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socio-economic sectors. Many regions have experienced 
unprecedented heatwaves in recent decades, including 
Chicago, USA in 1995, Europe in 2003 and 2019, Russia 
in 2010, Australia in 2019, and South Asia in 2010, 2015, 
and 2019 (Perkins 2015; Campbell et al. 2018; Vogel et al. 
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Abstract
Variability of the Surface Air Temperature (SAT) over the Western South Asia (WSA) region leads to frequent heat-
waves during the early summer (May-June) season. The present study uses the European Centre for Medium-Range 
Weather Forecast’s fifth-generation seasonal prediction system, SEAS5, from 1981 to 2022 based on April initial condi-
tions (1-month lead) to assess the SAT predictability during early summer season. The goal is to evaluate the SEAS5’s 
ability to predict the El Niño-Southern Oscillation (ENSO) related interannual variability and predictability of the SAT 
over WSA, which is mediated through upper-level (200-hPa) geopotential height anomalies. This teleconnection leads 
to anomalously warm surface conditions over the region during the negative ENSO phase, as observed in the reanalysis 
and SEAS5. We evaluate SEAS5 prediction skill against two observations and three reanalyses datasets. The SEAS5 SAT 
prediction skill is higher with high spatial resolution observations and reanalysis datasets compared to the ones with low-
resolution. Overall, SEAS5 shows reasonable skill in predicting SAT and its variability over the WSA region. Moreover, 
the predictability of SAT during La Niña is comparable to El Niño years over the WSA region.
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2019). In Spring 2022, a 4–5 °C temperature anomaly has 
been noted over north-west South Asia (Nath et al. 2024). 
It shattered a 122-year-old temperature record, affecting 
more than 1.5 billion people in the region. The frequency 
and intensity of the hot extremes have increased alarm-
ingly over Western South Asia (WSA) and are projected to 
increase by the end of the 21st century (Almazroui et al. 
2020). Consequently, densely populated regions, including 
Pakistan, Iran, Afghanistan, northwest India, and some Cen-
tral Asian states, are likely to be affected by the extreme 
temperatures. According to some estimates, by 2030, the 
warm events may contribute significantly (about 4–5%) to 
the regional Gross Domestic Product (GDP) losses (Price 
and Farhan 2022; Zachariah et al. 2022). In general, the 
WSA climate is classified as a semi-arid to arid climate, 
including the western half of the HinduKush Himalaya 
(HKH) mountains ranges with many glaciers (Fig. 1a, high-
lighted as box), which are the freshwater and hydropower 
energy sources for the downstream regions (Chaturvedi et 
al. 2014; Pritchard 2019). Any anomalous conditions in the 

WSA temperature may escalate energy demands and nega-
tively impact agricultural resources, such as wheat crops. 
The rising temperature may also harm regional water avail-
ability due to river flooding caused by the rampant melting 
of glaciers (Mannig et al. 2018; Zhongming et al. 2021). 
Therefore, predicting anomalous temperature conditions by 
dynamical seasonal prediction systems on S2S timescales is 
challenging, which may impede building a climate-resilient 
society for billions of people in the region.

Based on Coupled Global Climate Models (CGCMs), 
dynamical seasonal prediction systems are valuable tools 
for climate forecasting on S2S timescales (Kang et al. 2004; 
Kang and Shukla 2006; Wang et al. 2009; Delsole et al. 2011; 
Kirtman et al. 2014; Vitart and Robertson 2018; Almazroui 
et al. 2022; Osman et al. 2023). El Niño-Southern Oscil-
lation (ENSO) teleconnections are considered a prominent 
source of variability and predictability on S2S timescales 
(Trenberth et al. 2002; Palmer et al. 2004; Kucharski et al. 
2010; Kang and Lee 2019; McPhaden et al. 2020; Taschetto 
et al. 2020) and have a widespread effect on the climate 

Fig. 1 (a) Regional topographic map for South Asia (Unit: m), where 
black rectangular box highlights the Western South Asian (WSA) 
region, as study region; (b) Annual cycle of SAT Index (SATI) area-
averaged over the WSA [65°E–80°E; 31°N -39°N] region (black line, 

Unit: °C) and precipitation (green line, Unit: mm/month) over WSA; 
(c) Monthly relationship between Niño3.4 and SATI over WSA region 
shown in Fig. 1a
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extremes (e.g., flooding, heatwaves) globally (Attada et 
al. 2018; Joshi et al. 2020; Hoell et al. 2021). Models are 
mostly skilful in the extended range ENSO predictions up 
to several months (Almazroui et al. 2022). Several earlier 
studies have underlined the role of ENSO in the boreal sum-
mer (JJA) season SAT variability across the Indian region 
(Kothawale et al. 2010; Chowdary et al. 2014; Thirumalai et 
al. 2017; Zheng et al. 2017; Ehsan 2020; Joshi et al. 2020), 
but limited information is available for SAT variability and 
predictability, particularly during the early summer (May-
June) season over the WSA region.

SAT over South Asia peaks during the early summer (i.e., 
the pre-monsoon season) (Chelani and Rao 2013; Zhou et al. 
2019; Ehsan 2020). The maximum of this peak occurs in the 
eastern half of South Asia, where monsoon begins in early 
June, propagates north-westward, and onsets in the first 
week of July over the WSA region (Latif and Syed 2016; 
Ashfaq et al. 2021). Therefore, for WSA, the pre-monsoon 
(early summer) period is from May to June, which plays a 
crucial role in shaping the atmospheric conditions and the 
progression of the monsoon towards the WSA region (Lau 
et al. 2006; Saeed et al. 2011; Rai et al. 2015). A significant 
upper-level anticyclonic circulation (also known as South 
Asian High; SAH) helps to steer the monsoon winds into 
Pakistan and northwestern India (Liu et al. 2013; Wei and 
Yang 2021). The upper-level (200-hPa) positive geopoten-
tial height anomalies modulate the interannual variability of 
the SAT over the WSA region through middle tropospheric 
warming, low cloud cover, and increased surface shortwave 
radiation that favours warming surface conditions over the 
region (Saeed et al. 2013; Rashid et al. 2022).

During early summer, ENSO, in its negative phase, 
reinforces upper-level positive geopotential height anoma-
lies over the WSA region by strengthening the upper-level 
divergence over the western Pacific. This teleconnection 
enhances the sinking motion and favours clear- sky condi-
tions leading to extremely high surface temperatures over 
the WSA region, including Pakistan in the cold ENSO phase. 
The opposite happens in the warm ENSO phase (Rashid et 
al. 2022). However, how well dynamical seasonal predic-
tion systems predict the SAT over WSA in the early sum-
mer has yet to be known, which is the focus of the current 
study. The rest of the manuscript is arranged as follows: The 
data and methodology are discussed in Sect. 2, the telecon-
nections and predictability results are shown in Sect. 3, and 
Sect. 4 presents the summary and conclusions.

2 Datasets and methodology

2.1 Observational and reanalysis datasets

Monthly reanalysis SAT, Sea Surface Temperatures (SSTs), 
and 200-hPa geopotential height datasets used in this study 
were obtained from the fifth generation European Re-Anal-
ysis (ERA5) at 0.25°×0.25° horizontal grid spacing for the 
period 1981–2022 (Copernicus Climate Change Service 
(C3S) 2017; Hersbach et al. 2020). The complex topography 
of the WSA and sparsity of ground observations contribute 
to the uncertainties in the observational and reanalysis data-
sets over the region (Saini and Attada 2023). To understand 
the uncertainties in seasonal forecast quality and skill when 
comparing to different datasets, we utilized the monthly 
mean SATs from the National Centre for Environmental Pre-
diction (NCEP)/National Centre for Atmospheric Research 
(NCAR) at a spatial resolution of 2.5° × 2.5° longitude and 
latitude (Kalnay et al. 1996), Climatic Research Unit (CRU) 
at a spatial resolution of 0.5° × 0.5° longitude and latitude 
(Harris et al. 2020), Modern-Era Retrospective Analysis 
for Research and Applications, Version 2 (MERRA-2) at 
a spatial resolution of 0.5° x 0.625° latitude and longitude 
(Gelaro et al. 2017) and Climate Prediction Centre (CPC) at 
a spatial resolution of 0.5° × 0.5° longitude and latitude in 
addition to ERA5. For details, see Table S1. The topogra-
phy dataset was obtained from the 2-minute Gridded Global 
Relief Data (ETOPO2v2) at a spatial resolution of 2 arc-
minutes (NOAA 2006).

The ERA5 SAT anomalies over the WSA [65°E–80°E; 
31°N–39°N] region are comparable to the observational 
SAT from CRU (Correlation Coefficient; CC = 0.92) and 
CPC (CC = 0.95). Also, the CC between CPC and CRU 
is 0.94, while for NCEP and MERRA-2 is 0.78. This cor-
respondence between ERA5 and observations as well as 
reanalysis has also been reported earlier, suggesting that 
ERA5 performs better than the other reanalysis and is also 
comparable with the in-situ observations over the region 
(Arshad et al. 2021; Iqbal et al. 2022; Rashid et al. 2022).

2.2 ECMWF model hindcast dataset

We have used the European Centre for Medium-Range 
Weather Forecasts (ECMWF) fifth-generation seasonal pre-
diction system SEAS5 reforecast dataset (Johnson et al., 
2019) to analyse early summer season (May-June; MJ) SAT 
prediction skill over WSA at lead-1 (April initial condition). 
A hindcast dataset of 25 ensemble members, initialized with 
perturbed initial states, is available for each year from 1981 
to 2016. In addition, the 25-ensemble member forecasts 
from 2017 to 2022 are also included to extend the analy-
sis to the period 1981 to 2022. The model, reanalysis, and 
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relationship, and ‘n’ is the degree of freedom. Our null 
hypothesis (H0) states that there is no significant correlation 
between the two variables (uncorrelated), while the alter-
native hypothesis (H1) suggests that there is a significant 
correlation.

Similarly, for composite significance, the t-values are 
calculated using Eq. (2)

t =

−
x −µ 0

s/
√
n

 (2)

Where ‘−x ’ is the composite mean, µ 0
 is the total sample 

mean, ‘s’ is the standard deviation, and ‘n’ is the degree of 
freedom. The null hypothesis is that −x  is equal toµ 0

.
The statistical significance of the result is attributed to 

the values when a relationship is identified between the two 
variables, resulting in the null hypothesis being rejected at 
the 5% significance level (or 95% confidence level). For the 
composite analysis, the null hypothesis is rejected when the 
composite mean differs from the total sample mean at the 
10% significance level (or 90% confidence level).

2.4 Predictability measures

Potential Predictability (PP) measures the potential skill 
of a model in predicting weather and climate systems over 
specific regions (Kang and Shukla 2006; Younas and Tang 
2013; Kumar et al. 2014). It primarily depends on the sig-
nal and the noise variances (Scaife and Smith 2018), where 
signal variance is defined as the variances of the ensemble 
mean anomalies, and noise variance is the variances of the 
deviation of each member from the ensemble mean (Kang 
and Shukla 2006; Eade et al. 2014; Abid et al. 2015; Hardi-
man et al. 2022). PP is estimated as the square root of the 
signal variance to the total (signal and noise) variance (Eade 
et al. 2014; Abid et al. 2016; Osman and Vera 2017; Kuchar-
ski and Abid 2017; Hardiman et al. 2022). Moreover, the 
actual skill assesses how well the climate system evolves 
in the model compared to the observations. It is calculated 
as the grid-to-grid correlation between the observations/
reanalysis and the model ensemble mean anomalies. The 
model’s behaviour is considered overconfident when PP is 
higher than the actual skill and under-confident in the oppo-
site case (Scaife and Smith 2018; Abid et al. 2023).

To analyse the PP of the temperature during the ENSO 
phases (i.e., El Niño and La Niña years), the signal is 
defined as the mean of the square of each El Niño/La Niña 
year ensemble mean anomaly, and the noise is defined as 
the variance over the ensemble members for the particular 
ENSO (El Niño/La Niña) year. The anomaly for each El 
Niño/La Niña year is estimated as shown in Eq. (3) (Abid 
et al. 2018).

observations are re-gridded to a common 1°×1° horizontal 
grid. All datasets, including observations, reanalysis, and 
each ensemble member of SEAS5, are detrended linearly. 
The anomalies are estimated with reference to the 1981 to 
2022 period.

During the early summer season, the prediction skill of 
SEAS5 weighted area-averaged SST anomalies over the 
ENSO region (Niño3.4 [190°E–240°E; 5°S–5°N] is 0.9, 
while for May (Lead-1) and June (Lead-2) months, it is 0.93 
and 0.86, respectively, which demonstrates that SEAS5 is 
skillful in ENSO predictions for this season.

2.3 Methods

Empirical Orthogonal Function (EOF) analysis is used to 
analyse the interannual variability of the early summer SATs 
over WSA. Linear regressions are performed to investigate 
ENSO teleconnections, defined as the covariance of the 
standardized anomaly index with the required global anom-
aly field (Molteni et al. 2015; Abid et al. 2020; Rashid et 
al. 2022). The model (SEAS5) EOF is analysed after con-
catenating all ensemble members (m) over all years (n), 
where total concatenated sample size is (m x n). Therefore, 
for 25 ensemble members over 42 years, the sample size 
is (42 × 25 = 1050). A weighted area-averaged (using the 
cosine weighting latitude function) SAT index over WSA 
(referred to as SATI) domain [65°E–80°E; 31°N–39°N] is 
defined for the period 1981–2022.

The Probability Distribution Function (PDF) is evalu-
ated for concatenated SEAS5 SAT anomalies over the WSA 
region during the early summer season, using the Kernel 
Density Estimation (KDE), where 25 ensemble members 
are available for 42 years (25 × 42 = 1050). Each ensemble 
member’s Niño3.4 SST anomaly index was estimated. The 
El Niño and La Niña years of early summer seasonal SAT 
anomalies for each ensemble member were defined based 
on the Niño3.4 (≥ ± 0.5 °C) index. Of 1050 SAT years, 227 
are binned for El Niño, while 215 are the La Niña years. 
Similarly, the model SAT seasonal mean anomalies are 
binned into El Niño and La Niña years while constraining 
it to the ERA5 Niño3.4 index. In this case, early summer 
seasonal SAT anomalies for El Niño and La Niña years are 
225 and 250 years (sample size), respectively.

A student two-tailed t-test is used to test the statistical 
significance of the results (Wilks 2006). The t-value is cal-
culated using the Eq. (1)

t =
r ∗

√
(n− 2)

1−
√
(1 − r2)

 (1)

Where ‘r’ is the correlation coefficient of the two vari-
ables, quantifying the strength and direction of the linear 
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June months (statistically significant at 95% confidence 
level), as shown in Fig. 1c. Therefore, the early summer sea-
son (MJ) is characterized by hot and dry climate for WSA 
region, where hot conditions are likely to be experienced 
during negative ENSO phase (Rashid et al. 2022).

Figure 2 compares the ERA5 early summer SAT mean 
climatology and standard deviation (STD) with the model 
(SEAS5) dataset over WSA for the period 1981 to 2022. The 
mean SAT climatology distribution of the ERA5 (Fig. 2a) 
shows a north-to-south gradient, which is well represented 
in the seasonal re-forecast dataset (Fig. 2b). The high moun-
tain terrain in northern South Asia leads to the contrasting 
temperature gradient from south to north where the tem-
perature reaches its maximum (about 40 °C) in the south 
with maxima over the central to southern Pakistan, while it 
ranges to about 5 °C in the north in ERA5. This north-south 
temperature gradient is well represented in SEAS5 (Fig. 2a-
b). Moreover, the interannual SAT variability is maximum 
in the north and northwest South Asian region that reaches 
1.8 °C STD (Fig. 2c), which is well simulated in the SEAS5 
(Fig. 2d). Note that the SEAS5 STD is estimated as the 
square root of the mean variance of the ensemble members.

We evaluated the model skill using different observations 
and reanalysis datasets to assess the data-based uncertain-
ties (Fig. S1). For details of the observational and reanalysis 
dataset, see Table S1. Most of the datasets compare well 

SAT ′
(ensoyear)i

= SAT (ensoyear)i
−

−
SAT 1981−2022 (3)

Here, (i) represents ENSO (El Niño/La Niña) year, while 
−

SAT  is the climatological mean for the total period 
1981–2022.

3 Results

3.1 Early summer SAT mean and variability over 
Western South Asia

The WSA region is characterized by its high mountain-
ous terrain (Fig. 1a) where annual SAT variability reaches 
1.62 °C, during the early summer season. This is larger 
than the SAT variability noted in the conventional boreal 
summer (June-July-August; JJA) season (1.18 °C) and the 
monsoonal (July-August-September, JAS) season (1.14 °C) 
over the WSA region (Ashfaq et al. 2023). Notably, in the 
annual cycle, the mean temperature peaks (black line) in the 
JJA season (Fig. 1b). Moreover, the monsoon onsets (green 
line; Fig. 1b) over the WSA region is on average in the first 
week of July consistent with earlier findings (Latif and Syed 
2016; Ashfaq et al. 2021). We also analysed monthly con-
temporaneous ENSO teleconnections with SAT over the 
WSA region, where the relationship peaks during May and 

Fig. 2 a-b) Mean surface air 
temperature (SAT) of reanalysis 
(ERA5) and ECMWF-SEAS5 
during early summer (May-
June: MJ) season for the period 
1981–2022; c-d) Same as of (a-
b) but for the standard deviation 
(STD). Unit is (°C)
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the temporal evolution of PC1 in ERA5 and SEAS5 with a 
CC of 0.53 (statistically significant at the 95% confidence 
level). The CC between the ERA5-based SAT index (SATI) 
and the corresponding PC1 is 0.99. Therefore, the rest of 
the analyses related to temperature variability over the WSA 
region are based on SATI (Fig. 3c).

3.2 Early summer SAT teleconnections in reanalysis 
and SEAS5 forecasting system

Early summer SAT teleconnections are analysed in the 
ERA5 and the SEAS5 prediction system because well-rep-
resented teleconnections may provide skilful S2S regional 
predictions (Kucharski et al. 2010; Abid et al. 2016; Ehsan 
et al. 2019; Taschetto et al. 2020). Figure 4(a-b) shows 
the scatter plot between SATI and Niño3.4 index for the 
ERA5 and SEAS5, respectively. The slope in ERA5 is -0.74 
(°C/°C), while the SEAS5 slope is -0.44 (°C/°C), suggest-
ing SAT over the WSA is slightly less sensitive to ENSO 
SST anomalies in SEAS5 compared to ERA5. Furthermore, 
a statistically significant (95% confidence level) negative 
CC = -0.42 is noted between the SATI over the WSA and 
Niño3.4 in ERA5. For SEAS5, we computed a scatter plot 
(grey dots) based on all ensemble members, where a weaker 
negative relationship (CC= -0.31) is noted between SATI 
and Niño34, which is almost half of the ensemble mean 
(CC= -0.60) shown in black circles. The weaker relation-
ship is related to the large variability among the members. 

with ERA5 except for the NCEP over WSA (Fig. S2). The 
difference in NCEP can be related to its coarser horizontal 
spatial resolution than the other observations and ERA5. 
Also, the CRU dataset shows lower variability, which could 
be because of the lower density of the observational network 
in the region, particularly in the areas with complex terrain.

Furthermore, a cold temperature bias is noted between 
SEAS5 and ERA5 in the high topographical region of north-
ern Pakistan and northwestern India. In contrast, a warm bias 
is noted over central parts of India and Pakistan (Fig. S3a). 
Similarly, the root-mean-square error (RMSE) displays a 
significant bias over the high mountainous region (WSA; 
Fig. S3b). Overall, SEAS5 shows a cold bias compared to 
most of the dataset, with the minimum noted against ERA5, 
except that of NCEP, where a warm bias is noted in SAT 
over the WSA region (Fig. S4).

The SAT spatiotemporal variability for ERA5 and 
SEAS5 over WSA is analysed using EOF analysis. The 
ERA5 leading first mode (EOF1) explains approximately 
45% of the total variance (Fig. 3a), where SAT maxima 
appear over northern Pakistan, Afghanistan, and north-
western parts of India in the WSA region, consistent with 
Fig. 2(c). For the SEAS5 EOF analysis, we concatenated 
the 25 ensemble members, resulting in a 1050 sample size 
(42 × 25). The model (SEAS5) EOF1 represents the spatial 
distribution of SAT quite well (Fig. 3b), explaining 38% of 
the total variance. This pattern closely aligns with the ERA5 
SAT variability pattern (Fig. 3a) and the SEAS5 interan-
nual variability over the region (Fig. 2d). Figure 3c shows 

Fig. 3 a-b) Leading (First) mode 
of Empirical Orthogonal Func-
tion (EOF1) of the SAT during 
early summer season over the 
Western South Asia (WSA) 
region for the ERA5 and SEAS5 
dataset respectively for the period 
1981–2022; c) PC1 associated 
with leading (first) EOFs for 
ERA5 (red Line), SEAS5 (green 
line) and SAT Index (SATI, high-
lighted as box in Fig. 2a; black 
line) averaged over the WSA 
domain [65–80°E; 31°N -39°N]. 
Unit is (°C)
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(Fig. 5c). Moreover, the regression of predicted 200-hPa 
geopotential height anomalies onto the corresponding stan-
dardized SATI is also performed for each member in SEAS5. 
Figure 5d shows the mean of the 25 ensemble regression 
maps. Upper-level positive geopotential height anomalies 
(i.e., anticyclonic circulation anomalies) appear over north-
west Pakistan. In contrast, negative anomalies appear for 
the ENSO (Niño3.4) regressions (Fig. 5e), favouring below 
normal SAT anomalies over WSA (Fig. 5f) during the posi-
tive ENSO (El Niño) phase, consistent with the ERA5. The 
opposite may happen in the cold ENSO phase, which is con-
sistent with the findings of Rashid et al. (2022). Overall, 
the modelled ENSO teleconnection coincides well with the 
ERA5.

The Probability Distribution Function (PDF) of early 
summer seasonal SAT anomalies over the WSA in SEAS5 
is assessed using KDE as shown in Fig. 6. Early summer 
SAT anomalies are binned into total (Climo) years (black), 
the La Niña (red), El Niño (blue) years category constrain-
ing them to the SEAS5 Niño3.4 (shown in dashed lines) 
as well as to the ERA5 Niño3.4 index (shown in solid 
lines). We noted both PDFs, i.e., constrained with SEAS5 
and ERA5 Niño3.4 SST anomaly index, show a consistent 
pattern. A shift of SATI peak is noted towards the warm 
temperature anomalies during La Niña years, which may 
likely favour more frequent warm extremes, compared to 
El Niño (Fig. 6). Also, the probability of modulating hot 
extremes of about 2 °C temperature anomaly over the WSA 
region is about 15 times higher during La Niña, compared 
to the El Niño phase. Moreover, very hot extremes of about 
2.5–3 °C anomaly are also more favourable during La Niña 

The negative relationship shows anomalous warm SAT may 
occur over the WSA region during La Niña.

Moreover, the ERA5 regression of early summer SST 
onto the corresponding standardized SATI is shown in 
Fig. 4c, where negative SST anomalies appear in the central-
eastern equatorial Pacific region (i.e., the ENSO region). 
Similarly, the SEAS5 regression is performed for each 
ensemble member. The mean regression of 25 members is 
shown in Fig. 4d, which is consistent with ERA5 (Fig. 4c). 
A significant SST anomaly also appears over the western 
Indian Ocean and tropical Atlantic region; however, in this 
study, we restrict our focus on ENSO forced predictability 
for the regional temperature. We noted ERA5 SAT-ENSO 
regression coefficient lies within the spread of the regres-
sion coefficients (regression coefficients are multiplied with 
− 1) of individual ensemble members but towards the upper 
end of ensemble distribution (Fig. S5). The average coef-
ficient from the individual members is smaller than ERA5, 
but the ensemble mean filters out some noise and amplifies 
the signal, leading to a coefficient closer to ERA5.

Next, the regression of the 200-hPa geopotential height 
anomalies onto the corresponding standardized SATI is ana-
lysed for ERA5 and SEAS5. Upper-level positive geopoten-
tial height anomalies (Fig. 5a) appear, which are responsible 
for the above-normal (warm) temperature anomalies over 
WSA. These upper-level geopotential height anomalies 
resemble the Circumglobal teleconnection (CGT) pattern 
during the early summer over the WSA region (Ding and 
Wang 2005). However, negative upper-level geopotential 
height anomalies (Fig. 5b) appear favouring the below-
normal temperatures over WSA in the ENSO regressions 

Fig. 4 a-b) Scatter Plot between 
the Niño3.4 (x-axis) and the 
SATI for ERA5 and SEAS5 
respectively, during early summer 
season for the period 1981–2022. 
The ERA5 slope (CC) is -0.74 °C 
/°C (-0.42) and for SEAS5 based 
on ensemble mean is -0.45 °C /°C 
(-0.60). Shading in a-b) indicates 
the neutral ENSO phase; c-d) 
Regression maps of global SST 
onto the standardized SATI of 
WSA for ERA5 and ECMWF-
SEAS5 respectively for the 
period 1981–2022. Unit is (°C). 
SEAS5 regression map is based 
on the mean of the 25-ensemble 
members. Stippling represents 
the statistical significance at 95% 
confidence level
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extremes (SATIp) associated with the negative SST anoma-
lies (Fig. 7c), which tend to favour upper-level positive geo-
potential height (Fig. 7b), while the opposite is noted for 
cold temperature extremes (SATIn) over the WSA region 
(Fig. 7d-f). Similarly, Fig. S6 shows ERA5 warm (cold) 
extreme temperature composites based on one STD (Table 
S2). The SEAS5 spatial composites coincide well with the 
ERA5 (Fig. S6), suggesting SEAS5 is performing well in 
reproducing the essential features associated with extreme 
temperature conditions over the region. This validates 
SEAS5 utility for predicting temperature extremes over 
WSA, which will be discussed in Sect. 3.3.

3.3 Predictability of the early summer SAT over the 
West South Asia

Figure 8 shows the temporal evolution of the ERA5 SAT 
in comparison to the SEAS5 predicted temperatures. Each 
ensemble member is shown with a grey circle, while the 

years. The broadening of the PDF around − 1.5 °C during El 
Niño shows that the warm ENSO phase more likely favours 
the amplitude of this temperature anomaly over the WSA 
region. Therefore, warm anomalies are more frequent dur-
ing La Niña, and cold anomaly events are more frequent 
during El Niño years, consistent with Rashid et al. (2022). 
The SEAS5’s ability to predict the SAT during El Niño and 
La Niña years will be discussed in Sect. 3.3.

Next, we analysed the spatial anomaly composites of tem-
perature and the associated SSTs and 200-hPa geopotential 
height anomalies in the SEAS5 (Fig. 7) and ERA5 (Fig. S6) 
over the WSA region. The spatial composites are defined 
based on one-standard deviation of the SEAS5-based SATI 
over WSA, where values greater than and equal to one STD 
(i.e., ± 0.94℃) are considered as positive (SATIp) or warm 
years, and vice-versa for the negative (SATIn) or cold years. 
The warm and cold years are selected from each ensemble 
member. It allows for a larger sample size for the extreme 
warm (160) and cold (167) years. Figure 7a shows the warm 

Fig. 5 a-b)ERA5 regression maps 
of 200-hPa geopotential height 
anomalies (Z200, Unit: m) onto 
standardized SATI, Niño3.4; and 
c) ERA5 regression of SAT onto 
the Niño3.4 index (Unit: °C), 
d-f) same as a-c) but for SEAS5, 
mean of the 25-ensemble mem-
bers regression maps during early 
summer season for the period 
1981–2022. Stippling represents 
the statistical significance at 95% 
confidence level
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India, and western Nepal. Moreover, the spatial PP pattern 
of the SEAS5 SAT (Fig. 9b) is comparable to the actual skill, 
with slightly higher amplitude over the WSA region. The PP 
averaged over WSA is 0.48, comparable to the actual skill, 
and its spread noted with ERA5 (0.50 ± 0.16).

Moreover, the actual skill of SEAS5 SAT estimated 
against CRU, MERRA-2, and CPC (Fig. S8b, c,d) is com-
parable with the ERA5-based SEAS5 actual skill (Fig. 9a). 
Actual skill of SEAS5 SAT over WSA using NCEP shows 
a notable difference (Fig. S8a), which is consistent with 
the differences noted in its variability pattern (Fig. S1e). 
Furthermore, statistically significant actual skill and PP 
of SEAS5 SAT (Fig. 9a-b) are noted over the central and 
Southern Indian Peninsula regions. However, this discus-
sion is beyond the scope of the present study, which could 
be discussed in future studies. Moreover, we also assessed 
the SEAS5 SAT prediction skill over the sub-regions, over 
Afghanistan, northwestern Pakistan, Uzbekistan, and north-
west of India, as shown in Fig. 9. The highest PP and actual 
skill of SEAS5 SAT are noted over Afghanistan and north-
western Pakistan compared to the other sub-region within 
the WSA region.

To assess the spatial PP differences within WSA, we 
analysed the SEAS5 signal and noise variances. Figure 10a 
displays the signal variance of temperature, which is higher 
over the north and northwest of Pakistan and Afghanistan 
than Tajikistan, southern Uzbekistan, and northwest India 
and Nepal. A prominent noise variance is noted in the tem-
perature over WSA (Fig. 10b), which is significantly large 
over the mountainous region, particularly over the foothills 
of the western HKH region. Higher noise in the mountainous 
region could be partially attributed to the complex topogra-
phy, where SEAS5 might underestimate the remote forcing 
due to subtle differences in large-scale processes (Mehmood 
et al. 2022). SEAS5 deficiencies over high-altitude regions 
amplify these discrepancies.

Next, we estimated the SEAS5’s ability to predict the 
SAT during El Niño and La Niña years over WSA, as shown 
in Fig. 11 (a-b). Figure 11b shows the PP for La Niña (0.42) 
is comparable to El Niño (0.41) years (Fig. 11a) averaged 
over the WSA domain. However, sub-regionally, the PP 
over northwest India is higher (statistically significant at 
80% confidence level) in La Niña than El Niño, while over 
Uzbekistan, Afghanistan, and northwestern Pakistan, higher 
PP (statistically insignificant) is noted in La Niña than that 
of El Niño phase (Table 1). Overall, the signal and noise 
during La Niña (Fig. S9c-d) is about 41% (statistically sig-
nificant at 95% confidence level) and 16% higher than El 
Niño over WSA (Fig. S9a-b). Moreover, sub-regionally, the 
signal is almost 67% higher over Uzbekistan, while over 
northwest India, it increases three times during La Niña 
compared to El Niño, contributing to the higher PP in the 

ensemble mean SAT index is shown as the blue line. The 
SEAS5 ensemble mean tends to capture the SAT variabil-
ity over the region quite well compared to the reanalysis 
(ERA5, green line), with some underestimation in the 
amplitude. Additionally, we also compared the different 
observational and reanalysis datasets with the SEAS5 pre-
dicted SAT over WSA (Fig. 8). All observational and reanal-
ysis datasets (ERA5, NCEP, CRU, CPC, and MERRA-2) lie 
within the range of the SEAS5 ensemble spread. The actual 
skill of the SEAS5 temperature (rSAT) with standard error 
for ERA5 is rSAT = 0.50 ± 0.16, while with NCEP is rSAT 
= 0.13 ± 0.17, CRU is rSAT = 0.44 ± 0.12, CPC is rSAT = 
0.57 ± 0.15, and with MERRA-2 is rSAT = 0.43 ± 0.15. The 
uncertainty in temperature prediction skill varies among 
different observational and reanalyses. Notably, the SEAS5 
shows higher temporal prediction skill against higher spa-
tial resolution reanalysis and observational datasets (ERA5, 
CRU, CPC, and MERRA-2), whereas it exhibits lower skill 
when compared with the coarser resolution NCEP. More-
over, the lower SAT prediction skill of SEAS5 with NCEP 
over WSA could be related to the weaker ENSO-SAT tele-
connections in NCEP compared to the other reanalysis and 
observational datasets, as shown in Fig. S7.

Next, we analysed the spatial pattern of the actual skill 
and the Potential Predictability (PP) of the SEAS5 SAT over 
the WSA region. Figure 9a shows that the actual skill of 
SEAS5 SAT is significant over the WSA region. The maxi-
mum actual skill (statistically significant at 95% confidence 
level; shown as stippling) appears over southern Uzbekistan, 
Afghanistan, north and northwestern Pakistan, northwest 

Fig. 6 Probability Distribution Function (PDF) of SAT anomalies over 
WSA region during La Niña (red), El Niño (blue) events and their 
climatological pdf (black) based on 25 × 42 = 1050 sample size during 
early summer for the period 1981–2022. The total numbers of La Niña 
and El Niño events in SEAS5 are 215 and 227 respectively based on 
the ERA5 Niño3.4 index (solid lines). The dashed line shows PDF 
based on concatenated SEAS5 Niño3.4 index, where total numbers of 
La Niña (red dashed line) and El Niño (blue dashed line) SAT events 
in SEAS5 are 250 and 225 respectively
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after linearly removing global warming trends from obser-
vations, reanalyses, and SEAS5. ERA5 compares well with 
most of the datasets over WSA, where the strongest rela-
tionship is noted with CPC, CRU and MERRA-2, while a 
moderate relationship is noted with NCEP. SEAS5 predicts 
the SAT mean and variability reasonably well compared to 
the observed and reanalyses datasets during the early sum-
mer season, where the maximum SAT variability is noted 
over the WSA region.

ENSO teleconnections to the SAT over the WSA region 
are well represented in SEAS5 compared to the ERA5 
reanalysis. A statistically significant negative relationship 
between ENSO and SAT over WSA is noted in ERA5 and 
SEAS5. It indicates the negative (or below normal) SST 
anomalies in the central-eastern equatorial Pacific region 
(i.e., La Niña) modulate the upper-level positive geopo-
tential height anomalies, which are responsible for the 

La Niña phase over these regions. We also assessed the PP 
for normal years, which is about 0.35 (statistically signifi-
cant at the 95% confidence level) over WSA. The sources 
of the predictability in the non-ENSO years are yet to be 
known. Other tropical basins, such as the Indian (Abid et al. 
2020; Mehmood et al. 2022) or Atlantic oceans (Ehsan et al. 
2020), may play an important role, which could be explored 
in future studies.

4 Summary and discussion

In the present study, the SAT predictability is analysed over 
the WSA region during the early summer (May-June; MJ) 
season using the SEAS5 seasonal prediction system dataset 
based on April initial conditions (lead-1). The SAT vari-
ability and predictability are discussed from 1981 to 2022, 

Fig. 7 a-c) SEAS5 SAT anomaly 
(Unit: °C) composite maps based 
on 25-ensemble members for the 
warm extreme years (referred as 
SATIp), and the corresponding 
Z200 anomalies (Unit: m) and 
SST anomalies (Unit: °C) for the 
period 1981–2022; d-f) same as 
(a-c) but for cold temperature 
extreme composite anomalies 
(referred as SATIn). Warm and 
Cold temperature extreme years 
are selected based on the ± 1 
standard deviation of SEAS5 
SATI over WSA region. Stippling 
represents the statistical signifi-
cance at 95% confidence level
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during the warm phase of ENSO (i.e., El Niño). These find-
ings are in accordance with those shown by Rashid et al. 
(2022). SEAS5 predicts the sensitivity of the SAT anomaly 
to the Niño3.4 SST anomalies reasonably well compared to 
ERA5, which shows the SAT over WSA is sensitive to the 
SST anomalies in the ENSO (Niño3.4) region.

Furthermore, we noted that La Niña tends to favour ano-
molous warm temperatures over the region, strongly increas-
ing the probability of hot to very hot extremes compared to 
El Niño and total years. The SEAS5 skilfully represents the 
spatial circulation patterns favouring warm and cold tem-
perature extremes over the region (Fig. 7), comparable to 
the ERA5 (Fig. S6). These findings about the ENSO-SAT 
relationship over WSA region differ from the eastern half of 
the South Asian region, where a positive ENSO-SAT rela-
tionship is noted (Zhou et al. 2019; Ehsan 2020). This shows 
the complexity of the South Asia region, where ENSO tele-
connections show a contrasting result from the eastern to its 
western half.

The magnitude of the SEAS5 SAT prediction skill varies 
when measured against different observational and reanaly-
sis datasets, where estimates against high-resolution data-
sets like ERA5, CRU, MERRA-2, and CPC show better 
skill, with a higher actual skill of 0.50 ± 0.16, 0.44 ± 0.12, 

above-average temperatures or anomolous warm conditions 
over the WSA region. Conversely, the opposite happens 

Fig. 10 (a) Signal variance; (b) 
Noise variance, (Unit: °C2) of 
the SAT over WSA during early 
summer season for the period 
1981–2022

 

Fig. 9 a-b) Actual skill and 
Potential Predictability of SAT 
anomalies over WSA during early 
summer season for the period 
1981–2022. Stippling represents 
the statistical significance at the 
95% confidence level. Boxes 
with black dashed lines highlights 
the skill over northwestern Paki-
stan [71°E–74°E; 32°N–35°N], 
Afghanistan [63°E–69°E; 
32°N–35°N], Uzbekistan 
[65°E–70°E; 37°N–40°N] 
and over northwest India 
[77°E-80.5°E; 32°N-35.5°N]

 

Fig. 8 Prediction skill of the SAT anomaly over the WSA region. Grey 
circles indicate SEAS5 each ensemble member SAT anomaly (Unit: 
°C) over WSA region, while blue line is the mean of the ensemble 
members, while green solid, black dashed, magenta dashed, orange 
dashed and cyan dashed are for ERA5, NCEP, MERRA-2, CRU 
and CPC respectively during early summer (May-June: MJ) season 
for the period 1981–2022. The prediction skill of the SAT anomalies 
during early summer season for SEAS5 with respect to ERA5 (green 
solid line) is 0.50 ± 0.16, NCEP (black dashed line) is 0.13 ± 0.17, 
MERRA-2 (orange dashed line) is 0.43 ± 0.15, CRU (magenta dashed 
line) is 0.44 ± 0.12 and CPC (cyan dashed line) is 0.57 ± 0.15
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additional sources will be explored and discussed in future 
studies.

This study provides valuable insight into predicting 
anomolus temperature conditions on seasonal timescales 
over the WSA region during the early summer season. This 
information will be helpful for the regional stakeholders 
in strategic planning for the energy, agriculture, and water 
resources sector for the livelihood of a large population 
affected by temperature extremes on S2S timescales in the 
WSA region. There is a need for multi-model studies in the 
future to understand the diversity among the models in pre-
dicting the temperature extremes over the region on S2S 
timescales.

Supplementary Information The online version contains 
supplementary material available at https://doi.org/10.1007/s00382-
024-07399-5.
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