
Special Issue Paper

The International Journal of High
Performance Computing Applications
2024, Vol. 0(0) 1–17
© The Author(s) 2024

Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/10943420241268323
journals.sagepub.com/home/hpc

Ginkgo - A math library designed to
accelerate Exascale Computing Project
science applications

Terry Cojean1, Pratik Nayak1, Tobias Ribizel1,
Natalie Beams2, Yu-Hsiang Mike Tsai1, Marcel Koch1,
Fritz Göbel1, Thomas Grützmacher1 and Hartwig Anzt2,3

Abstract
Large-scale simulations require efficient computation across the entire computing hierarchy. A challenge of the Exascale
Computing Project (ECP) was to reconcile highly heterogeneous hardwarewith themyriad of applications that were required to
run on these supercomputers. Mathematical software forms the backbone of almost all scientific applications, providing efficient
abstractions and operations that are crucial to harness the performance of computing systems. GINKGO is one suchmathematical
software library, nurtured by ECP, providing high-performance, user-friendly, and performance portable interfaces for ap-
plications in ECP and beyond. In this paper, we elaborate on GINKGO’s philosophy of high-performance software that is
sustainable, reproducible, and easy to use.We showcase the wide feature set of solvers and preconditioners available in GINKGO

and the central concepts involved in their design. We elaborate on four different ECP software integrations: MFEM, PeleLM +
SUNDIALS, XGC, and ExaSGD that use GINKGO to accelerate their science runs. Performance studies of different problems
from these applications highlight the effectiveness of GINKGO and the benefits incurred by these ECP applications.

Keywords
Ginkgo, integration, mixed precision, algebraic multigrid, batched solvers, LU factorization, combustion simulations, plasma
simulations, power grid simulations

1. Introduction

GINKGO is a high-performance math library aiming at
accelerating science. Developed as a software technology
product of the US Exascale Computing Project, GINKGO’s
design acknowledges portability as a central design
principle, adheres to high standards for correctness and
sustainability, and guides functionality and interface de-
velopment by the needs of the ECP applications. In this
paper, we revisit the design choices made in GINKGO’s
development, discuss how algorithmic development is
guided by application needs, and present some of the major
application integrations that enabled better science by
providing customized high-performance computational
linear algebra functionality. We begin with a general
presentation of the GINKGO math library in Section 2 before
describing how GINKGO’s mixed precision algebraic
multigrid (AMG) allows for fast execution of finite ele-
ment simulations using the MFEM library in Section 4. In
Section 5 and Section 6 we discuss the application need for
batched iterative solvers, the design of this functionality in

the GINKGO library, and the performance improvement
GINKGO’s batched iterative functionality brings to com-
bustion simulations and plasma simulations, respectively.
In Section 7 we demonstrate how an application-specific
sparse direct solver development enables GINKGO to ac-
celerate power grid simulations. We conclude in Section
8 with a summary of the lessons learned during the col-
laborative development of functionality for the accelera-
tion of scientific applications.

1Department of SCC, Karlsruhe Institute of Technology, Eggenstein-
Leopoldshafen, Germany
2Innovative Computing Laboratory, University of Tennessee at Knoxville,
Knoxville, TN, USA
3Technical University of Munich - Campus Heilbronn, Heilbronn,
Germany.

Corresponding author:
Hartwig Anzt, Technical University of Munich - Campus Heilbronn,
Heilbronn, Germany.
Email: hartwig.anzt@tum.de

https://uk.sagepub.com/en-gb/journals-permissions
https://doi.org/10.1177/10943420241268323
https://journals.sagepub.com/home/hpc
https://orcid.org/0000-0002-1560-921X
https://orcid.org/0000-0002-7961-1159
https://orcid.org/0000-0003-3023-1849
https://orcid.org/0000-0001-6060-4082
https://orcid.org/0000-0001-9346-2981
https://orcid.org/0000-0003-2177-952X
mailto:hartwig.anzt@tum.de
http://crossmark.crossref.org/dialog/?doi=10.1177%2F10943420241268323&domain=pdf&date_stamp=2024-08-20


2. The Ginkgo math library

GINKGO is a software library developed under the US
Exascale Computing Project (ECP) that focuses on the
efficient handling of sparse linear systems on GPUs.
GINKGO is implemented in modern C++ to accommodate a
large number of scientific application codes. The software
features multiple backends in hardware-native languages:
CUDA for NVIDIA GPUs, HIP for AMD GPUs, and
DPC++/SYCL for Intel GPUs. GINKGO contains a set of
iterative solvers, including Krylov solvers, algebraic
multigrid (AMG), and parallel preconditioners that serve
as a valuable toolbox for application codes; see Figure 1
for an overview of functionality supported on different
hardware.

At every stage of development, GINKGO emphasizes
portability, scalability of performance, productivity of its
users, and sustainability of its codebase.We will now briefly
discuss how these concepts have shaped GINKGO.

2.1. Portability

GINKGO was designed at the start of the US Exascale
Computing Project (ECP) and acknowledged ECP’s plan to
deploy supercomputers featuring hardware accelerators
from different vendors. For this reason, the portability of
functionality is a central design principle of the GINKGO

ecosystem. While there exist different levels of portability
across architectures, GINKGO aims to provide not only
functional portability but also performance portability
(Cojean et al. (2022)). To achieve this, instead of relying on
a portability layer like Kokkos1, RAJA2 or SYCL3 (Godoy
et al. (2023)), GINKGO uses a backend model that lifts
portability to the software design level. The idea is to rely on
a set of kernels implemented using vendor-native pro-
gramming models, for each hardware target (Cojean et al.
(2022)). These kernels are then used to implement the high-
level algorithms. This is reflected in Figure 2 visualizing the
backend model used in the GINKGO library design4.

At the start of the ECP project, GINKGO was mostly focused
on CPUmulticore functionality and NVIDIA GPUs, reflecting
the state of the existing exascale machines. Due to the GINKGO

design, portability to other vendor ecosystems was quickly
achieved. The GINKGOHIP backend targeting AMDGPUswas
completed with release 1.2.0 (July 2020). The 1.4.0 minor
release (Aug 2021) brought most of the GINKGO functionality to
the oneAPI ecosystem, enabling Intel-GPU and CPU execu-
tion, excluding preconditioners. The full oneAPI and SYCL
support were completed in release 1.5.0. GINKGO currently
features backends for GPUs from AMD, NVIDIA, and Intel,
and an OpenMP backend for efficient algorithm execution on
multicore CPUs. Additionally, there is a “reference” backend
that contains sequential CPU implementations of the kernels.
The reference backend serves two purposes: to check the
correctness of the abstract algorithm implementations and to
enable rigorous unit tests of the highly-tuned parallel backends
for multicore and GPU architectures. The user controls the
algorithm execution on the distinct backends by creating an
“executor” that determines on which hardware the code is to be
executed. The kernel selection is then orchestrated by runtime
polymorphism. This enables user productivity as changing the
executor’s target in a single place suffices tomove the complete
execution to another hardware.

2.2. Performance and scalability

As an ECP software product, GINKGO has the clear goal of
scaling to hundreds and thousands of GPUs. While the

Figure 1. GINKGO functionality and support on different
backends.

2 The International Journal of High Performance Computing Applications 0(0)



backend model allows for hardware portability, multi-
GPU and multi-node parallelization are enabled by using
MPI on top of the backend model. The efficiency of this
approach is demonstrated in Figures 3 and 4 visualizing
weak and strong scalability of GINKGO’s functionality on
the Frontier supercomputer. Figure 3 (left) reveals that the
performance on a single GPU is very poor if the local
problem is of small size, but reaches about 100 GFLOP/s
when the local problem has a size of 1 million rows. For
this setting, on 16,000 GCDs (2,000 nodes of Frontier),
GINKGO exceeds 1 PFLOP/s, which indicates almost
perfect weak scalability. For the smaller problems, the
communication becomes the bottleneck, and the parallel

efficiency drops significantly (see the right-hand side in
Figure 3). The same effect can be observed in the strong
scaling experiments in Figure 4: for all solvers, the
runtime decreases linearly only as long as the local
problem remains large. The inferior strong scalability
characteristics of GMRES compared to CG and BiCG-
Stab are expected given that GMRES is based on long
recurrences and has to orthogonalize against all Krylov
vectors of the restart cycle. In contrast, CG and BiCGStab
only orthogonalize against the previous Krylov basis
vector. The orthogonalization involves a significant
amount of communication and synchronization, penal-
izing parallel efficiency.

Figure 3. Weak scaling test for GINKGO’s SpMV functionality on the Frontier supercomputer. Test matrix: 3D Laplace discretized with a
27-pt stencil. The size indicates the number of rows in the local matrix. Left: Performance in GFLOP/s; Right: Parallel efficiency using
1 GCD as reference.

Figure 2. Overview of the GINKGO library design using the backend model for platform portability Cojean et al. (2022). High-level
algorithms are contained in the library core and composed of algorithm-specific kernels coded for the different hardware backends.

Cojean et al. 3



2.3. Productivity

To enhance the productivity of domain scientists, GINKGO

exposes an application programming interface (API) that
allows users to easily combine different components for the
iterative solution of linear systems: solvers, matrix formats,
preconditioners, etc. The API enables running distinct it-
erative solvers and enhancing the solvers with different
types of preconditioners. A preconditioner can be a matrix,
an abstract operator, or even another solver. Furthermore,
the system matrix does not need to be stored explicitly in
memory but can be available only as a function that is
applied to a vector to compute a matrix-vector product
(matrix-free). The objective of providing a clean and easy-
to-use interface mandates that all these special cases are
uniformly realized in the API.

A concept that accommodates productivity and flexi-
bility for the user and extensibility for the library developers
is the abstraction of all solver-, matrix-, and preconditioner
functionality as linear operators (Anzt et al. (2022)):

1. The major operation that an iterative solver performs on
the system matrix A is the multiplication with a vector
(realized as a Matrix-Vector product, or MV). This op-
eration can be viewed as the application of the induced
linear operator LA: z1Az. In some cases, multiplication
with the transpose is also needed, which is yet another
application of a linear operator LAT : z1ATz.

2. The solver itself solves a system Ax = b, which is the
application of the linear operator SA: b1A�1b (= x).
Here, the term “solver” is not used to denote a
function f that takes A and b as inputs and produces x,

but instead a function with the system matrix A
already fixed (i.e., SA = f (A, �)).

3. The application of the preconditioner M, as in v =
M�1u, can be viewed as the application of the linear
operator PM: u1M�1u (= v).

We note that in the context of numerical computations with
finite precision arithmetic, the term “linear operator” should be
understood loosely (Anzt et al. (2022)). In fact, none of the
functionality strictly satisfy the linearity definition of the linear
operator: L (αx + βy) = αL(x) + βL(y), where α, β are scalars
and x, y denote vectors. Instead, they are just approximations of
the linear operators that satisfy L (αx + βy) = αL(x) + βL(y) + E,
where the error term E = E (L, α, β, x, y) is the result of
rounding errors introduced by storing non-representable values
in floating-point format, rounding errors introduced by finite-
precision floating-point arithmetic, instability and inaccuracy
of the method used to apply the linear operator to a vector, and
inexact operator application, e.g. only few iterations of an
iterative linear solver.

Acknowledging the inconsistency with the mathe-
matical concept, the linear operator abstraction in
GINKGO enables a high level of productivity for both the
domain scientists using GINKGO and the GINKGO software
developers. For example, using the LinOpabstraction, a
user of the GINKGO library can easily call an iterative
solver from the GINKGO library, combine it with different
preconditioners available in GINKGO, or even pass a user-
defined preconditioner as an opaque linear operator to
the GINKGO iterative solver. At the same time, from the
developer perspective, an iterative solver can be im-
plemented via references to other LinOp s that represent

Figure 4. Strong scaling test for GINKGO’s iterative solver functionality for 3D Laplace problems of different sizes discretized with a 27-
pt stencil on the Frontier supercomputer. The size indicates the number of rows in the global matrix. GMRES uses Classical Gram-
Schmidt with reorthogonalization and a restart of 50.

4 The International Journal of High Performance Computing Applications 0(0)



the system matrix and the preconditioner (Anzt et al.
(2022)). The solver does not have to be aware of the type
of the matrix or the preconditioner — it is sufficient to
know that they are both conformal with the LinOp
interface. This means that the same implementation of
the solver can be configured to integrate various pre-
conditioners and matrices. Furthermore, the linear op-
erator abstraction can also be used to compose
“cascaded” solvers where the preconditioner can be
replaced by another, less accurate solver, or even to
create matrix-free methods by supplying a specialized
operator as the system matrix, without explicitly storing
the matrix.

2.3.1. Inspecting Gnkgo’s internals: The Ginkgo
loggers

In addition to a general interface designed to allow flexi-
bility in configuring and using GINKGO functionality,
GINKGO provides users with easy access to internal exe-
cution data such as iterative solver convergence, iterative
residuals, algorithm runtime, memory consumption, etc.
These metrics can be relevant for the library user in the
optimization of algorithm selection, algorithm configura-
tion, or execution policy. The concept GINKGO employs for
this purpose is the GINKGO logger, which allows the re-
cording of information about GINKGO’s execution and ex-
poses it to the user. For ease of use, the event logging tools
provide different output formats and allow the usage of
multiple loggers at once. As with the rest of GINKGO, this
tool is designed to be controllable, extensible, and as
lightweight as possible. To offer support for all those ca-
pacities, the Logger infrastructure follows the visitor and
observer design patterns (Gamma et al. (1994)). This design
implies a minimal overhead to the function execution (Anzt
et al. (2022)).

The most popular already-available logger concepts in
GINKGO are:

· the Stream logger, which logs the events to a stream
(e.g., file, standard output, etc.);

· the Record logger, which stores the events in a
structure that has a history of all received events that
the user can retrieve at any moment;

· the Convergence logger is a simple mechanism
that stores the relative residual norm and number of
iterations of the solver on convergence;

· the PerformanceHint logger tracks common
performance issues in user-code, such as common
cross-executor copies between the same pointers;

· the ProfilerHook logger allows to annotate
GINKGO’s internal functionality execution on several

common profilers: TAU, VTune, NSightSystems
(NVTX) and rocPROF(ROCTX); and

· the PAPI SDE logger uses the PAPI Software De-
fined Events backend Jagode et al. (2019) in order to
enable access to GINKGO’s internal information
through the PAPI interface and tools.

In particular, the PAPI SDE logger brings conve-
nience to the user as it allows the combined collection of
GINKGO SDEs and software-defined events exposed by
the scientific application. Further, it allows for the
straightforward mapping of the software-side informa-
tion to the hardware-side information such as clock
speed, processor load, occupancy, etc, that PAPI pro-
vides. The PAPI-SDE integration is optionally available
through GINKGO’s spack package.

2.4. Sustainability

GINKGO is available as open source code on Github5

under a permissive BSD 3-clause license. Overall,
GINKGO has a heavy focus on sustainability and cor-
rectness, and all kernels implemented in any of the
backends are complemented with unit tests checking the
correctness against the reference backend im-
plementation. GINKGO uses a sustainable software de-
velopment lifecycle requiring two code reviews for any
code addition and a Continuous Integration/Continuous
Benchmarking framework for the automatic validation
of compilability and correctness of the code Anzt et al.
(2019). The CI framework executes pipelines on more
than 30 different hardware/software configurations
including server-grade GPUs from different vendors
and features code quality checks like Sonarqube, san-
itizers, cuda-memcheck, clang-tidy, and others. GINKGO

has comprehensive unit and functional test coverage.
GINKGO is part of the extreme-scale Scientific Software
Development Kit (xSDK \Vert) and the Extreme Scale
Scientific Software Stack (E4S∗∗. GINKGO is available as
a Spack package and smoke tests are run through the
spack CI. A well-defined release schedule anticipates a
release every 6 months. The sustainability of the
GINKGO library is also visible in the extensibility of the
backend model: new backends can be added without
changes to the existing functionality, and backends can
be eliminated if the hardware is discontinued. The only
core parts of GINKGO that need to be adapted to do so are
the executor and operation classes, as well as related
utilities.

GINKGO bundles a comprehensive benchmarking suite
and compares against vendor solutions when available. In
addition, all GINKGO internal data can be inspected and

Cojean et al. 5



exported thanks to a logger system providing hooks at
critical code points; see Section 2.3.1.

3.Related work

The Exascale computing project supported and nurtured many
mathematical software libraries, enabling the development of
new algorithms and their high-performance implementations.
There exist many state-of-the-art software libraries that provide
similar functionality to GINKGO. PETSc (PET (2021)) and
Trilinos (Tri (2021)) provide sparse linear solvers and pre-
conditioners, and have been used in various applications. For
sparse-direct solvers, libraries such as SuperLU (Li and
Demmel (2003)), MUMPS (Amestoy et al. (2001)), CHOL-
MOD (Chen et al. (2008)) etc. Contain high-performing im-
plementations for CPU and distributed systems, as well as
GPUs (NVIDIA/AMD) with SuperLU. MAGMA (Dongarra
et al. (2014)) and most LAPACK (Blackford and Dongarra
(1991)) implementations provide implementations of dense
direct solvers for batched routines, with MAGMA focusing
on GPUs.

Within ECP, GINKGO was a part of the software
technologies stack, particularly a part of the mathe-
matical software stack, aiming to provide high-
performance numerical linear algebra functionality,
which usually forms the computational bottleneck in
most scientific applications. GINKGO’s novelty lies in its
software design providing flexibility and extensibility,
the utilization of vendor-provided programming models
for optimal performance on each backend, and
application-friendly utilities. Put together, this helps
reduce the overhead of integrating GINKGO’s linear solver
functionality for users while enabling high performance
for each hardware backend.

GINKGO’s design has been elaborated in Anzt et al.
(2022), where we discuss the software infrastructure, in-
cluding detailed performance results for the building
blocks (SpMV) and the various solvers available in GINKGO.
Each following section in this paper considers applications

from ECP, which were accelerated using GINKGO func-
tionality. We focus on novel algorithmic and implementa-
tional developments in these sections and provide concrete
cases where the applications obtained speedups in their
real-world runs. Therefore, each section contains relevant
papers that provide more detailed information about these
developments.

5. Mixed precision algebraic multigrid
accelerating MFEM simulations

We will now turn our attention to examples of GINKGO’s
impact on ECP applications. In this section, we begin with
how the development of a mixed precision algebraic
multigrid method has enabled faster finite element simu-
lations with the MFEM library. A more detailed discussion
and result presentation is available in Tsai et al. (2022, 2023)
and Tsai (2024).

Algebraic multigrid (AMG) is a popular choice for
solving or preconditioning linear problems originating from
finite element methods. Geometric multigrid (GMG) uses
information about the underlying geometric mesh directly,
but an AMG solver is constructed directly from the sparse
system matrix. Multigrid methods build a hierarchy of
consecutively coarser grids and compute error correction
terms on the coarser grids to improve the solution on finer
grids. Specifically, the residual is restricted from a fine grid
to a coarser grid, where we obtain an error correction that is
prolongated back to the finer grid to update the solution
approximation. These correction computations frequently
entail a few iterations of an iterative method, called a
“smoother” because it acts to smooth the high-frequency
errors on the scale of that grid; the coarsest grid, which is
much smaller than the original problem, may use a direct
solver or an iterative method.

AMG’s concept of building a sequence of consecu-
tively coarser grids and computing error correction terms
on the coarser grids (representing problem approxima-
tions on a coarser grid) motivates research on the use of

Figure 5. Mixed precision AMG handling only the first multigrid level in high precision and subsequent levels in lower precision.

6 The International Journal of High Performance Computing Applications 0(0)



low precision for solving the coarse grid problem rep-
resentations. This idea is visualized in Figure 5. The hope
is that the faster execution of the computations in lower
precision accelerates the overall multigrid cycle without
negatively impacting the multigrid quality. It is important
to note that AMG is generally memory bound and that
thus potential runtime saving comes from the reduced
data transfer volume, not from faster arithmetic.

GINKGO features an AMG implementation that can be
competitive with the AmgX library Naumov et al. (2015)
developed by NVIDIATsai et al. (2022). GINKGO falls short
in terms of supporting the same variety of coarsening
strategies, currently only supporting parallel graph match
(PGM). At the same time, GINKGO’s AMG allows for more
flexibility in terms of choosing the precision formats for the
distinct multigrid levels individually, with the conversion
between the formats handled on-the-fly in the restriction and
prolongation operations Tsai et al. (2022).

MFEMAnderson et al. (2021); is a popular open-source
finite element library with broad support for high-order
meshes and basis functions, among many other features.
MFEM’s “example 1” demonstrates the solution of a
standard diffusion problem �=� (c=u) = 1, where c is a
given coefficient. MFEM provides many sample meshes
for testing; we select two, which are shown in Figure 6. For
the “L-shape” mesh (top), a constant coefficient of c = 1 is
used, while the “beam” mesh (bottom) uses a piecewise
constant coefficient with a jump from 1 to 0.1 at the
midpoint of the length of the beam. All our tests use
standard tensor-product basis functions on the Legendre-

Gauss-Lobatto nodes, MFEM’s default choices for
quadrature points based on the order of basis functions,
and homogeneous Dirichlet boundary conditions.

To evaluate the performance of the mixed precision
AMG we developed in GINKGO, and to compare against
NVIDIA’s AmgX, we use AMG as a preconditioner within
MFEM’s CG solver, with one V-cycle application for each
iteration of CG. Intending to provide a fair comparison, we
match the parameter settings as closely as possible for
AmgX and GINKGO as we detail in Tsai et al. (2022). We
built on MFEM’s existing GINKGO wrappers to use GINKGO

AMGwithin MFEM, and AmgX preconditioning support is
provided through MFEM’s AmgXSolver class. For more
meaningful insight, in the following performance evalua-
tion, we consider different settings modulating the orders of
basis functions (-o) and levels of mesh refinement (-l). We
end up with a set of 8 test problems with their characteristics
listed in Table 1. Increasing the order of basis functions
increases both the problem size and the dependencies be-
tween unknowns; increasing the refinement of the mesh
increases the problem size while retaining sparsity. We set
the stopping criterion to a maximum of 300 iterations and
implicit relative residual norm reduction of 10�12. We here
revisit a subset of the results and the discussion we present
in Tsai et al. (2022) and refer the reader to the original paper
for more details.

Initially, we analyze the runtime of a single CG iteration
with the AMG V-cycle preconditioner, without considering
the full iterative solver and convergence. In Figure 7 we
compare the runtime for the different AMG solvers
(“NVIDIA AmgX (DP)”, “GINKGO AMG (DP)” and
“GINKGO AMG (MP)”) for the beam mesh (top) and the
L-shape mesh (bottom). A first observation is that for all
discretizations, GINKGO’s AMG is competitive or outper-
forms NVIDIA’s AmgX in the runtime-per-iteration metric.
A second observation is that GINKGO’s mixed precision
(MP) AMG outperforms the double precision (DP) variant.

We next consider the quality of the AMG preconditioner
in terms of the CG convergence. For this, in Table 2, we list
the iteration counts and overall runtime for the different CG/
preconditioner configurations. We first focus on four

Figure 6. Meshes used for MFEM diffusion experiments. Top:
L-shape mesh with seven levels of uniform refinement
(49,152 elements); Bottom: Beam mesh with 3 levels of uniform
refinement (4,096 elements).

Table 1. Characteristics for the selected MFEM discretizations.

Problem Size
Nonzero
elements

Beam (-o2 -l3) 37,281 21,67,425
Beam (-o3 -l3) 120,625 14,070,001
Beam (-o4 -l3) 279,873 57,251,713
Beam (-o3 -l4) 924,385 111,573,601
L-shape (-o3 -l7) 443,905 11,066,881
L-shape (-o3 -l8) 1,772,545 44,252,161
L-shape (-o4 -l7) 788,481 28,323,841
L-shape (-o4 -l8) 3,149,825 113,270,785

Cojean et al. 7



discretizations for the beam geometry. The iteration counts
of the AMG-preconditioned CG solver are generally con-
sistent, and using GINKGO’s AMG in mixed-precision mode
does not, in this case, increase the CG iteration count above
the double precision setting. The CG preconditioned with
NVIDIA’s AmgX preconditioner sometimes needs one less
iteration to converge, but as we have seen, the AmgX
preconditioner application is more expensive per iteration
than GINKGO’s AMG preconditioner: see Figure 7 (top),
which shows the average execution time per one CG iter-
ation, with GINKGO’s AMG being approximately 20%–40%
faster than NVIDIA’s AmgX for the three larger problems.

This performance combined with nearly identical iteration
counts results in GINKGO’s AMG consistently outperforming
NVIDIA’s AmgX for this test case – with the mixed-
precision configuration (double precision for the finest
level and single precision for the coarse levels) increasing
the performance advantage.

Compared to the beam geometry, the L-shape geometry
is numerically more challenging due to its re-entrant corner.
We use the same experiment settings and report the results
in the bottom part of Table 2. Here, the trend of the AmgX-
preconditioned CG requiring fewer iterations is reversed, as
in this case, GINKGO’s AMG enables faster convergence.

Figure 7. Runtime of one AMG-preconditioned CG iteration on the V100 GPU for MFEM’s example 1 for the beammesh (top) and the
L-shape mesh (bottom).

Table 2. MFEM beam (top) and L-shape (bottom) examples using MFEM’s AMG-preconditioned CG solver. GINKGO’s AMG is
executed in IEEE double precision (DP) and mixed precision mode (MP) using IEEE single precision on the subsequent levels. Target
architecture is the NVIDIA V100 GPU.

Problem

NVIDIA AmgX (DP) GINKGO AMG (DP) GINKGO AMG (MP)

Runtime [ms] #iter Runtime [ms] #iter Runtime [ms] #iter

Beam
-o 2 -l 3 20.71 15 20.27 15 19.96 15
-o 3 -l 3 52.94 20 39.93 21 39.56 21
-o 4 -l 3 155.47 26 128.69 27 120.41 27
-o 3 -l 4 329.68 29 294.68 29 270.39 29

L-shape
-o 3 -l 7 242.27 93 178.02 93 170.08 94
-o 3 -l 8 1211.38 180 1033.96 173 943.27 177
-o 4 -l 8 3452.91 251 3044.24 236 2722.63 237
-o 4 -l 7 551.99 129 407.27 122 366.99 120

8 The International Journal of High Performance Computing Applications 0(0)



Combined with the already-observed faster preconditioner
application per iteration (see bottom of Figure 7), GINKGO’s
AMG offers attractive runtime savings over AmgX for all
discretizations of the L-shape geometry. The runtime
savings increase when using GINKGO’s AMG in mixed-
precision mode. For example, for the “-o 4 -l 7” dis-
cretization, preconditioning CG with GINKGO’s mixed-
precision AMG allows us to solve the problem 1.5×
faster than when using NVIDIA’s AmgX; see Table 2
(bottom).

We conclude that the mixed precision AMG offers at-
tractive runtime savings over the double precision AMG for
finite element simulations. This holds also for other prob-
lems as it is demonstrated in Tsai et al. (2022). The seamless
usage of GINKGO functionality in MFEM applications en-
sures high productivity when accelerating MFEM-based
fluid flow simulations with GINKGO’s solver and pre-
conditioner functionality.

6. Batched iterative solvers in Pele
combustion simulations

The PeleLM application code (Nonaka et al. (2018)) is de-
signed to simulate reactive flow in the Low Mach number
regime, and these flow simulations are dynamic and evolve in
both time and space. Like other hydrodynamics simulation
frameworks, the PeleLM operator splits the reactions from the
hydrodynamics and thus requires the solution of many

independent chemical reaction systems of ordinary differential
equations (ODEs). PeleLM uses the SUNDIALS (Hindmarsh
(2002)) software library to solve for the reaction ODEs in each
cell. The resulting linearized systems all share the same
sparsity pattern, and thousands of independent systems with
the same sparsity pattern have to be solved in parallel. Batched
functionality designed for the data-parallel processing of many
small problems forms a natural candidate for this scenario.
While there exists batched functionality for dense problems,
including linear system solvers, sparse problems have re-
mained unexplored by math library developers. This is be-
cause sparse problems of small size can be handled with
existing dense direct solver functionality by treating the sparse
system as a dense problem.

Investigating the properties of the linearized systems in
PeleLM simulations, however, reveals that they could benefit
from batched sparse solvers: they are of small or moderate
dimension, are sparse, typically have low condition numbers
which allows for fast convergence, and no exact solution is
required – a rough solution approximation for the linear
systems is sufficient for the convergence of the ODE solver.

In response to the potential benefits for the Pele hydro-
dynamics simulations, we developed batched iterative solvers
in GINKGO. The conceptual idea is to launch a set of GPU
thread blocks with each thread block handling the iterative
solution of one linear system of the batch, see Figure 8. It is
important to acknowledge that the iteration process is asyn-
chronous and the different matrix characteristics allow for
some iteration processes to reach the required solution

Figure 8. Mapping batched linear system solutions to a GPU.

Cojean et al. 9



accuracy and thus terminate earlier than others. While a de-
tailed discussion about the design and implementation of
GINKGO’s batched iterative solvers can be found in Nayak
(2023) and Aggarwal et al. (2021), we highlight the perfor-
mance benefits the functionality brings to the simulation
codes here.

To showcase the integration and benefits of GINKGO’s
batched solvers with Pele, we use the PelePhysics NREL
(2023c) repository, which contains physics databases and
implementation harnesses that are used within other Pele
codes such as PeleC NREL (2023a) and PeleLMeX NREL
(2023b). It allows the user to efficiently manage the dif-
ferent chemistry and transport models, which allows for
state-of-the-art simulation. A central component of the
PelePhysics code is the evolution of the reactive flow in
time. PelePhysics relies on the CVODE module from the
SUNDIALS suite, which implements several time inte-
grators. In many cases, these reactive flow simulations are
numerically stiff, which requires an implicit time-stepping
scheme to enforce stability. Assembling these reaction
mechanisms so that they can be integrated over time with an
implicit time-stepping scheme gives us linear systems that
need to be solved at each time step.

To demonstrate the performance advantages GINKGO’s
batched iterative solvers render over existing strategies, we
compare three options that are available for the solution of
the batch of linear systems in PelePhysics through SUN-
DIALS-CVODE: MAGMA’s batched direct solver Haidar
et al. (2015), GINKGO’s BatchBicgstab solver based on
short recurrences and preconditioned with a scalar Jacobi,
and GINKGO’s BatchGmres solver based on long recur-
rences (longer than the iteration count) and also enhanced
with a scalar Jacobi preconditioner. We run our experiments
on 2 nodes of Frontier (16 GCDs of MI250X) and compare
the runtimes of the non-linear solve in the PelePhysics
test case.

We focus on two reaction mechanisms, the dodecane_lu
mechanism, giving us batched linear systems with matrix
size (54 × 54) each, and the dodecane_lu_qss mechanism
with matrices of size (35 × 35). The matrix characteristics
listed in Table 3 reveal that these matrices – though handled
by GINKGO’s batched iterative solvers with the CSR
format – are relatively dense, which may suggest that a
dense direct solver could be a method of choice. However,
the performance results in Figure 9 prove the superiority of

the batched iterative solvers. Here, we visualize the per-
formance of GINKGO’s batched iterative solvers as speedup
over MAGMA’s dense direct solver for the complete non-
linear loop within the PeleLM application. For the smaller
mechanism (top), BatchGmres performs slightly better
than BatchBicgstab, but both the batched iterative
solvers outperform the batched LU solver from MAGMA.
For the larger mechanism (bottom), we see that the
BatchBicgstab is the best choice with an average
speedup of around 2x over MAGMA.

Table 3. Key matrix and sparsity characteristics of the
benchmark reaction mechanisms extracted from PeleLM
chemistry simulation runs.

Problem Size Non-zeros (A) Non-zeros (L + U)

dodecane_lu_qss 35 1042 (85%) 1164 (95%)
dodecane_lu 54 2332 (80%) 2754 (94%)

Figure 9. Speedup for the entire non-linear solver with GINKGO’s
batched solvers over MAGMA batched dense direct solver for
2 mechanisms on 16 GCDs of MI250X on Frontier.

10 The International Journal of High Performance Computing Applications 0(0)



7. Batched iterative solvers in XGC
plasma simulations

The batched iterative solvers in GINKGO were specifically
designed and deployed to accelerate hydrodynamics simula-
tions. With the functionality providing attractive runtime
benefits to the solution of batched sparse linear systems, a
different science application realized that the batched iterative
solvers fit their requirements as well.

XGCis a 5D full-function gyrokinetic particle-in-cell
(PIC) application code (Hager et al. (2016); Ku et al.
(2009)) that numerically simulates fusion edge plasmas.
For accurate high-resolution and high-fidelity, these sim-
ulations must scale to tens of thousands of nodes, each
containing multiple GPUs. In the XGC simulations, a
nonlinear collision operator is required to model edge
plasmas accurately. Therefore, XGCemploys a nonlinear
Fokker-Planck-Landau operator in the 2D guiding-center
velocity space for multiple particle species. Coulomb col-
lisions between particles in the plasma have been identified
as a bottleneck in XGC. An implicit time integration method
is employed, and the Picard method is used for the nonlinear
solver. At each configuration space grid node, we must
solve the nonlinear operator on the 2D velocity space grid to
evolve the different species through time. In each cell of the
velocity grid, we must first solve for the collisions involving
a linear solution. As the collision operator is based on a
stencil, each linear solve in each cell shares the same
sparsity pattern. Hence, to compute the evolution of these
species, multiple independent linear systems need to be
solved, all sharing a sparsity pattern. As is detailed in Nayak
(2023), the batched iterative solver functionality developed
in GINKGO is a perfect candidate for this task, efficiently
reducing the time to solve for the overall simulation.

The collision kernel of the XGCsimulation code is based
on MPI for multiple CPU nodes and uses Kokkos (Carter
Edwards et al. (2014)) to offload to GPUs as well as utilize
OpenMP for intra-node CPU parallelism.

The collision operator in XGC is a fully non-linear multi-
species Fokker-Planck-Landau operator. The velocity space is
discretized for each mesh vertex with a velocity grid. Using a
2D nine-point stencil produces matrices of the Oð1000Þ rows
on each mesh vertex with nine nonzeros per row, sharing a
sparsity pattern across all mesh vertices. An outer Picard it-
eration is used to resolve the non-linear operator, and within
each Picard iteration, we need to solve many independent
linear systems. Due to the typically larger nature of the ma-
trices, traditional dense direct solvers are unsuitable. XGC
used the LAPACK banded solver,dgbsv, which assigned one
linear system to one CPU core and parallelized the available
linear systems over the number of CPU cores available (64 for
both Perlmutter and Frontier). Within a stand-alone proxy app
integrated with GINKGO’s batched solvers, as shown in our
previous work Kashi et al. (2022, 2023), the batched iterative

solvers can render significant performance benefits for the
XGC application.

Figure 10 presents a runtime comparison between LA-
PACK’s band LU solver and GINKGO’s batched iterative solver
for the DIII-D Tokamak Electromagnetic test case. The test
case contains 432,000 mesh vertices, with each vertex needing
to solve for two species. The velocity grid is of size (33 × 39)
leading tomatrices of size (1278 × 1278), eachwith 9 nonzeros
per row as before in the proxy app. In total, there are
22.4 million particles per species per GPU. This leads to
864,000 linear solver calls for every call to the collision op-
erator solve. For more details on matrix properties and batched
solver implementation, we refer the reader to our previous
work inKashi et al. (2023). The test case runs for 20 time steps,
with the collisions being calculated every other step. This is a
full-simulation test that compares the execution on the OLCF
Frontier TDS (Crusher) supercomputer (right) and the NERSC
Perlmutter supercomputer (left). We observe that using the
BatchBicgstab solver reduces the linear solver time by
about 90% on both systems. We acknowledge that the linear
solver only accounts for part of the collision operator cost.
Nevertheless, as a plug-in replacement for LAPACK’s direct
solver, GINKGO’s BatchBicgstab succeeds in serving as a
faster, more flexible, and platform-portable alternative.

8. Sparse direct solvers in
ExaSGD simulations

With increased energy needs, more variable generation added
to the grid, less predictable weather patterns, and ever-
increasing cyber threats, the computational cost of power
grid simulations is increasing rapidly. ACOptimal Power Flow
(ACOPF) analysis O’Neill et al. (2012); Frank et al. (2012) is

Figure 10. LAPACK v/s GINKGO batched BiCGStab solving the
DIII-D Tokamak Electromagnetic test case on 32 nodes of
NERSC Perlmutter with 128 NVIDIA A100 GPUs (left) and
32 nodes of OLCF Crusher with 128 AMD MI250X (right).

Cojean et al. 11



an important tool for simulating near- and long-term power
grid use. With growing energy needs an increasing amount of
variable energy sources added to the power grid, these sim-
ulations have become computationally more demanding,
pushing the limits of existing tools Świrydowicz et al. (2024).
While new architectures like high-performance GPUs provide
the computational power to handle the computational com-
plexity, mathematical and computational methods typically
used for economic dispatch are designed for CPU systems and
perform poorly on GPUs. This is particularly true when
solving the underlying linear systems Świrydowicz et al.
(2022), which typically make up more than half of the
overall computational cost. The system characteristics, spe-
cifically the sparsity pattern and the extremely high condition
numbers, especially in later iterations of the non-linear opti-
mization solver, make GPU-based iterative methods unsuit-
able for the solution process. Even robust preconditioners often
fall short in a comparison against CPU-based direct solvers
employing the combination of matrix factorization and
forward/backward substitution. While there have been several
efforts to develop GPU-accelerated sparse linear solvers that
are effective for computations in the power systems domain,
including electromagnetic transient Dinkelbach et al. (2021);
Razik et al. (2019) and power flow simulations D’orto et al.
(2021), there is far less reporting on linear solvers suitable for
ACOPF analysis due to the challenging properties of linear
systems there. The use of dense direct methods has been
evaluated Rakai and Rosehart (2014); Abhyankar et al. (2021),
but the computational complexity of dense direct solvers
growing O(N3) and the memory complexity growing O(N2)
with the linear system size Nmakes this strategy infeasible for
larger grid models.

In this section, we present the sparse direct solver func-
tionality we developed in GINKGO to accelerate the HiOp
optimization engine Petra et al. (2018) used in the power grid
simulations. The section combines content and in Ribizel and
Anzt (2023) and Świrydowicz et al. (2024), on the sparse
Cholesky factorization and the rendered performance boost to
the HiOp optimization engine, respectively. For additional
details, we refer the interested reader to these publications.

The structure of linear systems arising in the interior-
point optimization algorithm used for ACOPF analysis is
very sparse and does not profit from the commonly used
supervariable agglomeration performance-wise, making
state-of-the-art supernodal direct solvers inefficient. Instead,

GINKGO provides a lightweight LU and Cholesky factor-
ization and associated triangular solvers to enable the ef-
ficient solution of generic sparse systems without the use of
supernode detection and other structural properties.

Table 4. Characteristics of the three test networks specifying the number of buses, generators, and lines. The specifics of the linear
system for each of these networks are given in terms of the matrix size (N) and number of non-zeros (nnz).

Grid Buses Generators Lines N(Kk) nnz (Kk) (M)

Northeast US 25 K 4.8 K 32.3 K 108 K 1.19
East US 70 K 10.4 K 88.2 K 296 K 3.20
West & East US 82 K 13.4 K 104.1 K 340 K 3.73

Figure 11. Comparison of the average computational cost per
optimization solver step when different linear solvers are used
for ACOPF on OLCF Summit with a breakdown in terms of most
expensive operations Świrydowicz et al. (2024). The cost of the
first step, which is executed on CPU, is accounted for in the
averages.

12 The International Journal of High Performance Computing Applications 0(0)



The direct solver framework relies on a CPU-GPU hybrid
symbolic factorization for problems with symmetric sparsity
pattern Ribizel and Anzt (2023) and a CPU symbolic fac-
torization for general unsymmetric problems. The symbolic
factors are then used in the numerical phase to compute the
values of the lower and upper triangular factors in a warp-per-
row parallelization with lightweight scheduling based on the
dependency DAG encoded in the lower factor. The lower and
upper factors are finally used to compute the solution to the
linear system using forward- and backward substitution. Since
the system matrices become increasingly ill-conditioned
during the optimizer iterations, and sparse direct solvers
commonly suffer from large storage requirements due to fill-in,
GINKGO uses the stability-enhancing MC64 reordering Duff
and Koster (2001) in combination with the fill-in reducing
AMD reordering Amestoy et al. (2004) to preprocess the
system.

For the performance evaluation of the developed GINKGO

sparse direct solver, we use it as a direct solver in the HiOp
optimization solver. For the experimental evaluation, we
consider three power grid problems that are listed along
with some key characteristics in Table 4. We compare
GINKGO’s sparse direct solver against the state-of-the-art
open source sparse direct solvers MA57, cuSolverRf,
and cuSolverGLU.

MA57 Duff (2004) is commonly used in commercial and
open-source tools when solving alternating current optimal
power flow (ACOPF) and similar optimization problems.
When using MA57, symbolic factorization is performed
only once for all systems with the same sparsity pattern. The
profiling results for the solution of the KKTsystem for these
three networks with MA57 linear solver show that solving

the linear system takes up more than 60% of the overall
ACOPF cost on an IBM Power 9 central processing unit
(CPU). CuSolverRf is NVIDIA’s sparse direct solver,
cuSolverGLU is an undocumented but publicly released
alternative Świrydowicz et al. (2024). Both routines are
bound to NVIDIA architectures and cannot execute on
AMD GPUs.

We acknowledge that the overall cost of ACOPF sim-
ulations derives as an interplay of sparse matrix factor-
ization cost, triangular solver cost, refactorization cost, and
the number of optimization steps. We here only focus on the
overall simulation runtime and refer the interested reader to
the original paper Świrydowicz et al. (2024) for additional
information.

In Figures 11 and 12 we report the comparison and
detailed performance breakdown of the HiOp optimization
solver step into its components on the Summit and Crusher
supercomputers. The averages were obtained by normal-
izing the total computational time for each component by
the number of optimization steps to allow comparison
between the approaches, and these averages account for the
cost of the first factorization performed on CPU
Świrydowicz et al. (2024).

We first focus on the evaluation of the benchmark results
obtained on the Summit supercomputer equipped with
NVIDIA V100 GPUs. MA57 is executed on the IBM
Power9 CPU architecture of Summit. The results in
Figure 11 reveal that the GPU solvers outperform the
MA57 baseline implementation for all test cases. Cu-
SolverRf is 10 � 30% slower overall than cu-
SolverGLU. In terms of overall ACOPF compute time,
using cuSolverGLU and GINKGO on V100 graphical

Figure 12. Comparison of the average computational cost per optimization solver step when different linear solvers are used for
ACOPF on OLCF Crusher with a breakdown in terms of most expensive operations Świrydowicz et al. (2024). The cost of the first
step, which is executed on CPU, is accounted for in the averages.

Cojean et al. 13



processing unit (GPU) leads to 1.3 � 1.4× and 1.05 � 1.3×
faster solution, respectively, compared to the CPU baseline
with MA57. The runtime breakdown reveals that the per-
formance advantage of the cuSolverGLU is primarily
driven by a faster factorization (which is for the combined
Eastern and Western U.S. grid about 3.4× faster than
MA57). The faster factorization compensates for the slower
triangular solves: The cuSolverGLU triangular solves are
about 40% slower than the CPU counterpart. For the GINKGO

GPU solver, the story is different: though still faster than the
MA57 code, the speedup achieved with the GINKGO factor-
ization is smaller. On the other hand, the triangular solve in
GINKGO is faster, mainly because it does not call iterative
refinement. We note that it is impossible to combine the
cuSolverGLU factorization with the GINKGO sparse trian-
gular solves as the cuSolverGLU does not provide access to
the triangular factors Świrydowicz et al. (2024).

We now turn to the performance results in Figure 12 on
the Oak Ridge Leadership Computing Facility (OLCF)
Crusher system featuring AMD MI250 GPUs. Overall,
ACOPF is overall 1.8 � 2.4× faster when using the GINKGO

linear solver on the AMD MI250X GPU instead of
MA57 on the AMD EPYC 7A53 CPU6. The runtime
breakdown reveals that the performance superiority comes
from both a faster factorization (3 � 4.8× speedup) and
faster triangular solves (1.9 � 3× speedup). Comparing
GINKGO’s linear solver (triangular solve and factorization)
performance on the MI250X GPU and the NVIDIA
V100 GPU, we notice that executing GINKGO on the newer
MI250 GPU is 20% – 40% faster than on the NVIDIA
V100 GPU Świrydowicz et al. (2024).

This demonstrates that the application-specific sparse
direct solver development for GPUs is successful in terms of
runtime saving when executing power grid simulations on
GPU-accelerated supercomputers. In a cross-institutional
focus effort, specialized GPU-based direct solvers were
designed that meet the requirements of ACOPF simulations.
GINKGO now contains production-ready sparse direct solvers
that allow users to run high-performance ACOPF simula-
tions on GPU systems and to easily migrate applications
between systems featuring GPUs from different vendors.

9. Summary

The GINKGO library accelerates several science applications
on the US Department of Energy’s supercomputers.
Choosing performance portability as a key software design
strategy set GINKGO on a path to success that allowed for
execution on upcoming hardware architecture earlier than
portability layers have implemented support. On an inter-
personal level, the scientific application users benefited
significantly from close communication with the develop-
ment team and a willingness to develop functionality geared
toward their applications. The batched iterative solvers are

an example of functionality that had previously received no
attention from the computational linear algebra community,
and only in-depth discussions with application scientists
revealed the potential of this functionality for domain
scientists. The sustainable software development cycle
featuring rigorous unit testing and code quality checks has
proven to be extremely valuable in the reduction of software
bugs. Finally, it is important to see that money does not
write software, but individuals do, and individuals have
their own life plans, dreams, and needs. Recognizing and
acknowledging every individual who contributes to a sci-
entific software stack, participates in collaborative research,
or contributes as an external advisor is key to creating a
productive and trustful environment. We consider it un-
likely that these findings are all specific and exclusive to
GINKGO’s development and integration activities and en-
courage software projects to learn from the design and
strategies we described in this paper.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with re-
spect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support
for the research, authorship, and/or publication of this article: This
work was supported by the funding from the US Exascale
Computing Project (17-SC-20-SC), a collaborative effort of the
U.S. Department of Energy Office of Science and the National
Nuclear Security Administration.

ORCID iDs

Terry Cojean  https://orcid.org/0000-0002-1560-921X
Pratik Nayak  https://orcid.org/0000-0002-7961-1159
Tobias Ribizel  https://orcid.org/0000-0003-3023-1849
Natalie Beams  https://orcid.org/0000-0001-6060-4082
Thomas Grützmacher  https://orcid.org/0000-0001-9346-2981
Hartwig Anzt  https://orcid.org/0000-0003-2177-952X

Notes

1. https://kokkos.github.io
2. https://raja.readthedocs.io
3. https://www.khronos.org/sycl/
4. GINKGO uses DPC++/SYCL as one of its backends, which is a

portability layer in itself.
5. https://github.com/ginkgo-project/ginkgo
6. https://e4s-project.github.io

References

Abhyankar S, Peles S, Rutherford R, et al. (2021) Evaluation of
AC optimal power flow on graphical processing units
2021 IEEE Power & Energy Society General Meeting

14 The International Journal of High Performance Computing Applications 0(0)

https://orcid.org/0000-0002-1560-921X
https://orcid.org/0000-0002-1560-921X
https://orcid.org/0000-0002-7961-1159
https://orcid.org/0000-0002-7961-1159
https://orcid.org/0000-0003-3023-1849
https://orcid.org/0000-0003-3023-1849
https://orcid.org/0000-0001-6060-4082
https://orcid.org/0000-0001-6060-4082
https://orcid.org/0000-0001-9346-2981
https://orcid.org/0000-0001-9346-2981
https://orcid.org/0000-0003-2177-952X
https://orcid.org/0000-0003-2177-952X
https://kokkos.github.io
https://raja.readthedocs.io
https://www.khronos.org/sycl/
https://github.com/ginkgo-project/ginkgo
https://e4s-project.github.io


(PESGM), Washington, DC, USA, 26-29 July 2021, 01–05.
DOI: 10.1109/PESGM46819.2021.

Aggarwal I, Kashi A, Nayak P, et al. (2021) Batched sparse it-
erative solvers for computational chemistry simulations on
GPUs 2021 12th Workshop on Latest Advances in Scalable
Algorithms for Large-Scale Systems (ScalA), St. Louis, MN,
USA, 19-19 November 2021, 35–43. https://ieeexplore.ieee.
org/document/9652814.

Amestoy PR, Duff IS, L’Excellent JY, et al. (2001) MUMPS: a
general purpose distributed memory sparse solver. In: Sørevik
T, Manne F, Gebremedhin AH, et al. (eds) Applied Parallel
Computing. New Paradigms for HPC in Industry and Aca-
demia. Berlin, Heidelberg: Springer, 121–130. DOI: 10.1007/
3-540-70734-4_16.

Amestoy PR, Davis TA and Duff IS (2004) Algorithm 837: AMD,
an approximate minimum degree ordering algorithm. ACM
Transactions on Mathematical Software 30(3): 381–388.
DOI: 10.1145/1024074.1024081.

AndersonR,Andrej J, Barker A, et al. (2021)MFEM: amodular finite
element methods library. Computers & Mathematics with Ap-
plications 81: 42–74. DOI: 10.1016/j.camwa.2020.06.009.

Anzt H, Chen YC, Cojean T, et al (2019) Towards continuous
benchmarking: an automated performance evaluation
framework for high performance software Proceedings of the
Platform for Advanced Scientific Computing Conference,
Zurich, Switzerland, June 12-14, 2019, 1–11.

Anzt H, Cojean T, Flegar G, et al. (2022) Ginkgo: a modern linear
operator algebra framework for high performance computing.
ACM Transactions on Mathematical Software 48(1): 1–33.

Blackford S and Dongarra J (1991) LAPACK Working Note 41
Installation Guide for LAPACK. Knoxville, TN: Department
of Computer Science, University of Tennessee.

Carter Edwards H, Trott CR and Sunderland D (2014) Kokkos:
enabling manycore performance portability through poly-
morphic memory access patterns. Journal of Parallel and
Distributed Computing 74(12): 3202–3216. DOI: 10.1016/j.
jpdc.2014.07.003.

Chen Y, Davis TA, Hager WW, et al. (2008) Algorithm 887:
CHOLMOD, supernodal sparse cholesky factorization and
update/downdate. ACM Transactions on Mathematical
Software 35(3): 1–14. DOI: 10.1145/1391989.

Cojean T, Tsai YHM and Anzt H (2022) Ginkgo—a math library
designed for platform portability. Parallel Computing 111:
102902.

Dinkelbach J, Schumacher L, Razik L, et al. (2021) Factorisation
path based refactorisation for high-performance LU de-
composition in real-time power system simulation. Energies
14(23): 7989.

Dongarra J, Gates M, Haidar A, et al. (2014) Accelerating nu-
merical dense linear algebra calculations with GPUs. In:
Kindratenko V (ed) Numerical Computations with GPUs.
Cham: Springer International Publishing, 3–28. DOI: 10.
1007/978-3-319-06548-9_1.

Duff IS (2004)MA57—a code for the solution of sparse symmetric
definite and indefinite systems. ACM Transactions on
Mathematical Software 30(2): 118–144.

Duff IS and Koster J (2001) On algorithms for permuting large
entries to the diagonal of a sparse matrix. SIAM Journal on
Matrix Analysis and Applications 22(4): 973–996. DOI: 10.
1137/S0895479899358443.

D’orto M, Sjöblom S, Chien LS, et al. (2021) Comparing
different approaches for solving large scale power-flow
problems with the Newton-Raphson method. IEEE Access
9: 56604–56615.

Frank S and Rebennack S (2012) A primer on optimal power flow:
theory, formulation, and practical examples. In: Technical
Report 14. Golden, CO: Colorado School of Mines.

Gamma E, Helm R, Johnson R, et al. (1994) Design Patterns:
Elements of Reusable Object-Oriented Software. 1 edition.
Boston: Addison-Wesley Professional.

Godoy WF, Valero-Lara P, Dettling TE, et al. (2023) Evaluating
Performance and Portability of High-Level Programming
Models: Julia, Python/Numba, and Kokkos on Exascale
Nodes. Knoxville, TN: Department of Computer Science,
University of Tennessee. DOI: 10.48550/arXiv.2303.06195.

Hager R, Yoon ES, Ku S, et al. (2016) A fully non-linear multi-
species Fokker–Planck–Landau collision operator for simu-
lation of fusion plasma. Journal of Computational Physics
315: 644–660. DOI: 10.1016/j.jcp.2016.03.064 https://www.
sciencedirect.com/science/article/pii/S0021999116300298

Haidar A, Dong TT, Tomov S, et al. (2015) A framework for
batched and GPU-resident factorization algorithms applied to
block householder transformations. In: Kunkel JM and
Ludwig T (eds)High Performance Computing, Lecture Notes
in Computer Science. Cham: Springer International Pub-
lishing, 31–47. DOI: 10.1007/978-3-319-20119-1_3.

Hindmarsh AC (2002) SUNDIALS: suite of nonlinear/differential/
algebraic equation solvers. Technical Report UCRL-JC-149711,
Livermore, CA (United States): Lawrence Livermore National
Lab. (LLNL). https://www.osti.gov/biblio/15002968.

Jagode H, Danalis A, Anzt H, et al. (2019) Papi software-defined
events for in-depth performance analysis. The International
Journal of High Performance Computing Applications 33(6):
1113–1127.

Kashi A, Nayak P, Kulkarni D, et al. (2022) Batched sparse it-
erative solvers on GPU for the collision operator for fusion
plasma simulations. In: 2022 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), Lyon, France,
30 May 2022 - 03 June 2022. pp. 157–167. DOI:10.1109/
IPDPS53621.2022.00024.

Kashi A, Nayak P, Kulkarni D, et al. (2023) Integrating batched
sparse iterative solvers for the collision operator in fusion
plasma simulations on GPUs. Journal of Parallel and Dis-
tributed Computing 178. DOI: 10.1016/j.jpdc.2023.03.012
https: / /www.sciencedirect .com/science/art icle/pii /
S0743731523000540

Cojean et al. 15

https://doi.org/10.1109/PESGM46819.2021
https://ieeexplore.ieee.org/document/9652814
https://ieeexplore.ieee.org/document/9652814
https://doi.org/10.1007/3-540-70734-4_16
https://doi.org/10.1007/3-540-70734-4_16
https://doi.org/10.1145/1024074.1024081
https://doi.org/10.1016/j.camwa.2020.06.009
https://doi.org/10.1016/j.jpdc.2014.07.003
https://doi.org/10.1016/j.jpdc.2014.07.003
https://doi.org/10.1145/1391989
https://doi.org/10.1007/978-3-319-06548-9_1
https://doi.org/10.1007/978-3-319-06548-9_1
https://doi.org/10.1137/S0895479899358443
https://doi.org/10.1137/S0895479899358443
https://doi.org/10.48550/arXiv.2303.06195
https://doi.org/10.1016/j.jcp.2016.03.064
https://www.sciencedirect.com/science/article/pii/S0021999116300298
https://www.sciencedirect.com/science/article/pii/S0021999116300298
https://doi.org/10.1007/978-3-319-20119-1_3
https://www.osti.gov/biblio/15002968
https://doi.org/10.1109/IPDPS53621.2022.00024
https://doi.org/10.1109/IPDPS53621.2022.00024
https://doi.org/10.1016/j.jpdc.2023.03.012
https://www.sciencedirect.com/science/article/pii/S0743731523000540
https://www.sciencedirect.com/science/article/pii/S0743731523000540


Ku S, Chang CS and Diamond PH (2009) Full-f gyrokinetic
particle simulation of centrally heated global ITG turbulence
from magnetic axis to edge pedestal top in a realistic tokamak
geometry. Nuclear Fusion 49(11): 115021. DOI: 10.1088/
0029-5515/49/11/115021.

Li XS and Demmel JW (2003) SuperLU_DIST: a scalable
distributed-memory sparse direct solver for unsymmetric
linear systems. ACM Transactions on Mathematical
Software 29(2): 110–140. DOI: 10.1145/779359.
779361.

Naumov M, Arsaev M, Castonguay P, et al. (2015) AmgX: a li-
brary for GPU accelerated algebraic multigrid and pre-
conditioned iterative methods. SIAM Journal on Scientific
Computing 37(5): S602–S626.

Nayak PV (2023) Synchronization-free algorithms for exascale
and beyond : a study of asynchronous and batched iterative
methods. Karlsruhe: Karlsruhe Institute of Technology. PhD
Thesis. DOI: 10.5445/IR/1000165437.

Nonaka A, Day MS and Bell JB (2018) A conservative, ther-
modynamically consistent numerical approach for low Mach
number combustion. Part I: single-level integration. Com-
bustion Theory and Modelling 22(1): 156–184.

NREL (2023a) PeleC: an adaptive mesh refinement solver for
compressible reacting flows. https://github.com/AMReX-
Combustion/PeleC.Original-date:2018-10-19T18:28:
51Z.

NREL (2023b) PeleLMeX: an adaptive mesh hydrodynamics
simulation code for low Mach number reacting flows without
level sub-cycling. Golden, CO: NREL.

NREL (2023c) PelePhysics: a collection of physics databases and
implementation code for use with the Pele suite of of codes.
https://github.com/AMReX-Combustion/PelePhysics.
Original-date:2018-10-18T22:58:09Z.

O’Neill RP, Castillo A and Cain MB (2012) The IV formulation and
linear approximations of the AC optimal power flow problem
(OPF Paper 2). https://www.ferc.gov/industries/electric/indus-
act/market-planning/opf-papers/acopf-2-iv-linearization.pdf.

Petra CG, Chiang N and Wang J (2018) HiOp – user guide. In:
Technical Report LLNL-SM-743591, Center for Applied
Scientific Computing. Livermore, CA: Lawrence Livermore
National Laboratory.

PETSc/Tao: Home page (2021) PETSc/Tao: home page. https://
www.mcs.anl.gov/petsc/index.html.

Rakai L and Rosehart W (2014) GPU-accelerated solutions to
optimal power flow problems 2014 47th Hawaii International
Conference on System Sciences,Waikoloa, Hawaii, USA, Jan
06 - Jan 09, 2014. IEEE, 2511–2516.

Razik L, Schumacher L, Monti A, et al. (2019) A comparative
analysis of LU decomposition methods for power system
simulations 2019 IEEE Milan PowerTech. Milan, Italy, 23-
27 June 2019, IEEE, 1–6.

Ribizel T and Anzt H (2023) Parallel symbolic cholesky factor-
ization Proceedings of the SC ’23 Workshops of the Inter-
national Conference on High Performance Computing,

Network, Storage, and Analysis, SC-W ’23. New York, NY,
USA: Association for Computing Machinery, 1721–1727.
DOI: 10.1145/3624062.

Świrydowicz K, Darve E, Jones W, et al. (2022) Linear solvers
for power grid optimization problems: a review of GPU-
accelerated linear solvers. Parallel Computing 111:
102870.

Świrydowicz K, Koukpaizan N, Ribizel T, et al. (2024) Gpu-resident
sparse direct linear solvers for alternating current optimal power
flow analysis. International Journal of Electrical Power &
Energy Systems 155: 109517. https://www.sciencedirect.com/
science/article/pii/S0142061523005744

Trilinos software (2021) Trilinos software. https://trilinos.
github.io/.

Tsai YH (2024) Portable mixed precision algebraic multigrid on
high performance GPUs. Karlsruhe: Karlsruhe Institute of
Technology. PhD Thesis. DOI: 10.5445/IR/1000168914.

Tsai YHM, Beams N and Anzt H (2022) Mixed precision algebraic
multigrid on gpus International Conference on Parallel
Processing and Applied Mathematics. Berlin: Springer,
113–125.

Tsai YHM, Beams N and Anzt H (2023) Three-precision algebraic
multigrid on gpus. Future Generation Computer Systems 149:
280–293.

Author biographies

Terry Cojean is a research scientist and deputy group leader
at the Karlsruhe Institute of Technology. He obtained his
PhD in Computer Science from the University of Bordeaux.
His interests include task-based runtime systems, efficient
scheduling strategies, software sustainability, software
portability, and GPU computing. He is a core developer of
the Ginkgo software.

Pratik Nayak is a research scientist at Karlsruhe Institute
of Technology. He obtained his PhD in Computer Sci-
ence from Karlsruhe Institute of Technology, Germany
and his Masters from TU Delft, Netherlands. His
research interests include High performance computing,
asynchronous methods, distributed algorithms and nu-
merical linear algebra. He is also interested in sustainable
software development and is a core developer of the
Ginkgo software.

Tobias Ribizel is a research scientist and PhD student at
Karlsruhe Institute of Technology. He obtained his
Masters in Mathematics and Computer Science from
Karlsruhe Institute of Technology. His interests include
graph algorithms, sparse algorithms, direct solvers and
efficient GPU algorithms. He is also interested in
research software engineering and is a core developer of
the Ginkgo software.

Natalie Beams is a research assistant professor in the Inno-
vative Computing Laboratory at the University of Tennessee.

16 The International Journal of High Performance Computing Applications 0(0)

https://doi.org/10.1088/0029-5515/49/11/115021
https://doi.org/10.1088/0029-5515/49/11/115021
https://doi.org/10.1145/779359.779361
https://doi.org/10.1145/779359.779361
https://doi.org/10.5445/IR/1000165437
https://github.com/AMReX-Combustion/PeleC.Original-date:2018-10-19T18:28:51Z
https://github.com/AMReX-Combustion/PeleC.Original-date:2018-10-19T18:28:51Z
https://github.com/AMReX-Combustion/PeleC.Original-date:2018-10-19T18:28:51Z
https://github.com/AMReX-Combustion/PelePhysics.Original-date:2018-10-18T22:58:09Z
https://github.com/AMReX-Combustion/PelePhysics.Original-date:2018-10-18T22:58:09Z
https://www.ferc.gov/industries/electric/indus-act/market-planning/opf-papers/acopf-2-iv-linearization.pdf
https://www.ferc.gov/industries/electric/indus-act/market-planning/opf-papers/acopf-2-iv-linearization.pdf
https://www.mcs.anl.gov/petsc/index.html
https://www.mcs.anl.gov/petsc/index.html
https://doi.org/10.1145/3624062
https://www.sciencedirect.com/science/article/pii/S0142061523005744
https://www.sciencedirect.com/science/article/pii/S0142061523005744
https://trilinos.github.io/
https://trilinos.github.io/
https://doi.org/10.5445/IR/1000168914


She holds a Ph.D. in Theoretical and Applied Mechanics from
the University of Illinois at Urbana-Champaign. Her research
interests include numerical methods for PDEs, scientific
computing, and high-performance computing.

Yu-Hsiang Tsai is a research scientist at Karlsruhe Institute
of Technology. He obtained his PhD in Computer Science
from Karlsruhe Institute of Technology, Germany. His
research interests include HPC, portability, multigrid
methods and mixed-precision algorithms. He is a core
developer of the Ginkgo software.

Marcel Koch is a research scientist at the Karlsruhe Institute
of Technology. He obtained his Ph.D. in Mathematics from
the University of Münster. He is interested in scientific
computing, high-performance computing, and research
software engineering. He is also a member of the core
developer team of Ginkgo.

Fritz Goebel is a research scientist and PhD student at
Karlsruhe Institute of Technology. He obtained his Masters
in Mathematics from Karlsruhe Institute of Technology. His
interests include distributed preconditioners, direct solvers
and mixed-precision solvers. He is a developer of the
Ginkgo software.

Thomas Grützmacher is a Ph.D. student at the Karlsruhe
Institute of Technology and a researcher at the Technical
University of Munich. He received a bachelor’s degree from
the KIT in 2015 with an emphasis on software development
for mobile computing and IoT. In 2018 he completed his
Master’s studies with an emphasis on High-Performance
Computing and unconventional precision formats. Thomas
Grützmacher’s research focus is on designing a modular
precision ecosystem. He also is among the core developer
team of the Ginkgo open-source library.

Hartwig Anzt is the Chair of Computational Mathematics at
the TUM School of Computation, Information and Tech-
nology of the Technical University of Munich (TUM)
Campus Heilbronn. He also holds a Research Associate
Professor position at the Innovative Computing Lab (ICL)
at the University of Tennessee (UTK). Hartwig Anzt holds a
PhD in applied mathematics from the Karlsruhe Institute of
Technology (KIT) and specializes in iterative methods and
preconditioning techniques for the next generation hard-
ware architectures. He also has a long track record of high-
quality development. He is author of the MAGMA-sparse
open source software package and managing lead of the
Ginkgo math software library.

Cojean et al. 17


	Ginkgo 
	1. Introduction
	2. The Ginkgo math library
	2.1. Portability
	2.2. Performance and scalability
	2.3. Productivity
	2.3.1. Inspecting Gnkgo’s internals: The Ginkgo loggers
	2.4. Sustainability

	3.Related work
	5. Mixed precision algebraic multigrid accelerating MFEM simulations
	6. Batched iterative solvers in Pele combustion simulations
	7. Batched iterative solvers in XGC plasma simulations
	8. Sparse direct solvers in ExaSGD simulations
	9. Summary
	Declaration of conflicting interests
	Funding
	ORCID iDs
	Notes
	References
	Author biographies


