschung (IMKTRO)
Institut für Statistik (STAT)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 10.2024
Sprache Englisch
Identifikator ISSN: 2769-7525
KITopen-ID: 1000174048
HGF-Programm 12.11.34 (POF IV, LK 01) Improved predictions from weather to climate scales
Erschienen in Artificial Intelligence for the Earth Systems
Verlag American Meteorological Society
Band 3
Heft 4
Nachgewiesen in Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page