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A B S T R A C T

As the energy system transitions to an intelligent smart grid with a mostly renewable energy supply, synthetic
energy time series are required to facilitate the development and improvement of methods for smart grid
applications. These synthetic energy time series must exhibit characteristics similar to the real energy time
series and applicable to specific use cases. Furthermore, evaluation methods must be applied to verify that
synthetic energy time series have the desired characteristics. Whilst many methods exist in the literature to
generate synthetic energy time series, up until now, no work has focused on analysing and comparing these
methods. Therefore, this study provides a structured literature review of generating synthetic energy time
series. The review focuses on five aspects: (1) Identifying methods used to generate synthetic energy time series,
(2) categorising these methods according to the generation approach taken, (3) analysing the characteristics
of these generated synthetic energy time series, (4) identifying the uses cases for which the time series are
generated, and (5) considering how the generated synthetic energy time series are evaluated. In total, this study
reviews 169 articles focusing on generating synthetic energy time series and identifies several key research
gaps leading to multiple open research fields. The most important open research fields include the need for
a standardised evaluation, more generation methods for synthetic time series from generation and battery
storage systems, and a stronger focus on further use cases.
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1. Introduction

To mitigate climate change, energy systems worldwide shift to an
electricity supply predominantly based on renewable energy sources.
Since these renewable energy sources are volatile and uncertain, smart
solutions must be integrated into the electricity grid to guarantee
affordable, reliable, and sustainable electricity supply. These smart
solutions result in the so-called smart grid [1], which enhances the
physical grid with information and communication technology [2].
These additional layers of communication and information technology
record large amounts of data, typically in the form of time series.
These recorded time series, often referred to as energy time series,
include electricity generation and consumption, heating and cooling
demand, State of Charge measurements from battery storage systems,
or measured grid frequency. This energy time series data can then
be processed and used in smart grid applications such as customer
profiling, forecasting electrical load and generation, power quality
analysis, and security [3]. Developing and improving methods for these
applications typically requires a reasonable amount of representative
and privacy-preserving energy time series data [4], especially when
applying machine learning and deep learning methods [5].

Unfortunately, large amounts of such energy time series data are
usually not openly available [3,6,7]. This lack of open availability
may be due to expensive and time-consuming data collection, security
or privacy concerns of users, or newly built buildings and generators
that lack a long operation history. As a result, effectively developing
and improving methods for the mentioned smart grid applications is
challenging. One promising solution to this challenge is to generate
synthetic energy time series with the same characteristics as real-world
data and use them for method development and improvement.

As shown in Fig. 1, such synthetic energy time series are created
for existing or yet-to-be-developed methods based on selected input
data and a specific generation method that follows a certain generation
approach. The resulting energy time series should exhibit characteris-

tics that mirror real energy time series. Some of these characteristics

2 
are common to many energy time series, such as daily, weekly, and
seasonal periodicities and the dependence on exogenous influences
such as the weather [8]. However, other characteristics differ between
different energy time series and depend on the specific time series
considered. For example, energy consumption time series have differing
characteristics depending on the considered aggregation level, i.e. a
single appliance, an entire household, a village, or the entire country.
Another example of varying characteristics is the shape of generation
time series, which is regular and repetitive for dispatchable sources
of generation, such as gas or nuclear power plants, but more difficult
to predict for volatile sources of generation, such as wind power. In
addition to reflecting these characteristics, the synthetic energy time
series must be suitable for the chosen use cases. For example, the
use case of a generic load profile may require a different temporal
resolution than the use case of generating highly accurate short-term
time series forecasts. Finally, to ensure their quality, the generated
synthetic energy time series must fulfil selected evaluation criteria, such
as diversity and fidelity.

As a result, to facilitate the development and improvement of
methods for smart grid applications, it is necessary to generate a wide
range of synthetic energy time series with varying characteristics ap-
plicable to specific use cases and fulfilling different evaluation criteria.
Unfortunately, these requirements mean that it is almost impossible to
apply general methods for generating time series, such as Generative
Adversarial Networks (GANs) (e.g. [9,10]), Variational Auto-Encoders
(VAEs) (e.g. [11]), or Invertible Neural Networks (INNs) (e.g. [12]). At
the same time, various specific methods for generating energy time se-
ries exist in the literature, which follow different generation approaches
such as top-down or bottom-up [13,14] and which are designed for
specific use cases but cannot necessarily be applied to other use cases.
For this reason, a systematic review is needed that identifies existing
methods for generating energy time series, including the generation
approach, characteristics, use cases, and evaluation of the time series
generated with them. Given this review, it would be possible to identify
a generation method that can generate a time series for a given use case,

desired energy time series characteristics, and evaluation criteria.
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Abbreviations

AR Autoregressive
ARIMA Autoregressive Integrated Moving Average
ARMA Autoregressive Moving Average
Bayesian GAN Bayesian GAN
BN Bayesian Network
cGAN conditional GAN
CNN Convolutional Neural Network
cVAE conditional VAE
DCGAN Deep Convolutional GAN
DNN Deep Neural Network
EM Expectation Maximisation algorithm
EV Electric Vehicle
FLOP Floating-Point Operations Per Second
GAN Generative Adversarial Network
GMM Gaussian Mixture Model
GMMN Generative Moment Matching Network
GNN Graph-based Neural Network
HMM Hidden Markov model
INN Invertible Neural Network
IoT Internet of Things
MA Moving Average
MCMC Markov Chain Monte Carlo
NN Neural Network
PCA Principal Component Analysis
PMU Phasor Measurement Unit
PV Photovoltaics
RCGAN Recurrent Conditional GAN
RGAN Recurrent GAN
RNN Recurrent Neural Network
SOM Self-Organising Map
t-SNE t-distributed Stochastic Neighbour Embed-

ding
TSTR Train on Synthetic and Test on Real
VAE Variational Auto-Encoder
VARMA Vector Autoregressive Moving Average
WGAN Wasserstein GAN
wRNG weighted Random Number Generator

Unfortunately, to the best of the authors’ knowledge, no such struc-
ured literature review of existing energy time series generation meth-
ds exists in the literature. Therefore, this study aims to fill this gap
y providing a structured review of the literature on the generation of
ynthetic energy time series. More specifically, this review emphasises
nergy time series from electricity generation, electricity consumption,
nd battery storage systems and reviews existing literature concerning
he following five questions:

1. Which methods exist to generate synthetic energy time series?
2. Which generation approach do these identified generation meth-

ods follow?
3. Which characteristics do the synthetic energy time series gener-

ated by these methods have?
4. For which use cases are the synthetic energy time series gener-

ated?
5. How are the generated synthetic energy time series evaluated?

ased on the answers to these five questions, this study then fur-
her discusses the related findings and makes suggestions for future
esearch.
3 
The remainder of the study is structured as follows. First, Section 2
provides an overview of existing literature reviews similar to this study
and discusses their limits. Section 3 then describes the methodology
used for the literature review, before the five subsequent sections
present and discuss the results of the five-step analysis: Section 4 intro-
duces the methods identified in the literature for generating synthetic
energy time series. Section 5 determines the generation approach these
methods apply. Section 6 describes the characteristics of the synthetic
energy time series generated with these methods. Section 7 presents
the identified use cases of the generated synthetic energy time series.
Section 8 describes the evaluation of generated synthetic energy time
series performed in literature. Finally, the study concludes in Section 9.

2. Existing literature reviews

This study presents a structured literature review of generating
synthetic energy time series. Therefore, this section motivates this study
by considering and distinguishing it from existing literature reviews
focusing on similar topics. More specifically, this section identifies four
groups of existing literature reviews, highlights their limitations, and
presents the research gap addressed with this study.

The first identified group comprises reviews that focus on syn-
thetic data generation for a specific domain such as finance [15] or
medicine [16]. These reviews, however, do not focus on energy time
series.

Considering purely time series data, the second identified group
contains literature reviews that concentrate on certain properties of
the generated synthetic time series. These reviews examine generation
methods in terms of their ability to generate privacy-preserving syn-
thetic time series that allows valid statistical inference [17] or their
publication [18]. In this group, however, the focus is clearly on privacy
perseverance as a property of synthetic time series and not on the
characteristics of synthetic energy time series.

The third identified group consists of reviews that consider the vali-
dation of the generated time series [19] or their evaluation concerning
diversity [20], fidelity and diversity [21], or resemblance [22]. Whilst
these works review certain evaluation metrics, they all consider only
specific evaluation criteria and thus fail to consider evaluation criteria
specifically relevant to generated synthetic energy time series.

The fourth identified group of related reviews are reviews focusing
on smart grid applications. This group includes reviews that investi-
gate available methods for modelling residential electrical load pro-
files [13,14,23] and energy consumption [24] as well as simulating
smart home activities [25]. Some of these reviews [13,14,24] also
categorise the identified methods into bottom-up and top-down genera-
tion approaches. Furthermore, another work in this group supports the
selection of a suitable time series generation method [26] but is limited
to the analysis of power system operation and expansion. Whilst these
reviews are closer to this study, they still focus on single use cases and
fail to cover the variety of smart grid applications.

Altogether, to the best of the authors’ knowledge, no work exists
that reviews methods for generating synthetic energy time series and
their approach as well as the characteristics, use cases, and evalua-
tion of these generated synthetic time series. Therefore, the analysis
presented in the following sections aims to fill this identified research
gap.

3. Methodology

To identify relevant literature on generating synthetic energy time
series, this review follows three basic steps proposed in [27], namely
the identification of major contributions, backward search, and forward
search.

First, the review identifies major contributions with a keyword-
based search. This search was first conducted in Google Scholar be-
tween June and December 2021 and again in May 2023 using the
iteratively expanded keywords listed below and considering the first

70 results of each search:
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Fig. 1. A generation method following a certain generation approach generates a synthetic energy time series based on input data. The generated synthetic energy time series has
certain characteristics, is created for a use case, and is evaluated using an evaluation approach.
• synthetic data generation AND time series
• synthetic time series generation
• time series AND synthetic data
• energy time series AND synthetic data
• ‘‘time series’’ AND ‘‘synthetic data’’ AND ‘‘models’’
• ‘‘synthetic load time series’’
• ‘‘synthetic load datasets’’
• ‘‘synthetic load data sets’’
• ‘‘energy time series’’ AND ‘‘generated data’’
• ‘‘energy time series’’ AND ‘‘data generation’’
• ‘‘time-series load data’’ AND ‘‘synthetic data’’
• ‘‘generation’’ AND ‘‘load profiles’’
• ‘‘time series load data’’ AND ‘‘synthetic data’’
• ‘‘generate data’’ AND ‘‘energy time series’’

These identified articles are then screened based on inclusion and exclu-
sion criteria to determine the initial pool of articles. To be included, the
title and the abstract of an article must indicate that the article proposes
a method for generating synthetic energy time series. Additionally,
articles that use words similar to energy time series generation such
as energy time series creation, augmentation, and synthesis as well
as scenario generation and load profiling are included, as long as the
article actually proposes a method for generating synthetic energy time
series. This review excludes articles not written in English, technical
reports, and articles not published in a journal, at a conference, or on
arXiv. This step results in a pool of 68 articles proposing a method for
generating synthetic time series.

Given this initial pool of articles, backward and forward searches
for all articles from this pool are performed. These searches apply the
same screening based on inclusion and exclusion criteria as mentioned
above. This screening results in 101 additional articles, leading to a
total of 169 considered articles published during the past 40 years as
shown in Fig. 2. Due to the focus on energy time series from electricity
consumption, electricity generation, and battery storage systems, four
articles dealing exclusively with generating water time series [28–
31] and one article concerned exclusively with generating heat time
series [32] are excluded.

All 169 articles finally considered form the basis for the subsequent
five-step analysis. This analysis first identifies the generation method
used in each article and groups articles proposing similar generation
methods. In the case that more than one generation method is used
in an article, the article is assigned to all these methods used. In
the second step this analysis identifies the generation approach these
methods apply. Third, this analysis determines the characteristics of
the generated energy time series in each article. Fourth, the use cases
of the generated synthetic energy time series are identified. Lastly,
the analysis focuses on the evaluation performed in the articles to
examine the synthetic energy time series generated with the respective
generation method.

4. Methods for generating synthetic energy time series

The first step of the analysis identifies the methods used to gen-

erate synthetic energy time series found in the considered literature.

4 
Fig. 2. The number of articles considered by the year of publication.

The analysis identifies thirteen methods that are applied to generate
synthetic energy time series. This study focuses on the methods that
are proposed in an article whilst methods that are applied as baselines
in an article and other types of methods that generally exist in the
literature are not considered. As shown in Fig. 3, the thirteen gener-
ation methods vary in their frequency of occurrence. Markov models,
weighted Random Number Generator (wRNG) methods, and GANs are
most often used. These three generation methods taken together are
used in more than half of the considered articles, whereas the other
ten methods cover the remaining shares.

This section introduces the identified generation methods to pro-
vide the basis for further analysis of their application for generating
synthetic energy time series. Thereby, this section does not discuss
how these methods are applied to generate synthetic energy time
series in the identified articles but instead focuses on explaining their
basic principles. Furthermore, this section provides literature for each
identified generation method that introduces the generation method in
question in a comprehensible and detailed manner.

4.1. Markov models

For the generation of synthetic energy time series, a Markov model
models a time series as a sequence of different observed states. Each
state typically represents a range of values observed in the time series.
Transition probabilities between the states define how likely the model
is to move from one state to another. In a first-order Markov model, the
current state depends on the previous state only; in a 𝑁-order Markov
model, the current state depends on the 𝑁 previous states. Thereby, a
discrete Markov model with a finite number of states corresponds to a
so-called Random Walk model [33]. Given specified states, transition
probabilities, and initial probabilities of the states, one can generate a
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Fig. 3. Shares of the identified methods for generating synthetic energy time series.
Note that articles that use more than one generation method count for each method
used.

random number at each state, starting with the first state, to create a
synthetic time series.

A special type of the Markov model is the Hidden Markov model
(HMM). It additionally comprises hidden states representing e.g. val-
ues within the value ranges of the observed states and transition
probabilities between these hidden states [34].

For more information on Markov models, consider the detailed
theoretical introduction in [35] or the overview of different Markov
models and their applications in [36]. Additionally, an introduction to
Markov models in the context of data generation is given in [37], whilst
of the articles identified in this analysis, detailed introductions to the
theory behind Markov models can be found in both [38,39].

4.2. Monte Carlo simulations

With a Monte Carlo simulation, synthetic energy time series are
generated using random sampling. Although there is no single form
of Monte Carlo simulations, many Monte Carlo simulations follow a
typical pattern: First, statistical distributions are determined for the
values to be generated. Second, random samples are repeatedly drawn
from these determined distributions to obtain the desired output. Nev-
ertheless, existing Monte Carlo simulations differ in the methods used
to identify statistical distributions [40] and to generate random vari-
ables [41].

A special type of Monte Carlo simulation is bootstrapping. In case
of unknown or complex underlying distributions, bootstrapped Monte
Carlo simulations perform sampling with replacement from a given
data set to approximate a statistic’s sampling distribution [42,43].
Another type of Monte Carlo simulation is the Markov Chain Monte
Carlo (MCMC) method. It combines a Markov model with a Monte
Carlo simulation by sampling from a Markov model that has the desired
distribution as its equilibrium distribution [44].

A theoretical introduction to Monte Carlo simulations is provided
in [40], whilst the practical applications of Monte Carlo simulations
are covered in an introductory tutorial in [41]. Additionally, a detailed
overview of Monte Carlo simulations and their many applications can
be found in [45].

4.3. Weighted random number generators

To generate synthetic energy time series, a weighted Random Num-
ber Generator (wRNG) uses random numbers to linearly combine el-
ementary time series. These elementary time series can, for example,
5 
be based on the power consumption and generation of devices or
on standard load profiles. Similar to a Monte Carlo simulation, a
wRNG first determines the required probability distribution for each
elementary time series before sampling from them to perform the linear
combination.

An introduction to wRNGs and random number generation in gen-
eral is provided in [46]. Essentially, all methods classified as wRNG and
identified in this study apply wRNGs to sample from pre-determined
probability distributions and combine mathematical models. Although
they do not provide a general introduction to wRNGs, a detailed and
helpful description of how wRNGs are applied in their approaches can
be found in [47,48].

4.4. Gaussian mixture models

For the generation of synthetic energy time series, a Gaussian
Mixture Model (GMM) uses a weighted sum of normal distributions
to model the distribution of the values to be generated. Given the
mixture character of the Gaussian Mixture Model (GMM), the resulting
distribution comparatively accurately matches the real distribution
of e.g. electrical consumption or generation [49]. To determine the
parameters of the GMM, a typical way is to use the Expectation Max-
imisation algorithm (EM) method [50]. A fully specified GMM can
then serve as a distribution to sample values from and thus generate
a synthetic time series. Alternatively, GMMs are applied in Markov
models to generate the desired values of the states within the Markov
process.

For more information on GMMs, consider the concise introduction
in [51]. Moreover, see [52] for an overview of numerous applications
of GMMs including generating synthetic time series. From the articles
identified in this analysis, clear overviews are provided in both [53,54].

4.5. Neural networks

To generate synthetic energy time series, a Neural Network (NN)
learns the mapping between an input and an output space using train-
ing data. To learn the mapping, a Neural Network (NN) consists of one
or multiple layers of interconnected neurons where each connection is
associated with a weight. A NN with multiple layers is also known as
a Deep Neural Network (DNN). With new input data, the trained NN
then generates synthetic energy time series. Since various types of NN
exist, the identified types are briefly introduced in the following.

One type of NN is the feed-forward NN where the connections
between nodes are not recurrent or circular. This way, the infor-
mation between the layers flows in only one direction and thus is
unidirectional [55]. A type of feed-forward NN with two layers is
the Self-Organising Map (SOM) network. It learns to represent high-
dimensional data in a low dimension while preserving the topological
structure of the data. Unlike most other NNs that apply the error-
correction learning, a SOM network uses competitive learning where
the neurons compete to respond to a specific input [56]. If each neuron
in a layer of a feed-forward NN is connected with all other neurons
of the previous layer, it is called a fully-connected NN. Such a net-
work can be combined with convolutional and down-sampling layers,
resulting in a Convolutional Neural Network (CNN) [57]. In a Recurrent
Neural Network (RNN), another type of NN, the connections between
nodes can form cycles. For this reason, the output of a node can
affect the subsequent input to the same node, making the information
flow between layers bidirectional [58]. Another type of NNs is the
Graph-based Neural Network (GNN) that processes data represented
as a graph. It uses a series of NNs to convert the input graph into a
lower dimensional space while preserving information on nodes, edges,
and context [59]. In a further type of NN, the Generative Moment
Matching Network (GMMN), a NN creates data similar to the training
data and applies a two-sample test to distinguish created data and real
data [60]. The Invertible Neural Network (INN) also represents a type
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of NN. An INN realises a bijective mapping from input to output by
implementing a normalising flow with the help of so-called coupling
layers such as NICE [61] or RealNVP [62]. To introduce non-linearities
into these transformations, each coupling layer contains multiple NN
as subnetworks [63].

There is a vast array of research considering NNs and explaining the
theory. However, a thorough introduction is presented in [64], whilst
the foundations are summarised and specific NNs are explained in more
detail in [65]. Finally, see [66] for a complete overview of the theory
and application of NNs.

This analysis identified certain NNs that are applied more fre-
quently and warrant specific attention. Therefore, the following section
introduces two further types of NNs, namely the GAN and the VAE.

4.6. Generative adversarial networks

To generate synthetic energy time series, a Generative Adversarial
Network (GAN), which is another type of NN, uses two interconnected
NNs, namely a generator and a discriminator. While the generator
creates data similar to the training data by using random noise as an
input, the discriminator applies a continuous value to distinguish data
created by the generator and real data [67].

A type of GAN is the Wasserstein GAN (WGAN). By using a different
loss function, the WGAN improves the learning stability and avoids
mode collapse, i.e. very similar or identical samples generated by
the generator [68]. The conditional GAN (cGAN) as another type of
GAN adds an additional input layer to condition the generator and
the discriminator on additional information. This way, a cGAN can
generate data under the guidance of known information [69]. The
Recurrent GAN (RGAN) is one more type of GAN. In a RGAN, RNNs are
used for the generator and the discriminator. RGAN can be extended
with a conditional input, resulting in a Recurrent Conditional GAN
(RCGAN) [9]. Similarly, a Deep Convolutional GAN (DCGAN) makes
use of only CNNs for the generator and the discriminator [70]. Another
type of GAN, the Bayesian GAN (Bayesian GAN), includes a Bayesian
formulation in the training process. In this way, a set of generators
can be found that completely capture distinct modes in the historical
data [71]. A GAN can also be combined with a Monte Carlo Simulation
such that the Monte Carlo Simulation post-processes the energy time
series generated by the GAN.

More information on GANs can be found in the overview in [72] or
the detailed discussion presented in [73]. Among the articles identified
in this analysis, a concise introduction to GANs is presented in [74],
whilst different GANs are briefly explained in [75], and GANs are
specifically introduced in the context of time series generation in [76].

4.7. Variational auto-encoders

For the generation of synthetic energy time series, a Variational
Auto-Encoder (VAE) applies two NNs, one for the so-called encoder
and one for the so-called decoder. While the encoder learns the prob-
ability distribution of the input data in the latent space, the decoder
reconstructs its input [77].

One type of VAE is the conditional VAE (cVAE). It adds conditional
information as inputs to the encoder and decoder, allowing data to be
generated given certain information [11]. Additionally, a VAE can be
combined with a GAN by merging the decoder of the VAE and the
generator of the GAN.

Detailed theoretical information on VAEs can be found in [77],
whilst an intuitive tutorial is presented in [78], and key concepts and
different types of VAEs are summarised and discussed in [79]. From
the articles identified in this analysis, VAEs are clearly and concisely
introduced in [80] with a focus on synthetic time series generation.
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4.8. Regression methods

For generating synthetic energy time series, a Regression method
models the relationship between so-called dependent and indepen-
dent variables using mathematical functions, including the commonly
used linear functions. While a simple Regression method only has
one independent variable, a multiple Regression method considers sev-
eral independent variables. Given a determined relationship between
dependent and independent variables, a Regression method creates
synthetic energy time series by varying the input data or randomly
sampling from a distribution [81]. The Regression method can be used
in combination with a Markov model so that the Regression method
learns the transition probabilities.

For more information on Regression methods, consider the complete
theoretical introduction in [82], whilst the basic principles are sum-
marised and different forms of regression are explained in more detail
in both [83] and [84].

4.9. Autoregression methods

To generate synthetic energy time series, an Autoregression method
models each value of the energy time series as linearly dependent on
its previous values and a stochastic term. Given this autoregressive
structure, the Autoregressive (AR) model then iteratively generates new
values [85].

An AR model is often combined with a Moving Average (MA) model
to create a so-called Autoregressive Moving Average (ARMA) model.
The MA model assumes that the value of the energy time series is
correlated with an additional random variable. Therefore, the ARMA
model assumes that each value of the energy time series is linearly
dependent on its previous values, the previous values of an additional
random variable, and a stochastic term [85]. Furthermore, it is possible
to model multiple energy time series at once by stacking them as
a vector and considering a Vector Autoregressive Moving Average
(VARMA) model [85]. Finally, ARMA models rely on the assumption
of stationarity. If this is not given, the values of the time series can
be replaced with the difference between their values, resulting in an
integrated ARMA model, i.e. Autoregressive Integrated Moving Average
(ARIMA) [85]. In combination with a GAN, Autoregression methods
can be used to preprocess features for the GAN. Autoregression methods
are also applied to model the dynamics of hidden states in a Hidden
Markov model (HMM).

Further information on Autoregression methods can be found in the
detailed introduction in [86] or alternatively with a stronger focus on
practical applications in [87]. Additionally, generalised Autoregression
methods are described in detail in [88].

4.10. Clustering methods

Clustering methods first group similar time series in clusters and
then use the properties of the determined clusters to generate synthetic
energy time series [89].

One type of Clustering method is the k-means Clustering method.
It minimises the distance between all time series of the cluster and the
cluster centre [90]. The fuzzy c-means Clustering method applies the
same principle as the k-means Clustering method. However, in contrast,
it uses a degree of membership such that each time series can belong
to more than one cluster [91]. Another type of Clustering method is
the hierarchical Clustering method. In hierarchical Clustering, clusters
are created in two ways. These clusters are either created by gradually
merging individual time series or, alternatively, a single cluster con-
sisting of all time series is gradually split [89]. Spectral Clustering is
another type of Clustering method. It models all time series as nodes
of a graph and their distances using weighted edges [92]. Based on
this representation, clusters are identified as groups of nodes that are
considered close according to the weighted edges. The Expectation
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Maximisation algorithm (EM) Clustering as another type of Clustering
method represents the time series with GMMs and uses the EM algo-
rithm [50] to determine the clusters [93]. A Clustering method can be
combined with other methods. It can provide inputs for a NN, GAN, or
Markov model. Moreover, a SOM network can first be applied to reduce
the dimensionality of the data for the subsequently used Clustering
method.

More information on Clustering methods can be found in the de-
tailed introduction in [94] and in the discussion and comparison of
multiple Clustering methods in [95]. Moreover, a detailed overview of
recent developments in Clustering methods is given in [96]. From the
articles identified in this analysis, a short but informative overview of
Clustering is presented in [97].

4.11. Aggregation methods

For the generation of synthetic energy time series, an aggregation
method makes use of information about the underlying energy system.
Based on geographic, topological, usage, or hardware information,
energy time series are determined for subunits of the system before all
these time series are aggregated into the single energy time series of
the considered system.

An Aggregation method can be combined with a Markov model such
that the Aggregation method augments the Markov model with usage
information. Moreover, a Markov model can be used to generate the
energy time series of the subunits to be aggregated by the Aggregation
method. Similarly, a Markov model can provide usage information and
a Bayesian network hardware information for an Aggregation method.

For more information on aggregation alternatives, see the mathe-
matical theory of aggregation presented in [98]. Moreover, an overview
of existing Aggregation methods can be found in [99].

4.12. Bayesian networks

To generate synthetic energy time series, a Bayesian Network (BN)
models the system in question using a directed acyclic graph. In this
graph, each node represents a unique random variable describing a
characteristic such as the size of a household and each edge the
conditional dependency between two nodes. The parameters of the BN
can be estimated using the EM algorithm [50]. Given the parameters of
the BN, one can sample from the determined probability distributions
to generate the desired values [55]. A BN can be combined with a
SOM that provides the relevant input features or a Markov model that
considers the results of the BN to model different states.

More information on BN can be found in the detailed theoretical in-
troduction in [100]. Additionally, practical applications of BNs, namely
how to effectively implement and train them, are discussed in [101].
Finally, a concise overview of BNs in the context of time series and
wind energy is provided in [102].

4.13. Data variation methods

To generate synthetic energy time series, a Data Variation method
varies an existing time series directly or indirectly. In the direct varia-
tion, existing measurements for the target energy time series are varied,
for example, via scaling or introducing noise. In the indirect variation,
the inputs for an existing model that generates the target energy time
series are varied. A data variation method can use the results of a
Clustering method as a starting point for the variation.

For more information on Data Variation methods, see the overview
of similar methods from data augmentation presented in [103] or
the introduction to Data Variation methods for time series in [104]

or [105].
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Fig. 4. Shares of the generation approaches used in the considered articles.

Fig. 5. An overview of the three approaches to generate synthetic time series.

5. Generation approaches of methods for generating synthetic
energy time series

This section presents the second analysis step which determines the
generation approach with which the identified generation methods are
applied. To categorise the approaches, this analysis distinguishes three
generation approaches building on [13,24], namely the bottom-up, the
top-down, and the direct approach.

As shown in Fig. 4, almost half of the articles use generation meth-
ods with the direct approach and 45% with the bottom-up approach.
Only 6% of the articles apply generation methods with the top-down
approach.

In the following, the three generation approaches illustrated in
Fig. 5 are introduced. Table 1 gives an overview of all identified
methods for generating synthetic energy time series and the associated
generation approach.

5.1. Bottom-up approach

Generation methods that follow the bottom-up approach obtain a
synthetic energy time series by using microscopic data. For the consid-
ered context, microscopic data from subsystems within a larger system
are used to generate synthetic energy time series for the larger system
being considered. For example, data on all appliances in a house-
hold could be used to generate energy time series for that household.
Therefore, the bottom-up approach requires knowledge of the interde-
pendencies and elements comprising the system for which a synthetic
energy time series is being generated. Table 1 shows that all generation
methods except the GMM, VAE, and Autoregression methods are ap-
plied with a bottom-up approach. Especially for Markov models, Monte
Carlo methods, wRNG methods, and Aggregation methods, several

articles exist that use a bottom-up approach.
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Table 1
Overview of the identified methods for generating synthetic energy time series and the associated generation approach. The generation
approaches comprise the top-down, the bottom-up, and the direct approach. Note that articles that combine generation approaches count
for each generation approach applied. Note also that articles that combine more than one generation method or compare different generation
methods are listed in all methods used.

Bottom-Up Top-Down Direct

Markov [106–123] [111,124–127] [39,128–140]
Monte Carlo [107–109,113,114,117,123,141–144] [143] [54,129,135,140,145–150]
wRNG [47,48,151–182] [152,153,183] [184–188]
GMM [124,127] [53,54,130,189]
NN [190,191] [191] [137,192–199]
GAN [75,200,201] [74,76,145,187,189,201–222]
VAE [80,215,223–225]
Regression [114,226] [127] [130,131,227–230]
Autoregression [132,189,206,231–239]
Clustering [110,240–243] [124,125] [97,137,199,217,244–247]
Aggregation [118,142,248–253] [253] [254]
BN [118,190] [138]
Data Variation [241,255–257]
5.2. Top-down approach

To obtain a synthetic energy time series, generation methods apply-
ing the top-down approach use macroscopic data. For a defined context,
macroscopic data from a larger system are used to generate energy time
series for a subsystem that belongs to this larger system. For example,
energy consumption data in a city quarter and data on the shares of
residential, commercial, and industrial use could be used to generate
typical energy time series of single residential, commercial, and indus-
trial consumers. Therefore, the top-down approach requires knowledge
about the structure of the system and how a specific system element
depends on the surrounding system to generate synthetic energy time
series for that specific element. As observed in Table 1, all generation
methods except five generation methods are applied with the top-down
approach. While most articles use the top-down approach with Markov
models and wRNG methods, no articles use the top-down approach
with GANs, VAEs, Autoregression methods, BNs, and Data Variation
methods.

5.3. Direct approach

Generation methods following the direct approach obtain synthetic
energy time series by using data similar to the energy time series to
be generated. This way, energy time series can be generated with-
out any knowledge about the surrounding system, its elements, and
their interdependencies. For example, existing energy time series from
households can serve as the starting point for generating synthetic
energy time for a similar household. Nevertheless, the direct generation
approach assumes that the similar data used contain all the information
required to generate the desired synthetic energy time series. Observing
Table 1 shows that all generation methods except the Data Variation
methods are applied with the direct approach. The most articles using
the direct approach are found for the GANs and Markov models.

5.4. Discussion & open research fields

Given the classification in Table 1 and the results described above,
this analysis leads to two key observations. First, the majority of the
identified methods to generate synthetic energy time series use either
the bottom-up or the direct approach. In contrast, only fifteen of the
169 identified articles apply the top-down approach. Second, whilst
most generation methods are applied with at least two approaches, this
often occurs with varying degrees of frequency. For example, wRNGs
are applied with the bottom-up approach much more frequently than
with the top-down or direct approach. This is logical since wRNGs
usually sum up the power consumption or generation of elementary
systems to obtain the final synthetic energy time series. However, NN-

based methods, including GANs and VAEs, almost exclusively apply a
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direct approach. This can be explained by the black-box nature of a
NN, which is ideal for learning direct relationships to generate synthetic
time series.

These observations lead to the identification of two open research
fields. First, it would be interesting to compare the different ap-
proaches for similar generation methods and quantitatively determine
the strengths and weaknesses of each approach, specifically when con-
sidering specific scenarios. Second, there is a lack of literature focusing
on the top-down approach, therefore, it is important to investigate the
top-down approach further to determine with which generation meth-
ods and in which situations it may be more beneficial for generating
synthetic energy time series.

6. Characteristics of generated synthetic energy time series

This section presents the third analysis step which determines the
characteristics of the generated synthetic energy time series. The syn-
thetic time series generated by the previously introduced generation
methods can be classified using three attributes, namely the type, the
aggregation level, and the use. The following describes the findings
with respect to these three attributes of the generated energy time
series. Table 2 gives an overview of all methods for generating synthetic
energy time series according to their type, aggregation level, and use.

6.1. Type

The type describes the direction of the flow of the electrical energy.
To consider different application contexts, the analysis distinguishes
the type of energy time series between consumption, generation, and
battery storage systems. As shown in Fig. 6, generation methods are
used to create consumption time series in more than three quarters of
the articles, generation time series in about one fifth of the articles, and
time series from battery storage systems in only a few articles.

Matching this observation, Table 2 shows that all identified gener-
ation methods are used to generate synthetic consumption time series.
All generation methods except the NNs, the Regression methods, and
the BN are applied to create synthetic generation time series. Syn-
thetic time series from battery storage systems are only generated with
six generation methods, namely Markov models, wRNGs, NNs, GANs,
Autoregression methods, and Clustering methods.

6.2. Aggregation level

The aggregation level is the spatial resolution of the generated
energy time series. This analysis identifies the following eight different
aggregation levels from large to small: country, state, region, city,
district, single unit (e.g. a building or a wind turbine), household, and

appliance. If there is no explicit specification, the respective article
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Table 2
Overview of the identified methods for generating synthetic energy time series and the characteristics of the synthetic energy time series generated thereby. The characteristics
include the type, the aggregation level, and the use associated with the generated synthetic energy time series.

Method Type Aggregation Level Use

Markov Battery: [137]; Consumption:
[106–128,130–134,138]; Generation:
[39,129,133,135,136,139,140]

State: [110]; Region:
[39,123,129,135,136,139,140]; City: [118];
Single unit: [106,120,137]; Household:
[107,108,111,114,121,124–127,130–134,138];
Appliance: [109,112,113,115–119,122,128,134]

Commercial: [110,124]; Electric vehicle: [123];
Industrial: [39,110,129,135–137,139,140];
Renewables: [39,129,135,136,139,140];
Residential: [106–122,124–128,130–134,138]

Monte Carlo Consumption:
[107–109,113,114,117,123,141–
144,147,150]; Generation:
[54,129,135,140,145,146,148,149]

Country: [146–148]; State: [150]; Region:
[54,123,129,135,140,145,149]; District: [142];
Single unit: [144]; Household:
[107,108,114,143]; Appliance:
[109,113,117,141,143]

Academic: [144]; Electric vehicle: [123,147,150];
Industrial: [54,129,135,140,145,146,148];
Renewables: [54,129,135,140,149]; Residential:
[107–109,113,114,117,141–143]

wRNG Battery: [170]; Consumption:
[47,48,151,153–169,171–184,186–
188,258]; Generation:
[152,185]

Country: [176,187]; Region: [179]; City:
[155,166,258]; District: [48,152,154,163];
Single unit: [170,172,178,181,185,186,188];
Household: [48,159,167,175,183]; Appliance:
[47,48,151,153,155–158,160–162,164,165,168,
169,171,173,174,177,180,182,184]

Academic: [181]; Commercial:
[156,176,178,186,187]; Electric vehicle:
[170,179,188]; Industrial: [176,187]; Renewables:
[185]; Residential: [47,48,151–155,157–169,171–
177,180,182–184,187,258]

GMM Consumption: [53,124,127,130,189];
Generation: [54,189]

Region: [54]; District: [53]; Single unit: [189];
Household: [124,127,130]

Commercial: [124,189]; Industrial: [54];
Renewables: [54]; Residential:
[53,124,127,130,189]

NN Battery: [137,192,195,197];
Consumption:
[190,191,193,194,196,198,199]

Country: [198]; State: [199]; City: [194];
District: [190,196]; Single unit:
[137,192,193,195,197]; Appliance: [190,191]

Agricultural: [199]; Commercial: [198,199];
Electric vehicle: [195,197]; Industrial: [137,199];
Residential: [190,191,193,194,196,198,199];
Storage: [192]

GAN Battery: [213]; Consumption:
[74,76,187,189,200,202,206–
210,212,214–218,220–222];
Generation: [75,145,189,201,203–
205,211,215,216,219]

Country: [187,200,210,214]; State:
[75,202,204,211,219]; Region:
[145,203–205,222]; District: [201]; Single unit:
[74,76,189,205,206,213,216,217,220];
Household: [208,212,215,218]; Appliance:
[206,209,215]; Not specified: [207,221]

Commercial:
[74,76,187,189,202,206,210,214,217,220]; Electric
vehicle: [213]; Industrial: [145,187,202–205,214];
Medical: [220]; Renewables: [75,203–205,216];
Residential: [76,187,189,200–
202,206,208,209,212,214–216,218]; Not detailed:
[207,211,219,221,222]

VAE Consumption: [80,215,223–225];
Generation: [215]

Country: [223]; City: [224]; Single unit:
[80,225]; Household: [215]; Appliance: [215]

Commercial: [224]; Electric vehicle: [225];
Residential: [80,215]; Not detailed: [223]

Regression Consumption:
[114,127,130,131,226–230]

Country: [226]; City: [228]; Single unit: [229];
Household: [114,127,130,131,227]; Not
specified: [230]

Agricultural: [230]; Commercial: [226,230];
Industrial: [226,229,230]; Residential:
[114,127,130,131,227]; Not detailed: [228]

Autoregres-
sion

Battery: [231]; Consumption:
[132,189,206,231,232,234–239];
Generation: [189,231,233]

Country: [235,237]; State: [238]; Region:
[231,233]; City: [234,239]; Single unit:
[189,206,231,236]; Household: [132];
Appliance: [206]; Not specified: [232]

Commercial: [189,206]; Electric vehicle: [234];
Industrial: [231,233,239]; Renewables: [231,233];
Residential: [132,189,206,236,239]; Not detailed:
[232,235,237,238]

Clustering Battery: [137]; Consumption:
[97,110,124,125,199,217,240–247];
Generation: [240,241,247]

State: [110,199,240,241,246,247]; District:
[243,245]; Single unit: [137,217,242];
Household: [97,124,125,244]

Agricultural: [199]; Commercial:
[110,124,199,217,240,241,245–247]; Industrial:
[110,137,199,240,241,247]; Residential:
[97,110,124,125,199,240–244,247]

Aggregation Consumption: [118,142,248–254];
Generation: [251]

State: [249,250]; City: [118,248,253]; District:
[142,254]; Single unit: [251,252]; Appliance:
[118,251,253]

Commercial: [248–250]; Industrial: [249,250];
Renewables: [251]; Residential: [118,142,248–254]

BN Consumption: [118,138,190] City: [118]; District: [190]; Household: [138];
Appliance: [118,190]

Residential: [118,138,190]

Data
Variation

Consumption: [241,255–257,259];
Generation: [241,257]

State: [241,256]; Region: [259]; Single unit:
[255,257]; Household: [257]

Commercial: [241,255,259]; Industrial: [241];
Renewables: [257]; Residential: [241,257]; Not
detailed: [256]
is marked as ‘‘not specified’’. As illustrated in Fig. 7, most energy
time series are generated with regards to appliances and single units,
with both aggregation levels each making up more than 20% of the
identified articles, followed by households accounting for 16% and
regions making up 11%. While these four aggregation levels already
account for about three quarters of the identified articles, the remaining
aggregation levels and ‘‘not specified’’ cover the last quarter.

Moreover, Table 2 shows that the identified generation methods are
applied to generate synthetic energy time series of various, but not all,
aggregation levels and that the number of covered aggregation levels
differs. The Monte Carlo simulations, the wRNGs, the GANs, and the
Autoregression methods cover the most aggregation levels with seven
aggregation levels, whereas the GMMs, the Regression methods, the
Clustering methods, and the BNs cover the least aggregation levels with
four aggregation levels. Lastly, there are only a few articles where the
aggregation level of the generated energy time series is not clearly
specified.
9 
6.3. Use

The use describes which electricity use is represented in the gener-
ated energy time series. This analysis distinguishes the following nine
uses: residential, industrial, commercial, renewables, electric vehicle,
and other (i.e. academic, agricultural, medical, and storage). If time
series are generated for more than one use or mixed uses (e.g. at higher
aggregation levels), they are counted in each use. When a generation
method is applied in an article to generate energy time series of
different uses, the article counts in all these uses. In case of a missing
clear indication, the respective article is marked with ‘‘not detailed’’.
As shown in Fig. 8, the majority of generation methods are used for
generating residential energy time series, followed by industrial and
commercial energy time series. Few generation methods are applied to
generate energy time series of renewable energies and Electric Vehicles
(EVs). The remaining methods either concentrate on other uses or the
use is not detailed.

Additionally, Table 2 shows that all generation methods create
synthetic energy time series associated with various uses. While the
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Fig. 6. Shares of the different types of generated synthetic energy time series. Note
that articles that consider more than one type count for each type considered.

Fig. 7. Shares of the different aggregation levels of generated synthetic energy time
eries.

Fig. 8. Shares of the different uses of the generated synthetic energy time series. Other
comprises academic, agricultural, medical, and storage. Note that articles that consider
more than one use count for each use considered.
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wRNGs, the NNs, and the GANs are used for six uses, the majority
of generation methods are applied for four or five uses. Only the
VAEs and the BNs are associated with three and one use respectively.
Furthermore, a certain number of articles are identified, where the use
of the generated energy time series is not detailed.

6.4. Discussion & open research fields

Given the previous observations and Table 2, this analysis results in
four main observations. First, the vast majority of the identified articles
focus on generating synthetic consumption time series. This could be
due to the fact that traditional energy systems are based on generation
from dispatchable fossil fuel-based sources and rarely include battery
storage systems. Therefore, the largest source of uncertainty in such
systems is the consumption. However, with the transition to smart
grids containing volatile generation from renewable sources, these
other types of synthetic energy time series are also gaining importance.
Second, low aggregation levels such as appliances, households, and
single units are the most studied, accounting for 58.2% of the identified
articles. This is mirrored by the fact that residential use is by far the
most studied use, with almost 75% of articles being attributed to this
use. This may also be due to residents in single households having
the most unpredictable consumption pattern when compared to city
quarters or larger commercial or industrial companies. Third, both
the commercial and industrial uses are studied similarly, although far
less than the residential use. Fourth, the number of identified uses is
connected to the aggregation level and the type. As the aggregation
level rises, the considered uses naturally also increase since energy time
series of higher aggregation levels typically comprise the energy con-
sumption or generation of various consumers or producers. Similarly,
the type also influences the associated uses of a generated synthetic
energy time series.

As a result of these observations, this analysis finds three promising
open research fields. First, there should be far more emphasis on
generating synthetic energy time series for battery storage systems
and generation. Such time series will be vital to enable the transition
to a sustainable smart grid. Second, there should be more focus on
generating synthetic time series for higher aggregation levels and for
commercial and industrial uses. Although these uses may not be as
unpredictable as a single residential household, they offer vast potential
for load management in a flexible future smart grid, and to reach
this potential, synthetic time series are required. Finally, future smart
grids will be characterised by the blurring of boundaries between
consumption and generation and thus integration of prosumers and
flexumers. Therefore, a third research direction would be investigating
the generation of synthetic energy time series for combinations of con-
sumption, generation, and battery storage systems while considering
the increasing mix of uses.

7. Use cases of generated synthetic energy time series

This section describes the fourth analysis step, where the use cases
of the generated synthetic energy time series in the considered articles
are identified. To categorise the identified use cases, this analysis uses
the ten categories of smart grid data analysis derived in the systematic
mapping study in [3]. Almost all of the identified use cases can be
assigned to six of the ten categories when adapting the mapping to
data generation, namely customer profiling, energy output forecasts,
event analysis, load segregation, power loads/consumption, and pri-
vacy. Since all remaining identified use cases that do not fit into any
of the ten categories deal with analyses on the network level, the final
use case presented in this analysis is a new category called network
analysis, resulting in seven total categories of use cases.

As shown in Fig. 9, the considered use cases occur with differ-
ent frequencies. The majority of use cases with 48% forms power
load/consumption, followed by customer profiling with 30%, energy
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Fig. 9. Shares of the seven categories of use cases for the generated synthetic energy
time series.

output forecasts with 15%, and network analysis with 4%. Event anal-
ysis, load segregation, and privacy, as the remaining three categories
of use cases, each have a share of 1% or less.

Within the identified use cases there is a further difference in the set
of use cases with regard to their aim: The sole aim of some use cases
is the generation of synthetic data in a certain context, whereas others
aim to solve a specific problem with the generated data. Therefore, this
analysis additionally distinguishes generic and specific use cases within
the seven used categories of use cases.

The following presents the seven categories of use cases and the
related identified generic and specific use cases. Table 3 gives an
overview of all methods for generating synthetic energy time series and
the related generic and specific use cases in the seven categories of use
cases.

7.1. Customer profiling

Customer profiling refers to the identification of the typical con-
sumption pattern of users with similar characteristics [3]. Customer
profiling is essential to understand the type and behaviour of consumers
within a power grid. The main aim of customer profiling is to improve
the power system’s reliability, management and extension through
comprehensive and accurate simulations based on consumption time
series generated from the identified customer profiles. As a result,
effective customer profiling requires consumer consumption data across
a wide range of spatial and temporal resolutions as input, i.e. from
single households to entire countries, considering a temporal resolution
from one minute up to a day or larger. Due to this diverse data
requirement, one of the main challenges in customer profiling is finding
reliable data from representative users [124] at the desired spatial and
temporal levels [107,131].

In this analysis, the following two generic use cases identified in the
considered articles are assigned to customer profiling: the generation
of load profiles, which represent the typical power consumption be-
haviour of user groups or appliances, and the creation of load patterns,
which depict typical patterns in electrical power consumption. One
specific use case that examines the self-selection bias of households that
change their behaviour due to participating in a study is also assigned
to customer profiling. Based on these use cases, all but one of the
related articles consider one of the generic use cases. Within the two
generic use cases, load profile and load pattern, most articles noticeably

focus on load profiles.
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7.2. Energy output forecasts

Energy output forecasts focus on forecasting the output from renew-
able energy resources [3]. Renewable energy sources are increasingly
integrated into the system as the power grid transitions to reduce its
carbon footprint but they are uncertain and cannot be easily controlled.
As a result, obtaining forecasts of the expected outputs can help to make
reliable decisions in power system operation, scheduling, and planning.
However, the considered energy output depends on various conditions
such as the temporal and spatial settings, the number of resources,
and the weather [233]. Therefore, energy output time series can be
generated to capture the desired conditions. One main challenge of
energy output forecasts is thus to accurately capture the physical pro-
cesses [204] and temporal dynamics [133] underlying the considered
renewable energy sources.

Energy output forecasts match the following two generic identified
use cases: the generation of synthetic power curves that represent the
electrical power generation of a given renewable energy power plant
and the creation of generation profiles, which represent the typical
power generation of a power plant. This category also matches specific
use cases, namely the generation of synthetic time series to appropri-
ately size Photovoltaics (PV) power plants or batteries, the creation of
synthetic time series to forecast electricity generation, and the creation
of synthetic energy time series to predict future electricity generation
for certain scenarios.

In this category, most articles address power curves as one of the
generic use cases whereas the other generic use case, namely generation
profile, only appears once. Among the specific use cases, battery sizing
and battery and PV sizing are the most common, while forecasting and
scenario generation only occur three and two times, respectively.

7.3. Event analysis

Event analysis concentrates on analysing relevant events in energy
time series [3]. Its main aim is to recognise events as early as possible to
be able to react to them if necessary. Due to the advancing integration
of information and communication technologies into the power grid,
event monitoring and analysis are increasingly automated. A variety
of events to be monitored and analysed exist, which are also relevant
to different stakeholders. For example, critical events such as extreme
weather conditions or anomalies resulting in grid instabilities might re-
quire an immediate reaction from the grid operators. Conversely, events
less critical for the grid stability such as non-technical losses require an
action by the respective utility to prevent a large economic loss. All
these events have in common that they rarely occur. For this reason,
generated energy time series containing these events can support the
development of automated systems to detect and analyse such events.
Thereby, one main challenge in event analysis is to accurately capture
and replicate these rare events.

Two of the identified specific use cases are assigned to this category,
namely, the generation of energy time series for electricity theft detec-
tion and the determination of network losses. In line with the small
share of this category, the use cases only appear in one article each.

7.4. Load segregation

Load segregation is concerned with non-intrusive load monitor-
ing [3]. Non-intrusive load monitoring focuses on analysing the changes
in voltage and current passing through a building to deduce which
appliances are active [260]. Such load segregation is important for
increasing the building’s energy efficiency, improving demand response
measures, and identifying inefficient and malfunctioning appliances.
However, for effective load segregation, data without missing or cor-
rupt values and containing many appliances and varying consumption
patterns over long measurement periods is required. Such data, how-
ever, is not commonly available due to privacy concerns and the effort
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Table 3
Overview of the identified methods for generating synthetic energy time series and the use cases where the synthetic energy time series generated by these methods are applied.
The use cases are categorised into seven categories and comprise generic and specific use cases.

Method Customer Profiling Energy Output
Forecasts

Event Analysis Load
Segregation

Power Load/
Consumption

Privacy Network
Analysis

Markov Generic: Load
profile:
[107,118,124,126,
127,130,131,133]

Generic: Generation
profile: [133];
Power curve:
[39,129,135,136,
139,140]
Specific: Battery
sizing: [137]

Generic: Load curve: [106,
108,110–114,116,117,119–
123,125–128,132,134,138];
Load modelling: [109]
Specific: Demand side
management: [115,138]

Specific:
Distribution
network design:
[118]

Monte Carlo Generic: Load
profile: [107]

Generic: Power
curve: [54,129,135,
140,146,149]
Specific:
Forecasting: [145];
Scenario generation:
[148]

Specific:
Network loss
determination:
[143]

Generic: Load curve:
[108,113,114,117,123,141,
142,144,147,150]; Load
modelling: [109]

wRNG Generic: Load
profile:
[47,48,151,153–
156,158,160,161,
163,165,166,168–
172,174,175,178,
179,181,183,184,
258]

Generic: Power
curve: [185]
Specific: Battery
sizing: [179,188]

Generic: Load
monitoring:
[167]

Generic: Load curve:
[157,162,164,168,173,176,
177,182,186,187]
Specific: Forecasting:
[180]; Demand side
management: [163]

Specific: Impact
analysis of new
technologies:
[152,159]

GMM Generic: Load
profile:
[124,127,130]

Generic: Power
curve: [54]
Specific: PV and
battery sizing: [189]

Generic: Load curve:
[53,127]

NN Generic: Load
profile:
[190,193,198,199]

Specific: Battery
sizing:
[137,192,195,197]

Generic: Load curve:
[191,194]
Specific: Scenario
generation: [196]

Specific:
Distribution
network design:
[190]

GAN Generic: Load
profile:
[200,208,220,222];
Load pattern:
[200,209,212]

Generic: Power
curve: [201,203,
204,216,219]
Specific: PV and
battery sizing:
[189]; Battery
sizing: [213];
Forecasting: [145];
Scenario generation:
[205]

Generic: IoT
data
generation:
[75]

Generic: Load curve:
[76,187,201,210,214,216,
217,221]; Load modelling:
[202,215,218]
Specific: Forecasting:
[74,206,207]

Specific: Power
flow sample
generation:
[211]

VAE Generic: Load
profile: [225]; Load
pattern: [223]

Specific:
Electricity theft
detection:
[224]

Generic: Load modelling:
[215]
Specific: Forecasting: [80]

Regression Generic: Load
profile:
[127,130,131,230]
Specific: Self
selection: [227]

Generic: Load curve:
[114,127,229]
Specific: Forecasting:
[226,228]

Autoregression Generic: Load
profile: [236]

Specific: PV and
battery sizing:
[189]; Forecasting:
[233]

Generic: Load curve:
[132,231,232,234,238,239]
Specific: Forecasting:
[206,233–235,237]

Clustering Generic: Load
profile:
[124,199,240]

Specific: Battery
sizing: [137]

Generic: Load curve:
[110,125,217,244–247];
Load modelling: [242,243]

Generic:
Anonymisation:
[97]

Generic: PMU
data generation:
[241]

Aggregation Generic: Load
profile:
[118,251,252]

Generic: Load curve:
[142,250,253,254]; Load
modelling: [249]
Specific: Demand side
management: [248]

Specific:
Distribution
network design:
[118]

BN Generic: Load
profile: [118,190]

Generic: Load curve: [138]
Specific: Demand side
management: [138]

Specific:
Distribution
network design:
[118,190]

Data Variation Generic: Load
profile: [255,259]

Generic: Load curve: [257] Generic: PMU
data generation:
[241,256]
required for associated measurement campaigns. Generated energy
time series can be an alternative. One challenge with load segregation,
however, is to have correct appliances’ models and generated energy

time series that represent the desired use of the appliances.
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Load segregation matches two identified generic use cases in this
analysis: the generation of synthetic energy time series for non-intrusive
load monitoring and the creation of Internet of Things (IoT) data to

support the dynamic management of the energy system. Consistent with
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the small share of the category, there is only one article for each use
case.

7.5. Power loads/consumption

Power loads/consumption comprises analyses of the power con-
sumption [3]. Similar to energy output forecasts, accurate power loads/
consumption data is crucial for power system operation, scheduling,
and extension planning. However, the availability of power consump-
tion data is limited at low aggregation levels due to privacy concerns.
Moreover, the power consumption evolves over time with the increas-
ing integration of EVs, heat pumps, and renewable energies such as
PV plants on a household level. For this reason, generated power
consumption data can serve as a data source and can additionally be
used to account for future changes, such as the inclusion of electric ve-
hicles [53] and an increasing share of renewable energy sources [127].
Additionally, this generated power consumption data can be used to
simulate future scenarios [125] and help develop demand side manage-
ment strategies for these scenarios [116]. One of the biggest challenges
in electricity loads/consumption is to accurately represent the desired
use in the generated consumption time series.

Of the use cases identified, the following two generic use cases fit
this category: the creation of load curves representing the electrical
consumption over a certain period of time and load modelling using
mathematical models that can be used to generate energy time series.
Additionally, the following specific use cases match this category: the
generation of energy time series to support demand side management
analyses, the creation of energy time series to improve forecasts, and
the generation of energy time series to predict future electricity con-
sumption for certain scenarios. In this category, load curve is the most
frequently occurring generic use case while only few articles address
load modelling as the other generic case. In the specific use cases, many
articles refer to forecasting, few to demand side management, and only
one to scenario generation.

7.6. Privacy

Privacy deals with different aspects of avoiding the disclosure of
private information when using smart grid data [3]. Privacy is one
of the largest challenges facing smart grids. For smart grids to op-
erate effectively, they continuously require and use data. However,
making consumer data directly available raises multiple privacy con-
cerns, as it is possible to derive confidential and personal information
from it. Therefore, data anonymisation techniques are required to
protect personal artefacts in the data. One promising approach is to
generate privacy-preserving data from original data. However, it is
associated with the challenge of keeping as many properties of the orig-
inal data available for other smart grid applications without revealing
any private information [261].

This category matches one identified generic use case in this analy-
sis where load time series are anonymised to generate private synthetic
load time series consistent with the original data for further analyses.
In line with the small share of the category, only one article addressing
this use case is identified.

7.7. Network analysis

Network analysis deals with analyses on the network level. The
power network plays a central role in the power system as it, for exam-
ple, allows energy supply and demand to be balanced. The associated
analyses, therefore, cover various aspects of the network, including
its design, its operation, and its behaviour under certain conditions.
Since available data is limited and cannot necessarily cover all hypo-
thetical or future considerations about the network addressed in the
analyses, generated data can support the analyses with purposefully set

properties. Nevertheless, the main challenge of network analysis is to
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ensure that the generated data sufficiently represents the network to be
analysed.

Several generic and specific use cases are appropriate for the iden-
tified use cases in this analysis. The appropriate generic use cases
comprise the generation of synthetic time series to simulate the network
under different circumstances and the creation of Phasor Measurement
Unit (PMU) data to facilitate the grid operation. The appropriate spe-
cific use cases are the generation of synthetic time series for the design
of the distribution network, the creation of synthetic time series to
analyse the impact of new technologies, and the creation of power flow
samples for network analysis. In this category, only two articles address
PMU data generation as the generic use case while distribution network
design as a specific use case appears in most articles of this category.

7.8. Discussion & open research fields

There are several points worth discussing concerning the use cases
of generated synthetic energy time series. Overall, the majority of iden-
tified articles focus on generic use cases. This could be useful since these
generated synthetic time series can then be used to conduct research
with different focuses as long as the generic use case is appropriate.
However, this focus on generic use cases also means that only a small
portion of the identified articles concentrate on a specific use case.
This may be due to the fact that generic synthetic time series are
sufficient for such use cases. However, it may also suggest a lack of
focus on generating synthetic time series for specific use cases. This
lack of focus could unnecessarily limit the benefits of using synthetic
energy time series although they are very valuable for research such
as the generation of scenarios for the design of the future energy
system. Furthermore, there is an asymmetric distribution across the
seven considered categories of use cases. Specifically, hardly any of the
identified articles focus on event analysis, load segregation, or privacy.
Finally, whilst certain categories such as customer profiling include
representatives of all methods identified to generate synthetic time
series, other categories such as energy output forecasts only contain
a subset of these methods.

In light of these findings, three open research fields can be iden-
tified. First, it would be interesting to investigate further specific use
cases. Additionally, it would be worth examining whether synthetic
energy time series generated for a generic use case are sufficient for use
in such applications or whether specific synthetic energy time series are
required. Such use cases may include generating energy time series for
specific network devices and evaluating the quality of this energy time
series. Second, the usefulness of generating synthetic time series for the
underrepresented categories, namely event analysis, load segregation,
and privacy, should be examined in more detail. In particular, the use of
synthetic energy time series to investigate very unlikely events could be
useful, for example, in increasing the robustness of the energy system.
Finally, it would be interesting to investigate why certain methods are
not applied for particular use cases — especially with regard to energy
output forecasts.

8. Evaluation of generated synthetic energy time series

This section presents the fifth analysis step, in which the evaluation
performed on the generated synthetic energy time series is considered.
This analysis distinguishes the determined evaluations by their aim.
For this classification, the three aims applied in [10] are considered,
namely diversity, fidelity, and usefulness. Since not all identified eval-
uations pursue these aims, computational performance is considered as
an additional aim.

As shown in Fig. 10, more than three quarters of all evaluations
follow the aim of fidelity. Rather small shares of evaluations pursue
the aims of diversity, usefulness, and computational performance, or
are not specified in more detail. The following presents the identified
evaluations and applied methods along these four aims. Table 4 gives
an overview of all methods for generating synthetic energy time series
and the identified performed evaluations.
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Fig. 10. Shares of the different evaluation aims of generated synthetic energy time series and the applied methods. Other evaluation methods of fidelity comprise regression and
iscriminative score.
able 4
verview of the identified methods for generating synthetic energy time series and the performed evaluations of the synthetic energy time series generated thereby. The performed
valuations are structured along their aims and list the applied methods.
Method Diversity Fidelity Usefulness Computational

Performance

Markov Clustering:
[124,125]

Autocorrelation: [39,107,112,124,125,129,135,136,139,140];
Characteristics:
[106,108–110,112,113,116–122,124,127–134,136,138,140]; Direct:
[107–110,113,114,116,117,120,121,123,124,126–130,132,135,140];
Regression: [117,130]

Feasibility: [136] Size up: [132];
Speed up: [132]

Monte Carlo Autocorrelation: [54,107,129,135,140,149]; Characteristics:
[54,108,109,113,117,129,140,142,144–146,148]; Direct:
[107–109,113,114,117,123,129,135,140–142,145,146,148];
Regression: [117]

Training time: [145]

wRNG Autocorrelation: [183]; Characteristics: [47,48,155,157–
159,164,167,171–173,175–178,181–184,186,187,258]; Direct:
[47,48,151–154,157–159,162–164,166–168,171–174,179–181,183,
185,187,258]

Feasibility: [176];
Predictive score:
[187]

GMM Clustering: [124] Autocorrelation: [54,124]; Characteristics: [54,124,127,130]; Direct:
[53,124,127,130,189]; Regression: [130]

Feasibility: [189]

NN Visualisation:
[193]

Autocorrelation: [194,196]; Characteristics: [190,194,199]; Direct:
[190–192,194–198]; Regression: [198]

Feasibility: [193]

GAN Clustering:
[205,217];
Visualisation:
[200,202,211–
213]; Distances:
[220]

Autocorrelation: [204,205]; Characteristics:
[76,145,187,201–208,214,217,218,220,222]; Direct:
[75,76,145,187,189,200,204,206,209,210,212–216,219,221];
Discriminative score: [202,208,209]

Augmentation: [74];
Feasibility:
[189,214];
Predictive score:
[187,200,202,213,
214]

FLOPs: [75];
Runtime: [219];
Training time:
[145,219]

VAE Characteristics: [80,223,224]; Direct: [80,215,224,225] Augmentation:
[224]; Predictive
score: [223]

Regression Autocorrelation: [226]; Characteristics: [127,130,131,227–230];
Direct: [114,127,130]; Regression: [130,228]

Autoregression Clustering: [232] Autocorrelation: [234,239]; Characteristics: [132,206,231,233–239];
Direct: [132,189,206,232,233]; Regression: [237]

Feasibility: [189] Size up: [132,232];
Speed up: [132,232]

Clustering Clustering: [124,
125,217,246]

Autocorrelation: [124,125]; Characteristics:
[97,110,124,199,217,243,244]; Direct:
[97,110,124,240,242,244,245]

Runtime: [245]

Aggregation Autocorrelation: [250]; Characteristics: [118,142,249,250,253];
Direct: [142,248–252,254]

Size up: [253];
Speed up: [253]

BN Characteristics: [118,138,190]; Direct: [190]
Data Variation Characteristics: [255,256,259]; Direct: [257]
8.1. Diversity

Diversity aims to ensure that synthetic time series cover all values of
real time series. Thus, it is necessary to generate all types of time series
from the original data set so that not only a subset of the original data
is generated. This aim can be evaluated using three different evaluation
methods.
14 
The first evaluation method is visualisation, which is a qualitative
evaluation. For this, sections of the synthetic and real time series
are created and then visualised using a two-dimensional t-distributed
Stochastic Neighbour Embedding (t-SNE) [262] or Principal Compo-
nent Analysis (PCA) [263]. A synthetic time series performs well in
terms of diversity when the sections of the synthetic and real time series
are similarly distributed on the projection plane. Similarly, a heat map
can be used to visualise which specific power values at given periods
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of time are covered by the generated synthetic time series. The second
evaluation method is clustering. It assumes that there are different
clusters in the real time series. For the evaluation, both the synthetic
and the real time series are clustered and the corresponding clusters
are compared. The diversity is high when these clusters are similar
for both time series. As the third evaluation method for diversity,
distances can be calculated. These distances can be determined between
generated time series or between generated and real time series using,
for example, the Euclidean distance.

Table 4 shows that only six of the thirteen generation methods
are evaluated considering diversity. For most of them, clustering and
visualisation are applied to determine the diversity of the generated
energy time series. For only one generation method, distances are
calculated concerning the diversity.

8.2. Fidelity

Fidelity aims for synthetic time series that are similar to and indis-
tinguishable from real time series. Five different evaluation methods
are applied to evaluate this aim.

The first evaluation method compares synthetic and real time series
characteristics such as statistical moments and hallmark characteristics.
Once derived, these characteristics can be compared using distance
metrics or visualisations to assess their similarity. The second eval-
uation method is the direct comparison of the synthetic and real
time series. This method directly compares both time series or the
distributions of both time series without extracting or deriving any
characteristics. This comparison can be done either qualitatively using
visualisations or quantitatively using metrics. The third evaluation
method is the calculation of a discriminative score. Similar to the
direct comparison, the discriminative score also aims to compare the
similarity without deriving any features. For this purpose, a classifier
is trained to distinguish the synthetic from the real time series. Given
the classifier’s performance, the discriminative score can be derived.
The fourth evaluation method is the autocorrelation. It calculates and
compares the autocorrelative structure of the synthetic and the real
time series to assess whether the temporal structure of both time series
is similar. The fifth evaluation method is a regression, which assesses
whether the synthetic and real time series are similarly influenced
by exogenous variables. To determine this influence, the correlation
between the time series and exogenous variables is analysed.

Consistent with the large share of this evaluation, Table 4 shows
that the energy time series generated by all methods are evaluated
regarding their fidelity. More specifically, the comparison of charac-
teristics and the direct comparison are both used for all generation
methods. In comparison, noticeably fewer articles apply autocorrela-
tion and only few articles the discriminative score or regression to
determine an appropriate fidelity.

8.3. Usefulness

Usefulness measures synthetic time series with regard to their suit-
ability for downstream applications. Ideally, a synthetic time series
should be at least as useful for downstream applications as real time
series. Thereby, a downstream application can be a forecaster, a clas-
sifier, or a more specific domain-related application such as a battery
storage system. For the evaluation of this aim, three evaluation methods
are applied.

The first evaluation method is the calculation of a predictive score.
Based on Train on Synthetic and Test on Real (TSTR) method as
proposed in [9], a downstream application is trained with the synthetic
time series and evaluated with the real time series. The better the
performance of the downstream application on the real time series is,
the more useful is the synthetic time series. Augmentation as the second
evaluation method is strongly related to the TSTR method. It trains a
downstream application once on the real time series only and once on
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the combination of real and synthetic time series, before it compares
their results. If the combination provides better results than just the
real time series, then the synthetic time series is useful. The third
evaluation method is a feasibility assessment that determines whether
the synthetic time series is usable by a downstream application. If, for
example, the synthetic time series corresponds to a dispatch schedule,
the feasibility checks whether this dispatch schedule can be realised.

In Table 4, identified articles of six generation methods are eval-
uated concerning their usefulness. While most articles determine a
predictive score or apply a feasibility assessment, only two articles
perform an augmentation.

8.4. Computational performance

Computational performance aims to generate synthetic time series
with as little effort as possible and thus focuses on the generation
itself. To evaluate different aspects of computational performance, five
different evaluation methods are used.

The first evaluation method focuses on the effort needed to generate
a time series by measuring the runtime. It is the time required by
the generation method to generate a time series. Another evaluation
method concentrates on the preparation of a generation method and
measures the training time. It refers to the time that is necessary to
train a generation method before it can be used to generate time
series. The third evaluation method considers the complexity of the
applied methods by measuring the required Floating-Point Operations
Per Seconds (FLOPs) that represent basic machine operations. The focus
of the fourth evaluation method lies on the scalability of the generation
method and examines its size-up behaviour. The size up determines
the effect of adding additional computing resources on the number of
time series generated in a fixed period of time. The fifth evaluation
method also concentrates on the scalability and analyses the speed-up
behaviour of a generation method. The speed up measures the effect
of adding additional computing resources on the required time when
generating a fixed number of synthetic time series.

Table 4 shows that again articles of only six generation methods
evaluate the computational performance of the generation itself. Of
the available evaluation methods, all are used roughly with the same
frequency.

8.5. Discussion & open research fields

Given the previous observations, including Table 4 and Fig. 10,
this analysis leads to four main observations. First, the vast majority
of identified articles focus on fidelity without considering usefulness
for a specific use case. However, there is little point in generating
a synthetic energy time series if this time series is not useful for a
given scenario. Second, whilst some articles consider multiple aims
such as both diversity and fidelity, none of them considers all four
identified aims of evaluating synthetic energy time series. As a result,
it is challenging to identify state-of-the-art generation methods since
different evaluations are applied, and it is thus actually hard to compare
the results. Third, even if some articles evaluate synthetic energy time
series with the same aim, the methods used to evaluate this aim also
vary, which makes a comparison of the results even more difficult.
Finally, many of the available evaluation methods focus on directly
comparing generated time series and real time series or comparing their
derived characteristics. This approach is beneficial given the assump-
tion that synthetic time series should resemble observed characteristics.
However, this assumption does not hold for use cases where potentially
observable but not yet observed characteristics are important. For
these use cases, simply comparing statistical properties and derived
characteristics may result in misleading evaluation results.

Therefore, three important open research fields can be identified.
First, it is imperative that a gold standard for the evaluation of synthetic
energy time series is established. This standard should consider all four
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of the identified aims and be applicable to a wide variety of generation
methods. Only once such a standard is established can generated syn-
thetic time series be accurately compared and benchmarked. Second,
the usefulness of generated synthetic time series should be given higher
priority. Simply generating an energy time series with statistically simi-
lar properties is only useful if this generated time series is also useful for
the considered use case. Therefore, criteria defining when a time series
is useful should be developed and investigated concerning multiple use
cases. Finally, many of the proposed evaluation methods are qualitative
in nature. Therefore, it would be interesting to investigate whether
further quantitative methods can be found, specifically for diversity.

9. Conclusion

To support the transition to smart grids from predominately re-
newable sources, energy time series are required for developing and
improving methods for smart grid applications. Since large amounts of
energy time series are not openly available, generating synthetic energy
time series is often a promising solution. However, these generated
synthetic energy time series must exhibit characteristics similar to real
energy time series and applicable to specific use cases. Furthermore,
these characteristics of the synthetic time series must be verified by
evaluation methods. Although a wide range of methods exist in the
literature for generating synthetic energy time series, up until now,
no structured literature review exists that identifies existing generation
methods, including the applied generation approach as well as the
characteristics, use cases, and evaluation of the generated energy time
series. Therefore, this study presents a systematic literature review of
methods for generating synthetic energy time series from electricity
generation, electricity consumption, and battery storage systems. The
review focuses on five key aspects: (1) Identifying which methods are
used to generate synthetic energy time series, (2) categorising these
methods according to the applied generation approach, (3) identifying
the characteristics exhibited by the generated time series, (4) discover-
ing which use cases the generated time series are applied to, and (5)
describing how the synthetic energy time series are evaluated.

This structured literature review considers 169 articles and provides
five key insights regarding the generation of synthetic energy time
series. First, a large range of methods are used to generate synthetic
energy time series. Second, these methods are applied with different
generation approaches, namely the bottom-up, top-down, and direct
approaches. Furthermore, whilst all three generation approaches are
applied, the majority of the identified articles use either the bottom-
up or direct approach. Third, the majority of the generated energy
time series are consumption time series of residential use at a house-
hold, appliance, or single unit aggregation level. Only a few of the
identified articles focus on generation energy time series, and hardly
any consider time series of battery storage systems. Fourth, whilst
many of the generated synthetic energy time series are applied for the
use cases of customer profiling, power/load consumption, and energy
output forecasts, hardly any are considered for the use cases of event
analysis, load segregation, and privacy. Moreover, the majority of the
identified use cases are generic in nature, with only a small subset of
the considered articles focusing on specific use cases. Finally, the vast
majority of the identified articles focus on evaluating the fidelity of
the generated synthetic energy time series, whilst most ignore their
usefulness. Furthermore, none of the considered articles evaluates all
four aims of synthetic time series, namely diversity, usefulness, fidelity,
and computational performance.

Based on this analysis, several open research fields can be identi-
fied, four of which are outlined in the following. First, an important
open research field is to correctly evaluate generated synthetic time
series. A standard evaluation of generated synthetic time series must be
established that considers all evaluation aims and that can be applied
to benchmark a wide range of methods. Importantly, such a standard

evaluation should specifically consider the usefulness of the generated
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synthetic energy time series and open up to use cases that have other
requirements than that the statistical properties are similar to real data.
Second, future work should consider exploring the top-down approach
for generating synthetic energy time series in more detail. Third, to help
facilitate the transition to a smart grid from mostly renewable energy
sources, far more work should focus on generating synthetic energy
time series for generation and battery storage systems, specifically
for residential and commercial contexts. Finally, generating synthetic
energy time series with a focus on event analysis, load segregation, and
privacy as use cases is also a promising open research field.
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