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1. Introduction

The use of renewable energy is increasing due to the growing de-
mand for energy and efforts to reduce dependence on fossil fuels [1].
The intermittency of renewable energy sources poses challenges to their
integration into the power grid and uninterrupted supply of energy [2].
Consequently, energy storage needs to be integrated into renewable
energy power plants in order to meet the power demand from the grid
[3]. Energy storage in the form of hydrogen can provide the optimal
energy storage method due to its high energy density [4]. Furthermore,
hydrogen can be utilized for large-scale energy transport, long-term
energy storage, and responding quickly to variable energy demand
[5-7]. The electricity from renewable resources can be applied to water
electrolyzers to split water molecules into hydrogen and oxygen [8]. The
energy storage process remains free from greenhouse gas emissions by
utilizing water electrolysis for hydrogen production and energy storage
[9]. Improving the efficiency of water electrolyzers will lead to lower
operational costs and enable widespread adoption for hydrogen pro-
duction and energy storage [10]. Understanding the fundamental pro-
cesses inside water electrolyzers provides insights for improving the
design of these devices, leading to more efficient and cost-effective
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hydrogen production.

Water electrolyzers are classified into high-temperature and low-
temperature electrolyzers [11]. High-temperature electrolyzers include
solid oxide electrolyzers (SOE), which operate at temperatures higher
than 500°C and use water steam for the electrolysis [12].
Low-temperature electrolyzers work at temperatures below 90°C.
Alkaline water electrolyzer (AWE), proton exchange membrane (PEM),
anion exchange membrane (AEM), and flow-based electrolyzer (FBE)
are examples of low-temperature water electrolysis technologies [13,
14]. An AWE has two electrodes separated by a diaphragm [15]. The
electrodes and the diaphragm are submerged in an alkaline electrolyte.
A PEM electrolyzer is made of a polymer membrane with catalysts
coated on both sides for hydrogen evolution reaction (HER) and oxygen
evolution reaction (OER) [16]. A PEM works in an acidic medium and
the membrane allows the migration of protons between the electrodes.
An AEM similar to PEM has a membrane with coated catalysts on both
sides [17]. However, AEM works in an alkaline medium and hydroxide
ions migrate through its membrane. An FBE consists of two electrodes
and a liquid electrolyte is flowing between the electrodes [18,19]. The
ions migrate between the electrodes through this liquid electrolyte. The
electrolyte flow separates the gaseous products from each other [20].
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Therefore, FBEs do not require a membrane or separator.

The low-temperature water electrolyzers work with liquids. At small
production rates and high liquid electrolyte flow rates, the gaseous
products remain in the dissolved form and no bubble forms on the sur-
face of the electrode [21]. However, the low solubility of hydrogen and
oxygen in liquid electrolytes and high production rates lead to the
evolution of the products in the form of gas bubbles in water electro-
lyzers [22]. The bubble evolution consists of three main stages: nucle-
ation, growth, and detachment [23]. Nucleation begins when the
concentration of dissolved gas near the electrode surface surpasses
saturation, resulting in bubble formation at specific locations [24].
Growth occurs as these bubbles expand due to the continuous influx of
dissolved gas from the surrounding liquid [25]. Detachment occurs
when detaching forces, such as the liquid drag force, exceed attaching
forces, such as surface tension forces, causing the bubble to break away
from the electrode surface [26].

The nucleation and growth of bubbles on the surface of the electrode
has two opposing effects. On the one hand, the nucleated bubbles on the
surface impedes reaction regions and creates a non-uniform current
density on the surface of the catalyst [27,28]. On the other hand, the
nucleated bubbles reduce the concentration of dissolved gaseous prod-
ucts at the surface of the electrode leading to improved gas evolution
reaction [29]. The dynamics of bubble formation and growth are
significantly influenced by operational parameters. The bubble growth
rate increases by increasing the current density or reducing the flow rate
[25,30]. Once the bubbles reach a critical size, they detach from the
electrode surface and flow with the electrolyte [31]. The detachment
radius of the bubble depends on the surface tension and the drag force
from the liquid flow [32]. Furthermore, the geometry and size of the
flow channels affect the bubble detachment size [33]. To mitigate the
negative effects of bubble formation on the electrode while maximizing
its benefits, it is crucial to increase the number of nucleation sites on the
electrode surface and promote the detachment of bubbles at smaller
sizes [34,35]. This approach can help reduce non-uniformity in current
density across the electrode surface while simultaneously decreasing the
concentration of dissolved gaseous products [23].

After detachment, the bubbles enter the flow channels and are
transported by the flowing liquid electrolyte. During their flow, bubbles
can coalesce with other bubbles, forming larger bubbles [36]. The liquid
electrolyte properties, liquid velocity, and gas production rate affect the
flow of the bubbles and the frequency of bubble coalescence. Consid-
ering these parameters, various flow regimes from bubbly flow to slug
flow can appear in water electrolyzers [37]. These flow regimes are
crucial as they influence the efficiency of mass transfer and the overall
energy consumption during the electrolysis process [38]. The presence
of bubbles in the electrolyte increases the resistance for ionic transport
within liquid electrolytes [39]. This phenomenon leads to the increase of
overpotentials [40]. However, the flow of smaller bubbles can reduce
these negative effects. Specifically, the presence of smaller bubbles in
the electrolyzer leads to the reduction of ohmic overpotentials as it
minimizes the impact on ion conduction [41].

Beyond bubbles’ impact on overpotentials, the bubbles affect the
liquid flow rate inside the electrolyzers, impose higher pressure drops,
and induce gas crossover [18]. To reduce the gas crossover and pressure
drop related to bubble flow, the size of bubbles should be minimized
[36]. This can be achieved by accelerating bubble detachment from the
electrode and reducing bubble coalescence frequency. Structuring the
electrode surface and increasing the liquid electrolyte flow rate accel-
erates bubble detachment [42]. The bubble coalescence frequency can
be reduced by increasing the flow rate or completely prevented by
adding surfactant to the liquid electrolyte [36]. The cell design, oper-
ating current density, flow rate, and type of electrolyte affect the bubble
growth, detachment, and flow in the electrolyzer and consequently the
overpotentials, pressure drop, and gas crossover due to bubbles [26,43,
44].

These effects are more pronounced in FBEs as the bubbles flow in the
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channels in the absence of a separator or a membrane [14]. In this study,
we investigate the flow of bubbles in a parallel electrodes flow-based
electrolyzer (PE-FBE) [45]. PE-FBE consists of two parallel electrodes
acting as the anode and cathode. The electrolyte is flowing between the
electrodes. The bubble generation and flow are happening in the inter-
electrode area. The flow carries two streams of hydrogen and oxygen
bubbles to the end of the electrodes, where bubbles are guided to two
separate channels. We quantify the overpotentials caused by bubble
nucleation and flow in this electrolyzer. The bubble nucleation size,
bubble coalescence, electrolyte flow rate, addition of a surfactant, and
applied current are investigated for this quantification. These in-
vestigations provide detailed information on the overpotential due to
bubbles, the bubble distribution, and the current distribution at the
electrode. Three-dimensional multiphase flow simulations are carried
out, numerically capturing the interface between the bubbles and the
liquid electrolyte, which enables a detailed understanding of the bubble
dynamics. The findings derived from these simulations can inform
design optimizations [46,47] and enhance the efficiency of electro-
chemical hydrogen production in water electrolyzers. The bubble gen-
eration in this geometry is similar to that in AWE and PEM electrolyzers.
Therefore, the outcomes can be extended to other electrolyzers.

2. Methods

To investigate the effect of bubble flow on the performance of FBEs,
three-dimensional numerical simulations are conducted using the Aph-
ros multiphase flow solver [48]. Aphros is a versatile tool that has been
extensively used to numerically simulate various physical fluid dynamic
problems and has been validated against experimental data [49,50]. It
simulates bubble generation, bubble-bubble interactions, and coales-
cence, which are parameters influencing the overpotentials. The
incompressible Navier-Stokes equations are solved for the fluid mixture
velocity and pressure along with the advection equation to simulate
two-component flows.

Vu=0 E on 1
0 uation
p<a—ltl+ (u.V)u> =-Vp+Vp(Vu+vu') +f£; d
and
da .
E+ (u.V)a=0 Equation 2

where u, p, |1, p, and « are the velocity field of the fluid, mixture density,
mixture viscosity, pressure, and gas volume fraction, respectively. The
mixture density is given by p = (1 — a)p, + apg, and the mixture vis-
cosity is defined as p = (1 — a)p; + o,. The subscripts of 1 and g denote
liquid and gas phases, respectively. f; = oxVa is the surface tension
force, where ¢ and « are the surface tension coefficient and the surface
curvature at the interface between gas and liquid, respectively. The
incompressible Navier-Stokes equations (Equation (1)) are discretized
using the second-order projection method [51] and solved using finite
volume method. The piecewise linear interface calculation (PLIC)
method is used to solve the advection equation (Equation (2)). PLIC
reconstructs the interface in each cell containing multiple fluid phases as
a plane using the volume fractions. This reconstruction involves calcu-
lating interface normal and plane constants. The interface normals are
estimated using the volume fractions through the mixed
Youngs-centered scheme [52]. The plane constants are calculated using
the normals and the volume fractions [53]. The plane splits the cell to
match the volume fraction of the phases. The reconstructed interfaces
are moved according to the velocity field during the advection.

The steady-state conservation of charge is solved providing the
current density distribution and overpotential due to bubbles and ohmic
resistance between electrodes. The governing equation for the steady-
state conservation of charge is given by:
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Fig. 1. Simulation snapshot of bubbles’ flow in a parallel-electrodes flow-based
electrolyzer (PE-FBE) with annotated boundary conditions.
vJ=0 Equation 3
where J is the current density vector. Ohm’s law relates the current
density J to the electric field E and the resistivity p, of the medium:

J=1E

Pe

Equation 4

The electric field E can be expressed in terms of the gradient of the
electrical potential ¢.

E=—-V¢ Equation 5

Substituting Equation (4) and Equation (5) in Equation (3) leads to:

1
V. —Vd)=0
67

The resistivity p, between electrodes is changing due to the presence
of bubbles, which act as insulating obstacles and alter the effective
conductivity of the electrolyte solution. Equation (6) is solved using a
second-order finite volume method on a structured grid. Gradients at
cell faces are approximated using central differences. Face values are
calculated through linear interpolation of adjacent cell centers. The
resulting linear system is solved with the conjugate gradient method.
The charge conservation solver is validated in section 1 of supplemen-
tary information (SI).

Fig. 1 shows a simulation snapshot depicting the flow of bubbles in a
PE-FBE, along with the annotated boundary conditions. The electrolyzer
geometry is based on the previous PE-FBE experimental study [45], with
an interelectrode distance of 1 mm, electrode height of 1 mm, and
electrode length of 10 mm. The electrolyte is 0.5 M sulfuric acid with an
ionic resistivity of 0.0385 Ohm.m [54]. The simulations are carried out
at currents (I) ranging from 30 to 60 mA and flow rates from 300 ml/min
to 1200 ml/min. The three-dimensional computational domain di-
mensions are 16 mm x 1 mm x 1 mm, with all dimensions and variables
non-dimensionalized in the simulations. A uniform cubic grid is
employed, consisting of 512 x 32 x 32 grid points. Each simulation is
executed on 256 cores for a duration of three days.

Bubble coalescence plays a crucial role in determining the bubble
size distribution and significantly impacts the electrochemical perfor-
mance of the system. When bubbles coalesce, they form larger bubbles,

Equation 6
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which can alter the gas volume fraction distribution, affect the effective
electrolyte conductivity, and influence the local current density distri-
bution, and gas bubble movement [55,56]. In the simulations, bubble
coalescence is explicitly allowed and modeled. The Aphros multiphase
flow solver is capable of simulating bubble-bubble interactions,
including coalescence events. This leads to capturing the dynamic evo-
lution of bubble sizes and their subsequent effects on the electro-
chemical processes.

On the other hand, the presence of surfactants in the electrolyte can
significantly alter this behavior by preventing bubble coalescence,
leading to a higher number of smaller bubbles and potentially different
flow patterns in the electrolyzer. The effect of the addition of surfactant
to the electrolyte is studied numerically using the multilayer volume of
fluid method (Multi-VOF) feature of Aphros [48]. Multi-VOF is capable
of simulating flows with bubbles without allowing them to coalesce.
This feature is equivalent to the introduction of surfactants to the liquid
electrolyte, which prevents bubble coalescence.

It is important to note that while this study focuses on the effects of
surfactants on bubble coalescence, surfactants can potentially influence
other aspects of the electrolysis process as well. These include possible
effects on electrolyte conductivity and electrode reactions. However, the
impact on conductivity is typically minimal at the low surfactant con-
centrations used to prevent bubble coalescence. For instance, previous
experimental studies using Triton X-100 at a concentration of 15 x 1073
M showed no significant effect on electrolyte conductivity [36]. The
influence of surfactants on electrode reactions can vary depending on
the specific surfactant used. Some surfactants, such as Triton X-100, may
adsorb on the electrode surface, potentially hindering the access of
reacting species to the electrode and increasing overpotential [57,58]. In
contrast, other surfactants like Heptadecafluorooctancesulfonic acid
potassium (PFOS) have been observed to improve reaction kinetics by
decreasing hydrogen dissolution in the electrolyte, thereby reducing
overpotentials [59]. While the current model does not explicitly account
for these electrochemical effects of surfactants, it provides a framework
that can be extended to include such considerations by modifying the
electrolyte resistivity and catalytic activity. Triton X-100 and PFOS
effectively prevent bubble coalescence, and the multi-VOF method used
in the numerical simulations can accurately reproduce this behavior.

In the numerical simulations, the inlet and outlet boundary condi-
tions are velocity inlet and pressure outlet, respectively. For the elec-
trodes, the anode has a constant current boundary condition, the
cathode has a zero potential boundary condition, and the remaining
boundaries are set as insulating boundary conditions. The bubble
nucleation occurs in the vicinity of electrodes.

For bubble nucleation, two 2-dimensional regions at the anode and
cathode are defined. These regions determine where the bubbles can
nucleate. The rate of bubble nucleation is directly proportional to the
applied current. In the numerical simulations, the bubble nucleation
radii for hydrogen and oxygen bubbles are prescribed as constant values
throughout the simulation. The frequency of bubble nucleation is
determined based on the applied current and the considered bubble
nucleation radius. When the time for the bubble nucleation arrives, the
nucleation region is discretized into a grid with spacing equal to half of
the bubble nucleation radius. Each grid point is a potential location for
bubble nucleation, with the grid point serving as the center of the
bubble. For a bubble to nucleate at a grid point, it must be ensured that
there are no existing bubbles too close to that point. To enforce this, an
offset variable 1 equal to 1.4 is defined, and the following condition is
checked:

If the minimum distance between a grid point and the center of any
existing bubble is smaller than (r,.n+ 1), then that grid point is
removed from the list of potential nucleation points. In this condi-
tion, r, is the bubble nucleation radius and ry is the radius of an
existing bubble.

Grid points that do not satisfy this condition are removed. Next,
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among the remaining grid points, the points for bubble nucleation are
chosen using a uniform random function. If no grid points are available
for bubble nucleation, the nucleation radius is divided by /2, and the
number of bubbles to be nucleated is doubled. By doing this, the total
volume of nucleated bubbles remains the same. This process of grid
generation and assignment of nucleation points is repeated until bubbles
can be successfully nucleated. It should be noted that the grid is two-
dimensional and only determines the position of bubbles in a plane
parallel to the electrode. The distance from the center of the nucleated
bubbles to the electrodes is r,.n . In all simulations conducted for this
study, sufficient space is consistently available on the electrode surface
for bubble nucleation.

The generated hydrogen bubble volume is set to be twice the value of
the generated oxygen bubble volume in order to maintain the 2:1 stoi-
chiometric ratio of hydrogen and oxygen production during water
electrolysis. The hydrogen bubble nucleation radius ranges from 100 to
200 ym. This range of hydrogen bubble nucleation radius is determined
through analysis of visual data presented in Ref. [45]. When the pre-
determined time for bubble nucleation is reached, the positions for new
bubbles are determined using the described method for the bubble
nucleation. Afterward, the advection solver is provided with the list of
the new bubbles. This solver modifies the volume fraction field to
convert from liquid to gas phase at the specified nucleation sites.

This research investigates high current densities. At such high cur-
rent densities, the ratio of dissolved products to gaseous products in the
bubble form is negligible. Consequently, this study assumes that all the
products are generated as bubbles. The bubbles can reside on the surface
of the electrodes resulting in the reduction of the active surface area
available for the electrochemical reaction. To account for this, the active
surface area is calculated at each time step based on the bubble
coverage, and the current density is adjusted accordingly to keep the
electrical current constant.

2.1. Effect of bubbles on the overpotentials

The total electrical potential (E.e;) required to operate an electro-
chemical reaction is the sum of the thermodynamics equilibrium po-
tential (Eg), the activation overpotential at the cathode (1 4,04.) and the
anode (1,,,4)> the ohmic resistance between electrodes (1y;,m;c), and the
diffusion overpotential due to the development of concentration
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gradient at the surface of the electrode (gsion)-

ECSH = EO + Neathode + Nanode + Nohmic + Ndiffusion Equation 7

The bubble generation in an electrochemical reaction affects all the
overpotentials [60,61]. Initially, a bubble nucleates on the surface of the
electrode. The presence of this bubble on the surface reduces the
available active area for the reaction. This area reduction leads to an
increase in the current density and consequently an increase in the
activation overpotentials 1,04 a0d M,504.- Furthermore, bubble nucle-
ation reduces the concentration of dissolved gas in the vicinity of elec-
trodes. This concentration reduction lowers the concentration
overpotential. Finally, the nucleation, detachment, and flow of bubbles
in PE-FBEs occur in the interelectrode regions. These bubbles block ionic
pathways and augment the ohmic resistance between the electrodes.
Thus, bubble generation and flow in FBEs increase the ohmic resistance
overpotential (1pmic)-

To quantify the effect of bubbles on activation overpotentials, a two-
step process is employed. First, the surface coverage of the electrode by
bubbles is determined from the numerical simulations. Second, the Tafel
equation is used to calculate the activation overpotentials both with and
without electrode surface coverage by bubbles. The difference between
these values provides the additional activation overpotential due to
bubbles. The bubble-induced activation overpotential (N2 yation) at the
electrode is calculated as:

b i) i
Nactivation = ﬁ 10g (_‘0(1 _ e)) B log (Jo)

where f is the Tafel slope, j is the applied current density, j, is the ex-
change current density, and 6 is the fraction of the electrode surface

covered by bubbles. For OER in an acidic medium, the Tafel slope is
2

Equation 8

100 mV dec™! and the exchange current density is 4 x 10710 A.cm™
[62]. For HER, the Tafel slope is 32 mV dec™! and the exchange current
density is 1.3 x 1072 A.cm~2 [40,63]. The bubble-induced activation
overpotential at the cathode and anode are calculated using Equation (8)
and are denoted by nl and nBg, respectively. A similar procedure is
employed to calculate the bubble-induced ohmic overpotential. Equa-
tion (6) is solved under two conditions: first, with bubbles present in the
system (Ngpmic with bubbles)> ald second, in the absence of bubbles where

Flow rate
(ml/h)
300
600 3 g '
B “Cathods < — =
— - - Anode - -
900 _3 Flow 7 g
— al no&g e =
Anode
T e
=
- = (?ﬁﬁode .
¥ Current Density Magnitude (mA/cm?)
0 2100 4|00 6|00 800
X | B |

Fig. 2. Bubble generation and flow at flow rates of 300, 600, 900, and 1200 ml/h and constant current of 45 mA. The hydrogen bubble nucleation radius is 101 ym.
The image shows a volume contour of the current density magnitude. The volume contour has a semi-transparent opacity level, allowing the bubbles to be visible.
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Fig. 3. Bubble behavior and effects on the overpotential in the PE-FBE at different flow rates, 45 mA applied current, 101 ym hydrogen bubble nucleation radius. (a)
Evolution of bubble overpotential over time for flow rates of 300 and 1200 ml/h. (b) Steady-state average bubble overpotential (showing HER, OER, and ohmic
components) and standard deviation at flow rates of 300, 600, 900, and 1200 ml/h. The standard deviation is for the total bubble overpotential (7,,.)- (¢) Average
bubble radius and number of bubbles in the channel at different flow rates under steady-state conditions.

the filled
(Nohmic without bubbles)- Te bubble-induced ohmic overpotential (n%,...) is
then calculated as the difference between these two values:

interelectrode region is only with electrolyte

b _ .
11ohmic - rlohmic.with bubbles — T]ohmic.without bubbles Equatlon 9

This approach isolates the additional ohmic overpotential caused
specifically by the presence of bubbles in the system.

Although bubbles affect the concentration overpotential, the signif-
icance of this overpotential depends on the flow velocity and the
diffusion coefficient of dissolved gases. The Peclet number (Pe) is
defined as:

VL
Dt

Pe Equation 10

determines the ratio of convective flows to the diffusion. In this equa-
tion, V is the velocity of the liquid, L is the interelectrode distance, and
Dgir is the diffusion coefficient. In the PE-FBE investigated in this study,
the Peclet number is larger than 10000 considering the liquid velocity
and diffusion coefficients of oxygen, hydrogen, and protons. This large
value indicates that the convective flow dominates over diffusion.
Therefore, the liquid flow replenishes the reactants and removes dis-
solved gases efficiently close to the electrodes leading to very small
concentration gradient [25]. Consequently, the concentration gradient
overpotential is small and the effect of bubbles on this overpotential is
neglected.

The accumulative effect of bubbles on the overpotentials is refer-
enced as bubble overpotential () in the next section. Ny rep-
resents the difference between overpotentials in the absence and
presence of bubbles and is calculated as below:

Moubbie = Nohmic + Mgk + Mogx Equation 11

3. Results

The bubble distribution inside FBEs, the bubble overpotential, and
the current density distribution are strongly dependent on the liquid
electrolyte flow, electrolyte properties, bubble nucleation size, and
applied current. Quantifying the effect of these parameters on the per-
formance of FBEs leads to the definition of strategies for the reduction of
inefficiencies while enhancing the production rate and purity of
hydrogen. The following sections provide the numerical results of
studying these parameters.

3.1. Flow rate

Fig. 2 shows a snapshot of the numerical simulation of bubbles
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flowing in the PE-FBE along with the current density magnitude distri-
bution at different flow rates. The applied current and hydrogen bubble
nucleation radius are 45 mA and 101 um, respectively, as obtained from
experimental data reported in Ref. [45]. The bubble nucleation size is
measured from the experimental images in Ref. [45]. The experiments
were conducted under the same geometric configuration and operating
conditions as those used in the simulations. The evolution of the bubble
overpotential over time is shown for two flow rates of 300 ml/h and
1200 ml/h in Fig. 3a. The contribution of bubble-induced ohmic and
activation overpotentials to the bubble overpotential at flow rates of
300 ml/h and 1200 ml/h is shown in Figure SI.2. The bubble over-
potential initially grows when the electrochemical reaction and bubble
generation start. Eventually, the fluctuations in the bubble overpotential
stabilize when the bubble generation rate becomes equal to the bubble
removal rate from the channel facilitated by the electrolyte flow. The
images shown in Fig. 2 are taken when the bubble overpotential reaches
this steady-state condition.

Fig. 3b indicates the average and standard deviation values of bubble
overpotential at four different flow rates at the steady-state condition.
Furthermore, bubble-induced ohmic and activation overpotentials are
depicted in this figure. The major part of the bubble overpotential comes
from the ohmic resistance increase due to the presence of bubbles, re-
flected in the bubble-induced ohmic overpotential. Moreover, the
bubble-induced activation overpotential at the anode side is larger than
at the cathode side since the oxygen evolution reaction (OER) is more
energy-intensive and experiences greater losses compared to the
hydrogen evolution reaction (HER). The bubble overpotential is
decreasing by increasing the flow rate as the higher flow rate removes
the bubbles faster from the channel. Furthermore, the number of bub-
bles inside the channel and bubbles’ radii are smaller at higher flow
rates due to the lower residency time of bubbles inside the channel and a
reduced rate of bubble coalescence as shown in Fig. 3c. The decrease in
the bubble size and number with increasing flow rate aligns with
experimental observations reported in the literature [64].

The ohmic resistance overpotential in the absence of bubbles in this
FBE channel is 164 mV. The bubble overpotential is the additional
overpotential caused by the presence of bubbles. Consequently, at the
working current of 45 mA, the bubble-induced ohmic overpotential is
changing from 8.63% of total ohmic overpotential (ohmic overpotential
plus bubble-induced ohmic overpotential) at the flow rate of 300 ml/h
to 2.71% of total ohmic overpotential. While operating at higher flow
rates demands greater pumping power, the resulting reduction in bubble
overpotential losses outweighs this increased pumping power require-
ment. Therefore, operating at higher flow rates improves the overall
system efficiency by mitigating the detrimental effects of bubbles on the
ohmic resistance. The calculation of power required for flowing the
liquid electrolyte is described in SI section 3. Although the contribution
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Fig. 4. Bubble generation and flow at flow rates of 300 ml/min and 1200 ml/min showing the effect of bubble nucleation sizes (101, 151, 202 ym) in an electrolyte
(a) without surfactant and (b) with surfactant. The images show the volume contours of the current density magnitude. Volume contours have a semi-transparent

opacity level, allowing the bubbles to be visible.

of the electrolyte pumping power to the total input power is relatively
small, high flow rates can significantly complicate the design of elec-
trolyzer stacks, where a substantial flow rate would be required to
supply the liquid electrolyte to all cells within the stack. Moreover, the
electrolyte flow rate cannot exceed a certain threshold value to ensure
laminar flow conditions.

3.2. Bubble nucleation size and surfactant

The bubble size affects the bubble overpotential due to the electrode
surface coverage and ionic pathway blockage in the interelectrode re-
gion by bubbles. Furthermore, the amount of gas cross-over is related to
the bubble size, as it determines the bubble’s lateral position in the
channel [44]. Two main factors determine the bubble size: nucleation
size and coalescence [65]. The nucleation size of the bubble can be
controlled by changing the surface properties of the electrode, including
surface roughness and contact angle [66]. The coalescence of the bub-
bles can be controlled by adding surfactants to the liquid electrolyte
[36]. The surfactant molecules migrate to the interface between the gas
and liquid phase, preventing bubble coalescence [67]. In this section,
numerical simulations are carried out with three different hydrogen
bubble nucleation radii of 101 ym, 151 ym, and 202 ym to simulate the
effect of changing electrode surface properties. Moreover, the same
simulations are performed for the case where bubble coalescence is
prohibited to simulate the effect of surfactant addition to the electrolyte.
Fig. 4a and b show snapshots of bubbles flowing at two different flow
rates of 300 ml/h and 1200 ml/h for the electrolytes without and with
surfactant.

Fig. 5a shows the bubble overpotential of the simulated cases versus
the bubble nucleation size. Within the range of bubble nucleation sizes
investigated in this study, a larger bubble nucleation size results in a
lower bubble overpotential. This trend can be explained by the bubble
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size distribution in the channel at different nucleation sizes, as depicted
in Figure SI.2, and the bubble volume fraction inside the channel, shown
in Fig. 5b. In Fig. 5b, the bubble volume fraction is the ratio of the
volume occupied by the hydrogen and oxygen bubbles to the total
available volume between the electrodes. A larger bubble volume frac-
tion results in higher overpotentials as it increases the ohmic resistance
between electrodes. On the other hand, a large bubble blocks fewer ionic
pathways between electrodes compared to multiple small bubbles that
have the same total volume. Additionally, larger bubbles are flowing
faster than smaller bubbles and leave the channel earlier. Based on the
facts presented, a large bubble nucleation size is advantageous as it re-
sults in larger bubbles flowing in the channel and a smaller overall
bubble volume fraction, both of which contribute to a lower bubble
overpotential.

At a small flow rate of 300 ml/h, the electrolyte with a surfactant has
a higher bubble overpotential compared to the electrolyte without the
surfactant as shown in Fig. 5d and Fig. 5a. Figure SI4 shows that the
electrolyte with surfactant prevents bubble coalescence. Therefore, the
number of bubbles increases in the electrolyte with surfactant compared
to the surfactant-free electrolyte resulting in more area coverage be-
tween electrodes by the bubbles and higher ohmic resistance. Further-
more, bubbles have a smaller size in an electrolyte with surfactant
compared to the electrolyte without surfactant. These small bubbles stay
closer to the electrode surface and have a smaller velocity compared to
larger bubbles leading to a higher bubble volume fraction in the elec-
trolyte with surfactant in comparison with the electrolyte without sur-
factant at 300 ml/h flow rate as shown in Fig. Se. At the flow rate of
1200 ml/h, the bubble flow pattern in both electrolytes is similar since
the bubble coalescence is infrequent in the electrolyte without surfac-
tant. Consequently, the bubble overpotential is almost the same for both
electrolytes at this flow rate.

Although the addition of surfactant at lower flow rates increases the
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bubble overpotential, it improves the purity of hydrogen production.
Fig. 5¢ and Fig. 5f show the bubble distribution between electrodes. As
described in the previous paragraph, bubbles stay closer to the elec-
trodes and further from the middle in the electrolyte with surfactant.
Consequently, at the flow rate of 300 ml/h, the bubbles in the electrolyte
with surfactant are distributed farther away from the centerline
compared to the bubbles in the electrolyte without surfactant. Thus, the
addition of surfactant reduces the gas cross-over. It should be noted that
the bubble distribution between electrodes is similar in both electrolytes
with and without surfactant at the flow rate of 1200 ml/h due to the
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similar bubble flow pattern.
3.3. Applied current

The current uniformity at the surface of the electrode determines the
efficiency of electrolysis and the lifetime of the electrode [68]. Bubbles
growing on the surface of the electrode or flowing close to it prevent
electrochemical reactions in that region. In this case, the current density
on the other regions of the electrode increases when the electrolyzer is
operating at constant current for steady hydrogen production. The
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reduced area of the reaction leads to an increase in the activation
overpotential due to increased current density.

Fig. 6 shows the current density magnitude distribution at the sur-
face of the cathode at three operating currents of 30, 45, and 60 mA and
two flow rates of 300 and 1200 ml/h. This figure depicts current density
magnitude sudden changes in the vicinity of bubble edges which can
deteriorate the catalyst and reduce its lifetime. The current density is
higher at the edges of bubbles compared to the regions on the electrode
surface unaffected by bubbles. This is due to the distortion of the electric
field lines caused by the presence of the non-conducting gas bubbles,
leading to a higher current concentration at the bubble-electrolyte
interface. Fig. 7a shows the standard deviation of the current density
on the surface of the cathode and anode. The current density has a larger
variation at the cathode surface than the anode surface because of
higher gas generation on the cathode side. Furthermore, the variation of
current density decreases when the flow rate increases and/or the
applied current decreases. This is due to lower surface coverage by the
bubbles at higher flow rates and/or lower currents.

The presence of gas bubbles between the electrodes in the PE-FBE
accumulates progressively along the flow direction. This is because
newly generated bubbles from the electrochemical reactions, as well as
those carried from upstream, contribute to an increasing bubble popu-
lation towards the end of the electrode. As a result, the average current
density decreases from the inlet to the outlet due to higher overall
electrode surface coverage by bubbles, as shown in Fig. 7b. Furthermore,
the variation and non-uniformity in current density across the electrode
surface increases progressively along the flow direction. At higher flow
rates, the decrease in current density and the increase in variation are
less pronounced, as the volume fraction of bubbles in the channel be-
comes smaller, and the faster flow removes bubbles more effectively
from the channel.

4. Conclusion

The present work leverages state-of-the-art numerical simulations to
provide unprecedented insights into the intricate dynamics of bubble
nucleation and transport within water electrolyzers. By accurately
capturing the bubble-electrolyte interfaces, the simulations elucidate
the detrimental effects of bubbles on critical performance metrics,
including overpotentials, current density distribution, and bubble dis-
tribution. Crucially, the systematic investigation of key parameters, such
as flow rate, bubble nucleation size, surfactant addition, and applied
current, unveils strategies to mitigate bubble-induced losses, enhance
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current uniformity, and improve hydrogen purity.

The findings of this study have far-reaching implications beyond the
specific PE-FBE geometry investigated. The fundamental understanding
gained can be applied to all electrochemical technologies involving
bubble nucleation, enabling a better comprehension of their perfor-
mance limitations and optimization pathways. Moreover, the developed
numerical platform can be integrated with optimization tools and al-
gorithms, facilitating the design and enhancement of electrolyzers and
other electrochemical devices. As the global transition towards sus-
tainable energy systems accelerates, the insights and methodologies
presented herein hold the promise of enabling more efficient and cost-
effective renewable energy storage through optimized water electrol-
ysis technologies, ultimately contributing to the realization of a carbon-
neutral energy landscape.
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