Journal of Intelligent Manufacturing
https://doi.org/10.1007/510845-024-02478-0

®

Check for
updates

Adaptive acquisition planning for visual inspection in remanufacturing
using reinforcement learning

1

Jan-Philipp Kaiser'® - Jonas Gébele' - Dominik Koch' - Jonas Schmid’ - Florian Stamer’ - Gisela Lanza’

Received: 16 March 2023 / Accepted: 3 July 2024
© The Author(s) 2024

Abstract

In remanufacturing, humans perform visual inspection tasks manually. In doing so, human inspectors implicitly solve variants
of visual acquisition planning problems. Nowadays, solutions to these problems are computed based on the object geometry of
the object to be inspected. In remanufacturing, however, there are often many product variants, and the existence of geometric
object models cannot be assumed. This makes it difficult to plan and solve visual acquisition planning problems for the auto-
mated execution of visual inspection tasks. Reinforcement learning offers the possibility of learning and reproducing human
inspection behavior and solving the visual inspection problem, even for problems in which no object geometry is available.
To investigate reinforcement learning as a solution, a simple simulation environment is developed, allowing the execution of
reproducible and controllable experiments. Different reinforcement learning agent modeling alternatives are developed and
compared for solving the derived visual planning problems. The results of this work show that reinforcement learning agents
can solve the derived visual planning problems in use cases without available object geometry by using domain-specific prior
knowledge. Our proposed framework is available open source under the following link: https://github.com/Jarrypho/View-

Planning-Simulation.

Keywords Reinforcement learning - View planning - Acquisition planning - Inspection - Remanufacturing

Introduction

Growing global competition, increasing individualization,
and volatile markets require production systems that adapt
quickly and dynamically to changing influencing factors
and requirements (Koren, 2010). To integrate new process

<1 Jan-Philipp Kaiser
Jan-Philipp.Kaiser @kit.edu

Jonas Gibele
Jonas.Gaebele @student.kit.edu

Dominik Koch
Dominik.Koch@kit.edu

Jonas Schmid
Jonas.Schmid @student.kit.edu

Florian Stamer
Florian.Stamer @kit.edu

Gisela Lanza
Gisela.Lanza@kit.edu

wbk Institute for Production Science, Karlsruhe Institute of
Technology, Kaiserstrafle 12, 76131 Karlsruhe, Germany

Published online: 27 August 2024

technologies and functions to introduce new product vari-
ants and adjust processes to product variety, changeable
production systems are needed (Mehrabi et al., 2000). As
a vision, when considering operational processes, adaption
is enabled at system runtime, without any human inter-
vention, in the production process itself, and without any
upstream planning process. This vision applies to all pro-
cesses involved in the value creation of the products, such as,
among others, assembly processes (Hu et al., 2008, 2011)
and quality assurance (Schotz et al., 2017). Thus, agile pro-
duction systems, utilizing autonomous production resources
with high degrees of flexibility and adaptivity, are needed
(Scholz-Reiter & Freitag, 2007), that can react to changes and
uncertainty in the production environment (Arai et al., 2000).
A field where autonomous systems are researched exten-
sively is autonomous driving. Vehicles adapt their behavior
independently to uncertain or new situations in autonomous
driving. Machine learning methods provide the basis for
solving various problems, such as detecting other traffic
participants (Shen et al., 2023). An exemplary use case
where autonomous resources need to react to uncertainty in

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10845-024-02478-0&domain=pdf
http://orcid.org/0000-0002-4164-1731

Journal of Intelligent Manufacturing

the industrial field is provided by the industrial process of
Remanufacturing.

Remanufacturing is becoming increasingly important
in the context of growing environmental awareness and
dependence on central raw materials (Sundian, 2004). In
remanufacturing, products originating from the use phase
are disassembled. Individual components are reprocessed or
replaced and reassembled (Daniel & Guide, 1997) to yield
products with the same functionality as new products (Tolio
et al., 2017). Due to the uncertainty about timing, quality,
quantity, and variability of the returning products, processes
involved in remanufacturing are mainly carried out manually
(Kurilova-Palisaitiene et al., 2018). Thus, agile systems are
necessary since conventional, rigidly automated systems do
not provide the necessary flexibility and adaptivity to address
the complexity resulting from the uncertainty in remanufac-
turing (Junior & Filho, 2012; Vongbunyong et al., 2015).

This challenge becomes evident during the initial inspec-
tion of the returned product, which precedes the actual
process steps of remanufacturing. The initial inspection is
carried out visually by a worker to identify defects on the
products to sort out the ones that cannot be remanufac-
tured (Errington & Childe, 2013). Schliiter et al. (2021) state
that automating this process is challenging. Unlike existing
approaches to visual inspection of linear production,

e occurring defects are highly diverse,

e they often occur anywhere on the product and

e the specific variant of the product is usually not known
at the time of inspection.

An automated visual inspection system in remanufactur-
ing for initial inspection must simultaneously be flexible
and adaptive. Flexibility is required since numerous product
variants must be thoroughly inspected. Inspection systems
employing robot-guided acquisition systems can realize the
necessary flexibility. Furthermore, adaptivity is needed as the
respective product variant and associated geometric informa-
tion such as computer-aided design (CAD) models are often
not known at inspection time (Khan et al., 2021) and different
product variants, especially those from different manufactur-
ers, have differences regarding geometry and design. Usually,
several acquisitions from different perspectives are necessary
for a nearly complete acquisition and evaluation of an object.
Together with the flexibility of robot-guided acquisition sys-
tems, reinforcement learning (RL) offers the possibility of
learning adaptive inspection strategies for various variants
of a given product, resolving the issue of solving the inspec-
tion task for various product variants despite non-available
geometric models. By first training an RL agent in a simula-
tion to perform an inspection task for a diverse set of existing
products and their geometric models, the agent can capture
the underlying characteristics required to complete the given

@ Springer

inspection task. For new product types with unknown geo-
metric models, the agent should then be able to generalize
and perform the inspection task even for these product types.

Therefore, the visual inspection planning problem is first
formulated as a sequential acquisition planning problem in
the remainder of this work. This is followed by the detailed
introduction of a simulation environment that can be used to
train various differently modeled RL agents to solve visual
acquisition planning problems.

The paper is structured as follows. In Section “Fundamen-
tals and literature review", the requirements for inspection
planning in remanufacturing are detailed. It is deduced why
RL can be used to solve the inspection planning problem for-
mulated as an acquisition planning problem. The methodical
approach for adaptive initial visual inspection is presented
in Section “Methodical approach for visual acquisition plan-
ning based on reinforcement learning". Results are presented
and discussed in Section “Use case description and compu-
tational results.

Fundamentals and literature review
Initial visual inspection in remanufacturing

According to DIN 31051/ DIN EN 13306 (DIN 31051:2019-
06 2019, DIN EN 13306:2018-02 2018), inspection 1is
defined as the testing of the conformity of the relevant
characteristics of an object by measurement, observation,
or functional testing. The initial visual inspection can thus
be categorized as the testing of the conformity of relevant
characteristics by observation of a human being. Evaluat-
ing the reusability and value of an existing used product
enables the identification of unusable used products. Erring-
ton and Childe (2013) consider visual inspection a central
remanufacturing process. Ridley & Ijomah (2015) state that
evaluating the used product through an initial visual inspec-
tion can save time for subsequent processes of up to 20%.
Remanufacturers often specify core acceptance criteria (e.g.,
CoremanNet (2022)) for used products, which can be used to
check in advance whether the return will lead to a refund of
the deposit or purchase of the used product. This enables the
supplier to sort out non-reusable products in advance. Based
on said criteria, the remanufacturer can thus save time and
money. The core acceptance criteria vary depending on the
remanufacturer and product type. They provide information
on permissible mechanical and electrical defects, accept-
able corrosion, and the permitted degree of disassembly or
missing components. In contrast to linear production, it is
impossible to accurately predict where product defects will
occur (Kurilova-Palisaitiene et al., 2018). Simultaneously,
the possible occurring defects are manifold (Robotis et al.,
2012) and often challenging to quantify. This applies, for



Journal of Intelligent Manufacturing

example, to the degree of corrosion. In particular, the diver-
sity of defects poses a significant challenge. On the one hand,
occurring defects can be of global nature and often appear
on the entire product, e.g., corrosion or severe contamina-
tion. On the other hand, some defects result in geometric
or color-based deviation from the defect-free product state
and may be specific to individual product components, e.g.,
broken mounts or burnt electrical connectors. This manifold
complexity of occurring defects results in a great challenge
for implementing an efficient remanufacturing process and
an automated inspection system. Therefore, the following
requirements apply to automated systems for initial visual
inspection.

e Aninspection system is required to detect defects on the
entire product surface.

e An inspection system that uses color-based information
and geometric information to detect defects (e.g., images
for corrosion detection and three-dimensional acquisi-
tion systems (3D systems) to detect dents) is required.

Acquisition systems that are able to acquire color images
(RGB information) as well as depth (D) images are called
RGBD systems. The acquired depth information of such
RGBD systems can be used to calculate point clouds (XYZ
information) represented in the acquisition systems’ coor-
dinate system. Robot-guided RGBD systems can meet the
mentioned requirements and provide the necessary flexibil-
ity. Guiding such RGBD systems by a robot makes detecting
and evaluating defects on the entire product surface possible.
Thereby, the RGB information is used to identify the defects,
and the sequential positioning of the robot is guided by the
depth (D) or point cloud (XYZ) information. The problem
of identifying a sequence of poses on the entire surface of an
arbitrary object using dimensional (e.g., point clouds) object
information can be formalized as an acquisition planning
problem.

Definition of acquisition planning problems for
visual inspection systems

Existing literature roughly divides visual acquisition plan-
ning problems into two different categories. A distinction is
made between planning problems for which a priori informa-
tion regarding the inspection target is unavailable and those
for which this is the case. The former is widely referred to
as the next best view problem (NBV problem) (Banta et al.,
1995) in the literature. In contrast, the latter is known as the
view planning problem (VPP) (Scott et al., 2003). Depend-
ing on the application, the output of the respective planning
problem involves sensor poses (e.g., for structured light pro-
jection systems) or trajectories (e.g., for laser scanners) of
a sensor (Peuzin-Jubert et al., 2021). Solutions to the VPP

calculate a sequence of sensor poses or trajectories and can
be solved before the system is deployed based on available
a priori information (e.g., geometry models of a product to
be inspected). Solutions to the NBV are search-based and
compute the next best sensor pose or trajectory at runtime. In
addition to the VPP and NBYV, the coverage planning problem
(CPP) additionally takes into account the coupled optimiza-
tion of acquisition system poses and travel paths of the robot.
For this work, the problems of NBYV, as well as VPP and CPP,
are defined as follows:

e Next best view planning problem (NBV):

Banta et al. (1995) define the NBV as the next camera
pose that will extract the most unknown scene informa-
tion. One of the earliest mentions of the term "next best
view" is from Connolly (1985), who focused on three-
dimensional scene modeling. Further application areas
can also be found, for example, in active object classifi-
cation, where the assignment of an object to a particular
class can only be made by taking several views into
account Korbach et al. (2021).

Within this work, the NBV problem is defined as finding
the NBV of an acquisition system concerning an informa-
tion criterion without considering global relations (e.g.,
minimizing the number of poses or minimizing travel
distances of the robot).

e View planning problem (VPP): Scott et al. (2003)
define the VPP as determining a suitable set of poses
and associated imaging parameters for a specified object
reconstruction or inspection task with a range camera and
positioning system. Later works revised this definition to
find the shortest possible view plan for a given environ-
ment and target object to achieve the planning goal in the
shortest possible computational time (Scott, 2009). Many
works also consider the path planning problem for find-
ing the shortest paths of the robot end-effector between
poses after solving the VPP. In most recent works, this is
done after the VPP (Peuzin-Jubert et al., 2021).

e Coverage planning problem (CPP):

Jing et al. (2018) therefore describe the coupled problem
of trajectory planning and VPP and refer to it as CPP. This
extension is necessary since, besides fulfilling the given
planning goal in industrial use cases, the fastest possible
execution is also of interest. The optimal solution of the
CPP may thus be different from that of the VPP (Scott
et al., 2003) since the execution time of the optimal view
plan might be significantly higher compared to a slightly
different view plan with comparable but slightly worse
performance regarding the planning goal.

When analyzing the different variants of visual acquisi-

tion planning problems, it becomes evident that they can be
formulated as a sequential decision process. Given an envi-

@ Springer



Journal of Intelligent Manufacturing

ronment and a target object, the task is to define successive
sensor poses to meet a given inspection target (complete
object coverage for VPP with possibly simultaneous con-
sideration of the robot’s travel costs when considering CPP).

Foundations of reinforcement learning

RL is suitable for solving sequential decision problems (Sut-
ton & Barto, 2018). One or more agents interact with the
so-called environment via actions. During an interaction, an
agent perceives the current state of the environment and
performs an action based on this information. The agent
receives a reward based on the contribution of its action to
achieving an overall goal. The agent’s objective is to max-
imize this reward in the long term and thus fulfill the goal.
Thus, RL differs fundamentally from supervised and unsu-
pervised machine-learning approaches (Panzer & Bender ,
2021), as agents are not used to predict individual data but
have to learn a strategy for solving sequential problems. This
is often achieved by trial-and-error-based, continuous inter-
action with the environment and a predefined reward signal.
Successful RL applications are found in games (Mnih et al.,
2013; Silver et al., 2017; Berner et al., 2019), where superhu-
man performance could be achieved. Other application areas
include robotics (Kober et al., 2013) or production system
control (Panzer & Bender, 2021; Kuhnle et al., 2019, 2021).

InRL, the problem to be solved must be a so-called markov
decision process (MDP), which represents the formalization
of sequential decision-making processes (Sutton & Barto,
2018). A MDP is described by a set of possible states S
of the environment, a set of possible feasible actions of the
agent A, a reward function R, and a probabilistic description
of the environment dynamics P (van Otterlo et al., 2012).
At each step in time, an agent performs an action based on
its problem-solving strategy m. This action transforms the
environment’s state into a subsequent state according to the
environmental dynamics of the underlying MDP. The agent
receives a numerical reward based on the action it performed.
The amount of the reward r,41 € R is calculated using the
reward function and depends on the action a; € A taken
at the time ¢, which transferred the environment from state
s; € S to state 5,11 € S. The reward function has to be
chosen so that actions that are useful for solving the decision
problem are selected at each point in time. Mathematically
formulated, the agent must learn an optimal strategy 7™ that
maximizes the sum of the discounted rewards (see Eq. 1),
also called the long-term return G; (Sutton & Barto, 2018).

o0

G =ry1 +yre1 + V27t+2 +.= Z J/k’”t+k+l (D
k=0

@ Springer

The discount factor y € [0, 1] represents a parameter that
indicates the farsightedness of the strategy learned by the
agent. By choosing y = 0, the agent only learns a policy
7 that determines actions that lead to an immediate reward.
When using y = 1, future rewards are not discounted, and
the agent learns a farsighted strategy (Sutton & Barto, 2018).
However, the higher y is, the more difficult it is to correctly
estimate rewards far in the future based on the current state,
leading to a more demanding learning problem for the agent.

RL agents are trained in simulations first to obtain cost-
efficient and fast training results (Kober et al., 2013). They
are then fine-tuned or directly deployed, where a significant
body of research addresses the gap between simulation and
reality when trying to integrate trained agents in actual use
cases (Pengetal.,2018). Classical RL algorithms have solved
many problems but often require significant feature engineer-
ing and may struggle with high-dimensional or continuous
state and action spaces. In contrast, deep RL approaches
allow agents to learn directly from raw sensory input and can
automatically discover valuable representations of the envi-
ronment (Mnih et al., 2015). This makes them well-suited
for problems that involve complex, high-dimensional state
and action spaces, such as playing complex games, control-
ling robots, or navigating complex environments (Lillicrap
et al., 2015). Therefore, deep RL has become a popular
and promising research area with the potential to advance
artificial intelligence in many domains. Visual acquisition
planning problems represent such complex problems, as the
input space may consist of images or point clouds, and the
output space may correspond to poses of an acquisition sys-
tem in continuous six-dimensional space when no further
simplifications of the problem are made.

Approaches for the solution of visual acquisition
planning problems using machine learning

In contrast to classical analytical methods, machine-learning
techniques offer the possibility of approaching visual acqui-
sition planning problems from a data-driven perspective. This
offers two key advantages. First, it may be possible to imple-
ment generalizing approaches for the problem of acquisition
planning that can adapt to changing objects. These may learn
to deal with objects whose surface model is unavailable and
thus mimic human operators setting up acquisition routines.
Furthermore, constraints to be considered (e.g., a spatially
varying pose of the object to be acquired or constraints in
the motion space of the robot resulting in restrictions for
the solution of the planning problem itself) create additional
complexity that can potentially be handled more efficiently
with data-driven and learning methods.

In two consecutive works, Mendoza et al. (2020) and
Vasquez-Gomezetal. (2021) address the NBV problem using
supervised learning. Based on an occupancy grid, Mendoza



Journal of Intelligent Manufacturing

et al. (2020) determine the NBV based on predefined poses.
Vasquez-Gomez et al. (2021) resolve the limitation to fixed
poses and consider the problem as a regression problem for
positioning in three-dimensional space. The authors showed
that both approaches provide a significantly faster compu-
tation of the NBV compared to classical approaches but
perform slightly worse in the final object coverage. Zeng et
al. (2020) takes a comparable approach. In contrast to occu-
pancy grids, the authors use point clouds as network input
to determine the NBV. For this purpose, the authors develop
the so-called point cloud next best view network (PC-NBV-
Net) based on the PointNet architecture. As in the work of
Mendoza et al. (2020), the NBV is classified from a discrete
set of poses using the PC-NBV-Net. The authors showed that
their approach yields promising results even for previously
unknown objects and thus exhibits a certain generalizability.
Other relevant work uses neural networks for scene comple-
tion and subsequent planning (Monica & Aleotti, 2021), for
determining one (Ashutosh et al., 2022) or multiple (Pan et
al., 2022) poses for optimal object reconstruction.

RL has also been successfully applied to acquisition plan-
ning and related problems. Deinzer et al. (2009) and Korbach
et al. (2021) deal with active object recognition. In these
works, strategies for choosing the NBV that provides the
highest information content concerning classifying the object
at hand into a set of classes were learned. A pioneering
work in the area of solving the VPP using RL is that of
Devrim Kaba et al. (2017). For the first time, the authors for-
mulate the VPP as an MDP and solve it using RL. Further
work has taken up these ideas. Similar to works in the super-
vised setting, Potapova et al. (2020) propose an occupancy
grid of the object as the state of the environment and solve
the VPP using a sequential selection of defined poses by the
agent. In contrast, Landgraf et al. (2021) and Devrim Kaba
etal. (2017) model the state of the environment in terms of the
current sensor pose. The agent must select the NBV to solve
the VPP in both cases. In the latter cases, however, the agent
does not receive information about the object’s geometry to
be acquired.

Research deficit and contribution

Existing methods for solving the problem of acquisition plan-
ning using supervised learning mainly address the problem of
NBYV planning (c.f. Mendoza et al. (2020); Vasquez-Gomez
et al. (2021); Monica and Aleotti (2021); Pan et al. (2022);
Zeng et al. (2020)). Due to the requirement of direct feed-
back in the form of an optimal pose as the label, these solution
methods are limited to finding the best possible next acquisi-
tion step. The evaluation of the quality of sequential decisions
is usually missing. Thus, addressing the solution of the VPP
is only given to a limited extent, and the integration of the

travel distances of a robot-guided acquisition system and,
thus, the solution of the CPP is not given.

Approaches using RL offer the possibility to fulfill this
requirement. However, a closer analysis of existing work
reveals that different approaches to problem modeling exist.
In particular, the following research deficits can be deduced:

1. The modeling of state and action space (input and out-
put space) and the definition of the reward signal, which
defines the agent’s objective, varies greatly between
existing works and is not part of systematic investiga-
tions in existing works.

2. Substantial simplifications of the problem have been
made in the past. For example, the use of low-resolution
occupancy grids (c.f. Potapova et al. (2020)) or sensor
poses (c.f. Landgrafetal. (2021)) as state space represents
a substantial simplification of object geometries. Such
simplifications can lead to only locally optimal strategies
or completely prevent the problem’s solution, especially
for objects with complex geometries.

3. RL approaches for the solution of the VPP that are free
of an object model at runtime, i.e., they do not require
knowledge of the geometry of the product to be inspected,
have yet to be considered. The next pose of the acquisition
system has to be determined at system runtime without
knowledge of the product at hand and without preplan-
ning using an available object geometry model. Landgraf
et al. (2021), Potapova et al. (2020), and Devrim Kaba
et al. (2017) all assume the object model to be known
since the modeling of their state and/or action space
depends on said model. These approaches thus make use
of a preplanning stage prior to deployment of a then calcu-
lated and fixed view plan. In Remanufacturing, however,
this information can not be assumed to be known. Prod-
ucts must be inspected without any given model, which
makes a model-free approach necessary.

To address the research gaps deduced, the present work
expands the state of research through its holistic approach.
Our goal is to:

e Formulate and solve the acquisition planning problems
as generally as possible.

e Implement and compare various different modeling alter-
natives of RL agents for the solution of the acquisition
planning problems introduced in Section “Definition of
acquisition planning problems for visual inspection sys-
tems". Therefore, we explicitly focus on a model-free
approach.

To this end we:

1. Develop an RL simulation framework consisting of a sim-
ulation to model the acquisition process and an instance

@ Springer



Journal of Intelligent Manufacturing

(in our case, RL agent) to determine the next pose to cap-
ture an object to be inspected. A special focus is laid on
the simplicity and computational efficiency of the sim-
ulation framework so that a quick simulation and, thus,
a quick training and comparison of differently trained
instances is possible. This is needed since RL, to this
day, is still sample inefficient and sensitive to varying
hyperparameters.

2. Maintain a strict modular separation between the actual
acquisition process and the determination of the next pose
of the acquisition system by the instance. This allows for
fast exchange and evaluation of differently configured
RL agents or other instances to determine the next pose.

3. Employ a simulation to model the acquisition process,
replicating the essential characteristics of an acquisition
process using a three-dimensional acquisition system. To
this end, essential parameters of the simulated acquisi-
tion system, such as its optimal working distance, are
parameterized to allow for a fast switch between differ-
ent configurations or variants of real acquisition systems.

4. Systematically deduce and model various alternatives for
the state, action, and reward design of RL agents for
acquisition planning problems as generally as possible
in a model-free setting. We show and discuss common
design decisions and problems and aim to keep the design
choices as general as possible so that these design deci-
sions can be reused in the future and other works to solve
acquisition planning problems.

5. Aim for an agent implementation in a modular way.
Individual function modules can be used to configure
and train agents of different modeling alternatives. Thus,
these modeling alternatives can be evaluated concerning
their applicability to the introduced planning problems,
and an optimal agent configuration can be found.

Methodical approach for visual acquisition
planning based on reinforcement learning

This section provides an overview of the proposed RL simu-
lation framework (Section Overview of the reinforcement
learning simulation framework"), followed by a detailed
introduction to the modeling of the scan simulation environ-
ment (Section “Modelling of the scan simulation environ-
ment) as well as the agent (Sects. “Modelling of the agent
interface and “Agent modeling").

Overview of the reinforcement learning simulation
framework

The RL simulation framework developed in this work is

depicted in Fig. 1. It is composed of a scan simulation
environment (see Section ‘“Modelling of the scan simu-

@ Springer

lation environment") as well as an agent interface (see
Section “Modelling of the agent interface") and the agent
itself (see Section “Agent modeling"). This structure allows
the easy interchangeability of individual modules to analyze
different modeling alternatives and the learned strategies of
the defined RL agents to solve the visual acquisition plan-
ning problems. The simulated environment encapsulates all
functionalities needed for three-dimensional object acquisi-
tion by using a sensor and object model in conjunction with
a scanning module to simulate the acquisition process. The
functionalities necessary for RL are defined in the agent inter-
face’s action, state, and reward modules to enable interaction
between the agent and the scan simulation environment. The
agent module consists of the definition of the agent itself. Due
to standardized interfaces, replacing the simulation module
with the real acquisition system at a later stage is straightfor-
ward.

Modelling of the scan simulation environment

The simulation environment contains a scanning module that
simulates the acquisition of an object by a three-dimensional
acquisition system. An object model describes the object,
and a sensor model describes the optical three-dimensional
acquisition system. The scanning module also aggregates the
acquisition results, which are point clouds, of the sequentially
performed acquisition steps. The individual functionalities
are described in detail below.

Sensor model and object model

The sensor model reproduces the functionality and proper-
ties of the three-dimensional acquisition system used. The
relevant configuration options of the simulated acquisition
system result from modeling the field of view as a frustum
and the specification of the resolution. The parameters to for-
mally describe the simulated acquisition system thus include
the following:

e Resolution of the acquisition system

e Aperture angles of the frustum (field of view)

e Near and far bounds of the frustum (operating range of
the acquisition system)

The object model used in the simulated environment is
specified via the stereolithography (STL) format. Thereby,
the object is represented only by its surface in triangular
facets. The representation of the object with triangular facets
enables computationally efficient ray tracing procedures,
which are used by the scanning module and are explained
below.



Journal of Intelligent Manufacturing

p a
‘ Action Module ‘ Policy
s A
Sensor Model 3 State Module : ar| Wy, Wgy
: Scanning Module —%¢ v v
Object Model Reward Module > Optimizer
Tt
- ScanSlmulatlon EnvnrOnment e Agentlnterface (33) Agent (34) .

Fig. 1 Structure of the RL simulation framework

Scanning module

The scanning module connects the sensor model and the
object model. The scanning module utilizes the Python pack-
age trimesh ( Dawson-Haggerty et al. (2019)) to enable
efficient ray tracing to emulate the three-dimensional acqui-
sition of the object. Compared to existing frameworks (e.g.,
Blender), trimesh offers the advantage that only the actual
process of acquiring a point cloud is simulated by ray trac-
ing. Restrictions (e.g., near and far bounds) can be integrated
into the framework very easily. Furthermore, no additional
add-ons are required for implementation (as with Blender),
and the overhead associated with available robot simulations
(e.g., Gazebo) is avoided. In doing so, the scanning module
receives a acquisition system pose p; = (x,y,z,a,3,¥)
from the RL agent. For x, y, and z, Cartesian coordinates
indicate the position, while «, B, and y are Euler angles,
representing the rotation of the frustum. Afterward, a vir-
tual acquisition system is placed in space based on the given
pose p;, and an acquisition is simulated. Depending on the
resolution and aperture angles of the sensor model, rays are
defined starting from the focal point. The coordinate of each
first intersection point of the rays with the object defines a
pointin space in a global coordinate system. After simulating
the acquisition of the object with the scanning module based
on the acquisition system pose p;, the point cloud Py, as a
sum of all intersection points of the rays with the object, is
returned. Given a pose p; where the object does not lie in
the frustum of the acquisition system, P; is empty. It has to
be noted that there are initially no restrictions concerning the
positioning of the simulated acquisition system in this work.
This is contrary to reality since, for example, with robot-
guided acquisition systems, the reachability of a certain pose
of the acquisition system must always be verified.

The scanning module also bundles all information rele-
vant to the agent through observation data o;. o; represents
all information of the acquisition process up until the current
interaction step ¢. At the beginning of each acquisition pro-
cess, an object model (STL model) to be inspected is fed into
the simulated environment and stored in the observation data.
Additionally, at the beginning of an acquisition process, the

ground truth point cloud Pgr is calculated and stored in the
observation data as well. Pgr is generated by evenly sam-
pling ngr ground truth points on the object model using a
voxel grid approach as explained in Section “State module".
The scanning module then serves to collect all information
gathered by the sequential acquisitions of the simulated envi-
ronment up until interaction step ¢ and stores them in the o;.
This observation is then used to derive the state sy given to
the agent to select the following action a, at the interaction
step ¢ + 1. In each acquisition step ¢ of the agent with the
environment, the scanning module receives the next desired
pose p;, simulates an acquisition that results in a point cloud
Py, and triggers an update of the observation data. Next to
the object model and the ground truth point cloud Pg7 the
following information given in the list below is computed
and stored in the observation data o; as well as updated after
each acquisition:

e Number of acquisitions ¢ in the current acquisition pro-
cess.

e Listof acquisition system poses p1, ..., p; of the current
acquisition process and the corresponding acquired point
clouds Py, ..., P;.

e Total point cloud P, ; acquired in an acquisition process
up to interaction step 7.

e Total point cloud P,y ;—1 acquired up to interaction step
t—1.

e Inverted point cloud Piny;—1 at interaction step ¢ — 1
which is calculated based on the ground truth point cloud
Pgr subtracting the point cloud Py, —1 acquired up
until interaction step  — 1.

Based on this information, the corresponding state rep-
resentation can be calculated in the state module, which is
explained in Section “State module".

An example of two consecutive acquisitions is given in
Fig.2. In the first acquisition with pose, p; the point cloud
P = Pgreen 18 acquired. In this case, Peoy,1 = Pgreen holds.
Subsequently, the point cloud P, = P,.q is acquired with the
pose p2. Thus, P.yy 2 equals the union of Pgyeen and Preg
resulting in Peoy 2 = Pgreen U Preq. In addition, the ground

@ Springer



Journal of Intelligent Manufacturing

Fig.2 Visualization of the

acquisition process. a Two

subsequent acquisitions that

result in point clouds Pose p;
Py = Pgreen and Py = Preq. b [
A close-up shows the ground

truth point cloud Pg7, which

contains different points than

Pgreen O Preg on the whole

surface of the object, in blue

@ Point cloud P;

truth point cloud Pgr is visualized in blue, which plays an
essential role in the object coverage and reward calculation in
Section “Reward module". The agent’s task is now to choose
the poses p; of the acquisition system so that, for instance, the
largest possible object area, which has not yet been covered
with previous acquisitions, is covered. Figure2 shows, for
example, that the object coverage by Py ey, is significantly
larger than P,.4. p1 is therefore a better view point than p;
in this case. However, it should be noted that this is only the
case if previous acquisitions did not already cover the object
areas covered by Py e,. This would reduce the proportion
of the area newly covered by pose p;. These relations have
to be learned by the agent, and at each time step, the pose
has to be determined, which is optimal for solving the visual
planning problem at hand.

Definition of an episode

In RL, an episode is a state, action, and reward transition
sequence. An episode ends in a terminal state s7. In the con-
text of acquisition planning, an episode is equivalent to the
acquisition process of one object and is thus part of the envi-
ronment. In this work, there are two options implemented
that end an episode. Firstly, to complete the inspection pro-
cess successfully, a threshold value of the surface coverage is
defined, which must be achieved to complete an episode suc-
cessfully. A basis for estimation of the surface coverage of
the object in an episode is given in Section “Reward module".
A state in which this threshold has been reached is called a
terminal state st. Secondly, limiting the maximum number
of allowed acquisitions is reasonable due to the industrial
context. For this reason, a limit of steps is introduced, which
terminates an episode when reached. For the definition con-
sidered in this work, reaching a surface coverage of the object
of 90 % leads to a terminal state, and reaching a maximum
permitted number of ten acquisitions forces the episode to
end without reaching a terminal state.

@ Springer

e Point cloud P,

b)

@ Point cloud P;p

Modelling of the agent interface

The agent interface transfers information provided by the
scan simulation environment into a representation that can
be interpreted by the agent (see Section “State module").
Furthermore, it translates selected agent actions into an
acquisition step interpretable for the scan simulation envi-
ronment (see “Action module" section). Besides, the agent
interface also calculates the rewards for the learning agent
(see Section “Reward module").

State module

In the state module, the information stored in the overall
observation data o; is used to deduce the state s; given to
the agent to determine the acquisition system’s next pose
pi+1- To ensure the transferability of the simulated system
to a real scenario where no object model is available, it is
important that only data that is also available to the agent in
the said scenario is integrated into the calculation of the state
s;. Modeling the state vector s; is thus a fundamental task.
This implies that, for example, after an initial acquisition,
only the point cloud Py of this acquisition may be used to
deduce state so and passed to the agent. Further information
that can be extracted from the object model (e.g., the shape)
cannot be used to model the state.

Regarding acquisition planning problems, we consider
two approaches to provide the agent with state information s,
at interaction step ¢. In the first option, we provide the agent
with information based on the surface points of the object that
acquisitions have already acquired until interaction step ¢. In
the second option, we provide the agent with information
based on which surface points have already been acquired
until interaction step ¢ and which surface points still need
to be acquired in the rest of an episode to fully capture the
entire object surface. To realize this, we employ point clouds
to represent the state. In contrast to low-resolution occupancy
grids, point clouds can represent object geometries in greater
detail.



Journal of Intelligent Manufacturing

The first option for state coding presented in this work
is based on the total point cloud P, ; acquired up to the
current interaction step ¢ of the agent with the environment.
Thereby, x; m, yi.m and z;, denote the X, Y, and Z val-
ues of a point m of the point cloud P, ;. The state in the
form of the coverage matrix s; oy (see Eq. 2) captures the
maximum available information about the present unknown
object. Thus, the agent must select a pose for the subsequent
acquisition that maximizes the number of newly acquired
points on the object surface that are not included in st ¢op
and, therefore, have yet to be acquired.

1,1 Y1 2,1
St,cov = (2)
Xt,2048 Yt,2048 2t,2048

Since P,y is generated based on point clouds of several
consecutive acquisitions, a voxel downsampling is carried
out before calculating s; .o». This has two key advantages.
First, voxel downsampling provides a point cloud P,y s
with equal density distribution. Second, voxel downsampling
enables reducing the size of the point cloud to a fixed value.
This is necessary since the agents employ neural networks
(see Section “Agent modeling") that require a fixed state size
s; as inputs. In the present work, P,y ; is therefore reduced
to a size of 2048 points. The number of points was chosen to
correspond to a size that is also frequently chosen as a refer-
ence in other works, such as in, for example, Achlioptas et
al. (2018), Wang et al. (2020) and Wen et al. (2020). It has to
be noted that there is no general rule in choosing the number
of points in the point cloud. The number of points should be
chosen as low as possible to reduce calculation time but as
high as necessary to preserve the object’s shape.

The second option for modeling the state s; is a binary
state encoding. It is based on the assumption of a geometric
model of the object to be inspected. The agent receives a
binary state matrix s; pi,, (see Eq. 3) at the beginning of each
acquisition step . Each point in s; p;, corresponds to a point
in the ground truth point cloud Pg7. Thus, in analogy to the
first state encoding s; .oy, the number of points ngr in Pgr
is set to 2048 in this work. The last column encodes whether
a point has been seen in the current acquisition process.

X1 Y1zt b
St,bin = 3)
X1,2048 Y1,2048 21,2048 br,2048

When using s; pin, the following applies with
m € {1, ...2048}:

bt,m _ {1 (Xt m» Yt,m>» Zt,m) € Peov,t 4)

0 (xl,mv Vt,m> Zl,m) ¢ Pcov,t

If a so far unknown point has been acquired during an
acquisition step, s; p;i, is updated and given to the agent to
determine the pose for the subsequent acquisition. It should
be noted that state encoding s; »;, explicitly requires an object
model in the application phase. However, this is not present
in the cases considered for model-free view planning. Never-
theless, point cloud completion approaches (e.g., Yuan et al.
(2018) and Huang et al. (2020)) are already able to estimate a
rough model of the complete object based on a partial present
point cloud. These approaches can be used in combination
with the present modeling, which is therefore considered and
evaluated in the context of this work. This is also why the
inverted point cloud P;,, ;1 is stored in every timestep, since
this point cloud may serve as a ground truth target for such
approaches in future works.

Action module

The action module generally receives an n-dimensional
action vector a; as the agent’s output in each interaction
step with the environment. Each component a; ; of the action
vector seen in Eq. 5 has values between -1 and 1. This range
is defined by the activation function, in this case, tangens
hyperbolicus, of the last layer of the neural network used to
approximate the agent’s policy. See Section “Agent model-
ing" for more details on the network used.

ar = (at,lv ceey Clt,n)T
a;; €[—1,1] with i€ {l,...n} 5)

The action module then maps a; to an acquisition sys-
tem pose p; to be processed by the simulation environment.
This is necessary since the pose p; is defined concerning its
position in Cartesian coordinates, and the orientation has to
be specified using Euler angles. However, when specifying
the action vector a; as the agent’s output, other coordinate
definitions or the incorporation of prior knowledge can be
helpful, as explained in the remainder of this section.

General modeling alternatives of the action vector

This work uses Cartesian or spherical coordinates to
model the position component of the action vector a;,. In the
case of spherical coordinates, the first three entries a; 1 —3 cor-
respond to the azimuth angle ¢, polar angle 6 and the radius
r. A potential advantage of defining the components of the
action vector in spherical coordinates lies in the dependence
of the distance of the acquisition system from the object to
be detected on only the parameter r. This suggests that the
RL agent can easily learn the positioning of the acquisition
system from the object at an optimal working distance. In the
second case, the Cartesian coordinates, the first three entries
a;,1—3 of a; correspond to the x, y, and z coordinates of the
next pose of the acquisition system. In both cases, the origin
of the coordinate system is located in the center of gravity

@ Springer



Journal of Intelligent Manufacturing

of the object to be acquired. There are also different options
for modeling the components of the action vector a;, which
define the orientation of the acquisition system. This work
considers the acquisition systems’ orientation via the repre-
sentation of the entries in terms of Euler angles. In addition
to the three entries for the position, the action vector has two
more entries representing the Euler angles o and §. In the
present work, the angle y (rotation around the longitudinal
axis) is assumed to be constant and is not supposed to be
learned by the agent. This is based on the assumption that
the influence of y on the acquired point cloud is negligible
due to the nearly rotationally symmetric frustum. Therefore,
y = 01is used to calculate the pose of the acquisition system.
Another possibility is the representation of the orientation
with Quaternions. However, we are not considering using
Quaternions for now due to simplicity.

In order to position the acquisition system in the global
coordinate system, when specifying the action vector a; with
spherical coordinates, the action module converts them into
Cartesian coordinates. In addition to the functionality of map-
ping between different coordinate systems, the action module
also handles the adjustment of the value ranges. Due to deal-
ing with actions output from the agent by neural networks
(see Section “Agent modeling"), the value ranges of all the
components a; ; are defined to be limited to the range between
—1 and 1. These must then be mapped to valid ranges of
the desired representations. For spherical coordinates, this
implies that a mapping of the value range [—1, 1] into the
value range [0, 2rr] for the azimuth angle ¢ as well as into
the range [0, 7] for the polar angle 6 has to be performed.
An overview of all implemented variants for modeling the
RL agents’ action vector can be seen in Table 1.

Integration of prior knowledge

By integrating prior knowledge, individual degrees of
freedom of the agent can be restricted. An overview of the
restriction of the degrees of freedom of the agents output used
in our framework can be found in Table 2. Ideally, agents
can be trained faster since the solution space is restricted,
so the discovery or exploration of non-optimal strategies is
excluded from the beginning. In the case of spherical coordi-
nates, limiting the radius r to one fixed value, representing the
optimal working distance of the acquisition system, is pos-
sible. This leads to the action modeling variant Ag>g using
M ok Concerning orientation, prior knowledge can also be
applied to ensure that the acquisition system is always ori-
ented toward the object’s center of gravity using M Z‘)pﬁk Thus,
it is possible to have the RL agent learn the position of the
acquisition system, with the orientation always being speci-
fied by the integrated prior knowledge. The number of entries
of the action vector g, as the output of the agent can thus be
reduced to the three parameters (A3sor) or two parameters
(A2sor) when using a fixed radius r (Mfupk) using Mzi[ﬁc to
define the orientation. Besides, an intermediate solution with

@ Springer

Table1 Implemented variants for modeling the actions of the RL agent
Abbreviation Position Rotation DoF
¢ =a
A250R - 2
0=ap
¢ =a
A3s0R 0=ay - 3
r=aj3
@ =dai a = a3
A2$2R 4
0=a B=a4
=da]
A (g Aa = ay 5
) —a
3S2R_lim A/g = as
r=aj3
¢ =a
o =ay
A3zsor 0=a 5
B=as
r=ajs
X =aj
A3cor y=a - 3
Z=a3
X =a
o =ay
A3zcar y=a 5
B=as
Z=a3

The lowercase numbers in the abbreviation of the action definition
denote the degrees of freedom (DoF) followed by lowercase letters,
which denote either the coordinate system (S for spherical and C for
Cartesian) or the rotation R the degrees of freedom are allocated to

the action variant A3sar ;i exists. In this case, as with the
previously mentioned action variants, the rotation is deter-
mined so that the object’s center of gravity is focused. The
agent can choose an angular deviation Ao, AB based on
these calculated angles to allow a small degree of rotational
freedom. The prior knowledge used is le;‘,fﬂ Analogous
approaches also result in modeling the action variants A3cog
and A3cop using Cartesian coordinates.

In addition to integrating prior knowledge into the action
modeling, prior knowledge can also be incorporated into
mapping the agent’s output values to the actual values of
the pose to be approached by the acquisition system. This
can be done by adjusting the value ranges into which the out-
put values of the agent are mapped. An example is M;}jy,f,
which restricts the x,y and z values output by the agent to be
too near to the object center and too far away from it.

Reward module

In order to learn a desired behavior that solves the prob-
lem at hand as well as possible and to continuously evaluate
the actions performed, an RL agent receives feedback in the
form of a numerical reward r;. Concerning the reward fre-
quency, we deploy two different approaches in this work.
First, we use a dense reward signal given to the agent after



Journal of Intelligent Manufacturing

Table2 Overview of integration approaches for prior knowledge

Parameter Mapping Value range
r My [0 — 100]
r M;pk 47
X, 9,2 M, [0 — 100]
X, 9,2 M;‘,};V,f [20 — 50]
a — [0, 27]
o p My
B —10,7]
Aw.A a=Aa — [—10°,10°]
a, ﬂ Mw[:lk / ~ o o
B=AB — [—10°, 10°]
a, B Mg'pﬁk fixed on object center

M ,f; « denotes mapping alternatives without integration of prior knowl-

edge, whereas M u)fp « denotes alternatives with the additional integration
of prior knowledge

each interaction step of the agent with the environment. Sec-
ond, sparse rewards are used. In this case, a reward is given
after an episode reaches the terminal state s at time step
T, as explained in “Definition of an episode" section. Dense
rewards offer the advantage of making it easier for the agent
to learn a strategy since it receives a reward after each step.
In this case, the challenge is to evaluate the selection of indi-
vidual action in such a way that it contributes to fulfilling the
long-term goal. An insufficient evaluation can make it impos-
sible for the agent to find the optimal solution to the problem.
In contrast, sparse rewards grant the achievement of goals at
the end of an episode. The agent receives a reward only once
in an episode but with a direct indication of whether the agent
has fulfilled the goal.

In general, the reward r; is one numerical value. However,
for the planning problems mentioned in chapter “Defini-
tion of acquisition planning problems for visual inspection
systems" section, there exist partly competing evaluation
measures, which can be used to evaluate the fulfillment of
the objective of the agent. When modeled as a MDP to be
solved by a RL agent, these quantities must be combined in
an adequate way. We define the relevant evaluation measures
for the individual planning problems as follows:

e Acquired surface coverage of the object with one acqui-
sition (NBV) or after an episode (VPP, CPP)

e Number of acquisitions required for complete or near
complete object coverage (VPP, CPP)

e Lengthoftraveling distance between successively defined
poses (CPP)

The choice of evaluation measures is based on the most
fundamental evaluation measures for visual planning prob-
lems. The primary goal of a VPP is the complete coverage
of the object surface (evaluation measure acquired surface

coverage) (Peuzin-Jubert et al., 2021). Secondary goals are,
for example, a view plan that is as short as possible (evalu-
ation measure number of acquisitions) and, in the industrial
environment, the minimization of the travel time of the
acquisition system between acquisitions (evaluation measure
minimization of travel distances). Further evaluation vari-
ables depend on the area of application of the VPP solution.
For metrological applications, the accuracy of the acquired
point clouds or their resolution may be important (Scott,
2009). However, we aim to first address the fundamental
evaluation measures mentioned and leave the evaluation of
secondary ones to future research.

Approximation of surface coverage

The object coverage is an optimization variable to be max-
imized by as few acquisitions as possible. It is, therefore,
also a fundamental quantity in calculating the reward itself.
In order to calculate the covered surface based on a point
cloud acquired by one acquisition, an estimation is neces-
sary. First, the point cloud P,y ; is acquired until interaction
step t is downsampled to the same point density (voxel grid
size) as the ground truth point cloud Pgr using a voxel grid
approach. The relative surface coverage C OV; can then be
estimated by the n; acquired points on the ground truth point
cloud Pg7 by the acquisition system until interaction step
t and the maximum number of possible ground truth points
ngr to be acquired. This is done by assigning each point
of the acquired point cloud P, ; until interaction step ¢ to
a point of the ground truth point cloud Pgr if its nearest
neighbor in Pgr falls below a certain threshold distance €.
The parameter € is thereby dependent on the point cloud den-
sity of P,y and Pgr and consequently the point distances
between them. Therefore, the parameter € was chosen heuris-
tically, resulting in € = 0.2. Note, a higher density of Py
and Pgr should result in choosing a lower €. The relative
object coverage C O'V; can then be estimated using Eq. (6).

ny
COV, ~ — (6)
ngr

Next to the percentage C OV, of the object surface already
covered up until interaction step ¢, the percentage of remain-
ing object surface to be covered COV,epy = 1 — COV; is
important for the reward calculation.

Approximation of the length of traveling distance

For industrial application cases, the length of the traveling
paths is a relevant evaluation measure. It significantly influ-
ences the execution time of an acquisition plan and, therefore,
has to be included when the reward calculation is done. In this
work, we intentionally avoided integrating an environment
model and arobot model to address the effects of state, action,
and reward modeling. Thus, consideration of the reachabil-
ity of individual poses is impossible, and a computation of
the travel distances is only approximate. Despite that, the

@ Springer



Journal of Intelligent Manufacturing

Fig.3 Visualization of an approximation for the travel distance between
two successive poses

agents’ capability of minimizing travel distances given dif-
ferent modeling alternatives of state, action, and reward can
be evaluated. The simplified approximation of the travel dis-
tance k; (t = 1,...,T) between two successive views is
based on the poses p;—1 of the acquisition system of the
previous interaction step + — 1 and its pose p; of the next
interaction step ¢. This simplified approximation is visual-
ized in figure 3. First, the auxiliary point ps is determined.
This point is located on the surface of the sphere, which also
contains the point p;_1, and is determined via the intersec-
tion of the vector to the point p, starting from the origin. The
approximated travel cost k; is then composed of the travel
distance k; 1 from p;_; to this intersection point ps on the
spherical surface and the travel distance k; » from p; to the
pose p;, which corresponds to the difference between the
radius of the spherical surfaces on which p;_; and p; are
located. If other than assumed and visualized in figure 3, the
radius of p,_j is greater than the one of p;, the calculations
of the travel distance is done the other way around. In the
case of an equal radius, the travel distance solely consists
of the distance k;,1 on the spherical surface. The cumulative
travel costs k; cum as evaluation measure for an episode can
then be calculated as the sum of the individual travel dis-
tances k; between all interaction steps ¢t = 1, ..., T until the
terminating interaction step T of the episode (see Eq. 7).

t=T
kl,cum = Zkt (N

t=1

Implemented reward alternatives

Eight different dense reward variants have been imple-
mented in this work and can be found in Table 3. The first
variant is expressed by Rp, rewarding each acquisition step’s
relatively added object surface. A variation of this is mod-
eled by R;, where the agent is punished in case no additional
object surface is acquired compared to the previous acquisi-
tion step. Rewarding the relative area to be newly covered,
as in Ry or Ry, leads to continuously diminishing rewards
in later acquisition steps. This is because the object surface
to be newly covered relative to the total surface area gets
smaller, in case previous acquisition steps already provided

@ Springer

a high coverage. Therefore, the reward signal R3 considers
the object surface covered in an acquisition step relative to
the object surface that can still be acquired. R4 additionally
penalizes this reward modeling if no additional object surface
is acquired. The reward variants Rs-Rg expand the variants
R1-R4 considered so far by integrating the travel costs of the
robot k; from acquisition step  — 1 to ¢. To obtain Rs - Rg, the
rewards Rj-R4 are scaled relative to the required travel dis-
tance k;. This is intended to incentivize the agents to choose
the next actions that lead to a high additional surface cov-
erage at low travel costs in order to minimize the execution
time of the entire view plan.

Similar approaches are adopted based on the agent’s
reward after an episode in a sparse reward setting. Rg rewards
the agent only on the object surface coverage reached after
an episode. R1¢ additionally introduces a scaling concerning
the number of acquisitions needed for the respective coverage
achieved after an episode. Thus, the agent explicitly receives
higher rewards for achieving a large object surface cover-
age while minimizing the number of acquisitions required.
Instead of scaling by the number of necessary acquisitions,
R11 scales by the cumulative travel costs k; ¢ym. Ri2 then
combines the two latter approaches.

The interplay between modeling the reward signal and
defining an episode to influence the agent’s behavior becomes
evident using the reward signals R13 and R14. The reward sig-
nal R;3 rewards the agent after an episode solely based on the
number of acquisitions performed. In this case, an episode’s
termination criterion is chosen so that an episode is only ter-
minated after reaching a specified object coverage (e.g., 90
%). This ensures that the agent receives a high reward, pro-
vided it requires fewer acquisitions to reach the necessary
surface coverage. An extension of this idea by integrating
the travel paths is R4. Thus, by combining the modeling of
the reward signal and the definition of the termination criteria
for an episode, the learning behavior and, thus, the perfor-
mance indicators of the agent can be influenced in a targeted
manner.

Agent modeling

The agent’s configuration is varied in this work by the choice
of strategy and the learning algorithm. For this purpose, the
software framework stable-baselines (Raffin et al., 2021) is
used, which supports the simple use and parameterization of
different RL agents. Due to the continuous state and action
space considered, proximal policy optimization (PPO) by
Schulman et al. (2015) and soft actor critic (SAC) methods
by Haarnoja et al. (2018) are used and evaluated. Both meth-
ods belong to the group of actor-critic variants of RL. These
methods use a parameterized policy for action selection and
a parameterized value function approximator. In figure 1,
the action policy parameters for action selection are denoted



Journal of Intelligent Manufacturing

Table3 Implemented

Formula

Al iati R
modeling variants of the reward bbreviation eward type
signal for the reinforcement R Dense
learning agent

Ry Dense

R3 Dense

Ry Dense

Rs Dense

R¢ Dense

Ry Dense

Rg Dense

Ro Sparse

Rio Sparse

Ry Sparse

Rz Sparse

Ri3 Sparse

Ry Sparse

r,=ACOV, =COV, —COV,_,
. { ACOV, =COV, —COV,_1, ACOV, >0
=

-1, otherwise
;= ACOV,
L= COViem
ACOV,
y, = | Cov.s ACOV, >0
—1, otherwise
ACOY,
=T L
.= ACOV, 1
L= COViem ki
. _|acov: &, ACOV, >0
e -1, otherwise
ACOV, 1
ry = | COVrey 1> ACOVi >0
-1, otherwise
- 0, t<T
T lcov,t=T
0, t<T
T =1y cov _
— t=T
0, t<T
=13 Cov; (=T
kecum >~ T
0, t<T
=131 .C0V, ,_
t kT.CUHX ’ z - T
0,t<T
T=11 _
Li=r
0, t<T
=431, _1 —
t k!.('um t_T

by wy, and the value function parameters are denoted by
wg. During the training phase, weights wy are continuously
updated to approximate the value function given the current
state. This, in return, enables the evaluation and optimization
of the action selection strategy by updating its weights wy,
by gradient-based updates. The representation of the strategy
or the estimators of the value function is carried out, as usual
in the current state of research, using neural networks (c.f.
Devrim Kaba et al. (2017); Potapova et al. (2020); Korbach
et al. (2021); Landgraf et al. (2021); Mnih et al. (2015)).
For the use case of this work, any network architecture that
transfers a point cloud as input into a feature vector can be
used. Based on preliminary tests, two suitable alternatives for
processing point clouds have been identified. First, an imple-
mentation of PointNet by Qi et al. (2017) is used, the first
implementation of a neural network for learning on point
clouds. In the PointNet Encoder, the input point cloud is
transformed and processed by a series of input transformation
layers and multi-layer perceptrons (MLPs) whose weights
are shared across all points. The input transformation layers
take points or features and apply pose normalization by multi-
plying the input by a transformation matrix, which is output
by a subnetwork called T-net. The shared MLP processes
each feature of this transformed feature vector independently

to learn local feature representations. The output of the MLPs
is then aggregated using a max-pooling layer to obtain a
fixed-length global feature vector that captures information
about the entire point cloud.

The second option considered is the use of the feature
vector as the output of the encoder of the Point Comple-
tion Network (PCN) by Yuan et al. (2018), which builds
on the approach of the PointNet. A shared MLP calculates
local point features. Using a max-pooling layer, intermediary
global features are obtained and concatenated with the local
point features. Using another shared MLP and max-pooling,
the final global feature vector is obtained. In this work, a
regression MLP is added to the respective encoders of Point-
Net and PCN to create the complete neural networks used.
The output dimension 7 of the regression MLP corresponds
to the number of free parameters of the action modeling. For
details on the hyperparameters used and the network archi-
tectures, please refer to Section “Agent configuration and
parameters" as well as the original works of Qi et al. (2017)
and Yuan et al. (2018). An overview of the network structure
when using the PCN encoder or PointNet encoder can be
found in Fig.4.

@ Springer



Journal of Intelligent Manufacturing

Shared
MLP
(64 x 64)

Multiplication

Shared MLP
(64 x 128 x 1024)

Global feature

oy ™ 3 3 & ——— P i
1% X N =< = ! Regression ]
X N © © x 1 x 1024 - MLP :
=i < a4 < 0 1 | | 1
@) (=) S S < I ! i
S S & & e I a
1
Input Input E L _’:, i
transform transform ] ! !
_________________________________________________________________________________________________ 1 1
: 1
------------------------------------------------------------------------------------------------- ) 1 1
e i
Shared MLP - i
(512 x 1024) N i
1 1
vl |
Global feature H i i
(o) e} < 1 1 |
o Lo Lo g 1 I }
- B ks S e———
2 x | 1x1024 |+
® - - b 1 x 1024 :
o == < < 1
N o o o !
N N 139 !
1
T 1
1
1
1

PCN Encoder

Fig. 4 Visualization of the implemented network structures in this work based on the PCN by Yuan et al. (2018) and the PointNet by Qi et al.
(2017). Note that the input in the visualization is s; oy With size 2048 x 3. When using s; p;, it would be 2048 x 4

Use case description and computational
results

To simulate the inspection process in remanufacturing, a
dataset of synthetically generated starter engines that repre-
sent a product being remanufactured in reality is used in the
present work. By varying as few as possible parameters of the
RL agent, we can explore the influences of the varied param-
eters on the agent’s performance. The general learning ability
for the NBV problem is shown first, using the achieved object
coverage as a performance indicator. We then compare the
previously described alternatives in state modeling, learning
algorithm, point cloud encoder, action modeling, and reward
modeling alternatives. We thereby do not focus on finding
the best modeling alternative, but rather an identification of
different modeling alternatives on the agent behavior. Fur-
thermore, training and testing of the best-performing agents
is conducted with real starter motor models and compared to
benchmark algorithms.

Dataset used for comparing modeling alternatives

The present work makes use of a dataset of starter engines
that is automatically generated. By this, the properties of the
remanufacturing use case under consideration are addressed.
The objects for which the RL-agent generates poses of the
acquisition system vary in their geometric properties. This is

@ Springer

necessary since many different starter engine variants exist
from different manufacturers. In addition, the engines may be
damaged or even missing entire parts, resulting in significant
differences. The approach is based on an existing pipeline
approach from Wu et al. (2022), adapted for generating starter
engines.

The starter engines are created randomly from nine com-
ponents (e.g., solenoid, gear housing, connector, flange),
which are varied by 28 different parameters (e.g., height or
diameter). An illustration can be seen in figure 5. The param-
eters are kept within a realistic range by parameter limits and
clearly defined relationships to each other. This ensures a
diverse and realistic data set. As a data basis for the present
work, 100 engines with random parameters were generated.
The engines are generated and saved in STL format for train-
ing the agents.

Training procedure and theoretical real-world
application

The agent training is performed in episodes. Each episode
represents the acquisition process of one generated starter
engine. To simulate randomness in positioning, the STL
model of a randomly selected engine is loaded upright into
the simulation and rotated around its longitudinal axis (z-
axis) in the range of [—180°, 180°]. Furthermore, it is tilted
in the [—25°, 25°] range in either the x or y-axis. The acqui-



Journal of Intelligent Manufacturing

Fig.5 Visualization of a real
engine and three variants of
generated starter engines with
varying generation parameters

Real motor

sition process is then performed until the terminal state
st is reached, either by reaching 90% surface coverage or
the threshold of ten acquisitions, depending on the episode
design. The state, action, and reward transitions are used to
optimize the strategy  of the agent to select actions.

It has to be noted that despite calling our approach model-
free, in order to deduce the performance indicators during
training and testing as well as to calculate the reward based
on these performance indicators during training, a model of
the object needs to be present. This applies to agents using
states s;.cop as well as s; pi,. However, when using s cov,
our approach is model-free during application. Just as in
supervised learning, where ground truth data exist during
the training of the model, no object model or ground truth
data are available during the application (when using state
St.cov)- This is due to the fact that in a real application sce-
nario, the object is available to derive the states. In this case,
the state s; oy 18 solely deduced based on information that
can be extracted using point clouds of previous acquisitions,
i.e., information that does not rely on an object model. Ide-
ally, in an application scenario, a reward signal is not needed
since a trained agent is used. Only finetuning in the sense of
a Sim-2-Real transfer, where one or more real object mod-
els are needed, is a possibility. Since, in this case, the actual
object coverage can no longer be calculated, the heuristic
determination of a fixed number of acquisitions (e.g., 4) is
necessary. Alternatively, an agent can be trained, which, in
addition to the next pose of the acquisition system, outputs
whether the episode should be aborted. However, we do not
consider the implementation and evaluation of such an agent
in this paper and leave it open for future research.

Agent configuration and parameters

Unless specified otherwise, the parameters seen in Table 4
of the simulation are assumed to be fixed for the evaluation
of different modeling alternatives of the agent. In the case of
the parameters for the sensor model, they have been derived
from the specifications of a real three-dimensional acquisi-
tion system.

Synthetically generated motor models

We chose a required object coverage of 90% for the agent
to achieve to account for self-occlusions or other phenom-
ena that would prevent achieving 100% object coverage for
certain object models. Even though reaching the required
object coverage of 90% can be achieved with fewer acqui-
sitions, a maximum number of acquisitions in an episode of
10 is allowed to enable the agent to explore. In addition,
a criterion for terminating a learning cycle is introduced.
Stable-baselines define this by the maximum number of agent
interactions with the environment. This maximum number of
interactions is set to 75.000 based on preliminary tests. After
this number of interactions, it is predictable whether an agent
can learn, and if so, all considered agents have converged.

The learning rate and the discount factor were also deter-
mined based on these preliminary tests. All agents considered
in the preliminary tests showed stable and repeatable learn-
ing behaviors for these parameters, which is necessary for
quantitative comparisons of the modeling alternatives of the
agents. As the learning rate has a low value of 0.000078 with
linear decay and discount factor, a value of 0.9 is used to
ensure convergence.

As a standard agent configuration, we use the SAC
algorithm as introduced in Section “Agent modeling". The
networks for approximating the policy and the value function
consist of a PCN encoder and a downstream regression MLP
with two layers of sizes 128 and 64 and the output layer. Pre-
liminary evaluations determined the layer structure to show
promising convergence behavior for arbitrary agent config-
urations. Unless specified otherwise, s; cov, A3s2R 1im and
R are used as state action and reward. For the mapping of
radius, r using spherical coordinates and x, y, z using Carte-
sian coordinates, the mapping without using prior knowledge
M;I;i’z was used. In contrast, the action definition Azsor 1im
explicitly uses prior knowledge concerning the Euler angles
o and B (Ml‘f)’pk. The standard configurations of the agent
were chosen in such a way that for variation of individual
factors (e.g. reward, state, etc.) convergence behavior con-
tinues to occur and the variation of these individual factors
can then be evaluated quantitatively and qualitatively, thus
allowing an interpretation of the results.

@ Springer



Journal of Intelligent Manufacturing

Table4 Default agent configuration parameters

Sensor model parameters

Values

Near and far bounds
Resolution

Opening angles

30, 50]cm
(430 x 300),,
(27°,25%),y

Learning cycle design Values
Required object coverage 90%
Maximum number of acquisitions 10
Maximum number of steps 75.000
Learning parameters Values
Learning rate 0.000078¢
Discount factor y 0.9

Agent design Values
Algorithm SAC
Encoder PCN
Regression MLP 128 x 64
State St.cov
Action A3$2R lim
Mapping M ;pk’ M SﬁAﬁ
Reward Ry

¢ denotes a linear decay with a final value of 0

Evaluated performance indicators

In order to compare the performance of different model-
ing alternatives, performance indicators are used in this
work. Figure 6 shows two exemplary courses of the perfor-
mance indicators of the agents during a learning cycle. These
performance indicators have already been derived in Sec-
tion “Reward module" and are:

e Coverage
e Number of acquisitions needed to end an episode
e Travel distance

Because of randomness in the behavior of the RL-Agent,
multiple simulation runs with the same configuration are
performed. Using three runs per configuration results in an
adequate confidence interval in the agent’s converged state,
allowing quantitative comparisons.

The performance indicators in Fig. 6 are plotted over the
number of episodes. One episode encompasses the acquisi-
tion process of one object model by the agent. Since multiple
agents were trained for each agent configuration, the plots in
Fig. 6 contain the average trajectory of the performance indi-
cator in a bold line. Additionally the minimum and maximum
value of all agents trained for each episode in gray.

In addition to the performance indicators, the course of
the rewards received by the agent over the episode is also
shown. The course of the reward signal indicates whether an

@ Springer

agent is, in principle, able to learn with a given reward signal
and thus increases or maximizes the reward it receives. By
comparing the course of the rewards received by the agent
with the performance indicators of interest over the learning
time, it is possible to determine whether the reward signal
was modeled correctly. If necessary, it is also possible to
iteratively adjust the modeling of the reward signal.

As shown in Fig. 6, the agents reach a converged state
after a certain number of episodes. In the converged state, no
significant improvement in performance indicators is identi-
fiable until the final value of 12,000 episodes is reached. For
each modeling alternative, all data to reconstruct these plots
were saved. For simplicity, in the remainder of this work,
the modeling variants are compared on the basis of the per-
formance indicators in the converged state. The numerical
value in the converged state is calculated by averaging the
respective performance indicator over the last 100 episodes
of a simulation run and over the simulation runs carried out
with this respective modeling alternative.

Computational and evaluation results

In this section, we first show the general learning capability
of the agent using the NBV problem. Then, the influences
of the different modeling alternatives of state modeling,
learning algorithm, point cloud encoder, action modeling,
and reward modeling on the performance indicators are
investigated. Since the training of agents is time and com-
putationally intensive, we only follow a partially exhaustive
approach where every combination is examined concern-
ing the modeling alternatives. Preliminary results indicated
the suitability of first examining the parameters with fewer
options (state, algorithm encoder) and later the parameters
with more options (action and reward). In each case, the
design option that shows the best performance continues to
be pursued. Our experiments are conducted on a Linux sys-
tem with an AMD Ryzen Threadripper PRO 3955WX with
16 cores running at 3.9 GHz and NVIDIA RTX A6000 graph-
ics. The average runtime of each experiment is approximately
10h.

Verification of agent learnability for the NBV problem

Question: Is it possible to train learning agents with the
modeling alternatives presented and how well do these agents
perform in relation to random benchmarks?

To obtain a baseline for verifying the learning ability of RL
agents, the performance indicators of two agents that choose
actions randomly are first determined for the most straight-
forward problem class, the NBV problem. The framework
generates an initial fixed pose of the acquisition system, as
stated in Table 5, to let the random agents return an action
corresponding to the NBV. The first random baseline agent



Journal of Intelligent Manufacturing

NBV/ and makes use of the action variant A3gog, here in
use with a mapping on a [0, 100] radius interval (M;pk for
radius r), with the maximum number of degrees of freedom
possible. The attachment rand points out the property of a
randomly created action vector. N BV and shows no learning
behavior regarding all the performance indicators - a trivial
result given random action selection. No additional coverage
compared to the initial acquisition is achieved. All the total
object coverage can be associated with the initial acquisi-
tion, which usually accounts for around 44% of the object
surface. Reducing the degrees of freedom from 5 to 3 using
the A350r action modeling with prior knowledge regarding
the orientation toward the objects’ center (M Z‘)‘P’i) results in
the second random baseline agent N BV, and p this case, the
acquisition system is automatically orientated to the object’s
center of gravity, and the radius is mapped on the operating
range of [30, 50] (M;pk for radius r). Additional coverage
can be obtained with said random baseline. Still, the action
vector is created randomly in this case, showing that integrat-
ing prior knowledge improves the performance, although the
agent does not learn anything.

While the action vectors of NBV/ and and NB 1% and are
created randomly, two further agents N BV3 and N BV, are
trained, which choose their actions based on a learned pol-

100
80 qrfr
>
a 60 b
1™
[}
> 40
8 —Ag?cto;\
20
—— 3S0R
0 . . . . .
0 2000 4000 6000 8000 10000 12000
episodes
1.0
0.5 1
T
s
0.0 1
3
[}
1™
—0.5 - Agent
— 3COR
—— 3S0R
-1.0 ; , ; . .
0 2000 4000 6000 8000 10000 12000
episodes

Fig. 6 Trajectory of evaluated performance indicators and reward of
two exemplary agent configurations over the course of learning. Top
left: Trajectory of the object surface coverage. Top right: Trajectory of

travel cost

icy (see Table 4 for parameters). Their actions are the results
of processing the point cloud of the initial acquisition in the
PCN encoder and the downstream MLP. In both cases, the
Azsor action with automatic focus on the object’s center of
gravity is used. N BV, only differs from N B V3 in the pose
of the acquisition system for the initial acquisition, which
is generated randomly for N BV,. Table 5 shows a signifi-
cant coverage improvement of approximately 30% for agents
NBV3 and N BV4 compared to NBV, and ‘This shows that
the agents are generally capable of learning. Additionally, the
non-existing differences in final surface coverage between
NBYV3 and N BV, show the ability of NBVjy to reactively
choose the pose of the subsequent acquisition according to
the varying pose of the initial acquisition.

In addition to the surface coverage, the number of acquisi-
tions and the travel distances are shown in Table 5. Since all
agents use the reward signal from the default agent configu-
ration in Table 4, the reward primarily maximizes the object
coverage. A comparison of lengths of travel paths as well as
the number of acquisitions, which is always two, is there-
fore not relevant and is omitted in the context of comparing
random baseline agents to RL agents.

10
8..
0N g4
c
S
n 47
Agent
24 —— 3COR
—— 3S0R
0 T T T T T
0 2000 4000 6000 8000 10000 12000
episodes

6000 8000 10000

episodes

0 2000 4000 12000

the required acquisitions (scans) to reach 90 % surface coverage. Bot-
tom left: Trajectory of the reward signal. Bottom right: Trajectory of
cumulated travel costs

@ Springer



Journal of Intelligent Manufacturing

Table5 Results for Baseline

. o e . a h . e
RL-agents with varying action Agent Action initial Mapping Coverage' Coverage Acquisitions  Travel cost
encoding and position of initial rand aB g
acquisition NBYV| Azsop  fix M, s My 0.00 44.24 2.00 82.00
NBVZ"“”d Aszsor  fix Mifk, M, 928 53.35 2.00 80.74
NBV3 Assor  fix M:Zpi M, 3942 83.07 2.00 120.06
NBV, A3sor  random M:z'pﬂk, My, 39.62 83.23 2.00 122.63

Bold values indicate best achieved

¢: Coverage of initial acquisition is excluded
b: Coverage of initial acquisition is included
rand ;. Actions are calculated randomly thus, the agent is not capable of learning

Table 6 Results for RL agents with changing state encoding, learning algorithm, and point cloud encoder network variant

Agent State Algorithm Encoder Coverage Acquisitions Travel cost Steps to convergence
1 St.cov SAC PCN 92.01 5.69 305.55 28455
2 St.bin SAC PCN 92.05 5.70 293.69 12550
3 St.cov PPO PCN 91.82 6.96 429.43 52333
4 St.cov SAC PointNet 91.88 538 304.53 33667

Bold values indicate best achieved

Answer: By comparing agents that learned to perform a
NBYV with benchmark agents that randomly chose actions,
the learnability of the agents can be verified.

Comparison of state modeling alternatives

Question: Which of the introduced state encoding alterna-
tives, St cov OF St pin.performs better?

Two state encoding alternatives are introduced in Section
“State module". First, the state can be based on and calculated
by the acquired point cloud s; ., up until the current inter-
action step ¢ (model-free). Second, the binary state encoding
passes a point cloud s; p;, based on and calculated by the
object model with information on whether a point has already
been seen to the agent(model-based). These two variants are
compared in this section.

Agent 1 and 2 in Table 6 display the results for the state
alternatives s; co» and s$; pin considered. On average, both
agents can reach the required object coverage criteria of
90% surface coverage in the last 100 episodes. Regarding
the acquisitions, both agents lower the needed number of
acquisitions from 10 to less than 6 on average. This can be
attributed to the discount factor y = 0.9, which encour-
ages the agent to perform acquisitions with a high reward
at earlier steps. Thus, the desired surface coverage of 90%
is achieved in fewer steps (acquisitions), reducing the num-
ber of acquisitions required. Additionally, as the number of
acquisitions increases, it becomes more difficult for the agent
to find and acquire unknown regions, increasing the proba-
bility of penalty (based on the reward R, used). Considering
the performance indicators obtainable, there are no signifi-

@ Springer

cant differences between the introduced state encodings. By
comparing the needed steps of the agents to converge, it can
be stated that a faster convergence of Agent 2 using s; pin
is achieved compared to Agent 1 using s; cop. This can be
attributed to the more complete information content passed
to the agent. In the case of binary coding s; pi,, the agent
receives information about all possible points to be captured
and those that have been captured so far and are yet to be
captured. The latter information is missing in the case of the
first state alternative s; .oy, Where the agent only receives
information about points captured so far.

Thus, by using the proposed framework, agents can opti-
mize performance indicators given a suitable combination
of state action and reward modeling. This is either possible
by a state encoding alternative where a model of the object
is needed (s; pin) but also with an alternative that does not
explicitly need a model (s;,¢ov). Although there could be set-
tings where a binary encoding is valuable or even necessary in
order to reach a performant agent, by using the state encoding
St.cov, it can be made sure to only use the information avail-
able in a real industrial use case, such as remanufacturing, in
which no object model might exist at runtime. Due to these
findings, in the following agent setups, the state encoding
St.cov Using the acquired point cloud until interaction step ¢
is used in further evaluations (see Table 4).

Answer: Both state encoding alternatives, S; cop OF
St.pin.are performing equally well regarding the view plan-
ning task.



Journal of Intelligent Manufacturing

Table 7 Results for RL-agents

with changing action variants Agent Action Mapping Coverage Acquisitions Travel cost

Action output in cartesian coordinates

5 Ascor Myh My 90.97 6.58 236.30

6 A3CaR Mk My 43.49 11.00 1556.21
Action output in spherical coordinates

7 Assag MR M, 44.19 11.00 838.16

8 Aasor MR M 92.20 5.26 296.02

9 A3s0r ME M) 92.16 4.63 258.08

10 A2$2R _lim My oy 91.71 6.25 296.99

Bold values indicate best achieved

Comparison of learning algorithms

Question: Which of the introduced learning algorithms, PPO
or SAC, performs best?

Since continuous state and action spaces are considered in
this work, two different state-of-the-art learning algorithms
(PPO and SAC) for this problem set are evaluated. Agent 1
uses the off-policy SAC algorithm, while Agent 3 uses the on-
policy PPO algorithm. Performance indicators are depicted
in Table 6.

Both agents are able to optimize the object coverage up
to around 90% and lower the needed acquisition steps to
less than 7 acquisitions. Despite this, Agent 1 trained with
the SAC algorithm outperforms Agent 3 using the PPO
algorithm in nearly all performance indicators (object sur-
face coverage, number of acquisitions, and cumulated travel
costs). Besides, Agent 3 using PPO exhibits poor conver-
gence behavior, reflected in the number of steps required
to converge. These findings are consistent with the claims
of Haarnoja et al. (2018) that on-policy algorithms, such as
PPO, have a lower sample efficiency compared to off-policy
algorithms, such as SAC, and thus require more steps for
convergence. In addition, a qualitative result is that with the
same hyperparameterization when using the PPO, divergence
and thus no convergence of the agent occurs more often after
initial learning behavior. In contrast, a learning run of a SAC
agent almost always leads to convergence. For the use case
considered in this work, the SAC algorithm proves to be
preferable due to its more stable learning behavior. Due to
better convergence behavior and the SAC outperforming the
PPO concerning the performance indicators, the SAC algo-
rithm is chosen for further experiments (see also 4).

Answer: The agents using SAC perform better compared
to agents trained with PPO. Additionally, agents using SAC
show more robust convergence behavior.

Influence of used point cloud encoder

Question: Which of the introduced point cloud encoders,
PCN or PointNet, performs best?

This work considers and evaluates two variants to extract
point clouds’ features concerning the input’s permutation
invariance. While Agents 1-3 use the PCN, Agent 4 uses the
PointNet. Comparing the results of Agent 1 to Agent 4 shows
that both agents can optimize the object coverage to more
than 90% and lower the necessary amount of acquisitions
to less than six while showing stable convergence behavior.
Using the PointNet encoder results in a three-fold increase in
training times. This is due to the increased computation time
based on the increased amount of weights using the PointNet
(3104294 weights) compared to the PCN (1126980 weights).
This is also why we omitted to implement more sophisticated
networks working with point clouds since these tend to have
more parameters and/or additional intermediate calculation
steps (for example, sampling, grouping, and ball querying in
PointNet++), which additionally increase calculation time.
Due to this, for further experiments and agent settings, the
PCN is used to process input point clouds as depicted in
Table 4. However, in future works, we plan to adopt such
sophisticated networks.

Answer: PointNet performs comparably concerning the
performance indicators but needs three times the inference
time than PCN

Comparison of action encodings

Question: Which of the introduced action encodings per-
forms best?

Considering the action encodings, there are two different
possibilities for the output of the pose by the agents. An action
can be mapped to Cartesian coordinates or to spherical coor-
dinates. In addition, different action alternatives result from
integrating prior knowledge. The results of the evaluation of
the different action encodings are depicted in Table 7.

@ Springer



Journal of Intelligent Manufacturing

Agents 5 and 6 are trained by mapping the agents’ actions
to Cartesian coordinates. While Agent 5 makes use of the
automatic orientation of the acquisition system to the center
of the object, Agent 6 also needs to output values to deter-
mine the orientation of the acquisition system. Considering
both agents, significant differences become evident. While
Agent 5 can increase the achieved object coverage to more
than 90% and lower the acquisitions as well, Agent 6 can-
not optimize any performance indicator. Using the maximum
possible number of 10 acquisitions after the initial one, the
agent covers no object surface apart from the one achieved
with the initial acquisition. Thus, the agent cannot learn to
output actions that allow the orientation towards the object’s
center, which indicates that the object is never in the acqui-
sition system’s field of view. Problem-solving the VPP by
the agent without further restrictions (Agent 6) is therefore
impossible in this case, and restrictions (e.g., automatic ori-
entation of the acquisition system to the object center, Agent
5) must be introduced.

Similar results can be obtained considering Agents 7 to
10 using actions mapped to spherical coordinates. Agent 7,
which again has to solve the VPP without further restrictions,
does not learn a strategy to optimize performance indicators.
This makes the significant complexity of correct acquisition
system rotation towards the object evident. Again, Agent
8 and Agent 9, which use the automatic orientation to the
object’s center, exhibit favorable behavior. The only differ-
ence between the two agents is that Agent 9 has to learn the
optimal distance r between the acquisition system and the
object center, whereas this is predefined for Agent 8 (r = 47).
Both agents optimize the achieved coverage to more than
the required object coverage of 90%, with Agent 8 being
slightly better regarding object coverage and the required
number of acquisitions. In-depth analysis have shown that
although Agent 9 performs many empty acquisitions in its
first episodes, Agent 9 can quickly shift the action vector
component responsible for determining the radius toward the
permissible near and far bounds of the frustum. As in the
Cartesian coordinates case, Agents 7-9 can correctly place
themselves in space regarding these restrictions.

The last agent evaluated in this series of experiments is
Agent 10, which can specify an angle-based deviation from
the orientation of the acquisition system to the object cen-
ter point through its action vector (M lf ;‘ ,;Aﬁ ). Agent 10 thus
exploits the prior knowledge of the orientation towards the
object center but can readjust by additionally outputting
an angle-based correction. Thus, a better strategy may be
learned by selectively exploiting different orientations of the
acquisition system. The results show that a learning effect
also occurs in this case, but the agent performs worse than
agents 8 and 9 concerning the performance indicators. Com-
paring Agent 10 with Agent 1, they only differ in their prior
knowledge of the radius . Agent 10 is always positioned at a

@ Springer

fixed distance (47 cm) from the center of the object (M ;pk),
while Agent 1 is able to position itself freely by learning the
distance to the inspection object (M, » ) Interestingly, Agent
1 performs better than Agent 10 in the performance indi-
cators object coverage and needed number of acquisitions.
Detailed analyses have shown that this is because Agent 1, on
average, moves to positions with a distance of about 49 cm
from the object center. This positioning further away from
the inspection object results in a larger object surface that can
be covered with one acquisition, making fewer acquisitions
necessary but resulting in higher travel costs.

Comparing agents using Cartesian and spherical action
mappings with the same degrees of freedom (Agents 5 and
9), the one using the spherical coordinate system (Agent 9)
outperforms its counterpart. One possible explanation is that
in the case of spherical coordinates, the radius can be opti-
mized by only one action vector entry. In contrast, in the case
of Cartesian coordinates, the distance to the origin results
from three entries (X, y, z-coordinates).

In general, increasing degrees of freedom by adding orien-
tation lowers the performance. Only Agents using the action
mapping A3s2r 1im OF A2$2R 1im integrating prior knowl-
edge M UA) I‘f ,;Aﬁ , are able to reach the coverage criteria when
being tasked with determining the acquisition systems’ ori-
entation. The agent can slightly readjust the orientation of
the acquisition system based on prior knowledge of the auto-
matic orientation used. Thus, this action modeling is used in
the following experiments, even though it performs slightly
worse than Agents 8 and 9. This is because different mod-
eling alternatives of the RL agents may use said degree of
freedom in the action space in conjunction with a suitable
reward signal to find optimal strategies.

Answer: Mapping to spherical coordinates outperforms
mapping to Cartesian coordinates. In general, the agents
are not able to learn the adjustment of the orientation of the
agent and prior knowledge has to be incorporated for the
agent to perform well on the acquisition planning task.

Comparison of reward alternatives

Question: Which of the introduced reward alternatives per-
forms best?

This section details the experiments concerning the reward
alternatives found in Table 3. Two approaches are evaluated.
First, the use of dense rewards that evaluate the agent’s action
after each acquisition (see agents 11 to 18 in Table 8). Second,
sparse rewards evaluate the quality of multiple actions of the
agent after the completion of a whole episode (see agents 19
to 24 in Table 8).

Agent 11, using a straightforward dense reward R calcu-
lated by the additionally achieved coverage of one acquisi-
tion, performs poorly regarding the performance indicators.
Needing ten acquisitions on average to reach 90% object sur-



Journal of Intelligent Manufacturing

Table 8 Results for RL agents with changing rewards

Agent Reward Coverage Acquisitions Travel cost
Dense rewards

11 R 84.66 10.00 788.99
12 R 92.09 6.01 296.55
13 R3 91.62 6.55 310.14
14 R4 91.18 6.07 257.54
15 Rs 84.28 10.48 208.13
16 Re 66.58 10.78 859.97
17 R7 89.49 7.94 269.83
18 Rg 91.91 5.24 249.68
Sparse rewards

19 Ry 67.76 10.86 414.01
20 Rio 91.06 6.16 251.31
21 R 65.91 10.88 855.25
22 Ri2 65.38 10.91 866.02
23 Ri3 67.72 10.74 832.44
24 Ris 67.07 10.90 845.95

Bold values indicate best achieved

face coverage shows that by applying Rj, the coverage may
be optimized, but the agent is not incentivized to reduce the
number of acquisitions of an episode.

Agent 12, using R», is therefore penalized when an acqui-
sition is taken that does not acquire additional surface points
of the object. This results in significant surface coverage
gain while the number of acquisitions is reduced simulta-
neously. Because of this and the simple nature of R, we
chose this reward signal for all previous evaluations as the
default reward signal (compare Table 4).

Agent 13 and 14 are rewarded in a different way. The
reward is calculated by scaling the object surface acquired
in the previous acquisition in relation to the maximum
acquirable surface possible. Other than simply using object
coverage (Agent 11 with Ry), Agent 13 can reach the object
surface criteria of 90% on average without being penalized
when performing acquisitions with no additional surface cov-
erage. The reward variant of Agent 14 makes use of the
penalties for empty acquisitions, which does not significantly
increase the coverage.

Agents 15 and 16 are variants of Agents 11 and 13. The
used reward signals R5 and Re additionally introduce scal-
ing terms for the travel cost in the reward signals of Agents
15 and 16 (as explained in Section “Approximation of the
length of traveling distance") to reduce the cumulated travel
paths between subsequent acquisitions. However, introduc-
ing additional terms into the reward calculation significantly
worsenes the performance regarding the performance indi-
cators object surface coverage and number of acquisitions.
Both agents cannot reach the required surface coverage crite-

ria of 90% to terminate an episode, even though Agent 15 still
reaches a higher surface coverage than Agent 16. Regarding
the travel cost, agent 15 achieves a comparatively small and
thus good result. Agent 16 exhibits one of the highest reported
travel costs in all experiments. This result is a hint that mod-
eling a reward signal that considers multiple performance
indicators does not always lead to the optimization of all
performance indicators, even though they are integrated into
the calculation of the reward. It can be concluded that a com-
bination of multiple performance indicators in one reward
signal has a negative effect on the overall result. A single
reward value potentially resulting from a plurality of influ-
encing factors (newly gained surface coverage, travel costs,
etc.) may be too complex for the agent to learn.

Although Agents 15 and 16 are not performing well, we
also evaluate if a penalizing term for empty acquisitions has
a positive effect, as it has, e.g., with Agent 12 compared to
Agent 11. Agents 17 and 18 result from the rewards R7 and
Rg and are refining Agents 15 and 16 with R5 and Rg by
penalizing the agent if empty acquisitions are made. Both
agents 17 and 18 reach a better surface coverage than their
counterparts, Agents 15 and 16, by obtaining values of nearly
or more than 90%. Besides, they are also able to lower the
number of acquisitions needed. Considering the results of
previous rewards, the beneficial effect of using penalties for
empty acquisitions through placement out of the permissi-
ble near and far bounds of the frustum or wrong orientation
becomes evident.

The following Agents, 19-24, are configured with rewards
that are not given after every action from the agent but after
every finished episode. Solely using the achieved surface cov-
erage after the end of an episode, Agent 19, using reward Ry,
cannot optimize any performance indicator. Different from
all other agents with sparse rewards, Agent 20 converges.
With the reward Rjg combining both the surface coverage of
an episode and the number of acquisitions required, an aver-
age coverage exceeding the required one can be obtained.
Besides, the number of acquisitions is reduced. Different
from Agent 20, the reward Ry; of Agent 21 is calculated
from the obtained object coverage and the combined travel
cost of an episode. Here, neither coverage nor the required
acquisitions could be optimized. Furthermore, the travel costs
are still exceptionally high, even though they are included in
calculating the reward. This is also the case for Agent 22,
whose reward Rj; is a combination of the rewards Rio and
Ry

Other than all previous agents and rewards, an episode of
Agents 23 and 24 solely ends after the object surface coverage
criteria of 90% is reached and not after a maximum number
of acquisitions of 10 acquisitions performed by the agent
(maximum permissible number of acquisitions is 11 includ-
ing the initial acquisition). The reward is calculated only by
the number of acquisitions taken in one episode (Rj3) or

@ Springer



Journal of Intelligent Manufacturing

by the number of acquisitions and the associated travel cost
(R14). In both cases, the Agents cannot optimize any perfor-
mance indicator regarding the coverage of less than 70% and
the mean number of needed acquisitions of more than 10.
These observations show that it is possible but challenging,
using sparse rewards, to train agents for the problem at hand.

Answer: Dense rewards have shown to outperform sparse
rewards. Penalizing the agents for performing empty acqui-
sitions always leads to improvement of the learned strategy.
Optimization of multiple performance indicators through
combination into a single reward signal has not shown pos-
itive results and may be subject to future work.

Comparison with benchmark algorithms

Question: How do the best-trained agents perform in com-
parison to benchmark algorithms?

The analysis results of the different parameters and mod-
eling alternatives have shown that agents can be trained to
learn and solve the VPP. These agents can be compared with
traditional benchmark algorithms. The results are in Table
9. Since optimizing the travel paths proves challenging for
the agents, it is not included in this comparison. The heuris-
tic Hye and two variants of an analytic algorithm Bgcp are
used for comparison. The heuristic H,... represents a human-
like solution of how an acquisition system can be positioned
around an approximately rectangular object. The analyti-
cal solution method Bgcp explicitly takes into account the
geometry model (stl) and uses this model to plan the optimal
poses of the acquisition system.

The first benchmark heuristic H,.. represents a simple
solution by placing a rectangular bounding box around the
given mesh of the object and generating a pose of the acqui-
sition system for each face of the bounding box. A pose
is generated starting from the surface center of the respec-
tive side of the bounding box. For this purpose, a point is
generated in the direction of the surface normal of the side
surface at the optimal working distance of the acquisition
system. The orientation of the acquisition system is then
determined to point to the object’s center. Since, in this case,
three-dimensional Cartesian coordinates are used to define
the position of the acquisition systems’ pose and the rotation
is fixed, this corresponds to the action mapping A3cogr. For
each determined pose, an acquisition is performed, and a sur-
face coverage percentage is calculated. The results in Table
9 then correspond to the average coverage for all available
models.

The second benchmark algorithm Bgcp is an analytical
solution method for the VPP. Given the object mesh to be
inspected, specific positions are equally sampled on a spher-
ical surface centered in the object center. The radius is chosen
as the optimal working distance of the acquisition system.
For this work, 900 positions are sampled. The orientation is

@ Springer

Table9 Results for RL-agents with changing action variants

Agent Action  Coverage  Acquisitions  Calculation time
8 A250R 92.20 5.26 0.0521

9 A3s0R 92.16 4.63 0.0538

Bscpa  Aasor 96.20 4 506.29

Bscps  Aasor 98.17 5 506.29

Hyee Ascor 9747 6 0.0021

Bold values indicate best achieved

then, as with the first benchmark heuristic H,.. set, so the
acquisition system points toward the object center. Hence,
this corresponds to the action mapping Azsor. All 900 poses
are evaluated for each model, and the points on the ground
truth point cloud Pgr that can be acquired with said pose are
stored. Then, an algorithm is used to determine the n poses
of the 900 available poses that obtain the highest amount
of surface coverage. In an iterative manner, this algorithm
loops over the results of 900 acquisitions. In each iteration,
it selects the pose that acquires the most amount of surface
points on Pg7 that have not been acquired with the previously
selected poses. This algorithm essentially solves the so-called
Set-Covering-Problem (SCP) the VPP can be framed as. The
parameter n is a hyperparameter and therefore, two variants
of the analytic solution method Bscp 4 and Bscp s with
n = 4 and n = 5 are evaluated. As with H,.. the solution of
the SCP is calculated for each available object model and the
results found in Table 9 are the average of all object models.

Agents 8 and 9, which exhibit the best ratio of trained
agents between surface coverage and the number of neces-
sary acquisitions, are used for comparison with the bench-
mark algorithms. Although the trained agents perform worse
compared to both analytic solution methods Bscp 4 and
Bscp 5 in terms of surface coverage and necessary acqui-
sitions, it can be seen that the percentage lower surface
coverage is only about 4—6%. If we compare agent 9 with
Bgsc p 4, for example, it achieves 4.04% less surface coverage
and requires 0.6 acquisitions more on average. Comparable
findings can be drawn compared to the heuristic H,.. In this
comparison, the agents perform better. Although the agents
also do not achieve the surface coverage achieved by the
heuristic (5.27% less for agent 8 and 5.31% less for agent
9), they also require fewer acquisitions to do so. This can
be attributed to the fact that H,.. only uses the rectangu-
lar bounding box to generate the views and not the object
model directly. A comparison of the required calculation
times reveals that the analytical solution Bgcp has a very
high calculation time. On average, finding a view plan takes
506s. This corresponds to about eight minutes. This is due to
the simulation and subsequent evaluation of the large number
of viewpoints. Such approaches are, therefore, usually used
with an available object model before the actual acquisition



Journal of Intelligent Manufacturing

Fig.7 Visualization of two
models of each of the starter
motors used in the training and
test data set

Training dataset (35 Motors)

100
90
) _
g 80
©
e
o
>
S 704
601 —— Agent 8R
—— Agent 9R
50 L— : . . :
0 5000 10000 15000 20000
episodes

Test dataset (5 Motors)

111 —— Agent 8R
10 —— Agent 9R

scans

10000 15000 20000

episodes

0 5000

Fig.8 Graph of the performance indicators coverage and required acquisitions (scans) for the agents 8% and 9%

process to generate a view plan, which then only needs to be
executed for the respective inspection object at system run-
time. In comparison, the trained agents 8 and 9, as well as
the heuristic H,.., have a low, real-time capable computing
time for calculating the view plan. For the heuristic H,,
only a bounding box needs to be generated for the object
based on which the view plan is generated. The computing
time for the view plan by the agents is calculated from the
sequential action generation by the agent, simulation of an
acquisition process and subsequent generation of the state,
whereupon the agent selects another action until the episode
ends. In doing so, accepting a 4-5 % lower surface coverage,
more than one acquisition can be saved on average by using
the agents, which corresponds to a reduction in the necessary
execution time of a view plan. Agents 8 and 9 thus offer a
good trade-off between surface coverage and the necessary
acquisitions compared to Hc.

Answer: Although the trained agents perform slightly
worse in comparison to the benchmark heuristic and ana-
Iytic solution in terms of overall surface coverage, it can be
noted that a model-based approach using trained agents can
achieve comparable results and is able to provide a good

tradeoff between surface coverage and needed acquisitions
for run-time capable view planning.

Training and testing using real starter motor models

Question: Can the results be reproduced with real starter
motor models that the agent has never seen?

The results of the modeling so far have shown the applica-
bility of the RL to the application problem presented. These
results have been generated for synthetically created starter
engine models. In this section, the two best-performing
agents (Agent 8 and Agent 9) using synthetically created
starter engine models are trained and subsequently tested
using real motor models. Using a hand-held laser scanner
(Zeiss T-Scan), 40 real STL models of starter motors were
generated. 35 of these motor models are used to train the
Agents 8% and 9% based on the configuration of Agent 8 and
Agent 9, after which five of these models are used to test the
Agents. Figure7 shows two of the generated starter engine
models of the training and test dataset.

The curves of the surface coverage and the number of
acquisitions required can be found in Fig.8. The results
of agents 8% and 9% show agreement with the findings of

@ Springer



Journal of Intelligent Manufacturing

Table 10 Overview of results for training and test performance on real
starter motor models

Training performance Test performance

Agent Coverage Acquisitions Coverage Acquisitions
gR 93.96 5.37 93.64 5.30

9k 93.09 5.05 93.28 5.50
B§CP,4 - 96.87 4

B§CP,5 - 98.31 5

HR - - 97.03 6

rec

Agents 8 and 9 using synthetic starter motors. Agents 8% and
9R exhibit similar learning behavior and perform similarly
regarding the performance indicators coverage and needed
acquisitions.

A comparison of the quantitative parameters (Tables 9
and 10) shows that the Agents 8% and 9% perform similarly
to the Agents 8 and 9 with regard to the performance indi-
cators coverage and needed acquisitions. Only the average
number of necessary acquisitions has increased for Agent
9R compared to Agent 9. It can, therefore, be concluded that
the results from the training of agents with the synthetically
generated starter motors can be transferred to the use case of
real models of starter motors.

Comparing the performance indicators of the agents 8%
and 9® in the training and test case, it can be stated that
these performance indicators differ only slightly from those
of the training case, both in the case of surface coverage and
with regard to the acquisitions required for this in the test
case. On average, the surface coverage in the test case is
slightly smaller than in the training case. In addition, agent
9R requires slightly more acquisitions on average in the test
case than in the training case. Overall, it can be stated that the
agents 8% and 9% provide a good solution for the VPP even
on unseen real starter motors to be inspected. The results
obtained with the synthetic data set can also be confirmed
when comparing the heuristics and the analytical solutions.
The analytical solutions B§C pa B §C p.s show a better per-
formance than both agents 8% and 9%, but they are not
real-time capable. The comparison with the heuristic HX.
again provides a higher surface coverage, but the number of
acquisitions required is higher.

Answer: It can be shown that the results of agent modeling
using synthetic engine models can be transferred to the case
of real engine models. In addition, it has been shown that the
trained agents 8% and 9% can also be used to solve the VPP

for unseen real motor models.

@ Springer

Conclusion and outlook

Specially trained workers still carry out the initial visual
inspection in remanufacturing. These workers inspect the
product from different angles to gain an impression of the
product’s condition and detect all possible defects on the
entire product surface. Automating such inspection processes
with the help of a robot-based inspection system can reduce
the costs of inspection and, therefore, enable remanufactur-
ing, especially in high-wage countries. In this paper, the
challenges of solving the visual inspection use case on an
automated system have been formalized to the visual acqui-
sition planning problem. It has been deduced that RL is a
promising approach to deal with object models missing at
runtime, only getting fed the information of the object to
inspect that has been acquired so far. In the methodological
part of this work, a framework consisting of a simulation
environment to replicate the acquisition process of a three-
dimensional acquisition system and a module for variable
generation of RL agents is presented. These configured RL
agents can interact with the simulation environment to learn
strategies to solve acquisition planning problems. The results
have shown that RL can generally solve well-known vision
planning problems (NBV, VPP, CPP).

Detailed analyses have shown that the SAC in combina-
tion with a feature extractor of Yuan et al. (2018)’s PCN is
best suited for the problems to be solved. Successful train-
ing of the RL agents was possible both with and without
knowledge of the geometrical model. This result underlines
the applicability of RL in use cases of visual planning, such
as remanufacturing, where no object model is available.
Various alternative definitions of reward signals and their
influence on agent behavior were shown. Dense reward sig-
nals were shown to outperform sparse reward signals. The
best-performing agents were compared to benchmark algo-
rithms and trained and tested on real starter engine models.
Results have shown comparable results to state-of-the-art
methods and the applicability of the agents to perform view
planning on unseen starter engines.

Despite the positive results achieved, three key limita-
tions persist. First, learning behavior was only possible when
explicitly using prior knowledge in the form of mapping the
agents’ output resembling the pose of the acquisition sys-
tem to a spherical surface and the automated orientation to
the center of the object. Second, the agents only converged
using a dense reward signal. The credit assignment prob-
lem using a sparse reward signal has, therefore, proven to be
too difficult for the agent, possibly resulting in a suboptimal
optimum the agents converged to. Last, the optimization of
multiple objectives (in the case of this work the surface cov-
erage maximization and the minimization of travel distances
between subsequent acquisition poses) has not been proven
to work.



Journal of Intelligent Manufacturing

Therefore, in future works, two major research branches
will be pursued. First, an implementation of the theoretically
obtained results on a real inspection system will be exam-
ined. Therefore, arobot simulation must be integrated into the
existing simulation, allowing the detailed evaluation of travel
distances and the reachability of the poses determined by the
agents. In this way, the realism of the proposed simulation
framework can be further increased. In this context, extend-
ing arbitrary object models must also be pursued. From the
authors’ point of view, the mapping of the agents’ outputs
to coordinates on a spherical surface is not sufficient for this
purpose, since for arbitrary objects more freedom is needed
for the positioning of the acquisition system. However, in
the present work, it has been shown that the agents have
insufficient learning behavior without the inclusion of the
mapping of the agents’ output to a spherical surface. There-
fore, secondly, algorithmic improvements and sophisticated
algorithms have to be investigated. This includes algorithms
for multi-objective optimization to jointly optimize a range
of optimization criteria such as object surface coverage and
travel paths. To enable this, in contrast to the model-free
RL algorithms used in this work, the usage and evaluation
of model-based RL algorithms might be of interest. Further
enhancements would be using imitation learning or inverse
RL to learn strategies from an expert. This work’s modeling
results can play a key role in defining the state, action, and
reward space for said research paths. Furthermore, it has to
be noted that the results obtained were only achieved for one
product group. In further works, the agent behavior should be
investigated if several product groups and their variants are
to be inspected. The theoretical findings and the simulation
environment developed in this thesis provide the necessary
basis for addressing these research deficits.

Author Contributions All authors assisted in the conception of the
approaches presented in this work. Implementing the methodologi-
cal approach by programming and validating the proposed simulation
framework by Jan-Philipp Kaiser, Jonas Gébele, Dominik Koch, and
Jonas Schmid. The writing of this work was significantly driven by Jan-
Philipp Kaiser, Jonas Gibele, and Dominik Koch, supported by Florian
Stamer and Gisela Lanza. Florian Stamer and Gisela Lanza provided
the technical and scientific guidance of the work. Jan-Philipp Kaiser
wrote the first draft of the manuscript, and all authors commented on
previous versions. All authors read and approved the final manuscript.

Funding Open Access funding enabled and organized by Projekt
DEAL. This work was done in the project AgiProbot. AgiProbot is
funded by the Carl Zeiss Foundation.

Declarations

Conflict of interest The authors have no Conflict of interest to declare
that are relevant to the content of this article.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

Achlioptas, P., Diamanti, O., Mitliagkas, I., etal. (2018). Learning repre-
sentations and generative models for 3D point clouds. Proceedings
of the 35th International Conference on Machine Learning, 80,
40-49.

Arai, T., Aiyama, Y., Maeda, Y., et al. (2000). Agile assembly system
by plug and produce. CIRP Annals, 49(1), 1-4. https://doi.org/10.
1016/S0007-8506(07)62883-2

Ashutosh, K., Kumar, S., Chaudhuri, S. (2022). 3d-nvs: A 3d
supervision approach for next view selection. In Proceedings
of the 26th International Conference on Pattern Recognition
(ICPR) (pp. 3929-3936). https://doi.org/10.1109/ICPR56361.
2022.9956377

Banta, J. E., Zhien, Y., Wang, X. Z., et al. (1995). Best-next-view
algorithm for three-dimensional scene reconstruction using range
images. Intelligent Robots and Computer Vision XIV: Algorithms,
Techniques, Active Vision, and Materials Handling, 2588, 418—
429. https://doi.org/10.1117/12.222691

Berner, C., Brockman, G., Chan, B., etal. (2019). Dota 2 with large scale
deep reinforcement learning. arXiv preprint https://arxiv.org/abs/
1912.06680,

Connolly, C. (1985). The determination of next best views. In Pro-
ceedings of the IEEE International Conference on Robotics
and Automation (ICRA) (pp. 432-435). https://doi.org/10.1109/
ROBOT.1985.1087372

CoremanNet. (2022). Bosch Core acceptance criteria for starter motors.
Retrieved June 24, 2024, from https://www.coremannet.com/
assets/docs/return-criteria/new-2019/Starter.pdf

Daniel, V., & Guide, R. (1997). Scheduling with priority dispatching
rules and drum-buffer-rope in a recoverable manufacturing system.
International Journal of Production Economics, 53(1), 101-116.
https://doi.org/10.1016/S0925-5273(97)00097-2

Dawson-Haggerty, et al. (2019). trimesh. Retrieved June 24, 2024, from
https://trimsh.org/

Deinzer, E., Derichs, C., Niemann, H., et al. (2009). A framework for
actively selecting viewpoints in object recognition. International
Journal of Pattern Recognition and Artificial Intelligence, 23(04),
765-799. https://doi.org/10.1142/S0218001409007351

Devrim Kaba, M., Gokhan Uzunbas, M., Nam Lim, S. (2017). A rein-
forcement learning approach to the view planning problem. In
Proceedings of the 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) (pp. 6933—-6941). https://doi.org/
10.1109/CVPR.2017.541

DIN 31051:2019-06. (2019). Fundamentals of maintenance. Beuth Ver-
lag GmbH, Berlin, https://doi.org/10.31030/3048531, Deutsches
Institut fiir Normung e.V. (DIN)

DIN EN 13306:2018-02. (2018). Maintenance - Maintenance termi-
nology; Trilingual version. Beuth Verlag GmbH, Berlin, https://
doi.org/10.31030/2641990, Deutsches Institut fiir Normung e.V.
(DIN)

@ Springer


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/S0007-8506(07)62883-2
https://doi.org/10.1016/S0007-8506(07)62883-2
https://doi.org/10.1109/ICPR56361.2022.9956377
https://doi.org/10.1109/ICPR56361.2022.9956377
https://doi.org/10.1117/12.222691
https://arxiv.org/abs/1912.06680
https://arxiv.org/abs/1912.06680
https://doi.org/10.1109/ROBOT.1985.1087372
https://doi.org/10.1109/ROBOT.1985.1087372
https://www.coremannet.com/assets/docs/return-criteria/new-2019/Starter.pdf
https://www.coremannet.com/assets/docs/return-criteria/new-2019/Starter.pdf
https://doi.org/10.1016/S0925-5273(97)00097-2
https://trimsh.org/
https://doi.org/10.1142/S0218001409007351
https://doi.org/10.1109/CVPR.2017.541
https://doi.org/10.1109/CVPR.2017.541
https://doi.org/10.31030/3048531
https://doi.org/10.31030/2641990
https://doi.org/10.31030/2641990

Journal of Intelligent Manufacturing

Errington, M., & Childe, S. J. (2013). A business process model of
inspection in remanufacturing. Journal of Remanufacturing, 3, 1—
22. https://doi.org/10.1186/2210-4690-3-7

Haarnoja, T., Zhou, A., Abbeel, P., et al. (2018). Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with
a stochastic actor. In Proceedings of Machine Learning Research
(PMLR) (Vol. 80).

Hu, S., Zhu, X., Wang, H., et al. (2008). Product variety and manufac-
turing complexity in assembly systems and supply chains. CIRP
Annals, 57(1), 45-48. https://doi.org/10.1016/j.cirp.2008.03.138

Hu, S., Ko, J., Weyand, L., et al. (2011). Assembly system design
and operations for product variety. CIRP Annals, 60(2), 715-733.
https://doi.org/10.1016/j.cirp.2011.05.004

Huang, Z., Yu, Y., Xu, J., et al. (2020) Pf-net: Point fractal network
for 3d point cloud completion. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR)
(pp- 7659-7667). https://doi.org/10.1109/cvprd2600.2020.00768

Jing, W., Goh, C. F,, Rajaraman, M., et al. (2018). A computational
framework for automatic online path generation of robotic inspec-
tion tasks via coverage planning and reinforcement learning. /EEE
Access, 6, 54854-54864. https://doi.org/10.1109/ACCESS.2018.
2872693

Junior, M. L., & Filho, M. G. (2012). Production planning and control
for remanufacturing: Literature review and analysis. Production
Planning & Control, 23(6), 419-435. https://doi.org/10.1080/
09537287.2011.561815

Khan, A., Mineo, C., Dobie, G., et al. (2021). Vision guided robotic
inspection for parts in manufacturing and remanufacturing indus-
try. Journal of Remanufacturing, 11(1), 49-70. https://doi.org/10.
1007/513243-020-00091-x

Kober, J., Bagnell, J. A., & Peters, J. (2013). Reinforcement
learning in robotics: A survey. The International Journal of
Robotics Research, 32(11), 1238-1274. https://doi.org/10.1007/
978-3-642-27645-3_18

Korbach, C., Solbach, M. D., Memmesheimer, R., et al. (2021). Next-
best-view estimation based on deep reinforcement learning for
active object classification. arXiv preprint https://arxiv.org/abs/
2110.06766

Koren, Y. (2010). The global manufacturing revolution: Product-
process-business integration and reconfigurable systems (Vol. 80).
Wiley.

Kuhnle, A., Schifer, L., Stricker, N., et al. (2019). Design, implemen-
tation and evaluation of reinforcement learning for an adaptive
order dispatching in job shop manufacturing systems. Procedia
CIRP, 81, 234-2309. https://doi.org/10.1016/j.procir.2019.03.041

Kuhnle, A., Kaiser, J. P., Theif}, F,, et al. (2021). Designing an adaptive
production control system using reinforcement learning. Journal of
Intelligent Manufacturing, 32, 855-876. https://doi.org/10.1007/
s10845-020-01612-y

Kurilova-Palisaitiene, J., Sundin, E., & Poksinska, B. (2018). Reman-
ufacturing challenges and possible lean improvements. Journal of
Cleaner Production, 172, 3225-3236. https://doi.org/10.1016/]J.
JCLEPRO.2017.11.023

Landgraf, C., Meese, B., Pabst, M., et al. (2021). A reinforcement
learning approach to view planning for automated inspection
tasks. Sensors (Basel, Switzerland), 21(6), 2030. https://doi.org/
10.3390/521062030

Lillicrap, T. P,, Hunt, J. J., Pritzel, A., et al. (2015). Continuous control
with deep reinforcement learning. arXiv preprint https://arxiv.org/
abs/1509.02971

Mehrabi, M. G., Ulsoy, A. G., & Koren, Y. (2000). Reconfigurable
manufacturing systems: Key to future manufacturing. Journal of
Intelligent manufacturing, 11, 403—419. https://doi.org/10.1023/
A:1008930403506

Mendoza, M., Vasquez-Gomez, J. 1., Taud, H., et al. (2020). Supervised
learning of the next-best-view for 3d object reconstruction. Pat-

@ Springer

tern Recognition Letters, 133,224-231. https://doi.org/10.1016/j.
patrec.2020.02.024

Mnih, V., Kavukcuoglu, K., Silver, D., et al. (2013). Playing atari with
deep reinforcement learning. arXiv preprint https://arxiv.org/abs/
1312.5602

Mnih, V., Kavukcuoglu, K., Silver, D., et al. (2015). Human-level
control through deep reinforcement learning. Nature, 518(7540),
529-533. https://doi.org/10.1038/nature 14236

Monica, R., & Aleotti, J. (2021). A probabilistic next best view planner
for depth cameras based on deep learning. /IEEE Robotics and
Automation Letters, 6(2), 3529-3536. https://doi.org/10.1109/
LRA.2021.3064298

van Otterlo, M., & Wiering, M. (2012). Reinforcement learning and
Markov decision processes. Reinforcement Learning: State-of-the-
Art. https://doi.org/10.1007/978-3-642-27645-3_1

Pan, S, Hu, H., & Wei, H. (2022). Scvp: Learning one-shot view plan-
ning via set covering for unknown object reconstruction. /IEEE
Robotics and Automation Letters, 7(2), 1463—1470. https://doi.
org/10.1109/LRA.2022.3140449

Panzer, M., & Bender, B. (2021). Deep reinforcement learning in
production systems: A systematic literature review. Interna-
tional Journal of Production Research. https://doi.org/10.1080/
00207543.2021.1973138

Peng, X. B., Andrychowicz, M., Zaremba, W., et al. (2018). Sim-to-real
transfer of robotic control with dynamics randomization. In Pro-
ceedings of the 2018 IEEE International Conference on Robotics
and Automation (ICRA) (pp. 3803-3810). https://doi.org/10.1109/
ICRA.2018.8460528

Peuzin-Jubert, M., Polette, A., Nozais, D., et al. (2021). Survey on
the view planning problem for reverse engineering and automated
control applications. Computer-Aided Design, 141, 1-22.

Potapova, S., Artemov, A., Sviridov, S., et al. (2020). Next best view
planning via reinforcement learning for scanning of arbitrary 3d
shapes. Journal of Communications Technology and Electronics,
65, 1484-1490. https://doi.org/10.1134/S1064226920120141

Qi, C.R., Su, H., Mo, K., et al. (2017). Pointnet: Deep learning on point
sets for 3d classification and segmentation. In Proceedings of the
2017 IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR) (pp. 652-660). https://doi.org/10.1109/CVPR.2017.
16

Raffin, A., Hill, A., Gleave, A., et al. (2021). Stable-baselines3: Reli-
able reinforcement learning implementations. Journal of Machine
Learning Research, 22(268), 1-8.

Ridley, S.J., jomah, W. L. (2015) Pre-processing inspection—a worth-
while activity for remanufacturers

Robotis, A., Boyaci, T., & Verter, V. (2012). Investing in reusability of
products of uncertain remanufacturing cost: The role of inspec-
tion capabilities. International Journal of Production Economics,
140(1), 385-395. https://doi.org/10.1016/].ijpe.2012.04.017

Schliiter, M., Lickert, H., Schweitzer, K., et al. (2021). Ai-enhanced
identification, inspection and sorting for reverse logistics in reman-
ufacturing. Procedia CIRP, 98, 300-305. https://doi.org/10.1016/
j-procir.2021.01.107

Scholz-Reiter, B., & Freitag, M. (2007). Autonomous processes in
assembly systems. CIRP Annals, 56(2), 712-729. https://doi.org/
10.1016/j.cirp.2007.10.002

Schulman, J., Levine, S., Abbeel, P., et al. (2015). Trust region policy
optimization. arXiv preprint arXiv: org/abs/1502.05477

Schotz, S., Butzer, S., Molenda, P., etal. (2017). An approach towards an
adaptive quality assurance. Procedia CIRP, 63, 189-194. https://
doi.org/10.1016/j.procir.2017.03.096

Scott, W., Roth, G., & Rivest, J. F. (2003). View planning for
automated three-dimensional object reconstruction and inspec-
tion. ACM Computer Survey, 35, 64-96. https://doi.org/10.1145/
641865.641868


https://doi.org/10.1186/2210-4690-3-7
https://doi.org/10.1016/j.cirp.2008.03.138
https://doi.org/10.1016/j.cirp.2011.05.004
https://doi.org/10.1109/cvpr42600.2020.00768
https://doi.org/10.1109/ACCESS.2018.2872693
https://doi.org/10.1109/ACCESS.2018.2872693
https://doi.org/10.1080/09537287.2011.561815
https://doi.org/10.1080/09537287.2011.561815
https://doi.org/10.1007/s13243-020-00091-x
https://doi.org/10.1007/s13243-020-00091-x
https://doi.org/10.1007/978-3-642-27645-3_18
https://doi.org/10.1007/978-3-642-27645-3_18
https://arxiv.org/abs/2110.06766
https://arxiv.org/abs/2110.06766
https://doi.org/10.1016/j.procir.2019.03.041
https://doi.org/10.1007/s10845-020-01612-y
https://doi.org/10.1007/s10845-020-01612-y
https://doi.org/10.1016/J.JCLEPRO.2017.11.023
https://doi.org/10.1016/J.JCLEPRO.2017.11.023
https://doi.org/10.3390/s21062030
https://doi.org/10.3390/s21062030
https://arxiv.org/abs/1509.02971
https://arxiv.org/abs/1509.02971
https://doi.org/10.1023/A:1008930403506
https://doi.org/10.1023/A:1008930403506
https://doi.org/10.1016/j.patrec.2020.02.024
https://doi.org/10.1016/j.patrec.2020.02.024
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1312.5602
https://doi.org/10.1038/nature14236
https://doi.org/10.1109/LRA.2021.3064298
https://doi.org/10.1109/LRA.2021.3064298
https://doi.org/10.1007/978-3-642-27645-3_1
https://doi.org/10.1109/LRA.2022.3140449
https://doi.org/10.1109/LRA.2022.3140449
https://doi.org/10.1080/00207543.2021.1973138
https://doi.org/10.1080/00207543.2021.1973138
https://doi.org/10.1109/ICRA.2018.8460528
https://doi.org/10.1109/ICRA.2018.8460528
https://doi.org/10.1134/S1064226920120141
https://doi.org/10.1109/CVPR.2017.16
https://doi.org/10.1109/CVPR.2017.16
https://doi.org/10.1016/j.ijpe.2012.04.017
https://doi.org/10.1016/j.procir.2021.01.107
https://doi.org/10.1016/j.procir.2021.01.107
https://doi.org/10.1016/j.cirp.2007.10.002
https://doi.org/10.1016/j.cirp.2007.10.002
http://arxiv.org/1502.05477
https://doi.org/10.1016/j.procir.2017.03.096
https://doi.org/10.1016/j.procir.2017.03.096
https://doi.org/10.1145/641865.641868
https://doi.org/10.1145/641865.641868

Journal of Intelligent Manufacturing

Scott, W. R. (2009). Model-based view planning. Machine Vision and
Applications, 20(1), 47-69. https://doi.org/10.1007/s00138-007-
0110-2

Shen, L., Tao, H., Ni, Y., et al. (2023). Improved yolov3 model with
feature map cropping for multi-scale road object detection. Mea-
surement Science and Technology, 34(4), 045406. https://doi.org/
10.1088/1361-6501/acb075

Silver, D., Schrittwieser, J., Simonyan, K., et al. (2017). Mastering the
game of go without human knowledge. Nature, 550(7676), 354—
359. https://doi.org/10.1038/nature24270

Sundin, E. (2004). Product and process design for successful remanu-
facturing. Dissertation, Linkoping University.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An intro-
duction. MIT press.

Tolio, T., Bernard, A., Colledani, M., et al. (2017). Design, man-
agement and control of demanufacturing and remanufacturing
systems. CIRP Annals, 66(2), 585-609. https://doi.org/10.1016/
j.cirp.2017.05.001

Vasquez-Gomez, J. 1., Troncoso, D., Becerra, 1., et al. (2021). Next-
best-view regression using a 3d convolutional neural network.
Machine Vision and Applications, 32, 1-14. https://doi.org/10.
1007/s00138-020-01166-2

Vongbunyong, S., Chen, W. H., Vongbunyong, S., et al. (2015). Disas-
sembly automation. Springer. https://doi.org/10.1007/978-3-319-
15183-0

Wang, X., Ang, M. H., Lee, G. H. (2020). Cascaded refinement network
for point cloud completion. In Proceedings of the 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR)
(pp. 787-796). https://doi.org/10.1109/cvpr42600.2020.00087

Wen, X., Li, T., Han,, Z., et al. (2020). Point cloud completion by
skip-attention network with hierarchical folding. In Proceedings of
the 2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) (pp. 1936-1945). https://doi.org/10.1109/
cvprd2600.2020.00201

Wu, C., Zhou, K., Kaiser, J. P,, et al. (2022). Motorfactory: A blender
add-on for large dataset generation of small electric motors. Pro-
cedia CIRP, 106, 138—143. https://doi.org/10.1016/j.procir.2022.
02.168

Yuan, W., Khot, T., Held, D., et al. (2018). Pcn: Point completion net-
work. In Proceedings of the 2018 International Conference on 3D
Vision, Processing, Visualization and Transmission (3DIMPVT)
(pp- 728-737). https://doi.org/10.1109/3DV.2018.00088

Zeng, R., Wen, Y., Zhao, W, et al. (2020). View planning in robot
active vision: A survey of systems, algorithms, and applications.
Computational Visual Media, 6,225-245. https://doi.org/10.1007/
$41095-020-0179-3

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

@ Springer


https://doi.org/10.1007/s00138-007-0110-2
https://doi.org/10.1007/s00138-007-0110-2
https://doi.org/10.1088/1361-6501/acb075
https://doi.org/10.1088/1361-6501/acb075
https://doi.org/10.1038/nature24270
https://doi.org/10.1016/j.cirp.2017.05.001
https://doi.org/10.1016/j.cirp.2017.05.001
https://doi.org/10.1007/s00138-020-01166-2
https://doi.org/10.1007/s00138-020-01166-2
https://doi.org/10.1007/978-3-319-15183-0
https://doi.org/10.1007/978-3-319-15183-0
https://doi.org/10.1109/cvpr42600.2020.00087
https://doi.org/10.1109/cvpr42600.2020.00201
https://doi.org/10.1109/cvpr42600.2020.00201
https://doi.org/10.1016/j.procir.2022.02.168
https://doi.org/10.1016/j.procir.2022.02.168
https://doi.org/10.1109/3DV.2018.00088
https://doi.org/10.1007/s41095-020-0179-3
https://doi.org/10.1007/s41095-020-0179-3

	Adaptive acquisition planning for visual inspection in remanufacturing using reinforcement learning
	Abstract
	Introduction
	Fundamentals and literature review
	Initial visual inspection in remanufacturing
	Definition of acquisition planning problems for visual inspection systems
	Foundations of reinforcement learning
	Approaches for the solution of visual acquisition planning problems using machine learning
	Research deficit and contribution

	Methodical approach for visual acquisition planning based on reinforcement learning
	Overview of the reinforcement learning simulation framework
	Modelling of the scan simulation environment
	Sensor model and object model
	Scanning module
	Definition of an episode

	Modelling of the agent interface
	State module
	Action module
	Reward module

	Agent modeling

	Use case description and computational results
	Dataset used for comparing modeling alternatives
	Training procedure and theoretical real-world application
	Agent configuration and parameters
	Evaluated performance indicators
	Computational and evaluation results
	Verification of agent learnability for the NBV problem
	Comparison of state modeling alternatives
	Comparison of learning algorithms
	Influence of used point cloud encoder
	Comparison of action encodings
	Comparison of reward alternatives
	Comparison with benchmark algorithms

	Training and testing using real starter motor models

	Conclusion and outlook
	References


