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Mixed volumes in n-dimensional Euclidean space are func-
tionals of n-tuples of convex bodies K, L, C1, . . . , Cn−2. The 
Alexandrov–Fenchel inequalities are fundamental inequalities 
between mixed volumes of convex bodies. As very special cases 
they cover or imply many important inequalities between ba-
sic geometric functionals. A complete characterization of the 
equality cases in the Alexandrov–Fenchel inequality remains 
a challenging open problem. Major recent progress was made 
by Yair Shenfeld and Ramon van Handel [13,14], in particular 
they resolved the problem in the cases where C1, . . . , Cn−2
are polytopes, zonoids or smooth bodies (under some dimen-
sional restriction). In [6] we introduced the class of polyoids, 
which are defined as limits of finite Minkowski sums of poly-
topes having a bounded number vertices. Polyoids encompass 
polytopes, zonoids and triangle bodies, and they can be char-
acterized by means of generating measures. Based on this 
characterization and Shenfeld and van Handel’s contribution 
(and under a dimensional restriction), we extended their result 
to polyoids (or smooth bodies). Our previous result was stated 
in terms of the support of the mixed area measure associated 
with the unit ball Bn and C1, . . . , Cn−2. This characterization 
result is completed in the present work which more generally 
provides a geometric description of the support of the mixed 
area measure of an arbitrary (n − 1)-tuple of polyoids (or 
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smooth bodies). The result thus (partially) confirms a long-
standing conjecture by Rolf Schneider in the case of polyoids, 
and hence in particular it covers the case of zonoids and tri-
angle bodies.
© 2024 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).

1. Introduction

Mixed volumes of convex bodies (nonempty compact convex sets) in Euclidean space 
Rn, n ≥ 2, are symmetric functionals of n-tuples of convex bodies, which naturally 
arise as coefficients of polynomial expansions of the volume of nonnegative Minkowski 
combinations of convex bodies. We write V for the volume functional (Lebesgue mea-
sure) and α1K1 + · · · + αmKm for the Minkowski combination of the convex bodies 
K1, . . . , Km ⊂ Rn with nonnegative coefficients α1, . . . , αm ∈ R. Then

V(α1K1 + · · · + αmKm) =
m∑

i1,...,in=1
V(Ki1 , . . . ,Kin)αi1 · · ·αin , (1)

where V(Ki1 , . . . , Kin) is called the mixed volume of Ki1 , . . . , Kin . Local counterparts of 
the mixed volumes are the mixed area measures. For convex bodies K1, . . . , Kn−1 ⊂ Rn, 
the mixed area measure S(K1, . . . , Kn−1, ·) is the uniquely determined Borel measure on 
the Euclidean unit sphere Sn−1 such that

V(K1, . . . ,Kn−1,Kn) = 1
n

∫
Sn−1

hKn
(u) S(K1, . . . ,Kn−1,du) (2)

holds for all convex bodies Kn ⊂ Rn, where hKn
is the support function of Kn (see [11, 

Sect. 5.1] or [7, Thm. 4.1]).
A deep inequality for mixed volumes of convex bodies, with many consequences and 

applications to diverse fields, has been found and established by Alexandrov [1] (see 
Schneider [11, Sect. 7.3], also for some historical comments). We write Kn for the set of 
convex bodies in Rn.

Theorem (Alexandrov–Fenchel Inequality). Let K, L ∈ Kn be convex bodies, and let C =
(C1, . . . , Cn−2) be an (n − 2)-tuple of convex bodies in Rn. Then

V(K,L,C)2 ≥ V(K,K,C) V(L,L,C), (AFI)

where V(K, L, C) := V(K, L, C1, . . . , Cn−2).

While the inequality was already established by Alexandrov and various proofs of 
the inequality are known, some of which were found recently (see [2,3,12,15] and the 
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references given there), a complete characterization of the equality cases remains a major 
open problem in Brunn–Minkowski theory (see [11, Sect. 7.6]). For recent progress, we 
mention the work by Shenfeld and van Handel [13,14] and the literature cited there. 
The computational complexity of the Alexandrov–Fenchel equality decision problem for 
convex polytopes is analyzed in [4]. Applications of the determination of the equality 
cases in the Alexandrov–Fenchel inequality for polytopes to combinatorial problems are 
considered in [14, Sect. 15] and, more generally, in [8],

Based on the findings of Shenfeld and van Handel [14] for the case where C =
(C1, . . . , Cn−2) is a tuple of polytopes, zonoids or smooth bodies (satisfying a weak 
dimensionality assumption, called supercriticality), the following more general result has 
been shown in [6]. It confirms a conjecture by Rolf Schneider [11, Conjecture 7.6.16] for 
a new class of convex bodies, which we called polyoids, that contains e.g. all polytopes, 
zonoids and triangle bodies. A polyoid is a convex body K for which there is some in-
teger k ∈ N and a sequence of Minkowski sums of polytopes each having at most k
vertices that converges to K; see [6, Sect. 2] (and Section 3 below) for further details 
and a representation result characterizing polyoids. A convex body is smooth if each of 
its boundary points is contained in a unique supporting hyperplane.

Theorem (Equality cases in (AFI) for polyoids and smooth bodies [6]). Let K, L ∈ Kn, 
and let C = (C1, . . . , Cn−2) be a supercritical (n − 2)-tuple of polyoids or smooth convex 
bodies in Rn. Assume that V(K, L, C) > 0. Then (AFI) holds with equality if and only if 
there are a > 0 and x ∈ Rn such that

hK = haL+x on supp S(Bn,C, ·),

where suppS(Bn, C, ·) denotes the support of the mixed area measure S(Bn, C, ·) of the 
unit ball Bn and the (n − 2)-tuple C.

For a geometric understanding of the equality cases in the Alexandrov–Fenchel in-
equality (AFI) it thus remains to describe the support of the measure S(Bn, C, ·) in 
geometric terms. According to another (more general) conjecture by Rolf Schneider [11, 
Conjecture 7.6.14], the support of the mixed area measure S(K1, . . . , Kn−1, ·), for given 
convex bodies K1, . . . , Kn−1 ⊂ Rn, is the closure of the set of (K1, . . . , Kn−1)-extreme 
normal vectors, for which we write cl ext(K1, . . . , Kn−1); an explicit definition and fur-
ther information are given in Section 2. If all convex bodies are polytopes or all are 
smooth and strictly convex, then the conjecture is known to be true. The conjecture 
has recently been confirmed by Shenfeld and van Handel [14, Prop. 14.13] in the case of 
(n − 1)-tuples of the form (Bn, C1, . . . , Cn−2), where Ci is a zonoid or a smooth convex 
body in Rn. In the case where the unit ball Bn is replaced by a general zonoid, and 
hence all bodies are general zonoids, the conjecture can be confirmed by adjusting the 
inductive argument in the proof of [14, Prop. 14.13], deducing the n = 2 base case as 
a very special case of [9, Satz 4] (see also [11, Thm. 4.5.3] and [16, Korollar 4.3]) and 
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using arguments from [10] (in particular, [10, Lem. 2.3, Lem. 3.6 and the argument on 
p. 125]). Furthermore, Schneider [10, Prop. 3.8] showed that at least the inclusion

supp S(Z1, . . . , Zp,K[n− 1 − p], ·) ⊆ cl ext(Z1, . . . , Zp,K[n− 1 − p]) (3)

holds whenever p ∈ {0, . . . , n − 1}, K ∈ Kn and Z1, . . . , Zp are zonoids in Rn. In the 
special case where the zonoids are all equal to an (n − 1)-dimensional Euclidean ball, 
it was shown in [5, Thm. 1.1] that in fact (3) holds with equality in this particular 
situation. Moreover, in [5] the support of (conjugate) mixed Monge–Ampère measures 
of convex functions is related to mixed area measures of convex bodies (see [5, Cor. 4.9, 
Cor. 5.7]), from which a natural nesting property for the support of a special class of 
mixed Monge–Ampère measures is deduced.

Our main result confirms Schneider’s conjecture [11, Conjecture 7.6.14] not only for 
general (n −1)-tuples of zonoids or triangle bodies (or smooth bodies), but for the larger 
class of polyoids (or smooth bodies).

Theorem 1.1. Let C = (C1, . . . , Cn−1) be an (n − 1)-tuple of polyoids (or smooth convex 
bodies provided at least one of the bodies Ci is smooth and strictly convex) in Rn. Then

supp S(C, ·) = cl extC. (4)

In combination with the preceding theorem on the characterization of the equality 
cases in (AFI), given in terms of the support of the mixed measure S(Bn, C, ·), we 
thus obtain the following result, which establishes Schneider’s conjecture [11, Conjecture 
7.6.13] for the class of polyoids (or smooth bodies).

Theorem 1.2. Let K, L ∈ Kn, and let C = (C1, . . . , Cn−2) be a supercritical (n − 2)-tuple 
of polyoids or smooth convex bodies in Rn. Assume that V(K, L, C) > 0. Then (AFI) 
holds with equality if and only if there are a > 0 and x ∈ Rn such that

hK = haL+x on ext(Bn,C).

In the special case where C1, . . . , Cn−2 are all smooth, each unit vector is (Bn, C)-
extreme and therefore K and L are homothetic (see [11, Thm.7.6.8]). As another conse-
quence of Theorem 1.1, we obtain the following partial confirmation of a conjecture on 
the monotonicity of mixed volumes (see [10, Conjecture A′]).

Theorem 1.3. Let K, L ∈ Kn satisfy K ⊆ L. Let C = (C1, . . . , Cn−1) be an (n − 1)-tuple 
of polyoids (or smooth convex bodies provided at least one of the bodies Ci is smooth and 
strictly convex) in Rn. Then equality holds in

V(K,C) ≤ V(L,C)
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if and only if

hK = hL on extC. (5)

Condition (5) is expressed by saying that K and L have the same C-extreme support-
ing hyperplanes.

In order to prove relation (4) for (n − 1)-tuples of polyoids or smooth bodies, which 
is the main result of this paper, we prove two inclusions. Both inclusions require various 
preparations and involve new ideas. The main task is to establish the result in the case 
where C1, . . . , Cn−1 are polyoids with generating measures μ1, . . . , μn−1 (see Section 3
or [6, Rem. 2.10 and Def. 2.13]). In order to show that suppS(C) ⊆ cl extC, we express 
in a first step the support of the mixed area measure of C as the closure of the union 
of the extreme normal vectors extP of all (n − 1)-tuples P of polytopes in the support 
of μ1 ⊗ · · · ⊗ μn−1. A main tool is Theorem 2.23 which applies to more general bodies 
than polyoids. In a second step, we provide in Section 3 information about projections of 
touching spaces (the maximal linear subspace orthogonal to the better known touching 
cones) and projections of polyoids and their generating measures. In Section 4 we develop 
a method to characterize what it means that the touching space of a convex body, and in 
particular of a polyoid, is trivial. These ingredients are combined in Section 7 to complete 
the proof of the inclusion “⊆”. In fact, our arguments for the inclusion “⊆” apply to the 
strictly larger class of convex bodies which we called macroids in [6, Def. 2.13], see 
Proposition 7.1 below.

For the reverse inclusion, we proceed by induction over the dimension (see Section 7). 
A natural ingredient in the argument is a reduction formula that relates the mixed area 
measures of convex bodies, where some of these bodies are contained in a subspace E, to 
the mixed area measure of the remaining bodies, projected to the orthogonal subspace 
E⊥ (see Section 2). A crucial new idea to make the induction work is to reduce the 
complexity of a polyoid M , which has a nontrivial touching space in direction u, by a 
construction we call pruning. It ultimately allows us to replace M locally by a lower 
dimensional witness polytope �(M, u) which can be used in place of M to explore the 
support of a mixed area measure involving M . Motivating examples for the construction 
of such a polytope and the crucial Witness Lemma 5.8 are contained in Section 5. It is this 
part of the argument for the inclusion “⊇” which inhibits the extension of Theorem 1.1 to 
macroids. Another ingredient for the induction is provided in Section 6. It finally allows 
us in the induction step to replace, for a given direction u, some of the polyoids by their 
associated witness polytopes. The required Switching Lemma 6.1 is based on concepts of 
criticality that are discussed in Section 2 and have already proved to be essential in recent 
work by Shenfeld and van Handel [14]. Our argument for the inclusion “⊇” simplifies 
substantially if all bodies involved are zonoids. For instance, pruning is not needed, 
the Witness Lemma 5.8 follows directly, and the witness polytopes are non-degenerate 
segments. Thus also the Switching Lemma 6.1 is more intuitive in this situation (but 
apparently still non-trivial).
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2. Preparations

We work in Euclidean space Rn with scalar product 〈· , ·〉, norm ‖ · ‖ and Euclidean 
metric d(· , ·). Most of the time we work with nonempty compact convex subsets of Rn

(convex bodies) and denote the space of all convex bodies in Rn by Kn, together with 
the Hausdorff metric. We denote by Pn the subset of Kn consisting of polytopes. It is 
useful to consider some basic operations and concepts from convex geometry also for non-
convex sets. This is straightforward for the Minkowski (i.e. vector) sum or Minkowski 
combinations with real coefficients of arbitrary subsets of Rn. For n ∈ N0 = N ∪{0}, we 
set [n] := {1, . . . , n} with [0] := ∅.

If ∅ �= A ⊆ Rn, we denote by spanA the (linear) span and by spanA := span(A −A)
the linear subspace parallel to the affine span of A. Then dimA := dim spanA is the 
dimension of A. We write relintB for the relative interior of a convex set B ⊆ Rn. For 
x, y ∈ Rn, the segment connecting x and y is denoted by [x, y] (which equals the convex 
hull of {x, y}).

The support function of a subset A ⊆ Rn is hA : Rn → [−∞, ∞], u �→ sup{〈x, u〉 |
x ∈ A} and the support set of A in direction u ∈ Rn \ {0} is

F (A, u) :=
{
x ∈ A

∣∣ 〈x, u〉 = hA(u)
}
,

which can be the empty set. For a convex body A and u ∈ Rn \ {0}, the support set 
F (A, u) is again a convex body.

2.1. Faces and touching spaces

We follow Schneider [11, p. 16] in defining a face of a convex set A ⊆ Rn as a convex 
subset F ⊆ A with the following property: If x, y ∈ A and F ∩ relint[x, y] �= ∅, then 
[x, y] ⊆ F .

Several useful properties of faces of nonemtpy closed convex sets are provided in 
[11, Sect. 2.1] and will be used in the following. In particular, for a polytope P a set 
∅ �= F ⊂ P is a face of P if and only if it is a support set. Note that “⊂” means strict 
inclusion.

Next we collect and complement some definitions from [11, p. 85]. As usual, for a subset 
A ⊂ Rn we set A⊥ := {v ∈ Rn | 〈v, a〉 = 0 for a ∈ A} (which equals the orthogonal 
complement of spanA). For a vector u ∈ Rn, we set u⊥ := {u}⊥.

Definition 2.1. Let K be a convex body contained in some linear subspace V ⊆ Rn. The 
set of common outer normal vectors (including 0) of some set S ⊆ K is

NV (K,S) := {u ∈ V \ {0} | S ⊆ F (K,u)} ∪ {0} ⊆ V

and called the normal cone of K at S (in V ).
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If u ∈ V \ {0}, then NV (K, F (K, u)) is a closed convex cone containing u. As such, it 
has a unique face TV (K, u) such that u ∈ relintTV (K, u). This face is called the touching 
cone of K in direction u.

The space TSV (K, u) := V ∩TV (K, u)⊥ is called the touching space of K in direction 
u.

In case of V = Rn, we write N := NRn , T := TRn and TS := TSV .

The following definition of extreme normal directions for an (n − 1)-tuple of convex 
bodies in Rn can be easily seen to be equivalent to the definition given in [11, p. 87] by 
means of [11, Lem. 5.1.9], applied in u⊥ for some u ∈ Sn−1.

Definition 2.2. If n ≥ 1 and C = (C1, . . . , Cn−1) is a tuple of convex bodies in Rn, then 
u ∈ Sn−1 is said to be a C-extreme (normal) vector if there are one-dimensional linear 
subspaces of TS(Ci, u), for i ∈ [n − 1], with linearly independent directions. The set of 
all C-extreme normal vectors is denoted by extC.

Remark 2.3. In the situation of Definition 2.2, u ∈ extC if and only if

dim
∑
i∈I

TS(Ci, u) ≥ |I| for I ⊆ [n− 1], (6)

where the empty sum is understood as the trivial vector space. For the equivalence of 
this condition with Definition 2.2, see [11, Thm. 5.1.8].

With the notation introduced later in Definition 2.17, condition (6) will be expressed 
by writing

V(TS(C1, u), . . . ,TS(Cn−1, u)) > 0;

see also the more general Lemma 2.20.

The facial structure, touching cones and touching spaces of polytopes are reasonably 
well-understood. In Lemmas 2.4 and 2.5 we provide some related information that will 
be needed in the sequel. Lemma 2.4 will be applied in the proof of Lemma 2.5 and again 
in Section 5 in the proof of Lemma 5.6.

Lemma 2.4 (Facial stability). Let P = conv {v1, . . . , v�} ∈ Pn and u ∈ Rn\{0}. Consider 
the set Iu := {i ∈ [�] | vi ∈ F (P, u)}.

Then there is an ε ∈ (0, ‖u‖) such that for all v, w1, . . . , w� ∈ Rn with d(u, v) < ε and 
d(vi, wi) < ε for i ∈ [�], Q := conv {w1, . . . , w�} satisfies F (Q, v) ⊆ conv {wi | i ∈ Iu}.

Equality holds if and only if additionally v ∈ span {wi | i ∈ Iu}⊥.

Proof. Note that Iu is not empty.
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If Iu = [�], then the first claim follows from F (Q, v) ⊆ Q. Now assume that [�] \Iu �= ∅. 
Let ‖u‖ > ε > 0 and v, w1, . . . , w� ∈ V with d(u, v) < ε and d(vi, wi) < ε for i ∈ [�]. 
Then v �= 0. Define convex bodies

Q := conv {w1, . . . , w�}

and

P ′ := conv {vi | i ∈ [�] \ Iu} , Q′ := conv {wi | i ∈ [�] \ Iu} .

Note that Q and Q′ depend on v, w1, . . . , w�. It holds

h(P ′, u) = max
i∈[�]\Iu

〈vi, u〉 < max
i∈[�]

〈vi, u〉 = h(P, u) = h(F (P, u), u).

By continuity in u and (vi)i∈[�] of the left and right term of the inequality, we can choose 
ε > 0 such that for all v, w1, . . . , w� ∈ V with d(u, v) < ε and d(vi, wi) < ε for i ∈ [�],

h(Q′, v) < h(Q, v).

So F (Q, v) ⊆ conv {wi | i ∈ Iu}, remembering that F (Q, v) is spanned by vertices of Q
[7, Theorem 1.19].

If equality holds, then v ∈ (spanF (Q, v))⊥ = (span {wi | i ∈ Iu})⊥. Conversely, 
assume v ∈ (span {wi | i ∈ Iu})⊥. Since F (Q, v) is spanned by vertices wi with 
i ∈ Iu and nonempty, we may assume that 1 ∈ Iu and 〈w1, v〉 = h(Q, v). For 
v ∈ (span {wi | i ∈ Iu})⊥, we get

〈wi, v〉 = 〈w1, v〉 + 〈wi − w1, v〉 = h(Q, v) for all i ∈ Iu,

hence wi ∈ F (Q, v), and therefore also conv {wi | i ∈ Iu} ⊆ F (Q, v) holds. �
The next lemma should be compared to [11, (2.26)].

Lemma 2.5. Let P ∈ Pn be a polytope and u ∈ Rn \ {0}. Then

T (P, u) = N(P, F (P, u)) and TS(P, u) = spanF (P, u).

Proof. If v ∈ N(P, F (P, u)), then F (P, u) ⊆ F (P, v), and thus v ∈ (spanF (P, u))⊥. 
Hence N(P, F (P, u)) ⊆ (spanF (P, u))⊥ and therefore

spanF (P, u) ⊆ N(P, F (P, u))⊥ ⊆ T (P, u)⊥ = TS(P, u).

By Lemma 2.4, there is an open neighborhood U ⊆ Rn \ {0} of u such that for all 
v ∈ U ,
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F (P, v) ⊆ F (P, u)

and such that for all v ∈ U ′ := U ∩ (spanF (P, u))⊥, even equality holds.
So U ′ ⊆ N(P, F (P, u)) ⊆ (spanF (P, u))⊥. But U ′ is open in (spanF (P, u))⊥, so that 

u ∈ relintN(P, F (P, u)). By definition of T (P, u),

T (P, u) = N(P, F (P, u))

and hence (by the preceding argument)

(spanF (P, u))⊥ = spanN(P, F (P, u)) = spanT (P, u).

Thus we get spanF (P, u) = T (P, u)⊥ = TS(P, u). �
2.2. Mixed volumes and mixed area measures

See [11,7] for an introduction to mixed volumes and mixed area measures of convex 
bodies or differences of support functions of convex bodies. We start with some simple 
comments and conventions.

Conventions concerning tuples of sets

Most of the time, the ordering of a tuple will not be relevant for our purposes. This is 
why a subtuple of a tuple A = (A1, . . . , A�), � ∈ N0, will denote any tuple B that is a 
prefix of a permutation of A. The notation for this situation is B ≤ A.

Every set I ⊆ [�] can be uniquely written as I = {i1, . . . , im} such that m ∈ N0 and 
(ij)j∈[m] is strictly increasing in j. Then we assign to I a subtuple of A,

AI := (Ai1 , . . . , Aim) ≤ A.

The span of a tuple of nonempty sets A = (A1, . . . , A�) with Ai ⊆ Rn is

spanA := span
�∑

i=1
Ai =

�∑
i=1

spanAi,

where 
∑�

i=1 Ai := {0} if � = 0.
The dimension of a tuple means the dimension of its affine span, that is, dimA :=

dim spanA. The size of a tuple A is the number of its components and is written as 
|A| := �.

Whenever tuples of sets are nested into other tuples, we will omit brackets as conve-
nient. For example, if C, D are sets and A = (A1, . . . , A�) is a tuple of sets, then

(C,A, D) := (C,A1, . . . , A�, D)



10 D. Hug, P.A. Reichert / Journal of Functional Analysis 287 (2024) 110622
and therefore, for example, if the right term is well-defined,

V(C,A, D) = V(C,A1, . . . , A�, D).

If A, B are tuples, we also write

A + B := (A,B),

using the nested-tuple convention as just described.
If k ∈ N0, then for arbitrary X (being a set, a measure, . . . ), X[k] denotes the tuple 

consisting of k copies of X, that is, X[k] := (X, . . . , X), if k ≥ 1, and X[0] := () is the 
empty tuple. As usual we set

Sn−1(K, ·) := S(K[n− 1], ·) for K ∈ Kn.

If f : A → B is a function and A = (A1, . . . , A�) is a tuple of elements or subsets of 
A, then we write

f(A) = f(A1, . . . , A�) := (f(A1), . . . , f(A�)).

If A = (A1, . . . , A�) is a tuple and r ∈ [�], the tuple obtained from A by removing 
the r-th entry (i.e. Ar) is denoted by A\r.

Remark 2.6. For the discussion of mixed volumes and area measures it is usually assumed 
that n ≥ 1 (or even n ≥ 2). In view of induction arguments in the following, we set

V() := V0({0}) := H0({0}) = 1,

where H0 is the zero-dimensional Hausdorff measure (counting measure). Moreover, for 
n = 1 we define S() as the counting measure on S0 = {−1, 1}. Then e.g. relation (2)
remains true.

These definitions are consistent with the inductive definitions of volume and surface 
in [7, Definition 3.2].

Remark 2.7. In order to simplify notation, we use the following conventions.

(1) Let μ(C) be a measure which depends on a parameter C. Then we write μ(C, ·) or 
μC(·) as shorthands for μ(C)(·).

(2) Sometimes it is useful to pass the support function hK instead of the convex body 
K ∈ Kn to S or V, i.e., write V(hK , C) instead of V(K, C). Using this convention, V
(and S) can be extended to multilinear functions taking n (or n − 1) differences of 
support functions. For example,

V(hK − hL,C) := V(K,C) − V(L,C).



D. Hug, P.A. Reichert / Journal of Functional Analysis 287 (2024) 110622 11
(3) In the following we write V for the mixed volume in Rn, but we use the same symbol 
for the mixed volume in a subspace (the number of arguments already provides the 
relevant information). By the translation invariance of mixed volumes, the mixed 
volume of convex bodies lying in parallel subspaces is well-defined.

The mixed area measure of an (n − 1)-tuple of polytopes can be written as a finite 
sum of weighted Dirac measures and the point mass (weight) of each atom is given as 
a mixed volume. We recall this relation in the remark below since it will be used in 
the following and a related (more general) result for general convex bodies is stated as 
Lemma 2.13.

Remark 2.8. Let P1, . . . , Pn−1 ∈ Pn and P := P1 + · · · + Pn−1. Then the mixed area 
measure of P1, . . . , Pn−1 is a weighted sum of Dirac measures, that is,

S(P1, . . . , Pn−1, ·) =
∑

u∈Nn−1(P )

V(F (P1, u), . . . , F (Pn−1, u))δu,

where Nn−1(P ) is the set of all u ∈ Sn−1 with dimF (P, u) = n − 1 (see [7, (4.2)]).

We will end this discussion by recalling a useful result which relates the mixed area 
measure Sn−1(K; ·) of the (n −1)-tuple (K, . . . , K) to the (localized) (n −1)-dimensional 
Hausdorff measure Hn−1 of the topological boundary ∂K of an n-dimensional convex 
body K in Rn.

Definition 2.9. Let n ≥ 1, K ∈ Kn a convex body and ω ⊆ Sn−1 a set. Then

τ(K,ω) :=
⋃
u∈ω

F (K,u)

is called the reverse spherical image of K at ω (compare [11, p. 88]).

Lemma 2.10. Let n ≥ 1. For every n-dimensional convex body K ∈ Kn and every Borel 
measurable set ω ⊆ Sn−1,

Sn−1(K,ω) = Hn−1(τ(K,ω)).

Proof. See [11, Thm. 4.2.3] or [7, Thm. 4.8]. �
Lemma 2.10 in combination with the well-known (Diagonality) Lemma 2.11 has many 

applications, such as Lemmas 2.12 and 2.13.

Lemma 2.11. Let f, g : (Kn)k → R be functionals that are symmetric and multilinear (i.e. 
Minkowski additive and positively homogeneous in each of their k ∈ N0 components) 
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and let C = (C1, . . . , Ck) be a tuple of convex bodies in Rn. If for all choices of λ =
(λ1, . . . , λk) ∈ [0, ∞)k the convex body

Lλ :=
k∑

i=1
λiCi

satisfies f(Lλ[k]) = g(Lλ[k]), then f(C) = g(C).

The following lemma states that the mixed area measures are locally determined, 
which will be crucial for the proof of Lemma 5.6 (and it will be used in the discussion 
of some of the examples). For the area measures of a single convex body (and Euclidean 
balls), the corresponding simple fact is well known (see [11, Note 11 for Sect. 4.2]).

Lemma 2.12. Let n ≥ 1. Let C = (C1, . . . , Cn−1), D = (D1, . . . , Dn−1) be tuples of convex 
bodies in Rn, and let ω ⊆ Sn−1 be a Borel set such that

τ(Ci, ω) = τ(Di, ω), i ∈ [n− 1].

Then

S(C)(ω) = S(D)(ω).

Proof. The case n = 1 follows from the fact that C = D are empty tuples. We will prove 
the theorem for the case that n ≥ 2 and Ci = Di for i �= 1. This allows one to replace 
C1 by D1, yielding

S(C1, C2, . . . , Cn−1)(ω) = S(D1, C2, . . . , Cn−1)(ω). (7)

Using symmetry of S, we can afterwards replace C2 by D2, and so on until we have 
replaced all Ci by Di.

We start with a preparatory remark. Let K ∈ Kn, ω ⊆ Sn−1 and u ∈ ω. We show 
that F (K, u) = F (τ(K, ω), u). First, observe that F (K, u) ⊆ τ(K, ω) ⊆ K. Hence, 
hτ(K,ω)(u) = hK(u) and

F (K,u) =
{
x ∈ K

∣∣ 〈x, u〉 = hK(u)
}

=
{
x ∈ τ(K,ω)

∣∣ 〈x, u〉 = hτ(K,ω)(u)
}

= F (τ(K,ω), u),

where we again used that F (K, u) ⊆ τ(K, ω).
By Minkowski additivity of the mixed area measure in its first component, it suffices 

to show that (7) holds when C1, D1 are full-dimensional. To see this, replace C1 by 
C1 + Bn and D1 by D1 + Bn and note that τ(C1 + Bn, ω) = τ(D1 + Bn, ω), since by 
the preparatory remark for any u ∈ ω we have
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F (C1 + Bn, u) = F (C1, u) + F (Bn, u) = F (τ(C1, ω), u) + F (Bn, u)

= F (τ(D1, ω), u) + F (Bn, u) = F (D1, u) + F (Bn, u) = F (D1 + Bn, u).

For every (λi)i∈[n−1] ∈ [0, ∞)n−1, we claim that

Sn−1(
n−1∑
i=1

λiCi)(ω) = Sn−1(λ1D1 +
n−1∑
i=2

λiCi)(ω). (8)

If this holds, Lemma 2.11 will show

S(C1, C2, . . . , Cn−1)(ω) = S(D1, C2, . . . , Cn−1)(ω).

If λ1 = 0, eq. (8) clearly holds. Otherwise, 
∑n−1

i=1 λiCi and λ1D1 +
∑n−1

i=2 λiCi are 
full-dimensional and by Lemma 2.10 and the definition of τ it suffices to show that, for 
all u ∈ ω,

F (
n−1∑
i=1

λiCi, u) =
n−1∑
i=1

λiF (Ci, u) (!)= λ1F (D1, u) +
n−1∑
i=2

λiF (Ci, u)

= F (λ1D1 +
n−1∑
i=2

λiCi, u),

where we used at (!) that by the preparatory remark and the assumption we have

F (C1, u) = F (τ(C1, ω), u) = F (τ(D1, ω), u) = F (D1, u),

concluding the proof. �
The next lemma is a simple consequence of Lemma 2.12, but we will not need it in 

the current work.

Lemma 2.13. Assume n ≥ 1. Let K1, . . . , Kn−1 ⊂ Rn be convex bodies and u ∈ Sn−1. 
Then

S(K1, . . . ,Kn−1)({u}) = V(F (K1, u), . . . , F (Kn−1, u)).

Proof. By multilinearity and symmetry of S and V and linearity of F , it suffices by 
Lemma 2.11 to prove the statement for K1 = · · · = Kn−1, i.e. to prove that

Sn−1(K1)({u}) = Vn−1(F (K1, u)),

where Vn−1 is the volume (intrinsic volume of order n − 1) in an (n − 1)-dimensional 
subspace of Rn. Consider the truncated convex cone
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C :=
{
x ∈ Bn

∣∣ 〈x, u〉 ≤ −1
2‖x‖

}
,

which is a full-dimensional convex body satisfying F (C, u) = {0}. So

τ(K1, {u}) = F (K1, u) = F (C + K1, u) = τ(C + K1, {u}).

By Lemmas 2.12 and 2.10 and since dim(C + K1) = n, it follows that

Sn−1(K1)({u}) = Sn−1(C + K1)({u}) = Hn−1(F (C + K1, u)) = Vn−1(F (K1, u)),

which completes the argument. �
2.3. Reduction formulas

We will use dimensional induction to prove assertions about mixed area measures. To 
succeed in this endeavor, we have to relate mixed area measures in Rn to mixed area 
measures in subspaces. By using basic integral geometry, the following two reduction 
formulas can be obtained.

Recall that we write V for the mixed volume in Rn and use the same symbol for the 
mixed volume in a subspace (the number of arguments already provides the relevant 
information). For a linear subspace L ⊆ Rn, the orthogonal projection to L is denoted 
by πL : Rn → L.

Lemma 2.14. Let C = (C1, . . . , Cn) be a tuple of convex bodies in Rn, and let k ∈ [n] ∪{0}
be such that spanC[k] is contained in a linear subspace E ⊆ Rn of dimension k. Then

(
n
k

)
V(C) = V(C[k]) · V(πE⊥(C[n]\[k])).

Proof. The cases k ∈ {0, n} are trivial. For the remaining cases, use the translation 
invariance of V and apply [11, Thm. 5.3.1]. �

In dealing with mixed area measures, we will indicate by our notation in which sub-
space the measure is applied. For an �-dimensional linear subspace L ⊂ Rn, � ≥ 1, we 
write SL for the mixed area measure in L, which is evaluated at � − 1 convex bodies in 
L and Borel subsets of Sn−1 ∩L. Moreover, we define S′

L as the Borel measure on Sn−1

defined by

S′
L(C1, . . . , C�−1)(ω) := SL(C1, . . . , C�−1)(ω ∩ L)

for convex bodies C1, . . . , C�−1 ⊂ L and Borel sets ω ⊆ Sn−1.
The following proposition will be essential for the proof of our main result in Section 7.
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Proposition 2.15. Assume n ∈ N. Let C = (C1, . . . , Cn−1) be a tuple of convex bodies 
in Rn, and let k ∈ [n − 1] ∪ {0} be such that spanC[k] is contained in a linear subspace 
E ⊆ Rn of dimension k. Then

(
n− 1
k

)
S(C) = V(C[k]) · S′

E⊥(πE⊥(C[n−1]\[k])).

In particular, if dimC[k] < k, then S(C) = 0.

Proof. The case k = 0 is trivial. The assertion for k = n − 1 is clear for polytopes (see 
Remark 2.8), the general case follows by approximation. So we can assume that n ≥ 3
and k ∈ [n − 2]. Let Cn ∈ Kn. Then by Lemma 2.14,

(
n
k

)
V(C1, . . . , Cn) = V(C1, . . . , Ck) · V(πE⊥(Ck+1, . . . , Cn)).

Expressing the mixed volumes by mixed area measures, we obtain
(
n
k

)
n− k

n

∫
hCn

d S(C1, . . . , Cn−1)

= V(C1, . . . , Ck) ·
∫

hπ
E⊥Cn

d SE⊥(πE⊥(Ck+1, . . . , Cn−1).

Noting that hπ
E⊥Cn

= hCn
on E⊥, we find that

∫
hπ

E⊥Cn
d SE⊥(πE⊥(Ck+1, . . . , Cn−1)) =

∫
hCn

d SE⊥(πE⊥(Ck+1, . . . , Cn−1))

=
∫

hCn
d S′

E⊥(πE⊥(Ck+1, . . . , Cn−1))

and conclude that(
n− 1
k

)∫
hCn

d S(C1, . . . , Cn−1)

= V(C1, . . . , Ck) ·
∫

hCn
d S′

E⊥(πE⊥(Ck+1, . . . , Cn−1).

Because Cn is an arbitrary convex body and differences of support functions are dense 
in C(Sn−1), the claim follows. �
2.4. Criticality

Criticality is a useful concept that describes dimensionality conditions on arrange-
ments of convex bodies. Shenfeld and van Handel [14] employed criticality in their 
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investigation of equality cases in the Alexandrov–Fenchel inequality for polytopes. We 
will slightly deviate from their terminology in that we call “semicritical” what they called 
“subcritical”, and we say “subcritical” to describe a situation which is “not critical”.

The most elementary occurrence and motivation for the terminology is the following 
result.

Lemma 2.16. Let C = (K1, . . . , Kn) be a tuple of convex bodies in Rn. Then the following 
are equivalent:

(a) V(C) > 0.
(b) There are segments Si ⊆ Ki (i ∈ [n]) with linearly independent directions.
(c) Whenever D ≤ C, then dim spanD ≥ |D|.

Proof. See [11, Thm. 5.1.8]. �
Condition (c) in Lemma 2.16 suggests the definition of a “semicritical” tuple of convex 

bodies. Let us recall concepts of criticality and describe some consequences.

Definition 2.17. Let � ∈ N0. Let A = (A1, . . . , A�) be a tuple of nonempty subsets of 
Rn. Then A is called

(i) semicritical if for all () �= B ≤ A we have dim spanB ≥ |B|,
(ii) critical if for all () �= B ≤ A we have dim spanB ≥ |B| + 1,
(iii) supercritical if for all () �= B ≤ A we have dim spanB ≥ |B| + 2,
(iv) subcritical if it is not critical.

Abusing notation, we write V(A) > 0 to say that A is semicritical.

The following lemma is provided in [6, Lem. 3.2] (see also the preceding remarks 
there).

Lemma 2.18. Let � ∈ N0, and let A = (A1, . . . , A�) be a tuple of nonempty subsets of 
Rn.

(1) Subtuples of (super-, semi-)critical tuples are also (super-, semi-)critical.
(2) Supercriticality implies criticality, which implies semicriticality.
(3) The empty tuple is supercritical.
(4) (Super-, Semi-)Criticality is invariant under permutations of A.
(5) (Super-, Semi-)Criticality is invariant under simultaneous affine isomorphisms and 

argumentwise translations.
(6) (Super-, Semi-)Criticality is preserved if the sets in A are replaced by supersets.
(7) Let A be critical and A�+1 ⊆ Rn be nonempty. Then (A1, . . . , A�+1) is semicritical 

if and only if A�+1 is at least one-dimensional.
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(8) Let A be supercritical and A�+1 ⊆ Rn be nonempty. Then (A1, . . . , A�+1) is critical 
if and only if A�+1 is at least two-dimensional.

(9) If all sets Ai are full-dimensional, then A is supercritical if and only if � ≤ n − 2 or 
A = ().

The notation ‘V(A) > 0’ suggests that semicriticality might abide laws similar to the 
ones applying to mixed volumes. In particular, we might hope for some kind of reduction 
theorem in analogy to Reduction Formula 2.14. As the next result shows, this hope is 
not in vain.

The following Lemmas 2.19 and 2.21 will be crucial for the arguments in Sections 6
and 7. Lemma 2.20 is used in the proof of Lemma 2.21.

Lemma 2.19 (Semicritical reduction). Let � ∈ N0. Let A = (A1, . . . , A�) be a tuple 
of nonempty subsets of Rn and let spanA[k] be contained in a linear subspace E of 
dimension k ∈ N0. Then the following are equivalent:

(a) V(A) > 0;
(b) V(A[k]) > 0 and V(πE⊥(A[�]\[k])) > 0.

Proof. After applying suitable translations, we may assume that all sets contain 0.
“(a) =⇒ (b)”: Assume that V(A) > 0. Then by Lemma 2.18, V(A[k]) > 0.

It remains to show the second claim. For this, let I ⊆ [�] \[k]. Then using the dimension 
formula from linear algebra and semicriticality of A,

dim span πE⊥(A)I = dim πE⊥(spanAI∪[k]) ≥ dim spanAI∪[k] − dim kerπE⊥

≥ |I| + k − k.

“(b) =⇒ (a)”: Now assume that V(A[k]) > 0 and V(πE⊥(A[�]\[k])) > 0.
Let I ⊆ [�] and consider the linear map Φ: spanAI → Rn, x �→ πE⊥(x). It satisfies

ker Φ = E ∩ spanAI ⊇ spanAI∩[k]

and

im Φ = span πE⊥(AI) = span πE⊥(AI\[k]).

The dimension formula together with the assumption shows

dim spanAI = dim ker Φ + dim im Φ

≥ dim spanAI∩[k] + dim span πE⊥(AI\[k])

= dim spanAI∩[k] + dim span(πE⊥(A))I\[k]

≥ |I ∩ [k]| + |I \ [k]| = |I|,
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which shows that A is semicritical. �
Having proved the reduction Lemma 2.19, we can inductively prove an analogue of 

Lemma 2.16.

Lemma 2.20. Let A = (A1, . . . , A�) be a tuple of nonempty subsets of Rn. Then the 
following are equivalent:

(a) V(A) > 0.
(b) There are pairs of points (xi, yi) ∈ Ai ×Ai (i ∈ [�]) such that the tuple (yi − xi)i∈[�]

consists of linearly independent vectors.

Proof. “(b) =⇒ (a)”: Clearly, whenever I ⊆ [�],

dim spanAI ≥ dim span {yi − xi | i ∈ I} = |I|.

“(a) =⇒ (b)”: We may assume that every set Ai contains 0.
We proceed by induction over the dimension n. Assume that the claim is true for all 

dimensions smaller than n. Then we distinguish three cases:

• If n = 0, we have nothing to show since the empty family is clearly linearly indepen-
dent.

• If n > 0 and the tuple is critical, let E be an arbitrary (n − 1)-dimensional linear 
subspace. Then πE(A) is still semicritical because the kernel of the projection is 
one-dimensional. The inductive hypothesis guarantees the existence of pairs of points 
(xi, yi) ∈ Ai × Ai (i ∈ [�]) such that πE(yi − xi) ∈ E are linearly independent. But 
then (yi − xi) are linearly independent, too.

• If n > 0 and the tuple is subcritical, we find ∅ �= I ⊆ [�] with dimAI = |I|. If 
� = n and dim spanAI = |I| for all ∅ �= I ⊆ [n], then clearly there exist points 
(xi, yi) ∈ Ai ×Ai (i ∈ [�]) such that the family (yi − xi)i∈[�] is linearly independent. 
Otherwise, without loss of generality, AI is a prefix of A, so that I = [k] for some 
0 < k < n.
After defining the linear subspace E := spanA[k] of dimension k, we can apply 
Lemma 2.19 to deduce that

V(A[k]),V(πE⊥(A[�]\[k])) > 0.

Because 0 < k < n, two applications of the inductive hypothesis yield pairs of points 
(xi, yi) ∈ Ai ×Ai (i ∈ [�]) such that
• y1 − x1, . . . , yk − xk are linearly independent and
• πE⊥(yk+1 − xk+1), . . . , πE⊥(y� − x�) are linearly independent.
Hence it follows that y1 − x1, . . . , y� − x� are linearly independent.
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Since these cases are exhaustive, the proof is complete. �
In analogy to the additivity of the mixed volume, we obtain the following result.

Lemma 2.21 (Semicritical additivity). Let A = (A1, A2, . . . , A�) be a tuple of nonempty 
subsets of Rn and � ≥ 1. Furthermore, let A1 = B+C. Then the following are equivalent.

(a) V(A1, A2, . . . , A�) > 0.
(b) V(B, A2, . . . , A�) > 0 or V(C, A2, . . . , A�) > 0.

Proof. “(b) =⇒ (a)” follows from spanB, spanC ⊆ spanA1.

“(a) =⇒ (b)”: In view of Lemma 2.20, we find pairs of points (xi, yi) ∈ Ai × Ai for 
i ∈ [�] such that the differences yi − xi are linearly independent. In particular, y1 − x1 is 
not contained in E := span {yi − xi | i ∈ [�] \ {1}}.

We can find b, b′ ∈ B and c, c′ ∈ C such that x1 = b + c and y1 = b′ + c′. Then 
either b′ − b or c′ − c is not contained in E — we may assume that b′ − b /∈ E. But then 
(b′ − b, y2 − x2, . . . , y� − x�) are linearly independent, which yields V(B, A2, . . . , A�) > 0
via Lemma 2.20. �
2.5. Support of mixed area measures

The support of mixed area measures is the central topic of this work. This section 
provides some of its properties that will be needed. In the special case of polytopes, 
Theorem 1.1 is known and easy to verify. For the sake of completeness and to familiarize 
the reader with our notation, we include the argument.

Lemma 2.22. Let n ≥ 1. Let P = (P1, . . . , Pn−1) be a tuple of polytopes in Rn. Then

supp S(P) = cl extP.

Proof. For n = 1 the assertion is clear by our definitions. Let n ≥ 2. By Remark 2.8,

S(P) =
∑

u∈Nn−1(P1+···+Pn−1)

V(F (P1, u), . . . , F (Pn−1, u))δu, (9)

and for all u ∈ Sn−1, Lemmas 2.5 and 2.16 show the equivalence

V(F (P1, u), . . . , F (Pn−1, u)) > 0 ⇐⇒ V(TS(P1, u), . . . ,TS(Pn−1, u)) > 0, (10)

the second statement by definition being equivalent to u ∈ extP.
So if u ∈ supp S(P), then V(TS(P1, u), . . . , TS(Pn−1, u)) > 0, i.e. u ∈ extP. Therefore, 

supp S(P) ⊆ extP ⊆ cl extP.
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Conversely, assume u ∈ extP. Then V(F (P1, u), . . . , F (Pn−1, u)) > 0 follows from 
(10). In particular,

dimF (
n−1∑
i=1

Pi, u) = dim
n−1∑
i=1

F (Pi, u) ≥ n− 1.

So u ∈ Nn−1(
∑n−1

i=1 Pi) and

S(P)({u}) ≥ V(F (P1, u), . . . , F (Pn−1, u)) > 0,

which shows that u ∈ supp S(P), hence extP ⊆ supp S(P). The claim follows, since 
supp S(P) is closed. �

The preceding proof shows that extP is closed. Next we describe the support of a 
convex body which is defined as an integral average in terms of its support function.

Theorem 2.23. Assume that n ≥ 2. Let C1 ∈ Kn be a convex body, C = (C2, . . . , Cn−1) an 
(n − 2)-tuple of convex bodies and μ a finite Borel measure on Kn with bounded support 
such that

hC1(x) =
∫

hK(x)μ(dK), x ∈ Rn.

Then

S(C1,C) =
∫

S(K,C)μ(dK)

and

supp SC1,C = cl
⋃

K∈suppμ

supp SK,C .

Proof. Let A ⊆ Sn−1 be closed. Let d(u, A) denote the Euclidean distance of u ∈ Sn−1

from A. Then the continuous function

fA : Sn−1 → [0,∞), u �→ d(u,A),

satisfies f−1
A ({0}) = A.

If f is a difference of support functions, we can apply Fubini’s theorem and the 
compactness of the support of μ to obtain

∫
f d SC1,C =

∫
hC1 d Sf,C

=
∫ ∫

hK(x)μ(dK) Sf,C(dx)
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=
∫ ∫

hK(x) Sf,C(dx)μ(dK)

=
∫ ∫

f(x) SK,C(dx)μ(dK).

The same equality holds for all continuous functions f : Sn−1 → R by approximation, 
and in particular for fA as defined above. Thus we have verified the first assertion. Now 
we turn to the second claim.

“⊆”: Set f := fcl
⋃

K∈supp μ supp SK,C . Then

∫
f d SC1,C =

∫ ∫
f(x) SK,C(dx)μ(dK) = 0.

So SC1,C(f−1((0, ∞))) = 0, concluding this direction.

“⊇”: Let x /∈ supp SC1,C. Because supp SC1,C is closed, it suffices to prove that x /∈
supp SK,C for all K ∈ suppμ.

There is an open set U ⊆ Sn−1 with x ∈ U such that SC1,C(U) = 0. Define f := fU c . 
Then

0 =
∫

f d SC1,C =
∫ ∫

f(z) SK,C(dz)μ(dK).

The integrand ϕ : K �→
∫
f(z) SK,C( dz) is nonnegative and continuous by the continuity 

of f and the weak continuity of the mixed area measure. Therefore, ϕ(K) = 0 for 
K ∈ suppμ. In other words, if K ∈ suppμ, then 

∫
fd SK,C = 0. The integrand being 

nonnegative and continuous, f vanishes on supp SK,C. Therefore,

x ∈ U ⊆ (supp SK,C)c,

which was to be shown. �
The preceding theorem can in particular be applied in the case where C1 is a polyoid 

or a macroid, as follows from [6, Cor. 2.9 and Def. 2.13].
Finally, we mention a general result which states that the support of the weak limit of 

a sequence of measures is covered (up to taking the closure) by the supports of these mea-
sures. The proof is a straightforward consequence of the definition of weak convergence 
of measures.

Lemma 2.24 (Support and weak convergence). Let μ� → μ be a weakly convergent se-
quence of finite Borel measures on a second-countable metric space E. Then

suppμ ⊆ cl
∞⋃

suppμ�.

�=1
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The goal of the remaining part of the work is to confirm Theorem 1.1 for polyoids. 
Before we get to the proof, we need to discuss four concepts: projections, cusps, pruning 
and switching. These will be combined at the end.

3. Projections

In the following, we assume that n ≥ 1 and k ∈ N. For the proof of Theorem 1.1
we show two inclusions. For one of these (namely, “⊆”), two crucial facts that enable 
us to carry out the argument are that the touching space (see Definition 2.1) of the 
orthogonal projection of a general convex body K to a linear subspace is the orthogonal 
projection of the touching space of K, which is proved in Lemma 3.3, and that the 
orthogonal projection to a subspace of a k-polyoid K with generating measure μ is again 
a k-polyoid for which the projection of μ is a generating measure, which is established in 
Lemma 3.4. Lemmas 3.1 and 3.2 prepare the proof of Lemma 3.3. These auxiliary results 
are treated in the present section. Further ingredients needed to establish the inclusion 
“⊆” are developed in Section 4.

Lemma 3.1. Let A ⊆ Rn be a convex set, W ⊆ Rn a linear subspace and u ∈ W \ {0}. 
Then for all x ∈ A,

x ∈ F (A, u) ⇐⇒ πW (x) ∈ F (πW (A), u).

Proof. The basic observation is that for all x ∈ A, we have 〈x, u〉 = 〈πW (x), u〉, and 
hence hA(u) = hπW (A)(u).

So if x ∈ F (A, u), then 〈πW (x), u〉 = 〈x, u〉 = hA(u) = hπW (A)(u) and therefore 
πW (x) ∈ F (πW (A), u). Conversely, if πW (x) ∈ F (πW (A), u), then 〈x, u〉 = 〈πW (x), u〉 =
hπW (A)(u) = hA(u) and hence x ∈ F (A, u). �
Lemma 3.2. Let K ∈ Rn be a convex body, W ⊆ Rn a linear subspace and u ∈ W \ {0}. 
Then NW (πW (K), F (πW (K), u)) = W ∩N(K, F (K, u)).

Proof. By definition of NW , both sides of the equation are subsets of W . Moreover, both 
contain 0. Let v ∈ W \ {0}. Then the claim can be reformulated as

F (πW (K), u) ⊆ F (πW (K), v) ⇐⇒ F (K,u) ⊆ F (K, v).

Let us first assume that F (πW (K), u) ⊆ F (πW (K), v) and let x ∈ F (K, u). Then by 
Lemma 3.1, πW (x) ∈ F (πW (K), u). By assumption, this implies πW (x) ∈ F (πW (K), v). 
Another application of Lemma 3.1 now shows that x ∈ F (K, v). Therefore, F (K, u) ⊆
F (K, v).

Now assume F (K, u) ⊆ F (K, v) and let y ∈ F (πW (K), u). Writing y = πW (x)
for some x ∈ K and applying Lemma 3.1, we obtain x ∈ F (K, u). By assumption, 



D. Hug, P.A. Reichert / Journal of Functional Analysis 287 (2024) 110622 23
this implies x ∈ F (K, v), and again using Lemma 3.1, this shows that y = πW (x) ∈
F (πW (K), v). Therefore, F (πW (K), u) ⊆ F (πW (K), v). �
Lemma 3.3. Let K be a convex body, W ⊆ Rn a linear subspace and u ∈ W \ {0}. Then 
TW (πW (K), u) = W ∩ T (K, u) and TSW (πW (K), u) = πW (TS(K, u)).

Proof. By Definition 2.1, TW (πW (K), u) is the unique face of the normal cone 
NW (πW (K), F (πW (K), u)) such that its relative interior contains u. Similarly, T (K, u)
is the unique face of N(K, F (K, u)) such that its relative interior contains u. We show 
that W ∩ T (K, u) satisfies the definition of TW (πW (K), u).

Because T (K, u) is a face of N(K, F (K, u)) and by Lemma 3.2,

W ∩ T (K,u) is a face of W ∩N(K,F (K,u)) = NW (πW (K), F (πW (K), u)).

As (relintT (K, u)) ∩W contains u and W is a linear subspace, relint(W ∩ T (K, u)) also 
contains u. This proves the first claim.

For the second claim, observe that u ∈ (relintT (K, u)) ∩W implies

span(T (K,u) ∩W ) = (spanT (K,u)) ∩W.

Using the first claim, we get

spanTW (πWK,u) = span(T (K,u) ∩W ) = (spanT (K,u)) ∩W.

Now we take the orthogonal complement in W and obtain

TSW (πWK,u) = TW (πWK,u)⊥ ∩W = (T (K,u)⊥ + W⊥) ∩W

= πWT (K,u)⊥ = πW TS(K,u),

which confirms also the second claim. �
In [6] a k-polyoid, for an integer k ∈ N, was defined as the limit of a sequence 

of Minkowski sums of k-topes, where a k-tope is a convex polytope having at most 
k vertices. Let Pn

k denote the set of k-topes in Rn. Furthermore, it was shown in [6, 
Cor. 2.9] that a convex body K ∈ Kn is a k-polyoid if and only if there is a probability 
measure μ on Pn

k with compact support such that

hK(u) =
∫

hP (u)μ(dP ), u ∈ Rn. (11)

Any such (in general non-unique) measure μ is called a generating measure of the k-
polyoid K.

Let ∅ �= K∗ ⊆ Kn be a Borel set (Borel sets are defined with respect to the topology 
induced by the Hausdorff metric on Kn). A convex body K in Rn, n ∈ N0, for which there 
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is a probability measure μ on K∗ with bounded support such that (11) holds, is called a 
K∗-macroid with generating measure μ. Here the support of μ is determined with respect 
to the metric space K∗. It was shown in [6, Lem. 2.12] that a K∗-macroid with generating 
measure μ is the limit of a sequence of nonnegative Minkowski combinations of convex 
bodies in suppμ. In the case K∗ = Pn, that is, if K is a Pn-macroid with generating 
measure μ on Pn, we simply say that K is a macroid with generating measure μ.

If W ⊆ Rn is a linear subspace, then we denote by KW (resp. PW , PW
k ) the convex 

bodies (resp. polytopes, k-topes) in W . We write πW : Kn → KW for the map which 
assigns to a convex body its orthogonal projection to W , and we use the same notation 
for the corresponding maps πW : P → PW on polytopes and πW : Pn

k → PW
k on k-topes.

We state the following lemma for macroids (k-polyoids), but the first part apparently 
holds more generally for K∗-macroids.

Lemma 3.4. Let K be a macroid (a k-polyoid) with generating measure μ, and let W ⊆ Rn

be a linear subspace. Then πW (K) is a macroid (a k-polyoid) with generating measure

μW := μ ◦ π−1
W and πW (suppμ) ⊆ suppμW .

If K ⊂ Rn is a k-polyoid, then πW (suppμ) = suppμW .

Proof. Let K be a macroid (a k-polyoid) with generating measure μ. For all u ∈ W ,

hπW (K)(u) = hK(u) =
∫

hP (u)μ(dP ) =
∫

hπW (P )(u)μ(dP ) =
∫

hP (u)μW (dP ).

Moreover, if μ is a probability measure with bounded (compact) support on polytopes 
(k-topes) in Rn, then μW is a probability measure with bounded (compact) support on 
polytopes (k-topes) in W .

Let P ∈ πW (suppμ) and let U be an open neighborhood of P in PW (respectively, 
in PW

k if K is a k-polyoid). Then there is Q ∈ suppμ such that πW (Q) = P , so that 
π−1
W (U) is an open neighborhood of Q in Pn (respectively, in Pn

k ). Therefore,

μW (U) = μ(π−1
W (U)) > 0,

and because this holds for arbitrary P ∈ πW (suppμ) and neighborhoods U of P , it 
follows that πW (suppμ) ⊆ suppμW .

Now we assume that K is a k-polyoid. Because πW is continuous and suppμ is com-
pact, the set πW (suppμ) is compact and hence closed. From

μW (πW (suppμ)c) = μ(π−1
W (πW (suppμ))c) ≤ μ((suppμ)c) = 0

we conclude that suppμW ⊆ πW (suppμ), and thus suppμW = πW (suppμ). �
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Remark 3.5. Let C be a macroid (k-polyoid) with generating measure μ and u ∈ Sn−1. 
Recall from [6, Rem. 2.18] that F (C, u) is a macroid (k-polyoid) with generating measure 
Fu(μ), which denotes the image measure of μ under the measurable map Fu = F (· , u). 
In other words,

hF (C,u) =
∫

hP Fu(μ)(dP ). (12)

As a consequence, we obtain
⋂

P∈P(μ)

N(P, F (P, u)) ⊆ N(C,F (C, u)), (13)

whenever P(μ) ⊆ Pn is a measurable set of full μ-measure. For instance, we can choose 
P(μ) = suppμ. To verify (13), let v ∈

⋂
P∈P(μ) N(P, F (P, u)). Then, for each P ∈ P(μ), 

F (P, u) ⊆ F (P, v), hence hF (P,u) ≤ hF (P,v). Then (12) yields

hF (C,u) =
∫

hF (P,u) μ(dP ) ≤
∫

hF (P,v) μ(dP ) = hF (C,v),

which shows that F (C, u) ⊆ F (C, v), and therefore v ∈ N(C, F (C, u)).
A corresponding inclusion for the touching cones does not hold in general, as shown 

by Example 5.2, which is in contrast to the case of finite Minkowski sums (see [11, 
Thm. 2.2.1 (a)]).

There is a partial converse to (13). Let u ∈ Sn−1 be fixed and let s(L) denote the 
Steiner point of L ∈ Kn. Recall from [11, (1.34)] that s(L) ∈ relintL. Fubini’s theorem 
yields

s(F (C, u)) =
∫

s(F (P, u))μ(dP ),

(compare [6, Rem. 2.14]), and therefore

hC−s(F (C,u)) =
∫

hP−s(F (P,u)) μ(dP ).

All support functions in this equation are nonnegative. If v ∈ N(C, F (C, u)), then 
hC−s(F (C,u))(v) = 0, and hence hP−s(F (P,u))(v) = 0 for μ-almost all P ∈ Pn. This 
shows that v ∈ N(P, F (P, u)) for μ-almost all P ∈ Pn, that is, there is a measurable set 
Pu,v(μ) of full μ-measure such that v ∈ N(P, F (P, u)) for all P ∈ Pu,v(μ). Let Du be a 
countable dense subset of N(C, F (C, u)) and set Pu(μ) := ∩v∈Du

Pu,v(μ). Then Pu(μ) is 
a measurable set that has full μ-measure and

N(C,F (C, u)) ⊆
⋂

N(P, F (P, u)).

P∈Pu(μ)



26 D. Hug, P.A. Reichert / Journal of Functional Analysis 287 (2024) 110622
Together with (13) we obtain

N(C,F (C, u)) =
⋂

P∈Pu(μ)

N(P, F (P, u)).

Clearly, the considerations of this remark remain true if C is a general K∗-macroid.

4. Cusps

The proof of Theorem 1.1 relies on the assumption that the convex bodies in question 
are polyoids. In fact, one inclusion holds for the larger class of macroids. For this reason, 
the results in this section are provided for the class of macroids or for general convex 
bodies. The following results about cusps describe what it means that the touching space 
in a given direction u of a K∗-macroid K with generating measure μ is 0-dimensional, in 
terms of the convex bodies in the support of μ. One might hope that TS(K, u) = {0} if 
and only if the same holds for all P ∈ suppμ, but this turns out to be false (the “only if” 
statement is true though, as follows from Lemmas 4.3 and 4.7). Cusps can be thought of 
as an attempt to quantify how far a convex body is from having a non-trivial touching 
space. Intuitively, Lemmas 4.3 and 4.7 show that TS(K, u) is trivial if and only if the 
convex bodies in suppμ keep a minimum distance from having a non-trivial touching 
space. Lemmas 4.3 and 4.7 are combined to yield Corollary 4.8, which in turn will be 
employed in the proof of the crucial Witness Lemma 5.8.

Definition 4.1. For all u ∈ Sn−1 and c > 0, define a cone with apex at 0,

Cc(u) :=
{
x ∈ Rn

∣∣ 〈x, u〉 ≤ −c‖x‖
}
.

Let K ⊆ Rn be a convex body, u ∈ Sn−1 and c > 0. Then K is said to have a c-cusp in 
direction u ∈ Sn−1 if there is some x ∈ K such that K ⊆ x + Cc(u).

Note that Cc(u) = {0} if c > 1 and C1(u) = −[0, ∞)u; the cone Cc(u) is getting 
smaller as c ∈ (0, 1] is getting larger. In particular, if K has a c-cusp in direction u, then 
it also has a c′-cusp in direction u for 0 < c′ < c.

Lemma 4.2. Let K ∈ Kn be a convex body, u ∈ Sn−1 and c > 0. Then the following are 
equivalent:

(a) K has a c-cusp in direction u.
(b) hK is linear on U(u, c) := cBn + u.

Proof. The statement is invariant under translations.
“(a) =⇒ (b)”: Assume that there is some x ∈ K with K ⊆ x + Cc(u). Translating 
K, we can arrange that x = 0. Then the Cauchy–Schwarz inequality shows that for all 
v ∈ U(u, c) and y ∈ K ⊆ Cc(u),
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〈y, v〉 ≤ 〈y, u〉 + ‖u− v‖‖y‖ ≤ (−c + ‖u− v‖)‖y‖ ≤ 0 = 〈x, v〉 .

So hK(v) = 0 for v ∈ U(u, c).

“(b) =⇒ (a)”: Assume that there is some x ∈ Rn such that hK = 〈x, ·〉 on U(u, c). 
Translating K by −x, we can arrange that x = 0. Then for all y ∈ K \ {0},

〈y, u〉 =
〈
y, u + c

‖y‖y
〉
− c‖y‖ ≤ hK

(
u + c

‖y‖y
)
− c‖y‖ = −c‖y‖.

So K ⊆ Cc(u) (remembering 0 ∈ Cc(u)). Moreover, h′
K(u; ·) = 0 because U(u, c) is a 

neighborhood of u where hK ≡ 0. With [11, Thm. 1.7.2] it follows that

hF (K,u) = h′
K(u; ·) = 0 = h{0},

proving that 0 ∈ {0} = F (K, u) ⊆ K. So K ⊆ Cc(u) and 0 ∈ K. �
Next we use Lemma 4.2 to characterize the situation when the touching space is 

trivial.

Lemma 4.3. Let K ∈ Kn be a convex body, and let u ∈ Sn−1. Then the following are 
equivalent.

(a) TS(K, u) = {0}.
(b) There is some c > 0 such that K has a c-cusp in direction u.

Proof. “(a) =⇒ (b)”: Assume that TS(K, u) = {0}. Then u ∈ intN(K, F (K, u)). So 
there is c > 0 such that U(u, c) = {u} + cBn ⊆ N(K, F (K, u)). Choosing x ∈ F (K, u), 
it follows that hK = 〈x, ·〉 on U(u, c) ⊆ N(K, F (K, u)). Then by Lemma 4.2, K has a 
c-cusp in direction u.

“(b) =⇒ (a)”: Assume that K has a c-cusp in direction u for some c > 0. Then 
by Lemma 4.2, there is x ∈ Rn such that hK = 〈x, ·〉 on U(u, c) = {u} + cBn. 
By [11, Thm. 1.7.2], all v ∈ intU(u, c) satisfy hF (K,v) = h′

K(v; ·) = 〈x, ·〉, so that 
F (K, v) = {x} = F (K, u). Hence, int({u} + cBn) ⊆ N(K, F (K, u)), showing that 
u ∈ intN(K, F (K, u)) and TS(K, u) = {0}. �

In the following we need to understand how the local linearity of the support function 
of a K∗-macroid is related to the local linearity of the support functions of the convex 
bodies in the support of a generating measure of the given K∗-macroid. This relation is 
given in Lemma 4.6, which we prepare by two simple lemmas.

The first lemma is well-known, but we state it for easier reference. The proof of the 
second lemma is included, since it is crucial for the proof of Lemma 4.6.
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Lemma 4.4. Let A ⊆ Rn be a convex set, f : A → R a convex function and a ∈ relintA. 
Then there is u ∈ spanA such that

f(x) ≥ 〈x− a, u〉 + f(a) for all x ∈ A.

Lemma 4.5. Let A ⊆ Rn be a convex set, and let f : Rn → R be positively 1-homogeneous. 
Then the following are equivalent.

(a) f is linear on A (i.e. agrees on A with a function x �→ 〈x, u〉, where u ∈ Rn).
(b) f is affine on A (i.e. agrees on A with a function x �→ 〈x, u〉+ c, where u ∈ Rn and 

c ∈ R).
(c) f is convex and concave on A.

Proof. (a) implies (b) and (b) implies (c). Without loss of generality, A is nonempty.

“(b) =⇒ (a)”: Assume that there are u ∈ Rn and c ∈ R such that

f(x) = 〈x, u〉 + c for x ∈ A.

Let E be the affine span of A. If 0 ∈ E, then choose x ∈ relintA. There is λ ∈ (0, 1) such 
that λx ∈ A, so that we obtain

λ 〈x, u〉 + c = f(λx) = λf(x) = λ 〈x, u〉 + λc =⇒ c = λc =⇒ c = 0.

If 0 /∈ E, then E ∩ spanA = ∅. Choose a ∈ A. Then a /∈ spanA = (spanA)⊥⊥ and there 
is v ∈ (spanA)⊥ such that 〈a, v〉 �= 0. Also observe that if x ∈ A, then x − a ∈ spanA, 
so that 〈x, v〉 = 〈a, v〉. So

f(x) = 〈x, u〉 + c = 〈x, u〉 + c
〈x, v〉
〈a, v〉 =

〈
x, u + c

v

〈a, v〉

〉
for all x ∈ A.

“(c) =⇒ (b)”: Let a ∈ relintA. By convexity of f and Lemma 4.4, there is u ∈ spanA

such that

f(x) ≥ 〈x− a, u〉 + f(a) for all x ∈ A.

By concavity of f and Lemma 4.4 applied to −f , there is v ∈ spanA such that

f(x) ≤ 〈x− a, v〉 + f(a) for all x ∈ A.

Hence, 〈x− a, v − u〉 ≥ 0 for all x ∈ A. Because a ∈ relintA and u, v ∈ spanA, this 
shows that v = u and so

f(x) = 〈x− a, u〉 + f(a) = 〈x, u〉 − 〈a, u〉 + f(a) for all x ∈ A,

which completes the proof. �
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Lemma 4.6. Let ∅ �= K∗ ⊆ Kn be a Borel set. Let K ∈ Kn be a K∗-macroid with 
generating measure μ on K∗, and let A ⊆ Rn be convex. Then hK is linear on A if and 
only if hL is linear on A for all L ∈ suppμ.

Proof. Every support function of a convex body is convex and positively 1-homogeneous. 
So by Lemma 4.5, it is linear on A if and only if it is concave on A.
“ =⇒ ”: Assume that there is L ∈ suppμ such that hL is not concave on A. Then there 
are an open neighborhood U of L, λ ∈ (0, 1) and y, z ∈ A such that for all Q ∈ U ,

hQ(λy + (1 − λ)z) < λhQ(y) + (1 − λ)hQ(z).

On the other hand, for all Q ∈ U c, convexity of hQ implies

hQ(λy + (1 − λ)z) ≤ λhQ(y) + (1 − λ)hQ(z).

Since μ(U) > 0, we thus obtain from (11) that

hK(λy + (1 − λ)z) < λhK(y) + (1 − λ)hK(z).

Therefore, hK is not concave on A.

“ ⇐= ”: Assume that hK is not concave on A. Then there are λ ∈ (0, 1) and y, z ∈ A

such that

hK(λy + (1 − λ)z) < λhK(y) + (1 − λ)hK(z).

In particular, there is at least one L ∈ suppμ with

hL(λy + (1 − λ)z) < λhL(y) + (1 − λ)hL(z).

Therefore, hL is not concave on A. �
Lemma 4.7. Let ∅ �= K∗ ⊆ Kn be a Borel set. Let K ∈ Kn be a K∗-macroid with 
generating measure μ on K∗. Let u ∈ Sn−1 and c > 0. Then the following are equivalent.

(a) K has a c-cusp in direction u.
(b) Every L ∈ suppμ has a c-cusp in direction u.

Proof. By Lemma 4.2, K has a c-cusp in direction u if and only if hK is linear on U(u, c). 
By Lemma 4.6, this is equivalent to hL being linear on U(u, c) for all L ∈ suppμ. Again 
by Lemma 4.2, this in turn is equivalent to L having a c-cusp in direction u for all 
L ∈ suppμ. �

As a consequence of Lemmas 4.3 and 4.7, we obtain the following corollary.
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Corollary 4.8. Let ∅ �= K∗ ⊆ Kn be a Borel set. Let K ∈ Kn be a K∗-macroid with gener-
ating measure μ on K∗ and let u ∈ Sn−1. Then the following statements are equivalent:

(a) TS(K, u) �= {0}.
(b) For each c > 0 there exists some L ∈ suppμ that does not have a c-cusp in direction 

u.

We denote by Kn
sm the set of all smooth convex bodies. Since the complement of Kn

sm

is a countable union of closed sets, Kn
sm is measurable. It follows from [11, Thm. 2.2.1 (a)]

that a finite Minkowski sum of convex bodies, one of which is smooth, is smooth again. 
In other words, if the sum is not smooth, then none of the summands is smooth. Next we 
show that this fact extends to macroids. In particular, there is no point in considering 
Kn

sm-macroids.

Corollary 4.9. Suppose that K is a K∗-macroid with generating measure μ and K is not 
smooth. Then none of the L ∈ suppμ is smooth.

Proof. If K is not smooth, then there is a convex cone A with dimA ≥ 2 such that hK

is linear on A. By Lemma 4.6, hL is linear on A, for each L ∈ suppμ. But then L is not 
smooth, for each L ∈ suppμ. �
5. Pruning

This section develops a technique that is only relevant for proving one of the two 
inclusions on which the characterization Theorem 1.1 is based: Let C = (C1, . . . , Cn−1)
be a tuple of k-polyoids with generating measures μ1, . . . , μn−1. If u ∈ extC, then we 
have to show that u ∈ supp S(C).

Because this is the most difficult aspect of Support Characterization Theorem 1.1, we 
begin with some examples. The first example introduces the idea of a “witness polytope” 
that is used to prove that some normal vector is in the support of a mixed area measure. 
The other two examples exemplify how to find “witness polytopes” in more complicated 
situations using pruning, the method developed in this section.

Example 5.1 (A witness polytope). Let n = 2. Let (e1, e2) be the standard orthonormal 
basis of R2. Let

C(�) := conv
{
0, e2, e1 + (1 + �−1)e2

}
, � ∈ N,

and define the triangle body (i.e., the 3-polyoid)

C :=
∞∑

2−�C(�)
�=1
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with generating measure

μ :=
∞∑
�=1

2−�δC(�) ;

see Fig. 1 for an illustration. The sequence (C(�))� converges to the triangle

K := conv {0, e2, e1 + e2}

and so

suppμ =
{
K,C(1), C(2), . . .

}
.

By Corollary 4.8 we find that TS(C, e2) �= {0} because K ∈ suppμ does not have a c-cusp 
in direction e2 for any c > 0. Hence, e2 is a (C)-extreme normal vector. So Theorem 1.1
predicts e2 ∈ supp S(C).

Indeed, Theorem 2.23 and K ∈ suppμ show that

e2 ∈ supp S(K) ⊆ supp S(C).

Alternatively, we could argue that C(�) → K and so Lemma 2.24 and Theorem 2.23 yield

e2 ∈ supp S(K) ⊆ cl
∞⋃
�=1

supp S(C(�)) ⊆ cl
⋃

P∈suppμ

supp S(P ) = supp S(C).

We have used K ∈ suppμ as a “witness polytope” to establish e2 ∈ supp S(C).

Example 5.2 (Pruning). Let n = 2. Let again (e1, e2) be the standard orthonormal basis 
of R2. Let

C(�) := conv
{
−e2, 0,−�−1e1 − �−2e2

}
, � ∈ N;

see Fig. 2 (a) and (b). Then we define C to be the 3-polyoid with generating measure

μ :=
∞∑
�=1

2−�δC(�) .

The sequence (C(�))� converges to the segment

K := conv {0,−e2} ,

so that suppμ =
{
K,C(1), C(2), . . .

}
. This time, TS(C(�), e2) for � ∈ N and TS(K, e2)

are all 0-dimensional. However, there is no fixed c > 0 such that every C(�) has a c-cusp 
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Fig. 1. The situation of Example 5.1.

in direction e2, so that TS(C, e2) is nontrivial by Lemmas 4.3 and 4.7. Theorem 1.1
predicts again that e2 ∈ supp S(C).

However, since e2 /∈ supp S(C(�)) for all � ∈ N and e2 /∈ supp S(K), we cannot choose 
a “witness polytope” in suppμ and repeat the argument from Example 5.1.

The problem is this. In the previous example, the faces between the second and third 
vertex of C(�) converged to a one-dimensional face of the limit triangle K with normal e2. 
In the current example, however, these faces degenerate to a 0-dimensional face. The only 
glimmer of hope is that the outer normals of these degenerating faces do still converge 
to e2. If we could just scale up C(�) by a factor of �, the faces would not degenerate, but 
then we are confronted with the problem that C(�) is an unbounded sequence of convex 
bodies that does not converge to anything we might call a “witness polytope” anymore.

On the other hand, by Lemma 2.4 we find a neighborhood U ⊆ Sn−1 of e2 such that 
for large enough � and all v ∈ U ,
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F (C(�), v) ⊆ conv
{
0,−�−1e1 − �−2e2

}
=: F (�);

see Fig. 2 (c) for an illustration. Therefore, for all Borel sets V ⊆ U ,

τ(C(�), V ) = τ(F (�), V ).

Now Lemma 2.12 implies that

S(C(�))�U = S(F (�))�U.

So if we can show that e2 ∈ cl
⋃∞

�=1 supp S(F (�)), then e2 ∈ cl
⋃∞

�=1 supp S(C(�)) =
supp S(C). Indeed, � · F (�) → F := conv {0,−e1}, and therefore Lemma 2.24 yields

e2 ∈ supp S(F ) ⊆ cl
∞⋃
�=1

supp S(� · F (�)) = cl
∞⋃
�=1

supp S(F (�)).

In this example, we have leveraged that the c-cusps of C(�) in direction e2 become more 
and more obtuse in the sense that c > 0 becomes smaller and smaller. This helped us 
find a sequence of faces, which unfortunately degenerated to a 0-dimensional face in the 
limit. After “pruning” the sequence of triangles, i.e. removing some irrelevant vertices, 
we were able to scale up the polytopes in the sequence so that the sequence of faces 
converged to a 1-dimensional face F , which we used as our “witness polytope” to prove 
that e2 ∈ supp S(C).

Example 5.3 (Double pruning). We consider again R2 with the standard orthonormal 
basis (e1, e2). Define for all � ∈ N,

v
(�)
1 := −e2, v

(�)
2 := 0, v

(�)
3 := −�−1e1 − �−1e2, v

(�)
4 := −�−2e1 − �−3e2,

C(�) := conv
{
v
(�)
1 , v

(�)
2 , v

(�)
3 , v

(�)
4

}
.

The vertices v(�)
2 , v(�)

3 , v(�)
4 all converge to 0, which is the unique element of the support 

set F (limC(�), e2). In analogy to the previous example, we remove v(�)
1 and scale by a 

factor of � to obtain a sequence of triangles

D(�) := conv
{
0,−e1 − e2,−�−1e1 − �−2e2

}
.

Again, F (limD(�), e2) is a singleton and the vertices �v(�)
2 , �v(�)

4 of D(�) converge to its 
unique element. Removing �v(�)

3 and scaling by � again, we get

E(�) := conv
{
0,−e1 − �−1e2

}
.
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Fig. 2. The situation of Example 5.2.

Now, F (limE(�), e2) = limE(�) is one-dimensional. Applying similar arguments as in the 
previous example, we conclude from e2 ∈ cl

⋃∞
�=1 supp S(E(�)) that e2 ∈ supp S(C).

This example shows that the pruning procedure may have to be repeated several 
times.

After these preparatory examples, we describe the general approach.

Definition 5.4. Let Q = (Q�)� be a bounded sequence of polytopes with a uniformly 
bounded number of vertices and u ∈ Sn−1. Let k ∈ N be the smallest number such that 
all polytopes in Q are k-topes.

Choose an arbitrary sequence V = (V�)� = ((v(1)
� , . . . , v(k)

� ))� of k-tuples of points in 
Rn such that

Q� = conv
{
v
(i)
�

∣∣ i ∈ [k]
}

for all � ∈ N.

Let V′ = (V�s)s be a convergent subsequence of V and Q := limt→∞ Q�t . Then we define 
a sequence prune(Q, u) = (prune(Q, u, s))s of polytopes

prune(Q, u, s) := cs

(
conv

{
v
(i)
�

∣∣ i ∈ [k], lim v
(i)
� ∈ F (Q, u)

}
− v

(i0)
�

)

s t→∞ t s
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⊆ cs

(
Q�s − v

(i0)
�s

)
,

where i0 ∈ [k] is chosen such that limt→∞ v
(i0)
�t

∈ F (Q, u) and cs is the unique positive 
number such that diam prune(Q, u, s) = 1 if the convex hull by which prune(Q, u, s) is de-
fined is not a singleton, otherwise we set cs := 1, for s ∈ N. Note that 0 ∈ prune(Q, u, s). 
We may also pass to a subsequence of prune(Q, u) and denote it in the same way; in any 
case, the sequence prune(Q, u) is subject to various choices and not uniquely determined 
by Q and u. The polytopes in prune(Q, u) have diameter 1 or are singletons and they 
contain 0.

If

lim
t→∞

v
(i)
�t

/∈ F (Q, u) for some i ∈ [k],

then k ≥ 2 and prune(Q, u) consists of (k − 1)-topes. After finitely many steps, the 
members of the sequence of sequences defined by

prune0(Q, u) := Q, prunem+1(Q, u) := prune(prunem(Q, u), u) for all m ∈ N

remain unchanged (if we do not pass to a subsequence) and become equal to some 
“fixpoint” sequence prune∗(Q, u).

Remark 5.5. If prune∗(Q, u) is obtained as described in Definition 5.4 and Q∗ :=
lims→∞ prune∗(Q, u, s), then 0 ∈ Q∗ ⊂ u⊥ and diamQ∗ ∈ {0, 1}.

The next two lemmas prepare the proof of the crucial Witness Lemma 5.8. The first 
is Lemma 5.6 which implies that at least locally pruning does not change the mixed area 
measures as far as their support is concerned. Lemma 5.7 then states a condition, which 
can be used to ensure that the limit of a pruning sequence is non-degenerate.

Lemma 5.6 (Pruning lemma). Let Q = (Q�)� be a bounded sequence of polytopes in Rn

with a uniform bound on the number of vertices, let u ∈ Sn−1 and m ∈ N0. Then there 
are an Sn−1-open neighborhood U ⊆ Sn−1 of u, a subsequence (Q�s)s and a sequence of 
positive numbers (λs)s such that for all but finitely many s ∈ N and for all (n −2)-tuples 
C of convex bodies in Rn,

S(Q�s ,C)�U = λs S(prunem(Q, u, s),C)�U.

In particular, the statement is true if prunem is replaced by prune∗.

Proof. The proof is by induction on m ∈ N0. If m = 0, the claim follows from Q =
prune0(Q, u). Now assume m ≥ 1 and that the claim is true for smaller m.
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Let k ∈ N be the smallest possible number such that Q consists of k-topes, just as in 
Definition 5.4. Let V = (V�)� = ((v(1)

� , . . . , v(k)
� ))� be a sequence of spanning points and 

V′ = (V�s)s a convergent subsequence (as in Definition 5.4). Write

v(i) := lim
s→∞

v
(i)
�s

for all i ∈ [k].

We apply Lemma 2.4 to lims→∞ Q�s = conv
{
v(i) | i ∈ [k]

}
. Let

I :=
{
i ∈ [k]

∣∣ v(i) ∈ F ( lim
s→∞

Q�s , u)
}
.

Lemma 2.4 shows that there is ε ∈ (0, 1) such that for all w, x1, . . . , xk with d(u, w) < ε

and d(v(i), xi) < ε (i ∈ [k]), the polytope P := conv {xi | i ∈ [k]} satisfies

F (P,w) ⊆ conv {xi | i ∈ I} .

In particular, there is an open neighborhood U ⊆ Rn \ {0} of u such that for all but 
finitely many s and for all w ∈ U ,

F (Q�s , w) − v
(i0)
�s

⊆ conv
{
v
(i)
�s

∣∣ i ∈ I
}
− v

(i0)
�s

= c−1
s prune(Q, u, s) ⊆ Q�s − v

(i0)
�s

,

where cs is the positive factor in Definition 5.4. It follows that

F (prune(Q, u, s), w) = cs

(
F (Q�s , w) − v

(i0)
�s

)
,

and by Lemma 2.12 and the translation invariance of mixed area measures we get, for 
all but finitely many s ∈ N and for every (n − 2)-tuple C of convex bodies,

S(Q�s ,C)�(U ∩ Sn−1) = c−1
s S(prune(Q, u, s),C)�(U ∩ Sn−1).

Applying the inductive hypothesis for m − 1 to prune(Q, u), we obtain an Sn−1-open 
neighborhood V ⊆ Sn−1 of u, a subsequence (prune(Q, u, st))t and a sequence of positive 
numbers (μt)t such that for all but finitely many t ∈ N and for every (n − 2)-tuple C of 
convex bodies,

S(prune(Q, u, st),C)�V = μt S(prunem(Q, u, t),C)�V.

Now, V ∩ U ⊆ Sn−1 is also an Sn−1-open neighborhood of u, and for all but finitely 
many t ∈ N,

S(Q�st
,C)�(V ∩ U) = c−1

st S(prune(Q, u, st),C)�(V ∩ U)

= c−1
st μt S(prunem(Q, u, t),C)�(V ∩ U)

for every (n − 2)-tuple C of convex bodies. This concludes the induction.
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Because there is m ∈ N0 such that prune∗(Q, u) = prunem(Q, u), the claim is also 
true for prune∗. �
Lemma 5.7 (Sticky vertices). Let u ∈ Sn−1. Let Q = (Q�)� be a bounded sequence of 
polytopes with a uniform bound on the number of vertices, satisfying the following prop-
erty P(Q, u): For all but finitely many � ∈ N, there are distinct vertices x�, y� of Q�

such that x� ∈ F (Q�, u) and ‖x� − y�‖−1〈x� − y�, u〉 → 0 as � → ∞.
Then the sequences prunem(Q, u), m ∈ N, can be chosen in such a way that the 

property P(prune(Q, u)m, u) is satisfied for all m ∈ N.

Proof. Let k ∈ N be the smallest possible number such that Q consists of k-topes. It 
suffices to prove the claim for prune, since the argument can then be iterated.

Let V = (V�)� = ((v(1)
� , . . . , v(k)

� ))� be a sequence of spanning points chosen as in 
Definition 5.4 which has V′ = (V�s)s as a convergent subsequence. Moreover, the subse-
quence can be chosen such that there are distinct i, j ∈ [k] with x�s = v

(i)
�s

and y�s = v
(j)
�s

for s ∈ N. Then we set Q := lims→∞ Q�s and

v(i′) := lim
s→∞

v
(i′)
�s

for i′ ∈ [k].

It follows that

〈
v(i), u

〉
←

〈
v
(i)
�s
, u

〉
= 〈x�s , u〉 = hQ�s

(u) → hQ(u),

as s → ∞, hence 
〈
v(i), u

〉
= hQ(u) and v(i) ∈ F (Q, u). Moreover,

〈
v(j), u

〉
←

〈
v
(j)
�s

, u
〉

= 〈y�s , u〉 = hQ�s
(u) + 〈y�s − x�s , u〉 → hQ(u),

as s → ∞, because of the assumption and since (‖y�s − x�s‖)s is bounded. Hence, we also 
have v(j) ∈ F (Q, u). The construction of prune(Q, u, s) then shows that cs(v(i)

�s
− v

(i0)
�s

)
and cs(v(j)

�s
− v

(i0)
�s

) are distinct vertices of prune(Q, u, s) for all s ∈ N, where cs is 
the positive scaling factor in Definition 5.4 for s ∈ N. In addition, cs(v(i)

�s
− v

(i0)
�s

) ∈
F (prune(Q, u, s), u) and

〈
cs(v(i)

�s
− v

(i0)
�s

) − cs(v(j)
�s

− v
(i0)
�s

), u
〉

‖cs(v(i)
�s

− v
(i0)
�s

) − cs(v(j)
�s

− v
(i0)
�s

)‖
= 〈x�s − y�s , u〉

‖x�s − y�s‖
→ 0,

as s → ∞. Thus prune(Q, u) has the required property and the iteration can be contin-
ued. �

After these preparations, we state and prove the main auxiliary result in this section.



38 D. Hug, P.A. Reichert / Journal of Functional Analysis 287 (2024) 110622
Lemma 5.8 (Witness lemma). Let u ∈ Sn−1. Let M ⊂ Rn be a k-polyoid with generating 
measure μ. If TS(M, u) �= {0}, then there is a k-tope �(M, u) ⊂ u⊥ with {0} ⊂ �(M, u)
(that is not a singleton) such that for every (n − 2)-tuple C of convex bodies in Rn,

u ∈ supp S(�(M,u),C) implies u ∈ supp S(M,C).

Proof. For every Q ∈ suppμ, choose an arbitrary vertex xQ ∈ F (Q, u).
If TS(M, u) �= {0}, then Corollary 4.8 shows that for every c > 0 there is some 

P ∈ suppμ not having a c-cusp in direction u. Hence we can find a sequence of k-topes 
Q := (Q�)� in suppμ and a sequence of vertices y� ∈ Q�, � ∈ N, such that xQ�

�= y� and

‖y� − xQ�
‖−1 〈y� − xQ�

, u〉 → 0 as � → ∞.

By Lemma 5.7, prune∗(Q, u, �) has at least two distinct vertices, and by Definition 5.4
diameter 1, for all but finitely many �.

So prune∗(Q, u), being a convergent sequence of k-topes, converges to a k-tope 
�(M, u) ⊂ u⊥ of diameter 1 with 0 ∈ �(M, u) (see Remark 5.5). In particular, �(M, u)
is not a singleton.

By Pruning Lemma 5.6, there is a sequence of positive numbers (λs)s, a subsequence 
(Q�s)s of Q and an Sn−1-open neighborhood U ⊆ Sn−1 of u such that for an arbitrary 
(n − 2)-tuple C of convex bodies,

S(Q�s ,C)�U = λs S(prune∗(Q, u, s),C)�U. (14)

Now assume that u ∈ supp S(�(M, u), C). Then by continuity of S and Lemma 2.24,

u ∈ cl
∞⋃
s=1

supp S(prune∗(Q, u, s),C),

and because U is a neighborhood of u, eq. (14) and Theorem 2.23 now imply

u ∈ cl
∞⋃
s=1

supp S(Q�s ,C) ⊆ supp S(M,C),

which proves the assertion. �
6. Switching

In this section, we provide a lemma that will be needed in the proof of our main result 
to carry out the induction step. Recall the conventions and the notation concerning tuples 
of sets introduced in Section 2. As usual, a linear subspace R of some ambient vector 
space is said to be trivial if R = {0}.



D. Hug, P.A. Reichert / Journal of Functional Analysis 287 (2024) 110622 39
Lemma 6.1 (Switching lemma). Assume that n ≥ 2 and u ∈ Sn−1. Let T =
(T1, . . . , Tn−1) and R = (R1, . . . , Rn−1) be tuples of linear subspaces of u⊥ such that 
T is semicritical and Ri is nontrivial for all i ∈ [n − 1]. Then there are index sets 
∅ �= I ⊆ J ⊆ [n − 1] such that RI spans an |I|-dimensional subspace and RJ + TJc is 
semicritical.

Proof. Denote by S = (T1 + R1, . . . , Tn−1 + Rn−1) the tuple of elementwise sums of T
and R. Choose J ⊆ [n − 1] inclusion-maximal such that

V(RJ + SJc) > 0. (15)

Such J exists since S = R∅ + S[n−1] is semicritical: Ti ⊆ Si for i ∈ [n − 1], T is 
semicritical by assumption and hence Lemma 2.18 (6) implies the assertion. Because J
is maximal, even RJ + TJc is semicritical: Repeatedly applying Lemma 2.21, we find a 
set K ⊆ Jc such that RJ∪K + TJc\K is semicritical. But then also RJ∪K + SJc\K is 
semicritical, forcing K = ∅ because J is inclusion-maximal.

Furthermore, let I ⊆ [n −1] be inclusion-minimal such that RI∩J +SI\J is subcritical. 
Such I exists because RJ +SJc is subcritical as an (n − 1)-tuple of u⊥-subspaces (since 
n ≥ 2), showing that at least [n − 1] satisfies the desired property. Note that I �= ∅, 
since by definition an empty tuple is not subcritical.

Then E := span(RI∩J + SI\J) is |I|-dimensional: On the one hand, RI∩J + SI\J is 
semicritical by Lemma 2.18 (1). On the other hand, it is subcritical by the construction 
of I. If it spanned a higher-dimensional subspace, then this tuple would have to contain 
an even smaller subcritical set, contradicting the minimality of I.

By Lemma 2.19 and relation (15), it follows that

V(πE⊥(RJ\I + SJc\I)) > 0. (16)

It remains to show that I ⊆ J . Assume for a contradiction that, without loss of 
generality, 1 ∈ I \ J .

Because I was chosen inclusion-minimally such that RI∩J + SI\J is subcritical, it 
follows that RI∩J + SI\(J∪{1}) is critical and as R1 is nontrivial, Lemma 2.18 (7) im-
plies that RI∩(J∪{1}) + SI\(J∪{1}) is semicritical. Since 1 ∈ I \ J and R1 ⊆ S1 ⊆ E, 
RI∩(J∪{1}) +SI\(J∪{1}) spans a subspace of E of dimension |I| = dimE, in other words, 
it also spans E. By Lemma 2.19 and relation (16), it follows that

V(RJ∪{1} + S(J∪{1})c) > 0,

that is, RJ∪{1} + S(J∪{1})c is semicritical, in contradiction to the maximality of J as 
expressed by relation (15). This proves that I ⊆ J .

Finally, we get dimRI = |I|, since I ⊆ J and dimE = |I|. �
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7. Proof of the characterization theorem

Now we are ready to confirm Theorem 1.1 for smooth convex bodies and polyoids, for 
which eq. (11) should be recalled.

Proof. First, observe that it suffices to prove the claim for tuples that only contain 
polyoids (macroids). Consider the case that M does not solely consist of polyoids 
(macroids) and let M′ be the tuple obtained from M by replacing all smooth bodies 
by Bn. Clearly, M′ consists of polyoids (macroids), and the claim for M is equivalent 
to the claim for M′ by the following argument. All smooth convex bodies have the 
same, (n − 1)-dimensional, touching spaces. Therefore, cl extM = cl extM′. We can 
assume that the smooth and strictly convex body, contained in M by assumption, is 
the first one. By [11, Lem. 7.6.15], supp S(M) = suppS(Bn, M\1). Now [14, Cor. 14.3]
shows that we can replace the remaining smooth bodies in M\1 by Bn, and we obtain 
supp S(M) = supp S(Bn, M′

\1) = suppS(M′). Hence, it suffices to prove the claim for 
tuples that only contain polyoids (macroids), such as M′.

It remains to show for tuples M of polyoids that

supp S(M) = cl extM.

For this we prove two inclusions.

“⊆”: For this part of the argument, we only need the weaker assumption that M is a 
tuple of macroids. By Theorem 2.23 and Lemma 2.22, we get

supp S(M) = cl
⋃

P∈
∏n−1

i=1 suppμi

supp S(P) = cl
⋃

P∈
∏n−1

i=1 suppμi

extP.

So it remains to verify that

cl
⋃

P∈
∏n−1

i=1 suppμi

ext(P) ⊆ cl extM.

Let P = (P1, . . . , Pn−1) ∈
∏n−1

i=1 suppμi. We claim that for all u ∈ Sn−1 and i ∈ [n − 1],

TS(Pi, u) ⊆ TS(Mi, u), (17)

which would imply extP ⊆ extM by Lemma 2.18 (6) and conclude the proof (for 
zonoids, compare (17) with [10, Lem. 3.2]).

Set W := TS(Mi, u)⊥ and note that u ∈ W . Then by Lemma 3.3, relation (17) is 
equivalent to TSW (πW (Pi), u) ⊆ TSW (πW (Mi), u) = {0}. Now πW (Pi) is in the support 
of a generating measure of πW (Mi) by Lemma 3.4 (here we only need the inclusion which 
holds for general macroids). Together with TSW (πW (Mi), u) = {0} and Lemmas 4.3 and 
4.7, this implies TSW (πW (Pi), u) = {0} and relation (17).
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“⊇”: The proof of this inclusion is by induction on n. The case n = 1 follows from 
Remark 2.6 and the fact that the empty tuple is semicritical, rendering every u ∈ S0

extreme.
Assume n ≥ 2 and that the claim is true for smaller n. Let u ∈ extM be given. The 

linear subspaces TS(Mi, u) ⊆ u⊥, i ∈ [n − 1], form a semicritical tuple since u ∈ extM, 
in particular TS(Mi, u) �= {0}. Then the linear subspaces span�(Mi, u) ⊆ u⊥, which 
were defined in Witness Lemma 5.8, are nontrivial and {0} ⊂ �(Mi, u) by Lemma 5.8.

Define

D := (span�(M1, u), . . . , span�(Mn−1, u))

= (TS(�(M1, u), u), . . . ,TS(�(Mn−1, u), u)),

where the equality follows from Lemma 2.5, since �(Mi, u) are polytopes with 0 ∈
�(Mi, u) ⊆ u⊥ so that F (�(Mi, u), u) = �(Mi, u), for i ∈ [n − 1]. According to 
Lemma 6.1, there are index sets ∅ �= I ⊆ J ⊆ [n − 1] such that DI spans an |I|-
dimensional subspace E and DJ + TS(MJc , u) is semicritical.

We now interpret the k-tope �(Mi, u), where i ∈ J , as a k-polyoid with generating 
Dirac measure δ
(Mi,u) and define

M′ := (M ′
1, . . . ,M

′
n−1), where M ′

i :=
{
�(Mi, u), i ∈ J,

Mi, i /∈ J.

It now suffices to prove that u ∈ supp S(M′): Using that �(Mj , u) = M ′
j (j ∈ J), 

repeated applications of Witness Lemma 5.8 show that if u ∈ supp S(M′), then u ∈
supp S(M).

Clearly, M′ is also a tuple of k-polyoids and TS(M′, u) is semicritical because 
DJ +TS(MJc , u) is a semicritical permutation. Furthermore, all spaces in TS(M′

I , u) =
DI are subspaces of E. Lemmas 2.19 and 3.3 now imply that πE⊥ TS(M′

Ic , u) =
TSE⊥(πE⊥M′

Ic , u) is also a semicritical tuple, that is, we have u ∈ extπE⊥(M′)Ic .
There is an inner product space isomorphism E⊥ ∼= RdimE⊥ . Using this isomorphism 

and dimE⊥ = n − |I| ∈ [1, n − 1], we can apply the inductive hypothesis to u ∈ E⊥ and 
the tuple πE⊥(M′)Ic of k-polyoids in E⊥ and thus conclude from u ∈ extπE⊥(M′)Ic

that

u ∈ supp SE⊥(πE⊥(M′)Ic). (18)

On the other hand, M′
I consists of k-topes in E. So Proposition 2.15 yields

(
n− 1
|I|

)
S(M′) = V(M′

I) · S′
E⊥(πE⊥(M′

Ic)). (19)
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Because (spanM ′
i)i∈I = DI is a subtuple of the semicritical tuple DJ + TS(MJc , u), 

since I ⊆ J , it follows from Lemma 2.16 that V(M′
I) > 0 and we conclude with relations 

(18) and (19) that

u ∈ supp S′
E⊥(πE⊥(M′)Ic) = supp S(M′)

and, as noted previously, therefore u ∈ supp S(M). �
Finally, we note the following more general result which is implied by the preceding 

proof.

Proposition 7.1. Let C = (C1, . . . , Cn−1) be an (n − 1)-tuple of macroids (or smooth 
convex bodies provided at least one of the bodies Ci is smooth and strictly convex) in Rn. 
Then

supp S(C, ·) ⊆ cl extC. (20)
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