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Abstract
The increasing generation of data in different areas of life, such as the environment, highlights the need to explore new
techniques for processing and exploiting data for useful purposes. In this context, artificial intelligence techniques, especially
through deep learning models, are key tools to be used on the large amount of data that can be obtained, for example, from
weather radars. In many cases, the information collected by these radars is not open, or belongs to different institutions, thus
needing to deal with the distributed nature of this data. In this work, the applicability of a personalized federated learning
architecture, which has been called adapFL, on distributed weather radar images is addressed. To this end, given a single
available radar covering 400 km in diameter, the captured images are divided in such a way that they are disjointly distributed
into four different federated clients. The results obtained with adapFL are analyzed in each zone, as well as in a central
area covering part of the surface of each of the previously distributed areas. The ultimate goal of this work is to study the
generalization capability of this type of learning technique for its extrapolation to use cases in which a representative number
of radars is available, whose data can not be centralized due to technical, legal or administrative concerns. The results of this
preliminary study indicate that the performance obtained in each zone with the adapFL approach allows improving the results
of the federated learning approach, the individual deep learning models and the classical Continuity Tracking Radar Echoes
by Correlation approach.
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Introduction andmotivation

Privacy issues and legal restrictions that apply to the field
of images and their processing through machine and deep
learning (ML and DL) models are clear, for example, in the
medical field, where it is essential to preserve the privacy
of patients. In this case, it happens that in many cases the
images taken in a certain center, such as a hospital, cannot be
centralized together with images taken by other institutions.
However, this problem regarding data centralization can be
due to other reasons and in other areas, such as those related
to data storage capacity, connectivity restrictions, or even
a lack of computational resources that prevent the training
of models on large amounts of data, making decentraliza-
tionmore convenient. In this context, federated learning (FL)

Communicated by: Hassan Babaie

Extended author information available on the last page of the article

architectures allow training ML/DL models in a distributed
way, without having to centralize the data in a central server
(McMahan et al. 2017). These architectures achieve robust-
ness by aggregating models trained individually by each data
owner or client.

This work is focused on images captured by weather
radars. Nowadays, there is an increasing demand for weather
forecastswith high spatial accuracy,which is boosting private
weather forecasting products, e.g. through the installation of
private infrastructure such as radars. Their distributed nature,
as well as the often proprietary nature of the data, makes it
an ideal fit for the FL approach. In addition, high resolution
radars produce large data volumes, which are inconvenient
to share in order to train a centralized model.

In particular, weather radars are an effective tool for
precipitation nowcasting, whose frequency and intensity is
expected to be affected by climate change, as well as var-
ious other types of extreme weather events (Svoboda et al.
2016; Rajczak and Schär 2017; Hanel and Buishand 2010;
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Hosseinzadehtalaei et al. 2020). There are several references
that provide clear evidence, such as a fatal flash flood (Svo-
boda and Pekárová 1998) and the deadliest European tornado
since 2001 (Korosec 2021; Komjáti et al. 2022).

In this work, we develop a novel personalized federated
learning (PFL) approach due to the inherent heterogeneous
nature of radar-based precipitation data. The aim of PFL is
to address the main challenges that faces FL, like its poor
convergence on highly heterogeneous data and its lack of
generalization ability beyond the global distribution of the
data (Tan et al. 2022). For this study, the images captured
by the radar are divided in four quadrants, simulating a use
case in which each radar would cover a sub-area of the total
region of interest. We study the predictive and generalization
capacity of the resulting models, in order to assess the appli-
cability of these methods to real-world use cases, in which
data comes from different radars potentially located in dif-
ferent countries. The motivation for addressing this study is
two-fold: (1) to enhance collaboration between institutions
handling such data without sharing it, (2) to study if training
models under a personalized federated learning architecture
provide better results than training with individual data from
each radar or area of capturing. This is of particular interest
when data cannot be centralized due to technical, computa-
tional or storage restrictions. In addition, we can mobilize
computing wherever data is available, even using isolated
GPUs or compute nodes for this task.

The remainder of this work is structured as follows: Sec-
tion “State of the art” presents the state of the art regarding
the research areas concerning artificial intelligence models
andmeteorology, together with the recent state of the art con-
cerning the application of FL in different use cases and PFL.
Section “Data” summarizes the data used during this study,
aswell as the distribution carried out for the purpose of apply-
ing the FL and PFL approaches. Section “Methodology”
describes themethodology implemented for the development
of the models used to carry out the predictions, together with
the proposal of a novel PFLarchitecture (namely adaptiveFL,
adapFL). Section “Results and analysis” presents the results,
together with their analysis. In Section “Discussion” a dis-
cussion concerning different limitations of the study and the
data used is presented. Finally, Section “Conclusions” draws
the conclusions together with future lines of work.

State of the art

The state of the art in relation to image processing, meteoro-
logy-oriented DL, precipitation nowcasting using DL mod-
els, as well as FL and PFL applications is discussed and
evaluated in this section.

Deep learning techniques for meteorology

ConcerningAI-basedmodels and techniques, specifically the
development of DL models, there are several fields that are
relevant for the meteorological domain. First, image pro-
cessing focuses on the analysis of digital images and videos
by software programs from statistically based approaches
(Tanaka 2002; Kim et al. 2005) to modern neural networks
(Gu et al. 2018). This field is further subdivided into multiple
subdomains, such as object detection, object tracking, object
recognition, etc. The aim of object detection is to identify
and localize relevant objects from a digital image. Convo-
lutional neural networks, first applied in 1988 to alphabet
recognition (Zhang et al. 1988) are especially well suited
for this task. Specifically, object tracking and recognition
aims to identify an object in a sequence of images and can
attempt to predict its movement. A recent paper (Kesa et al.
2022) describes how to solve both of these tasks at the same
time. Siamese neural networks (e.g., DaSiamRPN (Zhu et al.
2018), Cascaded SiamRPN (Fan and Ling 2018), SiamMask
(Wang et al. 2019), SiamRPN++ (Li et al. 2018), Deeper and
Wider SiamRPN (Zhang and Peng 2019)), are also useful in
object tracking.

Regarding meteorology-oriented DL, blurry predictions
are a tremendous challenge (Pavlík et al. 2022), requiring
a special treatment of loss functions. Generative Adversar-
ial Network (GAN) (Agrawal et al. 2019; Goodfellow et al.
2014) has been recently successfully applied to solve this
challenge. The approach called DGMR (Ravuri et al. 2021)
is currently the state-of-the-art in the radar-based storm now-
casting.

Concerning precipitation nowcasting using DL models,
several works analyze the use of different models to better
accomplish this task. In Shi et al. (2017) the authors pro-
pose the use of the Trajectory GRU model instead of the
classic Convolutional LSTM (ConvLSTM) which was used
for example in Shi et al. (2015). In addition, in Chen et al.
(2020) the authors also propose a novel deep learning neu-
ral network and they start presenting the COTREC method
(also compared in this study) and theConvLSTM.They com-
pare the performance of the different models on composite
reflectivity data concerning the critical success index (CSI)
over 30 and 60 min. In Ko et al. (2022) a novel loss function
is also used to mitigate the class imbalance problem in the
CSI in the case of heavy rainfall. In Han et al. (2022) a Deep
Transfer Learning approach is proposed for radar nowcasting
using a CNN as benchmark and two transfer learning models
with few data belonging to the target area (data from 5 days
regarding the target area for training and 3 days for testing).
Finally, Cuomo and Chandrasekar (2021) presents different
DLmodels for weather radar nowcasting together with some
drawbacks encountered, highlight in Table 2 a review of ML
models used for weather nowcasting from the literarure.
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Federated learning and personalized federated
learning

With regard to the use of FL in data analysis, the use cases
addressed in the state of the art are quite broad. In particular,
numerous studies have been conducted in the medical field,
due to the obvious privacy restrictions that apply in such
environments (Pfitzner et al. 2021; Rieke et al. 2020; Sáinz-
Pardo Díaz and López García 2023). Other applications deal
with intrusion detection systems (Agrawal et al. 2022), credit
card fraud detection (Yang et al. 2019), but also applications
that arise when dealing with wireless communications appli-
cations (Niknam et al. 2020). Concerning climate sciences
and more particularly the study of water quality, the clas-
sical FL architecture is applied in Sáinz-Pardo Díaz et al.
(2023) to predict the concentration of chlorophyll given dif-
ferent physico-chemical and meteorological features, using
two different sites of data gathering, specifically two trib-
utaries of the River Thames. However, to our knowledge,
there is not any study in which FL or PFL architectures have
been applied to try to improve the predictions from classical
models using meteorological radar images.

PFL includes awide group of different strategies to further
tailor an FLmodel to better fit each client’s data, while main-
taining privacy and security (Sabah et al. 2024). According to
the taxonomy proposed in Tan et al. (2022), PFL approaches
can be classified in two main types: Global Model Person-
alization and Learning Personalized Models. The approach
presented in this work falls into the first group because, at
least initially, there is a global model. In fact, it could be
considered a kind of Transfer Learning in which the knowl-
edge learned from a source domain (the weights from the
whole ensemble of clients) is transferred to a target domain
(each particular client). In the following, we will refer to the
approach followed in this study regarding PFL as adapFL
(standing for adaptive federated learning). The idea behind
this novel approach is explained in Section “Methodology”.

Data

Throughout this study, we utilize compact X-band meteoro-
logical radar, used for municipalities and in agrosector as a
gap filler in large meteorological radar coverage. It is located
in the borderland between Czech and Slovak republic. The
radar features a parabolic antenna with a diameter 1160 mm
which results in half power beamwidth 1.8°. The device sen-
sitivity is 10 dBZ at 200km range and the central frequency
of the X-band radar is 9410 MHz. In addition, the radiomet-
ric resolution is 8bit, the spatial resolution is 1×1km and
the bandwidth is 1 MHz. An example of the captured data is
shown in Fig. 1.

The radar detects precipitation as 3D volumes of high
reflectivity (radar beam reflections on water droplets, ice
crystals and hail). Data are available as hdf5 files storing
each day’s information. In each file there are measurement
products (ground truth) approximately every five minutes
throughout the day and forecasts from five to forty minutes.

There aremany different types of radar products generated
as various 2D sections of the 3D data, but we are focusing on
vertically integrated liquid (VIL) products, i.e. reflectivity
recalculated to water content by Marshall-Palmer formula
and summed vertically. Then the VIL (kg/m2) is defined as
the vertical integrated quantity of liquidwater content (LWC)
(kg/m3).

Radar image data related to VIL are highly dependent on
the season and the time of the year. Therefore, in this case,
having images captured every 5 minutes, we have chosen to
use data from four months of the first available year. Specifi-
cally, we have selected the first four months available, April,
May, June and July 2016,which can also represent significant
periods in terms of precipitation.

The original radar images are 400kmwide square centered
at the radar position. However, since most of the information
is concentrated in the center of the images, theywere cropped
from 400×400km to 100×100km (centered in the middle of
the original image). Afterwards, they were used on the dif-
ferent models described in Section “Methodology” to make
5-minute predictions (nowcast) of those images. Some exam-
ples of the available images after re-scaling the resolution to
the new dimensions (100×100) are shown in Fig. 2. Note that
most of the information is concentrated in the center of the
image due to the degradation in the radar resolution caused
by the conversion of measured points coordinates from polar
coordinate system to cartesian.

FromFig. 2we can draw several conclusions. The first one
is that the information in each of the images is clearly located
in the center of the images. In addition, it can be seen that a
large part of each image does not contain any precipitation
(no rain present), most of them being totally blank images
(for example, the last image in the second row). This goes
hand in hand with the meteorological events that occurred at
the time the radar image was acquired.

For training and testing the models, a split has been made
following the temporal order of the images, so that the first
80% of images (28025) is used as the training set, and the last
20% (7007 images) is used as test set. In addition, sincemany
of the available images are blank (no rainfall), additional pro-
cessing has been performed on them,which is explained later.
In addition, the validation process was performed once the
data had been distributed, in order to apply the approach that
should be followed in a real-world scenario. This is explained
in the methodology (Section “Methodology”).

Table 1 shows some relevant statistics according to the
images to be predicted in the test set, after data processing.
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Fig. 1 Example of the area covered by the radar in the borderland
between Czech and Slovak republic and the information captured: con-
tinuous white-blue-green-orange clouds - depiction of different values

of radar rainfall (Vertically Integrated Liquid), green/yellow/red/orange
polygons of districts - nowcast alerting regions where the rainfall is
expected to be

Fig. 2 Example of the radar images under study after reducing to 100×100 resolution with the information on vertically integrated liquid
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Table 1 Statistics regarding the
mean VIL in each of the images
to be predicted in the test set of
each of the four zones under
study

Min Max Mean Median Variance Skewness Kurtosis

Zone 1 0 4.2192 0.1201 0.0224 0.0500 3.1100 12.2513

Zone 2 0 3.1011 0.1193 0.0236 0.0592 4.0793 22.2058

Zone 3 0 3.7380 0.1133 0.0249 0.0452 3.0060 10.0654

Zone 4 0 3.2316 0.0956 0.0158 0.0316 2.8355 9.2811

In the case of the minimum and the maximum, the average of the min and max values for each of the images
are shown

Specifically, these statistics are those related to the mean of
the VIL in each of the images.

Methodology

In this section, the different models used to perform the
5-minutes nowcast of the VIL based on radar images are
described.

Classical models

Tracking of Radar Echoes by Correlation (TREC) (Rine-
hart and Garvey 1978) is a nowcasting method that is based
on a comparison of two consecutive images of radar reflec-
tivity. For each block of radar pixels, TREC identifies a
motion vector by maximizing the cross-correlation coeffi-
cient between the two consecutive reflectivity images. It is
an image processing algorithm, which does not include any
dynamic equations related to the motion and/or the evolution
of the detected weather fields.

As (Woo and Wong 2017) emphasizes, “while TREC is
successful in tracking the movements of individual radar
echoes, in practice, it usually captures the direction of indi-
vidual rain cells instead of moving the entire meteorological
system on a larger scale”. Due to this drawback of the TREC
method, various alternatives such as COTREC (Continuity
Tracking Radar Echoes by Correlation) (Novak 2007), have
been developed. A recent paper (Tang and Matyas 2018)
presents a detailed overview of the features of the novel
refined methods of the TREC concept that emerged during
the last decades.

In this paper, we will use COTREC as a baseline classical
model to compare with the resulting deep learning models
and the different learning approaches.

Deep learning and federated learningmodels

As motivated in Section “Introduction and motivation”, in
view of the heterogeneous distributed nature of the radar
images under study, we address this challenge with an
horizontal federated learning architecture and a novel per-
sonalized federated learning method.

First, we divide the data artificially into 4 different zones,
splitting the images into four quadrants as shown in Fig. 3,
in which an example of a training image is shown.

It is important to note that, for training the deep learning
models, we have processed the input data in the following
way: for predicting the image captured in the next 5 minutes,
we introduced the 3 images available immediately before.
Thus, by taking the three images we are not only be captur-
ing the speed of the movement and the change in the amount
of vertical integrated liquid, but also the acceleration. In addi-
tion, one important part of the processing carried out is that
we have eliminated from both the train set and the test set
those records in which the three images prior to the predictor
were empty (blank, no rain). This has also been extrapolated
to analyze the results with the COTREC method, taking into
account only the error obtained when predicting with the
remaining images. Themotivation lies in the fact that in these
cases, the natural answer would be to predict that there will
be no rain (as the three previous images were without rain).
Including in the neural network so many empty images can
lead to a lack of appropriate adjustment in cases where there
are heavy rain events, which as can be seen in the distribu-
tion are infrequent even after carrying out this processing

Fig. 3 Example of an image where the four quadrants into which it has
been divided to create the four zones are shown in blue
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(see Appendix A), but at the same time are an important fac-
tor that nowcasting models must predict accurately. Table 2
shows the number of data for train and test in each of the four
zones after carrying out this pre-processing.

In order to analyze the characteristics of the images avail-
able in each zone, Fig. 4 shows the mean of the images
captured during the months of April, May, June and July
2016 in each artificially divided area once pre-processed as
explained above. In particular, the average of the images to
be predicted in train and test is shown. Note than in each case
the the color bar represents themagnitude associatedwith the
mean VIL in each pixel.

In view of Fig. 4, we can note that the distribution of the
images in each quadrant are very different from each other,
being quite heterogeneous zones, as will be further explained
in Section “Discussion”. Then, when training the model in
a federated way, this may difficult the model convergence,
since each model would have seen data with different statis-
tics. However, we are interested in keeping these differences
because they better reflect real use cases, where radar images
will have very distinct distributions if they come from clearly
differentiated areas, such as radars located in various coun-
tries.

In addition, in order to select the model to be used for
testing purposes, we need the carry out a validation process.
In this case, we have performed k-fold cross validation with
five folds. Time Series cross-validator from scikit-learn has
been used for this purpose in order to keep the temporal
order of the images. A key point here is to decide on which
dataset to perform the validation (as we would not centralize
the data). Following a real use case, the four data owners
(corresponding to the four zones involved) must agree on
the model to be trained. In this case, in view of Table 2,
we have decided to carry out the validation process using
the data from zone 4, as it has the largest number of data
for training after processing. Several simple convolutional
network architectures have been tested as well as different
values for the batch size. The selected one is presented in
Section “Convolutional neural architecture”.

The implemented FL scheme follows the idea presented
in Sáinz-Pardo Díaz and López García (2023), such that the
aggregation of the models trained in each zone (in this use
case each zone represents a client), is performed using a
weighted average according to the number of training data

Table 2 Number of data after
processing in each zone for train
and test

Train Test

Zone 1 4194 1585

Zone 2 4055 1286

Zone 3 4022 1380

Zone 4 4457 1494

of each client. In addition, a novel PFL paradigm is con-
sidered once the federated training has been carried out for
each client during a certain number of epochs (Ne) and a
given number of rounds (Nr ). In this use case, the variability
in each zone with respect to the others is high, as shown in
Fig. 2. Therefore, it is appropriate that after conducting the
federated training, in order to achieve a more robust model
by having been trained with more data, these are trained a
certain number of epochs on the data of each zone locally,
which we have called adaptive federated training (adapFL).
The idea is to be able to capture in each case the peculiarities
of each zone before evaluating the results in the test set of
that area, but starting with the knowledge and generalization
ability provided by the FL model. In short, the three learn-
ing schemes (including the individual one) are presented in
Fig. 5.

In particular, in this work we are interested in analyzing
the feasibility of the adapFL approach for the case in which
images from different areas are available. The goal is to study
whether this potential collaboration while maintaining the
privacy of the images by not sharing them, can allow improv-
ing the results that would be obtained by training locally in
each zone (as a greater number of data will be available to
train the models in a distributed way), or if on the contrary,
it is more convenient to carry out an individual training in
each zone, respecting the differential factors of each one of
them. An intuitive idea of such implemented architecture is
summarized in the pseudocode given in Algorithm 1.

In this sense, as the federated training can be carried out
in each zone in parallel, it is desirable that the total number
of epochs that are trained individually (N (I )

e ) is equal to the
number of epochs that the model is trained locally in the
federated scheme (N (FL)

e ) times the number of rounds (Nr )
of the federated training plus the number of epochs themodel
is trained later in each zone (N (L)

e ) in the adapFL approach,
i.e:

N (I )
e = Nr · N (FL)

e + N (L)
e

In this final implemented model the following values have
been fixed: N (I )

e = 100, N (FL)
e = N (L)

e = 10 and Nr = 10
for the classic FL approach and Nr = 9 for the adapFL
approach.

Convolutional neural architecture

Both in the case of individual learning in each zone and in the
case of the adapFL schema, we have developed a neural net-
work architecture composed of the following convolutional
layers presented in Table 3 (further detailed in Figs. 16 and
17 from Appendix E):

The architecture is kept purposely simple, as the intent
of this paper is to evaluate the potential of the FL and PFL

123



Earth Science Informatics

Fig. 4 Average of all the radar
images available in April, May,
June and July 2016 by zone
once processed by area

approaches for this use case, not to establish a new SotA
model in precipitation nowcasting based on radar images.

The model has been compiled with Adam (Kingma and
Ba 2014) as optimizer and the mean squared error (MSE)
as loss function and the MSE and the mean absolute error
(MAE) as quality metrics for monitoring.

Again, as previously explained, this model has been val-
idated using the data from zone 4. Specifically, the average
MSE obtained in the five folds is 0.0326.

In addition, we have calculated other metrics such us the
RMSE and the skill score (like in Kumar et al. (2024)), which
can be obtained from the MSE, so the tendency observed
will be analogous, but they can be used for comparison with
other cases. The RMSE is defined as the squared root of the
mean of the squared errors, and the skill score for the model
M (Skill ScoreM can be defined as given in Eq. 1, being
MSEM the MSE for the modelM and MSEB the MSE for
a baseline model. In our study we have considered COTREC
as the baseline model for calculating the skill score.

Skill ScoreM = 1 − MSEM
MSEB

(1)

Computing resources

The experiments have been carried out using the AI4EOSC
platform (AI4EOSC project 2024). Specifically, an environ-

ment with 16 GB of RAM, 10 GB of disk, 8 CPU cores,
and one GPU NVIDIA Tesla T4 has been deployed. The
programming language used was Python 3 and the Tensor-
Flow library (Abadi et al. 2015) was used to develop the deep
learning models.

Results and analysis

In this section, the results obtained in each of the zones when
evaluating each of the following approaches are presented:

• The classic COTREC model as baseline,
• An individual learning model trained for 100 epochs in
the same zone (IL),

• An FL model trained 10 epochs for 10 rounds (FL),
• APFLmodel trained 10 epochs for 9 rounds, endingwith
a local training of 10 epochs on the data of the testing zone
(adapFL).

Table 4 summarizes the results obtained in terms of the
MSE and the MAE in the test set of each of the four zones
and with the four approaches.

In view of the results shown in Table 4, the best results
are obtained with the adapFL architecture. Moreover, all the
threeDL approaches achieve better results than theCOTREC
model. It should be noted thatwith the conventional FL archi-
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Fig. 5 Schema of the three learning paradigms implemented: individual, federated and adaptive federated learning

tecture, the results of the COTREC model were improved
substantially, but not those of the IL, since the latter has a bet-
ter capacity to adapt to the data captured in its corresponding
area. Thus, with the adaptive step of the adapFL architecture,
wemanaged to improve the results of the FL architecture, but

also those of the IL approach. Note that the adaptive step in
adapFL can be seen as a kind of transfer learning from the FL
model. In Figs. 12 and 13 of Appendix C, it can be observed
for each of the four zones, six examples of observed images
together with the corresponding prediction obtained with the

Table 3 Convolutional neural
network implemented, layers,
output shape, number of
parameters and activation
function applied

Layer (type) Output shape Param # Activation

conv2d_46 (Conv2D) (None, 48, 48, 128) 3584 Relu

conv2d_47 (Conv2D) (None, 46, 46, 64) 73792 Relu

conv2d_48 (Conv2D) (None, 44, 44, 32) 18464 Relu

conv2d_49 (Conv2D) (None, 42, 42, 16) 4624 Relu

conv2d_50 (Conv2D) (None, 40, 40, 16) 2320 Relu

conv2d_51 (Conv2D) (None, 38, 38, 32) 4640 Relu

conv2d_52 (Conv2D) (None, 36, 36, 64) 18496 Relu

conv2d_53 (Conv2D) (None, 34, 34, 128) 73856 Relu

conv2d_54 (Conv2D) (None, 32, 32, 1) 1153 Relu
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Table 4 MSE and MAE
(kg/m2) obtained in the test set
with the different approaches in
each zone

MSE MAE
Zone COTREC IL FL adapFL COTREC IL FL adapFL

1 0.2306 0.1399 0.2000 0.1352 0.0708 0.0618 0.0649 0.0606

2 0.1756 0.1057 0.1612 0.1005 0.0650 0.0530 0.0590 0.0517

3 0.2235 0.1220 0.1286 0.1082 0.0729 0.0607 0.0576 0.0565

4 0.1095 0.0852 0.0958 0.0815 0.0514 0.0482 0.0484 0.0464

Algorithm 1 Adaptive federated training pseudocode.
INPUT: clients: list with all the clients participating on the training

(with x the features and y the labels for each client).
INPUT: n: total number of training data from all clients.
INPUT: model: machine learning model to be trained.
INPUT: ne: number of epochs.
INPUT: batch_size: batch size.
INPUT: nr : number of rounds of the FL training.

1: functionAdaptativeFederatedTraining(clients, n,model, ne,
batch_si ze, nr )

2: for i ∈ [1, . . . , nr ] do
3: w ← [ ] � empty list for saving the weights
4: for client ∈ clients do
5: model.train(client[‘x’], client[‘y’], epochs=ne,

batch_size=batch_size)
6: w_client ← model.get_weights()

7: w ← w +
( |client[‘y′]|∑

n · w_client
)

� Add to the list

8: end for
9: w ← ∑

w

10: model.set_weights(w) � Update the model with the new
aggregated weights

11: end for
12: j ← 1
13: for client ∈ clients do
14: model.train(client[‘x’], client[‘y’], epochs=ne,

batch_size=batch_size)
15: model.save(f‘model_ind_{j}.h5’)
16: j ← j + 1
17: end for
18: end function

best analyzed model according to the results presented in
Table 4, which corresponds to the adapFL approach. Within
those figures we can observe that the predictions obtained are
very similar to the actual observed images in the six cases
shown for each of the four zones.

Note that we have calculated these metrics, bothMSE and
MAE, taking themean error in each image, and then themean

of all of them as stated in Han et al. (2023) and Jolliffe and
Stephenson (2012).

The idea of taking the current configuration of the adapFL
approach is motivated by achieving an adaptation by cus-
tomizing the conditions of each specific zone, while trying
to preserve the generalization capacity of the FL architec-
ture. However, we have sought to compare the different
configurations, given by (Nr , N

(L)
e ), ∀Nr ∈ {1, . . . , 10}, and

N (L)
e = 100 − (10 · Nr ), with Nr the number of rounds of

the FL architecture and N (L)
e the number of epochs that the

model has been trained specifically in each zone after obtain-
ing the federated global model (note that if Nr = 10, we are
in the case of the classic FL approach). The results as a func-
tion of the MSE and the MAE for each test set are displayed
in Figs. 10 and 11 from Appendix B. It can be observed
that that a lower value of Nr is related to a reduction of the
MAE and the MSE in train, which is explained as a higher
adjustment to the zone under analysis. However, this is also
linked to a reduction of the generalization capability that can
be extracted from the federated architecture. Therefore, the
selected configuration is (9, 10), i.e. 9 rounds of the FL archi-
tecture and 10 final epochs of personalized training in each
zone.

Finally, the RMSE and skill score for the four areas can be
calculated from theMSEpressented inTable 4, and are shown
in Table 5. In view of the skill score from Table 5 we can note
that the greatest improvement of the best approach (in this
case adapFL) in relation to the baseline model (COTREC),
is obtained for zone 3. As the objective of the skill score is to
observe whether the model is better than a given base model,
we have highlighted for each zone the greater one (which is
adapFL in all the four cases).

Finally, the distribution of theMAE and theMSE for each
image of the test set of each zone is shown in Appendix D
by means of histograms.

Table 5 RMSE (kg/m2) and
skill score obtained in the test
set with the different approaches
in each zone

RMSE Skill score
Zone COTREC IL FL adapFL COTREC IL FL adapFL

1 0.4802 0.3740 0.4472 0.3677 − 0.3933 0.1327 0.4137

2 0.4190 0.3251 0.4015 0.3170 − 0.3981 0.0820 0.4277

3 0.4728 0.3493 0.3586 0.3289 − 0.4541 0.4246 0.5159

4 0.3309 0.2919 0.3095 0.2855 − 0.2219 0.1251 0.2557
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Central area

Once we have the four individual models and the models
trained in a federated way, we are interested in seeing how
the last ones perform in a different region. To do this, we take
the 50×50 central crop of the original image (so that it is of
the same resolution as the images of each of the 4 zones). An
example of an image where this division is taken is shown
in Fig. 6, where the central area selected is the one framed
within the red square.

Let us consider all the images within this quadrant and
evaluate the predictions that would be obtained with the FL
model and the four adaptive FL models for each of the 4
initial areas. Also, we compare it with the IL model on that
area and the adapFL one with the adaptive phase performed
in such zone (the central one), but the FL model only on the
first 4 zones. Since part of the images that we evaluate are
part of the training set of each individual zone, we will take
the same test set as in the previous cases, corresponding to
the last 20%. Again, the same processing will be carried out
in each zone regarding the blank (empty, no-rain) images and
the input for theDLmodels. The results obtained in each case
for the train and test set and both for the MSE and the MAE
are shown in Table 6. Note from this table that the first three
rows correspond tomodels that have explicitly seen data from
the central zone training set (COTREC, IL over the central
zone, and adapFL with FL over the four initial zones and
personalized with the adaptive phase over the central area
with a configuration (9,10)). The rest of the models shown in

Fig. 6 Example of an image where the four quadrants into which it has
been divided to create the four zones are shown in blue and the central
area is marked in red

Table 6 Comparison of the MSE and MAE (kg/m2) obtained in the
train and test sets of the central zone with the different approaches
analyzed

Central zone
MSE MSE MAE MAE

Model Train Test Train Test

COTREC 0.0798 0.2547 0.0308 0.0735

IL zone central 0.0118 0.0121 0.0130 0.0207

adapFL (central) 0.0067 0.0129 0.0149 0.0199

FL (four areas) 0.0128 0.0140 0.0161 0.0195

adapFL (zone 1) 0.0111 0.0130 0.0174 0.0210

adapFL (zone 2) 0.0103 0.0134 0.0165 0.0201

adapFL (zone 3) 0.0112 0.0123 0.0169 0.0200

adapFL (zone 4) 0.0114 0.0123 0.0159 0.0187

Table 6 have not directly seen training data from the central
zone, although each of the four initial zones contain part of
the data from the central area.

From Table 6, we can highlight the following points: (1)
it makes sense to analyze the performance of the FL model
since each initial area has part of the central zone analyzed in
this case. (2) Intuitively, the best results should be obtained
with the models trained in the same zone, in this case IL in
the central zone and adapFL on the central zone. (3) The
COTREC model is largely worse than the other approaches
analyzed, so it can be extrapolated that in this scenario it is
more convenient to apply DL models. (4) In the training set
the adapFL model over the central zone is the best in terms
of MSE, and the individual one with respect to the MAE
(followed by adapFL over the central zone). (5) In the test
set the best results for MSE are obtained with the individual
model, followed by the adapFL ones over zones 3 and 4.
(6) In the test set the best result with respect to the MAE is
obtained with the adapFL model over zone 4 followed by
the basic FL model, being in this case the FL approach better
than the individual model trained over the current area of
study.

Again in this case we have calculated from Table 6 the
RMSE and the skill score (with COTREC as baseline) for
the prediction on the central zone. The results for these two
metrics can be found in Table 7. Note that in this case the
results for the skill score show a greater difference between
the MSE for the baseline model and the other approaches
than in the previous case where the four initial zones were
analyzed.

Furthermore, Figure 7 shows three images in the con-
ditions mentioned above (central quadrant of resolution
50 × 50), and their corresponding prediction obtained using
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Table 7 Comparison of the MSE (kg/m2) and skill score obtained in
the train and test sets of the central zone with the different approaches
analyzed

Central zone
RMSE RMSE Skill score Skill score

Model Train Test Train Test

COTREC 0.2825 0.5047 − −
IL zone central 0.1086 0.1100 0.8521 0.9525

adapFL (central) 0.0819 0.1136 0.9160 0.9494

FL (four areas) 0.1131 0.1183 0.8396 0.9450

adapFL (zone 1) 0.1054 0.1140 0.8609 0.9490

adapFL (zone 2) 0.1015 0.1158 0.8709 0.9474

adapFL (zone 3) 0.1058 0.1109 0.8596 0.9517

adapFL (zone 4) 0.1068 0.1109 0.8571 0.9517

the FL approach applied to the four initial areas and the
adapFL one (adapted to the central area).

Finally, it is interesting to analyze the non-independent
identically distributed (i.i.d.) nature of each of the five zones
proposed. Assuming the privacy-preserving deep learning
approach (FL and adapFL) in which we do not have access
to all the raw images in order to preserve privacy, technical or
legal considerations that may apply to each image (e.g. may
belong to different data owners), this analysis is carried out
on the only information that the central server that performs
the federated training would have available: the weights that
define the model. In this sense, the divergence of the weights
between each pair of zones (Zhang et al. 2021) was analyzed.
Specifically, we repeated the training in the 5 zones (includ-
ing the central zone) from the initial model when training
only 10 epochs individually (as done in each round of the
FL training), and we kept the weights obtained in each case.
Be || · ||F the Frobenius norm, andw(n)

i the weights obtained
when trainingwith the data from client i in round n, we define
the divergence in a symmetric way d(n)i, j as follows:

d(n)i, j = ||w(n)
i − w

(n)
j ||F

1
2 (||w(n)

i ||F + ||w(n)
j ||F )

(2)

Equation 2 presents a modification regarding the diver-
gence equation proposed in Zhang et al. (2021) in order to
make it symmetric, In order to do so the norm of the differ-
ences is divided by the mean of the Frobenius norm of each
weights.

Specifically, in order to calculate the norm of the weights
corresponding to each grid, the corresponding norm of each
layer has been calculated individually and then the norm of

the resulting vector has been computed. The results obtained
in each case for d(1)i, j are summarized in Table 8.

In view of the values obtained for di,central ∀i ∈
{1, 2, 3, 4}, the lowest value is obtained with respect to the
third zone, which is consistent with this being the adapFL
model that gives the best results in the central zone in the
test set regarding the MSE. However, the best test result is
obtained with zone 4 (for MAE and 3 and 4 for the MSE),
which is the second with the greatest divergence, and is also
the model with the greatest error in the train (of the indexed
ones). This high divergence in training is reflected in theMSE
of the train, while allowing a better generalization in the test.
Presumably, this is due to the rainfall levels in zone 4 during
the period incorporated in the training, which will be similar
to that of the central zone test (covering summer periods). It
is evident that the divergence between the central zone and
the other four areas represents the lowest values (last row of
Table 8), since each of the 4 initial zones contains a quarter of
the information of the central one. The table above provides
information on the differences between the different zones,
highlighting for example that the smallest divergence regard-
ing the initial four areas is reached between zones 3 and 4, so
it may be reasonable to create models agreed between these
two areas, separately from the other two, making clients’
clusters. Finally, note that zone 1 presents the greater diver-
gencewith respect to the other three initial areas, so including
this one may be damaging the performance of the overall FL
model.

Discussion

In this work, we have analyzed the applicability of a novel
PFL approach in comparison with a DL model trained indi-
vidually on each set of data andwith a classic FL architecture,
for precipitation nowcasting based on radar images. How-
ever, it is important to discuss the limitations of the data used
in this study as a benchmark to extrapolate the applicabil-
ity of the adapFL architecture to use cases with a sufficient
number of available clients.

The first limitation is that we have information captured
by a single radar. However, the coverage area of this radar is
so wide and representative that it allows us to carry out an
artificial division in such away thatwe distribute the captured
images into different clients, each of them composed of dif-
ferent parts of the original images. It is important to note that
in a real use case scenario in whichwewould have radars that
capture images with different resolutions, it would be neces-
sary to perform a careful preprocessing. In the same way, in
this case, we have the advantage of all clients having images
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Fig. 7 Example of predictions of the test set of the central zone. Federated learning approach with Nr = 10 and Ne = 10 and adapFL method
with the configuration (9,10)

captured with the same type of radar. This is important to
take into account because in a case where we have different

Table 8 di, j calculated for each combination of zones

i,j 1 2 3 4 Central

1 − 0.6563 0.6310 0.6413 0.5729

2 0.6563 − 0.6275 0.6296 0.5850

3 0.6310 0.6275 − 0.6055 0.5677

4 0.6413 0.6296 0.6055 − 0.5743

Central 0.5729 0.5850 0.5677 0.5743 −

radars, the sensitivity of these as well as their measurement
parameters are determining factors when it comes to damage
the accuracy of a jointly built deep learning model.

Another particularity of the data used in this study is that
the information contained in the images usually lies in the
center of the initial full image. Therefore, dividing them in
four quadrants to have four artificial clients results in a high
divergence among them. In consequence, while the client
with the data from the upper left quadrant of the original
image will have more information in the lower right corner,
this is reversed for the client with the images in the lower
right quadrant. However, this is convenient in order to com-
pare this case and use it as a benchmark to extrapolate to
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different scenarios with multiple radars, since in both cases
such divergences will also be appreciated, being data cap-
tured in different regions or countries.

In addition, as shown in Fig. 2, many parts of the images
do not contain relevant precipitation events, besides being
data with a high seasonal component. This characteristic of
the data would have added more complexity during model
training and evaluation so the data have been pre-processed
accordingly.

These limitations are important to understand the scope
and constraints of our study. Nonetheless, in spite of the
advantages and disadvantages of using a single client to sim-
ulate the presence of four clients to perform FL, the obtained
results are robust enough to assess the viability of the novel
PFL approach adapFL. As revealed by the skill score, this
novel approach had a better performance in the four zones
under study, in comparisonwith the IL approach and the clas-
sical FL one. To the best of our knowledge, it is the first time
that the FL paradigm is applied to enhance the precipitation
nowcasting using radar images and this contribution may be
of interest to other researchers and practitioners that develop
DL models for such purpose, including other convolutional
ANN architectures and even with the addition of more input
variables, as proposed by Kumar et al. (2024). This work
has demonstrated that the use of FL and PFL techniques in
regression tasks not only presents the inherent advantages of
this methods, which are mentioned in the introduction, but
also it is possible to reach better predictions in terms of error.
Therefore, even in the case that no privacy issues affect the
use of the radar images, the adapFL approach is of particular
interest.

Conclusions

Our main objective towards this study was to analyze the
feasibility of a novel PFL architecture, in particular the so-
called adapFL approach, to a use case of meteorological
radar images. Specifically, the objective was to use the avail-
able images to predict the precipitation expressed as VIL in
the next 5 minutes. The complexity of this task, involving
the use of images, invites using DL models based on convo-
lutional neural networks.

In particular, to analyze the applicability of the PFL tech-
nique to this case, the results obtained in the four artificially
distributed zones were compared with the COTRECmethod,
as well as with the training of the same convolutional net-
work on each of the zones individually and the trainingwith a
conventional FL architecture. Specifically, for the test set, we
obtained improvements in all four cases when applying the
adapFL architecture both for the MSE and MAE. Moreover,

when we extrapolated these results to the central zone, which
has a part in each of the four initial ones, the optimal results
for the training set regarding the MSE are also achieved with
the application of the adapFL architecture trained on all the
four initial areas and adapted to the central one. Regard-
ing only the individual models, in this case, the best results
are achieved with the individual training on the fourth zone,
which is in contrast with the results obtained for the diver-
gence between the different artificial regions. This may be
attributed to these regions having more in common in the test
set than in the train, e.g. due to seasonality.

The results obtained throughout this study give us a
promising idea about the applicability of this PFL architec-
ture to this type of meteorological radar images, since as
mentioned, the results improve those of individual training
in all the analyzed cases and that of the classic COTREC
method. In this sense, future work has been drawn from the
very approach of this benchmark study, and it is to extrapo-
late this type of analysis to radar data distributed in different
countries or regions. In that case, the differential behavior of
each zonemay lead to the introduction of measures consider-
ing these divergences, like the creation of different clusters of
clients. It should be noted that in this study one of the zones
was very different regarding the data used for training from
the others on average (see Fig. 4, zone 3), but the model was
not degraded. Instead, this variability in the data distribution
in the different clients in some cases may even lead to better
generalization ability in the event of unseen data.

Appendix A: Data distribution

As previously stated, themain objective of thiswork is to pre-
dict rainfall events (given by the VIL) 5 minutes in advance.
The deep learning models used for this purpose include as
input the three available images prior to the timeof the predic-
tion. In order to avoid over-training the models with non-rain
events, we have eliminated those cases where the predictand
(the three images previously available at the time of predic-
tion), are empty (blank) images (no rain). Eliminating these
data significantly reduces the amount of training data. This
processing has been carried out individually on the train and
test sets of each of the zones, as would be appropriate in
cases where the data are distributed. Thus, Figure 8 shows
the accumulated VIL in each image to be predicted in the
train in each of the zones, and in Fig. 9, the corresponding
VIL in the test set in each case. To calculate the accumulated
VIL displayed in the following images we have summed the
VIL associated with each pixel of a given image and divided
it by the surface of the image (502 km2).
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Fig. 8 Distribution of the VIL accumulated in the train data (y) in each zone after processing
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Fig. 9 Distribution of the VIL accumulated in the test data (y) in each zone after processing

Appendix B: AdapFL architecture: MSE and
MAE

In this sectionwe aim to compare the different configurations
of the proposed adapFL architecture. Specifically, this con-
figurations are given by (Nr , N

(L)
e ), ∀Nr ∈ {1, . . . , 10}, and

N (L)
e = 100−(10 ·Nr ), as explained in Section “Results and

analysis”. Figures 10 and 11 show theMSE and theMAE for
the test set of each zone with each proposed configuration of
the adapFL approach. Note than in the case inwhich Nr = 0,
we are displaying the results for the individual approach (IL),
and when Nr = 10, those of the classic FL approach.
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Fig. 10 MSE for the test set of each zone under different adapFL configurations, including IL and FL

Fig. 11 MAE for the test set of each zone under different adapFL configurations, including IL and FL

Appendix C: Example of predictions
obtained for each area

Figures 12 and 13 show, for each of the four initial
artificially distributed zones, six images togetherwith the cor-

responding predictions obtained with the adapFL approach
implemented.
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Fig. 12 Example of predictions obtained with the adaptive federated learning approach in each of the four zones (1/2)
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Fig. 13 Example of predictions obtained with the adaptive federated learning approach in each of the four zones (2/2)
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Appendix D: MAE andMSE obtained in each
image from the test set

In order to check the robustness of the proposed PFLmethod,
adapFL, in this section we show an histogram for the MSE

and MAE of each area for each image. We can note that in
the vast majority of the images both the MSE and the MAE
are near to zero.

Fig. 14 Histogram with the MAE obtained for the images of the test set using the adapFL method
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Fig. 15 Histogram with the MSE obtained for the images of the test set using the adapFL method

Appendix E: Diagram of the neural network
implemented

The schema of the neural network implemented in this study
is shown in Figs. 16 and 17.
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Fig. 16 Convolutional neural
network implemented (1/2)

Fig. 17 Convolutional neural
network implemented (2/2)
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