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Abstract: The properties of a thermally actuated MEMS sensor with a geometric nonlinearity
are investigated. This MEMS sensor is a potential candidate to construct a neuromorphic
acoustic sensor to mimic the functionality of the cochlea by controlling an Andronov-Hopf
bifurcation with the thermal actuator. The resonance frequency of this sensor becomes tunable
by introducing a geometric nonlinearity. With this nonlinearity the frequency response of the
neuromorphic acoustic sensor is controllable by assigning a DC-voltage. Moreover, the effects of
harmonic excitation on the MEMS sensors are analyzed. Here, the critical points of saddle-node
bifurcations are approximated and the movement of the frequency with respect to a harmonic
excitation is discussed. The results are illustrated by numerical simulations.
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1. INTRODUCTION

In biology, mammalian sound perception is highly de-
veloped and enables mammals to recognize sound in a
large dynamical range. Particularly, mammalian sound
perception is able to operate in both noisy and noiseless
environments with great success. For instance, signals can
be reconstructed from noise corrupted data, if the signal
is strong enough. This effect is called cocktail party effect
(Cherry, 1953). In particular, this remarkable dynamics
are induced by a frequency selective, compressive nonlin-
earity in the cochlea (Egúıluz et al., 2000). The principles
of this dynamics are explained subsequently by summariz-
ing the anatomy and physiology of the cochlea, see, e.g.,
Saladin and Miller (1998):

The cochlea consists of three coiled tubes. The most sig-
nificant processing is performed in the scala media and
the scala tympani. These are separated by the basilar
membrane, which has a fixed end connected to the middle
ear and a free end at the end of the tubes. Moreover, inner
and outer hair cells are placed on the basilar membrane
inside the scala media. The inner hair cells transform
mechanical signals into electric signals, while the outer
hair cells are used to control the oscillations of the inner
hair cells by using an additional membrane, the so-called
tectorial membrane, to attenuate or to amplify the me-
chanical signal. Hence, an acoustic signal is transduced
and processed by first decomposing the signal into its
different frequency components by the basilar membrane.
This is possible, since the stiffness and shape of the basilar
membrane is changing over space. Then these frequency
components are transformed into an electrical signal by the
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inner hair cells. Herein, the gain of the inner hair cells is
controlled by the interplay between the outer hair cells and
the tectorial membrane resulting in an adaptive processing
of the acoustic signal. This is controlled by motor nerve
cells inside of the outer hair cells.

Even though state of the art technical sound processing
has improved substantially by implementing nonlineari-
ties in the signal pre-processing and using artificial neu-
ral networks for recognition (Abreu Araujo et al., 2020;
Abeßer, 2020; Wu et al., 2020), the achieved performance
still lags behind mammalian sound perception. This comes
from the fact that the pre-processing is not implemented
within the sensor. To improve performance, a neuromor-
phic microphone could be used (Smith, 2015). This kind of
microphone is supposed to mimic the frequency selective
and compressive nonlinearity of the sound perception by
using a feedback loop. Subsequently, it is assumed that
this feedback loop controls an Andronov-Hopf bifurcation,
since this bifurcation is assumed to be responsible for
the remarkable behavior of the cochlea (Kern and Stoop,
2003). Neuromorphic microphones can be realized using
microelectromechanical (MEMS) sensors, such as those
considered in Lenk et al. (2018, 2020, 2023) which are
composed of thermally actuated cantilevers, where the
deflection is measured by a piezo-electric layer. It has
been shown that by feeding back the velocity accord-
ingly, two Andronov-Hopf bifurcations with a constant
resonance frequency are induced (Lenk et al., 2018, 2023;
Rolf and Meurer, 2023). However, this constant resonance
frequency is disadvantageous for this kind of systems, since
the Andronov-Hopf bifurcation is frequency selective, such
that many MEMS sensors are needed to construct a mi-
crophone. This disadvantage can be resolved by enabling
tunability of the resonance frequency of the MEMS sensor.
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from the fact that the pre-processing is not implemented
within the sensor. To improve performance, a neuromor-
phic microphone could be used (Smith, 2015). This kind of
microphone is supposed to mimic the frequency selective
and compressive nonlinearity of the sound perception by
using a feedback loop. Subsequently, it is assumed that
this feedback loop controls an Andronov-Hopf bifurcation,
since this bifurcation is assumed to be responsible for
the remarkable behavior of the cochlea (Kern and Stoop,
2003). Neuromorphic microphones can be realized using
microelectromechanical (MEMS) sensors, such as those
considered in Lenk et al. (2018, 2020, 2023) which are
composed of thermally actuated cantilevers, where the
deflection is measured by a piezo-electric layer. It has
been shown that by feeding back the velocity accord-
ingly, two Andronov-Hopf bifurcations with a constant
resonance frequency are induced (Lenk et al., 2018, 2023;
Rolf and Meurer, 2023). However, this constant resonance
frequency is disadvantageous for this kind of systems, since
the Andronov-Hopf bifurcation is frequency selective, such
that many MEMS sensors are needed to construct a mi-
crophone. This disadvantage can be resolved by enabling
tunability of the resonance frequency of the MEMS sensor.
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1. INTRODUCTION

In biology, mammalian sound perception is highly de-
veloped and enables mammals to recognize sound in a
large dynamical range. Particularly, mammalian sound
perception is able to operate in both noisy and noiseless
environments with great success. For instance, signals can
be reconstructed from noise corrupted data, if the signal
is strong enough. This effect is called cocktail party effect
(Cherry, 1953). In particular, this remarkable dynamics
are induced by a frequency selective, compressive nonlin-
earity in the cochlea (Egúıluz et al., 2000). The principles
of this dynamics are explained subsequently by summariz-
ing the anatomy and physiology of the cochlea, see, e.g.,
Saladin and Miller (1998):

The cochlea consists of three coiled tubes. The most sig-
nificant processing is performed in the scala media and
the scala tympani. These are separated by the basilar
membrane, which has a fixed end connected to the middle
ear and a free end at the end of the tubes. Moreover, inner
and outer hair cells are placed on the basilar membrane
inside the scala media. The inner hair cells transform
mechanical signals into electric signals, while the outer
hair cells are used to control the oscillations of the inner
hair cells by using an additional membrane, the so-called
tectorial membrane, to attenuate or to amplify the me-
chanical signal. Hence, an acoustic signal is transduced
and processed by first decomposing the signal into its
different frequency components by the basilar membrane.
This is possible, since the stiffness and shape of the basilar
membrane is changing over space. Then these frequency
components are transformed into an electrical signal by the
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inner hair cells. Herein, the gain of the inner hair cells is
controlled by the interplay between the outer hair cells and
the tectorial membrane resulting in an adaptive processing
of the acoustic signal. This is controlled by motor nerve
cells inside of the outer hair cells.

Even though state of the art technical sound processing
has improved substantially by implementing nonlineari-
ties in the signal pre-processing and using artificial neu-
ral networks for recognition (Abreu Araujo et al., 2020;
Abeßer, 2020; Wu et al., 2020), the achieved performance
still lags behind mammalian sound perception. This comes
from the fact that the pre-processing is not implemented
within the sensor. To improve performance, a neuromor-
phic microphone could be used (Smith, 2015). This kind of
microphone is supposed to mimic the frequency selective
and compressive nonlinearity of the sound perception by
using a feedback loop. Subsequently, it is assumed that
this feedback loop controls an Andronov-Hopf bifurcation,
since this bifurcation is assumed to be responsible for
the remarkable behavior of the cochlea (Kern and Stoop,
2003). Neuromorphic microphones can be realized using
microelectromechanical (MEMS) sensors, such as those
considered in Lenk et al. (2018, 2020, 2023) which are
composed of thermally actuated cantilevers, where the
deflection is measured by a piezo-electric layer. It has
been shown that by feeding back the velocity accord-
ingly, two Andronov-Hopf bifurcations with a constant
resonance frequency are induced (Lenk et al., 2018, 2023;
Rolf and Meurer, 2023). However, this constant resonance
frequency is disadvantageous for this kind of systems, since
the Andronov-Hopf bifurcation is frequency selective, such
that many MEMS sensors are needed to construct a mi-
crophone. This disadvantage can be resolved by enabling
tunability of the resonance frequency of the MEMS sensor.
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inside the scala media. The inner hair cells transform
mechanical signals into electric signals, while the outer
hair cells are used to control the oscillations of the inner
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inner hair cells. Herein, the gain of the inner hair cells is
controlled by the interplay between the outer hair cells and
the tectorial membrane resulting in an adaptive processing
of the acoustic signal. This is controlled by motor nerve
cells inside of the outer hair cells.

Even though state of the art technical sound processing
has improved substantially by implementing nonlineari-
ties in the signal pre-processing and using artificial neu-
ral networks for recognition (Abreu Araujo et al., 2020;
Abeßer, 2020; Wu et al., 2020), the achieved performance
still lags behind mammalian sound perception. This comes
from the fact that the pre-processing is not implemented
within the sensor. To improve performance, a neuromor-
phic microphone could be used (Smith, 2015). This kind of
microphone is supposed to mimic the frequency selective
and compressive nonlinearity of the sound perception by
using a feedback loop. Subsequently, it is assumed that
this feedback loop controls an Andronov-Hopf bifurcation,
since this bifurcation is assumed to be responsible for
the remarkable behavior of the cochlea (Kern and Stoop,
2003). Neuromorphic microphones can be realized using
microelectromechanical (MEMS) sensors, such as those
considered in Lenk et al. (2018, 2020, 2023) which are
composed of thermally actuated cantilevers, where the
deflection is measured by a piezo-electric layer. It has
been shown that by feeding back the velocity accord-
ingly, two Andronov-Hopf bifurcations with a constant
resonance frequency are induced (Lenk et al., 2018, 2023;
Rolf and Meurer, 2023). However, this constant resonance
frequency is disadvantageous for this kind of systems, since
the Andronov-Hopf bifurcation is frequency selective, such
that many MEMS sensors are needed to construct a mi-
crophone. This disadvantage can be resolved by enabling
tunability of the resonance frequency of the MEMS sensor.
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inner hair cells. Herein, the gain of the inner hair cells is
controlled by the interplay between the outer hair cells and
the tectorial membrane resulting in an adaptive processing
of the acoustic signal. This is controlled by motor nerve
cells inside of the outer hair cells.

Even though state of the art technical sound processing
has improved substantially by implementing nonlineari-
ties in the signal pre-processing and using artificial neu-
ral networks for recognition (Abreu Araujo et al., 2020;
Abeßer, 2020; Wu et al., 2020), the achieved performance
still lags behind mammalian sound perception. This comes
from the fact that the pre-processing is not implemented
within the sensor. To improve performance, a neuromor-
phic microphone could be used (Smith, 2015). This kind of
microphone is supposed to mimic the frequency selective
and compressive nonlinearity of the sound perception by
using a feedback loop. Subsequently, it is assumed that
this feedback loop controls an Andronov-Hopf bifurcation,
since this bifurcation is assumed to be responsible for
the remarkable behavior of the cochlea (Kern and Stoop,
2003). Neuromorphic microphones can be realized using
microelectromechanical (MEMS) sensors, such as those
considered in Lenk et al. (2018, 2020, 2023) which are
composed of thermally actuated cantilevers, where the
deflection is measured by a piezo-electric layer. It has
been shown that by feeding back the velocity accord-
ingly, two Andronov-Hopf bifurcations with a constant
resonance frequency are induced (Lenk et al., 2018, 2023;
Rolf and Meurer, 2023). However, this constant resonance
frequency is disadvantageous for this kind of systems, since
the Andronov-Hopf bifurcation is frequency selective, such
that many MEMS sensors are needed to construct a mi-
crophone. This disadvantage can be resolved by enabling
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earity in the cochlea (Egúıluz et al., 2000). The principles
of this dynamics are explained subsequently by summariz-
ing the anatomy and physiology of the cochlea, see, e.g.,
Saladin and Miller (1998):

The cochlea consists of three coiled tubes. The most sig-
nificant processing is performed in the scala media and
the scala tympani. These are separated by the basilar
membrane, which has a fixed end connected to the middle
ear and a free end at the end of the tubes. Moreover, inner
and outer hair cells are placed on the basilar membrane
inside the scala media. The inner hair cells transform
mechanical signals into electric signals, while the outer
hair cells are used to control the oscillations of the inner
hair cells by using an additional membrane, the so-called
tectorial membrane, to attenuate or to amplify the me-
chanical signal. Hence, an acoustic signal is transduced
and processed by first decomposing the signal into its
different frequency components by the basilar membrane.
This is possible, since the stiffness and shape of the basilar
membrane is changing over space. Then these frequency
components are transformed into an electrical signal by the

1 Funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) – Project-ID 434434223 – SFB 1461.

inner hair cells. Herein, the gain of the inner hair cells is
controlled by the interplay between the outer hair cells and
the tectorial membrane resulting in an adaptive processing
of the acoustic signal. This is controlled by motor nerve
cells inside of the outer hair cells.
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has improved substantially by implementing nonlineari-
ties in the signal pre-processing and using artificial neu-
ral networks for recognition (Abreu Araujo et al., 2020;
Abeßer, 2020; Wu et al., 2020), the achieved performance
still lags behind mammalian sound perception. This comes
from the fact that the pre-processing is not implemented
within the sensor. To improve performance, a neuromor-
phic microphone could be used (Smith, 2015). This kind of
microphone is supposed to mimic the frequency selective
and compressive nonlinearity of the sound perception by
using a feedback loop. Subsequently, it is assumed that
this feedback loop controls an Andronov-Hopf bifurcation,
since this bifurcation is assumed to be responsible for
the remarkable behavior of the cochlea (Kern and Stoop,
2003). Neuromorphic microphones can be realized using
microelectromechanical (MEMS) sensors, such as those
considered in Lenk et al. (2018, 2020, 2023) which are
composed of thermally actuated cantilevers, where the
deflection is measured by a piezo-electric layer. It has
been shown that by feeding back the velocity accord-
ingly, two Andronov-Hopf bifurcations with a constant
resonance frequency are induced (Lenk et al., 2018, 2023;
Rolf and Meurer, 2023). However, this constant resonance
frequency is disadvantageous for this kind of systems, since
the Andronov-Hopf bifurcation is frequency selective, such
that many MEMS sensors are needed to construct a mi-
crophone. This disadvantage can be resolved by enabling
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This is possible, since the stiffness and shape of the basilar
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inner hair cells. Herein, the gain of the inner hair cells is
controlled by the interplay between the outer hair cells and
the tectorial membrane resulting in an adaptive processing
of the acoustic signal. This is controlled by motor nerve
cells inside of the outer hair cells.

Even though state of the art technical sound processing
has improved substantially by implementing nonlineari-
ties in the signal pre-processing and using artificial neu-
ral networks for recognition (Abreu Araujo et al., 2020;
Abeßer, 2020; Wu et al., 2020), the achieved performance
still lags behind mammalian sound perception. This comes
from the fact that the pre-processing is not implemented
within the sensor. To improve performance, a neuromor-
phic microphone could be used (Smith, 2015). This kind of
microphone is supposed to mimic the frequency selective
and compressive nonlinearity of the sound perception by
using a feedback loop. Subsequently, it is assumed that
this feedback loop controls an Andronov-Hopf bifurcation,
since this bifurcation is assumed to be responsible for
the remarkable behavior of the cochlea (Kern and Stoop,
2003). Neuromorphic microphones can be realized using
microelectromechanical (MEMS) sensors, such as those
considered in Lenk et al. (2018, 2020, 2023) which are
composed of thermally actuated cantilevers, where the
deflection is measured by a piezo-electric layer. It has
been shown that by feeding back the velocity accord-
ingly, two Andronov-Hopf bifurcations with a constant
resonance frequency are induced (Lenk et al., 2018, 2023;
Rolf and Meurer, 2023). However, this constant resonance
frequency is disadvantageous for this kind of systems, since
the Andronov-Hopf bifurcation is frequency selective, such
that many MEMS sensors are needed to construct a mi-
crophone. This disadvantage can be resolved by enabling
tunability of the resonance frequency of the MEMS sensor.
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inner hair cells. Herein, the gain of the inner hair cells is
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cells inside of the outer hair cells.
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from the fact that the pre-processing is not implemented
within the sensor. To improve performance, a neuromor-
phic microphone could be used (Smith, 2015). This kind of
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of this dynamics are explained subsequently by summariz-
ing the anatomy and physiology of the cochlea, see, e.g.,
Saladin and Miller (1998):

The cochlea consists of three coiled tubes. The most sig-
nificant processing is performed in the scala media and
the scala tympani. These are separated by the basilar
membrane, which has a fixed end connected to the middle
ear and a free end at the end of the tubes. Moreover, inner
and outer hair cells are placed on the basilar membrane
inside the scala media. The inner hair cells transform
mechanical signals into electric signals, while the outer
hair cells are used to control the oscillations of the inner
hair cells by using an additional membrane, the so-called
tectorial membrane, to attenuate or to amplify the me-
chanical signal. Hence, an acoustic signal is transduced
and processed by first decomposing the signal into its
different frequency components by the basilar membrane.
This is possible, since the stiffness and shape of the basilar
membrane is changing over space. Then these frequency
components are transformed into an electrical signal by the

1 Funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) – Project-ID 434434223 – SFB 1461.

inner hair cells. Herein, the gain of the inner hair cells is
controlled by the interplay between the outer hair cells and
the tectorial membrane resulting in an adaptive processing
of the acoustic signal. This is controlled by motor nerve
cells inside of the outer hair cells.

Even though state of the art technical sound processing
has improved substantially by implementing nonlineari-
ties in the signal pre-processing and using artificial neu-
ral networks for recognition (Abreu Araujo et al., 2020;
Abeßer, 2020; Wu et al., 2020), the achieved performance
still lags behind mammalian sound perception. This comes
from the fact that the pre-processing is not implemented
within the sensor. To improve performance, a neuromor-
phic microphone could be used (Smith, 2015). This kind of
microphone is supposed to mimic the frequency selective
and compressive nonlinearity of the sound perception by
using a feedback loop. Subsequently, it is assumed that
this feedback loop controls an Andronov-Hopf bifurcation,
since this bifurcation is assumed to be responsible for
the remarkable behavior of the cochlea (Kern and Stoop,
2003). Neuromorphic microphones can be realized using
microelectromechanical (MEMS) sensors, such as those
considered in Lenk et al. (2018, 2020, 2023) which are
composed of thermally actuated cantilevers, where the
deflection is measured by a piezo-electric layer. It has
been shown that by feeding back the velocity accord-
ingly, two Andronov-Hopf bifurcations with a constant
resonance frequency are induced (Lenk et al., 2018, 2023;
Rolf and Meurer, 2023). However, this constant resonance
frequency is disadvantageous for this kind of systems, since
the Andronov-Hopf bifurcation is frequency selective, such
that many MEMS sensors are needed to construct a mi-
crophone. This disadvantage can be resolved by enabling
tunability of the resonance frequency of the MEMS sensor.
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This can be achieved, e.g., by introducing a geometric
nonlinearity (Asadi et al., 2017).

In this work, a T-shaped MEMS sensor is modeled and an-
alyzed. This is done by separately modeling the mechanical
and thermodynamic dynamics of the MEMS sensor. Note
that the geometry of this sensor is depicted in Figure 1
and it is shown subsequently that this geometry introduces
a geometric nonlinearity in the mechanical subsystem,
so that this subsystem can be described by the Duffing
equation. This implies in comparison to cantilever designs
that the T-shaped MEMS sensor has a tunable resonance
frequency in terms of the pre-deflection. Moreover, the
critical point of the saddle-node bifurcation for a harmon-
ically excited MEMS sensor is approximated by analyzing
the polynomial discriminant of its steady state.

The remainder of the paper is structured as follows: The
model of the MEMS sensor is summarized in Section 2.
Here, a dominant mode model is considered by applying
the Rayleigh-Ritz method on the mechanical system and
the Galerkin method on the thermodynamic system. In
Section 3 the unexcited, T-shaped MEMS sensor is an-
alyzed with respect to its tunable resonance frequency
and emerging Andronov-Hopf bifurcations. The orbits of
a harmonically excited sensor are investigated in Section
4. Here, the feedback of the system is neglected and the
required amplitudes and frequencies of the external signal
to achieve multiple stable orbits are analyzed analytically.
Final remarks in Section 5 conclude the paper.

2. MATHEMATICAL MODEL

In the following, the derivation of the dominant mode
model of the MEMS sensor with a T-shaped geometry is
briefly summarized. The sensor configuration is schemati-
cally depicted in Figure 1. The MEMS sensor consists of
three layers, where the material of each layer is assumed
homogeneous and isotropic. Particularly, the geometry can
be reduced to a cantilever coupled to a clamped beam after
applying the free-body principle (Reddy, 2017). By doing
this, the interaction between the beams is given by a force,
which is applied at the interconnection of both beams.
In addition, the beams are assumed to have rectangular
cross-section with the cantilever being actuated thermally
by applying a controllable voltage to the aluminum layer.
With these considerations, the model of this sensor is
derived by dividing this system into a mechanical and
thermodynamic subsystem.

The model of the mechanical subsystem is derived by
applying Hamilton’s principle (Reddy, 2017). Here the
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Fig. 1. Sketch of the mechanical subsystem of the T-shaped
MEMS sensor.

Fe

x1

MEMS

x4

k

v
uact

Fig. 2. Bio-inspired setup of the T-shaped MEMS sensor.

considered mechanical subsystem is only the cantilever,
which is modeled by an Euler-Bernoulli beam with an
additional external force. Note that the force acts on
the tip and that it is not necessarily parallel to the
direction of movement of the tip. For small deflections,
the corresponding force contribution can be approximated
by

F⊥ = cw3 cos(φ) ≈ cw3 +
c
2l21

w3
3 ,

with the deflection w3(t) ∈ R in z3-direction and the
spring constant c > 0. Herein, the angle and the cosine are
approximated by φ ≈ w3/l1 and a Taylor series approxi-
mation, such that the clamped beam can be interpreted as
a nonlinear spring attached to the free end of a cantilever.
Moreover, the mechanical and thermodynamic subsystems
are coupled with the Duhamel-Neumann law (Nowacki
et al., 1977) and it is assumed that the mechanical subsys-
tem has linear friction.

To control the MEMS sensor, a thermal actuator is used
to change the pre-deflection and gain of this sensor. Par-
ticularly, the thermal actuator can change the elasticity of
the sensor, since the sensor has three layers with different
moments of area. Hence, the thermodynamic subsystem
is described by the linearization of the generalized heat
conduction of thermoelasticity (Nowacki et al., 1977).
Herein, the boundary conditions are given by the interac-
tion between the MEMS sensor and its environment. The
boundary condition of the tip is assumed to be adiabatic
since the heat transfer between the tip and air is negligible.
In contrast to this, the boundary condition of the clamped
end is assumed to be isothermal, since it is connected to
a silicon wafer. This comes from the fact that the wafer
is much larger than the MEMS sensor, so that the heat
conducted from the sensor to the wafer cannot heat the
wafer effectively resulting in a constant temperature.

With these considerations, the dominant mode model of
the T-shaped MEMS sensor is derived by applying the
Rayleigh-Ritz method on the mechanical subsystem and
the Galerkin method on the thermodynamic subsystem
(Reddy, 2017). Subsequently, only the first mode of the
dominant mode model is considered, since the higher
modes are not excited by an acoustic signal. This comes
from the fact that the maximum frequency of an acoustic
signal is too small to excite higher modes. In view of
a practical realization the system is extended by a high
pass to remove the offset in the feedback. This realization
is sketched in Figure 2. With these considerations, the
dominant mode model is described as follows

d

dt



x1
x2
x3
x4


 =

= f (x ,u)  


x2
−c1x1 − c3x

3
1 − µx2 + αx3 +

1
mFe

−βx3 + ζ(kx4 + v)2

− 1
τ x4 + κx2


, (1)

t >0, x (0) = x 0
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with the state vector x (t) = [x1(t) x2(t) x3(t) x4(t)]
T ∈

R4, the input vector u(t) = [Fe(t) v(t)]
T ∈ R2, and initial

conditions x 0 ∈ R4. The state vector and input vector
are composed of the deflection x1(t), the velocity x2(t),
the temperature x3(t), the output of the high pass filter
x4(t), thermal input v(t), and the external input Fe(t).
Parameters are given by the spring constants c1, c3 > 0,
the damping coefficient µ > 0, the Q-factor Q0 > 0, the
transfer factors ζ = γ/R2 > 0, α, γ > 0, the time constants
β, τ > 0, the mass m > 0, the resistance R > 0, the
calibration factor κ > 0, and the feedback strength k ∈ R.

3. BIFURCATION ANALYSIS

Subsequently, the bifurcations of the dominant mode
model of the T-shaped MEMS sensor without harmonic
excitation are analyzed, i.e., v(t) = uDC ∈ R and Fe(t) =
0. Additionally, the results are verified numerically. For
this, the parameters in Table A.1 are used.

The equilibria of the T-shaped MEMS sensor are analyzed
first, since a saddle-node bifurcation induced by the Duff-
ing equation might emerge with respect to uDC and k .

Lemma 1. The T-shaped MEMS sensor has a unique real-
valued equilibrium given by

x eq =


4p

3
sinh


1

3
arsinh


q

2
3


3

p


0

ζ

β
u2
DC 0

T
(2)

with the coefficients p = c1
c3
, q = − αζ

βc3
u2
DC, and the DC-

voltage uDC ∈ R.

Proof. Let the equilibria of the states and the thermal
input be denoted by x eq ∈ R4 uDC ∈ R. To determine the
equilibria of (1), the rate of change of the equilibria must
be zero, i.e., ẋ eq = 0. This implies that equilibria x eq are
derived by solving

0 =x2, (3a)

0 =− c1x1 − c3x
3
1 − µx2 + αx3, (3b)

0 =− βx3 + ζ(kx4 + uDC)
2, (3c)

0 =− 1
τ x4 + κx2. (3d)

From (3a), (3c) and (3d) the equilibrium values x2,eq, x3,eq
and x4,eq follow. After inserting these solutions into (3b),
a cubic polynomial is derived. This is given by

P(x1,eq) =x 3
1,eq + px1,eq − q .

with the coefficients p = c1
c3

and q = αζ
βc3

u2
DC. In particular,

the equilibrium values have to be real. Thus the number
of real solutions of the equilibria are derived. This is
done by analyzing the polynomial discriminant Deq =
(p/3)3 + (q/2)2. Then the number of real zeros of a cubic
polynomial are determined following Nickalls (1993)

Deq



> 0, P has 1 real root,

= 0, P has 3 real roots and 2 roots are equal,

< 0, P has 3 different, real roots.

Inserting p and q into the polynomial discriminant yields

Deq =
c3
1

c3
3
+ α2ζ2

β2c2
3
u4
DC > 0.

Hence, (1) has an unique real-valued equilibrium. Addi-
tionally, the equilibrium of the deflection is determined
by the sinh-solution of a cubic equation, since p > 0
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Fig. 3. Natural frequency Ω of T-shaped MEMS sensor in
terms of the DC-voltage uDC.

(Holmes, 2002). This yields the equilibrium values of x1,eq
and concludes the proof. �

Particularly, the T-shaped MEMS sensor given by (1) does
not experience a saddle-node bifurcation induced by the
feedback strength k and the DC-voltage uDC, since it has a
unique real-valued equilibrium in this case. This changes if
the MEMS sensor is excited by a harmonic input (Holmes
and Rand, 1976; Guckenheimer and Holmes, 2013). Its
critical points are investigated in the subsequent section
for the dominant mode model without feedback, i.e., k = 0.
To conclude this section, the existence of an Andronov-
Hopf bifurcation is analyzed. In general the linearization
of (1) is given by

∆ẋ =A∆x + B∆u

with the error states ∆x (t) = x (t) − x eq ∈ R4 and the
shifted inputs ∆u(t) = u(t) − ueq ∈ R2. The system
matrix A ∈ R4×4 and the input matrix B ∈ R4×2 are
given by

A =
∂f

∂x
(x eq,ueq) =




0 1 0 0

−Ω2 −µ α 0

0 0 −β 2ζuDCk

0 κ 0 −1/τ


 , (4a)

B =
∂f

∂u
(x eq,ueq) =


0 1/m 0 0

0 0 ζ 0

T

(4b)

with the natural frequency Ω = (c1 + 3c3x
2
1,eq)

1/2.

Remark 2. (Frequency Tunability). It should be noted that
the natural frequency Ω depends on the equilibrium x1,eq.
This implies that the natural frequency Ω can be con-
trolled by applying the DC-voltage uDC accordingly. This
property is called tunability and a numerical illustration
is presented in Figure 3.

The T-shaped MEMS sensor has two Andronov-Hopf
bifurcations. This comes from the fact, that compared to
the cantilevered MEMS sensor investigated in Lenk et al.
(2023); Rolf and Meurer (2023), the system matrix of the
linearization is not changed structurally by introducing the
cubic term. The following theorem gives further insight in
the emergence of the Andronov-Hopf bifurcations.

Theorem 3. Let the feedback strength k be the bifurcation
parameter. Then the system (1) undergoes two Andronov-
Hopf bifurcations with the critical points k±

H and respec-

tive resonance frequencies ω±
R given by (5).

Proof. Formally, the emergence of an Andronov-Hopf
bifurcation is shown by using the Hopf Theorem in RN ,
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a cubic polynomial is derived. This is given by
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with the coefficients p = c1
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DC. In particular,

the equilibrium values have to be real. Thus the number
of real solutions of the equilibria are derived. This is
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polynomial are determined following Nickalls (1993)
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(Holmes, 2002). This yields the equilibrium values of x1,eq
and concludes the proof. �

Particularly, the T-shaped MEMS sensor given by (1) does
not experience a saddle-node bifurcation induced by the
feedback strength k and the DC-voltage uDC, since it has a
unique real-valued equilibrium in this case. This changes if
the MEMS sensor is excited by a harmonic input (Holmes
and Rand, 1976; Guckenheimer and Holmes, 2013). Its
critical points are investigated in the subsequent section
for the dominant mode model without feedback, i.e., k = 0.
To conclude this section, the existence of an Andronov-
Hopf bifurcation is analyzed. In general the linearization
of (1) is given by

∆ẋ =A∆x + B∆u

with the error states ∆x (t) = x (t) − x eq ∈ R4 and the
shifted inputs ∆u(t) = u(t) − ueq ∈ R2. The system
matrix A ∈ R4×4 and the input matrix B ∈ R4×2 are
given by

A =
∂f
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(x eq,ueq) =




0 1 0 0

−Ω2 −µ α 0

0 0 −β 2ζuDCk

0 κ 0 −1/τ


 , (4a)

B =
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(x eq,ueq) =


0 1/m 0 0

0 0 ζ 0
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(4b)

with the natural frequency Ω = (c1 + 3c3x
2
1,eq)

1/2.

Remark 2. (Frequency Tunability). It should be noted that
the natural frequency Ω depends on the equilibrium x1,eq.
This implies that the natural frequency Ω can be con-
trolled by applying the DC-voltage uDC accordingly. This
property is called tunability and a numerical illustration
is presented in Figure 3.

The T-shaped MEMS sensor has two Andronov-Hopf
bifurcations. This comes from the fact, that compared to
the cantilevered MEMS sensor investigated in Lenk et al.
(2023); Rolf and Meurer (2023), the system matrix of the
linearization is not changed structurally by introducing the
cubic term. The following theorem gives further insight in
the emergence of the Andronov-Hopf bifurcations.

Theorem 3. Let the feedback strength k be the bifurcation
parameter. Then the system (1) undergoes two Andronov-
Hopf bifurcations with the critical points k±

H and respec-

tive resonance frequencies ω±
R given by (5).

Proof. Formally, the emergence of an Andronov-Hopf
bifurcation is shown by using the Hopf Theorem in RN ,

k±
H =− 1

4αζκτ2uDC

[
µτ

(
β2τ + β + τΩ2

)
+ µ+ (βτ + 1)

(
µ2τ + β − τΩ2

)

±(µτ + βτ + 1)

√
(βµτ + β + µ+ τΩ2)

2 − 4βτΩ2

]
(5a)

ω±
H =

√√√√ (βµ+Ω2) τ + β + µ±
√
[(βµ+Ω2) τ + β + µ]

2 − 4βτΩ2

2τ
(5b)

see, e.g., Guckenheimer and Holmes (2013). However, the
local analysis of (1), i.e., the analysis of the eigenvalues
of the system matrix A, can be omitted, since A given by
(4a) is structurally equivalent to the system matrix of the
cantilevered sensor (Rolf and Meurer, 2023). �

Remark 4. In particular, the simulations of the dominant
mode model of the T-shaped MEMS sensor indicate that
the limit cycles in the super-critical are asymptotically

stable. Note that the limit cycles of [x1 x2 x3]
T
are shown

in Figure 4. The stabilization might be caused by the
cubic term in ẋ2, which is introduced by the geometric
nonlinearity, since the spring constant c3 is assumed to be
positive.

4. ANALYSIS OF EMERGING ORBITS

Subsequently, the critical points of the saddle-node bi-
furcations for the uncontrolled case, i.e., k = 0, are
investigated analytically. Note that the existence of the
saddle-node bifurcation is already shown and evaluated
numerically in Holmes and Rand (1976); Guckenheimer
and Holmes (2013) for this cases. Yet, to the best of
our knowledge the critical points of these saddle-node
bifurcations have not been approximated by analyzing the
polynomial discriminant of the equilibrium of the averaged
system. Henceforth, the analysis is done by approximating
the Poincare map with the Averaging Theorem, see, e.g.,
(Guckenheimer and Holmes, 2013, Theorem 4.1.1). For
this it is assumed that the inputs are given by

v(t) =uDC + uAC cos(ωet + φAC), (6a)

Fe(t) =re sin(ωet + φe) (6b)

with the amplitudes re, uAC > 0, the DC-voltage uDC ∈ R,
the frequency ωe > 0, and the phases φe, φAC ∈ [0, 2π).
Note that the assumption (6a) on the external input Fe

can be interpreted as an acoustic signal. In contrast to this,
the thermal input v can be interpreted as a (generalized)
closed loop signal, since feedback results also approxi-
mately in a harmonic oscillation, which is constrained by
the external inputs Fe and the parameters of the sensors.
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Fig. 4. Limit cycles of [x1 x2 x3]
T

after surpassing the
critical points. Note that the feedback strength is
given by k ∈ {1.1× k+

H , 1.1× k−
H }.

Hence, the amplitude uAC can be interpreted as a function
of the feedback strength k , the input Fe, and DC-voltage
uDC.

Assuming k = 0, it follows that the thermal and mechan-
ical subsystem are cascaded. Then the steady state of the
thermal subsystem is given by

x3(t) = r̄ + r̃1 cos (ωe,1t − φe,2) + r̃2 cos (2ωet − φe,1)

with the phases φe,1 = φAC + arctan(ωe/β) and φe,2 =

φAC+arctan(2ωe/β), and the amplitudes r̄ =
αζ(2u2

DC+u2
AC)

2β ,

r̃1 = ζuACuDC√
β2+ω2

e

and r̃2 =
ζu2

AC

2
√

β2+4ω2
e

. After inserting the

steady state response of the thermal subsystem into the
mechanical subsystem, a harmonically excited Duffing os-
cillator emerges. This is governed by

ẋ1 =x2, (7a)

ẋ2 =− c1x1 − µx2 − c3x
3
1 + r̄ + r̃ cos(ωet − φe,1)

+ r̃2 cos(2ωet − φe,2) (7b)

with the amplitude r̃ = r̃1 + re/m. With these prelimi-
naries, the results on the critical points of the saddle-node
bifurcation are stated subsequently.

Theorem 5. Let the feedback strength be k = 0 and
assume that the thermal actuator and the external input
are given by (6). Additionally, denote the bifurcation
parameters by r̃ > 0 and ωe > 0. Then the MEMS sensor
given by (1) undergoes two saddle-node bifurcations, if
the external frequency is in a neighborhood of I+

ωSN
=

[ωSN,∞) and the external amplitude is in a neighborhood
of the critical amplitudes r̃±SN with the critical points

ωSN =

√
2

2

√
3µ2 + 2Ω2 + µ

√
9µ2 + 12Ω2, (8a)

r̃±SN =
2

9

√
2

c3

√
−Ω6

∆ − 9µ2Ω2
∆ω

2
e ± (Ω4

∆ − 3µ2ω2
e )

3
2 (8b)

and r̃+SN > r̃−SN > 0. Here, the frequency difference is given
by Ω2

∆ = Ω2−ω2
e . Moreover, there are two stable orbits and

one unstable orbit, if r̃ ∈ Ir̃SN = (r̃−SN, r̃
+
SN) and ωe ∈ IωSN

.

Remark 6. The feedback strength k influences mostly the
damping coefficient µ and the natural frequency Ω, if
uDCk < 0 holds true. In this case the MEMS sensor with
feedback can be approximated by replacing the damping
coefficient µ with the effective damping µeff(k) with 0 ≤
µeff(k) ≤ µ and adding an additional component u2

AC to
u2
DC. In particular, the shift of the DC-voltage implies a

change in the natural frequency, which is dependent on the
(unknown) external excitation.

Proof. The main idea of this proof is based on (Guck-
enheimer and Holmes, 2013, Theorem 4.3.1), which states
that, if the averaged system has a saddle-node bifurcation
at the critical point µ∗ ∈ R, the Poincare map of the
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original system also has a saddle-node bifurcation in a
neighborhood of µ∗. Hence, the proof is structured as
follows: First, (7) is transformed, so that the Averaging
Theorem can be applied and its equilibria can be analyzed.
Then, the number of real equilibria are investigated. This
is done with the polynomial discriminant, since the equi-
librium condition can be expressed by a cubic equation.
Finally, the properties of the original system are discussed.

Before using the Averaging Theorem, the equilibrium of
(7) is moved into the origin. This is done by introducing
difference coordinates ∆x = x − x eq with the equilibrium
x eq structurally given by (2) 2 . Then the oscillator is
governed by

∆ẋ1 =∆x2,

∆ẋ2 =− Ω2∆x1 − µ∆x2 − 3c3x1,eq∆x 2
1 − c3∆x 3

1

+ r̃ cos(ωet − φe,1) + r̃2 cos(2ωet − φe,2).

After that, the Averaging Theorem can be used by ap-
plying the Van-der-Pol transformation (Guckenheimer and
Holmes, 2013)[

w1

w2

]
=

[
cos(ωet + φe) − sin(ωet + φe)/ωe

− sin(ωet + φe) − cos(ωet + φe)/ωe

] [
∆x1
∆x2

]
.

This yields

ẇ1 =− µ
2w1 − Ω2

∆

2ωe
w2 − 3c3

8ωe
(w2

1 + w2
2 )w2, (9a)

ẇ2 =
Ω2

∆

2ωe
w1 − µ

2w2 +
3c3
8ωe

(w2
1 + w2

2 )w1 − r̃
2ωe

(9b)

with the frequency difference Ω2
∆ = Ω2 − ω2

e . The orbits
of (7) are derived by computing the equilibria of the
polar coordinates of the averaged system (9). Using the
transformation to the polar coordinates, i.e., ρ2 = w2

1 +w2
2

and tan(ϕ) = w2/w1, yields

ρ̇ =− µ
2 ρ−

r̃
2ωe

sin(ϕ), ρϕ̇ =
Ω2

∆

2ωe
ρ+ 3c3

8ωe
ρ3 − r̃

2ωe
cos(ϕ).

By inserting ρ̇ = 0, ϕ̇ = 0, dividing by 9c23/64ωe and
rearranging the equations, the equilibria are given by

ϕeq ∈{−φ+ 2πc1, φ+ π + 2πc1} , (10a)

0 =x 3 +
24Ω2

∆

9c3
x 2 +

16(Ω4
∆−ω2

eµ
2)

9c2
3

x − 16r̃2

9c2
3
. (10b)

with the phase φ = arcsin(ωeµ
r̃ ρeq), the constant c1 ∈ Z

and variable x = ρ2eq. Note that the phase has real-valued
solutions, if |ωeµρeq| < r̃ is satisfied. By substituting

y = x+
24Ω2

∆

27c3
, (10b) is transformed into a depressed cubic,

i.e., y3 + pρy − qρ. Herein the coefficients are given by

2 Note that exact equilibrium value changes in comparison to the
equilibrium of the unexcited system, since the offset changes by
introducing a harmonic oscillation in the thermal input v(t).

pρ =
16(3µ2ω2

e−Ω4
∆)

27c2
3

, qρ =
16(81c3r2+8(Ω6

∆+9µ2Ω2
∆ω2

e))
729c3

3
.

Particularly, the number of real solutions of (10b) can
be determined by analyzing the polynomial discriminant
Dρ(r̃SN, ωSN) = p3

ρ/27 + q2ρ/4 = 0. Here the bifurcation
parameters of the saddle-node bifurcation are denoted by
r̃ > 0 and ωe > 0. By rearranging Dρ with respect to
r̃ , a biquadratic polynomial arises, i.e., Dρ(r̃ , ωe) = r̃4 +
a2(ωe)r̃

2 + a0(ωe) with

a2 =
16(Ω6

∆+9µ2Ω2
∆ω2

e)
81c3

, a0 =
64µ2ω2

e(Ω
4
∆+µ2ω2

e)
2

243c2
3

.

The critical points are given by the roots of this bi-
quadratic polynomial. This yields (8b) with the critical
amplitudes r̃+SN > r̃−SN > 0. Notably, the polynomial
discriminant Dρ is always positive, if the amplitude r̃ is
large enough. Only if the amplitude r̃ is inside the interval
Ir̃SN = [r̃−SN, r̃

+
SN], the polynomial discriminant satisfies

Dρ ≤ 0. Moreover, the solution for Dρ = 0 might become
imaginary. This is analyzed with respect to the external
frequency subsequently. After inserting Ω2

∆ = Ω2 − ω2
e

into (8b) and investigating the square root and non-square
root term independently, the conditions, implying that the
amplitudes r̃±SN are real-valued, are given by

0 ≤ω4
e + b2ω

2
e + b0, (11a)

0 ≤ω6
e + (9µ2 − 3Ω2)ω4

e + (3Ω4 − 9µ2Ω2)ω2
e − Ω6 (11b)

with the coefficients b2 = −
(
3µ2 − 2Ω2

)
and b0 = Ω4.

Particularly, (11a) has two roots

ω±
SN =

√
2
2

√
3µ2 + 2Ω2 ± µ

√
9µ2 + 12Ω2 (12)

with the critical points ω+
SN > ω−

SN > 0. Furthermore, it is
possible to compute with (12) the intervals in which (11a)
is satisfied. These intervals are given by I−

ωSN
= (0, ω−

SN]

and I+
ωSN

= [ω+
SN,∞), since the coefficients b0 > 0. Thus,

(11b) has to be satisfied either on I−
ωSN

or I+
ωSN

. Inserting
(12) into (11b), yields the condition

±
(
3µ2 +Ω2

)√
9µ2 + 12Ω2 ≤9µ

(
µ2 +Ω2

)
. (13)

In fact, (13) is only violated on I+
ωSN

, since it can be
reduced to µ ≥ 0 and Ω = 0. Hence, it can be concluded
with the Implicit Function Theorem that the critical
amplitudes r̃±SN with an external frequency ωe ∈ I+

ωSN

induce two bifurcations in (9), since the change of the
number of equilibria imply a rank loss of the Jacobian,
such that the original system is going to have also two
bifurcations in the neighborhood of these critical points.
Indeed it can be concluded from (Guckenheimer and
Holmes, 2013, Chapter 4.3) that these two bifurcations
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original system also has a saddle-node bifurcation in a
neighborhood of µ∗. Hence, the proof is structured as
follows: First, (7) is transformed, so that the Averaging
Theorem can be applied and its equilibria can be analyzed.
Then, the number of real equilibria are investigated. This
is done with the polynomial discriminant, since the equi-
librium condition can be expressed by a cubic equation.
Finally, the properties of the original system are discussed.
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solutions, if |ωeµρeq| < r̃ is satisfied. By substituting
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2 Note that exact equilibrium value changes in comparison to the
equilibrium of the unexcited system, since the offset changes by
introducing a harmonic oscillation in the thermal input v(t).
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be determined by analyzing the polynomial discriminant
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ρ/27 + q2ρ/4 = 0. Here the bifurcation
parameters of the saddle-node bifurcation are denoted by
r̃ > 0 and ωe > 0. By rearranging Dρ with respect to
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The critical points are given by the roots of this bi-
quadratic polynomial. This yields (8b) with the critical
amplitudes r̃+SN > r̃−SN > 0. Notably, the polynomial
discriminant Dρ is always positive, if the amplitude r̃ is
large enough. Only if the amplitude r̃ is inside the interval
Ir̃SN = [r̃−SN, r̃

+
SN], the polynomial discriminant satisfies

Dρ ≤ 0. Moreover, the solution for Dρ = 0 might become
imaginary. This is analyzed with respect to the external
frequency subsequently. After inserting Ω2

∆ = Ω2 − ω2
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into (8b) and investigating the square root and non-square
root term independently, the conditions, implying that the
amplitudes r̃±SN are real-valued, are given by
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possible to compute with (12) the intervals in which (11a)
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, since it can be
reduced to µ ≥ 0 and Ω = 0. Hence, it can be concluded
with the Implicit Function Theorem that the critical
amplitudes r̃±SN with an external frequency ωe ∈ I+
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induce two bifurcations in (9), since the change of the
number of equilibria imply a rank loss of the Jacobian,
such that the original system is going to have also two
bifurcations in the neighborhood of these critical points.
Indeed it can be concluded from (Guckenheimer and
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Fig. 5. Critical amplitude and frequency response of the T-shaped MEMS sensor.

are saddle-node bifurcations. Additionally, it follows from
Holmes and Rand (1976) that (i) there is one stable
equilibrium, if there is a real-valued equilibrium, (ii) there
is one stable and one degenerate equilibrium, if there are
two real-valued equilibrium and (iii) there are two stable
equilibria and one saddle point, if there are three real-
valued equilibria, where the saddle point is in between the
two stable equilibria. �

For illustration purposes, the orbits with a DC-voltage
uDC = −0.5V and amplitude r̃ = 30 km

s2 are analyzed
numerically with the parameters given by Table A.1. In
particular, the natural frequency of this MEMS sensor is
given by Ω = 1.26 1

ms . The result is shown in Figure 5 in
terms of the normalized frequency ωe/Ω. Herein, Figure
5a depicts the critical amplitudes r̃±SN,. These critical
amplitudes emerge after surpassing the critical frequency
ωSN = 1.28Ω. Moreover, the saddle-node bifurcation is
shown in Figure 5b. Here, the gray area depicts the interval
IωSN

= [2.1Ω, 3Ω], in which the T-shaped MEMS sensor
has possible three orbits. Note that the existence of three
real-valued solutions is given, since ρeq < 30mm.

5. CONCLUSION

Given the T-shaped geometry of the thermally actuated
MEMS sensor a dominant mode model is derived. The
dominant mode model of the mechanical system is de-
scribed by the Duffing equation and its thermodynamic
system is described by a first order low pass with a
quadratic input, respectively. The bifurcations of this sys-
tem with respect to the feedback strength and external
harmonic excitation are analyzed. Here, it is shown that
the MEMS sensor has an Andronov-Hopf bifurcation in
terms of the feedback strength and tunability is induced
by exploiting the geometric nonlinearity and assigning pre-
deflection with the thermal actuator. Moreover, the critical
points of the saddle-node bifurcations are analyzed with
respect to harmonic excitation by investigating the num-
ber of real-valued equilibria of the uncontrolled system.
From this analysis it is concluded that after closing the
control loop an external input influences the resonance
frequency.

Appendix A. PARAMETERS OF THE SENSORS

The parameters of the sensor are summarized in Table A.1.
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Table A.1. Parameters of the simulated MEMS sensor

Parameter Values

Spring constant
c1

[
N
m

]
4.88

c3
[

N
m3

]
36.4 · 109

Transfer factor
α

[
m2

Ks2

]
19.2

ζ
[

K
V2s

]
4.2588 · 105

Time constant
β
[
1
s

]
1.0066 · 103

τ
[
1
s

]
10−3

Damping µ
[
1
s

]
366.52

Calibration κ
[
V
m

]
106


