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Abstract—This work introduces the Multimodal Diffusion
Transformer (MDT), a novel diffusion policy framework, that
excels at learning versatile behavior from multimodal goal
specifications with few language annotations. MDT leverages a
diffusion-based multimodal transformer backbone and two self-
supervised auxiliary objectives to master long-horizon manip-
ulation tasks based on multimodal goals. The vast majority
of imitation learning methods only learn from individual goal
modalities, e.g. either language or goal images. However, existing
large-scale imitation learning datasets are only partially labeled
with language annotations, which prohibits current methods
from learning language conditioned behavior from these datasets.
MDT addresses this challenge by introducing a latent goal-
conditioned state representation that is simultaneously trained
on multimodal goal instructions. This state representation aligns
image and language based goal embeddings and encodes suffi-
cient information to predict future states. The representation is
trained via two self-supervised auxiliary objectives, enhancing
the performance of the presented transformer backbone. MDT
shows exceptional performance on 164 tasks provided by the
challenging CALVIN and LIBERO benchmarks, including a
LIBERO version that contains less than 2% language annotations.
Furthermore, MDT establishes a new record on the CALVIN
manipulation challenge, demonstrating an absolute performance
improvement of 15% over prior state-of-the-art methods that
require large-scale pretraining and contain 10× more learnable
parameters. MDT shows its ability to solve long-horizon ma-
nipulation from sparsely annotated data in both simulated and
real-world environments. Demonstrations and Code are available
at https://intuitive-robots.github.io/mdt policy/.

I. INTRODUCTION

Future robot agents need the ability to exhibit desired
behavior according to intuitive instructions, similar to how
humans interpret language or visual cues to understand tasks.
Current methods, however, often limit agents to process either
language instructions [55, 64, 56] or visual goals [8, 47]. This
restriction limits the scope of training to fully-labeled datasets,
which is not scalable for creating versatile robotic agents.

Natural language commands offer the greatest flexibility to
instruct robots, as it is an intuitive form of communication
for humans and it has become the most popular conditioning
method for robots in recent years [55, 56, 72]. However,
training robots based on language instructions remains a
significant challenge. Multi-Task Imitation Learning (MTIL)
has emerged as a promising approach, teaching robot agents a
wide range of skills via learning from diverse human demon-
strations [31, 33]. Unfortunately, MTIL capitalizes on large,
fully annotated datasets. Collecting real human demonstrations
is notably time-consuming and labor-intensive.

One way to circumvent these challenges is Learning from
Play (LfP) [32, 37], which capitalizes on large uncurated
datasets. LfP allows for the fast collection of diverse demon-
strations since it does not depend on scene staging, task seg-
mentation, or resetting experiments [32]. Since these datasets
are collected in such an uncurated way, they usually contain
very few language annotations. However, most current MTIL
methods require language annotations for their entire training
set, leaving these methods with too few demonstrations to
train effective policies. In contrast, future MTIL methods
should be able to efficiently utilize the potential of diverse,
cross-embodiment datasets like Open-X-Embodiment [7], with
sparse language annotations. This work introduces a novel ap-
proach that efficiently learns from multimodal goals, and hence
efficiently leverages datasets with sparse language annotations.

Recently, Diffusion Generative Models have emerged as
an effective policy representation for robot learning [6, 47].
Diffusion Policies can learn expressive, versatile behavior
conditioned on language-goals [65, 16]. Yet, none of the
current methods adequately addresses the challenge of learning
from multimodal goal specifications.

This work introduces a novel diffusion-based approach able
to learn versatile behavior from different goal modalities, such
as language and images, simultaneously. The approach learns
efficiently even when trained on data with few language-
annotated demonstrations. The performance is further im-
proved by introducing two simple, yet highly effective self-
supervised losses, Masked Generative Foresight (MGF) and
Contrastive Latent Alignment (CLA). These losses encourage
policies to learn latent features, that encode sufficient informa-
tion to reconstruct partially-masked future frames conditioned
on multimodal goals. Hence, MGF leverages the insight that
policies benefit from informative latent spaces, which map
goals to desired future states independent of their modality.
Detailed experiments and ablations show that the additional
losses enhances the performance of current state-of-the-art
transformer and diffusion policies, with minimal computa-
tional overhead. The introduced Multimodal Diffusion Trans-
former (MDT) approach combines the strengths of multimodal
transformers with MGF and latent token alignment. MDT
learns versatile behavior capable of following instructions
provided as language or image goals.

MDT sets new standards on CALVIN [37], a popular bench-
mark for language-guided learning from play data comprised
of human demonstrations with few language annotations. Re-
markably, MDT requires fewer than 10% of the trainable pa-
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Fig. 1: (Left) Overview of the proposed multimodal Transformer-Encoder-Decoder Diffusion Policy used in MDT. (Right)
Specialized Diffusion Transformer Block for the Denoising of the Action Sequence. MDT learns a goal-conditioned latent
state representation from multiple image observations and multimodal goals. The camera images are processed either via
frozen Voltron Encoders with a Perceiver or ResNets. The separate GPT denoising module iteratively denoises an action
sequence of 10 steps with a Transformer Decoder with Causal Attention. It consists of several Denoising Blocks, as visualized
on the right side. These blocks process noisy action tokens with self-attention and fuse the conditioning information from the
latent state representation via cross-attention. MDT applies adaLN conditioning [42] to condition the blocks on the current
noise level. In addition, it aligns the latent representation tokens of the same state with different goal specifications using
self-supervised contrastive learning. The latent representation tokens are also used as a context input for the masked Image
Decoder module to reconstruct masked-out patches from future images.

rameters and no additional pretraining on large-scale datasets
to achieve an average 15% absolute performance gain in two
CALVIN challenges. In addition, MDT performs exceptionally
on the LIBERO benchmark that consists of 5 task suites
featuring 130 different tasks in several environments. To show
the efficiency of MDT, the tasks are modified such that
only 2% of the demonstrations contain language labels. The
results show that MDT is even competitive to state-of-the-
art methods, that are trained on the fully annotated dataset.
Through a series of experiments and ablations, the efficiency
of the method and the strategic design choices are thoroughly
evaluated. The major contributions of this paper are threefold:

• We introduce Multimodal Diffusion Transformer, a novel
Transformer-based Diffusion approach. MDT excels in
learning from multimodal goals and sets a new state-of-
the-art performance on the CALVIN Challenge and across
all LIBERO task suites.

• Two simple yet effective self-supervised losses for visuo-
motor polices to improve learning from multimodal goals.
MGF and CLA improve the performance of multi-task
behavior learning from sparsely labeled datasets without
additional inference costs.

• A comprehensive empirical study covering over 184
different tasks across several benchmarks, verifying the
performance and effectiveness of MGF and MDT.

II. RELATED WORK

a) Language-Conditioned Robot Learning: Language
serves as an intuitive and understandable interface for human-
robot interactions, prompting a growing interest in language-
guided learning methods within the robotics community. A
growing body of work uses these models as feature generators
for vision and language abstractions for downstream policy
learning [56, 38, 3, 36, 33, 5, 65] and improved language
expression-grounding [13, 19, 45, 66, 61]. Notably, methods
like CLIPPort [54] employ frozen CLIP embeddings for
language-guided pick and place, while others, such as PaLM-
E [9] and RoboFlamingo [27], fine-tune vision-language mod-
els for robot control. Other methods focus on hierarchical skill
learning for language-guided manipulation in LfP [37, 32,
38, 48, 71, 63]. Further, transformer-based methods without
hierarchical structures [72, 8, 47, 64, 51, 49], focus on next-
action prediction based on previous observation tokens. Multi-
Task Action Chunking Transformer (MT-ACT), for instance,
utilizes a Variational Autoencoder (VAE) transformer encoder-
decoder policy, encoding only the current state and a language
goal to generate future actions [3, 11, 70].

Furthermore, diffusion-based methods have gained adoption
as policy representations that iteratively diffuse actions from
Gaussian noise [18, 59]. Several diffusion policy approaches
focus on generating plans on different abstraction levels for



behavior generation. LAD [69] trains a diffusion model to
diffuse a latent plan sequence in pre-trained latent spaces
of HULC [36] combined with HULC’s low-level policy.
UniPy [10] and AVDC [24] directly plan in the image space
using video diffusion models and execute the plan with another
model. Frameworks related to MDT are Distill-Down [16]
and Play-Fusion [5], which also utilize diffusion policies for
language-guided policy learning. Both methods use variants
of the CNN-based diffusion policy [6]. However, all these
methods require fully annotated datasets to learn language-
conditioned policies. MDT effectively learns from multimodal
goals, enabling it to leverage partially annotated datasets.

b) Self-Supervised Learning in Robotics: An increasing
body of work in robotics studies self-supervised representa-
tions for robot control. A key area is learning universal vision
representations or world-models, typically trained on large,
diverse offline datasets using either masking strategies [22, 17,
12, 67, 50, 35] or contrastive objectives [14, 41, 52, 68, 40,
25, 2, 34, 46]. Another body of work explores robust represen-
tations for robot policies from multiple sensors, using token
masking strategies [44] or generative video generation [64].
However, these methods require specific transformer models
that rely on a long history of multiple states, which is a
limitation for token masking and video generation techniques.
Notably, Crossway-Diffusion [26] proposes a self-supervised
loss specifically designed for CNN-based diffusion policies [6]
by redesigning the latent space of the U-net diffusion model to
reconstruct the current image observation and proprioceptive
features for better single task performance.

In order to predict a sequence of future actions efficiently,
some recent approaches deploy transformer-based policies
that encode only the current state information without any
history of prior states [3, 11, 70]. Traditional token masking
strategies [44] or video generation objectives [64] that rely
on token sequences of multiple states for pretraining are
incompatible with such single state models, since they rely on
a history of prior states. To bridge this gap, the proposed MGF
and CLA objectives enhance the capabilities of these single-
state observation policies. MGF and CLA enable learning
of versatile behavior from multimodal goals efficiently and
without additional inference costs and can also be used for
pretraining on action-free data.

c) Behavior Generation from Multimodal Goals: While
recent advancements in goal-conditioned robot learning have
predominantly focused on language-guided methods, there is
a growing interest in developing agents capable of interpreting
instructions across different modalities, such as goal images,
sketches, and multimodal combinations. Mutex [53] presents
an imitation learning policy that understands goals in natural
speech, text, videos, and goal images. Mutex further uses
cross-modality pretraining to enhance the model’s under-
standing of the different goal modalities. Steve-1 [28] is a
Minecraft agent that uses a VAE encoder to translate language
descriptions into the latent space of video demonstrations of
the task, enabling it to follow instructions from both videos or
text descriptions. Other research efforts are exploring novel

conditioning methods. Examples include using the cosine
distance between the current state and a goal description
from fine-tuned CLIP models [50] or employing multimodal
prompts [21] that combine text with image descriptions. Rt-
Sktech and Rt-Trajectory present two new conditioning meth-
ods leveraging goal sketches of the desired scene [72] and
sketched trajectories of the desired motion [15], respectively.
While MDT primarily addresses the two most prevalent goal
modalities, namely text and images, our framework is in theory
versatile enough to incorporate other modalities like sketches.

III. METHOD

MDT is a diffusion-based transformer encoder-decoder ar-
chitecture that simultaneously leverages two self-supervised
auxiliary objectives. Namely Contrastive Latent Alignment
and Masked Generative Foresight. First, the problem definition
is provided. Next, the continuous-time diffusion formulation,
essential for understanding action sequence learning from play,
of MDT is discussed. Followed by an overview of the proposed
transformer architecture of MDT. Afterward, the two novel
self-supervised losses are introduced.

A. Problem Formulation

The goal-conditioned policy πθ(āi|si, g) predicts a se-
quence of actions āi = (ai, . . . ,ai+k−1) of length k, con-
ditioned on both the current state embedding si and a latent
goal g. The latent goal g ∈ {o, l} encapsulates either a
goal-image o or an encoded free-form language instruction
l. MDT learns such policies from a set of task-agnostic play
trajectories T . Each individual trajectory τ ∈ T represents
a series of tuples τ = ((s1,a1), . . . , (sTn

,aTn
)), with ob-

servation si, action ai. The final play dataset is defined as
D = {(si, āi)|āi = (ai, . . . ,ai+k−1), (si,ai) ∈ τ, τ ∈ T }.
During training, a set of goals is created for each datapoint
Gsi,āi

= {oi, li}, where li is the language annotation for the
state si if it exists in the dataset. The goal image oi = si+j is
a future state where the offset j is sampled from the geometric
distribution with bounds j ∈ [20, 50] and probability of 0.1.
MDT maximizes the log-likelihood across the play dataset,

Lplay = E

 ∑
(si,āi)∈D

∑
g∈Gsi,āi

log πθ (āi|si, g)

 . (1)

Human behavior is diverse and there commonly exist multiple
trajectories converging towards an identical goal. The policy
must be able to encode such versatile behavior [4] to learn
effectively from play.

B. Score-based Diffusion Policy

In this section, the language-guided Diffusion Policy for
learning long-horizon manipulation from play with limited
language annotations is introduced. Diffusion models are gen-
erative models that learn to generate new data from random
Gaussian noise through an iterative denoising process. The
models are trained to subtract artificially added noise with
various noise levels. Both the procedures of adding and sub-
tracting noise can be described as continuous time processes



stochastic-differential equations (SDEs) [59]. MDT leverages
a continuous-time SDE formulation [23]

dāi =
(
βtσt−σ̇t

)
σt∇a log pt(āi|si, g)dt+

√
2βtσtdωt, (2)

that is commonly used in image generation [23, 60]. The
score-function ∇āi log pt(āi|si, g) is parameterized by the
continuous diffusion variable t ∈ [0, T ], with constant horizon
T > 0. This formulation reduces the stochasticity to the
Wiener process ωt, which can be interpreted as infinitesimal
Gaussian noise that is added to the action sample. The noise
scheduler σt defines the rate of added Gaussian noise depend-
ing on the current time t of the diffusion process. Following
best practices [23, 47, 60], MDT uses σt = t for the policy.
The range of noise perturbations is set to σt ∈ [0.001, 80]
and the action range is rescaled to [−1, 1]. The function βt

describes the replacement of existing noise through injected
new noise [23]. This SDE is notable for having an associated
ordinary differential equation, the Probability Flow ODE [59].
When action chunks of this ODE are sampled at time t of the
diffusion process, they align with the distribution pt(āi|si, g),

dāi = −t∇āi
log pt(āi|si, g) dt. (3)

The diffusion model learns to approximate the score func-
tion ∇āi

log pt(āi|si, g) via Score matching (SM) [62]

LSM = Eσ,āi,ϵ

[
α(σt)∥Dθ(āi + ϵ, si, g, σt)− āi∥22

]
, (4)

where Dθ(āi + ϵ, si, g, σt) is the trainable neural network.
During training, noise levels from a noise distribution pnoise
are sampled randomly and added to the action sequence
and the model predicts the denoised action sequence. To
generate actions during a rollout, the learned score model
is inserted into the reverse SDE and the model iteratively
denoises the next sequence of actions. By setting βt = 0, the
model recovers the deterministic inverse process that allows
for fast sampling in a few denoising steps without injecting
additional noise into the inverse process [59]. Detailed training
and inference description can be found in subsection A of
the Appendix. For the experiments, MDT uses the DDIM
sampler [59] to diffuse an action sequence in 10 steps.

C. Model Architecture

MDT uses a multimodal transformer encoder-decoder archi-
tecture to approximate the conditional score function of the
action sequence. The encoder first processes the tokens from
the current image observations and desired multimodal goals,
converting these inputs into a series of latent representation
tokens. The decoder functions as a diffuser that denoises a
sequence of future actions. Figure 1 illustrates the architecture.

First, MDT encodes image observations of the current state
from multiple views with image encodings. This work intro-
duces two encoder versions of MDT: MDT-V, a variant with
the frozen Voltron embeddings and MDT, the default model
with ResNets. The MDT-V encoder leverages a Perceiver-
Resampler to improve computational efficiency [1]. Each
image is embedded into 196 latent tokens by Voltron. The
Perceiver module uses multiple transformer blocks with cross
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Fig. 2: The Masked Generative Foresight Auxiliary Task
enhances the MDT model. It starts by encoding the current
observation and goal using the MDT Encoder. The resulting
latent state representations then serve as conditional inputs
for the Future Image-Decoder. This decoder receives encoded
patches of future camera images along with mask tokens. Its
task is to reconstruct the occluded patches in future frames.

attention to compress these Voltron tokens into a total of 3 la-
tent tokens. This procedure results in a highly efficient feature
extractor that capitalizes on pretrained Voltron embeddings.
The MDT encoder uses a trainable ResNet-18 with spatial soft-
max pooling and group norm [6] for each camera view. Each
ResNet returns a single observation token for every image.
Both MDT encoder versions embed goal images and language
annotations via frozen CLIP models [43] per goal-modality
into a single token. After the computation of the embeddings,
both MDT encoders apply the same architecture comprised of
several self-attention transformer layers, resulting in a set of
informative latent representation tokens.

The MDT diffusion decoder denoises the action sequence
with causal masking. Cross-attention in every decoder layer
fuses the conditioning information from the encoder into the
denoising process. The current noise level σt is embedded
using a Sinusoidal Embedding with an additional MLP into
a latent noise token. MDT conditions the denoising process
to the current noise level via AdaLN-conditioning on the
Transformer Decoder blocks [42]. The right part of Figure 1
illustrates this process, including all internal update steps. The
proposed framework separates representation learning from
denoising, resulting in a more computationally efficient model
since the model only needs to encode the latent representation
tokens once. Further, the experiments demonstrate that the
proposed denoising model achieves higher performance than
prior Diffusion-Transformer architectures [6]. MDT uses the
same set of hyperparameters across all experiments.

D. Masked Generative Foresight

A key insight of this work is that policies require an
informative latent space to understand how desired goals will
change the robot’s behavior in the near future. Consequently,
policies that are able to follow multimodal goals have to
map different goal modalities to the same desired behaviors.
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Fig. 3: Overview of the different environments used to test MDT: (Left) CALVIN Benchmark consisting of four environments
each with unique positions and textures for slider, drawer, LED, and lightbulb. (Middle) Overview of the different tasks and
scene diversity in the LIBERO benchmark, which is divided into 5 different task suites. (Right) Example tasks from the real
robot experiments at a toy kitchen, where models are tested after training on partially labeled play data.

Whether a goal is defined through language or represented
as an image, the intermediate changes in the environment are
identical across these goal modalities. The proposed Masked
Generative Foresight, an additional self-supervised auxiliary
objective, builds upon this insight. Given the latent embedding
of the MDT(-V) encoder for state si and goal g, MGF trains
a Vision Transformer (ViT) to reconstruct a sequence of 2D
image patches (u1, . . . ,uU ) = patch(si+v) of the future state
si+v , with v = 3 being the foresight distance used across
all experiments in this work. A random subset of U of these
patches is replaced by a mask token. Even though the ViT
now receives both masked and non-masked patches only the
reconstruction of the masked patches contributes to the loss

LMGF (si) =
1

U

∑
u∈patch(si+v)

1m(u) (u− û)2 , (5)

where the indicator function 1mk(u) is 1 if u is masked
and 0 otherwise. Detailed hyperparameters for the model are
summarized in Table V of the Appendix.

MGF differs from existing approaches [26, 64], which
require full reconstruction of images or videos. While var-
ious other masking methods exist [22], all of them aim
to learn robust representations of the current state, while
MGF reconstructs future states to include foresight into the
latent embedding. MGF is conceptually simple and can be
universally applied to all transformer policies. Section IV-D
shows that the advantages of MGF are not specific to MDT
but also increases the performance of MT-ACT [3].

E. Aligning Latent Goal-Conditioned Representations

To effectively learn policies from multimodal goal speci-
fications, MDT must align visual goals with their language
counterparts. A common approach to retrieve aligned embed-
dings between image and language inputs is the pre-trained

CLIP model, which has been trained on paired image and
text samples from a substantial internet dataset [43]. However,
CLIP exhibits a tendency towards static images and struggles
to interpret spatial relationships and dynamics [66, 39, 36].
These limitations, lead to an insufficient alignment in MTIL
since goal specifications in robotics are inherently linked to the
dynamics between the current state si and the desired goal g.
Instead of naively fine-tuning the large 300-million-parameter
CLIP model, MDT introduces an auxiliary objective that aligns
the MDT(-V) state embeddings conidtioned on different goal
modalities. These embeddings include the goal as well as
the current state information, allowing the CLA objective to
consider the task dynamics.

Since CLA requires a single vector for each goal modality,
the various MDT-V latent tokens are reduced via Multi-head
Attention Pooling [22] and subsequently normalized. MDT
uses the embedding of the static image as a representative
token to compute the contrastive loss. Hence, every training
sample (si, āi) that is paired with a multimodal goals speci-
fication Gsi,āi

= {oi, li} is reduced to the vectors zo
i and zl

i

for images and language goals respectively. CLA computes
the InfoNCE loss using the cosine similarity C

(
zo
i , z

l
i

)
be-

tween the image-goal conditioned state embedding zo
i and the

language-goal conditioned state embedding zl
i

LCLA =− 1

2B

B∑
i=1

log

 exp

(
C(zo

i,z
l
i)

υ

)
∑B

j=1 exp

(
C(zo

i,z
l
j)

υ

)


+ log

 exp

(
C(zo

i,z
l
i)

υ

)
∑B

j=1 exp

(
C(zo

j ,z
l
i)

υ

)

 , (6)

with temperature parameter υ and batch size B. The full MDT



Train Method No. Instructions in a Row (1000 chains)

1 2 3 4 5 Avg. Len.

D

HULC 82.5% 66.8% 52.0% 39.3% 27.5% 2.68±(0.11)
LAD 88.7% 69.9% 54.5% 42.7% 32.2% 2.88±(0.19)
Distill-D 86.7% 71.5% 57.0% 45.9% 35.6% 2.97±(0.04)
MT-ACT 88.4% 72.2% 57.2% 44.9% 35.3% 2.98±(0.05)
MDT (ours) 93.3% 82.4% 71.5% 60.9% 51.1% 3.59±(0.07)
MDT-V (ours) 93.7% 84.5% 74.1% 64.4% 55.6% 3.72±(0.05)

ABCD

HULC 88.9% 73.3% 58.7% 47.5% 38.3% 3.06±(0.07)
Distill-D 86.3% 72.7% 60.1% 51.2% 41.7% 3.16±(0.06)
MT-ACT 87.1% 69.8% 53.4% 40.0% 29.3% 2.80±(0.03)
RoboFlamingo 96.4% 89.6% 82.4% 74.0% 66.0% 4.09±(0.00)
MDT (ours) 97.8% 93.8% 88.8% 83.1% 77.0% 4.41±(0.03)
MDT-V (ours) 98.6% 95.8% 91.6% 86.2% 80.1% 4.52±(0.02)

TABLE I: Performance comparison of various policies learned
end-to-end on the CALVIN ABCD→D and D→D challenge
within the CALVIN benchmark. The table shows the average
rollout length to solve 5 instructions in a row (Avg. Len.)
of 1000 chains. The proposed methods MDT and MDT-V
significantly outperform all reported baselines averaged over
3 seeds on both datasets and sets a sota performance.

loss combines the Score Matching loss, from Eq. (4), the MGF
loss from Eq. (5) and the CLA loss from Eq. (6)

LMDT = LSM + αLMGF + βLCLIP, (7)

where α = 0.1 and β = 0.1 in most experiment settings.

IV. EVALUATION

In this section, we examine the performance of MDT on
CALVIN [37] and LIBERO [29], two established benchmarks
for Language-conditioned Imitation Learning. MDT is tested
against several state-of-the-art methods on both benchmarks.
In addition, we evaluate MDT in a real world play setting.
The experiments aim to answer the following questions:

• (I) Is MDT able to learn long-horizon manipulation from
play data with few language annotations?

• (IIa) Do MGF and CLA enhance the performance of
MDT?

• (IIb) Does MGF improve the performance of other trans-
former policies?

• (III) Can MDT learn language-guided manipulation from
partially labeled data in a real-world setting?

A. Evaluation on CALVIN

The CALVIN challenge [37] consists of four similar but
different environments A, B, C, D. The four setups vary in
desk shades and the layout of items as visualized in Figure 3.
The main experiments for this benchmark are conducted on
the full dataset ABCD→D, where the policies are trained on
ABCD and evaluated on D. This setting contains 24 hours of
uncurated teleoperated play data with multiple sensor modal-
ities and 34 different tasks for the model to learn. Further,
only 1% of data is annotated with language descriptions. All
methods are evaluated on the long-horizon benchmark, which
consists of 1000 unique sequences of instruction chains, de-
scribed in natural language. Every sequence requires the robot
to continuously solve 5 tasks in a row. During the rollouts, the
agent gets a reward of 1 for completing the instruction with

a maximum of 5 for every rollout. We additionally perform
experiments on the small benchmark D→D consisting of only
6 hours of play data to study the data efficiency of our
proposed method.

Baselines. We compare our proposed policy against the fol-
lowing state-of-the-art language-conditioned multi-task poli-
cies on CALVIN:

• HULC: A hierarchical play policy, that uses discrete VAE
skill space with an improved low-level action policy and
a transformer plan encoder to learn latent skills [36].

• LAD: A hierarchical diffusion policy, that extends the
HULC policy by substituting the high-level planner with
a U-Net Diffusion model [69] to diffuse plans.

• Distill-D: A language-guided Diffusion policy from [16],
that extends the initial U-Net diffusion policy [6] with
additional Clip Encoder for language-goals. We use our
continuous time diffusion variant instead of the discrete
one for direct comparison and extend it with the same
CLIP vision encoder to guarantee a fair comparison.

• MT-ACT: A multitask transformer policy [3, 70], that
uses a VAE encoder for action sequences and also
predicts action chunks instead of single actions with a
transformer encoder-decoder architecture.

• RoboFlamingo: A finetuned Vision-Language Founda-
tion model [27] containing 3 billion parameters, that has
an additional recurrent policy head for action prediction.
The model was pretrained on a large internet-scale set of
image and text data and then finetuned for CALVIN.

We adopt the recommended hyperparameters for all baselines
to guarantee a fair comparison and give an overview of
our chosen hyperparameters for self-implemented baselines in
Appendix C. Further, we directly compare the self-reported
results of HULC, LAD, and RoboFlamingo on CALVIN
[69, 36, 27, 69]. All models use the same language and image
goal models to ensure fair comparisons. Since RoboFlamingo
only published the best seed of each model, we can not include
standard deviations in their results.

Results. The results of all our experiments on CALVIN
are summarized in Table I. We assess the performance of
MDT and MDT-V on ABCD→D and on the small subset
D→D. The results are shown in Table I. MDT-V sets a
new record in the CALVIN challenge, extending the average
rollout length to 4.52 which is a 10% absolute improvement
over RoboFlamingo. MDT also surpasses all other tested
methods. Notably, MDT achieves this while having less than
10% of trainable parameters and not requiring pretraining
on large-scale datasets. In the scaled-down CALVIN D→D
benchmark, MDT-V establishes a new standard, outperforming
recent methods like LAD [69] and boosting the average
rollout length by 20% over the second best baseline. While
RoboFlamingo demonstrates commendable performance on
the complete ABCD dataset, it relies on substantial training
data and remains untested on the D→D subset. In contrast,
MDT excels in both scenarios with remarkable efficiency.



Method Lang. Annotation LCLA LMGF Spatial Object Goal Long 90 Average

Transformer-BC [29] 100 % × × 71.8 ± 3.7 71.00 ± 7.9 76.3 ± 1.3 24.2± 2.6 - -

Distill-D [16] 2% × × 46.8± 2.8 72.0± 6.5 63.8± 2.5 47.3± 4.1 49.9± 1.0 56.0± 3.4

MDT

2% × × 66.0± 1.9 85.2± 2.3 67.8± 4.6 65.0± 2.0 58.7± 0.8 68.5± 9.92
2% ✓ × 74.3± 0.8 87.5± 2.7 71.5± 3.5 65.3 ± 2.1 66.9± 1.7 73.1± 8.81
2% × ✓ 67.5± 2.1 87.5± 2.6 69.3± 2.5 63.0± 1.7 62.6± 1.0 70.0± 10.2
2% ✓ ✓ 78.5 ± 1.5 87.5 ± 0.9 73.5 ± 2.0 64.8± 0.3 67.2 ± 1.1 74.3 ± 9.13

TABLE II: Overview of the performance of MDT and baselines with and without our proposed Self-Supervised Losses on
several LIBERO Task suites. All results show the average performance of all tasks averaged over 20 rollouts each and with 3
seeds. MDT does outperform the Transformer-BC baseline in several settings with only 2% of language annotations.

B. Evaluation on LIBERO

We further evaluate various models on LIBERO [29], a
robot learning benchmark consisting of over 130 language-
conditioned manipulation tasks divided into 5 different
task suites: LIBERO-Spatial, LIBERO-Goal, LIBERO-Object,
LIBERO-90, and LIBERO-Long. Each task suite except for
LIBERO-90 consists of 10 different tasks with 50 demonstra-
tions each. To evaluate the ability of MDT to effectively learn
from partially labeled data, we only label a fraction of 2%
with the associated task description. Each task suite focuses
on different challenges of imitation learning: LIBERO-Goal
tests on tasks with similar object categories but different goals.
LIBERO-Spatial requires policies to adapt to changing spatial
arrangements of the same objects. In contrast, LIBERO-Object
maintains he layout while changing the objects. LIBERO-90
is the only suite that consists of 90 different tasks in several
diverse environments and tasks with various spatial layouts.
During evaluation, we test all models on all tasks with 20
rollouts each and average the results over 3 seeds. During the
experiments, we restrict all policies to only use a static camera
and a wrist-mounted one. Further details for all task suites are
provided in subsection E of the Appendix.

Baselines. For our experiments in LIBERO, we report the
performance of MDT, Distill-D and the best transformer base-
line policy from the original benchmark, which was trained
with full language annotations [29].

Results. In the LIBERO task suites, summarized in Ta-
ble II, MDT proves to be effective with sparsely labeled
data, outperforming the Oracle-BC baseline, which relies on
fully labeled demonstrations. MDT not only outperforms the
fully language-labeled Transformer Baseline in three out of
four challenges but also significantly surpasses the U-Net-
based Distill-D policy in all tests by a wide margin, even
without auxiliary objectives. The proposed auxiliary objectives
further improve the average performance of MDT by 8.5%
averaged over all 5 task suites. These outcomes highlight
the robustness of our architecture and affirmatively answer
Question (I) regarding its efficiency.

C. Real Robot Experiments

We investigate research question (III) by assessing the
ability of MDT to learn language-guided manipulations from
partially labeled data in a real-world setting.

Robot Setup. MDT is evaluated on a real-world play
kitchen setup with a 7 DoF Franka Emika Panda Robot. The
toy kitchen has an oven, a microwave, a cooler and a sink. In
addition, we positioned a toaster, a pot and a banana in the
environment for the robot to interact with. A detailed overview
of our setup is given in Figure 6 in the Appendix. The setup
incorporates two static RGB cameras: one positioned above
the kitchen for a bird’s-eye view, and another placed on the
right side of the robot. The action space is the normalized joint
space, [−1, 1], of the robot and the binary gripper control.

Play Dataset. The real-world play dataset encompasses
around 4.5 hours of interactive play data with 20 different
tasks for the policies to learn. Long-horizon demonstrations
consisting of several tasks have been collected by volunteers
via teleoperation. The volunteers were not given any instruc-
tions on how many tasks their demonstration should contain,
which tasks they should perform, in which order tasks should
be performed or which object they should interact with. The
resulting demonstrations vary greatly in their duration and
hence the number of contained tasks. The demonstrations last
from around 30 seconds to more than 450 seconds, and contain
between 5 and 20 tasks. The dataset is partially labeled by
randomly identifying some tasks in the demonstrations and
annotating the respective interval, yielding a total of 360 labels
or approximately 20% of the dataset. Stationary states at the
beginning and end of each demonstration were trimmed and
the camera view was cropped to exclude the teleoperator from
the images. Other than these adjustments no additional pre-
processing was performed on the demonstrations. Hence, the
methods have to learn multimodal goal-conditioned policies
from partially labeled, unsegmented, long-horizon play data.
Training a single agent to perform 20 different skills from such
a dataset is a very hard challenge for the tested approaches.
More detailed descriptions of all 20 tasks with additional
visualizations are provided in Figure 7 in the Appendix.

Single Task Evaluation. First, we test several policies to
complete various single tasks from the play dataset. We test all
policies on a single task setting with 5 rollouts per task. During
each rollout the robot starts from a central, randomized starting
position, which was not used in training. Human observers
decide if a task was solved successfully for each rollout.
We compare MDT with our proposed auxiliary objectives
against MDT trained without them and against MT-ACT. The
goals were given as language instructions. The results are



Model Avg. Single Task

MT-ACT 0.25 ± 0.43
MDT 0.51 ± 0.50
MDT + LMGF + LCLA 0.58 ± 0.49

TABLE III: The single task performance on the real world
dataset with language-conditioned goals. The average is com-
puted over 5 rollouts for each of the 20 tasks. The poor perfor-
mance of MT-ACT showcases the difficulty of this experiment.
MDT performs significantly better with an additional boost
through the auxiliary objectives. and MDT + auxiliary losses.

averaged over 5 rollouts for each of the 20 tasks. The results
are summarized in Table III. The poor performance of 0.25
success rate for a strong state-of-the-art baseline such as MT-
ACT highlights how challenging this setting is. In comparison,
MDT achieves a respectable 0.51 success rate without and 0.58
with the auxiliary objectives. This improvement is consistent
with the evaluations on the LIBERO benchmark.

Long-Horizon Multi-Task Evaluation. Finally, we test
the approaches to complete several instructions in a single
sequence. This requires policies to chain different behaviors
together. An example instruction chain is: ”Push toaster”,
”Pickup toast and put it to sink”, ”Move banana from right
stove to sink”, ”Move pot from left to right stove”, ”Open
oven”, ”Open microwave”. During a rollout, the model only
gets the next goal, if it has completed the prior task suc-
cessfully. We test all policies using 4 different instruction
chains. These instruction chains are detailed in the Appendix.
We evaluate language and image goal-conditioning and report
the average rollout length over all chains averaged over 4
rollouts each. The results are summarized in Table IV. Given
the increased complexity of this experiment over the single
task evaluation the modest performance of all three methods
is not surprising, further highlighting the difficulty of this
setting. Especially when considering, that the entire dataset
only encompasses 4.5h of unsegmented play-data. MT-ACT
again performs significantly worse than MDT, with an average
rollout length of 0.81 vs 1.38 and 0.13 vs 0.56 for the lan-
guage and image goals respectively. Moreover, the experiment
shows an even stronger contribution of the proposed auxiliary
objectives to the overall performance compared to the single
task evaluation. Further details are discussed in the Appendix.

The promising results of MDT compared to the state-of-
the-art MT-ACT baseline in this challenging setting strongly
suggests an affirmative answer to Question (III), especially
with the proposed auxiliary CLA and MGF objectives.

D. Evaluation of Auxiliary Losses

Next, we investigate the significance of our auxiliary self-
supervised loss functions, specifically the CLA and MGF
loss, on MDT’s performance. Figure 4 shows the performance
metrics of the ablated versions with and without these losses.
The inclusion of MGF notably enhances MDT’s performance
on the CALVIN ABCD→D benchmark, improving average

−LCLA − LMGF −LMGF −LCLA Full Model

Task 1 Task 2 Task 3 Task 4 Task 5 Avg. Len.
0.4

0.6

0.8

1

S
u
cc
es
s
R
at
e

Fig. 4: Study on the performance of our proposed Masked
Generative Foresight Loss and the Contrastive Latent Align-
ment Loss for our proposed MDT policy. We analyse the
impact of both auxiliary tasks on the ABCD CALVIN chal-
lenge. The results show the average rollout length over 1000
instruction chains averaged over 3 seeds.

rollout lengths by over 25%. Detailed results supporting the
essential role of these auxiliary tasks in MDT-V are presented
in Table IX within the Appendix, showing that MDT-V
surpasses all baselines with an average rollout length of 4.12
even in the absence of these two losses.

We further study the impact of MGF and CLA on the
LIBERO benchmark (summarized in Table II), where the
auxiliary objectives improve MDT’s success rates in 4 out of
5 task suites, achieving more than a 8.5% increase on average.
The results of these experiments are summarized in Table II.
Interestingly, we observe a synergistic effect when both losses
are applied together. Overall, on LIBERO the performance
impact of CLA is higher than that of MGF, especially on
the LIBERO-90 benchmark. A high number of different task
labels, as it is the case for LIBERO-90, automatically implies
a higher number of contrastive labels for any given tasks. We
hypothesize that this increased number of contrastive labels
leads to the higher performance impact of CLA for LIBERO-
90. The impact on the LIBERO-Goal is the lowest, given
the high initial task success rate. However, the LIBERO-Long
benchmark does not seem to benefit from either MGF or CLA.
The demonstrations of the LIBERO-Long benchmark consist
of several sub-tasks each with a single high-level description
for the entire task. We assume that this lack of sub-goals
prevents the auxiliary losses from providing notable benefits.

To investigate if MGF provides a generally beneficial aux-
iliary objective we integrate it with MT-ACT and evaluate
the model for the full CALVIN ABCD→D benchmark, as
detailed in Table XI in the Appendix. MGF significantly boosts
MT-ACT’s average CALVIN performance by 44%, without
any other modifications to the model or its hyperparameters.
Similarly to the MDT results, MGF also enhances the perfor-
mance of MT-ACT to learn better from multimodal goals with
few language annotations. These positive outcomes for MDT,
along with its effective application to other transformer-based
policies, positively answer research questions (IIa) and (IIb).



Goal Modality Model Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Avg. Rollout Length

Language
MT-ACT 50% 18.75% 12.50% 0% 0% 0% 0.81 ± 1.01
MDT 75% 43.75% 18.75% 0% 0% 0% 1.38 ± 1.05
MDT + LMGF + LCLA 81.25% 56.25% 12.50% 6.25% 0% 0% 1.56 ± 1.06

Images
MT-ACT 12.50% 0% 0% 0% 0% 0% 0.13 ± 0.33
MDT 12.50% 12.50% 6.25% 6.25% 0% 0% 0.38 ± 1.05
MDT + LMGF + LCLA 37.50% 6.25% 6.25% 6.25% 0% 0% 0.56 ± 1.00

TABLE IV: The average rollout length of the different approaches evaluated on the challenging long-horizon real robot play
kitchen dataset. The performance is averaged over 4 instruction chains with 4 rollouts each. MDT clearly outperforms MT-ACT.
The performance of MDT is further increased substantially by the auxiliary CLA and MGF objectives. The relatively short
avg rollout lengths emphasize how challenging this setting is, even for strong state-of-the-art methods such as MT-ACT.
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Fig. 5: Study on the performance of our proposed MGF and
CLA objectives for pretraining on action-free data. We pretrain
MDT on LIBERO-90 with the objectives and test the average
performance on all LIBERO-Long tasks with different number
of demonstrations. The results show the success rate averaged
over 20 rollouts for all 10 tasks and 3 seeds. LfS refers to
trained from scratch and PrT are all pretrained models.

E. Additional Ablation Studies

This section investigates several design choices for MDT
and the proposed auxiliary objectives. First, we explore the im-
portance of using pre-trained CLIP embeddings and test MGF
and CLA as pretraining objective for diffusion policies. Next,
we ablate several design decisions of MGF and our proposed
transformer architecture and how they impact performance.

Choice of Goal Image Encoder. We analyze the importance
of using pre-trained CLIP encoders for MDT to process goal
images. MDT is tested with ResNet Encoders for goal images,
which are trained from scratch together with text embedding
of a frozen CLIP model on CALVIN ABCD. The MDT
model without our auxiliary tasks achieves an average rollout
length of 3.34, which is equal to the MDT variant with
the frozen CLIP embeddings. The MDT variant with both
auxiliary objectives achieves an average rollout length of 4.31,
which is slightly worse compared to the variant with pre-
trained encoders average performance of 4.41. The detailed
results of this experiment are summarized in Table IX of the
Appendix. Overall, the ablation shows that pretrained CLIP
image embeddings are not required for MDT to succeed in
learning from partially labeled datasets.

Pretraining with MGF and CLA. In this analysis, we

assess the capability of CLA and MGF for pretraining MDT on
only video-data without access to the robot actions. Therefore,
we pretrain MDT with both auxiliary tasks on LIBERO-90
and test its downstream performance on LIBERO-Long, which
contains unseen tasks. We compare the pretrained variant
against MDT trained from scratch on this dataset and ablations,
that omit auxiliary objectives for fine-tuning. For the LIBERO-
Long experiment, we restrict all policies to learn from 5
or 20 demonstrations only. For both settings we only label
10% of all trajectories with the associated text instruction.
The results of these experiments are summarized in Figure
5. Initializing MDT with our pretrained weights boost the
performance in the 5 demonstration setting by 100% and by
25% in the variant with 20 demonstrations. Further, these
experiments demonstrate, that both auxiliary objectives also
improve performance of MDT with fewer demonstrations
on LIBERO-Long independent on the pretraining. The per-
formance increase of MDT trained from scratch with both
auxiliary objectives also verifies, that CLA and MGF help
MDT to learn better in scenarios with small datasets.

Masked Generative Foresight. Next, we study the different
design choices of our MGF loss and compare them against
ablations. Our primary focus is on assessing the impact of
different masking ratios, ranging from 0.5 to 1, where 1
corresponds to a full reconstruction of the initial future image.
The results indicate that a masking ratio of 0.75 achieves
the best average performance, which is a value commonly
used in other masking methods [22]. Thus, we use it as
the default masking rate across all experiments in the paper.
Further details of this analysis are provided in Table VIII in
the Appendix. Additionally, we investigate the ideal foresight
distance for MGF and evaluate it in two environments. MDT
adopts a foresight distance of v = 3 as this setting consistently
delivers strong performance across various scenarios. While
a higher foresight distance of v = 9 does exhibit similar
performance to a short distance of v = 1, it is also associated
with increased variance in results. Further results of these
investigations are presented in Table X in the Appendix.

Transformer Architecture. MDT is tested against two Dif-
fusion Transformer architectures previously described in [6].
The ablations are visualized in Figure 8 of the Appendix.
These comparisons are conducted on the CALVIN ABCD→D
challenge, with detailed results featured in IX in the Appendix.



In the first ablation study, we incorporated a noise token as an
additional input to the transformer encoder. This was done to
assess the effect of excluding adaLN noise conditioning. The
second ablation represents the diffusion transformer architec-
ture from [6], which does not use any encoder module. MDT-
V, when trained without any auxiliary objective, achieves an
average rollout length of 4.18. The ablation without adaLN
conditioning only achieves an average rollout length of 3.58.
Notably, the complete omission of the transformer encoder
led to a significantly lower average rollout length of 1.41.
The experiments show, that the additional transformer encoder
is crucial for diffusion policies to succeed in learning from
different goals. In addition, separating the denoising process
from the encoder and using adaLN conditioning further helps
to boost performance and efficiency.

F. Limitations

While MDT shows strong performance on learning from
multimodal goals, it still has several limitations: 1) While we
verify the effectiveness of our method in many tasks, MGF
and CLA do not increase the performance on LIBERO-Long,
2) The performance impact of MGF and CLA varies across
different benchmarks. On LIBERO, CLA has a higher impact,
and on CALVIN, it’s the opposite. 3) Diffusion Policies
require multiple forward passes to generate an action sequence,
resulting in lower inference speed compared to non-diffusion
approaches. 4) The average rollout lengths of MDT and the
baseline on the real robot multi-tasks are relatively short.
We credit this to the difficulty of the setting itself. Learning
from partially labeled, unsegmented, long-horizon play data
is a very challenging task. We further hypothesize that the
placement of the cameras is not ideal, as the robot significantly
suffers from self-occlusion. The introduction on an in-hand
camera could alleviate this problem.

V. CONCLUSION

In this work, we introduce MDT, a novel continuous-time
diffusion policy adept at learning long-horizon manipulation
from play, requiring as little as 2% language labels for effective
training. To further improve effectiveness, we propose MGF
and CLA as simple, yet highly effective auxiliary objectives
to learn more expressive behavior from multimodal goal
specifications. By reconstructing future states from multimodal
goal specification and aligning these state representations in
the latent space, the auxiliary objectives improve downstream
policy learning without additional cost during inference. We
rigorously tested MDT across a diverse set of 184 tasks in
both simulated environments and real-world settings. These
extensive experiments not only validate our proposed auxiliary
loss but also demonstrate the efficiency of the MDT policy.
Notably, MDT sets two records on the CALVIN benchmark
and improves over prior sota with an average 15% abso-
lute performance increase. Moreover, in detailed studies, we
demonstrate that our auxiliary objectives improve learning
from multimodal goals.

In future work, we would like to investigate the advantages
of additional goal-modalities like sketches in MDT. Further-
more, we plan to scale MDT towards a versatile foundation
policy by pretraining the model on the large-scale, partially
labeled Open-X-Embodiment dataset [7].

ACKNOWLEDGMENTS

The work was funded by the German Research Foundation
(DFG) – 448648559. The authors also acknowledge support
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Hyperparameter CALVIN LIBERO Real World

Number of Layers 6 2 2
Hidden Dimension 192 192 192
Image resolution 112 112 112
Masking Ratio 0.75 0.75 0.75
MLP Ration 4 4 4
Patch size 16 16 16

Norm Pixel Loss True True True

TABLE V: Overview of the chosen hyperparameters for our
Image Demasking Model used in the MGF loss, that uses a
vision transformer architecture.

APPENDIX

A. Diffusion Model Training and Inference

The training process for the score matching loss of MDT is
summarized in Alg. 1 and the reverse diffusion process used
for generating action chunks with DDIM sampler during the
rollouts is summarized in Alg. 2. Further, an overview of the
used hyperparameters is given in Table VII. To increase the
performance, we deploy the preconditioning of Karras et al.
[23]. This includes additional skip-connections and two pre-
conditioning layers, which are conditioned on the current noise
level σt for effective balancing of the high range of noise levels
from 0.001 to 80

Dθ(āi|si, g, σt) = cskip(σt)āi

+cout(σt)Fθ(cin(σt)āi, si, g, cnoise(σt)).
(8)

The utilized reconditioning functions are defined as:
• cskip = σ2

data/(σ
2
data + σ2

t )
• cout = σtσdata/

√
σ2

data + σ2
t

• cin = 1/
√
σ2

data + σ2
t

• cnoise = 0.25 ln(σt)

They allow the model to decide, if it wants to predict the
current noise, the denoised action sequence or something in
between, depending on the current noise level [23]. For our
noise distribution, we use a truncated Log-Logistic Distribu-
tion in range of [σmin, σmax].

B. Goal Sampling Strategy

We experimented with different sampling strategies and
ranges of future widows. We found that geometric sampling
with a distribution probability of p = 0.1 works well in all
tested settings on CALVIN. Other experiments with random
sampling showed small drops in performance, while trials with
key-state-based goal states similar to RLBench [20] did not
work well in any setting. Thus, we decided to use the same
strategy for CALVIN and real robot experiments.

C. Baseline Implementations

MT-ACT. An overview of the used hyperparameters of MT-
ACT is given in Table VII. We tried to stay close to the
recommended hyperparameters from the original paper [3] but
optimized the action prediction length and the Kl-β factor
for CALVIN. Empirically, we found that FiLM-conditioned
ResNets do not perform well conditioned on image-goal or

Hyperparameter Distill-D

Action Chunk Size 8
Timestep-embed Dimensions 256

Image Encoder ResNet18
Channel Dimensions [512, 1024, 2048]

Learning Rate 1e-4
σmax 80
σmin 0.001
σt 0.5

Time steps Exponential
Sampler DDIM

Sampling Steps 10
Trainable Parameters 318 M

Optimizer AdamW
Betas [0.9, 0.9]

Goal Image Encoder CLIP ViT-B/16
Goal Lang Encoder CLIP ViT-B/32

TABLE VI: Overview of the hyperparameters for Distill-D
on the CALVIN and LIBERO benchmark. Our code is based
on the Diffusion-policy implementation from Chi et al. [6]
with our continuous-time diffusion variant. To guarantee a
fair comparison the hyperparameters for Distill-D and MDT
regarding diffusion are the same.

in combination with not using any FiLM conditioning when
having image goals. Thus, we adopted default ResNets as
the vision encoders for MT-ACT, as other experiments with
pre-trained Voltron-Encoders [22] did not show good results
and reduced the performance over 20% on the CALVIN
benchmark ABCD→D.

Distill-D. We use the reported hyperparameters of Chi
et al. [6] in combination with two ResNets18 and frozen
CLIP encoders for visual and language goals as described
in Ha et al. [16]. The resulting model contains 296.6 million
trainable parameters in the 1D-CNN and an additional 22.4
million parameters for two ResNets-18. We also experimented
with pretrained Voltron embeddings for Distill-D, however
similar to MT-ACT Voltron did not show any performance
improvements.

D. CALVIN Experiment Details

For our experiments in the CALVIN benchmark, we use
the evaluation protocol as described in Mees et al. [37]
for consistent comparisons with other approaches from prior
work [69, 36, 27]. All methods are trained with two images
from the static camera and the wrist camera. We applied
random shift augmentation for both images, then resized the
static camera image to 224 × 224 pixels and the gripper
camera images to 84 × 84 pixels. Finally, we normalized
all images with the recommended values from CLIP. The
action space is delta end-effector actions and gripper signals.
While Distill-D has shown a preference for position-based
control, our experiments across various models demonstrated
superior performance with the default setting of velocity-based
control. We utilize the same CLIP image and language goal
encoding models for all internally tested models. For goal-
image generation in the unlabeled data segment, we employ
geometric sampling with a variance of 0.1 and a future frame



Fig. 6: Overview of the real robot kitchens setup. The left image shows the play kitchen with all its objects, while the right
image shows the cameras and second robot used for data collection with our robot used for teleoperation.

Hyperparameter MT-ACT MDT-V MDT
Number of Encoder Layers 4 4 4
Number of Decoder Layers 6 4 6
Attention Heads 8 8 8
Action Chunk Size 10 10 10
Goal Window Sampling Size 49 49 49
Hidden Dimension 512 384 512
Action Encoder Layers 2 - -
Action Encoder Hidden Dim 192 - -
Latent z dim 32 - -
Image Encoder ResNet18 Voltron V-Cond ResNet18
Attention Dropout 0.1 0.3 0.3
Residual Dropout 0.1 0.1 0.1
MLP Dropout 0.1 0.05 0.05
Input Dropout 0.0 0.0 0.0
Optimizer AdamW AdamW AdamW
Betas [0.9, 0.9] [0.9, 0.9] [0.9, 0.9]
Transformer Weight Decay 0.05 0.05 0.05
Other weight decay 0.05 0.05 0.05
Batch Size 512 512 512
Trainable Parameters 122 M 40.0 M 75.1 M
σmax - 80 80
σmin - 0.001 0.001
σt - 0.5 0.5
Time steps - Exponential Exponential
Sampler - DDIM DDIM
Kl-β 50 - -
Contrastive Projection - MAP Single Token 1
Goal Image Encoder CLIP ViT-B/16 CLIP ViT-B/16 CLIP ViT-B/16
Goal Lang Encoder CLIP ViT-B/32 CLIP ViT-B/32 CLIP ViT-B/32

TABLE VII: Summary of all the Hyperparameters for the MDT policy used in the CALVIN experiments and the ones of
MT-ACT.

Masking Rate CALVIN D LIBERO-Spatial

0.5 3.7 ± 0.04 67.8 ± 0.3
0.75 3.72 ± 0.05 67.5 ± 0.2

1 3.68 ± 0.03 63.7 ± 0.3

TABLE VIII: Ablation on different Masking Rates for Masked
Generative Foresight, tested on CALVIN D→D with MDT-V
and on LIBERO-Spatial with MDT.

range of 20 − 50 to randomly select goal images for our
policies. All policies are trained for twenty thousand steps
on the smaller dataset and thirty thousand on the complete
dataset. Extended training duration did not yield performance
enhancements, and considering the substantial computational
demands of training on the full dataset, we avoided prolonged
training duration.



Method LCLA LMGF
No. Instructions in a Row (1000 chains)

1 2 3 4 5 Avg. Len.

MDT-V Abl. 1 × × 0.914 0.782 0.675 0.588 0.487 3.58 ± 0.18
MDT-V Abl. 2 × × 0.693 0.405 0.190 0.092 0.031 1.41 ± 0.04

MDT-V × × 0.971 0.907 0.840 0.766 0.698 4.18 ± 0.10
MDT-V ✓ × 0.977 0.927 0.868 0.808 0.786 4.32 ± 0.06
MDT-V × ✓ 0.986 0.946 0.903 0.851 0.794 4.48 ± 0.03
MDT-V ✓ ✓ 0.989 0.958 0.916 0.862 0.801 4.52 ± 0.02

MDT × × 0.882 0.753 0.653 0.557 0.481 3.34 ± 0.06
MDT+Goal ResNets × × 0.886 0.764 0.651 0.565 0.48 3.34 ± 0.05
MDT ✓ ✓ 0.978 0.938 0.888 0.831 0.77 4.41 ± 0.03
MDT+Goal ResNets ✓ ✓ 0.978 0.923 0.862 0.807 0.735 4.31 ± 0.08

TABLE IX: Overview of the performance influence of MGF and Contrastive Alignment on MDT-V on the CALVIN ABCD→D
challenge. In addition, the performance of both transformer ablations are also shown. Moreover, results for MDT with ResNets
as image goal encoders are reported with and without auxiliary objectives. The results are reported over 1000 rollouts averaged
over 3 seeds.

CALVIN ABCD LIBERO-Spatial

1 4.50 ± 0.02 64.4 ± 0.4
3 4.52 ± 0.02 67.5 ± 0.2
9 4.44 ± 0.03 65.6 ± 0.5

TABLE X: Ablation on the best prediction horizon for Masked
Generative Foresight, tested on CALVIN ABCD→D with
MDT-V and LIBERO-Spatial with MDT.

Policy Avg. Len. CALVIN

MT-ACT 2.80 ± 0.03
MT-ACT + LMGF 4.03 ± 0.08

TABLE XI: Evaluation of the Performance Increase of the MT-
ACT policy with the additional Masked Generative Foresight
Loss on the CALVIN ABCD→D challenge.

E. LIBERO Experiment Details

The LIBERO task suites [29] consists of 5 different ones in
the benchmark with 50 demonstrations per task. To emulate a
scenario with sparse language labels, we divided the dataset
into two segments: one set consists of single demonstrations
accompanied by language annotations, and the other comprises
49 demonstrations without labels. For generating goal images,
we utilized the final state of each rollout. We used the default
end-effector action space in all our experiments. Consistent
with the CALVIN setup, we employed identical image aug-
mentation methods to prepare our data. We trained all models
for 50 epochs and then tested them on 20 rollouts averaged
over 3 seeds. The benchmark is structured into five distinct
task suites, each designed to test different aspects of robotic
learning and manipulation:

• Spatial: This suite emphasizes the robot’s ability to
understand and manipulate spatial relationships. Each
task involves placing a bowl, among a constant set of
objects, on a plate. The challenge lies in distinguishing

between two identical bowls that differ only in their
spatial placement relative to other objects.

• Goal: The Goal suite tests the robot’s proficiency in
understanding and executing varied task goals. Despite
using the same set of objects with fixed spatial relation-
ships, each task in this suite differs in the ultimate goal,
demanding that the robot continually adapt its motions
and behaviors to meet these varying objectives.

• Object: Focused on object recognition and manipulation,
this suite requires the robot to pick and place a unique
object in each task.

• Long: This suite comprises tasks that necessitate long-
horizon planning and execution. The Long suite is par-
ticularly challenging, as it tests the robot’s ability to
maintain performance and adaptability over extended task
duration.

• 90: Offering a diverse set of 90 short-horizon tasks across
five varied settings.

F. Real Robot Experiments

Detailed Environment Overview. Our real robot setup with
the toy kitchen is visualized in Figure 6. In the kitchen the
robot can interact with the microwave positioned on the top
right, the oven in the lower left half of the kitchen, the cooler
on the lower-right side of the kitchen and the sink on the right
side of the counter top. The robot is positioned next to a toy
kitchen with the following additional objects: a banana, a pot,
a toaster with toast. In total we create a set of 20 diverse tasks
for the robot to learn from the partially labeled play data. All
tasks of our dataset are shown in Figure 7.

Play Dataset Collection. Our volunteers collect play data
with teleoperation with a leader and follower robot setup,
which is visualized in Figure 6. During the teleoperation,
we collect the robot’s proprioceptive sensor data and two
images from our two static cameras with 6 Hz. We extract
the desired joint position as our action signal and normalize



Task No. MT-ACT MDT MDT MGF
Banana from rt stove to sink 1 0 0.8 1.0
Banana from sink to rt stove 2 0 0.8 1.0
Pot from rt stove to sink 3 0 0 0
Pot from sink to rt stove 4 0.4 0.8 0
Pot from lt stove to sink 5 0 0.8 0.6
Pot from sink to lt stove 6 0 0 1.0
Pot from lt to rt stove 7 0.2 0.2 0
Pot from rt to lt stove 8 0 0.6 1.0
Open microwave 9 1.0 1.0 1.0
Close microwave 10 0 1.0 0
Open oven 11 1.0 1.0 1.0
Close oven 12 0 0 0
Open ice box 13 1.0 1.0 1.0
Close ice box 14 0 1.0 0
Pull oven tray 15 0.6 0 0.2
Push oven tray 16 0.4 0 0.2
Banana from rt stove to tray 17 0 0 0.4
Banana from tray to rt stove 18 0 0 1.0
Push toaster 19 0 0.2 1.0
Toast to sink 20 0.4 1.0 1.0

TABLE XII: Detailed results of our real robot kitchen exper-
iments for single-task setting with language goals. All results
are averaged over 5 rollouts. ”right” and ”left” are abbreviated
with ”rt” and ”lt”.

MT-ACT (Language Goals) T1 T2 T3 T4 T5 T6
1: Random 0.0 0.0 0.0 0.0 0.0 0.0
2: Open Close All 1.0 0.75 0.5 0.0 0.0 0.0
3: Stovetop Sink 0.5 0.0 0.0 0.0 0.0 0.0
4: Oven 0.5 0.0 0.0 0.0 0.0 -

MT-ACT (Image Goals) T1 T2 T3 T4 T5 T6
1: Random 0.0 0.0 0.0 0.0 0.0 0.0
2: Open Close All 0.0 0.0 0.0 0.0 0.0 0.0
3: Stovetop Sink 0.5 0.0 0.0 0.0 0.0 0.0
4: Oven 0.0 0.0 0.0 0.0 0.0 -

MDT (Language Goals) T1 T2 T3 T4 T5 T6
1: Random 0.75 0.75 0.0 0.0 0.0 0.0
2: Open Close All 1.0 1.0 0.75 0.0 0.0 0.0
3: Stovetop Sink 0.75 0.0 0.0 0.0 0.0 0.0
4: Oven 0.5 0.0 0.0 0.0 0.0 -

MDT (Image Goals) T1 T2 T3 T4 T5 T6
1: Random 0.5 0.5 0.25 0.25 0.0 0.0
2: Open Close All 0.0 0.0 0.0 0.0 0.0 0.0
3: Stovetop Sink 0.0 0.0 0.0 0.0 0.0 0.0
4: Oven 0.0 0.0 0.0 0.0 0.0 -

MDT + LMGF + LLCA (Language Goals) T1 T2 T3 T4 T5 T6
1. Random 1.0 0.75 0.25 0.25 0.0 0.0
2. Open Close All 1.0 1.0 0.25 0.0 0.0 0.0
3. Stovetop Sink 0.5 0.25 0.0 0.0 0.0 0.0
4. Oven 0.75 0.25 0.0 0.0 0.0 -

MDT + LMGF + LLCA (Image Goals) T1 T2 T3 T4 T5 T6
1: Random 0.25 0.25 0.25 0.25 0.0 0.0
2: Open Close All 0.5 0.0 0.0 0.0 0.0 0.0
3: Stovetop Sink 0.25 0.0 0.0 0.0 0.0 0.0
4: Oven 0.5 0.0 0.0 0.0 0.0 -

TABLE XIII: Detailed results of our long-horizon, real robot
multi-task experiments.

it in the range [−1, 1]. To label the data with additional text
instructions, we randomly sample short sequences from our
uncurated play dataset and ask a human to describe the task
in this segment. In total, we generate 360 labeled short-horizon
segments for the model training. For every task we query
GPT-4 to generate different text instructions for more diverse
language descriptions. We note, that training a single policy on

such a small dataset of real world play data is very challenging
for the models.

Policy Training. We train all tested policies on our pro-
cessed real robot data for around 24 hours with a small cluster
consisting of 4 GPUs for around 100 epochs. For checkpoint
selection, we use the checkpoint with the lowest validation
loss. For MT-ACT, we selected the last epoch since our prior
experience with the benchmarks indicated an improvement in
performance even when the validation loss began to rise again.

Evaluation Details. We collect 10 goal images of each
task from our play dataset to test image-conditioning, and
in addition we have a set of 10 different text instructions
for each task. Each policy is tested 5 times from a starting
position not seen in training with some added noise to it.
Further, we test our policies on long-horizon setup, where
we define 4 different instruction chains consisting of 5 or 6
tasks in sequence. During these rollouts, we observe the robot,
if the policy completes the desired sub-task and only give it
the next goal description if he manages to complete the prior
task successfully. During our experiments, we further vary the
orientation of the banana slightly for the robot to pick up,
while we keep the toaster at the same position during all our
experiments. Detailed results for all our experiments for single
task and multi-task setting are summarized in Table XII and
Table XIII. Task sequences used in the multi-task evaluation
are listed in the following:

1) Random: Push toaster, Pickup toast and put to sink,
Banana from right stove to sink, Pot from left to right
stove, Open oven, Open microwave

2) Open Close All: Open microwave, Open oven, Open
ice box, Close ice box, Close oven, Close microwave

3) Stovetop Sink: Banana from right stove to sink, Push
toaster, Pot from left to right stove, Pickup toast and put
to sink, Pot from right to left stove, Banana from sink
to right stove

4) Oven: Open oven, Pull oven tray, Banana from right
stove to oven tray, Push oven tray, Close oven

Failure Cases. Both variants of MDT struggle to solve all
tasks related to moving the banana and the pot to specific
positions. Especially the two tasks ”Move the pot/banana from
the right stove to the sink” is often misunderstood by all
tested policies. We hypothesize, that the policies don’t have
enough labels to learn to differentiate between these similar
states. Policies also struggle solving tasks where they need to
close a door, or push the oven tray. These tasks are ”Close
oven/microwave/ice box” and ”Push oven tray”. Most of the
time, the policies failed these tasks by a few millimeters. We
hypothesize, that these tasks included tight actions which have
varying degrees of ”openness” and had quick demonstrations
in the dataset. These factors combined is likely the reason why
the policies failed these tasks by a narrow margin.



Move banana from right stove to oven tray Move pot from sink to left stove Open the microwave

Move pot from left to right stove Move banana from tray to right stove Pull the oven tray

Move banana from right stove to sink Close the oven Push the toaster lever

Move pot from right to left stove Move pot from right stove to sink Open the ice box

Open the oven Push the oven tray Close the microwave

Move banana from sink to right stove Move pot from left stove to sink Close the ice box

Pick up toast and put it in the sink Move pot from sink to right stove

Fig. 7: Overview of the 20 tasks recorded during play from the both camera perspectives. We test our policies on these tasks
during evaluation after training on a partially labeled dataset.



Algorithm 1 Score Matching Loss [58]

1: Require: Play Dataset Lplay
2: Require: Score Model

Dθ(āi, si, g, σt)
3: Require: Noise Distribution:

LogLogistic(α, β)
4: for i ∈ {0, ..., Ntrain steps} do
5: Sample (o, g) ∼ Lplay
6: Sample σt ∼ LogLogistic(α, β)
7: Sample ϵ ∼ N (0, σt)
8: LDθ

← Eσ,āi,ϵ

[
α(σt)

∥Dθ(āi + ϵ, si, g, σt)− āi∥22
]

9: end for

Algorithm 2 DDIM Sampler as DPM-Solver-1 [30, 57]

1: Require: Current state si, goal g
2: Require: Score Model Dθ(a, si, g, σ)
3: Require: Noise scheduler σi = σ(ti)
4: Require: Discrete time steps ti∈{0,..,N}
5: Draw sample a1:k,0 ∼ N (0, σ2

0I)
6: for i ∈ {0, ..., N − 1} do
7: t, tnext ← tfn(σi), tfn(σi+1)
8: h← tnext − t
9: a1:k,i+1 ← σfn(tnext)

σfn(t)
a1:k,i

− exp(−h)Dθ(a1:k,, si,g, σi)
10: end for
11: return a1:k,N
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Fig. 8: Overview of the two Diffusion Transformer Baseline
Architectures used for the Ablation Study. The first variant
uses a transformer encoder but also processes the noise as a
token. The second one is the Transformer Diffusion policy
presented in Chi et al. [6] without any encoder.
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Fig. 9: Real Robot rollouts with goal image conditioning. The first column shows the goal image used for the rollout. 4 out
of 6 tasks are successful. The robot fails to open the oven door and opens the ice box instead.
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