
Distributed Asynchronous Event
Relaying for P2P Matrix

Master Thesis
by

Benjamin Schichtholz

at the Institute of Telematics
Department of Informatics

First Examiner: Prof. Dr. Martina Zitterbart
Second Examiner: Prof. Dr. Hannes Hartenstein
Supervisor: PD Dr.-Ing. Roland Bless

Processing Time: 15. January 2024 - 15. July 2024





Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und keine an-
deren als die angegebenen Quellen und Hilfsmittel benutzt, die wörtlich oder inhaltlich
übernommenen Stellen als solche kenntlich gemacht und die Satzung des KIT zur
Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet habe.

Die veröffentlichte Version dieser Arbeit enthält im Vergleich zur eingereichten Fassung
einige Korrekturen in Rechtschreibung und Grammatik.

Karlsruhe, den 15. Juli 2024







Contents

1. Introduction
1.1 Problem Formulation   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2
1.2 Outline   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2

2. Background
2.1 Matrix   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3

2.1.1 Protocol Background   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4
2.1.2 DAG and Room State   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 6
2.1.3 Access Control   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8

2.2 Peer-to-Peer Networks   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8
2.3 Peer-to-Peer Matrix   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9

2.3.1 Motivation   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 10
2.3.2 Existing Implementations   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 10

3. Analysis
3.1 Problem Statement   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 13
3.2 Assumptions on P2P Matrix   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 16
3.3 Requirements   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 17
3.4 Solution Approaches   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 19

3.4.1 Relay Functionality Placement   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 19
3.4.2 Event Graph Storage   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 20
3.4.3 Relay Integration into Matrix Protocol   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 22
3.4.4 Privileges for Room Relay Management   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 22
3.4.5 Peer-to-Relay Relation   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 23
3.4.6 Forwarding Events to Relays   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 24

3.5 Differences to Federated Matrix   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 26
3.6 Solution Approaches in Related Work   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 27

3.6.1 Relay Functionality   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 27
3.6.2 Nostr   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 27
3.6.3 Scuttlebutt   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 28
3.6.4 Asynchronous Mobile Peer-to-peer Relay   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 29
3.6.5 Wesh Protocol   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 29
3.6.6 Dendrite Relay API   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 29
3.6.7 Briar   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 30
3.6.8 Comparison   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 30

3.7 Summary   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 33



4. Design
4.1 High-Level Overview   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 35
4.2 Relay Design   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 37

4.2.1 Relay Overview   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 37
4.2.2 AuthDAG   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 38
4.2.3 Event Cache   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 39
4.2.4 Relay Functionality   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 40

4.3 Peer Design   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 43
4.3.1 Peer Overview   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 44
4.3.2 Peer Functionality   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 44

4.4 Use Cases   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 46
4.4.1 Add Relay Process   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 46
4.4.2 Room Join   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 47
4.4.3 Relayless Peers   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 47

4.5 Summary   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 48

5. Implementation
5.1 Existing Implementations   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 49

5.1.1 Analysis of Existing Approaches   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 49
5.1.2 Dendrite   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 50
5.1.3 Dendrite-Demo-Pinecone   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 51

5.2 Overview   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 52
5.3 Relay Functionality   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 53

5.3.1 AuthDAG   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 54
5.3.2 Event Cache   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 54
5.3.3 Receive Events   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 56
5.3.4 Receive Resync Request   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 56

5.4 Peer Functionality   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 57
5.4.1 Relay Selection   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 57
5.4.2 Send Event   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 57
5.4.3 Make Resync Request   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 58

5.5 Summary   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 58

6. Evaluation
6.1 Evaluation Setup   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 59

6.1.1 Overview   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 59
6.1.2 Traffic Generator   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 60
6.1.3 Docker Network   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 62
6.1.4 Logging   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 62
6.1.5 Configuration Files   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 63
6.1.6 Experiment Process   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 64

6.2 Performance Evaluation Traffic   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 64
6.2.1 Overview   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 65
6.2.2 Online Margins   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 65
6.2.3 Applying Online Margins to Dataset   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 67
6.2.4 Data Selection   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 68

6.3 Evaluation Overview   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 69
6.4 Functional Evaluation   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 71



6.4.1 Asynchronous Delivery: Minimal Setup   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 72
6.4.2 Asynchronous Delivery in Larger Rooms   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 73
6.4.3 ASAP Delivery   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 74
6.4.4 Resync with Since Parameter   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 74
6.4.5 Resync with Different Relays   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 75
6.4.6 AuthDAG: Access Control   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 76

6.5 Performance Evaluation   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 77
6.5.1 Events Not Delivered to Any Peer   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 78
6.5.2 Event Delivery Time to any First Peer   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 80
6.5.3 Online Periods without Receiving Events   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 83
6.5.4 Reception Time after Returning Online   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 84

6.6 Summary   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 86

7. Conclusion and Future Work

Bibliography

A. Appendix
A.1. Evaluation Setup   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 95
A.2. Functional Evaluation Log Tables   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 96
A.3. Performance Evaluation Plots   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 98



1. Introduction

Instant messaging applications are frequently used in modern life [1], not only for pri-
vate communication, but also for institutions such as companies, governments, NGOs,
military organizations and secret services [2], [3]. As the usage of these applications in-
creases, security requirements become more critical. Heavily-frequented platforms and
instant messaging applications are targeted by various attackers that try to compromise
confidentiality, integrity or availability. Today, end-to-end encryption is a basic require-
ment for any instant messaging application as it ensures confidentiality of message
contents. While integrity can also be achieved by various cryptographic means, e.g.,
message authentication codes or digital signatures, availability poses a regular threat
to services. Architecturally centralized architectures are especially prone to attacks tar-
geting availability, if no additional defense mechanisms are established. To avoid such
a single point of failures, some systems are designed as decentralized systems. While
decentralization can also refer to logical or political decentralization, architectural de-
centralization inherently has advantages in respect to availability, since the effect of a
node’s failure can be mitigated by using a different node.

Matrix is an architecturally decentralized protocol used for instant messaging applica-
tions. It’s federated architecture has similarities with the E-Mail architecture, users ex-
change messages, known as events in Matrix, with a homeserver, and the homeservers
in turn forward these messages between each other. A distributed, logically centralized
data structure is used to store messages and state related to groups, known as rooms in
Matrix. This data structure is known as the DAG, a directed acyclic graph, inspired by the
Git graph, is used to handle inconsistencies between replicas, and also allows resolving
these inconsistencies. Despite its decentralized architecture, the current protocol faces
challenges regarding centralization. As demonstrated by [4], the convergence of many
users on a single large homeserver results in excessive network load on that homeserver,
creating a single point of failure and highlighting the lack of scalability in the dissemi-
nation mechanism between homeservers.

To address these problems, a next step in the evolution of the Matrix protocol has been
proposed: Transforming Matrix into a P2P architecture. First experiments for P2P Matrix
have already been conducted, but the P2P version is yet to experience a large-scale de-
ployment, as several open challenges remain, such as multi-homed user accounts across



2 1. Introduction

homeservers, developing an efficient underlying P2P network or establishing trust be-
tween peers in a decentralized way.

1.1 Problem Formulation
This thesis seeks to provide a solution to one of the open challenges for P2P Matrix, i.e.,
asynchronous delivery. In the current P2P Matrix implementations, peers are required to
be online at the same time in order to exchange events. When a peer attempts to send a
message to another peer that is offline, the sending peer must wait and re-send the mes-
sage later when both peers are online at the same time. A system providing asynchro-
nous delivery would allow peers to exchange events independently from their online
state. However, this property requires the event to be stored temporarily somewhere
in between the sending and receiving point in time, when both peers are offline. This
thesis should discover and design a solution to this problem of providing asynchronous
delivery for P2P Matrix.

1.2 Outline
The remainder of this work is structured as follows. Section 2 provides an overview of
the Matrix Protocol, P2P networks, and the existing P2P Matrix implementations, which
are essential for understanding the content of the subsequent chapters. Section 3 be-
gins with a detailed problem statement, including a formalized definition of asynchro-
nous delivery. It then establishes assumptions on the underlying Matrix P2P network,
and presents the functional and qualitative requirements to the solution. Different solu-
tions approaches of related work are discussed, and the differences between relays and
homeservers are analysed. Section 4 describes the solution design intended to fulfill the
requirements from the previous section. The proof-of-concept implementation is pre-
sented in Section 5. Section 6 covers the evaluation setup, the required evaluation traffic,
and includes both functional and performance evaluations of the implementation. The
functional evaluation verifies the correctness of the solution, whereas the performance
evaluation compares different metrics regarding the solution of relay-enhanced P2P Ma-
trix (P2PR) with pure P2P Matrix (P2P).



2. Background

This chapter describes fundamental concepts essential to understanding the problem of
the thesis. The first section provides a detailed overview of the Matrix architecture and
the Matrix protocol. After that, basic concepts of peer-to-peer (P2P) communication are
discussed. The final section presents existing solutions and concepts for P2P Matrix.

2.1 Matrix
Matrix is a decentralized publish-subscribe middleware for real-time communication.
The decentralized, interoperable messaging platform has gained a user group of over
100 million users [5] and is deployed by different governments, universities, security
services, and military organizations [2]. The mission of Matrix is to provide an open
real-time communication layer for the open web, where conversations are replicated,
users freely choose software implementing the protocol, and users are able to connect
to users of other services via the interoperable Matrix protocol.

Figure 1:  Matrix Federation per Room. The Matrix room is synchronized across three
homeservers and has six member users.

The Matrix architecture comprises users and homeservers, as shown in Figure 1. Users
can have several devices, on which different clients can be run. To register, Matrix users
have to select a homeserver. The domain name of the selected homeserver is part of
the user identifier, in the format @username:domain. The homeserver also authenticates



4 2. Background

the user with a configurable authentication type, e.g., password. After registering, users
can become members of rooms. Homeservers store all room information in the directed
acyclic graph (DAG), which contains the entire room state and messages sent in a room.
The DAG is replicated among homeservers holding members of the room and allows
homeservers to eventually converge to the same room state (strong eventual consis-
tency). Within a room, users can exchange events, that represent a certain user action,
e.g., sending messages or changing the room name. Event contents of room events can be
configured to be end-to-end-encrypted per room. Matrix employs a level- and attribute-
based access control by assigning users to power levels, while sending different events
requires different power levels.

Figure 2 depicts the information flow in a Matrix room. Alice sends an event 𝛽 to her
homeserver (1), after which the homeserver appends it to the previous event 𝛼 (2). A
concurrent event 𝛾 arrives and the DAG of Alice’s homeserver forks into two branches
(2), which can be merged later. Alice’s homeserver sends the DAG operation (3) to all
other homeservers, in this case only to the other homeserver. Bob’s homeserver appends
the event 𝛽 to its DAG (4) and forwards it to Bob (5).

Figure 2:  Matrix Event Flow. Alice and Bob are members of the same room. Alice sends
an event 𝛽 in the room.

2.1.1 Protocol Background
The Matrix protocol adheres to the publish-subscribe architecture, that allows scalabil-
ity in the number of users by decoupling publishers and subscribers along three dimen-
sions: Space, time and synchronization [6]. Space decoupling means peers do not have to
know each other, which the Matrix protocol achieves by having the user send events
to and receive events from only one homeserver. Time decoupling means peers do not
need to communicate at the same time, which the Matrix protocol achieves by having
the homeservers online and storing the full DAG, containing the entire room history.
Synchronization decoupling means that publishers are not blocked while publishing and
subscribers are notified asynchronously. Matrix achieves synchronization decoupling,



Protocol Background 5

because the DAG allows concurrent publishing on events and homeservers notify mem-
bers on new incoming events. There are different kinds of publish subscribe, which dif-
fer on how exchanged information is structured between publishers and subscribers:
Content-based, topic-based or type-based [6]. Matrix is a topic-based publish-subscribe
system, because events are organized around rooms (i.e., topics), to which users can be-
come members of (i.e., subscribe to).

Matrix is subject to the CAP theorem [7], which captures a fundamental trade-off for
distributed systems. It argues that it is impossible for such a service to fulfill three prop-
erties at the same time: Consistency, Availability and Partition-tolerance. Only two of
these properties can be fulfilled at the same time. If a system is partition-tolerant, the
trade-off between consistency and availability remains. However, this does not mean a
system designer has to make an absolute choice between consistency and availability.
Some mechanisms allow different partitions to temporarily have different states (i.e.,
inconsistency), but allow an automatic merge of state after the system is not partitioned
any longer [8]. Conflict-free replicated data types allow conflict resolution and favor
availability under system partition, but forfeit consensus – the strongest notion of con-
sistency. While in state-based CRDTs system nodes exchange states between each other,
in operation-based CRDTs system nodes exchange operations. The Matrix DAG has been
shown to be an operation-based CRDT and therefore provides a weaker notion of con-
sistency, i.e., strong eventual consistency [9]. Strong eventual consistency allows repli-
cas to eventually converge to the same state if the same updates are eventually applied
to each replica [10]. Therefore, Matrix provides availability under system partition, re-
sulting in the possibility of partitions having different states, where the strong eventual
consistency property allows these states to be merged at some future point in time.

Distributed systems such as Matrix have a certain timing model, which captures the
system behavior regarding time. While some systems require upper bounds on com-
munication and processing delays, others can work without such assumptions. Three
different timing models are discussed here: Asynchronous, synchronous, and partially
synchronous. Asynchronous systems make no timing assumptions about system nodes
and links, there are no upper delays. A system node cannot determine if a message has
been lost or if whether is still in transit. To establish an order relation between messages,
the concept of logical time is used. Logical time is the time relative to communication
activity and can be measured with logical clocks. Logical clocks capture the causal rela-
tionship between messages, where a total order can be established between non-concur-
rent messages, but not between concurrent messages. However, some systems require
timing assumptions, as consensus is impossible to solve in asynchronous systems. Syn-
chronous systems can describe three aspects of synchronization: Synchronous compu-
tation, synchronous communication and synchronous physical clocks. In synchronous
computation, there is a known upper bound on processing delays of system nodes. In
synchronous communication, there is a known upper bound on message transmission
delays. With synchronous physical clocks, every process is equipped with a local phys-
ical clock with a known upper bound on the deviation rate from a global clock, which is
an abstraction holding real time. Partially synchronous systems combine asynchronous
and synchronous system properties. Upper bounds on physical time hold most of the
time, but in some phases the system is asynchronous, where the upper bounds do not
hold. Matrix is in the asynchronous timing model, because there are no upper bounds
on delays and logical time is used for events. The DAG provides a causal relationship
between events, because each event references the previous event(s). This causal rela-



6 2. Background

tionship establishes a total order for non-concurrent events, and an arbitrary order for
concurrent events.

2.1.2 DAG and Room State
The directed acyclic graph [11] is an append-only, per-room data structure that is man-
aged by homeservers. By replicating the DAG between homeservers, there is no single
point of control over the room. Matrix homeservers work together in federation, which
means that the DAG is synchronized between homeservers. As the DAG is an operation-
based CRDT, homeservers synchronize by exchanging operations on the DAG between
each other, as shown in Figure 2. Each node in the DAG is an event and the partial DAG
orders these events, resulting in a chronological ordering of events. These events refer-
ence previous events, known as parent events. An event can have either zero, one or
multiple parents. There is only one event in the DAG that has zero parents, the room
creation event. If an event has one parent, the parent event took place before the event.
It is also possible for events to have multiple parents. When some events have multiple
successor events, i.e., concurrent events, the DAG forks into different branches. Concur-
rent events occur when a homeserver propagates an event while another event sharing
the same parent is still underway, resulting in both events sharing the same parent. The
event taking place after all the latest concurrent events merges those together, resulting
in those events having multiple parents.

There are two kinds of events, message events and state events [11]. Message events
represent various communication activities, e.g., instant messages. State events update
the room state. The room state includes the room alias, join rules, per-user membership
status and power-level information. The room alias is mostly used as a human-readable
room name, that can be used as an alternative to the unique room identifier, and the
alias maps to the room identifier. A room can have different join rules, that represent
different usage types of a room, i.e., a room with the join rule public allows any user to
join the room, while a room with the join rule invite requires the joining user to be in-
vited in order to join the room. The power-level information includes both the required
power levels to perform certain events and user-specific power levels. This authoriza-
tion information is used in the Matrix access control mechanism, as described in Sec-
tion 2.1.3. The room state is an abstract key-value lookup table, that contains persistent
information related to a room. The key is a tuple of event type and state key. The event
type describes which property of the room state is changed, e.g., m.room.name changes
the room’s name. The state key provides additional information with the event type,
e.g., the m.room.member event type requires the user identifier. Room state values are
therefore stored in the mapping (event type, state key) → value. The Matrix property
availability under partition requires homeservers to independently work out the room
state. Conflicting states can occur if different events describe the same state.

In order to resolve state conflicts, Matrix uses a state resolution algorithm [12], [13].
Homeservers have to eventually converge to the same room state, so that users have
a consistent view of the room. Homeservers have to follow the same state resolution
algorithm, so that they can resolve conflicts independently. A consistent room state can
be achieved by establishing a total order on state events. The state resolution algorithm
follows two principles to establish a total order on conflicting events. Firstly, events
sent by users with higher power levels are favored over those with lower power lev-
els. Secondly, earlier events are favored over later ones. The overall goal of the state



DAG and Room State 7

resolution algorithm is to generate an unconflicted output from a conflicted input. The
DAG is forked when a network is partitioned and homeservers cannot synchronize their
states. A conflicted state can occur in two ways. Either equivalent key tuples have dif-
ferent values in each fork, or the value of a key tuple is modified in only one fork. The
state resolution algorithm resolves conflicted state by totally ordering state events for
authentication events (i.e., power events).

Figure 3:  Matrix State Resolution Graph. In the first fork, Alice’s room name event is
accepted, because her power level is higher than Bob’s. In the second fork, both events

are accepted, as they change different room states and both are authorized.

Figure 3 shows the state resolution graph, including both edges to previous events as
well as edges to authorization events, that are events justifying why an event is allowed
to be sent. An auth chain is built by constructing the set of auth events, and adding
their auth events recursively [14]. All events have the create event as an authorization
event. To make the figure more readable, the authorization event arrows to the create
room event are omitted for Bob’s events. In the first fork, both Alice and Bob have state
events changing an equivalent key, i.e., the room name. Therefore, the two state events
are conflicted. The authorization chain for Bob consists of the join event, the invite event
and the create room event. Since in both forks equivalent key tuples (Room Name) have
different values, the state has to be resolved. Alice’s state event is accepted, since her
power level is higher than Bob’s. Alice’s power level is higher than Bob’s, because by



8 2. Background

default the room creator is assigned a power level of 100, while joining users are as-
signed a power level of 0 [15]. The second fork has values of key tuples in only one fork.
Therefore, the two state events are unconflicted. Alice’s auth chain authorizes her to
change the room topic, and thus her event is accepted. Bob’s auth chain for the invite
event is also valid. Both state events of the second fork are accepted and ordered. If one
of the events is closer to the last power level event in the respective auth chain, this
event precedes the other. In the example, both state events share the same last power
level event, i.e., the create room event. In that case, the events are ordered first by their
timestamp, then by their event ID.

2.1.3 Access Control
Matrix has an access control mechanism based on an eventually consistent partial order
without finality and without a consensus algorithm [16]. The eventual consistent par-
tial order is derived from the DAG, where relevant access control information is stored.
Matrix employs a level-based access control, which is enhanced by attributes [16]. Priv-
ileges of room members are defined by power levels. These power levels define the room
hierarchy and can be configured by authorized users, otherwise default values are used
[17]. For example, room creators get the power level 100, while other joining users get
the power level 0. Unauthorized events, i.e., events where the sending user’s power level
does not suffice, are declined by homeservers. Power levels are stored in the DAG as
state events and have their own event type [18]. The power level event type can be used
to assign power levels to users or to configure the required power levels for events. At-
tributes make the access control mechanism more expressive, e.g., a user membership
can have different attributes such as unrelated, knocking, invited, joined or banned. Such
membership attributes can be used to enforce policies, e.g., only allow joined members
to read events.

Permissions in Matrix can be distinguished into two types, read and write permissions.
The read permission determines whether users are allowed to query previously pub-
lished events. Users are granted the read permission implicitly if they are members of
the room. The write permission determines whether users are allowed to send events
in a room, resulting in the event being appended to the DAG. Users are granted the
write permission on a more fine-grained level compared to the read permission, because
granting the permission depends on the configured per-event power level and the user’s
current power level. For example, only users with a certain power level can invite other
users to the room. Overall, power levels apply to the write permission while the read
permission only depends on the membership [16].

2.2 Peer-to-Peer Networks
Peer-to-peer (P2P) networks follow a different paradigm than client/server. In the client/
server paradigm, servers provide resources and clients use the resources, resulting in
a distinct separation of concerns. However, the paradigm has drawbacks. Firstly, the
server is a single point of failure. If the server fails, the resources cannot be provided
to the clients. Secondly, required resources increase with the number of users, but the
server has only limited resources. In P2P networks, a participant (peer) acts as both
server and client. There is no single point of failure, because if a peer fails, the service



can be provided by another peer. Also P2P is more scalable than the client/server para-
digm, because resources provided increase with the number of users.

Figure 4 shows the architectural difference between client/server (a) and P2P (b). While
in the client/server architecture clients retrieve resources from a server, in P2P peers act
as both server and client. Also, peers can establish connections with each other without
requiring a central server as an intermediary.

Whether peers are connected to all others or only a subset of peers, depends on the
specific P2P architecture.

Figure 4:  Client/Server vs. Peer-to-Peer

P2P networks are a subset of distributed systems. A distributed system is a collection of
autonomous computing elements that appears to its users as a single coherent system [19].
Even though network nodes make independent decisions, they have to collaborate in
order to appear as a single system. A distributed system is called P2P, if peers share part
of their own resources, those resources are necessary to provide the service offered by
the network, those resources are accessible by other peers, and peers are both resource
providers and resource requesters [20]. Also, peers form a self-organized system that
comprises dynamic task distribution between peers and common service provisioning.
The fundamental aspect of P2P is that peers combine client and server functionality.
There are various kinds of P2P systems, that integrate centralized services into the P2P
architecture in different ways. In pure P2P, only peers and no central entities are allowed.
Any arbitrarily chosen peer can be removed from the network without diminishing the
overall system’s availability. An example for a pure P2P system is Gnutella, where peers
can retrieve files from other peers by querying files from neighbors, who in turn for-
ward those queries to their neighbors [21]. In hybrid P2P, a central entity is necessary
to provide parts of the offered network service. An example for a hybrid P2P system is
Napster, where centralized servers index files and monitor the state of each peer [22].

2.3 Peer-to-Peer Matrix
Matrix with homeservers comes with a number of challenges, which arise both from
the conceptual level and from observations on the Matrix network. Peer-to-peer Matrix
seeks to address these challenges in order provide a more scalable and resilient system.
Section 2.3.1 discusses motivation and advantages for P2P Matrix, and which benefits
the new architecture provides compared to the federated architecture. Existing imple-
menations are presented in Section 2.3.2.



10 2. Background

2.3.1 Motivation
Homeservers are a single point of failure from a per-user perspective, because a user
can only participate in Matrix rooms if the user’s homeserver is available. User accounts
are bound to the homeserver, as the homeserver’s domain name is part of the user
identifier. Currently, Matrix does not support user accounts with multiple homeservers,
even though solution approaches are being discussed [23]. Also, the user is assumed to
trust the homeserver, because the homeserver has access to the user’s metadata, such
as membership information and traffic patterns. It has been shown in [4], that users are
accumulated on few large servers, i.e., 1% of the homeservers with the highest number of
users hold 87% of the users that were found in the study. This also leads to network load
centralization in the sending process, because events generated on large homeservers
have to be distributed to many small homeservers. The load centralization poses the scal-
ability issue in a room of 𝑛 homeservers, that a homeserver requires 𝑛 − 1 connections
to other homeservers per room, because the few large homeservers currently establish
multiple unicast connections to every other homeserver in the room. If there are few
large homeservers with many users, the probability of a user belonging to one of these
few homeservers is higher compared to an even user-homeserver distribution. When a
room consists of users from only one homeserver, the room DAG is stored only at one
homeserver, and is not replicated to other homeservers. The lack of replicating the DAG
takes away the advantages of decentralization and results in homeservers being a single
point of failure in rooms with one homeserver only. Forwarding events to and between
homeservers can lead to inefficient network paths, as the indirection to homeservers is
always taken regardless of the shortest path between devices.

P2P Matrix addresses these challenges by removing the need of homeservers and allow-
ing direct connections between devices. Because users are autonomous and do not re-
quire a homeserver, they have no single point of failure. Also, the process of joining the
Matrix network is simpler, since new users are no longer required to select a homeserver
upon registration. The lack of intermediary homeservers also avoids unintentional cen-
tralization. The DAG is fully owned by the peers, so that no other nodes can retrieve
DAG-related room metadata. Efficient network paths can be established in P2P Matrix
with direct connections between devices, even though direct connectivity can be lim-
ited, in some cases requiring indirect routes via other peers.

2.3.2 Existing Implementations
There have been various experimental P2P implementations for Matrix, all of which
have a peer running a local homeserver in common. Having a peer run a homeserver lo-
cally leverages existing progress of the Matrix protocol and minimizes possible protocol
changes for P2P Matrix. So far, Dendrite [24], a memory-efficient, reliable and scalable
homeserver implementation, has been used in experimental P2P setups. Three of the
existing P2P implementations are discussed in the following: Matrix-over-libp2p, Ma-
trix-over-Yggdrasil, Pinecone.

Matrix-over-libp2p is a proof-of-concept implementation to connect client-side run
homeservers using libp2p, a modular system of protocols, specifications and libraries
that enable the development of peer-to-peer network applications [25]. The experiment
supports local discovery of peers on the same network using multicast and global dis-
covery of peers over the Internet using a centralized libp2p rendezvous server that acts



Existing Implementations 11

as a traffic relay. This implementation has the major disadvantage that all traffic between
peers connected through the Internet goes through the same rendezvous server.

Matrix-over-Yggdrasil also supports local discovery of peers, and replaces the libp2p ren-
dezvous server with the global Yggdrasil network. Yggdrasil is a largely self-arranging,
mostly self-healing and structured overlay P2P network [26]. A spanning tree is used as
overlay topology. All peers with multiple connections to other peers forward messages
on behalf of other peers. Peers have an identifier and a coordinate. The identifier is the
hash of the peer’s public key and is independent of the node’s position in the spanning
tree. The coordinate of a peer is a locator and depends on the path from the root node
to the peer in the spanning tree. A mapping from identifier to coordinate is stored in a
DHT. The root node is chosen based on the public key and periodically sends advertise-
ments, that are forwarded through the whole network. A peer wanting to send a mes-
sage to another peer has to look up the destination peer’s coordinate in the DHT with a
given identifier. Then, the peer sends the message to other peers that take it closer to the
destination coordinate. Forwarding peers only know the coordinates when forwarding
messages. A problem of Yggdrasil is that the network is fragile to topology changes. If a
parent node fails, the child coordinate changes as the path to the root is different. Thus,
root node failure causes a change of coordinates for all other peers.

Pinecone [27] is the latest P2P Matrix implementation. It is inspired by Yggdrasil and
combines two network topologies to build an efficient and scalable overlay network. The
two topologies are a spanning tree and a virtual snake. The spanning tree is similar to the
Yggdrasil spanning tree, as coordinates describe the peer location in the spanning tree.
While using spanning tree routing would allow every peer in the network to reach one
another, root node failure would result in temporary disruption because all peers obtain
new coordinates. In order to mitigate this disruption, Pinecone introduces the virtual
snake. The virtual snake arranges all peers into a line, so that every peer is connected to
the peer with the next closest lower public key. Pinecone uses both spanning tree and
virtual snake for routing. In the bootstrapping period, neighboring nodes in the virtual
snake exchange bootstrap messages to discover each other. Because bootstrap messages
are exchanged via the spanning tree, all nodes on the path between neighbors in the
virtual snake can add nodes from the bootstrap message to their routing table. Each peer
has a routing table containing a list of peers and the public key of the next peer towards
the destination, and a forwarding table containing public keys and their corresponding
port. Pinecone is used for the two P2P Matrix demos for Android and iOS [28], [29].



12 2. Background



3. Analysis

This chapter analyses the problem of asynchronous delivery in Peer-to-Peer (P2P) Ma-
trix. First, Section 3.1 provides a detailed problem analysis, explains the notion of asyn-
chronous and as-soon-as-possible (ASAP) delivery for P2P Matrix, and motivates the
use of relays. Then, since P2P Matrix is a work in progress, Section 3.2 specifies assump-
tions regarding the P2P Matrix architecture, upon which the functionality of asynchro-
nous delivery is built. Section 3.3 derives functional and qualitative requirements from
problem statement and scenario definition. Section 3.4 describes and compares different
solution approaches, while taking the previously defined requirements into account. To
clarify the differences between a relay-enhanced P2P solution and federated Matrix, Sec-
tion  3.5 compares various aspects between the two architectures. Section  3.6 shows
which functionality relays provide in related work and gives a selective overview of ex-
isting distributed systems that make use of relays.

3.1 Problem Statement
A problem of P2P Matrix is that peers wanting to exchange events have to be online
simultaneously. To have a consistent terminology and to abstract from the concrete P2P
network, the P2P distribution network describes the network of online peers. While on-
line peers can exchange events via the P2P distribution network, peers that are offline
at different times cannot exchange events. If for example, in P2P Matrix a room consists
of two users, user a sends an event while user b is offline, when user b comes online
later, he/she can only receive the event if user a re-sends the event while being online at
the same time as user b. In contrast, Federated Matrix allows users to be online at differ-
ent times, because homeservers are assumed to be online and store events on behalf of
users. Also, Matrix users obtain previously exchanged room events from the homeserver
as soon as they come online. Federated Matrix therefore allows events to be delivered
asynchronously and ASAP (as soon as possible). The notions of asynchronous delivery
and ASAP delivery are defined in the following.



14 3. Analysis

Asynchronous ASAP Delivery

System Model. Given a set of processes 𝑃 , that digitally represent Matrix users in the
same room, all processes can exchange events using a reliable, instantaneous channel.
A global state set in-transit consists of all sent events that are in transit. Each process
runs a state machine comprising the online state and the two state transitions send
and receive. A process can call send to transmit an event to all processes in 𝑃 , while
receive is triggered at a process when an event arrives. Both transitions can only be
triggered at a process 𝑝 and time 𝑡 when precondition is fulfilled, i.e., the state of 𝑝
is online at 𝑡. Each transition is completed at a discrete point in time t. The system
model is summarized in the following.
Global State and Functions

• Set of processes 𝑃
• State set in-transit,

initially: in-transit = ∅
• Execute transition at time 𝑡:

[transition]𝑡 → {true, false}
• State at time 𝑡:

[state]𝑡 → {true, false}

Process 𝑝 ∈ 𝑃

state 𝑝.online = {true, false}
transition 𝑝.send(𝑒)

Precondition: 𝑝.online = true
in-transit = in-transit ∪ {𝑒}

transition 𝑝.receive(𝑒)
Precondition: 𝑝.online = true
Precondition: 𝑒 ∈ in-transit
get 𝑒 from in-transit

Definition: Asynchronous Delivery
In a system according to the model described, an event 𝑒 is asynchronously delivered
at 𝑡1 from a sender 𝑠 to a receiver 𝑟, if the following holds: If both conditions (1) and
(2) are true, 𝑟 receives event 𝑒 at the point in time after sending, when 𝑟 is back online.
The asynchronous sending condition (1) states that at 𝑡0, a sender 𝑠 sends the event
while the receiver 𝑟 is offline. The eventual asynchronous online state condition  (2)
states that at a later point in time 𝑡1, 𝑟 is online and 𝑠 is offline. An event is successfully
delivered asynchronously at 𝑡1, if providing both conditions are fulfilled, the receive
statement (3) is fulfilled, i.e., 𝑟 receives event 𝑒 at 𝑡1.
asyncDelivery(𝑒, 𝑡1) ≔

∃𝑠, 𝑟 ∈ 𝑃 :
∃𝑡0 : [𝑠.send(𝑒)]𝑡0

∧ [¬𝑟.online]𝑡0
(1)

𝑡1 > 𝑡0 ∧ [𝑟.online]𝑡1
∧ [¬𝑠.online] (2)

→
[𝑟.receive(𝑒)]𝑡1

(3)

Definition: ASAP Delivery
In a system according to the model described, an event 𝑒 is delivered as soon as possible
(ASAP) at 𝑡1, if it provides asynchronous delivery and 𝑡1 (i.e., the time of reception)
is a minimum in the set 𝑇 , containing all timestamps greater than 𝑡0 (i.e., the time of
sending), where the receiver is online and the sender is offline.

𝑇 = {𝑡𝑖 | 𝑡𝑖 > 𝑡0 ∧ [𝑟.online]𝑡𝑖
∧ [¬𝑠.online]𝑡𝑖

}

asapDelivery(𝑒, 𝑡1) ≔ asyncDelivery(𝑒, 𝑡1) ∧ (𝑡1 = min(𝑇 ))



Problem Statement 15

Asynchronous ASAP delivery incorporates two fundamental properties. First, sender
and receiver do not have to be simultaneously online and can exchange events asyn-
chronously. Second, the event is received directly when the receiver comes online, or (in
real-world systems) after a certain propagation delay, i.e., the event is delivered ASAP.
Figure 5 shows the relation between ASAP, asynchronous and synchronous delivery.
At 𝑡1, the event 𝛼 is delivered not only asynchronously, but also ASAP, because 𝑡1 is
the earliest point in time after sending, where the receiver is online, while the sender is
offline. In this example, according to the ASAP Delivery definition, 𝑇 = {𝑡1, …, 𝑡2, …}
and 𝑡1 = min(𝑇 ). At 𝑡2, the event 𝛼 is delivered asynchronously, but not ASAP because
𝑡2 ≠ min(𝑇 ). At 𝑡3, a different event 𝛽 is delivered synchronously, because sender and
receiver are simultaneously online.

Figure 5: ASAP vs. Asynchronous vs. Synchronous Delivery

P2P Matrix does not inherently provide asynchronous delivery. If all other users in a
room are offline, 𝑟 has to wait beyond 𝑡1 until 𝑟 and 𝑠 are online simultaneously and 
𝑠 re-sends the event. Federated Matrix provides asynchronous and ASAP delivery, be-
cause homeservers are assumed to be online, store events and deliver them to 𝑟 asyn-
chronously and as soon as possible.

In order to provide asynchronous, ASAP delivery for P2P Matrix, events have to be
buffered during the time of peers being offline, and forwarded as soon as they return
online. This buffer-and-forward concept is referred to as relaying mechanism and nodes
providing this mechanism are referred to as relays.

Using relays with a fixed peer-to-relay relation is not a useful option, because it would
have similar drawbacks as Federated Matrix, as described in Section 1. From an archi-
tectural point of view, there are different options to design such a relaying mechanism.

1. Peer devices act as relays
Devices of peers can perform the relaying mechanism for other peers. This so-
lution has two major drawbacks: (i) The relaying mechanism consumes already
limited computational and energy resources of the peers’ devices, which makes a
difference especially for mobile devices, and (ii) devices have high churn in Matrix,
which either decreases the probability of a relaying peer being online or induces a



16 3. Analysis

high network load and a high resource consumption at devices, if events are dis-
tributed multiple times among different devices.

2. Dedicated distributed relays
Several distributed and dedicated relays, of which at least a subset is assumed to be
online, can provide the relaying mechanism without having to require additional
resource consumption for peers or making the mechanism itself resilient towards
high peer churn. In contrast to the fixed relation between users and homeservers,
peers do not directly depend on relays and can still function without relays. Fur-
thermore, peers may switch between multiple relays in order to maintain a level
of metadata privacy, as explained below. Relays provide the relaying mechanism,
which allows asynchronous delivery of events between peers. If either all relays
are unavailable or peers choose to not use them, pure, relay-less P2P Matrix can
serve as a fallback mechanism that allows simultaneously online peers to exchange
events. Even though peers can in theory choose any relays, per-room policies can
constrain which relays are allowed to perform the relaying mechanism on behalf
of the room.

Although replication of the event graph to federated homeservers ensures a room’s re-
silience, it has the privacy drawback of disclosing metadata to every homeserver in a
room. As a result, metadata accumulates at homeservers over time [30]. Metadata can
include room metadata and network-level metadata. Room metadata consists of applica-
tion-level information about the room, which includes matrix IDs of every room mem-
ber, homeservers associated to user’s rooms and room IDs, as well as the time and sender
of room events. Network-level metadata includes information required to route packets
through the Internet, such as source and destination IP addresses, and traffic patterns,
like the communication time and frequency. By eliminating the use of homeservers, P2P
Matrix does not have the disadvantage of servers storing room metadata. However, re-
lays storing and forwarding events on behalf of peers over time re-introduces the risk
of metadata disclosure. Therefore, relay-enhanced P2P Matrix should provide a privacy-
enhancing solution where relays acquire at least less room metadata compared to home-
servers in federated Matrix.

Considering the drawbacks of the first option of peer devices acting as relays, the solu-
tion with dedicated distributed relays is pursued further in order to provide asynchro-
nous delivery for P2P Matrix. However, it is conceptually possible for peers to provide
the relaying mechanism as an additional service. Finally, this thesis seeks to provide
a solution to the following problems for P2P Matrix with dedicated distributed relays:
Asynchronous ASAP delivery and metadata privacy.

3.2 Assumptions on P2P Matrix
There is no consensus on the architecture of P2P Matrix, because it is currently on hold
and no production-ready version has been released. Several experimental architectures
for P2P Matrix have been proposed and discussed in the community, as mentioned in
Section 2.3.2. While some problems related to P2P Matrix have already been addressed,
such as identities for peers [31], other features are yet to be designed, such as decen-
tralized user accounts [23], end-to-end encryption in a P2P setting, and efficient routing
algorithms [30]. This work seeks to provide the feature of asynchronous delivery, while
abstracting from a specific P2P implementation for Matrix. However, assumptions on



Assumptions on P2P Matrix 17

how P2P Matrix works in general have to be made, in order to include dedicated distrib-
uted relays into the P2P architecture.

The assumptions are as follows:
• Pure P2P Architecture as Basis

The architecture consists of peers (and their devices), there are no homeservers. The
P2P architecture is extended by distributed relays.

• P2P Routing Algorithm
P2P Matrix is assumed to have a routing mechanism that allows peers to efficiently
exchange events with each other. This work abstracts from the specific implemen-
tation, regardless of whether the routing algorithm is based on structured, unstruc-
tured P2P overlays (e.g., flooding, random walk) or other architectures.

• Multiple Devices per Peer
Peers can have multiple devices, similar to users having multiple devices in feder-
ated Matrix.

• Decentralized Peer Identities
Peers have self-managed identities, such as in  [32], [31]. Identities can be used
on several devices. Peers generate their own cryptographic identities used to sign
events.

• Peer Devices manage Event Graph
Peer devices are responsible for managing the event graph comparable to how
homeservers manage it in Federated Matrix. This includes storing the event graph,
appending new events to it, and performing state resolution.

• NAT Traversal Problem addressed by P2P Matrix
The problem of NAT traversal, where two peers behind NAT gateways require a
public node to establish connectivity, is assumed to be addressed by P2P Matrix and
is not part of this work.

• Bootstrapping Problem addressed by P2P Matrix
The problem of P2P bootstrapping, where a new peer wants to join the P2P network
and requires information to find another peer, is assumed to be addressed by P2P
Matrix and is not part of this work. Matrix already provides invitations for non-
members of a room, which include the required information for a new peer to join
rooms. These invitations are exchanged out-of-band (e.g., via e-mail).

• Heterogeneity of Devices Comparable to the Federated Architecture
P2P Matrix is assumed to work for the same range of devices as those in the feder-
ated architecture, e.g., desktop computers, laptops, tablets, smartphones.

• End-to-end Encryption
P2P Matrix is assumed to provide end-to-end encryption for non-public rooms of
all sizes. This includes a key exchange mechanism required for the room members
to exchange symmetric keys or group keys. Therefore, this work assumes confiden-
tiality and integrity of event contents in non-public rooms.

3.3 Requirements
This section presents the requirements for a solution to the problem described in Sec-
tion 3.1, while taking into account the assumptions made regarding the architecture of
P2P Matrix described in Section 3.2. The requirements are divided into functional and
qualitative requirements.



18 3. Analysis

The functional requirements are:
• Asynchronous Delivery among Peers

When a sender publishes an event in a room, every room member should be able
to eventually receive this event, even if the sender goes offline directly after pub-
lishing.

• ASAP Asynchronous Delivery
When a sender publishes an event in a room, every room member should receive
this event as soon as it comes online after the point in time of publishing.

• Relay Discovery for Peers
The discovery mechanism allows peers to retrieve a set of relay candidates. Peers
can also obtain metrics relevant for relay selection (e.g., latency, propagation delay,
data rate, geographic information).

• Relay Selection for Peers
A peer can select one or more relays from the set of relay candidates and can base
the selection decision on different criteria, such as subscription similarities, latency
etc. To fulfill the goal of privacy and to distribute the load, peers should be able
to select different relays over time. Peers should also be able to establish multiple
simultaneous connections to different relays.

• Smooth Relay Failure
As the later described qualitative requirement “Independence of Relay” suggests,
the system should also work without relays. The transition from the relay-based to
the fallback system of pure P2P Matrix without relays should work fast and without
manual interventions, e.g., configuration changes.

The qualitative requirements are:
• Comparable Performance to Federated Matrix

The event propagation delay between sender and receiver should not be signifi-
cantly higher than in federated Matrix. This applies to the cases where all peers are
simultaneously online, and the asynchronous case, where relays are used to buffer
and forward events.

• Metadata Privacy
Even though events between peers are end-to-end encrypted, relays obtain meta-
data when storing and forwarding events on behalf of peers. Which metadata can
be obtained by relays in P2P Matrix or by homeservers in federated Matrix, is de-
scribed in Section 3.1. The solution should provide enhanced metadata privacy to
the degree of relays acquiring less per-user metadata than homeservers do in fed-
erated Matrix.

• Reduce Relay State
Relays should store as little state as possible to forward events. The event itself and
some relay-relay associations have to be stored in order to provide asynchronous
delivery functionality. However, stateful peer-relay connections or storing the state
of room memberships of peers should be avoided.

• Authorization of Relays and Peers
Relays should authorize other room relays and peers, in order to prevent malicious
peers/relays injecting unauthorized events into the room. A relay accepting unau-
thorized events can degrade the performance of forwarding benign events, result-
ing in peers experiencing higher delivery delays.



Requirements 19

• Decentralized Relay Architecture
No manual configuration should be necessary at the relays in order to establish
connectivity and exchange events between each other.

• Network Load Distribution among Relays
The solution should be able to distribute the network load among the dedicated
relays, in order to avoid load centralization where a high share of events is directed
towards one of the dedicated relays.

• Independence of Relay Usage
If no relays are available, even though P2P Matrix cannot provide the functionality
of asynchronous delivery, it should still work among online peers. Therefore, the
performance of P2P Matrix should not be impaired by the relays.

• Deployability
The solution should make as few changes as possible to the existing Matrix Spec-
ification. Also, it should support integration into a hybrid system consisting of
P2P and federated Matrix, where peers can exchange events between users behind
homeservers.

• No Redundant Functionality
Existing Matrix functionality should be applied in the solution, i.e., no redundant or
parallel solutions should be developed when applying Matrix functionality would
be more suitable.

3.4 Solution Approaches
This chapter presents different solution approaches for the problem of asynchronous,
low-latency, privacy-enhancing P2P Matrix. The approaches are assessed while consid-
ering the requirements defined in Section 3.3.

3.4.1 Relay Functionality Placement
The relaying mechanism can be incorporated into architectures in two ways. As dis-
cussed in Section 3.1, either a subset of peers or dedicated nodes can act as relays. These
two approaches are compared in more detail in the following.
Peers as Relays
The first option is for a subset of peers, which are sometimes called “super-peers”, to
act as relays. Super-peers are often used as relays, when the relay functionality consists
of exchanging requests or information between peers [33]. Having peers provide the
relaying mechanism on behalf of other peers requires the ability to deal with high churn
in P2P Matrix, because mobile devices in particular switch between on- and offline state
regularly. If the sender and all relaying peers go offline before the receiving peer comes
online, the system does not provide asynchronous delivery. To improve the hit-rate of
events reaching the receiving node when it comes online, the event would be redun-
dantly disseminated multiple times to different peers (depending on the P2P distribution
network), which has two disadvantages. Firstly, sending redundant events generates ad-
ditional network traffic and requires higher resource consumption at the peers compared
to sending only the necessary number of events directed to the destinations. Secondly,
to improve the probability of a relaying peer buffering a certain event being online even
further, events could be disseminated to non-members of the room, which exposes room
metadata. Consequently, a decision needs to be made between a higher robustness (i.e.,



20 3. Analysis

probability of event reaching receiver in time) with higher overall network load, and
lower robustness with a lower overall network load. The trade-off between robustness
under churn and duplicate delivery [34] is a general challenge in P2P publish-subscribe
systems. The original Skype VoIP P2P application made use of super-peers, where a pub-
licly addressable Skype client could relay traffic between other endpoints [35].
Dedicated Relays
The second option is to deploy relays as separate infrastructure components. This is es-
pecially useful for networks with high churn, devices with limited resources or devices
not publicly accessible because of NAT gateways or restrictive firewalls. These relays
are assumed to stay online and thus have lower churn than devices of peers, providing
a higher rate of availability, which allows a higher robustness under churn compared
to a pure P2P architecture. Several distributed relays can be used in order to provide
the functionality of asynchronous, low-latency delivery in a flexible, scalable and effi-
cient way. This solution has the advantage of consuming less resources for peer devices
compared to peers acting as relays. To avoid the disadvantages of the fixed relation be-
tween users and homeservers in the federated architecture, peers should be able to use
different distributed relays over time. Also, it would be conceptually possible for peers
to establish connections to multiple relays at the same time, in order to retrieve the latest
events from the relay storing the latest events. This however, would induce additional
resource consumption at the peer.

3.4.2 Event Graph Storage
In federated Matrix, homeservers store the complete event graph of a room. If end-to-
end encryption is enabled, the homeserver cannot decrypt event contents, but has access
to metadata of all room events. Thus, if relays store the complete event graph of a room,
they also have access to metadata of all room events.

Alternatively, relays could only buffer and forward events without storing any other
room-related data. On the other hand, relays cannot determine whether a peer is au-
thorized to read or send events. Without knowing read permissions, both member and
non-member peers can request cached events from the relay. Even though non-member
peers cannot decrypt event contents, they can acquire event and room metadata. With-
out knowing sending permissions, peers could send arbitrary events to rooms in which
they are not members. This can lead to two different degradation of service attacks. First,
non-member peers can fill the relay cache with events and thereby consume most of the
relay’s storage resources, so that the relay has to drop events of member peers. Although
benign room members could also fill the relay cache with a large number of events, the
Matrix protocol provides a mechanism to ban members from the room. Second, non-
member peers can utilize relays as traffic multipliers, because sending one event to the
relay results in the event being distributed to all room relays and peers. The traffic mul-
tiplication would enable non-member peers to consume resources both in the network
and at other relays and peers at a low cost. However, the degradation of service attacks
are only present if the asynchronous delivery function is provided by relays, pure P2P
Matrix can still provide availability since a fallback from relay-enhanced P2P Matrix to
pure P2P Matrix should be possible.

The Authorization DAG (AuthDAG) is a reduced event graph and contains only autho-
rization-relevant state events of a room. It can be created by extracting all policy and
permission events from the DAG. As in the DAG, the extracted events have causal rela-



Event Graph Storage 21

tions among each other, i.e., events in the AuthDAG reference previous events. To per-
form authorization checks such as “user is member of room and has read permission”
or “user has required power level for event”, the relay has to establish a total order on
all state events in order to make a deterministic authorization decision. This total or-
dering on state events is performed with the state resolution algorithm, as described in
Section 2.1.2. Storing the AuthDAG at relays allows access control without disclosing all
metadata to relays. Relays use the AuthDAG to determine if a peer is authorized to read
or send events, thereby reducing attack vectors of non-member peers. Also, it prevents
relays from storing all room metadata, which would establish drawbacks similar to those
of homeservers in Federated Matrix.

Figure 6: Authorization enforcement by a relay with an Authorization DAG, a reduced
event graph containing only authorization room events.

An example AuthDAG is shown in Figure 6. Both peers Alice and Bob store the com-
plete DAG, while the relay stores only the AuthDAG. The AuthDAG allows the relay
to determine whether senders of incoming events have the necessary permissions, and
also whether requesting peers have the permission to read events. In the example, we
assume that both Charly and Dave send a message event to the relay. Assuming that
only joined members have the permission to send message events in the room, the relay
can search for the join event in the AuthDAG. Because a join event exists for Charly, the



22 3. Analysis

relay accepts his event. Because there is no join event for Dave and he is therefore not
a room member, his event is rejected.

3.4.3 Relay Integration into Matrix Protocol
Relays can be integrated into the Matrix Protocol in various ways. Two approaches are
compared: Stand-alone relay integration, and relay integration into DAG.

Stand-alone relay integration means that relays are managed independently from the
Matrix protocol. Therefore, relays are not necessarily bound to rooms, but can be man-
aged in a custom and efficient way. A stand-alone relay integration allows efficient im-
plementations of relay lookup, selection and load distribution. However, this solution
(similar to any other relaying solution) requires some form of access control in order
to avoid unauthorized access to events. The major drawback of this approach is that an
access control mechanism would be used parallel to the existing Matrix access control
mechanism. Although this would allow fine-grained privilege control over relay man-
agement, it leads to redundant functionality, because Matrix already has a distributed
access control mechanism, as described in Section 2.1.3.

Integrating relays into the Matrix protocol by managing them in the DAG would utilize
existing Matrix functionality. Integrating relays into the event graph means that they
are managed per-room, i.e., each room has a dedicated own set of relays. This solution
uses existing Matrix functionality, such as access control, replication and strong even-
tual consistency. As relays are managed in the DAG, they are part of the room state.
Access control is possible in the sense that peers authorize each other for managing re-
lays, i.e., only authorized peers can add or remove room relays. Information as to which
relay is part of the room, is distributed to all peers, because the Matrix DAG is an al-
ready replicated data structure. Because the DAG is not only a replicated data structure,
but a CRDT (conflict-free replicated data type), it allows strong eventual consistency, so
that all peers eventually converge to the same view of room relays. Relays can either
be managed by a dedicated state event, or as room members. Introducing a state event
for relays would differentiate relays and room members on a conceptual level, and is a
semantically cleaner solution than managing relays and peers in the same set of room
members.

Having relays as room members would require an additional mechanism to differentiate
them from peers. While managing relays in a state event allows fine-grained control
over relay management privileges, it requires a Matrix specification change due to the
new state event. In contrast, managing relays as room members does not require a spec-
ification change. However, relays are not fully capable room members, they should only
receive, but do not pro-actively send room events. They merely buffer received events
and make them available to other peers upon request. In confidential rooms, peers can
choose not to share keys with the relays, who therefore would only have access to event
metadata, but could not decrypt events.

3.4.4 Privileges for Room Relay Management
If there are multiple room relays, relays have to know which other relays are part of
the room, in order to avoid sharing event metadata with unrelated relays. Federation
between homeservers in Matrix is similar, as homeservers only forward events to those
homeservers that have member users. In P2P Matrix, if relays are managed per-room,



Privileges for Room Relay Management 23

authorized peers have control over which relays can be used in the room. Relays them-
selves should not be able to include additional relays to a room, since their main function
is to store and forward events on behalf of offline peers. Figure 7 shows an abstraction
of the relay mapping privileges. The room relay set stores the relays belonging of the
room. Various implementation possibilities exist for storing this information, such as an
event in the DAG, a DHT or centralized storage. Regardless of where the room relay set
is stored, only peers should have the permission to add and remove relays from the set.
As depicted, this permission can be tied to power levels, allowing only a subset of peers
to manage relays. Relays have read access to the room relay set and thus can disseminate
events to all other room relays.

Managing relays as state events allows a fine-grained privilege configuration, as re-
quired power levels can be defined for any state event. In the case of relays being man-
aged as room members, the required power level for membership state events would
also be the power level for managing relays. In this case, if a user has the required power
level to invite users, he/she also has the power level to invite relays. A dedicated access
control for managing relays also allows a fine-grained privilege configuration, which
nevertheless is configured separately from Matrix power levels.

Figure 7:  Room-Relay Abstraction for Access Control between Relays.

3.4.5 Peer-to-Relay Relation
There are several options for how many relays a peer can be assigned to over time. The
relation between peers and relays should not only apply to a discrete point in time, but
also for longer periods. Consequently, on this abstraction layer, a peer using multiple
relays is equivalent to a peer switching between relays over time, or peer devices select-
ing distinct relays.

Figure 8:  Peers use one relay Figure 9:  Peers use multiple relays



24 3. Analysis

The simplest peer-to-relay relation is to have one relay per peer (Figure 8) for the total
lifetime of the peer. This would have several drawbacks. Similar to federated Matrix,
where all per-user metadata is stored at a homeserver, with this relation all per-peer
metadata is stored at one relay. This comes into conflict with the privacy requirement,
because the relation does not provide higher metadata privacy compared to federated
Matrix. Accepting a relay-using peer to join a room includes an implicit consent of the
room members to allow the joining peer’s relay to have access to the room’s future
metadata. Consequently, the one-to-one peer-relay relation allows no fine-grained con-
trol over which relay is permitted in which room, because the room relays are implicitly
made part of the room if their peer is a room member. Also, using the same relay re-
gardless of the latency and bandwidth between device and relay can result in inefficient
paths.

The next option is to have multiple relays per peer (Figure 9), where each subscription
can be assigned to a relay (dashed grey relation), but also different devices can use dif-
ferent relays. The complexity of sending and retrieving events is higher compared to
having one relay per peer, as the peer has to exchange events with multiple relays. The
per-peer metadata can be distributed, if different relays are selected across the peer’s
subscriptions and devices. Also, a per-device selection of peers can improve the latency
between the device and the selected relay, because each device can choose the relay
with the lowest latency and highest bandwidth. In contrast, Federated Matrix does not
provide this improvement, as each user device has to use the same homeserver. Multiple
relays per peer avoid the disadvantage of having to add relays to a room whenever a
peer joins, that is the case when each peer has only one relay. Having multiple relays
per peer allows a more fine-grained and explicit control over room relays, because the
decision as to which relays may be used in a room, can be constrained by authorized
peers, e.g., room admins. Consequently, instead of peer-centered control over relays, the
multiple-relay solution allows room-centered control over relays.

3.4.6 Forwarding Events to Relays
Peers can use different mechanisms to forward events toward relays. Assuming there
are several relays in a room, there are two extremes of mechanisms ensuring that events
sent by peers reach all relays. First, peers can either forward events to each relay in a
multi-unicast manner, as depicted in Figure 10.

Figure 10: Peer multi-unicast. The peer sends the event to each relay, after which the
relays forward the events to their peers.



Forwarding Events to Relays 25

Second, peers could forward to only one relay, which in turn broadcasts the event to all
other relays, as depicted in Figure 11.

Figure 11: Inter-relay forwarding. The peer sends the event to a relay, which then for-
wards the event to the other relays.

There may also be other mechanisms operating on a spectrum between the two ex-
tremes, e.g., peers disseminating events to relays via an application level multicast mech-
anism. The peer dissemination complexity is the complexity term of a peer in respect
to the number of relays the peer has to forward an event to. The two extremes show
different tradeoffs, which are discussed in the following.

1. Information disclosure to relays vs. peer dissemination complexity
When a peer sends a room event, there are two options of how the event can be
disseminated to all room relays. The first option is having the peer forward the
event to each relay (Figure 10), incurring a peer dissemination complexity of 𝑂(𝑛),
but not disclosing room memberships of relays to other relays. The second option
is having the peer forward the event to only one relay and the relay disseminating
the event to all other relays (Figure 11), incurring a peer dissemination complexity
of 𝑂(1), but disclosing room memberships of relays to other relays, in contrast to
the first option.

2. Relay Complexity vs. Peer Complexity
If a sender forwards an event to only one relay, incurring a peer dissemination
complexity of 𝑂(1), the relay would have to disseminate the event to all other re-
lays, if also the receiving peer should be able to retrieve the event from any relay.
The relay dissemination complexity would be 𝑂(𝑛), 𝑛 being the number of relays.
In the opposite scenario, peers would forward events to and retrieve events from
all relays (𝑂(𝑛), while relays would only have to connect to one peer (𝑂(1)).

3. Sender Complexity vs. Receiver Complexity
Assuming that relays do not interconnect with each other, either sending peers
can disseminate events to all relays and receiving peers retrieve events from only
one relay, or sending peers forward events to only one relay and receiving peers
have to find the relay, which the event was forwarded to. Consequently, there is a
choice between a sender complexity of 𝑂(𝑛) with a receiver complexity of 𝑂(1),
and a sender complexity of 𝑂(1) with a receiver complexity of 𝑂(𝑛).

4. Efficient Dissemination vs. Reliable Retrieval
In order to reduce the dissemination effort, the sending peer may distribute the
event to only a few relays, resulting in only a subset of relays storing the event.
If the receiver reduces the retrieval effort, the probability of the event not being
stored by one of the contacted relays rises, i.e., the event retrieval becomes less



26 3. Analysis

reliable. Thus, a solution must weigh the aspects of efficient event dissemination
and reliable event retrieval against each other.

3.5 Differences to Federated Matrix
It is important to highlight the differences between P2P Matrix with relays and Feder-
ated Matrix, in order to avoid the relay-based solution introducing similar drawbacks
as Federated Matrix. To make the systems comparable, designated nodes refer to either
relays or homeservers, while users can stand for both peers or users (Federated Matrix).
Table 1 summarizes these differences.

P2P Matrix with Relays Federated Matrix
Per user single point of failure No Yes
Room availability depends on desig-
nated node availability

No Yes

Changing designated node possible Yes No
Designated nodes per user 1 ≤ |𝑁| ≤ |𝑅| |𝑁| = 1
Event graph storage location Peers Homeservers
User Metadata Distributed Centralized

Table 1: Differences between P2P Matrix with Relays and Federated Matrix

𝑅 ≔ Set of all relays
𝑁 ≔ Set of designated nodes
While in P2P Matrix with relays, peers online at the same time can exchange events
via the P2P distribution network without the relays having to be online, in Federated
Matrix the homeserver is a single point of failure for a user, because a homeserver fail-
ure disconnects the Matrix user from the Matrix network. In both settings, there are
designated nodes that forward events on the user’s behalf. However, if all room relays
are unavailable, simultaneously online peers can still exchange events, whereas if all
homeservers of a room are unavailable, no events can be exchanged in the room. In P2P
Matrix with relays, the number of designated nodes is subject to different factors (e.g.,
number of distinct relays per peer across different rooms), but generally the number is
limited by the total number of relays and can be 1, if a peer never switches relays and all
other rooms of the peer use the same relay. In Federated Matrix, every user has only one
designated node, the homeserver. P2P Matrix requires peers to store the event graph for
a room, regardless if relays are used or not, while homeservers store the event graph
in Federated Matrix. Finally, the distribution of metadata disclosed to the designated
nodes is compared. In Federated Matrix, the homeserver holds the complete amount of
metadata per peer, that can be derived from sent and received events. In P2P Matrix
with relays, the user metadata can be distributed if different relays are used per room.
In Federated Matrix, user metadata is stored centrally at the user’s homeserver.



Differences to Federated Matrix 27

3.6 Solution Approaches in Related Work
This section provides an overview of relay features in related work and discusses existing
relay-based solutions for distributed systems. After discussing different motivations for
including relays into network architectures, different networking protocols that make
use of relays are presented. Finally, the presented protocols are compared in regard to
functionality potentially relevant for this work.

3.6.1 Relay Functionality
Relays are used in various distributed systems, such as P2P networks, Publish/Subscribe
architectures, IoT networks. In related work, various reasons are stated to include relays
in architectures:

• Asynchronous delivery
While in P2P networks peers have to be online at the same time in order to exchange
messages with each other, a backbone of stable nodes (i.e., relays) can store and
forward messages on behalf of peers, who can obtain these asynchronously [36].

• Connectivity establishment
Some devices cannot establish direct connections due to NAT gateways and restric-
tive firewalls [35], [37]. They therefore require a publicly addressable node (i.e., a
relay) in order to provide interconnection [25], [33].

• Latency optimization
In IoT scenarios, relays or brokers are installed at the edge and therefore near the
IoT devices in order to reduce latency compared cloud-based approaches[38].

• Anonymity
The delivery service Tor [39] routes traffic on the path from sender to receiver be-
tween multiple relays, where each relay only knows its predecessor and successor.
Since whole traffic flows are encrypted in layers at each relay (“Onion Encryption”),
an adversary who can observe only a fraction of network traffic is not able to deter-
mine the original sender and receiver of a message. Tor therefore provides sender-
and receiver anonymity against the described adversary.

In this work, the reason to include relays in the P2P Matrix architecture is to provide
asynchronous delivery. Relays are not used for connectivity establishment, since NAT
traversal is assumed to be provided by P2P Matrix, as described in Section 3.2. Although
the relay-based solution is required to provide low latency (Section 3.3), latency opti-
mization is not the motivating reason to deploy relays. Also, relays for P2P Matrix do
not inherently provide anonymity, although a Tor-like network could be used for both
the P2P network and as group communication mechanism between relays.

3.6.2 Nostr
Nostr, which is an acronym for “Notes and other stuff transmitted by relays” is a de-
centralized, relay-based social media protocol [40]. Figure 12 shows the architecture,
which consists of users, clients and relays. Users can have several clients, that can pub-
lish events to one or more relays, to which other clients can subscribe.



28 3. Analysis

Figure 12:  Nostr architecture

A Nostr user has a public/private key pair, where the user has complete ownership over
his keys. Events are signed by the sender with the private key, while receivers validate
events with the public key of the sender. Relays store events on behalf of senders and
broadcast them to all other subscribed clients. Users can connect, publish to and sub-
scribe from an arbitrary number of relays over time. A subscription (i.e., following an-
other user) means that a user’s client queries relays for posts from the followee’s public
key.

The client-relay protocol includes three types of messages: EVENT messages for publish-
ing events, REQ to request subscriptions and CLOSE to stop existing subscriptions [41].
Relays only connect directly to clients, as Nostr does not include a delivery protocol
between relays. Nostr Implementation Possibilities (NIPs) provide a mechanism to coor-
dinate additional protocol features and make the protocol extensible. Aside from NIP-01,
which describes the basic Nostr protocol, all other NIPs are optional. In order to find
relays belonging to a given public key of a user, NIP-05 specifies how Nostr keys can be
mapped to DNS-based Internet identifiers.

3.6.3 Scuttlebutt
Secure Scuttlebutt (SBB) is a peer-to-peer protocol for building decentralized applica-
tions, most prominently decentralized social networks [42]. Users can have multiple
identities, which consist of public/private key pairs. However, an identity is tied to a
single device, because if two devices use the same identity, some messages cannot be
propagated by other peers [43]. SSB utilizes append-only logs that are an immutable
data-structure containing all messages posted by a user.

While regular peers store their own append-only log and are able to publish or subscribe
messages, there are two kinds of peers providing additional functionality: rooms and
pubs. Rooms are publicly accessible peers that can provide connectivity between two
other peers, unable to establish a direct connection due to NAT gateways or restrictive
firewalls. Pubs can also provide connectivity between two other peers, but additionally
can serve as rendezvous point for new users to find existing users. Pubs therefore store
a peer’s log and make it available for other peers even if the publishing peer is offline,
therefore providing asynchronous delivery of log entries. A peer can distribute its log to
many different pubs. Both rooms and pubs are, aside from their additional functionality,
regular peers that usually deployed on servers, so that they are online most of the time.

Peers can discover each other by either broadcasting regular advertisements in the lo-
cal network, receiving invite codes that point to a pub hosting the append-log of the
inviting peer, or a peer posting a pub advertisement in its append-only log, which is



Scuttlebutt 29

only feasible if the peer already knows some other peers, to which it can distribute the
advertisement.

3.6.4 Asynchronous Mobile Peer-to-peer Relay
The paper extends a mobile P2P network with relays providing asynchronous delivery
between devices, and focuses on encryption mechanisms between devices and relays
[36]. Relays cache end-to-end encrypted messages until the receiving peer comes on-
line, thereby providing a reliable delivery channel. Relays are lightweight and require no
preconditions for peer-relay delivery, such as a peer having to register at a relay. Peers
wanting to establish a connection to relays have to perform a proof-of-work handshake,
where the difficulty increases proportionally to the relay load. This proof-of-work hand-
shake reduces the incentive for DDoS-attacks and can also protect against a flash crowd,
where many legitimate peers try to establish connections with the relay at the same
time. The set of all relays is organized in a global address space, which peers can use to
find relays for sending or retrieving messages. The protocol is flexible, because any peer
can use any relay to send or retrieve messages. However, the protocol does not provide
a mechanism on how two peers agree on a relay, it instead assumes that applications
implementing the protocol provide such a solution. Because messages are end-to-end
encrypted, compromised relays only expose metadata, but not the content of messages.

3.6.5 Wesh Protocol
The Wesh protocol [44] provides end-to-end encrypted, distributed and asynchronous
delivery in a P2P setting. Both one-to-one and group delivery are possible. Rendezvous
points are used to establish connections between two devices and can be used for peers
to register themselves, after which other peers can request the list of registered peers.
Rendezvous points can either be used to add peers to the list of contacts or to exchange
messages in a group (more than two peers). Wesh rendezvous points can be based either
on DHTs, other decentralized servers or on local records, which are shared through di-
rect local transports. These local transports allow direct delivery between close devices
via Bluetooth Low Energy (BLE) or Wi-Fi direct. As in Matrix, messages are stored in
a Directed Acyclic Graph (DAG), allowing forks and providing strong eventual consis-
tency.

For asynchronous delivery, Wesh provides four different solutions: Bot account, linked
device, replication device and replication server. A bot account runs on a server and
can only be added to groups with more than two participants. A linked device is simply
an additional device for a user account, to which the DAGs can be replicated. A replica-
tion device is linked to an account but does not have access to account secrets and thus
cannot encrypt or decrypt messages. A replication server is owned by a third party, is
not linked to an account and therefore cannot encrypt or decrypt messages, but can be
added to groups in order to provide asynchronous delivery.

3.6.6 Dendrite Relay API
Dendrite is a Matrix homeserver implementation that intends to be efficient, reliable and
scalable [24]. It has been used for the “Pinecone” Matrix P2P experiment, where light-
weight Dendrite homeservers run on peers [45]. For this P2P setting, Dendrite includes



30 3. Analysis

a Relay API [46], which allows peers (i.e., homeservers running within a peer) to act as
a relays.

Relays store and forward events, thereby providing asynchronous delivery between de-
vices. Each peer can be associated to multiple relays. Because the relay is associated
only to receiving peers, the sender has to know at least one of the receiver’s relays.
However, the current specification does not include a process to find a receiver’s relays,
instead they have to be manually configured in the local database. It also does not sup-
port relays exchanging events between each other, whereby peers have to agree on the
same relay in order to exchange events asynchronously. The relay is used only after a
configurable number of failed connection attempts between two peers. The relay API
provides an endpoint for sending and another for retrieving events. With the sending
event endpoint, a peer can send an event directed to a given receiving peer to the relay.
The retrieving event endpoint allows peers to pull events destined to their address from
the relay.

3.6.7 Briar
Briar [47] is a peer-to-peer messaging app that focuses on privacy rather than asyn-
chronous delivery. Peers can establish direct connections over different transports [48],
e.g., Bluetooth, Wi-Fi or the Tor network. Briar defines its own message data format,
the Binary Data Format. It also uses a custom transport layer security protocol, which is
optimized for delay-tolerant networks. Even though privacy is a main focus of Briar, the
base protocol does not provide anonymity, unlinkability or unobservability. However,
since the protocol is transport-agnostic, it can be extended by using Tor to provide a
stronger notion of privacy. Despite it not being the primary focus of Briar, the Mailbox
extension allows asynchronous delivery between peers. Briar Mailbox [49] is an app
that can run on an additional peer device and provides store- and forward functionality
providing this additional device stays online. Therefore, users are in full control of the
relaying functionality and have to provide the devices themselves.

3.6.8 Comparison
This section compares the different relaying solution approaches in related work, ac-
cording to five different properties. The properties are Peer Authorization, Relay Discov-
ery, and Relay Selection. They are discussed in the following for each relaying solution
and summarized in Table 2. As all of the compared solutions provide asynchronous de-
livery, provided that the relaying node is online during the offline time of sending and
receiving peers, this aspect is not compared.
Peer Authorization

Peer Authorization means that the node providing the relaying functionality ensures that
only benign nodes can read and receive messages directed to them. The authorization of
relays is not evaluated, because the selected protocols do not specify inter-relay commu-
nication protocols. This property relates to the requirement Metadata Privacy, because
differentiating between authorized an unauthorized peers makes the Metadata available
only to benign peers, e.g., peers within a certain group.



Comparison 31

Property/System Nostr SSB Async. Mobile
P2P Wesh Dendrite

Relay API Briar

Peer Authorization ✗ ✗ (✓) ✓ (✓) ✓
Relay Discovery (✓) (✓) ✗ ✓ ✗ ✓
Relay Selection ✓ ✓ n/a (✓) ✓ ✗

Table 2: Comparison between relaying solution approaches in related work.

✓ Property applies to system
(✓) Property partially applies to system
✗ Property does not apply to system
n/a Property is not applicable in system

In Nostr, relays are controlled by the peers and only provide their store- and forward
functionality on behalf of senders to receivers that explicitly made a subscription to the
sender peer. Since any peer can send messages to or request events from any relay, the
relay does not implement any authorization mechanisms for either sending or receiving
peers Nostr makes this design decision in order to keep the protocol as simple as possible,
but allows malicious relays to send events to the relay, even though peers can perform
access control of relayed messages themselves. As Nostr is an protocol for social media
applications, message contents are not encrypted and can be read by any subscribers.
Consequently, the aspect of metadata privacy is not a major concern for Nostr, in con-
trast to encrypted messaging applications. Like Nostr, SSB relays also do not authorize
sending or receiving peers, as the peers enforce authorization rules themselves.

The Asynchronous Mobile P2P architecture has a global address space for relay nodes,
where any peer can contact any relay to request content. Therefore relay does not per-
form authorization checks for receiving peers, even though receiving peers that haven’t
exchanged a symmetric key with the sender cannot decrypt the end-to-end-encrypted
content. For sending peers however, relays do perform authorization by requiring the
sender to sign each event with its private key, while the sender public key is known to
the relay. Therefore, in order for the peer to be authorized to send a message, a relay
must have successfully authenticated the sending peer by verifying the signature of the
session key. Because the Asynchronous Mobile P2P architecture partially employs au-
thorization of peers, because only the authorization of sending peers is determined.

Each of the four Wesh relaying solutions require the relay to be added to the group,
thereby providing cryptographic keys and signatures for the group, with which the relay
can determine whether a sender or receiver are part of the group. As a result, Wesh pro-
vides sender and receiver authorization. In the Dendrite Relay API, transactions holding
multiple events are directed to specific peers are stored at the relay. The sent event is
always directed to only one specific receiver, thereby authorizing receiving peers, while
any sending peer can send any events to the relay, resulting in the Dendrite Relay API
partially fulfilling the authorization property. In Briar, peers can set up their own Mail-
box providing relaying functionality on the receiving side. Therefore, relays in Briar
forward all events only to the configured receiver. As the peer’s relay is linked to a user
account, the relays also perform authorization of sending peers.



32 3. Analysis

Relay Discovery

The property Relay Discovery is fulfilled, if the system includes an automatic mechanism
that allows peers to discover relays storing events for a given group or subset of peers,
in order to receive events from the relay. The ability of senders discovering available
relays is not evaluated, because the solutions require the sender to manually configure
the relay to be used for sending. This property relates to the requirement Relay Discov-
ery for Peers, which specifies that peers should be able to obtain a list of available relay
candidates.

Nostr partially provides relay discovery, as NIP-05 allows peers linking their public keys
to domain names. Requests directed to this domain name return a list of relays used
for sending, while the base protocol does not inherently support finding another peer’s
relays. In SSB, peers can publish their relays (pubs/rooms) to their own append-only
log. However, other peers require access to the append-only log, in order to discover the
relay. This initial discovery of another peer’s relays is only possible when both seeking
peer and the peer publishing a relay are online simultaneously. Because SSB provides no
solution to this problem of relay bootstrapping, it only partially fulfills the relay discov-
ery property. Asynchronous Mobile P2P does not provide an automatic relay discovery
mechanism, and defers this functionality to a higher application layer.

In Wesh, members can discover another peer’s relay, because the relaying solutions re-
quire either adding a device to an existing account, having a dedicated account for a
relay, or adding a replication server to the group. Receiving peers can then request mes-
sages from these relaying devices. The Dendrite Relay API does not support automatic
relay discovery, as peers have to configured relays that should be used manually in the
local database. To use relay functionality in Briar, a user is required to manually install
the Mailbox application to a local device. After the Mailbox application is configured,
other peers can find the Mailbox device with the same mechanisms as they find regular
Briar devices, i.e., via Wi-Fi, Bluetooth or the Tor network.
Relay Selection

The system provides relay selection, if a peer can choose between a set of relays for each
group, in order to send or receive messages. This set may be dependent on the number of
relays a sender or a group of senders uses. Because the compared solutions require the
sending peer to manually add the relay used for sending, this property is not evaluated.
This property relates to the requirement Relay Selection for Peers, which specifies that
peers can select relays from a list of different relay candidates.

In Nostr, receiving peers can select between multiple relays, depending on how many
relays the senders for each subscription use. The Nostr architecture encourages using
different relays to utilize the advantages of decentralization. Similar to Nostr, SSB also
allows a selection of relays, because sending peers can assign multiple relays (pubs) to
their user account. The Asynchronous Mobile P2P relay architecture does not specify
the number of relays a sending peer can user, and defers this functionality to higher-
level applications of the protocol. In Wesh, sending peers can set up an arbitrary number
of relays, allowing a relay selection for the receiving peers. Sending peers in the Den-
drite Relay API can use different relays for sending different events. Unlike Nostr, SSB
and Wesb, peers in the Dendrite Relay API do not automatically publish a list of used
relays. The configured relay relation is inverse to the other protocols, as the sending
peer has to find the receiver’s relay. Therefore, the receiver is free to choose any relays.



Comparison 33

In Briar, only single relays (Mailboxes) are supported per peer. Therefore, peers cannot
select relays for each group, and are limited to using one relay.
Conclusion

Authorizing peers is an important property for relay-enhanced P2P Matrix, because
of the Metadata Privacy requirement. In Matrix, only members of the room should be
able to obtain metadata for the room messages. As a consequence, existing authoriza-
tion mechanisms, such as Wesh’s mechanism of having the relay added explicitly to the
group, could provide useful solutions. A Relay Discovery mechanism enables peers to
find the relays of other peers, so that messages to those other peers can be delivered
asynchronously. Relays can be discovered by having peers publish a list of their selected
relays or by adding relays to groups. Since metadata privacy is a requirement of P2P
Matrix with relays, changing relays over time would allow distributing the Metadata to
several relays. In related work, relay selection can be designed by having peers choose
one or more relays themselves and storing the list of selected relays. In the case that
relays do not interconnect with each other, a prerequisite for messages to be delivered
asynchronously via a relay is that the sending and receiving peer’s selected relay sets
must have at least one relay in common. In group-based systems, having multiple relays
per rooms, from which peers can choose their per-room relays, may present a suitable
solution.

3.7 Summary
This chapter gave a more detailed insight into the problem of asynchronous and as-soon-
as-possible delivery, by formalizing the two aspects in an abstract model, that can be
applied to several classes of messaging systems. Assumptions on a P2P system for Ma-
trix were specified, in order to have a foundation, upon which the relay extension can be
built. Both functional and qualitative requirements to a solution were specified. Solution
approaches to different problem aspects were analysed and compared. After that, the
differences between P2P Matrix with relays and Federated Matrix were discussed, so that
the relay-based solution does not re-introduce existing drawbacks of Federated Matrix.
The last section analysed different architectures making use of relays for asynchronous
delivery, and compared them regarding three properties a relay-based solution for P2P
Matrix requires.



34 3. Analysis



4. Design

This chapter describes the design of P2P Matrix with relays for asynchronous delivery.
Section 4.1 provides a general, high-level overview of the architecture of P2P Matrix
with relays. The design of relays is described in Section 4.2, and the design of peers in
the setting of P2P Matrix with relays is described in Section 4.3. Section 4.4 provides use
cases, that show how the solution works in different scenarios.

4.1 High-Level Overview
Dedicated relays extend P2P Matrix in order to provide asynchronous delivery for peers.
Relays are managed per room, i.e., every room can have a set of relays. Member peers
with a sufficient power level manage relays as room members. This approach utilizes the
membership concept as existing Matrix functionality. Peers can send events to these re-
lays, from which other peers can asynchronously retrieve events. Although relays have
access to event metadata, they cannot decrypt contents of end-to-end encrypted room
messages. To avoid metadata accumulation, relays do not store the full room history, but
only a subset of the DAG. Relays disseminate events between each other, so that peers
can retrieve events from any relay in the room relay set. Relays contain two essential
components, the Event Cache and the AuthDAG. Events are stored in per-room event
caches until a configurable retention time expires, when these events are deleted, which
avoids accumulation of metadata at relays over time. The AuthDAG is a reduced DAG
consisting of a room’s authorization events and allows the relay to check, whether other
peers or relays are authorized to send or receive events in a room.

Peers can independently decide whether to use relays or not. Also, P2P Matrix is not
dependent on relays. The relay-based solution is therefore optional and does introduce
additional constraints to P2P Matrix, e.g., if all room relays fail, simultaneously online
peers are still able to exchange messages over the P2P distribution network. The solution
is agnostic of both underlying P2P architecture of Matrix and the group communication
mechanism used between relays. Any P2P architecture fulfilling the assumptions de-
scribed in Section 3.2 is compatible with the relay-based solution. Abstracting from the



36 4. Design

group communication mechanism between relays that are part of a room allows further
development on a more efficient event dissemination mechanism.

Figure 13 shows how event dissemination works within a room. A sending peer sends
the event to both online peers as well as to a chosen relay. The Peer Distribution Network
is an abstraction of the specific P2P network implementation and represents the dissem-
ination mechanism of events to online nodes. Events are sent to online peers via the Peer
Distribution Network, because online peers can exchange events directly without the
relay indirection, and because peers that do not use relays also have to receive events.
After receiving the event and successful authorization checks using the AuthDAG, the
relay caches the received event and disseminates it to all other relays. At a later stage, a
peer that was offline at the time of sending can asynchronously retrieve the event from
one of the relays by making a resynchronization (resync) request. The relay responds to
the resync request with a set of events, containing the originally sent event.

Figure 13:  Architecture Overview. A peer sends an event to a set of online peers and to
a relay from the relay set. After the point in time of sending, a previously offline peer

comes online, resynchronizes with a relay from the relay set and receives the event.

Example. Figure 14 shows a Matrix room with a sender, a receiver and a single room
relay. Because all other peers in the room are offline, the peer sends the event to the
relay. The sender sends the event 𝑒 to the relay at 𝑡0. In rooms with multiple relays,
the relay forwards the event to all other relays. Since only one room relay exists in this
case, the event is not forwarded to any other relay. While at 𝑡0, the receiver is offline,
the receiver comes back online at 𝑡1, and requests all events since the last time the re-
ceiver was online (𝑡𝑠). After checking the sending peer’s room membership, the relay
then delivers all events 𝐸 that occurred after 𝑡𝑠 to the receiver, assuming that the relay
received and cached those events previously. The receiver receives the event 𝑒 originally
sent by the sender, because it is in the delivered set 𝐸. The example shows that the relay
solution provides both asynchronous and ASAP delivery, as described in Section 3.1.



High-Level Overview 37

Figure 14:  Asynchronous Delivery Example. Sender, receiver and relay are all room
members. The sender sends the event 𝑒 at 𝑡0 to the relay, who 𝑒 adds it to the set of
cached events 𝐸. When returning online, the receiver sends a resync request with a

since timestamp 𝑡𝑠. The receiver receives 𝑒 as part of the returned event set 𝐸.

4.2 Relay Design
This section describes the design of relays for P2P Matrix in detail. It discusses the dif-
ferent relay components, the interfaces the relay provides for peers, and then describes
the relay functionality.

4.2.1 Relay Overview
Relays include two essential components, the Event Cache and the AuthDAG. Figure 15
summarizes the relay components and how relays interact with peers and other relays.
The points on the circle boundary, where arrows point to, represent relay API endpoints.
A relay can either receive events from peers/other relays or resynchronization requests
from peers. A relay responds to a resynchronization request with a set of events, after
having checked the requester’s authorization. After receiving events from peers or re-
lays, a relay performs authorization checks and forwards the event to the other room
relays.

Relays provide three API endpoints that can be used by other peers/relays:
• Send – Peer or relay sends event 𝑒 to relay, which then caches event 𝑒.
• Resync – Peer requests events from relay cache given a since-parameter. All events

after since are sent to the peer.
• Get – Peer requests event with given ID.

Following an API endpoint request, the relay interacts with the AuthDAG and Event
Cache for different purposes. Because these API endpoints require a form of authenti-
cation, the AuthDAG contains the room state relevant for authenticating peers. While



38 4. Design

for the Send endpoint, the relay determines the peer’s privileges for sent event, the end-
points Resync and Get merely require checking the requesting peer’s room membership.
When processing a request to the Send endpoint, after checking the peer’s authentica-
tion, the relay stores the event in the Event Cache. For the endpoints Resync and Get,
the relay returns a range of requested events from the Event Cache.

Figure 15:  Relay Functionality Overview with the two main components AuthDAG and
Cache. Relays receive either events from peers/relays, or resync requests from peers.

After receiving an event from a peer, the relay forwards it to the other room relays.

4.2.2 AuthDAG
The AuthDAG is a reduced DAG containing control events and therefore provides nec-
essary information for a relay to perform access control. As discussed in Section 2., state
events are events that update metadata state of a room, e.g., room name. Control events
are a subset of state events that include power levels, join rules and membership status,
i.e., all state events relevant for authentication. As the AuthDAG consists of these control
events, the relay can perform access control on peers and relays. For example, a relay
receiving a resync-request from a peer can check whether the membership status being
join for the corresponding peer is part of the resolved state, that can be determined with
the state resolution algorithm [12].

When a relay joins a room after having received and accepted an invitation from a peer,
it requests the AuthDAG from one of the online peers. After having received the Au-
thDAG, the relay must obtain subsequent state events in order to be up-to-date on the
room’s current state. In order to obtain the latest room state continuously, the relay first
checks whether the received event is a control event. If so, the control event is appended
to the AuthDAG. However, the relays do not necessarily receive every control event.
Because online peers exchange events directly, those events are not directly sent to the
relay. To allow a relay to proactively retrieve missing state events, it can request these
events from other online peers or relays.

The access control mechanism at the relay protects the room from attacks when pro-
cessing sent events and resync-requests. In the context of processing sent events, relays



AuthDAG 39

protect the room from non-member peers or relays that could perform degradation of
service attacks against the P2P Matrix network, as described in Section 3.4.2. In the con-
text of processing resync-requests, relays protect the room from unauthorized disclo-
sure of metadata , i.e., non-member peers requesting room events and acquiring event
metadata of the room.

4.2.3 Event Cache
A relay uses the Event Cache to buffer events for the duration of a peer-configurable
event retention period. On a conceptual level, the Event Cache consists of a set of time-
stamp-event tuples. When a relay receives an event, it associates a UTC timestamp to
the event and stores it in the corresponding room Event Cache. The reason why relays
and not peers generate the UTC timestamp is to avoid malicious peers producing out-
of-order tuples with artificial timestamps. Even though tuples of events with modified
timestamps do not impair the relay’s functionality, this could pose a performance degra-
dation, as relays would have to re-order the out-of-order tuples. Events can be filtered
from the Event Cache by selecting events with a greater timestamp. This filtering by
timestamp directly serves the Resync endpoint, where a peer requests all events later
than the given since timestamp. On a conceptual level, the Event Cache can be seen as a
circular buffer. Because the relay’s storage capacity is limited, the newest events over-
write the oldest events, if the circular buffer is full.

The retention period is the maximum time an event is stored at the relay. Events are
not stored indefinitely in the cache to avoid accumulating metadata. For each received
event, a timer is started with the timeout being the a retention period. After the retention
period expires, the event is deleted from the cache. The retention period is configured
in a dedicated state event, allowing only peers with a sufficient power level to set the
retention time. The retention period in the new state event is applied to all relays in the
room, discouraging relays with longer retention times storing a larger number of events,
which could lead to only the room relays with the longest retention period being used.
Applying the retention period to all relays is a more uniform approach, and can prevent
heavily imbalanced relay usage.

Setting an optimal retention time is challenging, as both too high and also too low
retention times have their drawbacks. If the retention time is high, metadata accumu-
lates at the relay and the event is cached longer than necessary, i.e., because the event
has already reached all peers. This would remove the important difference of relays to
homeservers, namely that relays do not store the whole state of the room and forget
old events over time. If the retention time is too low, the relay fails to provide the core
functionality of asynchronous delivery, because the relay removes the event before it
can be requested by peers. The optimal retention time balancing the trade-off is subject
to various factors, such as number of room relays, number of room peers, distribution of
peer online times, interarrival times etc. Taking all of the factors into account in order to
determine an optimal retention time represents a difficult multi-objective optimization
problem. This work does not further pursue this optimization problem and relies on the
peers to configure the retention time.



40 4. Design

4.2.4 Relay Functionality
As a relay can in principle provide and respond to the defined API endpoints in many dif-
ferent ways, an abstraction that concentrates on the relays interface and the exchanged
data types is introduced. This abstraction is named the Matrix Broker. The Matrix Broker
uses the types event and authevent, which both correspond to PDUs (Persistent Data
Units), as defined in the Matrix Specification [50]. While an event can represent any
event, an authevent represents a state event with authorization modifications, e.g., join-
ing a room, banning a user, etc. On an abstract level, an event contains the sender, con-
tent, the hashes of the previous events, and the hashes of the auth events, that would
authorize the event in the room. Which state is modified for auth events is stored in
the variable type. The Matrix Broker defines three functions: Receiving events, receiving
resynchronization requests given a timestamp, and receiving event requests for single
events, as shown in Listing 1. The receive function returns whether the event has been
processed successfully, while the resync function returns the set of events with a UTC
timestamp larger than the provided since timestamp. The get function returns the event
with the requested event ID.

Listing 1: Matrix Broker Interface
1: type event {
2:     sender: user, content: string, prev: set<hash>, auth: set<hash>
3: }
4: type authevent extends event {
5:     type: string
6: }
7:
8: interface MatrixBroker
9:     function receive (e: event): boolean
10:     function resync (time: since, peer: user, auth: authevent): set<event>
11:     function get (id: int): event

The Matrix Relay implements the Matrix Broker, as shown in Listing 2. The receive
function updates the cache with new events and the AuthDAG with new authorization
events. The resync function returns the set of events with UTC timestamps larger than
the provided since timestamp. The get function returns the event with the provided
event ID, which is the hash of event. The isValid function returns whether the provided
event passes checks regarding event format, hash, and authorization. Finally, the isMem-
ber function returns true if after state resolution in the AuthDAG the membership state
of the provided peer is join.



Relay Functionality 41

Listing 2: Relay Functions
1: class Relay implements MatrixBroker:
2:     Cache: state set<(time, event)>
3:     AuthDAG: state set<authevent>
4:     RoomRelays: state set<user>
5:
6:     function receive (e: event): boolean
7:     function resync (time: since, peer: user, auth: authevent): set<event>
8:     function get (id: int): event
9:     function isValid (e: event): boolean
10:     function isMember (peer: user, auth: authevent): boolean

When a relay processes an event with the receive function (Listing 3), it first performs
an event validity check, which is comparable to checks performed on receipt of a PDU as
described in the Matrix Specification [50]. This validity check is performed separately in
the isValid function (Listing 4). The function only processes the event, if the precondi-
tion of the event being valid is true. If so, the relay associates the current UTC-timestamp
to it and adds it to the set of cached events. Next, if the event came from a peer, i.e., if the
event sender is not in the set of room relays, the relay distributes the event to the other
room relays. Events received from relays are assumed to have already been distributed
to other relays. Finally, the receive function returns whether the sending of the event
was successful.

Listing 3: Receive Event
1: function receive(𝑒: event) 
2: v ← isValid
3: if 𝑣 then
4: timestamp ← now(UTC)
5: Cache ← Cache ∪ (timestamp, 𝑒)
6: ▷ If event is from peer, distribute to all other room relays
7: if ¬(𝑒.sender ∈ RoomRelays) then
8: ∀𝑟 ∈ RoomRelays : deliver(𝑒, 𝑟)
9: return v

The isValid function (Listing 4) validates the event format, checks the event hash and
checks event authorization and is called by the receive function. The relay initially
checks if the event is in the correct format (validEventFormat), i.e., it has to comply
with room version event format [50]. After that, the relay determines whether the send-
ing peer or relay is authorized to send events in the room. To check the authorization,
the relay requires the complete AuthDAG at least up to the received event e. The com-
pleteAuthChain function verifies whether an auth chain can be calculated for a given
event. The auth chain of an event is the set that can be constructed from the event’s auth
events and recursively adding each of its auth events. The event authorization can be
determined, only if the complete auth chain is available. If events from the auth chain
are missing, they are re-requested from other peers/relays in a best-effort manner with
the getMissingEvents function. The process of retrieving missing events is limited by
a maximum number of tries and timeouts in a best-effort approach, because peers/relays



42 4. Design

storing the missing events might not be online. This best-effort approach provides an
upper bound on the response time of the isValid function. Best-effort means that get-
MissingEvents returns either the missing events after before a timeout expires, or the
empty set, e.g., if all other room relays and peers are offline. Therefore, the AuthDAG
is either extended with the missing events in 𝑚 or remains unchanged in the case of
getMissingEvents returning the empty set (AuthDAG = AuthDAG ∪ ∅). After that, the
actual authorization check for the event given the AuthDAG is performed. Because the
previously mentioned getMissingEvents function may return the empty set, the Au-
thDAG used in the isAuthorized function might still miss events. In this case, the relay
cannot perform the authorization check, assumes that the peer of the event is unautho-
rized and the isAuthorized function returns false. Within the isAuthorized function,
if a full auth chain can be calculated and the AuthDAG includes state conflicts, the state
resolution algorithm is used to resolve these conflicts. If the peer is authorized and the
event 𝑒 in the isValid function is a state event, the AuthDAG has to be extended with
the event. An event is considered valid, if the event is in the correct format, the hash is
correct and the peer/relay is authorized to send the event.

Listing 4: Event Validity Check
1: function isValid(𝑒: event) 
2: ▷ Check if event format complies with specification
3: fmt ← validEventFormat(𝑒)
4:
5: ▷ If events are missing in auth chain for event, get them
6: if ¬completeAuthChain(AuthDAG, 𝑒, 𝑒.auth) then
7: m ← getMissingEvents(AuthDAG, 𝑒)
8: AuthDAG ← AuthDAG ∪ m
9:
10: ▷ Perform authorization check with AuthDAG
11: auth ← isAuthorized(AuthDAG, 𝑒)
12:
13: ▷ Append new event to AuthDAG if it is a state event
14: if auth ∧ isStateEvent(𝑒) then
15: AuthDAG ← AuthDAG ∪ 𝑒
16: return fmt ∧ hsh ∧ auth

The isMember function (Listing 5) checks whether a peer is a member of the room,
given the join event. More precisely, it checks whether the membership state of the peer,
that the join event references, equals join after state resolution. First, the validity of the
event is determined with the isValid function. Since this check also re-requests the
newest events of the AuthDAG, the isMember function assumes that the AuthDAG has
the latest state of any online relay or peer. The provided event must be in the AuthDAG,
it should correspond to a state event that changes the peer’s membership to join and
the event sender should equal the provided peer . Because the provided event might not
be the latest event modifying the peer’s membership state, the final check determines
whether after resolving the room state with the complete AuthDAG, the peer’s mem-
bership remains join. If the AuthDAG includes a ban event that still remains after state
resolution and is the most recent membership modification, the isMember function fails.



Relay Functionality 43

Listing 5: Membership check
1: function isMember(peer: user, auth: authevent) 
2: ▷ Check event validity
3: if ¬isValid(auth) then
4: return false
5:
6: ▷ Check if provided event is in AuthDAG and if it is a correct join event
7: if auth ∉ AuthDAG ∨ auth.type ≠ join ∨ auth.sender ≠ peer then
8: return false
9:
10: ▷ Membership state of peer after state resolution should be join (Not banned)
11: return memberState(peer, auth, AuthDAG) == join

The resync function (Listing 6) processes resync requests from peers that request a set
of events later than the given timestamp. The requesting peer also provides an autho-
rization event, which should be the peers’s join event and allows the relay to check the
peer’s membership, i.e., if the peer has the necessary permission to receive room events.
Because the peers want to retrieve only a subset of cached events, they provide the since
parameter. The relay returns all events with a timestamp larger than the since parameter.

Listing 6: Receive Resync Request
1: function resync(since: time, peer: user, auth: authevent) 
2: if ¬isMember(peer, auth) then
3: return ∅
4: return {𝑒 | (𝑒, 𝑡) ∈ Cache, 𝑡 > since}

The get endpoint (Listing 7) allows peers or relays to request an event with a specific
ID. As in the resync function, the relay checks the peer’s membership state with the
isMember function. If peers/relays are missing only one specific event and they know
the id, this endpoint can be used. This endpoint is advantageous in cases where peers/
relays receive an event that references an unknown auth event, but already have all
other events, as they can retrieve this event by providing the specific ID.

Listing 7: Receive Get Request
1: function get(id: int, peer: user, auth: authevent) 
2: if ¬isMember(peer, auth) then
3: return ∅
4: return {𝑒 | (𝑒, 𝑡) ∈ Cache, 𝑒. id = id}

4.3 Peer Design
This section describes the design of peers in the setting of P2P Matrix with relays in
detail. It discusses the required changes to peers in existing P2P Matrix designs, focuses
on the interaction with relays, how requests are generated and how relay responses are
processed.



44 4. Design

4.3.1 Peer Overview
Peers include both the functionality of pure P2P peers, where only peers exchange
events, and peers for P2P Matrix with relays, that extends the pure P2P peer with relay
functionality.

Figure 16:  Peer Functionality Overview. A peer combines the functionality of a peer
in pure P2P (small circle) with the relay-related functionality (large circle). A peer can
resync, get specific events from relays, or send events to the relay and to online peers.

When a peer sends an event in P2P Matrix with relays, the event is sent both to a room
relay and to the peer distribution network, which is the network of online peers. With
the resync request, a peer can receive a subset of room events from the selected relay. In
practice, this subset most often consists of those events exchanged when the requesting
peer is online. With the get request, a peer can retrieve a specific event from the relay,
given the event ID.

The requests a peer makes additionally to the requests of pure P2P peers are:
• Send – Peer sends event to both relay and online peers in the peer distribution net-

work.
• Resync – Peer requests events from relay cache given a since-parameter.
• Get – Peer requests event with given ID.

4.3.2 Peer Functionality
The existing peer functionality, as described in Section 4.3.1, is extended with function-
ality regarding room relays, which is summarized in Listing 8. A peer stores the set
of the room relay’s in the state set RoomRelays. In practice, a peer can determine the
room relays via the DAG, because room relays are room members with an additional
attribute and membership events are stored in the DAG. The current relay represents
the selected relay, although in practice a peer can use multiple relays, e.g., per device or
per subscription. Because P2P Matrix should work also without relays, peers can decide
whether to use the relay of a room (useRelay). Because this design is based on the one-



Peer Functionality 45

room model, there is only one useRelay state. In a multi-room model, a peer can choose
which rooms a relay can be used for.

A peer has three functions that correspond to an interaction with the relay. The function
send distributes the event to the online peers via the P2P distribution network and to the
relay, if useRelay is true. The function resync requests events newer than the provided
since timestamp and requires the peer to provide an authorization event to prove his/
her membership. The function get requests an event with an given ID from the relay
and also requires an authorization event.

Listing 8: Peer Functions
1: type event {
2:     sender: user, content: string, prev: set<hash>, auth: set<hash>
3: }
4: type authevent extends event {
5:     type: string
6: }
7:
8:
9: class Peer:
10:     Self: const user
11:     RoomRelays: state set<user>
12:     CurrentRelay ∈ RoomRelays: state user
13:     UseRelay: state boolean
14:
15:     function send (e: event): boolean
16:     function resync (time: since, auth: authevent): boolean
17:     function get (id: int, auth: authevent): boolean

The send function (Listing 9) allows a peer to send an event into a room. The first step
for the peer is to distribute the event to online peers. This direct peer distribution is
necessary because even with relays, online peers should exchange events directly, in
order allow P2P Matrix to work when the relays are unavailable or peers choose not
to use relays. The distribution to online peers is considered successful, if the event has
been sent to at least one of the online peers, and is stored in the success variable. If a peer
chooses not to use a relay, has not selected a relay, or the current room has no relays, the
successful delivery depends on the previous distribution to online peers (success vari-
able). If however room relays exist, a relay is selected, the online peer distribution was
successful and the relay responds with a success, the send function returns true.

Listing 9: Send Event
1: function send(𝑒: event) 
2: success ← distributeToOnlinePeers(𝑒)
3: if ¬UseRelay ∨ CurrentRelay = null ∨ ¬roomHasRelays() then
4: return success
5: return CurrentRelay.receive(e) ∧ success



46 4. Design

The resync function (Listing 10) allows a peer to resynchronize events. The resync func-
tion cannot make the request to a relay, if the peer chooses not to use a relay, the room
has no relays, or a relay has not been selected. In this case, the peer tries to resynchro-
nize with currently online peers. The syncPeers returns true, if the peer resynchronized
with at least one other peer. If all of these preconditions are true, the peer requests all
events newer than the provided since timestamp and provides the authEvent, allowing
the relay to perform authorization checks.

Listing 10: Resynchronize events
1: function resync(since: time, auth: authevent) 
2: if ¬useRelay ∨ CurrentRelay = null then
3: ▷ Synchronize with online peers
4: return syncPeers()
5: return CurrentRelay.resync(since, Self, auth)

The get function (Listing 11) allows a peer to request an event with a specific ID from a
relay. The get function cannot make the request to a relay, if the peer chooses not to use
a relay, the room has no relays, or a relay has not been selected. If all of these precondi-
tions are true, the peer requests the event with a given ID and provides the authEvent,
allowing the relay to perform authorization checks. This function is especially helpful,
when after receiving events from the resync function, only a few events are missing
in the peer’s DAG. Because all events reference previous events, the peer knows the
missing event IDs.

Listing 11: Get event with given ID from relay
1: function get(id: int, 𝑒: authevent) 
2: if ¬useRelay ∨ RoomRelays = ∅ ∨ CurrentRelay = null then
3: ▷ Get event from online peer
4: return getFromPeer(id, 𝑒))
5: return CurrentRelay.get(id, Self, auth)

4.4 Use Cases
This section presents three different use cases, that show how the design works in detail
and which corner-cases have to be considered.

4.4.1 Add Relay Process
Because relays are managed as room members, a relay is added to a room as a regular
peer. The process of a relay joining a room depends on the room’s join rules, as described
in Section 2.1.2. While in a public room, any relay can join the room, this use case focuses
on private rooms, where relays have to be invited by peers in order to join the room.

In the first step, a peer sends an invitation to a relay to join the room. The peer also
publishes an invitation event in the room, whereby all online member peers are notified
that a relay has been invited. The relay joins the room by publishing a join event into the
room. The peers enforce the access control mechanism when processing the join event,
as only peers with a required power level are permitted to invite other peers. Whether



Add Relay Process 47

the peers add the join event to their DAG depends on the room state, which is calcu-
lated by the state resolution algorithm, as described in Section 2.1.3. Having joined, the
relay obtains state events from other online peers, which is necessary to construct the
AuthDAG. In this step, at least one online peer is required for the relay to request events
from. Even if the peer is malicious and the peer’s DAG includes altered state events,
benign peers eventually coming online later and re-syncing with a relay only accept
authorized events, because they also have the DAG, which holds room state necessary
for enforcing authorization rules. After that, peers can use the relay-related functions, as
described in Section 4.3.1. Managing relays as room members therefore utilizes existing
access control in Matrix, and allows only those peers to add relays to a room that have
the necessary power level. For relays to construct the AuthDAG, at least one peer in the
room must be online.

4.4.2 Room Join
Even though relays provide asynchronous delivery of room events for joined peers, they
do not provide asynchronous room joins. An asynchronous room join is the process of
a peer becoming member of the room and obtaining the room DAG without the other
peers having to be simultaneously online. In the case of invite-only rooms, an asyn-
chronous room join can also require an invitation from an existing peer. P2P Matrix
with relays does not support joining rooms asynchronously, because the joining peer
cannot retrieve the complete room DAG from the relay — only the cached events. How-
ever, as the relay stores the AuthDAG and the cache, the peer could in principle obtain
the AuthDAG and existing events from the cache. With the AuthDAG, the peer obtains
membership information and knows from which other peers the DAG can be obtained.
While a room join with relays does not enable the peer to build the complete DAG, the
peer can obtain a subset of events that exist in the cache, and thus, a subset of previous
room events.

4.4.3 Relayless Peers
Peers can either choose to use relays for asynchronous delivery, or they can choose not
to use them. When a peer does not use a relay and therefore does not send events to the
relay, those events cannot be asynchronously retrieved from the relay with the resync-
request. Figure 17 illustrates a room where two peers use the relay, but another peer
does not use the relay. At 𝑡0, a relay-using peer sends event a to both the other online
peer and the relay, while the other peer, who is not using the relay, sends event b to
only the other peer. When at 𝑡1, 𝑡1 > 𝑡0 both sending peers are online and a third peer
comes online and resynchronizes with the relay, only event a is returned, not event b.
For the event b to be available asynchronously, peers would have to forward events on
behalf of non-relay-using peers the relay. This would require the peers to agree on the
forwarding peer in order to reduce messaging overhead. Such a forwarding mechanism
is not realized in the design in order to keep the functionality simple.



48 4. Design

Figure 17:  Relayless Peers. The event 𝛽, sent by a relayless peer (¬useRelay) at 𝑡0, is
not returned by the relay, responding to a resync-request made by a previously offline

peer at 𝑡0.

4.5 Summary
The design chapter first outlines the high-level system architecture for P2P Matrix with
relays, and then focuses on the functionality of relays and peers. The high-level system
architecture consists of a set of online peers connected via the Peer Distribution Net-
work, a set of offline peers and the relay set consisting of all room relays. The two main
relay components allowing asynchronous delivery (Event Cache) and access control
(AuthDAG) are described. The functionality of relays is explained by separately specify-
ing the individual functions. The functions corresponding to the relay’s API endpoints
are specified in the Matrix Broker interface. The necessary modifications to peers for
relay-enhanced P2P Matrix are also shown by specifying each peer functions. Finally,
three different use cases for P2P Matrix with relays are discussed, each of which provide
insights into how the solution handles various edge cases.



5. Implementation

This chapter provides an overview of the implementation of relays in P2P Matrix. First,
existing implementations relevant for the P2P Matrix relay extension are presented in
Section 5.1. Then, a general overview over the modified components is given in Sec-
tion 5.2. Finally, the implementation of relays (Section 5.3) and peers (Section 5.4) is
discussed.

5.1 Existing Implementations
This section presents existing implementations relevant for the P2P Matrix relay exten-
sion. Implementation possibilities for P2P Matrix with relays, based on existing Matrix
software, are analysed in Section 5.1.1. Because Dendrite is selected as the peer’s locally
run homeserver, both the homeserver itself (Section 5.1.2) and the deployment with the
P2P network Pinecone are presented (Section 5.1.3).

5.1.1 Analysis of Existing Approaches
As outlined in Section 2.3.2, the current P2P Matrix implementations utilize the exist-
ing Matrix protocol for P2P, such that peers consist of Matrix clients and Matrix home-
servers run on local devices. Thereby, required client-modifications for P2P Matrix are
minimized, as they communicate with the locally run homeserver via the Client-Server
API, which they already do in Federated Matrix. Additionally, retaining the separation
between the client and server functionality in P2P Matrix allows using different clients
for the same server. Consequently, the development of the P2P functionality for Matrix
can focus on modifying homeservers. The alternative approach of extending clients with
the P2P functionality would require implementing much functionality already provided
by homeservers, e.g., the DAG, state resolution and API endpoints.

There are three existing implementations for P2P Matrix: Matrix-over-libp2p, Matrix-
over-Yggdrasil, and Pinecone, as described in Section 2.3.2. All of these implementations
use the homeserver Dendrite, because it is memory-efficient and has 100% Server-Server
API parity [24] with Synapse, the reference homeserver implementation. The memory-
efficiency enables the deployment of P2P Matrix on mobile devices, where Dendrite runs



50 5. Implementation

as a service in the background, alongside a Matrix client (e.g., Element). In summary,
Dendrite has already been successfully used in P2P Matrix scenarios, has been deployed
on mobile devices alongside the Element client, and the P2P Dendrite implementations
have been made publicly available. A more detailed description of the Dendrite home-
server can be found in Section 5.1.2.

The Dendrite homeserver is chosen as the peer implementation due to the discussed
advantages of Dendrite in P2P Matrix scenarios, and because P2P deployments already
exists, in contrast to other homeservers, such as Synapse  [51], Conduit  [52] or Con-
struct [53]. Therefore, Dendrite is used as a basis for implementing the additional relay-
related functionality for peers. The P2P Matrix implementation Pinecone is chosen as
underlying P2P network protocol, because it mitigates the shortcomings of the Yggdrasil
network, as described in Section 2.3.2, and because a working deployment of Matrix
peers running Pinecone has been made publicly available, in contrast to the Matrix-
over-libp2p implementation.

Relays could either be based on an existing homeserver, or they could be written from
scratch. Using a homeserver implementation has the advantage of utilizing existing
functionality that could be re-used for relays, such as API endpoints, DAG functional-
ity, that can be used for the AuthDAG implementation, and a communication protocol
between homeservers, that can be utilized for both relay-peer and relay-relay commu-
nication. Therefore, relays are based on a homeserver implementation. Again, in princi-
ple any homeserver could be chosen. Dendrite is selected as a basis for the relay imple-
mentation, as it is an API-compliant homeserver, and provides a scalable and modular
architecture, allowing the relay functionality to represent a new component.

5.1.2 Dendrite
Dendrite [24] is a second-generation homeserver written in Go and was developed as
an alternative to Synapse [51], the original reference homeserver implementation. As
already mentioned, Dendrite makes improvements regarding efficiency and scalability
compared to Synapse, as it has a smaller memory footprint with a better baseline per-
formance, can run on multiple machines and scales to large homeserver deployments
[24]. The compliance with the Matrix specification is tested by both the same test suite
as Synapse and a new go test suite is added. The architecture is structured into different
microservice components that all can independently scale horizontally and have a dedi-
cated database. Therefore, the microservice architecture allows independent component
upgrades, schema updates etc. The microservice architecture is an important improve-
ment compared to Synapse, because it does not have the scalability problems that come
with having a single database for the homeserver. Even though components are inde-
pendent in principle, Dendrite also has a monolithic setup, where the components are
assembled to one single binary [54]. Dendrite includes different top-level modes that
combine the microservice components for different use cases, three of which are:

1. Dendrite: Regular homeserver mode for Federated Matrix.
2. Dendrite Demo Yggdrasil: Homeserver as peer in the Yggdrasil [26] network.
3. Dendrite Demo Pinecone: Homeserver as peer in the Pinecone [27] network. De-

tailed description in Section 5.1.3.

While the top-level mode Dendrite is used to deploy homeservers in Federated Matrix,
the other two modes apply the different P2P network implementations Yggdrasil and



Dendrite 51

Pinecone respectively, as described in Section 2.3.2, to the homeserver functionality. Ma-
trix functionality needed by homeservers in general such as state resolution, federation
requests, or parsing JSON data is implemented in a separate library, the gomatrixserver-
lib [55]. Dendrite uses this library in various components. These different Dendrite com-
ponents are described as follows:

• Room Server
Models homeserver rooms and all operations related to the DAG, making use of the
gomatrixserverlib for common homeserver functionality, such as state resolution.

• Sync
Implements the synchronization functionality from the Client-Server API in the
Matrix Specification. With the sync endpoint, clients can request a range of events
from the homeserver for a given room.

• Federation
Implements the Server-Server API from the Matrix Specification, describing the
communication protocol between homeservers.

• Client
Implements the Client-Server API and provides the communication protocol be-
tween clients and homeservers.

• User
Models user-related processes for the local homeserver, such as account manage-
ment, login and registration.

• Media
Implements the media repository functionality from the Client-Server API, where
users can upload files to the homeserver.

• AppService
Implements the Application Service API from the Matrix specification, which en-
ables modular extensions to the homeserver functionality, such as protocol bridges
that allow Matrix users to exchange messages with other messaging platforms, e.g.,
WhatsApp or Signal.

5.1.3 Dendrite-Demo-Pinecone
Dendrite is especially useful for P2P Matrix, because it can be run efficiently on client
devices. This allows a P2P Matrix architecture without having to change the Matrix Pro-
tocol, as both homeservers and clients are run on peer devices, whereas peers exchange
events by having their locally run homeservers exchange events. Two existing Matrix
demos [29], [28] run both a Dendrite homeserver and the Element client on a mobile
iOS or Android device, while the local homeserver runs as a peer in a Matrix Pinecone
network.

The Dendrite Pinecone demo runs a homeserver as a Pinecone peer, that can discover
and connect to other peers, forming a logical Pinecone overlay network. Any Matrix
client can connect to the peer’s local homeserver, create an account and log in to a
homeserver. The demo also includes store- and forward relays, which however have to
be manually configured in the peer’s database and only store and forward transactions
directed to single peers without any additional access control. Because a Docker con-
figuration file is provided, the Dendrite Pinecone demo can also be run as a Docker
container, allowing reproducible deployments and further development of multiple con-
tainers running in a custom network.



52 5. Implementation

The Dendrite Pinecone implementation uses the Dendrite monolithic setup, which in-
cludes all homeserver components, and additionally the P2P monolith, which includes
Pinecone and P2P-related functionality. Public and private cryptographic keys are gen-
erated for the Pinecone peer, as the public key serves as routing identifier, while the
private key is used to sign Pinecone announcements or bootstrap messages. The P2P
monolith comprises all components necessary for a Pinecone peer, such as a Pinecone
router, a connection manager, and a multicast discovery mechanism. When starting the
peer, the connection manager triggers periodic multicast discovery messages, whereby
other peers within a local network can be found. These multicast discovery messages
are implemented both in IPv4 and IPv6, and use UDP on the transport layer. Also, HTTP
servers are started that handle Matrix requests from either clients or other peers. Finally,
when a peer is added, and a relay has already been manually configured in the database,
all transactions directed to the current peer’s user are requested from the relay.

5.2 Overview
This section provides an overview on the changes made to peers of the existing P2P
Matrix demo, and the implementation of relays to P2P Matrix.

In addition to the three Dendrite modes, as described in Section 5.1.2, the implementa-
tion introduces a new Dendrite mode: Dendrite P2P Relays. This new mode assembles all
necessary components for a relay-enhanced P2P Dendrite demo with Pinecone peers.
The mode can be used to run either a peer or a relay, which is configurable by a flag.
Peers and relays share one mode, because they share a considerable amount of function-
ality and separating them into two different modes would result in a large amount of
redundant functionality.

Apart from the new mode, the implementation also introduces a new component, the
Room Relay. This component is named Room Relay in order to stress that relays are
configured per-room, and also to differentiate it from the existing Relay component (as
described in Section 3.6.6), where relays are statically configured in the database and
forward transactions to single peers without additional authorization mechanisms. The
Room Relay API provides resync functionality and includes both making resync requests
to relays for peers, and processing resync requests from peers for relays. Figure 18 de-
picts the changes made to the respective components. The only new component Room
Relay API depends on the User API, the Federation API, and the RoomServer API. These
three components are also modified, in order to support both relay-related functionality
for peers and the integration of relays into the existing microservice architecture.

While Section  4.2 models relays in a one-room model, the implementation supports
multiple rooms with different sets of relays. Section 5.3 describes the implementation of
the relay functions, which is based on the design from Section 4.2.4, while Section 5.4
describes the implementation of the peer functions, which is based on the design from
Section 4.3.2.



Overview 53

Figure 18:  Changes made to Dendrite Components. For simplicity reasons, the un-
changed component Client API is not depicted. Aside from dependencies for the new

component RoomRelay API, no inter-component dependencies are changed.

5.3 Relay Functionality
The relay implementation is based on the Dendrite Pinecone Demo, described in Sec-
tion 5.1.3. There are several reasons for this implementation decision:

• The Demo provides a working P2P Matrix Setup, where peers can exchange events.
By using this demo, no additional work is necessary to implement P2P-specific
transport functionality. Consequently, within the Dendrite Pinecone Demo, relays
can be regarded as modified peers.

• The Demo uses Dendrite and therefore includes all homeserver functionality. Re-
lays use parts of the homeserver-related functionality, in order to avoid developing
redundant functionality.

• By utilizing parts of the existing implementation, the relays are built upon an al-
ready tested, validated and maintained code base.

• Re-using existing code allows focusing on the core functionality of relays, i.e.,
Cache, AuthDAG, inter-relay event forwarding and providing resync functionality.

The implementation of relay functionality is described in the same order as in Section 4.2,
beginning with the AuthDAG and Cache, and continuing with each conceptual function
provided by relays.



54 5. Implementation

5.3.1 AuthDAG
In Dendrite, the Room Server API is responsible for all operations concerning the DAG. A
peer’s internal component implementing the Room Server API and handling all room-
related operations is referred to as the room server. For incoming events, the room server
has the sub-component inputer that consumes input streams and processes events of all
rooms. The inputer queues incoming events of all rooms, and then assigns each event
to a worker for the event’s respective room. The room server’s processRoomEvent func-
tion performs event validity (e.g., validate JSON, check if room exists) and authorization
checks (e.g, check if event is allowed based on current room state), and stores events
that pass all checks in the DAG.

Since the processRoomEvent function already implements the authorization checks from
the isValid function Section 4.2.4 (Listing 4), it is extended by the relay’s AuthDAG func-
tionality. Two changes are made to this function:

1. Relays only store state events persistently in the DAG, thereby forming the Au-
thDAG. As only state events, and no message events are stored, the previous event
field may point to an event hash that is not stored in the DAG. However, because
only the auth event relation is relevant for authorization checks, storing only state
events in the DAG (i.e., the AuthDAG) for authorization purposes is possible. While
homeservers in Federated Matrix store message events in the DAG to establish the
causal order relation, relays in P2P Matrix do not have to provide this relation, as
peers already establish this relation by storing the DAG.

2. Events passing all authorization checks are cached. Separate caches exist for each
room. If an event should be cached, but no cache exists yet for the room, the relay
creates a new room cache and stores the event in it. Relays cache all authorized
events, including state and message events.

5.3.2 Event Cache
The Event Cache provides an interface for the relays to globally store and retrieve PDUs.
As Dendrite already includes a set of internal caches, this set is extended by the Event
Cache. A conceptual overview on the Event Cache is depicted in Figure 19. On the high-
est level, the global cache index maps room identifiers to a pointer to the start of the
room-specific cache, as a relay stores a separate cache for the rooms it is member in.
The entries of a room cache are stored in a slice, which is a resizable go datatype refer-
encing an underlying array. The room cache stores tuples of UTC timestamps and PDUs
in a slice. Therefore, the cache is a non-persistent storage, so that a relay shutting down
results in the loss of cached data. However, this is acceptable for the proof-of-concept
implementation, where relays are assumed to be online.

Three cache operations are provided:
• Store PDU: Store the PDU with a UTC timestamp in the given room’s cache. This

operation is called in the process of receiving events, when events pass all validity
and authorization checks.

• Get PDUs by UTC timestamp: Return subset of events in cache with timestamp later
than given timestamp. This operation is called when processing resync-requests,
after having determined the requesting peer’s room membership.

• Get PDU by ID: Return event with given ID. This operation is called when an au-
thorized peer requests an event with a given ID from the relay.



Event Cache 55

Figure 19:  Implementation of the Event Cache. The global cache index maps each room
to a pointer to the room cache, where tuples of timestamps and PDUs are stored.

Considering performance, the cache operations of the cache datatype can be optimized.
The operations Store PDU and Get PDU by UTC timestamp are taken into account here,
since they are assumed to be the most frequent cache operations. The data type could
be optimized in two respects: Efficient insertion of elements (Store PDU), and efficient
retrieval of multiple elements (Get PDU by UTC timestamp).

For unsorted linked lists and array lists, the insertion complexity is 𝑂(1), assuming the
insertion is performed at the first element for linked lists, and at the end for array lists.
In both cases, the retrieval complexity is 𝑂(𝑛), 𝑛 denoting the number of cache entries.
In the worst case, all 𝑛 cache entries have to be compared to the given timestamp. For
sorted linked lists or array lists, the insertion complexity is 𝑂(𝑛), because the new ele-
ment has to be inserted in the correct position, so that the data type remains sorted. The
retrieval complexity is 𝑂(log(𝑛) + 𝑚), since with a sorted data structure a binary search
can be performed to search for the closest element to the timestamp, after which the
next 𝑚 elements following the closest element are returned. The self-balancing binary
search tree stores the elements in an already binary sorted and also balanced data struc-
ture, allowing not only a retrieval complexity of 𝑂(log(𝑛) + 𝑚), but also an insertion
complexity of 𝑂(log(𝑛)). As this data type has the most efficient insertion and retrieval
mechanism, this is the most efficient data type for the room relay cache. The comparison
of the data type’s insertion and retrieval complexity is summarized in Table 3.

Data Type Insertion Complexity Retrieval Complexity

Unsorted {Linked,Array-}List 𝑂(1) 𝑂(𝑛)
Sorted {Linked,Array-}List 𝑂(𝑛) 𝑂(log(𝑛) + 𝑚)
Self-Balancing Binary Search
Tree

𝑂(log(𝑛)) 𝑂(log(𝑛) + 𝑚)

Table 3: Insertion and retrieval complexity comparison between cache data types, n de-
noting the number of cache entries, m denoting the number of cache entries following

the closest entry.



56 5. Implementation

5.3.3 Receive Events
The first change to the existing implementation is to modify the functionality of receiv-
ing events for relays. Homeservers process events as Persistent Data Units (PDU), which
wrap events generated by the client in a data structure that holds all necessary infor-
mation to establish the partial ordering in the DAG, and also information to determine
the event’s authenticity and integrity. Homeservers do not exchange PDUs directly, they
wrap them in transactions, which are data structures holding multiple PDUs and ex-
changed only between homeservers, not between clients and homeservers.

The Dendrite components Federation API and RoomServer API are modified in order to
implement the receiveEvent functionality (Listing 3, Section 4.2.4). While the RoomServer
API is responsible for validating and authorizing the event, the Federation API forwards
processed events to other homeservers/peers in the room.

Changes to the processRoomEvent function within the RoomServer API are described in
Section 5.3.1. In short, from all successfully validated and authorized events, only state
events are persistently stored in the AuthDAG, and then the events are cached via the
Store PDU function with the current UTC timestamp in the respective room cache, as
described in Section 5.3.2. Finally, events are added to the room servers output log, where
they are processed further by the Federation API.

In the Federation API, the internal federation server receives a new event from the room
server output log, the processMessage function configures the homeservers/peer the
event should be forwarded to. In the original Dendrite implementation, the federation
server sends the event to the peers that were joined before the event. In the relay exten-
sion, the federation server sends the event only to other room relays, since peers can
receive from other peers directly when synchronously online, or resynchronize with a
relay, when asynchronously online with other peers. At the end of the processMessage
function, the events and their respective destinations are stored in an outgoing queue,
where the events are eventually forwarded to their destinations.

5.3.4 Receive Resync Request
Processing resync requests is implemented in the new component RoomRelay API, where
also making resync requests (Section 5.4) is implemented. This functionality corresponds
to the resync function, as shown in Listing 3 from Section 4.2.4. A new http(s) GET end-
point is added, in the format

http{s}://<relay>/_matrix/relay/resync/{roomID}/{userID}/{since}.

After having received a request at this endpoint, the relay first checks whether room
with the provided roomID exists. Then, the relay performs an authorization check, de-
termines if the user with the provided userID is a member of the requested room and
rejects the requests if the user is not a member. Additionally, to avoid unauthorized
users providing the userID of a different user, an authentication mechanism is required.
While in the Matrix specification’s Client-Server API, clients are authenticated via a lo-
gin/registration process, in the Server-Server API servers are authenticated via public
key signatures. As the authentication mechanism of this request depends on the overall
authentication mechanism of P2P Matrix, this work assumes that the P2P Matrix archi-
tecture provides peers authentication.



Receive Resync Request 57

After having authenticated and authorized the requesting peer, the relay checks if the
room exists and if a cache for the room exists. If so, the cache function Get PDU by UTC
timestamp is called for the room cache and all events with a timestamp later than the
since parameter of the resync request are returned.

5.4 Peer Functionality
The peer implementation is based on the Dendrite Pinecone Demo, described in Sec-
tion 5.1.3. Because the demo already models peers in a P2P environment, the setup can
be reused for peers interacting with relays. As Dendrite and Pinecone have already been
successfully deployed as apps for mobile devices [28], [29], the deployment of peers with
additional features for relay-related requests to mobile devices only requires updating
Dendrite components. The implementation of peer functionality is described in the same
order as in Section 4.3.2. First, the modifications for sending events are presented, then,
the implementation of making resync requests is discussed.

5.4.1 Relay Selection
Relay selection is the process of peers selecting a relay for a specific room. While Sec-
tion 4 abstracted from the relay selection problem, the implementation uses a pseudo-
random selection mechanism. A selection seed can be passed to the peer, and is then
used to instantiate a pseudo-random generator. From the set of relays currently in the
room, each peer selects the relay provided by the pseudo-random generator. The selected
relay is then stored in a global variable storing per-room relay selections, and thus is
accessible from all other Dendrite components. Finally, peers use the selected relay for
both sending events (Section 5.4.2) and making resync requests (Section 5.4.3). This relay
selection mechanism allows reproducible evaluations, because with identical selection
seeds, peers select the same relay in each evaluation run.

5.4.2 Send Event
When a client sends an event to the peers server, the room server component first de-
termines whether the event is valid and authorized. After that, the event is added to
the room servers output log, where it is processed further by the Federation API, as al-
ready seen in the relay’s process of receiving events in Section 5.3.3. The processMessage
function in the Federation API determines, which other peers/relays the event should be
forwarded to. Intially, the peer has a list of room members, including peers and relays.
The peer filters this list, and only forwards events to the selected relay and to other
peers. The map of the selected relay for each room is configured in a global variable.

As mentioned in Section 5.3.3, the event is added to an outgoing queue, where it is even-
tually forwarded to its destinations. After an event is forwarded to the outgoing queue,
the local federation server tries to forward the event to the destinations. If destinations
are offline, the event remains in the queue and is forwarded to each destination, when-
ever it comes back online. Therefore, it is important to add all other room member peers
(not only currently online member peers) to the event when adding it to the outgoing
queue.



58 5. Implementation

5.4.3 Make Resync Request
When returning online, a peer makes resync requests for each member room. If not al-
ready completed, a relay for the respective room is selected. The process of peers making
resync requests to a given relay for a given room is implemented in the new component
RoomRelay API. First, the peer queries the event ID of its own join event from the local
room server, which provides all DAG-related operations. Then, the peer queries the last
online time of the current device, as a peer can have multiple devices with different on-
line times. At this point, the P2P Matrix architecture deviates from the Federated archi-
tecture, as there is a one-to-one relation between device and homeserver in P2P Matrix.
If a peer has multiple devices, it also has multiple homeservers, because homeservers
are assumed to be run on devices directly. Having determined the last online time of the
current device, the peer makes the resync request to the selected relay, with the end-
point from Section 5.3.4. If the peer is authenticated, authorized, the room exists and the
selected relay has events after the last online time, the relay returns a transaction, which
holds multiple PDUs. The peer passes the transaction to the existing processTransaction
function, where it is added to the local DAG after having verified and authorized each
event.

5.5 Summary
In summary, this chapter discussed the implementation of both relays and peers based
on the Dendrite Pinecone implementation. Dendrite is chosen due to its modular ar-
chitecture and the publicly available P2P implementation. A new RoomRelay module
is added to the architecture, including both functionality of processing resync requests
for relays, and also sending resync requests to the relays. While the relay’s AuthDAG
functionality reuses most of Dendrite’s existing DAG functionality, the event cache is
implemented from scratch. For the peers, a relay selection mechanism is introduced, and
the process of sending events is modified, in order to include the selected relay to the
set of receivers.



6. Evaluation

Relays in P2P Matrix are evaluated based on the implementation described in Section 5.
An overview of the evaluation setup is provided in Section 6.1. After that, the WhatsApp
traffic dataset is analysed in Section 6.2. An overview of all evaluated aspects is given in
Section 6.3. Section 6.4 describes the functional evaluation of the implementation and
includes functional tests for both peers and relays. Then, Section 6.5 focuses on the per-
formance enhancements of relay-enhanced P2P Matrix compared to pure P2P Matrix
without relays.

6.1 Evaluation Setup
This section focuses on how the evaluations are performed and which components are
used for the evaluation. After providing an overview on the evaluation setup, the traffic
generator, the docker network and the logging mechanism are discussed.

6.1.1 Overview
The evaluation setup, consisting of used components and the information flow between
those, is summarized in Figure 20. First, the traffic workloads between peers (and re-
lays) are used to generate Matrix event traffic. Two types of workloads are used in the
evaluation. First, manually written traffic files contain customized traffic for each func-
tional evaluation experiment. Second, a public instant messaging dataset [56] containing
WhatsApp group traffic is used for the performance evaluation experiments. The traffic
generator uses either of the two workloads to trigger sending events as a Matrix client
via the Matrix Client-Server API, or setting peers on-/offline via the Docker API.

All peers and relays are run in separate docker containers, connected by a network
bridge of the host system. Peers and relays store their actions into a log files on the host
system. Finally, all log files are merged into a single log file, that represents the result
of the experiment and is used for further analysis. The following sections discuss the
evaluation setup components in further detail.



60 6. Evaluation

Figure 20:  Evaluation Setup. The traffic generator generates workloads for the peers,
sends traffic based on the provided input. Each peer and relay stores its actions (e.g,
sending, receiving, online state) in a log. The merged log forms the basis for the evalu-

ation.

6.1.2 Traffic Generator
The traffic generator triggers different actions for peers, based on either custom traffic
files or instances of the WhatsApp group traffic set. Running from the host system, the
traffic generator sends request as a Matrix client to the peers, that run in docker con-
tainers and act as Matrix servers. To generate client requests from the traffic generator
to the peer, the Matrix SDK Mautrix-Go [57] is used. Because the evaluation requires
peers to go offline in order to test asynchronous delivery, the traffic generator changes
the online state of peers via the Go-Dockerclient [58] that implements the Docker En-
gine API [59].

Mautrix-Go [57] is a Golang Matrix SDK based on the gomatrix [60] client, a Matrix
client written in go by the Matrix.org foundation. It implements the Client-Server API
from the Matrix Specification [61], thus supports registering new users, creating rooms,
inviting users, joining rooms, sending and reading events. The framework also supports
authorization events, such as setting power levels or banning users. These functions are
required to evaluate the relay-based solution, as relays have to be invited to rooms, that
have to be created and store room events sent by other peers. Aside from the Client-
Server API functions, Mautrix-Go also includes support for Application Services, End-
to-end encryption and provides helpers for parsing event content. Therefore, the library
provides sufficient functionality to run experiments for both functional and performance
evaluations.

The traffic generator contains two separate scripts for functional and performance in-
put files, as they have different input formats. The functional evaluation experiments
require a more fine-grained control over the traffic compared to the WhatsApp dataset,



Traffic Generator 61

such as sending auth events (e.g., banning users, updating power levels) or changing a
peer’s on- or offline state via the traffic file. In contrast, in the performance evaluation
experiments, only message events are exchanged, whereby no auth events have to be
processed. Also, as the WhatsApp dataset does not contain on-/offline of users, the input
format of the performance evaluation does not include actions changing a peer’s online
state. In the following, both input formats are described. The traffic characteristics of the
WhatsApp dataset are analysed in Section 6.2.

For functional traffic, the traffic generator accepts a json traffic file containing a list of
different actions. An example traffic file is provided in Appendix A, Listing 13. The traffic
generator processes each action in sequence, and pauses for a configurable time until
processing the next action. This pause time is provided for each action, because some
actions require a longer period, until their results take effect. For example, when the
action triggers a peer to come back online, it takes a certain time until the Pinecone peer
has established connections to other peers in the network. Available actions for traffic
files used as input for the traffic generator are listed in Table 4. Some actions require a
set of action parameters. Every action requires the json parameter user, as every action
corresponds to a request to the peer made by the Matrix-Go SDK. Actions from one
user directed to another specific user, i.e., ban and powerLevelEvent require the parame-
ter targetUser. The optional parameter pauseAfter allows configuring a pause time after
performing an action. If not configured, the traffic generator uses a default pause time.

Name Description
Message Make send request to peer
Online Connect container to the docker network
Offline Disconnect container from the docker network
OnlineBatch (Dis-)connect multiple containers to/from the docker network
Ban Ban the provided peer from the room
PowerLevelEvent Set power level for provided message type
PowerLevelUser Set power level of a user
State Change the room state of a state key to the provided value

Table 4:  Configurable actions for functional traffic input files

For performance traffic, the traffic generator accepts a csv file containing sending actions
in each row. The format of these actions is summarized in Table 5. The traffic generator
processes each row from the performance traffic input. Random message contents of
the provided char count length are generated. The generator pauses until processing the
next row, depending on the relative timestamp. However, the traffic generator pauses
for a maximum of 10 seconds, because waiting longer does not provide any benefit and
would result in high simulation times. The upper bound of 10 seconds is chosen, so that
peer re-discovery connection establishment in the Pinecone network works for larger
topologies up to 30 peers.

Because waiting at most 10 seconds after the next action produces shorter interarrival
times compared to the original data, after having run the experiment, the logged times
are rescaled back to the original interarrival times. This rescaling mechanism allows a
more realistic analysis of the experiment. If such a rescaling was not applied, evaluation
results could be misleading, because all interarrival times longer than 10 seconds would
be reduced to 10 seconds. Before running the performance experiments, the traffic gen-



62 6. Evaluation

erator adds online periods surrounding the sending timestamps. Therefore, the online
periods of the peers are determined by the traffic generator based on the provided per-
formance traffic. As the online periods themselves are more closely related to the traffic
analysis than the input format for the traffic generator, they are discussed in Section 6.2.

Name Description
Timestamp Relative timestamp for sending message
User User ID
Char Count Number of characters in message

Table 5:  Configurable parameters for performance traffic input files

6.1.3 Docker Network
Peers and relays run in docker containers, because the Docker framework provides sev-
eral features that are utilized for the evaluation setup. First, the Docker environment
provides a reproducible setup for running peers and relays. The host system therefore
only requires a working docker installation and a working image for running peers and
relays. Second, the Docker environment provides simple networking mechanisms to in-
terconnect containers. Third, evaluation scenarios consisting of multiple containers for
peers and relays can be created with a configuration file, i.e., a Docker-Compose file.

Docker-Compose is a tool for defining and running applications with multiple contain-
ers [62] in a single configuration file. In the context of relay-enhanced P2P Matrix, the
technology can be used to deploy a P2P Matrix as the application, where the containers
are either peers or relays. The entire application stack is managed in the configuration
file and can be started with a single command. While docker itself already provides re-
producibility with containers, docker-compose provides reproducibility for multi-con-
tainer applications. Various inter-container dependencies can be configured, such as
the startup order of containers. Docker-Compose also provides a customizable network
configuration for the containers, where even multi-network definitions are possible and
containers are assigned to the networks. For the evaluation scenarios, a custom docker
network is configured, and each peer and relay is added to the subnet.

A Docker-Compose generation script is written, in order to automate the process of
creating new Docker-Compose configuration files for various evaluation scenarios. The
script requires two input parameters: A template file and a peer/relay configuration file.
The template file serves as a skeleton for the generated Docker-Compose configuration
file. The peer/relay configuration (Section 6.1.5) file includes information required for
the Traffic Generator (Section 6.1.2) to send client requests to the peer/relay.

6.1.4 Logging
In order to be able to track peer/relay actions after an experiment, peers/relays save
their actions in an output log with a timestamp. Even though peers/relays run in Docker
containers, they store the actions in log files of the host system. This ensures that log
files can be accessed after shutting the containers down or removing them. Logged ac-
tions are: sending, receiving, making resync requests, receiving resync requests, caching
events, going online, going offline. These actions are logged with additional metadata,
i.e., time of action, user, action type, event type and event hash.



Logging 63

The sending timestamp is logged in the Federation component, right before the event is
added to the output queue, from where it is sent to all other online peers and the selected
relay. The reception timestamp is logged after the transaction has been received, right
before the events in the transaction are checked by the RoomServer component. The re-
sync request is logged right before the request is made to the selected relay. The receive-
resync action is logged right after a relay has received a request for the resync endpoint.
The logging of on-/offline actions is performed, when the network interface has been
activated or deactivated. After each experiment, the log files are merged together into a
single experiment log, by sorting each entry by timestamp. The merged experiment log
is used to interpret and evaluate the experiment, both for functional and performance
evaluations.

6.1.5 Configuration Files
In order to setup and run experiments, the different experiment parameters have to be
configured. The evaluation setup uses configuration files on different layers of abstrac-
tion, with the docker-compose file on the lowest level and running multiple experiments
in succession on the highest level. The configuration files and their relation to the com-
ponents in the Evaluation Setup are shown in Figure 21.

Figure 21:  Hierarchy of configuration files and scripts. Files further to the left provide a
higher degree of automation, e.g., Run Experiments accepts a list of chat IDs referencing

datasets from the WhatsApp Group Traffic and executes the experiment.

Starting with the lowest level on the far right of Figure 21, an experiment requires a cer-
tain number of peers and relays to be configured in the Docker-Compose configuration
file. As all peers and all relays have similar entries in the Docker-Compose configuration
file, it can also be generated from a template file and the peer/relay configuration file, as
described in Section 6.1.3. The peer/relay configuration file primarily stores information
relevant for the traffic generator, i.e., user ID of peer, peer address, access token for client
requests etc. Again, the construction of the peer/relay configuration file is automated,
and can be generated by either the performance or functional experiment script.



64 6. Evaluation

The functional experiment script requires a number of peers, a number of relays and
a path to the traffic file as input. It then generates a peer/relay configuration file, from
which the docker-compose file is generated. The performance experiment script works
in a similar way as the functional experiment script, only that the input file has a dif-
ferent format. Because the performance experiments are run with multiple WhatsApp
Group Traffic datasets and multiple configuration options, the performance experiment
script is further automated by the run experiments script. This script accepts a list of
chat IDs, a certain online period, which is explained in Section 6.2, and a number of
relays. The number of peers depends on the provided dataset.

On the whole, the configuration files and scripts provide an environment, where exper-
iments can not only be configured on different levels of abstractions, but also can be run
in a reproducible and automated way.

6.1.6 Experiment Process
This section elaborates on the process of executing experiments with one of the three
experiment scripts, as depicted in Figure 21. As described in Section 6.1.5, the experiment
files require a traffic file, the number of relays and – in the case of functional experi-
ments – the number of relays as input parameters. Based on these parameters, a peer/
relay configuration file is generated, from which the Docker-Compose file is generated.
Next, the containers configured in the Docker-Compose file are started. After ensuring
that all containers have started successfully, the Traffic Generator scripts are started.

The traffic generator uses the Mautrix-Go SDK to send client requests to the peer. A
prerequisite for sending events to the peer via the Client-Server API is a user account.
Therefore, the traffic generator registers new users for each peer running in a Docker
container. The Traffic Generator then creates a new room, invites all peers and relays,
and joins all peers and relays to the room. After this, the Traffic Generator starts the
experiment and sends events to the peers based on the traffic file. Also, the online states
of peers are controlled via the Docker API.

After the sending process is completed, the Docker containers are stopped. The log files
are merged into a single experiment log. Finally, the experiment log is transformed to
an evaluation-ready format. As the absolute timestamps are irrelevant to the evaluation,
the timestamps are transformed into relative timestamps. Also, event hashes are ordered
by the first event and transformed to numbers.

6.2 Performance Evaluation Traffic
To evaluate P2P Matrix with relays, two types of traffic are used: Synthetic traffic for
functional evaluation and real-world traffic from the WhatsApp traffic dataset [56] for
performance evaluation. Synthetic traffic files are written for each functional experi-
ment, targeting a specific aspect of the relay’s functionality. Because these synthetic
traffic files for functional experiments are closely related to the experiment, they are
described with each experiment in Section 6.4. This section focuses on the WhatsApp
traffic dataset for performance evaluation.



Performance Evaluation Traffic 65

6.2.1 Overview
The authors of [56] provide a dataset of 5.956 private WhatsApp chat histories, with a
total of 76 million message from more than 117.000 users. The chat histories were col-
lected by users voluntarily exporting histories of their chat groups with a web-based
tool. Users were incentivized to share their chats by receiving statistical summaries and
evaluations on the communication behavior within the chats after uploading their chat
histories.

The chat histories include the time of sending, an anonymized user hash, the number of
characters sent as contents and a message type, e.g., text or audio message. The dataset
contains a high share of text messages, as messages in chats from 2021 have a share of
89%. The dataset contains group sizes up until 252 members. However, the distribution
of group sizes in the dataset show, that 42% of the chats have two members, and 83%
of the chats have thirty members or less. Due to different export formats for WhatsApp
chats, only 27% of the chat traces have messages with timestamps of seconds granular-
ity, the remaining chats only have a granularity of minutes. The interarrival times (IATs)
between two consecutive messages, show a long tail characteristic and the authors fit
the distribution of IATs to a beta prime distribution. In the provided distribution, 76% of
the IATs are shorter than two minutes, indicating a high share of short IATs. The authors
also show that IATs decrease with increasing room sizes. They claim that due to the
long tail characteristic, both active phases and long breaks between messages occur in
chats. The dataset provides only sending behavior of group members, it does not provide
insights into message reading behavior.

6.2.2 Online Margins
As WhatsApp and Matrix both are group-based applications for instant messaging, the
group chats of the WhatsApp dataset can be applied to Matrix rooms. The number of
peers for an experiment can be derived by the number of different user hashes in the
chat. One user hash maps to a distinct peer. A major limitation of the dataset towards
the applicability to P2P Matrix with relays is that the dataset provides neither reception
times nor on-/offline times of users. Moreover, asynchronous delivery with the help of
relays can only be measured and evaluated when peers switch between on-/offline state
over time. No distributions on real online times of instant messaging applications have
been found in related work. Also, real distributions of online times cannot be directly
derived from the sending times, because online times might deviate substantially from
the sending times. In P2P Matrix, a peer being online denotes a peer being able to send
and receive events to other peers in a room.

In order to evaluate P2P Matrix with relays with artificial online times, a spectrum of
online periods is modeled for each dataset. Given the time of sending 𝑡𝑠 and an online
margin 𝛿, an online period can be defined as tuple of start (going online) and end time
(going offline).

(start, end) ≔ (𝑡𝑠 − 𝛿, 𝑡𝑠 + 𝛿)

To evaluate a range of online margins, different values can be used for 𝛿. However, within
an experiment all peers use the same 𝛿-value, in order to have comparable online period
durations for each peer. This range should model multiple on-/offline times for each peer,
and result in different synchronous and asynchronous online periods, in order to show



66 6. Evaluation

a difference between P2P with relays and pure P2P. The different values in the range
of online margins are shaped around the sending times, so that a peer is online for a
certain time preceding a sending action, and goes offline after a certain time succeeding
the sending action. Even though this model most likely does not represent real online
times of peers, it allows measuring the effect of relays when the rate of synchronously
online peers declines.

In order to apply online margins of different lengths to a dataset, the IATs of the chat are
considered. Using a same set of online margins for each chat does not suffice, as traffic
properties of chats differ, such as IATs. An online margin resulting in no overlapping
online periods between peers in one chat higher IATs might result in many overlapping
online periods in another chat with lower IATs. An example of different online times is
shown in Figure 22. The two chats both have two group members and have very differ-
ent distributions of IATs. While chat 5264 has shorter IATs, they are significantly longer
for chat 305. Performing the evaluations with equal online margins for both chats would
increase the probability of chat 305 having substantially less overlapping online periods
than chat 5264, compared to performing the evaluations with relative online margins.

Figure 22:  Interarrival times of two selected Whats App Chats with two participants.
Messages are replied to in the first 100 seconds in 75% of the messages in chat 305, and

25% of the messages in chat 5264.

Therefore, online margins should be relative to the dataset’s IATs. As the evaluations
should be run in limited time, only five different online margins are chosen per chat.
Considering the long-tail distribution of the IATs in the chats, i.e., including bursty
message exchanges and long communication pauses, five evenly spaces online margins
would overstate the share of long IATs. In order to evaluate the effect of relays in both
asynchronous online periods and periods, where several peers are online at the same
time, a logarithmic distribution is chosen for the online margin lengths. Finally, five
values evenly spaced on a logarithmic scale are selected as online margins, with the
maximum value being the maximum IAT . Therefore, chats are evaluated within at least
five different scenarios representing the different online margin lengths.



Online Margins 67

6.2.3 Applying Online Margins to Dataset
After having established a configuration of online margins, these margins have to be
applied to the dataset, so that for each message event, the sending peer comes online
before and goes offline after the event occurs. However, for each offline time after a
sending event, the succeeding sending event could occur earlier than the offline time.
This can result in overlapping online periods per peer, which should be avoided. Other-
wise, inconsistencies can occur, e.g., a peer going offline right before sending an event.
Consequently, the overlapping online periods have to be merged together into one pe-
riod.

Listing 12: Generate online periods from send events
1: function genOnlinePeriods(𝑈 : set<user>, 𝑀 : set<message>, onlinemargin: int) 
2: ▷ Set of online periods to be generated
3: P ← ∅
4: for u ∈ U do
5: 𝑀𝑢 ← { 𝑚 | 𝑚.𝑢 = 𝑢, 𝑚 ∈ 𝑀 }
6: 𝑃𝑢 ← ∅
7: ▷ Generate set of all possible online periods
8: 𝑆 ← ∅
9: for 𝑚 ∈ 𝑀  do
10: start ← min(0, 𝑚.time − onlinemargin)
11: end ← 𝑚.time + onlinemargin
12: 𝑆 ← 𝑆 ∪ (start, end)
13: ▷ Find conflicting online periods in state tuples
14: 𝑖 ← 0
15: while 𝑖 < |𝑆| do
16: 𝑆confl ← 𝑆𝑖
17: ▷ Construct set of conflicting online periods
18: 𝑗 ← 𝑖
19: while 𝑗 < |𝑆| − 1 ∧ 𝑆𝑗,1 > 𝑆𝑗+1,0 do
20: 𝑆confl ← 𝑆confl ∪ 𝑆𝑗
21: 𝑗 ← 𝑗 + 1
22: ▷ Save min and max from conflicting set
23: start ← min({𝑠0 | 𝑠 ∈ 𝑆confl})
24: end ← max({𝑠1 | 𝑠 ∈ 𝑆confl})
25: 𝑃𝑢 ← 𝑃𝑢 ∪ (start, end)
26: 𝑖 ← 𝑖 + 1
27: 𝑃  ← 𝑃 ∪ (𝑢, 𝑃𝑢)
28: return 𝑃

The generation of online periods and a merging mechanism for overlapping online pe-
riods is implemented in Listing 13. The function’s inputs are the set of users and the
set of messages, which represent a chat from the WhatsApp traffic set, and the online
margin. The online periods are generated for each user (𝑃𝑢), and merged together (𝑃 ). In
practice, the function takes a list of send messages and returns these messages extended
with new online states. For each user, a set of all possible online periods is generated



68 6. Evaluation

first. Then, elements of this set are checked against conflicts. Two online periods stand
in conflict, if the end time of the earlier period is larger than the start time of the later
period. Starting at each of the user’s events, a set of conflicting online periods is gener-
ated. These conflicting online periods are merged into a single online state, by having
the merged online state start with the minimum start and maximum end time of all
conflicting set elements. These merged online states are then added to the user’s online
state set. In the last step, the online periods of each user are added to the overall set of
online periods. The overall set of online periods is then returned.

6.2.4 Data Selection
From the 5.956 chat histories, few chats are selected for comparing P2P Matrix with
relays and pure P2P Matrix. Also, different online margins are applied to each of the
selected chats, in order to model online periods of peers. Therefore, each chat is evalu-
ated not only in the scenarios of pure P2P and P2P with relays, but also the five different
online margins. This leads to a total of ten required runs for each chat, resulting in long
evaluation times. To select only those chats suitable for showing differences between
pure P2P and P2P with relays, these filters are applied to the dataset: Chats with sec-
onds-granularity, group sizes of 30 or less, run times of three hours or less, 30 or more
exchanged events, chats including periods of asynchronous message exchanges. These
filters are described in the following.

As mentioned in Section 6.2.1, the WhatsApp traffic chat histories contain both datasets
with second-granularity precision sending timestamps, and other datasets with only a
minute-granularity precision. The IATs of all chats, as discussed in [56], show that 69%
of all messages are replied within the same minute. Given this distribution and minute-
granularity precision chat traces, the sending order is lost for a high number of mes-
sages. However, the temporal difference between sending times is important, in order
to produce different online periods between peers, and to simulate asynchronous event
exchanges. Consequently, minute-scale chat traces do not fully capture the temporal
differences between user actions and are therefore filtered out. From the 5.956 chats,
only 1.598 chats with second granularities of sending times remain.

Next, the chats are filtered by the number of group members. In larger groups, the prob-
ability of any two members being synchronously online is considered to be higher than
in smaller groups. Since the advantage of relays most likely only takes significant effect,
if peers are asynchronously online, the chats are filtered by group size. A maximum
number of 30 group members is chosen, as 80% of the chats have a group size of 30
members or less, and these group sizes represent a high share in the overall dataset.

A factor constraining the range of possible chats used for performance evaluation is the
time of running the chat traffic, as each chat is run in ten times. A script estimating the
time of each run is written. This script takes a chat trace as an input, generates online
periods and calculates the times the traffic generator requires between each event. It
therefore uses the same mechanism from the traffic generator (Section 6.1.2) to wait for
the next row to be processed, and adds these waiting times together. For each chat, the
evaluation times are calculated with the online margin set to the median IAT. This pro-
duces rough estimates of how long running chats can take, although the times per chat
may differ due to the five different online margins. Chats with an estimated evaluation
time of three hours or less are chosen.



Data Selection 69

However, if a chat has a low estimated time running the chat, a low number of exchanged
messages does not provide a reasonable amount of data for evaluation. Therefore, a suf-
ficient amount of exchanged messages is required to make claims on the overall perfor-
mance improvement of relays towards pure P2P. Because of that, chats with thirty or
more messages are selected.

Figure 23:  Comparison of two chats with six members. Chat 943 (left) has few bursty
sending periods and fewer messages in total compared to chat 3543 (right).

After applying these filters to the whole WhatsApp dataset, 103 chats remain. For these
remaining chats, a qualitative selection was made based on the traffic patterns in the
dataset. The observed traffic patterns are the share of distribution of sending times and
bursty sending periods. An example comparison between messages in two chats (943,
3543) of the same group size is shown in Figure 23. Chat 943 has more evenly distributed
sending times compared to chat 3565. The more even distribution makes it more likely
to have non-overlapping online periods, and thus asynchronous online times between
peers. Also, chat 3565 has a higher number of periods of bursty message exchanges,
leading to a high number of synchronous online times between peers. The filtered 103
chats were evaluated by observing their traffic patterns, resulting in 18 selected chats
showing traffic patterns that are likely to show the advantages of relays in P2P Matrix.
An overview of all selected chats is provided in Table 6.

Group
Members

Number of
Chats

Mean number of
Messages

2 5 60
3 – 9 6 55

10 – 30 7 112

Table 6: Overview of selected chats from WhatsApp traffic set.

6.3 Evaluation Overview
The different experiments are summarized in Table 7. The evaluation metric describes
an evaluated aspect of the system. An evaluation can be either functional, i.e., validat-
ing that P2P with relays works correctly, or performance-oriented, i.e., validating that
P2P Matrix with relays is an improvement towards pure P2P. Each evaluation metric is



70 6. Evaluation

validated with one or more scenarios. A scenario consists of the room size, the number
of relays and the traffic, which includes events, online periods and resync requests/re-
sponses. For the performance evaluations, the different online margins, based on which
the online periods are generated, are also part of a scenario.

The evaluations are run in simplistic settings, where single rooms are evaluated, relays
are constantly online, do not delete events and are used by every peer. This allows fo-
cusing on the core functionality of relays and peers. Each scenario evaluates the traffic
in the context of only one room. Unless the experiment explicitly evaluates the aspect
of authorization, the room state (i.e., memberships, permissions) is static and does not
change within one scenario. Therefore, only message events are exchanged in most of
the experiments. However, scenarios regarding relay access control with an up-to-date
AuthDAG also include state events. Relays are assumed to be online within each sce-
nario, since asynchronous delivery – the core functionality enhancement of P2P Matrix
– is only possible when relays are online and the focus of the evaluation lies on the effect
of relays in P2P Matrix. The cache retention time is set to infinity, i.e., relays do not re-
move cached events in the evaluation scenarios. This decision is made because the goal
is to evaluate how asynchronous delivery with relays improves P2P Matrix, although
in practice, peers can configure a retention time to prevent events and event metadata
accumulating at relays. Also, all peers are assumed to use relays, although in practice,
peers can choose to not forward any events to relays or request events from them.

Because the evaluation examines different aspects of the design, the scenarios in which
the experiments take place vary. The different parameters are summarized as follows:

• Room Size: The room size represents the number of peers and relays in a room, and
therefore also the proportion of relays to peers. The functional evaluations mostly
use a minimal room size of two peers and two relays, while the room sizes for the
performance evaluation depends on the traffic dataset.

• Relay Selection of Peers: The relation between peers and relays describing which re-
lay a peer selects, forwards events to, and uses for resynchronization. This relation
is static in most experiments, except for evaluating the functional metric “Resync
with Different Relays”.

• Traffic: Event traffic of peers within a Matrix room. The traffic used for the scenario
has different characteristics, e.g., event sending times and interarrival times. The
time of sending is the time when a peer sends a room event, while interarrival times
are the times between receiving two subsequent events. Depending on the evalua-
tion metric, either manually constructed or real-world traffic is used.

• On-/Offline time distribution of Peers: An online peer can send and receive events to
and from other peers or relays while an offline peer cannot. A peer is considered
online, if a connection to at least one other peer or relay is possible. When running
the experiments, the on-/offline periods are part of the traffic input file.

• Time between sending subsequent events: The time in between sending events, where
the traffic generator waits until sending the next event. This time can either be sta-
tic between all events, or it can differ between events. This time is only configured
for the functional experiments, as the traffic for performance experiments already
includes inter-sending times.



Evaluation Overview 71

Evaluation Metric Type Group
Sizes Traffic

Asynchronous Delivery:
Minimal Setup

F Dyadic One asynchronous event

Asynchronous Delivery in
larger Rooms

F Small,
Large

Round-Robin
Online Traffic

ASAP Delivery F Dyadic Multiple asynchronous
online times

Resync with Since Parameter F Dyadic Resync Traffic Scenario
Resync with Different Relays F Dyadic Peer resyncs with

multiple relays over time
AuthDAG: Access Control F Dyadic State Event Traffic
Events not Delivered
to any Peer

P All WhatsApp
Group Traffic Instance

Event Delivery Time
to any First Peer

P All WhatsApp
Group Traffic Instance

Online Periods
without Receiving Events

P All WhatsApp
Group Traffic Instance

Reception Time
after Returning Online

P All WhatsApp
Group Traffic Instance

Table 7: Evaluation Overview. F denotes a functional evaluation experiment, and P de-
notes a performance experiment. There are three group sizes: Dyadic groups (two mem-
bers), small groups (three to ten members), and large groups (ten to thirty members).
One relay was used for dyadic and small groups, two relays were used for large groups.

6.4 Functional Evaluation
The functional evaluation determines whether the design is correctly implemented. Each
experiment is first summarized by providing the evaluation goal, the scenario consisting
of the room topology and traffic, the method to determine whether the evaluation goal
is fulfilled, and the expected result. Then, after a brief evaluation description, the results
of the experiments are discussed.

To validate whether relays fulfill the property of asynchronous delivery for a single
event, comparable to Figure 14 in Section 4.1, it is validated in a minimal setup first.
Then, the validation of asynchronous delivery for multiple events follows, utilizing sce-
narios with larger group sizes. After showing that the relay-based solution scales to large
rooms, the remaining functional experiments are all performed in scenarios with dyadic
rooms. To make things more intuitive, in dyadic rooms, the two peers are called Alice
and Bob.

The functional evaluation not only verifies that this solution works as specified, but
can also be used to evaluate the correctness of future solutions. As shown in Figure 21,
the functional evaluations can be started by providing the number of peers and relays,
as well as the traffic file. The remaining experiment components, i.e., Docker network
setup, traffic generation etc., are managed by the functional experiment script, thereby
providing a reproducible setup.



72 6. Evaluation

6.4.1 Asynchronous Delivery: Minimal Setup

Evaluation Goal Show that solution provides asynchronous delivery for a single event.
Scenario
⤷Topologies (2,2) {(peers, relays)}
⤷Traffic One asynchronous event exchange, as shown in Section 4.1, Figure 14.
Method Check if event reception of asynchronously sent event appears in log.
Expected Result Receive event exists in log for the receiving peer, and complies with

asynchronous delivery definition, as described in Section 3.1.

This experiment determines, whether P2P Matrix with relays provides asynchronous
delivery, a basic requirement to the solution. The scenario traffic consists of Alice com-
ing online and Bob going offline, after which Alice sends an event, and goes online. After
that, Bob returns online and makes a resync-request to the a relay. This traffic instance
is comparable to the asynchronous delivery example, as shown in Section 4.1, Figure 14.
The evaluation scenario evaluates whether asynchronous delivery works with one relay
or two relays, where each peer uses a different relay. Evaluating asynchronous deliv-
ery with two relays also validates that forwarding events between relays works. The
expected result is that Bob receives the sent event after resyncing with the relay.

Time [s] User Action Type Event ID
0 0 Bob offline
1 2.8931 Alice send m.room.message 1
2 3.081 Relay 0 receive m.room.message 1
3 3.3298 Relay 0 cache-event m.room.message 1
4 3.3865 Relay 1 receive m.room.message 1
5 4.0112 Relay 1 cache-event m.room.message 1
6 7.03 Alice offline
7 10.5163 Bob online
8 11.8194 Bob resync
9 11.8245 Relay 1 receive-resync
10 11.8247 Relay 1 reply-resync
11 11.8255 Bob resync-response
12 11.8263 Bob receive m.room.message 1

Table 8: Event Log for functional Asynchronous Delivery evaluation in minimal setup,
where only two peers exchange events asynchronously with the help of relays.

The results of the experiment with two peers and two relays are summarized in Table 8.
The table represents a merged experiment log file, as described in Section 6.1.1. The orig-
inal event hashes are translated to a relative numbering, so that event identifiers ordered
by the time of sending are generated. In the minimal setup for asynchronous delivery,
only a single event is sent. The table shows that after Alice sends the event (row 1), its
chosen relay 0 receives and caches the event first (row 2,3), after which the other relay 1
does the same (row 4,5). This is an indication that the forwarding of events between re-
lays works, since Alice sends the event to only her chosen relay. After returning online,
Bob resynchronizes with his chosen relay 1 (row 8), and receives the event (row 12).



Asynchronous Delivery: Minimal Setup 73

6.4.2 Asynchronous Delivery in Larger Rooms

Evaluation Goal Show that solution provides asynchronous delivery in larger scenar-
ios with multiple events, and that given the round-robin traffic, peers
in P2PR receive events earlier than peers in P2P.

Scenario
⤷Topologies (5,0),(5,1),(10,0),(10,1),(20,0),(20,2) {(peers, relays)}
⤷Traffic Round-Robin online traffic, where each peer comes online and sends

an event one after the other, and all other peers are online. In the fi-
nal state, all peers return online, and a final synchronization event is
sent, forcing all peers (in pure P2P) to backfill missing events.

Method Compare peer action (sending/receiving/online) timestamps.
Expected Result Peers in P2PR receive events earlier than peers in P2P Section 3.1.

This experiment determines, whether P2P Matrix with relays provides asynchronous
delivery not only in the minimal scenario, but also in larger rooms, i.e., ten and twenty
members. Because this experiment compares reception times between pure P2P Matrix
and P2P with relays, topologies with and without relays are used. The round-robin on-
line traffic consists of each peer coming online, sending an event, and going offline, while
all other peers are offline. In order to trigger a synchronization of peers at the end of the
experiment, all peers come online at the end of the experiment.

The results are depicted in Figure 24. All events are sorted by time and their numerical
order of sending is represented on the y-axis. The plot shows the send actions of both
peers in P2P and P2PR. Sending times between P2P and P2PR are equal, as they are based
on the same input traffic file. The reception period is the period between the first and
last reception time for each event. Peers receive the event within this period.

Figure 24: Asynchronous delivery evaluation with round-robin online traffic, compar-
ing five-peer topologies in P2P and P2PR. The triangles represent the first/last reception

times of each event. In the final state, all peers come back online.

The results show that after peer in P2PR returns online, which occurs shortly before
sending the next event, the peer receives the last sent event, indicating that the resyn-
chronization with the relay works. In contrast, peers in pure P2P receive events signif-
icantly later, i.e, when coming back online and synchronizing with other online peers.



74 6. Evaluation

6.4.3 ASAP Delivery

Evaluation Goal Show that solution provides ASAP delivery, i.e., the received event
should have an arrival time that is the earliest arrival time in the set
of asynchronous online periods after sending.

Scenario
⤷Topologies (2,1) {(peers, relays)}
⤷Traffic Traffic with multiple periods after the point in time of sending, where

the receiver is online, while the sender is offline.
Method Compare the event reception time with the set of post-send asynchro-

nous online periods.
Expected Result The event is received in the first post-send asynchronous period.

This experiment determines, whether the solution provides ASAP delivery. The scenario
uses a minimal topology consisting of 2 peers and one relay. The output log should show
that the received event fulfills the requirements for ASAP delivery, as formalized in Sec-
tion 3.1. After having been offline, Bob should receive the event in the first asynchronous
online period after the sending event, because he resyncs with the relay directly after
coming back online.

Time [s] User Action Type Event ID
0 0 Bob offline
1 3.3694 Alice send m.room.message 1
2 …
3 7.5357 Alice offline
4 11.0178 Bob online
5 11.4486 Bob resync
6 …
7 11.4556 Bob receive m.room.message 1
8 12.0232 Bob offline
9 …
10 19.0319 Bob online
11 …

Table 9: Event Log for ASAP Delivery Evaluation in minimal setup.

The result of the experiment is summarized in Table 9. The event log shows that there are
two online periods for Bob (rows 4-8, rows 10-11). Also, during both online periods of
Bob, Alice is offline. Therefore, there are two asynchronous periods following the send-
ing event (row 1). Because the event delivery is logged within the first online period, the
event is delivered to Bob ASAP.

6.4.4 Resync with Since Parameter

Evaluation Goal Show that relay returns only a subset of events given the since para-
meter.

Scenario
⤷Topologies (2,1) {(peers, relays)}



Resync with Since Parameter 75

⤷Traffic Asynchronously exchanged events from one peer, and two separate
resync requests from a different peer, that goes offline between the
requests.

Method Check number of received events after the second resync request.
Expected Result After the resync output log entry, the receiver should only receive the

event sent asynchronously by the sender.

This experiment should verify that the relay only returns the subset of events, that have
a later timestamp than the provided since parameter, in the minimal scenario with two
peers and one relay. The traffic and the required functionality are depicted in Figure 25.
First, Bob sends an event 𝛼 to the relay, where it is stored in the event cache, and goes
offline. Then, Alice comes online and resyncs with the timestamp 𝑡0, after which the
relay replies with the event 𝛼. After the resync, she goes back offline. Bob returns on-
line, sends event 𝛽 to the relay, and goes offline again. When subsequently Alice returns
online and resyncs with the relay, it should only return the event 𝛽.

Figure 25: Resync evaluation scenario in a two-peer topology. In the second resync re-
quest, Alice should only receive the event 𝛽.

The results of the experiment can be found in Appendix A, Table 12. While for the first
request, Alice receives event 𝛼, for the second resync request, Alice receives the event 𝛽
only, indicating that the relay returned only the subset of events later than the provided
since timestamp.

6.4.5 Resync with Different Relays

Evaluation Goal Show that peer can resync with different relays over time.
Scenario
⤷Topologies (2,2) {(peers, relays)}
⤷Traffic Asynchronously exchanged events from one peer, and two separate

resync requests from a different peer, that goes offline between the
resync requests.

Method Compare two experiments. In the first run one peer resyncs with a
relay, and later with the same relay again. In the second run one peer
resyncs with a relay, and later with a different relay.



76 6. Evaluation

Expected Result The peer should receive the same sets of events in both runs.

This experiment verifies that resyncing with different relays over time works. The traffic
is identical to the previous experiment, resync with since parameter. The difference to
this evaluation is the number of relays, and the relays used for resynchronization. Since
one of the two peer resyncs with two different relays, the scenario requires two relays.
In order to have a baseline to which events are expected to be received, the received
events from the peer performing the resync requests are compared with the previous
scenario. In the experiment for resyncing with two relays, a peer resyncs with a relay
first, goes offline, returns online, and resyncs with the other relay.

The results of the experiments can be found in Appendix A.2, Table 13. After resyncing
with the two different relays, the Alice has received the same two messages, that were
received in the previous experiment, resync with since parameter. Therefore, it is possible
to resync with different relays without having to establish additional state with the new
relay. A peer can simply send a resync request to a different relay, which responds after
having authorized the peer.

6.4.6 AuthDAG: Access Control

Evaluation Goal Show that relay rejects unauthorized events.
Scenario
⤷Topologies (2,1) {(peers, relays)}
⤷Traffic Three state event traffic instances:

a) Peer a bans Peer b, then Peer b resyncs with the relay.
b) Peer a bans Peer b, then Peer b sends a room event to the relay.
c) Peer a sets the power level of Peer b to zero, then Peer b sends

a room event requiring a power level > 0 to the relay.
Method Verify that output log entry for relay cache does not exist for unau-

thorized events.
Expected Result Relay rejects unauthorized events.

This experiment determines, whether relays perform access control correctly, for both
receiving events and receiving resync requests. The three scenarios use the minimal
topology of two peers and one relay. The evaluation traffic contains state events, allow-
ing to evaluate whether the relay performs access control according to the latest avail-
able room state.

In the first traffic instance, Alice bans Bob, after which Bob attempts to resync with the
relay. This traffic instance verifies the working access control mechanism for the resync
API endpoint. In the second traffic instance, Alice bans Bob from the room, after which
Bob sends a room event to the relay. With this traffic instance, the working membership
state check of the relay can be verified. In the third traffic instance, Alice sets the power
level of Bob to zero, after which Bob sends a room event with a power level larger than
his own power level. With this traffic instance, the relay’s mechanism of checking peer
power levels can be verified.



AuthDAG: Access Control 77

Time [s] User Action Type Event ID
0 9.1567 Alice ban Bob m.room.member 1
1 9.3109 Bob receive m.room.member 1
2 9.3115 Relay receive m.room.member 1
3 9.7782 Relay cache-event m.room.member 1
4 14.6742 Bob offline
5 17.1787 Bob online
6 18.7587 Bob resync
7 18.7634 Relay reject-resync

Table 10: Event Log for evaluating that relays reject unauthorized resync-requests with
the AuthDAG given the latest available room state.

The result of the experiment with the first traffic instance is summarized in Table 10.
Alice bans Bob from the room and sends this ban event into the room (row 0). Both Bob
and the relay receive this ban event. After going offline, Bob returns online (row 5) and
attempts to resync with the relay (row 6). Because the relay has already appended the
ban event to the AuthDAG, it can determine the member state of Bob, and rejects the
resync request (row 7).

The result of the experiments with the second and third traffic instance can be found in
Appendix A.2, Table 14 and Table 15. For the second experiment, since the relay only
caches authorized room events, the cache-event action is missing for the event sent by
the banned peer. For the third experiment, the relay also does not store the event in
the event-cache, because the peer trying to modify the room state has an insufficient
power level.

6.5 Performance Evaluation
While the functional evaluation determined the correctness of the implemented solution
based on manually constructed traffic scenarios, the goal of the performance evaluation
is to show the advantage of relay-enhanced P2P Matrix towards pure P2P Matrix based
on real-world traffic. As the performance evaluation metrics were applied per chat, the
results for one example chat are be presented. For the first two experiments, performance
evaluation metrics will also be summarized for all selected chats.

To better understand the performance results, an example chat is selected, enabling the
evaluation results to be related to the chat traffic. The example chat has ten users and
194 messages are exchanged within a duration of ten days. The sending times and the
two longest online margins for the example chat are depicted in Figure 26. Shorter on-
line margins are more clearly visible within a smaller time frame. For the example chat,
the smaller time frames can be found in Appendix A.3, Figure 33. In the first day of the
trace, there is a frequent sending activity of almost all users. After a break of four days,
there is a lower sending frequency of sending. The chat provides a useful example, in
which sending and online activity make a substantial difference in various delivery time
metrics compared to pure P2P Matrix.

After applying the online margins, online periods emerge for each peer. An online pe-
riod can be longer than an online margin, if the time in between two consecutive send



78 6. Evaluation

events is smaller than the online margin. In that case, the two emerging consecutive on-
line periods are merged into one single online period. Thus, the online period can span
multiple sending events, which can be seen for events within the first day in Figure 26.
For example, the first events of user 7 all occur in close succession, resulting in the online
periods of 2 hours, 41 minutes being merged together into a single long online period.

Figure 26: Send actions with the two longest online margins applied to chat 1796.

6.5.1 Events Not Delivered to Any Peer

Evaluation Goal Show that with shorter online times, relays reduce the overall share
of events not delivered to any peer.

Scenario 1
⤷Topologies 10 users, 194 messages exchanged in 10 days, 2 relays for P2PR
⤷Traffic Chat 1796 from [56]
Scenario 2
⤷Topologies Users & messages from all chats; 1 relay for rooms with less than 10

users, otherwise 2 relays
⤷Traffic All selected chats, as summarized in Table 6
Method Measure the number of events not delivered to any peer.
Expected Result P2P with relays has a lower percentage of events not delivered to any

peer.

This experiment should show that P2P Matrix with relays reduces the overall share of
events not delivered to any peer compared to pure P2P Matrix. The first experiment
scenario uses the example chat from the WhatsApp dataset, consisting of 10 room users
and 194 messages over the period of 10 days. The second experiment scenario spans over
all selected chats, thus making a broader assessment over various room sizes, number
of messages and chat lengths.

P2P with relays is expected to have lower number of events not delivered to any peer
compared to P2P Matrix. In pure P2P Matrix, some events are not delivered due to peers
being asynchronously online, and because missing events are only re-requested when



Events Not Delivered to Any Peer 79

after the missing event a new event is delivered to the receiving peer, who then backfills
missing events from the other peers. If the receiving peer does not receive a successor
event for the missing event, it will not obtain the missing event, because currently, Ma-
trix peers do not proactively synchronize periodically. In contrast, peers in P2P with
relays directly request events from the relay with the resync API endpoint, and thereby
directly obtain missing events.
Scenario 1: Chat 1796

Figure 27:  Number of events not delivered to any peer per online margin length. A
longer online period results in more peers being synchronously online. In P2P Matrix,

short online periods result in a substantial amount of events not being delivered.

The first scenario consists of the ten-user group chat 1796. As Figure 27 shows, the over-
all share of events not delivered to any peer is lower in P2P Matrix with relays compared
to pure P2P Matrix. The fifth online period is not depicted, because for both P2P and
P2PR, all events are delivered to at least one peer. Pure P2P Matrix has a high number
of missing events for shorter online periods, because online periods of peers are less
likely to overlap, i.e., peers are often not simultaneously online. Also, peers only re-
request missing event when the missing event’s successor is received. The probability
of receiving the missing event’s successor is lower for short online periods (less peers
synchronously online), and higher for long online periods (more peers synchronously
online). For the first three online margins, P2PR also has some events not delivered to
any peer, because peer 0 sends the last two events before any other peer returns online,
which cannot directly be seen in Figure 26 due to the scaling. Therefore, no peer resyn-
chronizes with the relays, and as a result, the event is not delivered to any peer.

The experiment shows, that relays can ensure eventual delivery to at least one peer,
provided that after sending another peer returns online. This also highlights the strong
dependence between the relay’s effectiveness in reducing the number of not delivered
events and the online states of peers. Trivially, relays do not provide a substantial ad-
vantage towards reducing missing events, if all peers are online.
Scenario 2: All Chats
The second scenario comprises all chats and also measures the percentage of missing
events per online margin. The results are shown in Figure 28 and are comparable to the
results of the first scenario. The main difference to the first scenario is that also for the
longest margin, a small number of events (less than 1 %) is missing. The longest mar-
gin equals the maximum IAT of events, which can deviate between chats, as seen in
Figure 22. If the IAT is short, applying it as online margin to all send actions does not



80 6. Evaluation

result in all of the peer’s online periods overlapping at all times. Therefore, event with
the longest online margin, some events may still not be delivered to any peer.

The results show that less or equal 1% of the events are not delivered to any peer in
P2PR, while the share is substantially higher in pure P2P. Again, the difference of miss-
ing events between P2PR and P2P decreases with increasing online margins.

Figure 28:  Number of events not delivered to any peer per online margin length, for all
chats. For each chats, the individually calculated online margins were used. The online

margins are indexed in ascending order based on their duration.

6.5.2 Event Delivery Time to any First Peer

Evaluation Goal Show that relays provide lower event delivery times to any first peer
compared to P2P Matrix, if peers are asynchronously online in a sub-
stantial number of periods.

Scenario 1
⤷Topologies 10 users, 194 messages exchanged in 10 days, 2 relays for P2PR
⤷Traffic Chat 1796 from [56]
Scenario 2
⤷Topologies Users & messages from all chats; 1 relay for rooms with less than 10

users, otherwise 2 relays
⤷Traffic All selected chats, as summarized in Table 6
Method Measure the delivery times to the first peer for all events by subtract-

ing the time of sending from the time the event is first received by
any peer.

Expected Result P2P with relays has lower event delivery times for shorter online
margins.

This experiment should show that P2P Matrix with relays provides lower event delivery
times to any first peer compared to P2P Matrix, depending on the number of asynchro-
nous online times. The motivation to measure the delivery times to any first peer, and
not to all peers is that due to different online periods, a large majority of the events is not
delivered to all peers for both P2P and P2PR – at least not, when the traffic trace ends.
The delivery time to any first peer allows comparisons between P2P and P2PR using
a substantial number of samples, because peers are more often online simultaneously
with a single peer than with multiple peers.



Event Delivery Time to any First Peer 81

For the first scenario, the same topology and traffic as in the previous experiment are
used. The second scenario comprises all selected chats, inheriting all topologies and traf-
fic from those chats. The delivery times to the first peer represents the interval difference
from the time the event is sent until the earliest time at which the event is received by
any peer. The delivery times for P2PR are expected to be lower than those of P2P for the
lower online margins, because the first peer coming online after another peer sending
an event asynchronously receives the event directly after resyncing with the relays. In
contrast to the previous experiment, which assessed the success rate of events delivered
to any peer, this experiment measures the difference in event delivery times.
Scenario 1: Chat 1796

Figure 29:  Delivery times to any first peer for each online margin.

For the first scenario of the ten-user chat, the CDFs for each applied online margin are
shown in Figure 29. The CDF for the first online margin includes no delivery times for
P2P, because for this margin no events are delivered to any peer, i.e., all are missing, as
shown in Figure 27, and therefore no delivery times can be measured. The CDF for the
second online margin shows a steep increase for the delivery times at 12 seconds, while



82 6. Evaluation

before the increase the delivery time distributions are similar. This increase correlates
with the online times, because for delivery times lower equals 10 seconds, which is half
of the online time, the peers exchange the event synchronously. This indicates a frequent
overlap of online periods for half of the online margin. Consequently, the relay advan-
tage is apparent for delivery times larger than the online margin. The share of delivery
times is shorter than 12 seconds in 40% of the cases in P2PR, and only in 17% of the cases
in P2P, for the second online margin of 21 seconds. While for the third online margin,
the delivery time difference decreases substantially, for the fourth and fifth margins, the
difference becomes marginal.

This experiment demonstrates that, in addition to improving the success rate of event
delivery to any peer, relays can also reduce the delivery times of events to the first peer,
particularly when peers exhibit asynchronous online activity. The extent of the relay
advantage, in terms of how many delivery times are reduced, depends on the asynchro-
nous online activity of peers.
Scenario 2: All Chats

Figure 30:  Delivery times to any first peer for each online margin.



Event Delivery Time to any First Peer 83

For the second scenario comprising all chats, the CDFs for the applied online margins of
each individual chat are shown in Figure 30. Therefore, the margin length is always rela-
tive to the chats traffic characteristics, especially the IATs. The results are comparable to
the previous ten-user chat. Regarding the first margins, some events were successfully
delivered to at least one peer in P2P. The increase of the curve for the second margin
is less apparent than the increase of the previous ten-user scenario. However, a slight
increase can be observed, indicating that several second online margins fall into a close
range.

As mentioned in the previous scenario, the distributions of delivery times depend on
the lengths on the online margins, and therefore the synchronous online times. Even
though the delivery time difference between P2P and P2PR appears insignificant for the
fourth and fifth online margin, relays can still improve the rate of events delivered to at
least one peer, as shown in Figure 27 and Figure 28.

6.5.3 Online Periods without Receiving Events

Evaluation Goal Show that P2PR has fewer online periods without receiving any
events than P2P.

Scenario
⤷Topologies 10 users, 194 messages exchanged in 10 days, 2 relays for P2PR
⤷Traffic Chat 1796 from [56]
Method Measure share of online periods of peers, where the peer does not

receive any events.
Expected Result P2P with relays has lower share of online periods without event re-

ception for shorter online margins.

This experiment should show that P2P Matrix with relays has a lower number of “empty”
online periods, where the peer does not receive any events. An empty online period
could occur either because no events are exchanged during this period, or despite events
having been sent, they are not delivered to the receiver. The scenario from the previous
experiments is used again. The empty online periods are expected to be lower for P2PR,
because if events exchanged before the online period, relays cache the event, and for-
ward the it to the receiver after it returns online and resyncs.

Figure 31:  Number of peer online periods, where peers do not receive any events for
each online margin. In P2P, short online periods result in a higher percentage of online

periods without an event receptions.



84 6. Evaluation

The percentages of online periods without peers receiving events are depicted in Fig-
ure 31. The largest online margin is not depicted, as every online period contains at least
one event reception. As expected, for the shortest online margin, peers in P2P do not
receive any events, because there are no overlapping online periods. In P2PR, some on-
line periods are empty, because a peer coming online twice in close succession without
any other peer being online in between, does not receive any events. In the second and
third online margin the differences in the number of empty online periods are substan-
tial between P2P and P2PR, while becoming insignificant for the fourth online margin.

This experiment provides insight into how many online periods occur without a peer
receiving any event. The difference between the empty online periods between P2P and
P2PR represents the amount of online periods, where peers in a P2P system with the
asynchronous delivery property would have received any event. In summary, for a cer-
tain distribution of online periods, a peer is more likely to receive any event after re-
turning online in P2PR compared to P2P.

6.5.4 Reception Time after Returning Online

Evaluation Goal Show that peers receive events faster after returning online in P2PR
compared to P2P.

Scenario
⤷Topologies 10 users, 194 messages exchanged in 10 days, 2 relays for P2PR
⤷Traffic Chat 1796 from [56]
Method Measure time between returning online and receiving first event.
Expected Result Reception times are lower for P2PR.

This experiment should show the reception times after returning online are shorter for
P2PR compared to P2P. The scenario from the previous experiments is used. For each
online period and for all peers, the time between a peer returning online and receiving an
event is measured. The reception times are expected to be lower for P2PR, because peers
receive previously exchanged events after returning online and resyncing, regardless of
which other peers are online. In contrast, the reception times after returning online de-
pend on which other peers are online, for peers in P2P. They also depend on which other
peers are online, because only those peers that have sent events in the previous offline
period of the receiving peer, and are synchronously online, proactively re-try sending
the event to the peer returning online. As missing events are only sent when a new
event after the missing event is propagated to the peer, and the receiving peers then re-
requests the missing event, the existing Matrix protocol also impacts the reception time.



Reception Time after Returning Online 85

Figure 32: Reception times after returning online per online margin, i.e., time between
returning online and receiving first event.

The CDFs of reception times after returning online for each online margin are depicted
in Figure 32. There are no reception times for any peers in the first online margin for P2P,
because no events are delivered within the online periods, as shown in Figure 31. For
P2PR, the CDF curve of reception times is similar between the online margins, although
the scaling of reception times is slightly different. While in the third online margin, the
exponential increase ends at 1.6 seconds (77%), in the fifth online margin, it ends after
30 seconds (52%). Except for the fifth online margin, P2PR has a higher share of shorter
reception times compared to P2P. The reception time difference stems not only from the
fact that peers have to wait until other peers return online and provide missing events,
but also because the round-trip times for a peer’s resync with the relay are shorter than
the discovery of other online peers of the Pinecone network. The latter aspect depends
solely on the efficiency both the round-trip times of resyncing and the underlying P2P



86 6. Evaluation

network’s peer discovery process, and could prove negligible for more efficient discov-
ery mechanisms.

This experiment provides an insight into the time it takes for peers to receive the first
events after returning online. Reducing reception times after returning online can con-
tribute to the user experience, as peer users receive events faster, without having to wait
for the peer reconnecting to the P2P network.

6.6 Summary
The goal of the evaluation was to validate both the functionality of the implementation,
and also the performance improvements relays make in P2P Matrix compared to pure
P2P Matrix. In order to validate both aspects, an evaluation setup was introduced. The
setup included input formats for functional- and performance-oriented traffic files, a
network configuration for peers and relays running in Docker containers, and a logging
mechanism to track the activity of peers and relays. The evaluation setup allows run-
ning multiple experiments automatically, by generating lower level configurations from
higher-level configuration files and scripts.

The functional evaluation consists of manually constructed traffic files, each designed to
validate one certain aspect of P2PR. The results of the functional evaluation show that
the implementation works correctly for the constructed traffic and the tested topologies.
For evaluating performance, 18 chats were selected from a publicly available WhatsApp
group traffic dataset. Since asynchronous online state of peers is a prerequisite for eval-
uating the improvement of P2PR towards P2P, a mechanism that models online periods
around sending times is introduced. The results of the performance evaluation show
that relays do not only improve the rate of successful delivery, but also can improve the
overall delivery times, provided that peers are asynchronously online for a substantial
amount of time.



7. Conclusion and Future Work

This work addresses the challenge of providing distributed asynchronous delivery for
events in P2P Matrix, with the goal of eliminating the need of peers to be online simul-
taneously in order to exchange events. The notions of asynchronous, as-soon-as-possi-
ble delivery were formalized in such a way that this formalization can be applied to
various classes of messaging systems. Dedicated relays were introduced to provide this
functionality to rooms in P2P Matrix. The relays were designed in a way that avoids the
drawbacks of homeservers in the current, federated Matrix architecture, such as accu-
mulating metadata, load centralization towards few homeservers, single point of failure
for users. Consequently, the relays store less state than homeservers in federated Ma-
trix, are associated with rooms rather than users, and can be switched arbitrarily. Also,
relays are designed to authorize peers by only storing a subset of the room state, i.e., an
Authorization DAG, thereby reducing the stored metadata.

A proof-of-concept implementation was developed, incorporating relays and the nec-
essary modifications to peers in P2P Matrix. Also, a reproducible evaluation setup was
implemented, allowing to run peers both with or without relays in a controlled envi-
ronment. Using this setup, the relay solution was systematically evaluated. Traffic data
from a publicly accessible WhatsApp group traffic dataset was applied to the proof-of-
concept implementation within the automated evaluation setup, in order to evaluate the
system’s performance. To evaluate asynchronous online times between peers, a model
was defined that generates online periods of varying lengths around sending times. By
applying both the WhatsApp group traffic and the model of online periods, relay-en-
hanced P2P Matrix was compared to pure P2P Matrix consisting solely of peers. The
results demonstrate that relays can improve both the number and the duration of suc-
cessfully delivered events to any first peer, as well as reduce the time until events are
received after peers return online.

This work leads to several further questions that are worth pursuing in future work.
New event dissemination mechanisms between relays could be introduced, to either
maximize the performance of delivery times, or for the system to become more resilient
against sophisticated adversaries. Also, to reduce the state stored at the relays required
for authorization, new authorization techniques could be evaluated, e.g., Zero-Trust-
Mechanisms, where peers could prove their membership or privileges without disclos-



88 7. Conclusion and Future Work

ing too much information. Moreover, relays could be utilized not only to provide asyn-
chronous delivery for the peers, but also to reduce the peer’s energy consumption, by
handling resource-intensive computations or reducing the number of targets to which a
peer must forward its events. The aspect of energy-efficiency with relays could be eval-
uated in scenarios, where efficient energy consumption is critical, e.g., IoT networks.



Bibliography

[1] Eurostat, “Internet use: Instant messaging.” Jun. 16, 2024. Accessed: Jul. 12,
2024. [Online].  Available: https://ec.europa.eu/eurostat/databrowser/bookmark/fe
0f0561-feaa-40ef-ba43-1ace06a2f9c7?lang=en

[2] G. M. Volpicelli, “How governments and spies text each other.” Accessed: Dec.
07, 2023. [Online]. Available: https://www.wired.co.uk/article/matrix-encrypted-
messaging-app-governments

[3] N. V. Ltd, “Secure collaboration for a wide range of industries and sectors.” Ac-
cessed: Dec. 07, 2023. [Online]. Available: https://element.io/sectors

[4] F. Jacob, J. Grashöfer, and H. Hartenstein, “A Glimpse of the Matrix (Extended Ver-
sion): Scalability Issues of a New Message-Oriented Data Synchronization Middle-
ware,” CoRR, 2019, [Online].  Available: http://arxiv.org/abs/1910.06295

[5] M. Hodgson, “Designing Matrix: A Global Decentralised End-to-End Encrypted
Communication Network,” Dublin: USENIX Association, Oct. 2023. Accessed: Jul.
14, 2024. [Online].  Available: https://www.usenix.org/conference/srecon23emea/
presentation/hodgson

[6] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The many faces
of publish/subscribe,” ACM Comput. Surv., vol. 35, no. 2, pp. 114–131, Jun. 2003,
doi: 10.1145/857076.857078.

[7] S. Gilbert and N. Lynch, “Brewer's conjecture and the feasibility of consistent,
available, partition-tolerant web services,” SIGACT News, vol. 33, no. 2, pp. 51–59,
Jun. 2002, doi: 10.1145/564585.564601.

[8] E. Brewer, “CAP twelve years later: How the 'rules' have changed,” Computer, vol.
45, no. 2, pp. 23–29, Feb. 2012, doi: 10.1109/mc.2012.37.

[9] F. Jacob, S. Bayreuther, and H. Hartenstein, “On CRDTs in Byzantine Environ-
ments,” in Sicherheit, Schutz und Zuverlässigkeit: Konferenzband der 11. Jahresta-
gung des Fachbereichs Sicherheit der Gesellschaft für Informatik e.V. (GI), Sicherheit
2022, Karlsruhe, Germany, April 5-8, 2022,  2022, pp. 113–126. doi: https://doi.org/
10.18420/sicherheit2022_07.

https://ec.europa.eu/eurostat/databrowser/bookmark/fe0f0561-feaa-40ef-ba43-1ace06a2f9c7?lang=en
https://ec.europa.eu/eurostat/databrowser/bookmark/fe0f0561-feaa-40ef-ba43-1ace06a2f9c7?lang=en
https://www.wired.co.uk/article/matrix-encrypted-messaging-app-governments
https://www.wired.co.uk/article/matrix-encrypted-messaging-app-governments
https://element.io/sectors
http://arxiv.org/abs/1910.06295
https://www.usenix.org/conference/srecon23emea/presentation/hodgson
https://www.usenix.org/conference/srecon23emea/presentation/hodgson
https://doi.org/10.1145/857076.857078
https://doi.org/10.1145/564585.564601
https://doi.org/10.1109/mc.2012.37
https://doi.org/https://doi.org/10.18420/sicherheit2022_07
https://doi.org/https://doi.org/10.18420/sicherheit2022_07


90 8. Bibliography

[10] W. Vogels, “Eventually consistent,” Commun. ACM, vol. 52, no. 1, pp. 40–44, Jan.
2009, doi: 10.1145/1435417.1435432.

[11] The Matrix.org Foundation CIC, “Matrix Specification: 3. Architecture.” Accessed:
Apr. 10, 2024. [Online]. Available: https://spec.matrix.org/v1.10/#room-structure

[12] The Matrix.org Foundation CIC, “Room Version 11: 3.3 State Resolution.” Accessed:
Apr. 10, 2024. [Online]. Available: https://spec.matrix.org/v1.10/rooms/v11/#state-
resolution

[13] Neil Alexander, “State Resolution v2.” Accessed: Apr. 10, 2024. [Online]. Available:
https://matrix.org/docs/older/stateres-v2/

[14] Hubert Chathi, “State Resolution: Reloaded.” Accessed: Jun. 06, 2024. [Online].
Available: https://matrix.uhoreg.ca/stateres/reloaded.html

[15] The Matrix.org Foundation CIC, “Matrix Specification: 7.5 Room Events.” Accessed:
Apr. 10, 2024. [Online]. Available: https://spec.matrix.org/v1.10/client-server-api/
#mroompower_levels

[16] F. Jacob, L. Becker, J. Grashöfer, and H. Hartenstein, “Matrix Decomposition:
Analysis of an Access Control Approach on Transaction-based DAGs without Fi-
nality,” in Proceedings of the 25th ACM Symposium on Access Control Models and
Technologies, in SACMAT '20. Barcelona, Spain: Association for Computing Ma-
chinery,  2020, pp. 81–92. doi: 10.1145/3381991.3395399.

[17] The Matrix.org Foundation CIC, “Matrix Specification: Administration & privi-
leges.” Accessed: Apr. 10, 2024. [Online]. Available: https://matrix.org/docs/matrix-
concepts/rooms_and_events/#administration-privileges

[18] The Matrix.org Foundation CIC, “Matrix Specification: 8.4 Permissions.” Accessed:
Apr. 10, 2024. [Online]. Available: https://spec.matrix.org/v1.10/client-server-api/
#permissions

[19] A. Tanenbaum and M. van Steen, Distributed Systems, Third edition, Version 3.01.
Pearson Education Inc., 2017.

[20] R. Schollmeier, “A definition of peer-to-peer networking for the classification of
peer-to-peer architectures and applications,” in Proceedings First International Con-
ference on Peer-to-Peer Computing, in PTP-01. IEEE Comput. Soc. doi: 10.1109/
p2p.2001.990434.

[21] The Annotated Gnutella Protocol Specification v0.4,  Accessed: Apr. 29, 2024. [On-
line]. Available: https://rfc-gnutella.sourceforge.net/developer/stable/

[22] S. Saroiu, K. P. Gummadi, and S. D. Gribble, “Measuring and analyzing the char-
acteristics of Napster and Gnutella hosts,” Multimedia Systems, vol. 9, no. 2, pp.
170–184, Aug. 2003, doi: 10.1007/s00530-003-0088-1.

[23] M. Hodgson, “Decentralised user accounts.” Accessed: Feb. 26, 2024. [Online].
Available: https://github.com/matrix-org/matrix-spec/issues/246

[24] N. Alexander, “Dendrite.” Accessed: Mar. 11, 2024. [Online]. Available: https://
github.com/matrix-org/dendrite/blob/928c8c8c4af0e933e52dbf42d9237234d1a3bc
9d/README.md

https://doi.org/10.1145/1435417.1435432
https://spec.matrix.org/v1.10/#room-structure
https://spec.matrix.org/v1.10/rooms/v11/#state-resolution
https://spec.matrix.org/v1.10/rooms/v11/#state-resolution
https://matrix.org/docs/older/stateres-v2/
https://matrix.uhoreg.ca/stateres/reloaded.html
https://spec.matrix.org/v1.10/client-server-api/#mroompower_levels
https://spec.matrix.org/v1.10/client-server-api/#mroompower_levels
https://doi.org/10.1145/3381991.3395399
https://matrix.org/docs/matrix-concepts/rooms_and_events/#administration-privileges
https://matrix.org/docs/matrix-concepts/rooms_and_events/#administration-privileges
https://spec.matrix.org/v1.10/client-server-api/#permissions
https://spec.matrix.org/v1.10/client-server-api/#permissions
https://doi.org/10.1109/p2p.2001.990434
https://doi.org/10.1109/p2p.2001.990434
https://rfc-gnutella.sourceforge.net/developer/stable/
https://doi.org/10.1007/s00530-003-0088-1
https://github.com/matrix-org/matrix-spec/issues/246
https://github.com/matrix-org/dendrite/blob/928c8c8c4af0e933e52dbf42d9237234d1a3bc9d/README.md
https://github.com/matrix-org/dendrite/blob/928c8c8c4af0e933e52dbf42d9237234d1a3bc9d/README.md
https://github.com/matrix-org/dendrite/blob/928c8c8c4af0e933e52dbf42d9237234d1a3bc9d/README.md


Bibliography 91

[25] Protocol Labs, “libp2p Connectivity.” Accessed: Mar. 06, 2024. [Online]. Available:
https://connectivity.libp2p.io/

[26] N. Alexander, “Yggdrasil Network.” Accessed: Apr. 25, 2024. [Online]. Available:
https://yggdrasil-network.github.io/

[27] N. Alexander, “Pinecone.” Accessed: Dec. 07, 2023. [Online]. Available: https://
matrix-org.github.io/pinecone/

[28] New Vector Ltd,  Accessed: Apr. 22, 2024. [Online]. Available: https://
github.com/element-hq/element-android-p2p/tree/7883fa21824e124e71a452a4636
e4a3afef3785c

[29] New Vector Ltd,  Accessed: Apr. 22, 2024. [Online]. Available: https://github.
com/element-hq/element-ios-p2p/commit/43b52b75750dfaea67b2c638ad5715d980
db51bb

[30] M. Hodgson, “Introducing P2P Matrix.” Accessed: Jun. 02, 2020. [Online]. Avail-
able: https://matrix.org/blog/2020/06/02/introducing-p2p-matrix/

[31] devonh, “MSC4080: Cryptographic Identities (Client-Owned Identities).” Ac-
cessed: Nov. 15, 2023. [Online]. Available: https://github.com/devonh/matrix-spec-
proposals/blob/cryptoIDs/proposals/4080-cryptographic-identities.md

[32] W. W. W. Consortium, “Decentralized Identifiers.” Accessed: Jul. 19, 2022. [Online].
Available: https://www.w3.org/TR/did-core/

[33] C. Scheideler, “Relays: Towards a Link Layer for Robust and Secure Fog Comput-
ing,” in Proceedings of the 2018 Workshop on Theory and Practice for Integrated Cloud,
Fog and Edge Computing Paradigms, in TOPIC '18. Egham, United Kingdom: Asso-
ciation for Computing Machinery,  2018, pp. 1–2. doi: 10.1145/3229774.3229781.

[34] V. Setty, M. van Steen, R. Vitenberg, and S. Voulgaris, “PolderCast: Fast, Robust,
and Scalable Architecture for P2P Topic-Based Pub/Sub,” in Middleware 2012, P.
Narasimhan and P. Triantafillou, Eds., Berlin, Heidelberg: Springer Berlin Heidel-
berg,  2012, pp. 271–291.

[35] S. A. Baset and H. Schulzrinne, “Reliability and relay selection in peer-to-peer com-
munication systems,” in Principles, Systems and Applications of IP Telecommunica-
tions, in IPTComm '10. Munich, Germany: Association for Computing Machinery,
2010, pp. 111–121. doi: 10.1145/1941530.1941547.

[36] Y. D. Max Skibinsky, “Asynchronous Mobile Peer-to-peer Relay,” 2015, Accessed:
Mar. 06, 2024. [Online].  Available: https://s3-us-west-1.amazonaws.com/vault12/
crypto_relay.pdf

[37] Edgegap Technologies Inc., “Distributed Relay Manager.” Accessed: Mar. 06, 2024.
[Online]. Available: https://docs.edgegap.com/docs/distributed-relay-manager/

[38] R. Banno, J. Sun, M. Fujita, S. Takeuchi, and K. Shudo, “Dissemination of
edge-heavy data on heterogeneous MQTT brokers,” in 2017 IEEE 6th Interna-
tional Conference on Cloud Networking (CloudNet), IEEE, Sep. 2017. doi: 10.1109/
cloudnet.2017.8071523.

https://connectivity.libp2p.io/
https://yggdrasil-network.github.io/
https://matrix-org.github.io/pinecone/
https://matrix-org.github.io/pinecone/
https://github.com/element-hq/element-android-p2p/tree/7883fa21824e124e71a452a4636e4a3afef3785c
https://github.com/element-hq/element-android-p2p/tree/7883fa21824e124e71a452a4636e4a3afef3785c
https://github.com/element-hq/element-android-p2p/tree/7883fa21824e124e71a452a4636e4a3afef3785c
https://github.com/element-hq/element-ios-p2p/commit/43b52b75750dfaea67b2c638ad5715d980db51bb
https://github.com/element-hq/element-ios-p2p/commit/43b52b75750dfaea67b2c638ad5715d980db51bb
https://github.com/element-hq/element-ios-p2p/commit/43b52b75750dfaea67b2c638ad5715d980db51bb
https://matrix.org/blog/2020/06/02/introducing-p2p-matrix/
https://github.com/devonh/matrix-spec-proposals/blob/cryptoIDs/proposals/4080-cryptographic-identities.md
https://github.com/devonh/matrix-spec-proposals/blob/cryptoIDs/proposals/4080-cryptographic-identities.md
https://www.w3.org/TR/did-core/
https://doi.org/10.1145/3229774.3229781
https://doi.org/10.1145/1941530.1941547
https://s3-us-west-1.amazonaws.com/vault12/crypto_relay.pdf
https://s3-us-west-1.amazonaws.com/vault12/crypto_relay.pdf
https://docs.edgegap.com/docs/distributed-relay-manager/
https://doi.org/10.1109/cloudnet.2017.8071523
https://doi.org/10.1109/cloudnet.2017.8071523


92 8. Bibliography

[39] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The Second-Generation
Onion Router,” in 13th USENIX Security Symposium (USENIX Security 04), San
Diego, CA: USENIX Association, Aug. 2004.

[40] Nostr, “A decentralized social network with a chance of working.” Accessed: Mar.
09, 2024. [Online]. Available: https://nostr.com/

[41] fiatjaf, “Nostr: Basic protocol flow description.” Accessed: Mar. 09, 2024. [On-
line]. Available: https://github.com/nostr-protocol/nips/blob/a46338bd6a183f17a
292ea578ee69ff15ea6723f/01.md

[42] D. Tarr, E. Lavoie, A. Meyer, and C. Tschudin, “Scuttlebutt Protocol Guide.”
Accessed: Mar. 11, 2024. [Online]. Available: https://ssbc.github.io/scuttlebutt-
protocol-guide/#introduction

[43] D. Tarr, E. Lavoie, A. Meyer, and C. Tschudin, “Secure Scuttlebutt: An Iden-
tity-Centric Protocol for Subjective and Decentralized Applications,” in Proceed-
ings of the 6th ACM Conference on Information-Centric Networking, in ICN '19.
Macao, China: Association for Computing Machinery,  2019, pp. 1–11. doi:
10.1145/3357150.3357396.

[44] Berty Technologies, “Wesh protocol.” Accessed: Mar. 11, 2024. [Online]. Available:
https://berty.tech/docs/protocol/#high-availability

[45] N. Alexander, “Pinecones and Dendrites - P2P Matrix Progress.” Accessed: Feb. 06,
2021. [Online]. Available: https://archive.fosdem.org/2021/schedule/event/matrix_
pinecones/

[46] D. Hudson, “Relay Server Architecture.” Accessed: Mar. 11, 2024. [On-
line]. Available: https://github.com/matrix-org/dendrite/blob/24a865aeb76dbff1a8
a95d549e19070ff102e441/relayapi/ARCHITECTURE.md

[47] Briar, “How It Works.” Accessed: Mar. 27, 2024. [Online]. Available: https://
briarproject.org/how-it-works/

[48] Nico Alt, “Briar Wiki.” Accessed: Nov. 27, 2023. [Online]. Available: https://code.
briarproject.org/briar/briar/-/wikis/home

[49] Torsten Grote and Michael Rogers, “Briar Mailbox released to improve connec-
tivity.” Accessed: Jun. 15, 2023. [Online]. Available: https://briarproject.org/news/
2023-briar-mailbox-released/

[50] The Matrix.org Foundation CIC, “Matrix Specification: 5. PDUs.” Accessed: May
06, 2021. [Online]. Available: https://spec.matrix.org/v1.9/server-server-api/#pdus

[51] Element, “Synapse.” Accessed: May 28, 2024. [Online]. Available: https://github.
com/element-hq/synapse/tree/9edb725ebcd41c0ca1ee8cbb833dcb28df47a402

[52] Famedly, “Conduit.” Accessed: Jul. 12, 2024. [Online]. Available: https://gitlab.com/
famedly/conduit/-/tree/8abab8c8a0e3ef406f8a107936f07031d964ac5f

[53] J. Volk, J. Tjoelker, and A. Conill, “Construct.” Accessed: Jul. 12, 2024. [Online].
Available: https://github.com/matrix-construct/construct/tree/0624b69246878da
592d3f5c2c3737ad0b5ff6277

https://nostr.com/
https://github.com/nostr-protocol/nips/blob/a46338bd6a183f17a292ea578ee69ff15ea6723f/01.md
https://github.com/nostr-protocol/nips/blob/a46338bd6a183f17a292ea578ee69ff15ea6723f/01.md
https://ssbc.github.io/scuttlebutt-protocol-guide/#introduction
https://ssbc.github.io/scuttlebutt-protocol-guide/#introduction
https://doi.org/10.1145/3357150.3357396
https://berty.tech/docs/protocol/#high-availability
https://archive.fosdem.org/2021/schedule/event/matrix_pinecones/
https://archive.fosdem.org/2021/schedule/event/matrix_pinecones/
https://github.com/matrix-org/dendrite/blob/24a865aeb76dbff1a8a95d549e19070ff102e441/relayapi/ARCHITECTURE.md
https://github.com/matrix-org/dendrite/blob/24a865aeb76dbff1a8a95d549e19070ff102e441/relayapi/ARCHITECTURE.md
https://briarproject.org/how-it-works/
https://briarproject.org/how-it-works/
https://code.briarproject.org/briar/briar/-/wikis/home
https://code.briarproject.org/briar/briar/-/wikis/home
https://briarproject.org/news/2023-briar-mailbox-released/
https://briarproject.org/news/2023-briar-mailbox-released/
https://spec.matrix.org/v1.9/server-server-api/#pdus
https://github.com/element-hq/synapse/tree/9edb725ebcd41c0ca1ee8cbb833dcb28df47a402
https://github.com/element-hq/synapse/tree/9edb725ebcd41c0ca1ee8cbb833dcb28df47a402
https://gitlab.com/famedly/conduit/-/tree/8abab8c8a0e3ef406f8a107936f07031d964ac5f
https://gitlab.com/famedly/conduit/-/tree/8abab8c8a0e3ef406f8a107936f07031d964ac5f
https://github.com/matrix-construct/construct/tree/0624b69246878da592d3f5c2c3737ad0b5ff6277
https://github.com/matrix-construct/construct/tree/0624b69246878da592d3f5c2c3737ad0b5ff6277


Bibliography 93

[54] M. Hodgson, “Dendrite is entering Beta!.” Accessed: May 28, 2024. [Online]. Avail-
able: https://matrix.org/blog/2020/10/08/dendrite-is-entering-beta/

[55] The Matrix.org Foundation CIC, “gomatrixserverlib.” Accessed: May 28, 2024. [On-
line]. Available: https://godoc.org/github.com/matrix-org/gomatrixserverlib

[56] A. Seufert, F. Poignée, M. Seufert, and T. Hoßfeld, “Share and Multiply: Modeling
Communication and Generated Traffic in Private WhatsApp Groups,” IEEE Access,
vol. 11, no. , pp. 25401–25414, 2023, doi: 10.1109/ACCESS.2023.3254913.

[57] T. Asokan, “mautrix-go.” Accessed: Jun. 06, 2024. [Online]. Available: https://pkg.
go.dev/maunium.net/go/mautrix

[58] F. Souza, “go-dockerclient.” Accessed: Jul. 12, 2024. [Online]. Available: https://pkg.
go.dev/github.com/fsouza/go-dockerclient@v1.11.0

[59] D. Inc, “Docker Engine API (1.46).” Accessed: Jul. 12, 2024. [Online]. Available:
https://docs.docker.com/engine/api/v1.46/

[60] The Matrix.org Foundation CIC, “gomatrix.” Accessed: Sep. 26, 2022. [On-
line]. Available: https://github.com/matrix-org/gomatrix/tree/ceba4d9f75305223c
2598cda1b1090f438b1e2fa

[61] The Matrix.org Foundation CIC, “Client-Server API.” Accessed: 2024. [Online].
Available: https://spec.matrix.org/v1.10/client-server-api/

[62] Docker Inc., “Docker Compose overview.” Accessed: Jun. 06, 2024. [Online]. Avail-
able: https://docs.docker.com/compose/

https://matrix.org/blog/2020/10/08/dendrite-is-entering-beta/
https://godoc.org/github.com/matrix-org/gomatrixserverlib
https://doi.org/10.1109/ACCESS.2023.3254913
https://pkg.go.dev/maunium.net/go/mautrix
https://pkg.go.dev/maunium.net/go/mautrix
https://pkg.go.dev/github.com/fsouza/go-dockerclient@v1.11.0
https://pkg.go.dev/github.com/fsouza/go-dockerclient@v1.11.0
https://docs.docker.com/engine/api/v1.46/
https://github.com/matrix-org/gomatrix/tree/ceba4d9f75305223c2598cda1b1090f438b1e2fa
https://github.com/matrix-org/gomatrix/tree/ceba4d9f75305223c2598cda1b1090f438b1e2fa
https://spec.matrix.org/v1.10/client-server-api/
https://docs.docker.com/compose/


94 8. Bibliography



A. Appendix

A.1. Evaluation Setup
{
  "messages": [
    {
      "action" : "online",
      "user": "peer0",
      "pauseAfter": "1s"
    },
    {
      "action" : "offline",
      "user": "peer1",
      "pauseAfter": "3s"
    },
    {
      "action" : "message",
      "user": "peer0",
      "content": "This is an asynchronous message.",
      "pauseAfter": "4s"
    },
    {
      "action" : "offline",
      "user": "peer0",
      "pauseAfter": "3s"
    },
    {
      "action" : "online",
      "user": "peer1",
      "pauseAfter": "1s"
    }
  ]
}

Listing 13: Example input file for functional evaluation experiment,
as described in Section 6.1.2.



96 9. Appendix

Date User Message Type Char Count
0 00:00:00 0 1 22
1 00:00:19 0 1 14
2 00:00:29 0 1 16
3 00:01:24 1 1 50
4 00:01:54 0 1 18
5 00:13:40 1 1 21
…

Table 11: Example input file for performance evaluation experiment,
as described in Section 6.1.2.

A.2. Functional Evaluation Log Tables

Time [s] User Action Type Event ID
0 …
1 3.6956 Bob send m.room.message 1
2 7.9685 Bob offline
3 11.0332 Alice online
4 …
5 12.5473 Alice resync
6 …
7 12.5544 Alice receive m.room.message 1
8 16.5459 Alice offline
9 23.9915 Bob online
10 …
11 28.8353 Bob send m.room.message 2
12 …
13 33.0557 Bob offline
14 35.5785 Alice online
15 …
16 36.546 Alice resync
17 …
18 36.5518 Alice receive m.room.message 2

Table 12:  Event Log for evaluating resync with a since-parameter in minimal setup.
After the second resync, the peer receives the second event only.



Functional Evaluation Log Tables 97

Time [s] User Action Type Event ID
0 …
1 11.0174 Alice online
2 11.659 Alice resync
3 11.6604 Relay 0 receive-resync
4 11.6607 Relay 0 reply-resync
5 11.6616 Alice resync-response
6 11.6624 Alice receive m.room.message 1
7 …
8 49.5103 Alice online
9 50.343 Alice resync
10 50.348 Relay 1 receive-resync
11 50.3483 Relay 1 reply-resync
12 50.3492 Alice resync-response
13 50.3501 Alice receive m.room.message 2

Table 13:  Event Log for evaluating resync with different relays. Peer 0 receives the event
in the first asynchronous online period, after peer 1 has sent the event. Since the traffic

is otherwise equal to Table 12, the actions of the other peer are omitted.

Time [s] User Action Type Event ID
0 8.2266 Alice ban Bob m.room.member 5
1 8.2676 Bob receive m.room.member 5
2 8.2681 Relay receive m.room.member 5
3 8.9696 Relay cache-event m.room.member 5
4 10.4409 Alice send m.room.message 6
5 10.7431 Relay receive m.room.message 6
6 10.9828 Relay cache-event m.room.message 6
7 12.6924 Bob send m.room.message 7
8 12.7957 Alice receive m.room.message 7
9 12.7992 Relay receive m.room.message 7

Table 14:  Event Log for evaluating relays rejecting events of non-members with the
AuthDAG given the latest available room state. Peer 0 bans Peer 1 from the room (row
0). When the banned Peer 1 attempts to send an event to the relay (row 7), the relay

receives it (row 9), but does not store it in the event cache.



98 9. Appendix

Time [s] User Action Type Event ID
0 …
1 13.3725 Alice name 100 m.room.power_levels 5
2 13.5555 Bob receive m.room.power_levels 5
3 13.556 Relay receive m.room.power_levels 5
4 14.1243 Relay cache-event m.room.power_levels 5
5 15.5638 Alice Bob: level 0 m.room.power_levels 6
6 15.5886 Bob receive m.room.power_levels 6
7 15.5887 Relay receive m.room.power_levels 6
8 16.2004 Relay cache-event m.room.power_levels 6
9 21.0904 Alice offline 7
10 24.01 Bob send m.room.name 8
11 24.2674 Relay receive m.room.name 8

Table 15:  Event Log for evaluating relays rejecting events of members with insufficient
power level with the AuthDAG given the latest available room state. Peer 0 sets the re-
quired power level to change the room name to 100 (row 1). Peer 0 then sets the power
level of Peer 1 to 0 (row 5). Peer 1 attempts to change the room name (row 10), and the
relay receives it (row 11), but does not add it to the event cache, as Peer 0 only has the

power level 0, but 100 is required.

A.3. Performance Evaluation Plots

Figure 33: Send actions with the three shortest online margins applied to chat 1796. Only
a small timeframe of the chat is depicted.


	Introduction
	Problem Formulation
	Outline

	Background
	Matrix
	Protocol Background
	DAG and Room State
	Access Control

	Peer-to-Peer Networks
	Peer-to-Peer Matrix
	Motivation
	Existing Implementations


	Analysis
	Problem Statement
	Assumptions on P2P Matrix
	Requirements
	Solution Approaches
	Relay Functionality Placement
	Event Graph Storage
	Relay Integration into Matrix Protocol
	Privileges for Room Relay Management
	Peer-to-Relay Relation
	Forwarding Events to Relays

	Differences to Federated Matrix
	Solution Approaches in Related Work
	Relay Functionality
	Nostr
	Scuttlebutt
	Asynchronous Mobile Peer-to-peer Relay
	Wesh Protocol
	Dendrite Relay API
	Briar
	Comparison

	Summary

	Design
	High-Level Overview
	Relay Design
	Relay Overview
	AuthDAG
	Event Cache
	Relay Functionality

	Peer Design
	Peer Overview
	Peer Functionality

	Use Cases
	Add Relay Process
	Room Join
	Relayless Peers

	Summary

	Implementation
	Existing Implementations
	Analysis of Existing Approaches
	Dendrite
	Dendrite-Demo-Pinecone

	Overview
	Relay Functionality
	AuthDAG
	Event Cache
	Receive Events
	Receive Resync Request

	Peer Functionality
	Relay Selection
	Send Event
	Make Resync Request

	Summary

	Evaluation
	Evaluation Setup
	Overview
	Traffic Generator
	Docker Network
	Logging
	Configuration Files
	Experiment Process

	Performance Evaluation Traffic
	Overview
	Online Margins
	Applying Online Margins to Dataset
	Data Selection

	Evaluation Overview
	Functional Evaluation
	Asynchronous Delivery: Minimal Setup
	Asynchronous Delivery in Larger Rooms
	ASAP Delivery
	Resync with Since Parameter
	Resync with Different Relays
	AuthDAG: Access Control

	Performance Evaluation
	Events Not Delivered to Any Peer
	Event Delivery Time to any First Peer
	Online Periods without Receiving Events
	Reception Time after Returning Online

	Summary

	Conclusion and Future Work
	Bibliography
	Appendix
	Evaluation Setup
	Functional Evaluation Log Tables
	Performance Evaluation Plots


