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Abstract
Inference of electron density and temperature has been performed using multiple, diverse sets of
plasma diagnostic data at Wendelstein 7-X. Predictive models for the interferometer, Thomson
scattering and helium beam emission spectroscopy (He-BES) systems have been developed
within the Minerva framework and integrated into a unified model. Electron density and
temperature profiles are modelled using Gaussian processes. Calibration factors for the
Thomson scattering system and predictive uncertainties are considered as additional unknown
parameters. The joint posterior probability distribution for the electron density and temperature
profiles as well as Gaussian process hyperparameters and model parameters is explored through
a Markov chain Monte Carlo algorithm. Samples from this distribution are numerically
marginalised over the hyperparameters and model parameters to yield marginal posterior
distributions for the electron density and temperature profiles. The profile inferences incorporate
various data combinations from the interferometer and Thomson scattering as well as
constraints at the limiter/divertor positions through virtual observations or edge data from
He-BES. Additionally, the integration of x-ray imaging crystal spectrometer data into the model
for ion temperature profiles is presented. All profiles presented in this study are inferred with
optimally selected hyperparameters and model parameters by exploring the joint posterior
distribution, inherently applying Bayesian Occam’s razor.

Keywords: Bayesian inference, plasma diagnostics, synthetic diagnostics, Gaussian processes,
Wendelstein 7-X
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1. Introduction

Consistent inference of fusion plasma physics parameters and
their associated uncertainties is essential for understanding
and controlling the physical phenomena in large-scale fusion
experiments. Experiments such as Joint European Torus (JET)
[1] or Wendelstein 7-X (W7-X) [2] typically utilise dozens
of sophisticated measurement techniques. Analysing exper-
imental data from each measurement instrument is inher-
ently complex, making the comprehensive utilisation of these
diverse data sets to refine physics parameters a considerable
challenge. To address this, employing a framework capable
of managing parameters, assumptions, predictive models and
observations is advantageous.

The Minerva framework has been developed to deliver
consistent inference for complex systems through the modu-
larisation of (predictive) forward models and standardisation
of interfaces for systematic integration [3]. For instance, a
Minerva model for Thomson scattering encapsulates physics
and instrumental effects to compute Thomson scattering sig-
nals based on variables such as laser power and wavelength,
scattering angles, spectral response functions and data acquis-
ition systems alongside physics parameters like electron dens-
ity and temperature. Thesemodel dependencies can be sourced
from other Minerva models or external data sources, allowing
for a direct comparison between model predictions and actual
observations. Minerva automates the integration of these mod-
els, which can be depicted through a Bayesian graphical
model [4], offering a transparent approach to managing model
complexity. This automated model management and graph-
ical representation enable the practical joint analysis of mul-
tiple heterogeneous data sets. In nuclear fusion research, the
Minerva framework has been applied across a range of dia-
gnostics, including magnetic sensors [5], interferometers [6,
7], Thomson scattering systems [8, 9], soft x-ray spectroscopy
[10, 11], beam emission spectroscopy [12, 13], x-ray ima-
ging crystal spectrometers (XICSs) [14, 15], electron cyclo-
tron emission (ECE) [16] and effective ion charge diagnostics
[17, 18]. Additionally, Minerva models can be accelerated
using field-programmable gate arrays [19] or artificial neural
networks [20–22].

In this study, we have conducted a Bayesian joint analysis
of the dispersion interferometer (DI) [23], Thomson scatter-
ing (TS) [8] and helium beam emission spectroscopy (He-
BES) systems [24] at W7-X, further enhanced by integrating
the XICSs [15]. Traditionally, analyses of the DI, TS and He-
BES systems have been conducted separately. The calibration
factor of the TS system, when not fully determined, allows for
electron density profiles from TS data to be cross-calibrated
using DI data. Achieving precise cross-calibration requires
knowledge of electron density and temperature in the plasma
edge region, a challenge compounded by the predominance
of electronics noise over TS signals in this area. This chal-
lenge is traditionally addressed by assuming electron density
and temperature to be zero outside the last closed flux sur-
face (LCFS). Our approach improves upon this by utilising

empirical constraints on electron density and temperature at
limiter/divertor positions, introduced as virtual observations
based on prior physics knowledge, or by employing measure-
ments from the He-BES system. Furthermore, the integration
of XICS into our Bayesian joint model enables a more com-
prehensive inference of electron density and temperature pro-
files, as well as ion temperature profiles, ensuring consistency
across all diagnostic measurements.

We introduce several contributions to the field of fusion
plasma diagnostics through our comprehensive Bayesianmod-
elling approach. The integration of multiple plasma diagnostic
systems at W7-X, including DI, TS and He-BES, within the
Minerva framework, represents an advancement in achiev-
ing a unified analysis of plasma diagnostics. By employing
advanced Bayesian modelling techniques, we not only facil-
itate the automatic cross-calibration of the TS system with
DI data but also rigorously quantify predictive uncertainties,
thereby enhancing the reliability of inferred plasma paramet-
ers. The incorporation of virtual observations, informed by
prior physics knowledge, for effective cross-calibration and
improved data analysis in regions with limited direct meas-
urements, illustrates an application of empirical knowledge
within a Bayesian framework.

2. The model

In Bayesian inference [4, 25, 26], the probability of a hypo-
thetical value of unknown parameters, denoted as P(H), can
be updated to the posterior probability of the unknown para-
meters given observations, denoted asP(H|D), throughBayes’
theorem:

P(H|D) = P(D|H)P(H)
P(D)

. (1)

Here, the probability of the unknown parameters, also known
as the prior probability P(H), encodes prior knowledge includ-
ing physical and empirical assumptions. For instance, since
temperature must be positive by definition, the probability of
any negative temperature value should be set to zero. The con-
ditional probability of the observations given the unknown
parameters, P(D|H), represents a predictive distribution over
the observations for a hypothetical value of the unknown para-
meters. This predictive distribution reflects all possible obser-
vation values that could be measured, given a hypothetical set
of parameter values. Typically, the mean of the predictive dis-
tribution can be determined by a function that encapsulates the
processes occurring during an experiment, taking into account
physical phenomena as well as experimental setup factors such
as instrument effects, calibration, optics and electronics. This
function is known as a forward model and is represented by
f (H). The marginal probability of the observations P(D), also
referred to as the model evidence, is a normalization constant
in this context.
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When we have multiple heterogeneous data sets, which
conditionally depend on the unknown parameters, Bayes’ the-
orem can be written as:

P(H|{Di}) =
(∏

iP(Di|H)
)
P(H)

P({Di})
. (2)

Each predictive distribution includes a forward model of
the measurement instruments, which are typically complex
and sophisticated. These models may incorporate additional
model parameters, such as calibration factors, depending on
the experimental setup. The prior distribution encapsulates
the prior knowledge of both the unknown parameters and
the hyperparameters (parameters of the prior distribution) as
well as unknown model parameters. Together, these prior and
predictive distributions form the joint probability distribution
P(H,D), capturing the full relationship between all unknown
parameters and observations. This joint distribution is repres-
ented in Minerva as a Bayesian graphical model [4].

The Minerva graph for the Bayesian joint model of the DI,
TS and He-BES systems is depicted in figure 1. Each node in
the graph represents either a deterministic calculation (white
box) or a probability function, be it a prior (blue circle) or a
predictive probability (grey circle). Deterministic nodes might
perform simple operations (e.g. los, a function for line integ-
ration along a line of sight), represent a physics model (e.g.
Thomson model) or signify a data source (ds). The arrows in
the graph indicate the conditional dependencies among these
nodes, illustrating the joint distribution of all unknown para-
meters and observations, comprised of all prior and predictive
distributions.

In this work, the electron density ne and temperature Te pro-
files are modelled as functions of the effective minor radius
ρeff using Gaussian processes [27–29]. Gaussian processes
are non-parametric functions that associate any set of points
within their domain with a random vector following a mul-
tivariate Gaussian distribution. Unlike parametric functions,
the characteristics of Gaussian processes are determined by
their covariance function. This function specifies the covari-
ance (or correlation) between the function outputs for any two
input points, affecting the smoothness of the Gaussian pro-
cesses. In nuclear fusion research, Gaussian processes were
first introduced for non-parametric tomography to map elec-
tron density and current distribution [7], and have since been
utilised in a wide range of applications [9, 10, 12, 13, 15, 18,
30, 31].

In the model, the Gaussian process for the electron temper-
ature is specified by a zero mean and a squared exponential
covariance function, commonly used in Gaussian processes,
and can be described as:

P(Te|σTe) =N (0,ΣTe) , (3)

ΣTe (ρeff,i,ρeff,j) = σ2
f,Te exp

(
−
(ρeff,i− ρeff,j)

2

2σ2
x,Te

)
+σ2

y,Teδij.

(4)

Here, the hyperparameters are denoted as σTe = [σf,Te ,σx,Te ].
σf represents the overall scale, influencing the overall vari-
ance of the Gaussian process. σx is the characteristic length
scale, determining the smoothness of the Gaussian process.
The noise scale, denoted by σy, is set to a relatively small
value compared to σf , for example, σy/σf = 10−3, to mitigate
numerical instabilities.

Given the potentially different smoothness (gradient) in the
core and edge regions, the electron density prior distribution
employs a Gaussian process with a zero mean and a non-
stationary covariance function [32], represented as:

P(ne|σne) =N (0,Σne) , (5)

Σne (ρeff,i,ρeff,j) = σ2
f,ne

(
2σx,ne (ρeff,i)σx,ne (ρeff,j)

σx,ne (ρeff,i)
2
+σx,ne (ρeff,j)

2

) 1
2

× exp

(
−

(ρeff,i− ρeff,j)
2

σx,ne (ρeff,i)
2
+σx,ne (ρeff,j)

2

)
+σ2

y,neδij. (6)

The length scale function, σx,ne(ρeff), is modelled using a
hyperbolic tangent function as developed in [30]:

σx,ne (ρeff) =
σcore
x,ne +σedge

x,ne

2
−

σcore
x,ne −σedge

x,ne

2

× tanh

(
ρeff − ρeff,0,ne

ρeff,w,ne

)
. (7)

The set of hyperparameters is denoted as σne =

[σf,ne ,σ
core
x,ne ,σ

edge
x,ne ,ρeff,0,ne ,ρeff,w,ne ].

The electron density and temperature profiles are mapped
to x,y,z Cartesian coordinates using the coordinate transform-
ations provided by the variational moments equilibrium code
node [33, 34]. With the 3D fields of electron density and tem-
perature in real space, predictive distributions for the data from
the DI, TS and He-BES systems can be calculated. The single-
chord DI system [23] measures the line-integrated electron
density along the line of sight. Its forward model predicts this
line integral of electron density, which is then directly com-
pared to the measurements stored in the W7-X database. The
TS system [8] captures Thomson scattered spectra from 10 to
79 spatial locations along the laser beam across the plasma
centre. A physicsmodel for the TS process [35] is incorporated
into the Thomson model [8, 9], which predicts the Thomson
scattered spectra based on the electron density and temperat-
ure. To account for uncertainties in the calibration factor of
the TS system, the calibration factor is treated as an additional
unknown parameter.

The joint posterior distribution for the Bayesian joint
model of the DI and TS systems can be expressed as:

3



Nucl. Fusion 64 (2024) 106022 S. Kwak et al

Fi
g
u
re

1.
T
he

M
in
er
va

gr
ap
h
fo
r
th
e
B
ay
es
ia
n
jo
in
tm

od
el
of

th
e
D
I,
T
S
an
d
H
e-
B
E
S
sy
st
em

s
at
W
7-
X
.U

nk
no
w
n
pa
ra
m
et
er
s
an
d
ob
se
rv
at
io
ns

ar
e
re
pr
es
en
te
d
by

bl
ue

an
d
gr
ey

ci
rc
le
s,

re
sp
ec
tiv

el
y.
E
le
ct
ro
n
de
ns
ity
,n

e
an
d
te
m
pe
ra
tu
re
,T

e,
ar
e
ex
pr
es
se
d
as

fu
nc
tio

ns
of

th
e
ef
fe
ct
iv
e
m
in
or

ra
di
us
,ρ

ef
f,
an
d
ar
e
tr
an
sf
or
m
ed

in
to

C
ar
te
si
an

co
or
di
na
te
s
x,
y,
z
th
ro
ug
h
co
or
di
na
te

tr
an
sf
or
m
at
io
ns

pr
ov
id
ed

by
th
e
va
ri
at
io
na
lm

om
en
ts
eq
ui
lib

ri
um

co
de

(V
M
E
C
)
no
de
.E

le
ct
ro
n
de
ns
ity

an
d
te
m
pe
ra
tu
re

pr
ofi

le
s
ar
e
m
od
el
le
d
us
in
g
G
au
ss
ia
n
pr
oc
es
se
s
al
on
g
w
ith

th
ei
r

hy
pe
rp
ar
am

et
er
s.
E
ac
h
m
od
el
pr
ed
ic
tio

n
is
ca
lc
ul
at
ed

ba
se
d
on

th
es
e
un
kn
ow

n
pa
ra
m
et
er
s.
T
hi
s
gr
ap
h
ill
us
tr
at
es

th
e
jo
in
tp

ro
ba
bi
lit
y
of

al
lu

nk
no
w
n
pa
ra
m
et
er
s
an
d
ob
se
rv
at
io
ns
,e
nc
om

pa
ss
in
g

al
lp

ri
or

an
d
pr
ed
ic
tiv

e
di
st
ri
bu
tio

ns
.

4



Nucl. Fusion 64 (2024) 106022 S. Kwak et al

P(ne,Te,σne ,σTe ,σDI,σTS,CTS|DDI,DTS)

=
P(DDI,DTS|ne,Te,σne ,σTe ,σDI,σTS,CTS)P(ne,Te,σne ,σTe ,σDI,σTS,CTS)

P(DDI,DTS)

=
P(DDI|ne,σDI)P(DTS|ne,Te,σTS,CTS)P(ne|σne)P(Te|σTe)

P(DDI)P(DTS)
×P(σne)P(σTe)P(σDI)P(σTS)P(CTS) , (8)

where σne and σTe are the hyperparameters of the Gaussian
processes modelling the electron density and temperature pro-
files, respectively. The predictive distributions P(DDI|ne,σDI)
andP(DTS|ne,Te,σTS,CTS) aremodelled as Gaussian distribu-
tions, with means and standard deviations determined by the
predictions of the forward models and predictive uncertain-
ties. These uncertainties are proportional to the measurement
uncertainties and are scaled by factorsσDI andσTS. These scale
factors, along with the calibration factor CTS, are treated as
additional unknown parameters due to incomplete knowledge
of the measurement uncertainties. Optimising these model
parameters and the hyperparameters of the Gaussian pro-
cesses aims tomaximise the posterior probability of themodel,
embodying the principle of Occam’s razor [36, 37].

The calibration factor of the TS systemCTS is also treated as
an additional unknown parameter, enabling automatic cross-
calibration with the DI data. The electron density and tem-
perature in the edge region significantly influence this cross-
calibration, as the profile boundary is dependent on edge
region observations. To incorporate this aspect, we use our
physics and empirical knowledge to introduce virtual obser-
vations at the limiter/divertor positions a priori as part of the
prior distributions, assuming the electron density and temper-
ature are not high enough to damage the W7-X experiment’s

limiter and divertor [2]. These constraints can be modelled as:

P(Dwall,ne |ne) =N
(
ne (xwall,ywall,zwall) ,σ

2
wall,ne

)
, (9)

P(Dwall,Te |Te) =N
(
Te (xwall,ywall,zwall) ,σ

2
wall,Te

)
, (10)

where xwall, ywall and zwall are the spatial locations of the
limiter/divertor, with density and temperature constraints set
to be low: Dwall,ne = 1015m−3, σwall,ne = 1015m−3, Dwall,Te =
0.1eV and σwall,Te = 0.1eV. Similarly, we introduce virtual
observations to impose zero gradient constraints on the elec-
tron density and temperature profiles at the magnetic axis as
follows:

P(Dcore,ne |ne) =N

(
dne
dρeff

∣∣∣∣
ρeff=0

,σ2
core,ne

)
, (11)

P(Dcore,Te |Te) =N

(
dTe
dρeff

∣∣∣∣
ρeff=0

,σ2
core,Te

)
, (12)

where Dcore,ne = 0.0m−3, σcore,ne = 1018m−3, Dcore,Te =
0.0keV and σcore,Te = 0.1keV.

With these virtual observations, denoted as Dv,ne =
[Dwall,ne ,Dcore,ne ] and Dv,Te = [Dwall,Te ,Dcore,Te ], the joint pos-
terior probability is given by:

P(ne,Te,σne ,σTe ,σDI,σTS,CTS|DDI,DTS,Dv,ne ,Dv,Te)

=
P(DDI,DTS,Dv,ne ,Dv,Te |ne,Te,σne ,σTe ,σDI,σTS,CTS)P(ne,Te,σne ,σTe ,σDI,σTS,CTS)

P(DDI,DTS,Dv,ne ,Dv,Te)

=
P(DDI|ne,σDI)P(DTS|ne,Te,σTS,CTS)P(Dv,ne |ne)P(ne|σne)P(Dv,Te |Te)P(Te|σTe)

P(DDI)P(DTS)P(Dv,ne)P(Dv,Te)

×P(σne)P(σTe)P(σDI)P(σTS)P(CTS)

=
P(DDI|ne,σDI)P(DTS|ne,Te,σTS,CTS)P(ne|Dv,ne ,σne)P(Te|Dv,Te ,σTe)

P(DDI)P(DTS)
×P(σne)P(σTe)P(σDI)P(σTS)P(CTS) , (13)

where P(ne|Dv,ne ,σne) and P(Te|Dv,Te ,σTe) are the Gaussian
process priors with edge and core constraints from the
virtual observations. Remarkably, any physics or empir-
ical law can be incorporated through virtual observations,
treating the left-hand and right-hand sides of physics formulas

as predictions and corresponding observations, respectively.
These physics/empirical priors based on virtual observa-
tions have been utilised in the Bayesian joint model at
Wendelstein 7-AS [38] and for plasma equilibria at JET
[6, 39].
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On the other hand, local measurements of the electron
density and temperature in the edge region can be provided
by the He-BES system. This system injects helium gas
into the plasma and collects emissions from three helium
lines (667 nm, 706 nm and 728 nm). The electron density
and temperature are inferred from the intensity ratios of

the 667 nm–728 nm, 706 nm–667 nm and 706 nm–728 nm
helium lines, utilising pre-calculated lookup tables based
on the collisional-radiative model [13, 40]. The joint pos-
terior probability of the Bayesian joint model, includ-
ing the DI, TS and He-BES systems, is expressed as:

P(ne,Te,σne ,σTe ,σDI,σTS,CTS|DDI,DTS,DHe)

=
P(DDI,DTS,DHe|ne,Te,σne ,σTe ,σDI,σTS,CTS)P(ne,Te,σne ,σTe ,σDI,σTS,CTS)

P(DDI,DTS,DHe)

=
P(DDI|ne,σDI)P(DTS|ne,Te,σTS,CTS)P(DHe|ne,Te)P(ne|σne)P(Te|σTe)

P(DDI)P(DTS)P(DHe)

×P(σne)P(σTe)P(σDI)P(σTS)P(CTS) , (14)

where DHe represents the He-BES data. The predictive distri-
bution P(DHe|ne,Te) is modelled as a Gaussian distribution,
with its mean and variance derived from the lookup tables and
the predictive uncertainties of the helium line ratios.

All these joint posterior distributions are explored using a
Markov chain Monte Carlo (MCMC) algorithm, specifically
through the use of adaptive Metropolis–Hastings algorithms
[41–43], as implemented in Minerva. The hyperparameters of
the Gaussian processes, alongside the model parameters, are
numerically marginalised to obtain the marginal posterior dis-
tributions for the electron density and temperature profiles.
This approach ensures that these profiles are inferred by con-
sidering all possible values of the hyperparameters and model
parameters, thereby incorporating all measurements simultan-
eously in a consistent manner.

Before inferring profiles from experimental measurements,
we conducted inference exercises (phantom tests) using
Gaussian processes and virtual observations for both typical
and hollow profile shapes, which may occur in W7-X [44]. As
demonstrated in figure 2, the current setup of prior assump-
tions and constraints successfully infers both profile shapes.

3. Inference

The electron density and temperature profiles are among
the most critical physics parameters for understanding the
magnetohydrodynamic equilibrium, transport and perform-
ance of fusion plasma. The TS system provides these pro-
files across half of the plasma, with upgrades in the latest
campaigns extending coverage to the full range. Meanwhile,
the DI system measures the line-integrated electron dens-
ity. This measurement is crucial for inferring and cross-
calibrating the calibration factor of the TS system. The bound-
ary of the profile significantly influences this cross-calibration
process. Since the profile boundary is determined by the

electron density and temperature information in the edge
region, this information can be sourced from virtual observa-
tions at the limiter/divertor positions or from He-BES data. In
this work, profile inference was performed using various com-
binations of DI and TS systems, He-BES data or edge virtual
observations.

Figure 3 illustrates the electron density and temperature
profiles as functions of the effective minor radius ρeff, inferred
by exploring the joint posterior distribution given the DI and
TS data, as defined in equation (8). The dark blue lines rep-
resent the marginal posterior means, while the light blue
lines depict samples from the marginal posterior distributions.
These marginal posterior samples are obtained by numerically
integrating the joint posterior distribution over all hyperpara-
meters and model parameters, as expressed by:

P(ne,Te|DDI,DTS)

=

ˆ ˆ ˆ ˆ ˆ
P(ne,Te,σne ,σTe ,σDI,σTS,CTS|DDI,DTS)

× dσne dσTe dσDI dσTS dCTS. (15)

The orange dots represent the electron density and temperat-
ure measurements with error bars from the TS analysis imple-
mented in Minerva [8], while the green dots denote electron
temperature measurements from ECE analysis on the low field
side [45]. The calibration factor of the TS system CTS is sub-
ject to uncertainty from experimental factors such as laser mis-
alignment, potentially leading to discrepancies in the electron
density profiles compared to the line-integrated electron dens-
ity measurements from the DI. The joint model automatically
adjusts the TS data with the DI measurements, aligning the
electron density profiles from the joint analysis with both data
sources (with the inferred calibration factor CTS = 0.91), sug-
gesting that TS analysis might underestimate electron density
by approximately 9% relative toDI data in this case. The gradi-
ent profiles for ne and Te are also shown in figures 3(b) and (d),

6
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Figure 2. Phantom test results of the Bayesian joint model for (a) typical and (b) hollow profile shapes. The red lines represent the true
underlying profiles, while the orange dots indicate synthetic TS data with error bars. The dark blue lines show the marginal posterior means
calculated given the synthetic TS data, and the light blue lines illustrate samples from the marginal posterior distributions. The dashed blue
lines represent the ±2σ posterior uncertainties.

Figure 3. Inference results of the Bayesian joint model for the DI and TS systems (experiment ID 20160309.013, t= 0.43s): (a) electron
density, (b) ne gradient, (c) electron temperature and (d) Te gradient profiles. The dark blue lines represent the marginal posterior means,
while the light blue lines depict samples from the marginal posterior distributions. The dashed blue lines are the ±2σ posterior
uncertainties. The orange dots indicate electron density and temperature measurements obtained through Bayesian analysis of TS data, with
associated error bars. The green dots denote electron temperature measurements from electron cyclotron emission (ECE) analysis on the
low field side. The TS system undergoes automatic cross-calibration with an inferred calibration factor CTS = 0.91 by the joint model.
Notably, the electron density measurements from the TS system alone (orange dots) show inconsistencies with the DI data due to calibration
uncertainties. The profiles produced by the joint model (dark blue lines) achieve consistency with both DI and TS data.

respectively. It is important to note that no measurements are
available beyond the LCFS, i.e. for ρeff > 1.0, making the elec-
tron density and temperature in this region solely determined
by the Gaussian process priors.

The electron density and temperature at the limiter/divertor
positions are anticipated to be relatively low, aligning with our
prior knowledge. This information can be incorporated into the
model as virtual observations, as detailed in section 2. Figure 4
illustrates the electron density and temperature profiles of
the marginal posterior distribution, considering these virtual
observations, P(ne,Te|DDI,DTS,Dv,ne ,Dv,Te). It is noteworthy
that the calibration factors of the TS system, with and without
the virtual observations, differ significantly (CTS = 0.83 with

virtual observations versus CTS = 0.91 without), indicating
a substantial impact of edge region data on the calibration
factor.

To compare inference outcomes of the joint model based
on virtual observations with those obtained from experi-
mental observations in the edge region, He-BES data is
incorporated into the joint model instead of virtual obser-
vations. The electron density and temperature profiles from
the marginal posterior distribution, given the He-BES data
P(ne,Te|DDI,DTS,DHe), are depicted in figure 5. The calib-
ration factor derived with He-BES data (CTS = 0.86) exhib-
its a slight deviation from that obtained using virtual observa-
tions (CTS = 0.83). Figure 6 compares the predictions based
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Figure 4. Similar to figure 3, presenting inference results of the Bayesian joint model of the DI and TS systems, now including electron
density and temperature constraints at the limiter/divertor positions through virtual observations.

Figure 5. Similar to figure 3, showing inference results of the Bayesian joint model of the DI, TS and He-BES systems. The red dots
represent electron density and temperature measurements from a standalone Bayesian analysis of the helium beam model developed in this
work.

on these marginal posterior means and samples against the
corresponding observations. The absolute differences between
the DI data and predictions with He-BES data and vir-
tual observations are 0.101× 1012m−2 and 0.184× 1012m−2,
respectively, while the DI measured data is 2.30× 1019m−2 ±
5.33× 1014m−2. Both predictions match well with the DI
data within the uncertainties, which implies that the cross-
calibrationwas performed properly in both cases. TheHe-BES
system not only yields density and temperature measurements
but also provides their measurement uncertainties in the edge
region, which are crucial for determining the optimal hyper-
parameters (smoothness) through Bayesian Occam’s razor
[36, 37].

Both the edge profiles obtained from virtual observations
and He-BES data are valid solutions, given different combin-
ations of assumptions, constraints and observations. The joint
model integrating the DI, TS and He-BES systems generates
plausible electron density and temperature profiles in the edge
region, with He-BES providing direct measurements. In con-
trast, virtual observations rely on synthetic constraints to infer
edge profiles, which, while valuable, are derived indirectly
by excluding empirically unreasonable solutions (high density
and temperature at the limiter/divertor). When direct observa-
tions are scarce, virtual observations offer an alternativemeans
to bolster the model and rule out solutions that are physically
or empirically implausible.
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Figure 6. Comparisons of predictions (in dark blue and light blue) against observations (in orange) from (a) TS data and (b)
667 nm–728 nm, (c) 706 nm–667 nm and (d) 706 nm–728 nm helium line intensity ratios, based on the posterior mean and samples shown in
figure 5. The TS data comprise 50 data points across ten spatial locations, with five integrated signals over different spectral ranges for each
location. The He-BES data consists of the ratios of line intensities from eight spatial locations.

Table 1. Gaussian process hyperparameters (maximum a posteriori).

Data σf,ne σcore
x,ne σedge

x,ne ρeff,0,ne ρeff,w,ne σf,Te σx,Te

DDI,DTS,Dv,ne ,Dv,Te 2.11 31.0 15.0 0.735 0.133 3.29 0.539
DDI,DTS,DHe 2.43 25.8 10.8 0.782 0.223 2.89 0.523

The hyperparameters of the Gaussian processes are shown
in table 1. As expected, the core length scale σcore

x,ne is larger

than the edge length scale σedge
x,ne , indicating that the core pro-

files are flatter while the edge profiles are steeper. The length
scale transition positions ρeff,0,ne inferred from the He-BES
data and the virtual observations are similar. In addition, due
to the globally optimised length scale (profile smoothness)
and the zero gradient constraints at the magnetic axis, the
inferred profiles do not capture minor structures. For instance,
the data sets presented in this work may suggest a peak in Te
at ρ= 0.2. Nonetheless, given the limited number of meas-
urement points and the magnitude of observational uncertain-
ties, the optimised smoothness and core constraints prevent
the model from fitting this minor structure, thereby avoiding
potential overfitting.

We emphasise that the inferred profiles neither underfit nor
overfit the data. Bayesian methods automatically and quantit-
atively penalise underfitted and overfitted models. Underfitted
models, which suggest overly simplistic profiles such as
straight lines, fail to predict the data within their predictive

uncertainties. On the contrary, overfitted models, which sug-
gest overly complex profiles, for example, ones with excess-
ive fluctuations, might predict the data more accurately than
simpler models. However, overfitted models can generate a
wide variety of profiles, with each being almost equally prob-
able. Consequently, the probability associated with any single
proposed profile is lower than that of profiles proposed by sim-
pler models, given that the total probability across the entire
profile space must sum to one. Thus, overly complex models
are automatically self-penalised by Bayesian Occam’s razor
[36, 37]. Specifically, Gaussian processes with excessively
small length scales (overly complex models) can suggest pro-
files that accurately predict the data, i.e. with high predict-
ive probabilities P(DDI|ne,σDI), P(DTS|ne,Te,σTS,CTS) and
P(DHe|ne,Te), but the prior probabilities of these profiles
P(ne|σne) and P(Te|σTe) are low because the Gaussian pro-
cesses can propose many other equally probable profiles.
Therefore, the joint posterior probability for overly com-
plex models is diminished. Models characterised by excess-
ively large predictive uncertainties are similarly penalised. By
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Figure 7. Similar to figure 3, this figure presents inference results from the Bayesian joint model integrating data from the DI, TS, He-BES
and XICS systems. The ion temperature and its gradient profiles are represented by the purple lines in (c) and (d). The ion temperature
profiles with the ±2σ posterior uncertainties from the Minerva XICS inference, are shown in pink.

exploring the joint posterior distribution of the electron dens-
ity and temperature profiles, along with hyperparameters and
model parameters, we identify profiles with appropriate length
scales (smoothness) and predictive uncertainties. Moreover,
the inference outcomes yield marginal posterior samples and
uncertainties that consider all possible values of hyperpara-
meters and model parameters, meaning these samples and
uncertainties are robust to specific hyperparameter and model
parameter values.

4. The addition of the XICSs

The XICSs [14, 15] are utilised to measure x-ray spectra of
argon and iron impurities in various charge states, encom-
passing a wide electron temperature range from 0.3 keV to
6 keV. The XICS system captures line-integrated spectra along
20 lines of sight, covering over half of the plasma’s pol-
oidal cross-section at a toroidal angle of 159.09 degrees.
The forward model for XICS, previously implemented in
Minerva [14], has been incorporated into the Bayesian joint
model alongside the DI, TS and He-BES systems. This for-
ward model computes local x-ray spectra considering various
atomic processes, including excitation, recombination, ioniza-
tion and charge exchange, which are influenced by the electron
density and temperature as well as the ion temperature. These
predicted local spectra are then integrated along the lines of
sight by the forward model to produce the line-integrated x-
ray spectra, based on the aforementioned physics parameters.

The ion temperature prior distribution is modelled as a
Gaussian process with zero mean and a squared exponen-
tial covariance function. The joint posterior probability, incor-
porating data from the DI, TS, He-BES and XICS, can be
expressed as:

P(ne,Te,Ti,σne ,σTe ,σTi ,σDI,σTS,CTS|DDI,DTS,DHe,DXICS)

=
P(DXICS|ne,Te,Ti)P(Ti|σTi)P(σTi)

P(DXICS)

×P(ne,Te,σne ,σTe ,σDI,σTS,CTS|DDI,DTS,DHe) , (16)

where Ti represents the ion temperature, σTi denotes the hyper-
parameters of the Gaussian process, and DXICS refers to the
XICS data. The predictive distribution P(DXICS|ne,Te,Ti) is
modelled as a Gaussian distribution, with mean and variance
derived from the XICS forward model, reflecting the predict-
ive uncertainties of the line-integrated x-ray spectra. The elec-
tron density, electron temperature and ion temperature profiles
are inferred tomographically based on the combined data from
the DI, TS, He-BES and XICS systems.

The maximum a posteriori (MAP) solutions for the elec-
tron density and temperature, along with ion temperature
profiles, are determined using the pattern search algorithm
[46] implemented in Minerva, as illustrated in figure 7. The
ion temperature profiles with the ±2σ posterior uncertainties
from the Minerva XICS inference [15], are shown in pink.
Comparisons between the model predictions and observations
from the helium beam emission and line-integrated x-ray spec-
tra are depicted in figure 8. Due to the substantial complex-
ity and computational demands of the XICS forward model,
comprehensive sampling from the joint posterior distribution
is deferred to future investigations. This challenge may be
addressed by employing a neural network to approximate the
XICS model within Minerva [20, 22].

Remarkably, we infer these profiles with optimal val-
ues of hyperparameters (indicating smoothness) and model
parameters by maximising the joint posterior probability.
Traditionally, optimising hyperparameters and model para-
meters involves maximising their posterior probability, which
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Figure 8. Predictions (in blue) versus observations (in orange) for helium beam spectra from channel #3 (near the divertor) and #8 (the
innermost channel), along with XICS spectra from channel #6 (in the edge region) and #16 (in the core region), based on the profiles
depicted in figure 7.

is proportional to the marginal predictive distribution of
the observations, also referred to as the model evidence.
Calculating the model evidence poses a significant compu-
tational challenge due to the necessity of integrating over a
high-dimensional parameter space, representing a substantial
hurdle for applying Bayesian Occam’s razor in real-world
applications. On the other hand, the computation of the joint
posterior probability does not require such integration. The
joint posterior distribution is conceptualised as the product of
the conditional posterior distribution of the parameters given
the hyperparameters and model parameters, and the posterior
distribution of these hyperparameters and model parameters
themselves, expressed as:

P(ne,Te,Ti,σne ,σTe ,σTi ,σDI,σTS,CTS|DDI,DTS,DHe,DXICS)

= P(ne,Te,Ti|σne ,σTe ,σTi ,σDI,CTS,σTS,DDI,DTS,DHe,DXICS)

×P(σne ,σTe ,σTi ,σDI,σTS,CTS|DDI,DTS,DHe,DXICS) . (17)

The joint posterior distribution inherently applies Bayesian
Occam’s razor via the posterior probabilities of the hyper-
parameters and model parameters. Consequently, the
MAP solutions yield profiles that are optimally smooth
rather than overly complex or wiggly, as evidenced in
figure 7.

5. Conclusions

The Bayesian joint model, integrating data from the inter-
ferometer, TS and He-BES systems, has been developed for
W7-X. Each forward model was individually implemented
and then unified within the Minerva framework. The elec-
tron density and temperature profiles, modelled as functions of
the effective minor radius using Gaussian processes, include
hyperparameters and model parameters such as the calibra-
tion factor of the TS system as additional unknowns. The
exploration of the joint posterior distribution of these profiles,
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hyperparameters and model parameters leverages a MCMC
algorithm.

Profile inference utilised varying combinations of the three
distinct data sets alongside virtual observations. Specifically,
electron density and temperature profiles were inferred using
the joint model of the interferometer and TS system, with auto-
matic cross-calibration against line-integrated electron dens-
ity measurements from the interferometer. Virtual observa-
tions were introduced as part of the prior distributions to
exclude physically and empirically unlikely solutions, par-
ticularly assumptions regarding non-excessive electron dens-
ity and temperature at limiter/divertor positions. The profiles
and calibration factor inferred from the joint posterior distri-
bution with virtual observations were found to be physically
and empirically consistent, differing significantly from those
inferred without such observations due to the absence of edge
region data.

Furthermore, to contrast inference solutions based on vir-
tual versus experimental observations in the edge region,
helium beam emission data was incorporated into the model
in place of virtual observations. The profiles inferred from the
comprehensive model—comprising data from the interfero-
meter, TS and helium beam emission systems—were deemed
reasonable. This is attributed to the helium beam data provid-
ing not only electron density and temperature measurements
but also their uncertainties in the edge region, critical for
determining optimal profile smoothness via BayesianOccam’s
razor. Nevertheless, virtual observations remain a viable
alternative to strengthen the model and eliminate unlikely
inference solutions when empirical data is limited.

These inference solutions, characterised by optimal hyper-
parameters (smoothness) and model parameters as dictated by
Bayesian Occam’s razor, avoid the pitfalls of over-complex
models. This approach ensures that the inference solutions
neither underfit nor overfit the measurements. The marginal
posterior samples, reflecting electron density and temperat-
ure profiles, incorporate all conceivable values of the hyper-
parameters and model parameters relative to the observations.
The joint posterior distribution, central to Bayesian Occam’s
razor, simplifies the calculation of joint posterior probabilit-
ies compared to model evidence, facilitating the application of
Bayesian principles in real-world scenarios. As demonstrated,
the MAP solutions from the joint posterior probability distri-
bution, considering data from the interferometer, TS, He-BES
and XICS systems, yield electron density, temperature and
ion temperature profiles with suitable model parameters and
hyperparameters, thereby achieving a balance between fitting
the data and maintaining model simplicity.
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