KIT | KIT-Bibliothek | Impressum | Datenschutz

Model Fusion via Neuron Transplantation

Öz, Muhammed 1; Kiefer, Nicholas 1; Debus, Charlotte 1; Hörter, Jasmin ORCID iD icon 1; Streit, Achim ORCID iD icon 1; Götz, Markus ORCID iD icon 1
1 Scientific Computing Center (SCC), Karlsruher Institut für Technologie (KIT)

Abstract:

Ensemble learning is a widespread technique to improve the prediction performance of neural networks. However, it comes at the price of increased memory and inference time. In this work we propose a novel model fusion technique called Neuron Transplantation (NT) in which we fuse an ensemble of models by transplanting important neurons from all ensemble members into the vacant space obtained by pruning insignificant neurons. An initial loss in performance post-transplantation can be quickly recovered via fine-tuning, consistently outperforming individual ensemble members of the same model capacity and architecture. Furthermore, NT enables all the ensemble members to be jointly pruned and jointly trained in a combined model. Comparing it to alignment-based averaging (like Optimal-Transport-fusion), it requires less fine-tuning than the corresponding OT-fused model, the fusion itself is faster and requires less memory, while the resulting model performance is comparable or better. The code is available under the following link: https://github.com/masterbaer/neuron-transplantation.


Originalveröffentlichung
DOI: 10.1007/978-3-031-70359-1_1
Zugehörige Institution(en) am KIT Scientific Computing Center (SCC)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2024
Sprache Englisch
Identifikator ISBN: 978-3-031-70359-1
ISSN: 0302-9743
KITopen-ID: 1000174119
HGF-Programm 46.21.04 (POF IV, LK 01) HAICU
Weitere HGF-Programme 46.21.01 (POF IV, LK 01) Domain-Specific Simulation & SDLs and Research Groups
Erschienen in Machine Learning and Knowledge Discovery in Databases. Research Track : European Conference, ECML PKDD 2024, Vilnius, Lithuania, September 9–13, 2024, Proceedings, Part IV. Ed. by Albert Bifet, Jesse Davis, Tomas Krilavičius, Meelis Kull, Eirini Ntoutsi, Indrė Žliobaitė
Veranstaltung ECML PKDD (2024), Vilnius, Litauen, 09.09.2024 – 13.09.2024
Verlag Springer Nature Switzerland
Seiten 3–19
Serie Lecture Notes in Computer Science ; 14944
Bemerkung zur Veröffentlichung in press
Vorab online veröffentlicht am 22.08.2024
Nachgewiesen in Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page