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ABSTRACT
Our community has experienced a lot of progress in an-

alyzing biomedical images driven by semantic segmentation
solutions. However, the insufficient ability to adapt to new
data distributions limits their applicability. As an example,
we observed that cell organelle segmentation models can eas-
ily drop by more than 60% in relative accuracy when applied
to differently imaged cell data. While bridging this gap is pos-
sible by collecting new annotations for new data, it is highly
repetitive, inefficient, and expensive. In this work, we eval-
uate how unsupervised and weakly supervised domain adap-
tation techniques can help to close this gap more efficiently.
We answer the questions of how well domain adaptation tech-
niques perform in cell organelle segmentation and whether
easy-to-obtain image-level information gives specific bene-
fits. Based on our findings, we propose StyleFilter: a simple
and effective approach that uses image-level labels and leads
to an observed improvement in 19.2% absolute DICE over the
naive transfer baseline in electron microscopy-based domain
adaptation for cell organelle segmentation.

Index Terms— Cell organelle segmentation, domain
adaptation, focused ion beam electron microscopy

1. INTRODUCTION AND RELATED WORK
Understanding the semantic meaning of each pixel in an im-
age can help in many applications (e.g., in medical scenar-
ios by quantifying the progression of a disease) or even lead
to new scientific insights. Deriving such rich information via
manual inspection is often impossible due to the required time
investment, but with computational support, it becomes feasi-
ble at scale. Automatically deriving such pixel-precise under-
standing is most commonly done via deep neural networks,
which require large amounts of data and annotation during
training. However, acquiring such annotations in biomedical
domains is challenging since experts have to provide them.
This, again, requires experts to spend their time on annotation
rather than their actual work.

Even if collecting annotations for training would be fea-
sible, a second challenge occurs from domain shifts when ap-
plying a trained model to new data, which has slightly differ-
ent properties than the training data. As an example, see
in Figure 1 how the segmentation quality changes from the
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Fig. 1. Different imaging domains in OpenOrganelle and their
effects on predictions of a HELA-2-trained model.
training domain (left) to sightly different new domains (mid-
dle and right). Domain adaptation (DA) emerged as a technol-
ogy field to address this challenge. During training, DA ex-
ploits annotated source data and additional target data, either
without further annotations (unsupervised DA) or with weak
or partial labels (weakly- / semi-supervised DA). In this pa-
per, we explore UDA and WDA in the context of multi-class
cell organelle segmentation within focused ion beam electron
microscopy imagery and look into whether image-level labels
are worth their annotation time.

The primary subject of investigation for segmentation-
related UDA has been traffic scene segmentation, where the
domain gap is induced by training on synthetic data and
adapting to real driving scenes (e.g., see [1] and references
therein). In the biomedical domain, style transfer [2], self-
supervised reconstruction of target images [3], or adversarial
learning for distinguishing source and target domains [4]
were previously investigated. In this work, we analyze how
well UDA methods perform on cell organelle segmentation
in a challenging multi-class and partial class-overlap setting.
On top of that, we investigate WDA and the resulting benefit
of additional information at the cost of additional annotation
efforts. Paul et al. [5] showed that this additional information
can greatly improve the segmentation adaptation at manage-
able costs. Also, WDA has been extensively analyzed for
urban scenarios, e.g., with adversarial objectives [5] or multi-
curriculum learning [6]. However, we are not aware of any
cell-related biomedical WDA approaches.



Fig. 2. StyleFilter for weakly supervised domain adaptation consists of three main steps: (a) image-to-image translation training,
(b) source segmentation training, and (c) StyleFilter adaptation with PLF. Locks indicate that no back-propagation is applied.

Our contributions summarize to: (1) We investigate do-
main adaptation in a multi-class cell organelle segmentation
scenario with partially overlapping class distribution under a
suitable evaluation protocol, (2) we evaluate a variety of adap-
tation techniques to understand what works and where limi-
tations remain, and (3) we propose StyleFilter as a training
strategy for bridging the domain gap in electron microscopy
cell imaging, combining style transfer with pseudo-label fil-
tering to exploit image-level information.

2. METHODS AND MATERIALS
Methodology: We focus on UDA and WDA scenarios,
i.e., a source domain is represented by training images
xi
s, i = 1, . . . , NS and associated pixel-wise annotations

mi
s and a target domain is represented by training images

xj
t , j = 1, . . . , NT plus optional image-level labels ljt ∈ RC .

For such scenarios, we introduce StyleFilter, which consists
of three main steps: (1) train a style transfer model θstylet→s (·),
(2) pre-train a segmentation network on the source data with
pixel-wise annotations, and (3) adapt this model to the target
domain by exploiting θstylet→s (·) and image-level labels.

In the first step, we exploit images from source and tar-
get domains. We train a style transfer model θstylet→s which
is able to transform an image xj

t from the target domain to
mimic the style from the source domain: θstylet→s (xj

t ) = xj
t

⋆

where xj
t

⋆
is the target domain image xj

t stylized as an image
from the source domain. In our experiments, we use the un-
supervised image-to-image translation approach Contrastive
Unpaired Translation (CUT) [7], displayed in fig. 2 (a), which
only requires unlabeled source and target domain images.

The second stage includes training a segmentation net-
work θseg on source domain image-mask pairs (xs,ms) (or
alternatively select an already trained model). This training
can be a simple training with the cross-entropy loss:

LCE(x
i
s,m

i
s) = − 1

Ω

H,W,C∑
k,l,c=1

mc,k,l
s · log(θseg(xi

s)
c,k,l) , (1)

where θseg(xs) is the post-softmax segmentation prediction
of the segmentation model and the running indices k, l, c go-
ing over all pixel-locations Ω = HWC in the image of size

H×W and the corresponding C individual class predictions.
Now, in the third step, the adaptation to the target do-

main is realized. Due to the domain gap, applying the trained
model θseg as-is on target data would result in poor predic-
tion quality. Therefore, we apply the style transfer model
θstyle from step one to target training images xj

t . We now
draw inspiration from [8] where pseudo-labels are generated
in a teacher-student setup, but only the student is used for
back-propagation based on the pseudo-labels. In our case, the
stylized images xj

t

⋆
are used to generate self-inferred pseudo-

labels for every unlabeled image:

P(xj
t ) =

W,H∑
k,l=0

argmax
c

θseg(xj
t

⋆
)c,k,l . (2)

Hence, we simply take the maximally activating class pre-
diction at each location as pseudo-ground-truth, which is sub-
sequently used for an additional loss LCE(x

j
t ,P(xj

t )).
In WDA, we have additional information about the pres-

ence and absence of classes in the target domain image xj
t

through image-level labels ljt . Inspired by the idea of pseudo-
label filtering (PLF) from semi-weakly supervised learning
in [9, 10], we can refine P(xj

t ) using ljt :

Pfilter(xj
t , l

j
t ) =

W,H∑
k,l=0

argmax
c

θseg(xj
t

⋆
)c,k,l · lct , (3)

where class predictions are multiplied with an indicator vari-
able lct which is zero if class c is absent and one otherwise.

In summary, we obtain the following StyleFilter loss:
LSF = LCE(x

i
s,m

i
s) + LCE(x

j
t ,Pfilter(xj

t

⋆
, ljt )) , where

we assumed for the ease of notation that each batch dur-
ing training consists of a single sample xi

s from the source
domain and a single sample xj

t from the target domain. A
visualization is also given in Figure 2. At inference time, we
use P(xt

⋆
) for unseen images xt.

Experimental setup: As a basis for our investigation, we
choose the OpenOrganelle dataset collection [11] of elec-
tron microscopy data containing different cells. Specifi-
cally, we chose the HELA-2 cell (2, 321 train images) as the
source domain and HELA-3 (1, 634 train images) as well as



HELA-2 → HELA-3
Method ex cell sp plas mem mito vesicle mvb lyso endo ret nucleus nuc env micro tub cytosol mean

Source-only 77.2 ±31.5 23.1 ±24.1 10.5 ±21.8 0.0 ±0.0 0.7 ±1.0 – 5.2 ±7.8 43.5 ±33.0 0.9 ±2.0 0.0 ±0.0 29.1 ±23.1 19.0 ±9.1

CUT [7] 55.8 ±32.2 26.3 ±22.1 56.9 ±24.4 3.8 ±4.1 2.5 ±2.5 – 45.2 ±13.6 50.3 ±15.8 13.5 ±13.2 0.1 ±0.1 60.6 ±20.5 31.5 ±8.7

Y-Net [3] 63.9 ±22.2 0.1 ±0.1 3.6 ±6.2 0.0 ±0.0 0.5 ±1.1 – 1.4 ±2.0 25.6 ±27.7 0.0 ±0.0 0.0 ±0.0 44.7 ±18.5 14.0 ±5.9

Paul et al. [5] 51.8 ±35.2 33.1 ±32.6 8.9 ±12.6 0.0 ±0.1 0.0 ±0.1 – 0.2 ±0.4 40.6 ±32.8 0.0 ±0.0 0.0 ±0.0 59.6 ±17.0 19.4 ±8.7

Paul et al. \ AdvL [5] 95.1 ±2.0 47.1 ±30.7 28.0 ±16.8 0.3 ±0.7 5.2 ±6.8 – 9.3 ±7.2 40.9 ±30.4 0.6 ±1.1 0.2 ±0.5 51.0 ±19.2 27.8 ±4.9

Paul et al. \ AdvL + CUT [5, 7] 81.3 ±8.1 29.9 ±10.3 56.0 ±27.1 11.8 ±10.3 11.1 ±8.2 – 43.2 ±14.7 28.6 ±25.7 3.4 ±5.3 0.5 ±1.0 69.4 ±13.1 33.5 ±9.3

StyleFilter \ CUT 90.8 ±8.3 2.0 ±4.5 6.7 ±13.1 0.0 ±0.0 0.4 ±0.5 – 11.6 ±16.5 64.9 ±31.6 6.4 ±13.2 0.0 ±0.0 73.5 ±13.9 25.6 ±6.2

StyleFilter (Ours) 93.0 ±5.6 29.0 ±25.8 68.0 ±15.3 7.6 ±7.6 7.1 ±6.2 – 47.1 ±9.5 42.7 ±19.2 10.1 ±11.3 0.0 ±0.0 77.3 ±14.1 38.2 ±8.1

Target-only 89.7 ±7.4 46.3 ±25.1 84.2 ±10.9 5.8 ±6.1 3.6±3.2 – 43.2 ±23.8 77.1 ±17.3 45.4 ±21.5 0.0 ±0.0 78.1 ±13.5 47.3 ±7.2

HELA-2 → MACROPHAGE-2
Source-only 61.9 ±22.9 0.0 ±0.0 – 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 0.2 ±0.4 1.2 ±1.3 – – 7.9 ±3.0

CUT [7] 18.2 ±21.0 0.2 ±0.2 – 0.1 ±0. 1.2 ±2.7 0.0 ±0.1 7.9 ±5.6 40.9 ±18.96 32.5 ±11.7 – – 12.6 ±3.7

Paul et al. \ AdvL + CUT [5, 7] 25.3 ±21.5 1.3 ±2.2 – 1.2 ±2.1 0.2 ±0.5 0.2 ±0.5 15.1 ±15.5 28.1 ±28.0 38.0 ±26.8 – – 13.7 ±8.6

StyleFilter (Ours) 17.2 ±9.4 0.9 ±0.5 – 1.5 ±2.3 0.4 ±0.5 0.9 ±1.3 10.3 ±12.6 42.8 ±18.9 39.7 ±24.3 – – 14.2 ±4.4

Target-only 92.2 ±6.5 20.0 ±9.7 – 0.5 ±0.9 1.3 ±2.7 37.4 ±28.7 10.5 ±12.6 36.9 ±15.2 47.2 ±20.9 – – 30.7 ±5.5

Table 1. Segmentation performance in DICE with standard deviation (best, runner up) for domain adaptation from HELA-2 to
HELA-3 and MACROPHAGE-2. CUT and Y-Net are UDA techniques; the remaining methods utilize image-level labels. The
symbols + and \ refer to either inclusion or exclusion of the corresponding components.

MACROPHAGE-2 (1, 482 train images) as target domains
to quantify the degree of domain shift between them. We
follow the evaluation protocol of Reiß et al. [9] and use
the same merged classes and the first five cross-validation
splits for our domain adaptation experiments. The classes
of HELA-2 are a superset of the present classes in HELA-3
and MACROPHAGE-2, which results in a partial domain
adaptation setting [1]. Therefore, in the evaluations, lyso is
excluded for HELA-2 → HELA-3 and mito, micro tub, and
cytosol are excluded for HELA-2 → MACROPHAGE-2.

The lower bound of our adaptation scenarios are source-
only models, which are trained on source data and evaluated
on target domain test sets without any adaptation. An up-
per bound is fully supervised training using only target train-
ing data with pixel-wise annotations and evaluating on tar-
get domain test data. The difference in performance between
source-only and target-only models indicates the strength of
the gap between the source and target domain. We measure
segmentation accuracy on the target domain via DICE score,
averaged over five cross-validation splits. For all experiments,
two 11GB NVIDIA RTX 2080 Ti GPUs are used for training.
The baseline Paul et al. [5] takes the longest to train, which
amounts to a wall-clock training time of close to 2 days.
Implementation details: As segmentation architecture, we
use Unet [12] as today’s standard model in biomedical im-
age segmentation. During training, we pad all images to the
maximum size of 500× 500, rotate them by multiples of 90◦,
and apply Gaussian noise and color jittering for augmenta-
tion. We pre-train on source data for 100 epochs. We use the
AdamW optimizer with a momentum term of 0.9, a constant
learning rate of 0.0001, and a weight decay of 0.01. We then
successively train the adaptation to the target domain for an-
other 100 epochs. Batches of size two with one source and
one target image are used. Every five epochs, we evaluate the
model on the validation set, select the best validation model

after training, and finally evaluate it on the test set.
We compare our approach with the following baselines:

CUT [7] refers to style transfer from the target domain to
source, Y-Net [3] refers to a network trained through self-
supervised image reconstruction in the target domain and su-
pervised training in source. Paul et al. refers to the domain
adaptation approach as presented in [5] which includes an ad-
versarial learning- (AdvL) and a classification branch. The
addition of ‘\ AdvL’ refers to variants of Paul et al. that do
not use adversarial learning while ‘\ CUT’ indicates that the
style transfer component is not applied.

3. RESULTS
Quantitative results: In Table 1, we report the segmenta-
tion results of different adaptation strategies on cell organelle
segmentation. When adapting from HELA-2 to HELA-3, the
domain gap is 28.3% and for HELA-2 to MACROPHAGE-2
22.8%. Simply applying the CUT style transfer to the target
domain test images before passing them to the source-only
model massively improves the DICE score from 19.0% to
31.5%, showing the efficacy of this adaptation strategy. In-
terestingly, this simple baseline already outperforms the so-
phisticated Y-Net, which adds a self-supervised reconstruc-
tion loss in the target domain, as well as the full setup of
Paul et al. even though it utilizes image-level labels in the
target domain through a classification branch and adversar-
ial learning. Surprisingly, omitting the adversarial loss from
it and only training with the classification branch (Paul et
al. \ AdvL) improves the results to 27.8%. While it is still
inferior to the simple style-transfer baseline CUT. Combining
both ideas (Paul et al. \ AdvL + CUT) improves the DICE
score over CUT’s performance to 33.5%. Hence, this im-
provement of +2.0% is brought by the added image-level
labels. We further observe that inferring a segmentation in
the original target domain with a StyleFilter-trained model di-
rectly is not successful (StyleFilter \ CUT). In contrast, infer-



Input Input + CUT [7] Source-only CUT [7] Paul et al. \ AdvL+CUT StyleFilter (Ours) Target-only Ground Truth

Fig. 3. Qualitative results for HELA-2 → HELA-3 domain adaptation. The source-only lower bound fails in segmenting the
image; only after applying techniques that utilize style transfer the results noticeably improve. The symbols + and \ refer to
either inclusion or exclusion of the corresponding components. Best viewed in color and by zooming in.

ring the segmentation on the target to source style-transferred
images leads to an increased performance of 38.2%, as Style-
Filter was trained with the style transfer module as an integral
part. Compared to the best UDA approach, StyleFilter adds
+6.7% in DICE due to the effective utilization of image-level
labels, narrowing down the domain gap from 13.8% to 9.1%.

Is style-transfer-based adaptation the definitive way to
go for electron microscopy imagery? The HELA-2 and
MACROPHAGE-2 datasets are arguably visually more dis-
similar to each other. We also observe from quantitative
results in the lower part of Table 1 that if the style transfer
between the domains is harder to learn, then the benefit for
segmentation performance also decreases. Hence, no benefit
can be expected from StyleFilter in cases of strongly different
domains, which can be viewed as a limitation of the approach.
Qualitative results We finally inspect the drastic effect of the
domain gap from HELA-2 → HELA-3 and the effect of adap-
tation in Figure 3, where the source-only baseline fails com-
pletely. Interestingly, although the input image and its style-
transferred variant look similar to the human eye, they lead to
a starkly different segmentation. Clearly, adaptation strategies
help to predict a reasonable segmentation of cell organelles.

4. DISCUSSION AND CONCLUSION
Since hardware and sample types vary heavily between mi-
croscopy applications, analysis algorithms need to be adapt-
able between tasks to reuse gathered annotations as efficiently
as possible. We therefore investigated how state-of-the-art
domain adaptation methods which were developed for street
scene applications help in microscopy applications. To our
surprise, we found that some methods barely surpass source-
only performance, but applying unpaired image translation
improved existing methods notably. We finally introduced
StyleFilter, a WDA strategy that combined image transla-
tion with pseudo-label filtering and found consistent gains in
adaption performance. Successfully adapting across visually
different domains remains an open challenge.
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