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ABSTRACT
Modeling and predicting grid frequency is an important task in
power system control. While the consideration of external techno-
economic features could improve the modeling of the short-term
dynamics of grid frequency, such features are often only recorded
on an hourly basis and require careful treatment. We present a
purely data-driven approach to modeling grid frequency as an alter-
native to prediction models incorporating physical characteristics
of power systems. Using sequence models such as gated recurrent
units and transformers, we extract the necessary information and
relationships from the static frequency vector to predict the process
parameters for the short-term dynamics of frequency following a
Gaussian process. Both for the evaluation measures (e.g. MSE, MAE,
RMSE) for point estimators and for the measures for probalistic
evaluations (e.g. Negative Log Likelihood Score, CPRS and Energy
Score), our prediction performance is comparable to state-of-the-art
models and outperforms various purely data-driven models such as
daily profiles and k-nearest-neighbour profiles. Moreover, synthetic
time series generated by our models can successfully reproduce the
main statistical characteristics of the grid frequency.
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1 INTRODUCTION
In our modern society, a stable power supply is crucial for our daily
lives and guarantees economic activities. Power supply is linked to
grid stability for which a quality factor is the grid frequency. If there
is an imbalance between power generation and power consumption
the grid frequency deviates from the reference frequency. Therefore,
an accurate model of the grid frequency is extremely important
for simulations and predictions related to grid stability. Yet, the
increasing share of renewables in the energy supply makes grid
frequency modeling even more challenging due to the volatility
and unpredictability of renewable energy [21].

In the literature, an oscillation or motion equation motivated by
the physical nature of the grid is generally assumed when consider-
ing the grid frequency [5, 23, 25]. In [14], the stochastic Ornstein-
Uhlenbeck process is modified and a fractal noise statistic is pro-
posed to realistically model the grid frequency in Great Britain,
taking into account static properties such as fat tails and bimodal-
ity. In addition to random components, e.g., fluctuations, external
influences such as technical and economic conditions must be mod-
eled realistically [18]. In [7], a dynamic model is formulated whose
parameters take into account the influences of the fundamental
control systems, the market and noise. In order to develop an accu-
rate model for grid frequency dynamics, even more features need
to be taken into account. However, it is a major challenge to incor-
porate the technical and economic features into the modeling and
prediction of the short-term development of the frequency devi-
ation at the level of seconds, as the features are usually recorded
hourly. The current study in [16] represents a special step towards
solving this problem, in which a physically based machine learn-
ing model is presented whose physical model equations can take
into account the influence of operating conditions in the form of
techno-economic parameters on the short-term dynamics of the
frequency control system.

Although physical models undoubtedly provide a solid basis for
modeling the dynamics of grid frequency, the interesting question
is whether a fully data-driven approach without detailed modeling
of the physical principles can lead to comparable results. The aim
of our paper is to provide exactly this kind of data-driven model.
In the following, the frequency behaviour in Central Europe is
considered as an example to demonstrate the methodology. Note
that the methodology presented is not only applicable to large
power operation systems, but also to micro or distributed energy
sources. For example, characteristics can be extracted from the data
of a smart meter and used to model or predict the local frequency
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deviation. In this work, we want to explore the possibility of data-
driven modeling of an energy system without precise physical
models, which are not readily available for every energy system in
reality.

A popular approach for modeling stochastic processes are Gauss-
ian processes, which have proven to be a valuable tool inmany areas
due to their flexibility and strong modeling capabilities. Also, Gauss-
ian processes become increasingly important in energy forecasting.
For example, in [26] the hourly probability density of the elec-
tricity load is predicted using quantile regression of the Gaussian
process. In addition to Gaussian processes, sequence models such
as long short-term memory (LSTM), gated recurrent unit (GRU),
or transformer have proven to be particularly useful for process-
ing sequential data. These techniques were originally developed
to understand and process natural language and have achieved
great success in many areas [10, 27]. Furthermore, they become
increasingly important for the prediction of time series. In [13],
a CNN-LSTM model is successfully used to extract complex en-
ergy consumption features and predict the energy consumption
of residential buildings. In [28], it is discussed how a transformer-
encoder architecture can be used to learn multivariate time series
representations.

Our paper presents a fully data-driven approach based on a com-
bination of Gaussian processes and sequence models in order to
model and to predict the short-term evolution of frequency de-
viations complementing models that take into account physical
properties. For training, we use external feature values (e.g. day-
ahead forecasts of load, generation, price and more, see Appendix
C for details) recorded at the beginning of an hour, in conjunction
with the corresponding time series data of grid frequency that were
recorded within the same hour. The paper is structured as follows:
Section 2 introduces the Gaussian process as a model for the fre-
quency deviation and discusses solution approaches to account for
correlations between time points. In Section 3, we show how the
information in the techno-economic features can be extracted using
GRU and transformer architectures to directly predict the Gauss-
ian process without physical modeling. In particular, we show the
possibilities to consider the fat tail behaviour by changing the mar-
ginal distributions of the stochastic processes. Section 4 contains
an overview of the data used and models developed. In addition to
the training details, we also present the baseline models and evalu-
ation measures here. In Section 5, we present the evaluation results
of our approaches to probabilistic forecasting and synthetic data
generation in comparison to various baseline models. The paper
ends with a conclusion. The source code of this work is available
at [20].

2 GRID FREQUENCY MODEL BASED ON
GAUSSIAN PROCESS

In this section, we derive a Gaussian process as a framework for
modeling the short term evolution of grid frequency. We address
the difficulty of modeling the correlation between time points and
present solutions using covariance matrices with particular struc-
tures.

2.1 Model Setup
In the following, we denote the reference grid frequency by 𝑓ref.
For example, a reference frequency of 50 Hz is used in continental
Europe. As the reference grid frequency remains constant over time,
it is sufficient to model the deviation of the actual frequency from
the reference, denoted as Δ𝑓 := 𝑓 − 𝑓ref.

Let (Ω,A, 𝑃) be a suitable probability space. We assume that the
short-term dynamics of the grid frequency over a period of one
hour, starting at time 𝑡start, can be described by a Gaussian process
Δ𝑓 : 𝑇 → 𝐿2 (Ω) with time interval 𝑇 = [𝑡start, 𝑡end]. The Gaussian
process Δ𝑓 is uniquely defined by a mean function 𝜇 (𝑡) := E[Δ𝑓𝑡 ]
and a covariance function C(𝑡, 𝜏) := Cov[Δ𝑓 (𝑡),Δ𝑓 (𝜏)], 𝑡, 𝜏 ∈ 𝑇 .
𝐿2 is the space of square integrable functions and guarantees that
variance 𝜎2 (𝑡) and covariance 𝐶𝑜𝑣 (𝑡, 𝜏), 𝑡 ≠ 𝜏 , are finite. In partic-
ular, the Gaussian process has the nice property that the random
vector (Δ𝑓 (𝑡1), · · · ,Δ𝑓 (𝑡𝑛))𝑇 follows an n-dimensional Gaussian
distribution for any choice of 𝑡1, . . . , 𝑡𝑛 ∈ 𝑇 . A detailed discussion
of Gaussian processes and their typical applications in machine
learning can be found in [22].

The flexibility and power of the Gaussian process, as evidenced
by its successful application in various fields [4, 8, 11], makes it a
suitable candidate for modeling the complex dynamics of frequency
deviation. Furthermore, since many physical models (such as the
diffusion equation) ultimately lead to (multivariate) normal dis-
tributions under regularity conditions, it is justified in this sense
to ask whether one can skip the intermediate step via (physical)
model equations and, in our case, model the frequency deviation
directly with a univariate Gaussian process. In particular, we do
not use a specific physical model and associated stochastic differen-
tial equations, but try to learn the Gaussian process directly from
the available day-ahead data. This purely data-driven model offers
great flexibility in modeling.

For the model, we now consider an index set with discrete time
points 𝐼 = {𝑡0, . . . , 𝑡𝑁−1}. For 𝑁 = 3600, the underlying Gaussian
process exactly reproduces the change in grid frequency per sec-
ond. In this case, the Gaussian process can be represented by a
multivariate Gaussian distribution with the 𝑁 -dimensional mean
vector 𝜇 ∈ R𝑁 and the covariance matrix C ∈ R𝑁×𝑁 . In the fol-
lowing, we introduce approaches that identify the mean vector and
the covariance matrix directly using advanced sequence models.
Note that the discretization is not a strong constraint for Gaussian
process with independent time points, as the mean and variance
functions can be reconstructed using interpolation techniques such
as splines.

2.2 Treatment of Serial Dependency
The serial dependence structure of a Gaussian process is generally
determined by its covariance function. For the discrete stochastic
process Δ𝑓 , we represent this dependence either directly by co-
variance matrices or by kernel representations. Handling a large
and full covariance matrix and estimating all its parameters can be
very challenging and computationally intensive. To reduce com-
plexity and improve identifiability, special matrix structures can be
adopted. In particular, we assume a block structure of the covari-
ance matrix (with a diagonal matrix as the simplest candidate) and
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design suitable kernel specifications. Both are discussed in more
detail below.

As a structural simplification for the covariance matrix, a band
structure or a diagonal block structure can be assumed. A band
structure covariance for the Gaussian process Δ𝑓 : 𝑇 → 𝐿2 (Ω)
means that the frequency values are correlated only within a cer-
tain rolling time window, while the block structure of a covariance
matrix implies that the time points can be divided into groups
(represented by the blocks) within which significant relationships
(covariances) exist, while no or only weak relationships exist be-
tween the groups. A simple but important special case of the band
structure (bandwidth equal to 1) and the diagonal block matrix is
the diagonal covariance matrix. In this case, the time points are
independent of each other and only the variance has to be modeled
for each time point. It could also be useful to divide the time points
into four groups with time points of 15 minutes each. For example,
market trading takes place at discrete intervals (such as 15 minutes).
At the start of a new 15 minute interval, power generation is rapidly
adjusted to meet the new trading conditions and demands. This
leads to regular jumps in frequency dynamics [17].

Another flexible yet powerful method for defining covariance
functions for Gaussian processes is the use of special kernel func-
tions that have a predefined functional form with a limited number
of hyper parameters. When using predefined kernel matrices, only
the hyper parameters need to be identified, which significantly
reduces the complexity of determining the complete covariance
matrix. A kernel frequently used in practice is the exponentiated
quadratic kernel

𝑘SE (𝑡, 𝑡 ′) = 𝜎2 exp
(
− (𝑡 − 𝑡 ′)2

2ℓ2

)
,

where 𝜎 is the variance amplitude and ℓ is the characteristic length
scale. Rational quadratic kernels can model variations over multiple
length scales with the additional parameter 𝛼

𝑘RQ (𝑡, 𝑡 ′) = 𝜎2
(
1 + (𝑡 − 𝑡 ′)2

2𝛼ℓ2

)−𝛼
.

A more detailed discussion of the properties of kernel functions
can be found in [22]. Appendix A shows different kernels and syn-
thetic data for various hyper parameters. In particular, covariance
matrices defined by kernel functions can have an approximate band
structure (see Fig. 7 in Appendix A). Note that one advantage of
using standard kernels is that certain kernel combinations also
produce valid covariance matrices. For example, the addition or
matrix multiplication of two covariance matrices again results in a
covariance matrix, so that specific synthetic data can be generated
if kernels with different patterns are suitably combined.

In this paper, we first assume that there is no correlation between
the frequency deviations Δ𝑓 at different points in time. In addition
to the independence assumption, we also investigate to what extent
the consideration of correlations by kernels can improve the results
(see Section 5). Having discussed the basic model set-ups, now we
turn to the next key step: identifying Gaussian process parameters
using sequence models.

3 PROCESS LEARNING USING SEQUENCE
MODELS

In this section, we first formally introduce the underlying learning
task. From the requirements, we derive specific customised sequen-
tial models to efficiently and effectively process and extract the
information from the techno-economic features, which are then
used to predict distribution parameters of the Gaussian processes
(cf. Fig. 1).

3.1 Learning Task and Loss functions
To complete our frequency model based on Gaussian processes,
the process parameters (i.e. the mean vector 𝜇 and the covariance
matrix C) must be determined. As discussed in detail in [16, 18], the
stochastic process of the grid frequency is influenced by external
techno-economic properties. Therefore, we could design a method
to predict the process parameters based on the external techno-
economic features, see Fig. 1. Specifically for forecasting purposes,
we focus below on constructing a model that processes the available
day-ahead features. In particular, we use the following day ahead
features: day ahead forecasts of the load, renewable generation, day
ahead electricity prices, the planned generation, their respective
increases and information on the hour of the day (for details see
Appendix C).

In [16], the frequency value at the beginning of a period is used
to initialize the learned stochastic processes and is not listed directly
as a feature. Here we also use the frequency deviation of time begin
as a feature value directly. For a time interval, we can synthesize
a feature vector by combining the hourly resolved values of the
external features described above and the initial value of the grid
frequency at the beginning of this time interval. The learning task
presented is a typical supervised learning task. For each input
feature vector representing the economic-technical state at the
beginning of an hour, we use the data set of 𝑁 grid frequency values
within the corresponding hour as the true values for training and
testing.

Since we are modeling the grid frequency with Gaussian pro-
cesses, we now need a model that predicts the parameters of the
Gaussian process from the features. A major challenge is that the
values of the available features are typically published at much
lower frequencies, e.g. only at the beginning of an hour, resulting in
an unbalanced size of the input and output dimensions. Therefore,
models are needed that meaningfully transform the input data into
higher dimensional data spaces, taking into account the communi-
cation possibilities between the values in the output sequences. This
consideration leads to the use of a recurrent neural network struc-
ture, in particular a gated recurrent unit (GRU), which is an efficient
and effective method for modeling time series data (see Section
3.2.1 for implementation details). Another idea to solve the problem
described above is to use a transformer-like structure based on the
attention mechanism. By using multi-attention headers, different
aspects of the feature vector can be learned. After information pro-
cessing by the GRU or transformer, the learned information about
the relationships is further processed by fully connected layers to
compute the process parameters. A simple model structure such
as a dense neural network with fully connected layers would not
be suitable since fully connected layers do not directly take into
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Figure 1: Overview of the entire model structure. The techno-economic characteristics and the value of the frequency deviation
at the beginning of the hour are processed after a pre-processing step by sequence models such as GRU or Transformer to
extract correlations, which are then used by a dense network to predict the mean vectors and the covariance matrix of the
frequency deviations modeled as a Gaussian process within the hour.

account the latent structure of the data at either the input or the
output, so learning the data representation in this way is inefficient.

Before presenting the adapted sequence models for predicting
process parameters, we first introduce the following loss functions.
Denoting the function learnt by the neural network as 𝜑 , we define
the negative log likelihood loss function for 𝑋 , a batch of input
feature vector x𝑘 , as follows

L(𝑋 ) = 1
𝐾

𝐾∑︁
𝑘=1

−log(𝑝𝜑 (x𝑘 ) (𝑦𝑘 )),

where 𝑝𝜑 (x𝑘 ) (·) is the density function of the multivariate nor-
mal distribution with parameters encoded in the form of 𝜑 (x𝑘 ) and
𝑦𝑘 ∈ R𝑁 is the time series of frequency associated with the feature
vector 𝑥𝑘 .

Assuming that the frequency is uncorrelated between different
points in time, the loss function simplifies to

L(𝑋 ) = 1
𝐾

1
𝑁

𝐾∑︁
𝑘=1

𝑁−1∑︁
𝑛=0

( 1
2
log(2𝜋) + log(𝜎𝑛 (𝑥𝑘 ))

+ 1
2𝜎𝑛 (𝑥𝑘 )2 (𝑦𝑘,𝑛 − 𝜇𝑛 (𝑥𝑘 ))2) .

If the correlation of the frequency is modeled by a kernel matrix
K, then the loss function is calculated as

L(𝑋 ) = 1
𝐾

𝐾∑︁
𝑘=1

(𝑁
2
log(2𝜋) + 1

2
log( |K(𝑥𝑘 ) |)

+ 1
2
(𝑦𝑘 − 𝜇 (𝑥𝑘 ))𝑇 (K(𝑥𝑘 ))−1 (𝑦𝑘 − 𝜇 (𝑥𝑘 ))

)
.

As shown in [14, 16], large frequency deviations are more likely
than a normal distribution would predict. Since in a Gaussian pro-
cess the expected value function and covariance function do not
need to be constant, the aggregate distribution of all time points of
a Gaussian process can produce a different tail behaviour than a
normal distribution. However, one could ask whether a relaxation
of the Gaussian limits to fat-tail distributions could lead to an even
more realistic representation of the tail behaviour. To this end, we
also consider the Student-t distribution and the Cauchy distribu-
tion, which is a special case of a Student-t distribution, for each
time point. The dynamics of the frequency deviation is modeled by

a stochastic process where we have a fat tail distribution at each
time point. In this case, we also assume that the time points are
independent. In particular, we will learn a location-scale Student-t
distribution to account for different mean positions and scattering
behaviour at each time point. For stochastic process with marginal
Cauchy distributions, we focus on learning the median and in-
terquartile range. Details on the loss functions for fat-tail marginal
distributions are provided in Appendix B. Here the flexibility of
our approach of using sequence models (details see Section 3.2)
for feature processing becomes apparent. In order to take different
stochastic processes into account, we only need to exchange the
loss function and and the rest of the model structure remains the
same.

3.2 Information Extraction using
Sequence-to-Sequence Models

In this section, we present the GRU and transformer-like neural
network structure specially adapted for modeling the short-term
dynamics of grid frequency. To solve the problem that the values of
the available features are recorded hourly, but the frequency values
are recorded every second, we use custom GRU and Transformer-
Structure. Whereas in GRU the techno-economical feature vector
is artificially repeated for a number of points in time and then
processed by an "autoregressive" type of network structure, the
transformer-like structure attempts to learn different aspects from
a static feature vector by multi-head attention.

3.2.1 GRU-Structure. Weassume the samemacro-techno-economic
state for a hour with time index set 𝐼 . In addition, we assume a hid-
den state ℎ𝑡 , 𝑡 ∈ 𝐼 for each time point, which determines the (distri-
bution of the) frequency deviation, e.g., the mean and the variance
at that time point. Following an autoregressive modeling approach,
one would calculate the hidden state ℎ𝑡+1 for time 𝑡 + 1 as a func-
tion of ℎ𝑡 and the global techno-economic state 𝑥 . This modeling
principle is implemented below using a GRU structure [1]. For this
purpose, we consider the following process in Fig. 2. For each time
step, we assume the same techno-economic feature vector 𝑥𝑡 = 𝑥
as input. This can be achieved by repeating the input feature vector
𝑥 for a number of prediction time points, 𝑥0 = · · · = 𝑥𝑁−1 = 𝑥 .

To make a prediction for the time 𝑡 , a preliminary hidden state
ℎ′𝑡 is first estimated. To do this, the feature vector 𝑥𝑡 = 𝑥 is pro-
cessed with fully connected layers to calculate a value 𝑟𝑡 ∈ [0, 1]. 𝑟𝑡
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Figure 2: Information processing using GRU to predict fre-
quency deviation. The feature vector is processed at each
time point with a hidden state from the last time point to get
the current hidden state. The hidden states at all time points
are then passed through a dense net to determine the mean
and covariance matrices.

Figure 3: Extraction of relationship information between fea-
tures using a transformer encoder structure. The static fea-
ture vector is used to generate embedding vectors, to which
the multi-head attention is then applied to learn the differ-
ent aspects of the feature relationships, which are passed
through a dense network to predict the process parameters
of the Gaussian process. Parts of the illustration are based
on the original illustration of the transformer structure in
[24].

represents the proportion of information from ℎ𝑡−1 that propagates
from time t-1 to t. If 𝑟𝑡 is close to 0, this means that the sub-neural
network has reset the information from the previous state. It is
therefore also referred to as a reset gate. A value of 𝑟𝑡 = 1 means
that the influence of the past is strongly taken into account, which
can be interpreted as a complete propagation of the previous state
component.

The preliminary hidden state ℎ′𝑡 can then be calculated from
𝑟𝑡 ∗ ℎ𝑡−1 and 𝑥𝑡 . To get a final estimate for the hidden state, the
preliminary hidden state ℎ′𝑡 can be weighted with the previous
hidden state ℎ′𝑡 with

ℎ𝑡 = 𝑧𝑡 · ℎ′𝑡 + (1 − 𝑧𝑡 ) · ℎ𝑡−1 .

𝑧𝑡 is calculated similarly to 𝑟𝑡 . The reset gate and the update gate,
which are controlled by different fully connected layers, are trained

to dynamically trade off remembering previous information and
recognizing new information [1, 2].

After obtaining the hidden states ℎ𝑡 , 𝑡 = 1, . . . , 𝑁 for the fre-
quency dynamics for all time points in the period considered, we
can use this learned information to compute, for example, themeans
and variances of Δ𝑓 (𝑡𝑖 ), 𝑖 = 0, . . . , 𝑁 − 1, by inserting a dense net-
work between the outputs of the GRU and the outputs of the entire
model. Depending on whether we take the correlation into account
or not, we can then use different loss functions (cf. Section 3.1) to
fit the model using a stochastic optimisation procedure such as
ADAM.

3.2.2 Transformer-Structure. In contrast to GRU, we do not artifi-
cially duplicate the static feature vector to create pseudo time series
as inputs, but instead try to generate different aspects of the data
from the static feature vector that encode the dependencies of the
individual feature values, which can then be used directly to predict
the distribution parameters of the Gaussian processes Δ𝑓 .

In particular, from a static feature vector of length 𝐿, we generate
a sequence of 𝐿 embedding vectors, which are then processed by
multi-head attention as presented in [24].

Since all features in the feature vector are captured at the same
time, we do not use positional encoding, unlike in typical trans-
former setups. The embedding vector is transformed by three dif-
ferent dense nets to obtain three different representations: queries,
keys, and values. From queries and keys, weights are computed
by computing scalar products, which weight values and give an
aggregated vector of value elements. The scaled scalar products
are called attention scores, and the attention computation unit is
called a single head. To look at different aspects of our techno-
economic features simultaneously and thus learn complex patterns
and relationships more effectively, multiple heads can then be used
simultaneously. The results of all the heads are combined by con-
catenation and reprojection to produce the final output of the multi-
head attention layer. As in the original transformer in [24], we also
use residual connections and layer normalization to stabilize the
training process. Fig. 3 shows the entire model structure.

This aggregated information about the relationships between
feature values can then be used to build another dense network
to predict, for example, the mean vector or covariance matrix pa-
rameters. As with the GRU structure, different loss functions from
Section 3.1 can be used here, depending on the purpose.

4 STUDY SETUP
In the following section, we present the setup of our study, in which
different models based on sequence models are built and evaluated.
First, we present the data used to train the models. Then we give
an insight into the models created and the details of the training.
Finally, we briefly present the different baseline models and the
evaluation methodology.

4.1 Data Set Description, Model Input and
Output

We use the same database as in [16] for reasons of comparability.
For details on the data, see Appendix C. The complete dataset
consists of 26 859 data points. Each data point belongs to a time
interval and consists of a feature vector and a time series of the
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Marginal Distribution Serial Dependency Network Principle

Gaussian independent GRU
Gaussian independent Transformer
Gaussian exponential quadratic kernel GRU
Gaussian rational quadratic kernel GRU
Gaussian exponential quadratic kernel Transformer
Gaussian rational quadratic kernel Transformer
t-marginal-distribution independent Transformer
Cauchy-margnal distribution independent Transformer

Table 1: Overview of the trained models and their setups.

grid frequency. The feature vector consists of values of external
economic-technical variables at the beginning of the hour, values
that coordinate the temporal information and the initial value of
the grid frequency at the beginning of the hour. Specifically, we
considered eleven day-ahead features containing price, generation
and load information and their ramp values (for details see Tab. 5).
With two time features and one initial value of the grid frequency,
we obtain then a 14-dimensional static feature vector, resolved in
seconds.

While all trained models based on the Gaussian process use the
above-mentioned 14-dimensional static feature vector as input, the
output of the models is different. With independent Gaussian pro-
cess models, the outputs of the models are the mean values and
the standard deviations of the grid frequency deviation for each
point in time (e.g. every second). To limit the computational com-
plexity of training with covariance matrices, models for Gaussian
processes with correlations are trained to compute predictions for
every 15th second instead of every second of an hour. The outputs
of the models are the mean of the grid frequency deviation at every
15th second and the kernel parameters of the kernel matrix of all
predicted time points. To generate the training data for this, every
15th element in each frequency sequence is selected. The feature
data remains the same.

4.2 Training Details
The network structures are implemented as described in Section
3.2. Tab. 1 provides an overview of the models developed and their
assumptions. More details on the model structures can be found in
the Appendix D.

We use the negative log likelihood functions as the loss func-
tions. To reduce the computational effort for GRU-based models, we
assume that the time points can be divided into consecutive groups
of time points and the dependency information of each group can
be encoded by a separate latent state. Our preliminary experiments
show that 180 latent states are sufficient to achieve good results.
Therefore, for performance evaluation in GRU-based models, we
implement 180 latent states ℎ𝑖 for 3600 time points, each of which
decodes the dependency information of 20 time points. By subse-
quently applying a dense network of suitable dimension (e.g. 3600 if
we can learn a mean and variance at each time point), we again ob-
tain the outputs for each time point. For transformer-based models
we always use one attention block with 4 heads. We trained models
considering gaussian marginals with both the transformer and the

GRU structure. The models with fat-tail marginal distributions were
trained with the transformer structure. An implementation with
the GRU is also possible. However, our preliminary experiments
show that the transformer-based structures can be trained faster
compared to the GRU structure.

All models were trained for a maximum of 100 epochs, with a
batch size of 128. The validation loss was monitored during each
training. In particular, we used early stopping and learning rate
reduction techniques to avoid overfitting and improve model per-
formance. Training was canceled if it did not improve over 5 epochs.
The learning rate was multiplied by a factor of 0.1 if no improve-
ment was observed after 3 epochs. This helps e.g. to fine-tune the
model by taking smaller steps when a learning plateau seems to be
reached. This reduction in the learning rate continues until a lower
limit is reached and training is terminated by early stopping. Data
from 2015 to 2018 was used for training and validation, while data
from 2019 was used for evaluation.

4.3 Baseline Models and Evaluation Measures
To evaluate the performance of the models, we compare our models
with other base models. We consider models that make probabilistic
predictions as the Gaussian processes above do and also models that
make point predictions. In addition to the day-ahead and ex-post
models in [16], we also consider other data-driven models such as
daily profile or constant profile, for which a Gaussian distribution
with global mean and standard deviation of the frequency data
between 2015 and 2018 is assumed, as in [16]. For the baseline
models for the point forecast, we use all mean estimators of the
probabilistic models as baseline models. We also included simple
point estimators, such as the stepwise constant profile, which as-
sumes that the frequency deviations are equal to the frequency
deviation at the beginning of the hour. In addition, a simple nearest
neighbour model was developed that calculates a weighted sum
of the frequency sequences of the nearest feature vectors in the
historical data. Tab. 8 in Appendix E provides an overview and
detailed information of all the comparative models considered.

Measures such as Mean Absolute Error (MAE), Mean Squared
Error (MSE) and Root Mean Squared Error (RMSE) are used to
compare the point forecasts. We evaluate the probabilistic forecasts
based on normal distributions with independent time points using
negative log-likelihood and Continuous Ranked Probability Score
[9]. Histograms of the realised quantiles are also created. In addition,
we use energy scores [6] to compare the predictions of our model
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Model MAE MSE RMSE

constant zero 0.1255 0.0262 0.1543
global mean 0.1233 0.0254 0.1524
begin value 0.1772 0.0499 0.2199
mean daily profile 0.0939 0.0145 0.1190
KNN profile 0.0847 0.0116 0.1072
mean PIML day-ahead 0.0882 0.0126 0.1117
mean PIML ex-post 0.0881 0.0125 0.1110
mean indepedent gaussian GRU 0.0814 0.0106 0.1027
mean independent gaussian transformer 0.0821 0.0109 0.1038
model cauchy transformer 0.0828 0.0111 0.1048
model student transformer 0.0819 0.0108 0.1036

Table 2: Evaluation results of performance for point predic-
tions.

Model negative log likelihood CRPS

constant profile -531.8881 0.0882
daily profile -765.5269 0.0663
PIML day-ahead -824.7810 0.0625
PIML ex-post -825.234 0.0623
indepedent gaussian GRU -871.4940 0.0575
independent gaussian transformer -872.9515 0.0581

Table 3: Evaluation of performance for probabilistic predic-
tions using median of negative log likelihood and CRPS.

with kernels. Details of the measures used can be found in the
Appendix F.

5 RESULTS
In this section, we evaluate the results of the various models pre-
sented. First, we compare these models, which are based on the
assumption of independent time points, with different baseline mod-
els. We then illustrate the performance of the Gaussian sequence
models using kernels. We consider both the performance of the
point prediction and that of the probability prediction. Finally, we
examine the properties of synthetically generated data and compare
them with the properties of the real frequency deviation data. In
particular, we investigate whether replacing the marginal distri-
butions with fat tails leads to better results. To present the results
in a standardised way, we always compare the angular frequency
deviation 𝜔 = 2𝜋 · Δ𝑓 .

5.1 Prediction Performance
We start with the evaluation of the point forecasts using the mea-
suresMAE,MSE and RMSE. Since the models in [16] were evaluated
with a 15-minute time interval to achieve their best performance,
we compare the measures for a 15-minute time interval here. As Tab.
2 shows, the mean lines of all models based on sequence modeling
outperform other data-based models and the two PIML models. In
particular, the GRU-based Gaussian process model shows the best
result for all measures.

Model Neg. Loglikelihood Energy Score

Independent -236.87 2.05
Gaussian GRU with Rational
Quadratic

-352.21 1.91

Gaussian Transformer with Ra-
tional Quadratic

-347.79 1.96

Gaussian GRU with Exponenti-
ated Quadratic

-318.33 2.07

Gaussian Transformer with Ex-
ponentiated Quadratic

-312.83 2.15

Table 4: Comparison of performance for models with diago-
nal covariance matrix and kernel using negative log likeli-
hood and energy score.

We calculate the negative log-likelihood loss and the continu-
ous ranked probability score to evaluate the performance of the
probabilistic forecasts. Again, both our GRU-based and transformer-
based models are slightly better than day-ahead and ex-post models
in [16] and clearly outperform the daily profile and the constant
profile (see Tab. 3). In the Appendix H, we also provide the evalua-
tion results of the measures on one-hour intervals and histograms
of the realised quantiles.

To compare specific prediction examples, we choose the same
time windows as in [16] (see Fig. 4). Since the time points are inde-
pendent of each other, we can use the standard deviation function
to draw the enveloping lines around the mean value function. Our
results when using day-ahead features are comparable to those of
[16], which use day-ahead and ex-post features, for both the good
cases (see Fig. 4 (a), (c)) and the bad ones (see Fig. 4 (b), (d)). This
means, first, that our data-driven methods can learn the complex
nature of stochastic differential equations under the assumption
of independent Gaussian processes, and second, that they confirm
indirectly the correctness of the choice of model equations in [16].

Taking into account the correlations between time points, the
exponential quadratic kernel and rational quadratic kernel mod-
els outperform independent Gaussian processes in terms of nega-
tive log-likelihood (see Tab. 4). Again, the GRU-based models are
slightly better than the transformer-based models. For example,
the energy scores of the exponential quadratic kernel models are
worse than the energy scores of the independent Gaussian process
models. However, in terms of energy scores, the results with ratio-
nal quadratic kernels are still the best. In Appendix G, we provide
conditional predictions using the correlations learned for the bad
cases above that could not be predicted well under the assumption
of independent time points.

5.2 Synthetic Data Generation
Our models can generate realistic synthetic data from techno-
economic features, e.g., for optimization or simulation purposes.
For a given techno-economic vector, our models first learn the dis-
tribution parameters (depending on whether correlations are taken
into account or not). Synthetic time series can then be generated
from the multivariate Gaussian distribution. To illustrate this, we
generated frequency data for the period January 2019 with external
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Figure 4: Good and bad prediction examples. The Transformer Independent Gaussian model shows similar performance to the
PIML ex-post model. Both models can outperform the daily profile and the KNN model in good scenarios ((a) and (c)) and are
similar to the daily profile in bad scenarios ((b) and (d)).

Figure 5: Comparisons of estimated distributions of real data
and synthetic data generated usingmodels based on gaussian,
transformed student and cauchy marginal distributions.

features and checked whether the synthetic data correspond to
the typical features of frequency data. In particular, we compare
the estimated probability density function (PDF) of the frequency
deviation of the real and synthetic data.

The tail behaviour of frequency fluctuations is well reproduced
by the synthetic time series of an independent Gaussian process
with transformer structure and outperforms a simple estimate of
a normal distribution. The Cauchy marginal distribution overesti-
mates the presence of fat tails, while the Student-t marginal distri-
bution also reproduces the tail behaviour very accurately due to its
flexibility (see Fig. 5). Fig. 6 shows the auto correlation functions
(ACF) of the frequency deviation and the frequency increments
Δ𝜔 (𝑡) = Δ𝜔 (𝑡 + 1𝑠) − Δ𝜔 (𝑡), which were calculated from the syn-
thetic data of a Gaussian process model with transformer structure
and rational quadratic kernel. An exact mapping of the autocorre-
lation of increments is generally a difficult task. For example, [16]
is not well able to take this aspect into account, since an analytical
solution of the Flokker-Planck equation requires the assumption of
incorrectness of the fluctuation [16]. Here, the ACF of the frequency
and the frequency increments are well represented by the synthetic
data. For more details on the autocorrelations of other models with
different kernels, see Appendix H.3.

6 CONCLUSION
This paper presents a fully data-driven approach to modeling and
predicting the short-term evolution of frequency deviations. This

Figure 6: Comparison of the ACF for frequency deviation
and its increments between real data and synthetic data, gen-
erated by a GRU-based Gaussian process model with rational
quadratic kernels. Good agreement can be observed.

fully data-driven approach is based on a combination of Gaussian
processes and sequential models such as GRU and Transformer.
Different models have been trained with different sequential mod-
els and kernels and evaluated with different measures for both
point predictions and probabilistic predictions using negative log-
likelihood, CRPS and energy scores. Although we do not accurately
model the physical properties, we achieve results that are compa-
rable to physically informed machine learning models and show
slightly better results on a range of evaluation measures. Our mod-
els outperform simple data-driven models. The GRU structure per-
forms slightly better than the transformer-based process models
but transformer process models are faster and easier to train. The
synthetic data of our models with Gaussian and Student’s marginal
distributions fulfil the typical stochastic properties of frequency
data, such as fat-tail behaviour. The behaviour of the autocorrela-
tion functions of the frequency deviation and its increment are also
well represented by the synthetic data generated by a correlated
Gaussian process model. Compared to simple data-driven methods
such as the k-nearest neighbours algorithm, our probabilistic mod-
els presented here offer great simulation capabilities to generate
realistic data sets for different scenarios or models that can be used
virtually for testing purposes.
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A KERNELS
We show here four different kernels and two generated synthetic
time series in each case (see Fig. 7). The amplitude and the length
scale are set to one for all kernels shown. For the periodic kernel,
the period parameter is set to 15.

B LOSS FUNCTIONS FOR FAT-TAIL
MARGINAL DISTRIBUTIONS

The Student-t distribution with 𝑣 degrees of freedom has the density

𝑓 (𝑡) =
Γ

(
𝑣+1

2

)
√
𝑣𝜋 Γ

(
𝑣
2
) (

1 + 𝑡
2

𝑣

)− 𝑣+1
2
,

where Γ is the gamma function. For 𝑣 greater than 30, the Student-t
distribution can be approximated by the normal distribution. This
means with the assumption of the student-t distribution, the model
is still capable of learning a Gaussian process-like process because
𝑣 is learnable. In particular, We learn for each time point a location-
scale Student-t-distribution 𝑎𝑖 · T +𝑏𝑖 to account for different mean
positions and scattering behaviour at each time point 𝑡 .

The Cauchy distribution is a special case of the Student-t distri-
bution with 𝑣 = 1. Note that the Cauchy distribution has neither
an expected value nor a variance [3]. Therefore, for a stochastic
process with marginal Cauchy distributions, we focus on learning
the median and interquartile range.

For the true value𝑦 ∈ R𝑁 , The loss function using the likelihood
function can then be calculated for the process with Student-t
distributions

Lt (𝑦, 𝑎, 𝑏, 𝑣) = − 1
𝑁
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(
log Γ
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− log Γ
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2
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− | log(𝑎𝑖 ) | −
𝑣𝑖 + 1

2
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𝑣𝑖𝑎
2
𝑖

))
,

and for a process with Cauchy-distributions

LCauchy(𝑦,𝑚𝑡 ,𝛾𝑡 ) =
1
𝑁

𝑁−1∑︁
𝑡=0

[
ln(𝜋𝛾𝑡 ) + ln

(
1 +

(
𝑥𝑡 −𝑚𝑡
𝛾𝑡

)2
)]
,

where the median𝑚𝑡 is the position parameter and 𝛾𝑡 is the half-
width.
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Figure 7: Kernels and two generated synthetic time series in each case.

C DATA

Type Feature Unit
Extern Load day-ahead MW
Extern Solar day-ahead MW
Extern Offshore wind day-ahead MW
Extern Onshore wind day-ahead MW
Extern Load ramp day-ahead MW/h
Extern Generation ramp day-ahead MW/h
Extern Solar ramp day-ahead MW/h
Extern Offshore wind ramp day-ahead MW/h
Extern Onshore wind ramp day-ahead
Extern Price day-ahead euro/MWh
Extern Price ramp day-ahead euro/MWh/h
Time 𝑐𝑜𝑠 (𝜋/12ℎ𝑜𝑢𝑟 ) -
Time 𝑠𝑖𝑛(𝜋/12ℎ𝑜𝑢𝑟 ) -
Initial value Grid Frequency value at the beginning

of the hour to be forecast
1/s

Table 5: Overview of Features.

For themodels, we consider hourly recorded external techno-economic
features and the associated grid frequency data in a temporal resolu-
tion of seconds in Central Europe between 2015-2019. An overview
of the features is shown in Tab. 5. In particular, we used the cleansed
data in [18, 19]. The raw feature data of the cleansed data are from
the ENTSO-E Transparency Platform and the raw frequency data
are from TransnetBW GmbH [19]. In addition, we used the code in
[15] to generate training and test data to then ensure comparability

with results from the physics-informed machine learning models
in [16].

D DETAILS ON MODEL STRUCTURES

Layer (type) Output Shape
Input Layer [(None, 14)]
Repeat Vector (None, 180, 14)
GRU (None, 128)
Dropout (None, 128)
6 fully connected layers (None, 128)
Dropout (None, 128)
Output Layer (None, 7200)

Table 6:Model structure of aGRU-basedMode for independnt
gaussian process.

The model structure for models with gaussian process and GRU
is shown in Tab. 6. The structure of the models based on transformer
can be found in Tab. 7. We always use the same structures for differ-
ent processes (whether gaussian or fat tail marginal distribution, or
whether the time points are dependent) and only exchange the loss
functions for training and learning the concrete parameters of the
models (and thus the output shape). This also shows the flexibility
of our approach of using sequence models. For hidden layers, we
use the Relu-function as the activation function. For output layers,
we usually use the linear activation function. To take into account
the properties of variances or the scaling parameters of kernels, we
also use the softplus function in the loss function to guarantee their
positivity.
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Layer (type) Output Shape
Input Layer [(None, 14)]
Initial Dense with 3 layers (None, 448)
Reshape (None, 14,32)
Three dense nets for query,
key and value, each with three
hidden layers of 64 neurons

3 times (None, 128)

multi head attention (None, 14,32)
Add (None, 14, 32)
LayerNormalization (None, 14, 32)
Flatten (None, 48)
6 fully connected layers (None. 128)
Dropout (None,128)
Output Layer (None, 480)

Table 7: Model structure of a Transformer-based Model for a
correlated gaussian process (with time step = 15 s).

E BASELINE MODELS
An overview and descriptions of the baseline models used can be
found in Tab. 8. In particular, when implementing the KNN profile,
we search the feature space of the training data for the features that
have the smallest distance to the feature of the current time interval
to be predicted and then calculate the prediction as a weighted sum
of the frequency series for the given feature vectors. To optimize
the hyper parameters, cross-validation is performed to determine
the number of neighbours k. A KNN regressor is instantiated and
trained with the optimal k value. For the implementation we use the
"KNeighborsRegressor" from the "sklearn.neighbours" library. For
the data generation of test data using the PIML dayahead model,
PIML ex-post model, constant profile and daily profile, we use
the code provided in [15]. In addition, we include all means of all
probabilistic models as point predictors.

F EVALUATION MEASURES
A point predictor 𝑦 of the true value 𝑦 for 𝑛 predictions could be
evaluated with MAE (mean absolute error), MSE (mean squared
error) and RMSE (root mean squared error)

MAE =
1
𝑛

𝑛∑︁
𝑖=1

|𝑦𝑖 − 𝑦𝑖 |

MSE =
1
𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖 )2

RMSE =
√
MSE =

√√
1
𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖 )2 .

For a one dimensional probabilistic predictor 𝑌 for 𝑌 with the
distribution function 𝐹 , density function 𝑓 and a realized value 𝑦,
one could use the negative log likelihood and CRPS (Continuous
Ranked Probability Score) [6, 12]

logL(𝑦) = − log 𝑓 (𝑦)

𝐶𝑅𝑃𝑆 (𝐹,𝑦) = E𝐹 |𝑌1 − 𝑦 | −
1
2
E |𝑌1 − 𝑌2 | ,

where Y1 and Y2 are iid-distributed with distribution 𝐹 .
There is an explicit formula for a normal distribution [6]

𝐶𝑅𝑃𝑆 (𝑁 (𝜇, 𝜎2), 𝑥) = 𝜎
[

1
√
𝜋
− 2𝜙

(𝑥 − 𝜇
𝜎

)
− 𝑥 − 𝜇

𝜎

(
2Φ

(𝑥 − 𝜇
𝜎

)
− 1

)]
,

where 𝜙 and Φ denote the probability density function and the
cumulative distribution function of a standard Gaussian variable.
We used the explicit formula to implement CRPS for our study. In
the case of a multidimensional probalistic predictor 𝑌 , the negative
log likelihood could be used, too. In addition, the energy score can
be used as a generalised form of CRPS to evaluate the performance
of 𝑌

𝐸𝑆 (𝐹,𝑦) = E∥𝑌 − 𝑦∥ − 1
2
E∥𝑌 − 𝑌 ′∥,

where 𝑦 and 𝑦′ are independent identically distributed random
variables from the distribution 𝐹 , and ∥ · ∥ represents the Euclidean
norm.

Like [12], we also use the Monte Carlo method to approximate
the energy score by sampling for 𝑌 and 𝑌 ′ and then taking the
empirical mean from the above expression.

For our study, we calculate the above measures for each data
point in the test data and then use the median of the values as the
final evaluation measure.

G CONDITIONAL FORECASTING
In the following, we provide conditional forecasting examples. Since
the time points are now dependent, we cannot simply draw the
mean function and the fill lines to calculate prediction examples.
Instead, we draw the next unknown time point with realized time
points using the learned correlations and draw the enveloping line
using the conditional standard deviation. We repeat this process
for the worst cases in Fig. 4 (b) and (d), where the independent
assumptions are obviously not sufficient.

Since the entire distribution of all time points is subject to a
Gaussian process, this conditional distribution Δ𝑓𝑖+1 |Δ𝑓𝑖 , . . . ,Δ𝑓0
is also a normal distribution N(𝜇𝑖+1 |0:𝑖 , 𝜎

2
𝑖+1 |0:𝑖 ) with

𝜇𝑖+1 |0:𝑖 = 𝜇𝑖+1 +
𝑖∑︁
𝑗=0

Σ𝑖+1, 𝑗Σ
−1
𝑗, 𝑗 (𝑥 𝑗 − 𝜇 𝑗 )

and

𝜎2
𝑖+1 |0:𝑖 = Σ𝑖+1,𝑖+1 −

𝑖∑︁
𝑗=0

𝑖∑︁
𝑘=0

Σ𝑖+1, 𝑗Σ
−1
𝑗,𝑘

Σ𝑘,𝑖+1

.
That is, with realized values 𝑥0, 𝑥1, . . . , 𝑥𝑖 , the conditional dis-

tribution of 𝑥𝑖+1 can then be predicted as a Gaussian distribution
N(𝜇𝑖+1 |0:𝑖 , 𝜎

2
𝑖+1 |0:𝑖 ).

The prediction samples in Fig. 8 illustrate that our models, taking
into account the correlations, can describe the evolution of the
frequency deviation accurately.
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Type Name Description
point constant zero constant frequency deviation with 0 Hz
point global mean global mean of the whole frequency

data
point KNN profile prediction based on the feature distance

of historical data
point begin value profile predictions for frequency values of a

one-hour interval is the frequency value
at beginning of the time interval

probabilistic constant profile gaussian distribution with the global
mean and variance of the whole fre-
quency data

probabilistic daily profile the prediction for a time of day t is equal
to a normal distribution with the mean
and standard deviation of all training
data at this time of day

probabilistic PIML dayahead Physical informed Machine Learning
Model using day ahead features in [16]

probabilistic PIML ex-post Physical informed Machine Learning
Model using ex-post features in [16]

point mean daily profile mean of daily profile
point mean PIML dayahead mean of PIML dayahead model
point mean PIML ex-post mean of PIML ex-post model

Table 8: Overview of baseline models.

Figure 8: Conditional prediction with time step = 15s. We use here the GRU Structure. The distribution of the next point in
time is predicted based on the realised values. The predictions can map the trend of the dynamic development of the frequency
deviation very well.

H FURTHER RESULTS ON PREDICTION
PERFORMANCE AND SYNTHETIC DATA

H.1 Prediction Performance on One-hour
Intervals

The models for point and probabilistic forecasts are also for hourly
intervals (3600 seconds) evaluated (see Tab. 9 and 10). Again, we
can observe that the sequence model based models are better than
the other baseline models.

H.2 Histogram of Realised Quantiles
The Fig. 9 shows a histogram of quantile levels for each probability
model based on an independent Gaussian distribution. The quantile

levels are calculated from the cumulative distribution function of the
normal distribution for each true value using the estimated means
and standard deviations for each time point. Note that the quantile
level of a true value indicates the percentage of the distribution
belowwhich that value falls. Here, we have independent time points.
In an ideally calibrated model, due to the nature of the probability
integral transformation, the histogram of realised quantile levels
should have an approximately uniform distribution. The Fig. 9
show that all models clearly outperform the constant profile and
that the calibration quality of our sequence-model-based Gaussian
processes is comparable to the two PIML models.
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(a) constant profile (b) daily profile

(c) PIML day ahead (d) PIML day ahead

(e) independent gaussian GRU (f) independent gaussian Transformer

Figure 9: Histograms of realised quantiles for all models based on independent normal distributions.
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Model MAE MSE RMSE

constant zero 0.100163 0.016221 0.123233
global mean 0.100212 0.016226 0.123266
begin value 0.151541 0.036620 0.189428
mean daily profile 0.081699 0.010686 0.102458
KNN profile 0.078300 0.009728 0.098325
mean PIML day-ahead 0.079684 0.010182 0.100159
mean PIML ex-post 0.080332 0.010224 0.100493
mean indepedent gaussian GRU 0.075965 0.009120 0.095231
mean independent gaussian transformer 0.076791 0.009349 0.096402
model cauchy transformer 0.077286 0.009513 0.097261
model student transformer 0.076565 0.009304 0.096163

Table 9: Evaluation results of performance for point predictions for one-hour intervals.

Model negative log likelihood CRPS

constant profile -2659.6437 0.0708
daily profile -3411.7385 0.0575
PIML day-ahead -3440.4902 0.0563
PIML ex-post -3417.1639 0.0567
indepedent gaussian GRU -3575.8352 0.0536
independent gaussian transformer -3549.5811 0.0542

Table 10: Evaluation of performance for probabilistic predictions for one-hour intervals.

H.3 Autocorrelation of Synthetic Data
Here, we show the ACFs of the synthetically generated data using
different models (see Fig. 10, 11 and 12). While good agreement can

generally be observed for both variables for all models, there is a
clear difference in the acf value of the increments at 2 lags (30s)
between the models with exponentiated and rational quadratic
kernels.
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Figure 10: Auto correlation functions for frequency deviation and its increments generated by a GRU Gaussian process model
with exponentiated quadratic kernel.

Figure 11: Auto correlation functions for frequency deviation and its increments generated by a transformer Gaussian process
model with exponentiated quadratic kernel.
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Figure 12: Auto correlation functions for frequency deviation and its increments generated by a transformer Gaussian process
model with rational quadratic kernel.
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