
Importance Analysis of Micro-Flow Independent
Features for Detecting Distributed Network 
Attacks

Samuel Kopmann and Martina Zitterbart

Abstract—Network infrastructures are critical and, therefore,
subject to harmful attacks against their operation and the
availability of their provided services. Detecting such attacks,
especially in high-performance networks, is challenging consid-
ering the detection rate, reaction time, and scalability. Attack
detection becomes even more demanding concerning networks
of the future facing increasing data rates and flow counts. We
thoroughly evaluate eMinD, an approach that scales well to high
data rates and large amounts of data flows. eMinD investigates
aggregated traffic data, i.e., it is not based on micro-flows and
their inherent scalability problems. We evaluate eMinD with real-
world traffic data, compare it to related work, and show that
eMinD outperforms micro-flow-based approaches regarding the
reaction time, scalability, and the detection performance. We
reduce required state space by 99.97%. The average reaction
time is reduced by 90%, while the detection performance is
even increased, although highly aggregating arriving traffic. We
further show the importance of micro-flow-overarching traffic
features, e.g., IP address and port distributions, for detecting
distributed network attacks, i.e., DDoS attacks and port scans.

Index Terms—Network intrusion detection, machine learning,
traffic monitoring, traffic aggregation.

I. INTRODUCTION

NETWORK infrastructures are critical and, therefore,
subject to harmful attacks against their operation and

the availability of their provided services. Detecting such
attacks, especially in high-performance networks, is challeng-
ing considering, for example, detection rate, reaction time, and
scalability concerning the number of flows and high data rates.

Network intrusion detection systems (NIDSs) monitor and
classify arriving network traffic, to detect malicious activities
and raise the alarm if an attack is occurring. The application
of machine learning (ML) in this context has become possible
due to the increased processing power available for train-
ing and inference. Therefore, ML approaches have recently
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become increasingly popular [1], [2], [3] in detecting attacks
against network infrastructures.

ML-based NIDSs no longer require hand-crafted attack
signatures, as they learn them from previously monitored
traffic. Nevertheless, sophisticated traffic monitoring is crit-
ical for developing scalable and well-performing solutions.
Monitoring must not be expensive regarding memory and
computational resources to adapt to high data rates but needs
to capture as many detection-relevant traffic characteristics
as possible. A common approach of ML-based NIDSs is
monitoring and classifying arriving traffic on the granularity of
micro-flows [4], which are identified by the five-tuple 〈source
IP address, destination IP address, source port, destination
port, transport protocol〉. These NIDSs match header fields
of arriving packets according to the five-tuple and calculate
features per micro-flow, e.g., the mean packet length, serving
as input for an ML model.

Micro-flow-based NIDS have already shown success for
real-world data [5]. However, the buildup of micro-flow
context is challenging, considering increasing data rates. The
higher the data rate, the less time is available for the NIDS
to match arriving packets. If packets arrive too fast for micro-
flow matching, they are not monitored, e.g., due to sampling,
and detection-relevant information is potentially discarded.
Furthermore, attackers can exploit micro-flow-based classifi-
cation by creating large amounts of different micro-flows, e.g.,
spoofing IP addresses, which turns the NIDS into the primary
bottleneck. In the scenario of distributed network attacks,
such as Distributed Denial of Service (DDoS) attacks with
thousands of sources (different IP addresses) or port scans with
thousands of destinations (different port numbers), attackers do
not even need IP spoofing to cancel the NIDS, as distributed
attacks inherently go along with large amounts of different
micro-flows because the five-tuple contains both source IP
and destination port. eMinD [6] addresses these scalability
issues by introducing an efficient and Micro-flow independent
Detector for distributed network attacks, completely avoiding
packet matching and state keeping.

State keeping and management is an essential part of micro-
flow-based NIDS, as the expressiveness of every micro-flow
needs to be assessed regarding the amount of collected data.
Further, the NIDS needs to decide if monitored micro-flows
are still active or already completed, and remove completed
flows from monitoring to not waste state space.

Micro-flow-based NIDSs require one classification through
the ML model per micro-flow, resulting in computational effort
correlated to the micro-flow count. This becomes infeasible
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for future ML-based NIDSs, as on the one hand, traffic
volume and micro-flow count increase and on the other hand,
employing larger models and privacy-preserving techniques is
desired, e.g., homomorphic encryption [7], [8], increasing the
classification duration. In addition, the reaction time, i.e., the
time from the attack’s start until its detection, depends on the
micro-flow count. The NIDS must classify every monitored
micro-flow for attack detection in the worst case.

Contribution. This work extends eMinD [6] that introduced
a reliable and effective NIDS independent of the number of
active micro-flows. In addition to eMinD’s contributions, we
thorougly evaluate the importance of monitored features in
Sections VIII and IX, besides 1) the required state space, 2) the
classification frequency, and 3) the reaction time. Furthermore,
we show that eMinD 4) improves the detection performance
of distributed network attacks compared to micro-flow-based
approaches, as it makes micro-flow-overarching traffic features
observable. We further show 5) the importance of these newly
observable features for the detection of distributed network
attacks. Therefore, we provide the following contributions:

1) eMinD has a predictable and strictly limited state space.
It uses only a fixed set of features independent of the
micro-flow count, reducing the state space by 99.97%.

2) eMinD has a strictly limited classification frequency.
It performs one classification periodically, reducing the
amount of classifications by 99.98%.

3) The reaction time of eMinD is short and fixed by a
predefined time interval. eMinD returns attack detection
results periodically on very short time scales and reduces
the average reaction time by 90%.

4) eMinD achieves a detection performance increase
compared to micro-flow-based NIDS with different
ML approaches, i.e., Decision Tree, Random Forest,
Multilayer Perceptron, and Support Vector Machine.

5) eMinD makes micro-flow-overarching traffic features
observable, e.g., unique source IPs and destination ports
that are critical for detecting distributed attacks, which
is shown in the evaluation.

Evaluation. We use the real-world CIC-IDS2017 [9] data
set containing port scan and DDoS traffic to prove the
above contributions. We compare eMinD to the approach of
Choobdar et al. [10] as they use the same data set and specif-
ically perform DDoS and port scan detection. Furthermore,
we use a composition of real-world MAWI backbone traffic
[11], [12], [13], [14] and CAIDA DDoS traffic [15] for
scalability evaluations as high-bandwidth DDoS scenario.
With the Intrusion Detection Dataset Toolkit [16], we inject
authentic port scans into MAWI backbone traffic to create
a data set for scalability evaluations concerning port scan
detection.

II. RELATED WORK

We compare eMinD to two different concepts of supervised
ML-based NIDS (see Fig. 1), namely micro-flow-level NIDS
and packet-level NIDS. All approaches, including eMinD,
process individual packets arriving at an ingress router of the
protected downstream network.

Fig. 1. Comparison of supervised ML-based NIDS approaches.

Micro-flow-level NIDS. Micro-flow-level NIDS [10], [17],
[18], [19], [20] classify individual micro-flows. For every
incoming packet at the ingress router, the NIDS determines
the corresponding micro-flow and updates its state, which con-
sists of calculated features, e.g., flow duration, packet count,
and byte count. Packet-to-flow matching is computationally
expensive, especially with an increasing amount of active
micro-flows, and is computationally infeasible in the context
of distributed network attacks, as thousands of different micro-
flows are active simultaneously. In contrast, eMinD calculates
only one set of traffic features during monitoring, using fast
operations like addition, enabling monitoring at line speed.

Even if the NIDS can monitor micro-flows at line speed,
the ML model has to perform one classification for every
active micro-flow to detect ongoing attacks. Therefore, the
reaction time of the NIDS depends on the number of active
micro-flows and their duration, which can lead to long reaction
times in the worst case. In contrast, eMinD only requires one
classification in a given time frame, completely independent of
micro-flows.

Micro-flow-level NIDS never consider distributions of IP
addresses or port numbers, spanning multiple or all active
micro-flows. We show in this work that those distributions
represent the most important characteristics of distributed
attacks. As eMinD highly aggregates arriving network traffic,
and therefore, widens the scope from five-tuple inspection, it
can monitor address distributions and use them for training
and classification, which improves detection performance.

Packet-level NIDS. Packet-level NIDS classify raw traffic
input [21] or complete packets [22]. These NIDS do not
require expensive state keeping per se, but they suffer from
inefficiency at high data rates, as the NIDS’s maximum
possible packet processing rate depends on the classification
duration. If the classification speed cannot keep up with
line speed, e.g., in the context of volumetric DDoS attacks
with high peak data rates, traffic needs to be sampled, and
detection relevant information is potentially lost. Furthermore,
packet-level NIDS also have only a limited view of address
distributions, as they only observe a limited amount of packets.
eMinD has neither of those limitations, as traffic is highly
aggregated. Aggregation operations, such as addition and
hashing, can be performed at line speed, in contrast to



Fig. 2. Illustration of eMinD’s workflow from traffic aggregation, over feature
calculation to attack detection.

classification, while enabling address distribution observation
at the same time.

ML approaches. Supervised ML-based NIDSs employ a
variety of different approaches, e.g., decision trees [19],
random forests [17], [18], [19], support vector machines,
and artificial neural networks [10], [18], [20]. We show the
flexibility of eMinD concerning the used ML approach in
the evaluation section, which means that one can imple-
ment eMinD according to individual constraints regarding the
selected ML approach, e.g., the training duration.

III. EMIND IN A NUTSHELL

Fig. 2 shows an overview of eMinD’s workflow, which
employs the following components consecutively: A. Traffic
aggregation, B. Feature calculation, and C. Classification.
eMind runs on a monitoring server collocated with an ingress
router. Arriving traffic at the ingress router is mirrored to
the monitoring server, which calculates a highly aggregated
traffic representation that an ML model periodically classifies.
Neither micro-flow matching nor management is required.

A. Traffic Aggregation

Monitoring at line speed is key for observing detection
relevant traffic features and not discarding information, e.g.,
through packet sampling. Therefore, eMinD only employs fast
operations for traffic aggregation, such as hashing, adding, and
multiplying. In contrast, we explicitly exclude the distinction
of cases, dividing, or the modulo operation. This ensures that
eMinD can keep up with line speed even at very high data
rates. We distinguish between three classes of aggregation
features, namely Hash features, Count features, and Sum
features.

Hash features enable eMinD to estimate how many different
feature values occur. eMinD monitors the source and desti-
nation IP addresses and port numbers. For each hash feature,
eMinD initializes an array of fixed length. All entries are zero
at the beginning.

On packet arrival, each hash feature is processed by an
efficient hash function, uniformly and deterministically dis-
tributing values of the feature space over the array. For every
feature, the array field determined by hashing is set to 1.

The same feature values have the same hash value and,
therefore, the same corresponding field in the array. Different
feature values can have different corresponding array fields
after hashing. This enables eMinD to estimate the number
of different feature values by counting the number of 1-
entries in the corresponding array. Hash collisions imply
underestimations and their probability is determined by the
size of the array. Therefore, a trade-off between the array
size (required memory) and the estimation’s precision needs to
be considered. Hash features can be monitored at line speed,
as computationally efficient hash functions exist [23], e.g.,
implementing hash functions with XOR operations.

We show in the evaluation section that Hash features
constitute a significant conceptual improvement over micro-
flow-based features regarding the detection of distributed
network attacks, as Hash features capture distributions of fea-
tures overarching the scope of micro-flows, such as source IP
and destination port distributions, which are strong indicators
for DDoS attacks and port scans.

Count features are implemented by the simple increment
operation. eMinD counts the total number of packets, the
number of UDP and TCP packets, and the TCP SYN and FIN
flags. Count features are also part of micro-flow-based NIDS
but their overarching observation in eMinD enables better
detection of distributed attacks, e.g., the total traffic volume
to detect DDoS attacks and the total SYN flag count to detect
port scans.

Sum features represent traffic aggregates later used to
calculate advanced derived features. eMinD cannot calculate
derived features, namely mean and variance, during traffic
aggregation, as the required computational operations are too
expensive to keep up with line speed at very high data rates.
For all monitored Sum features, which are Inter-arrival time
and packet length, the sum of all values and the sum of squared
values is calculated.

B. Feature Calculation

eMinD employs a periodic timer with period δ seconds,
which we denote as time frame. After every time frame,
Hash, Count and Sum features from traffic aggregation are
read, used to calculate derived features that eMinD feeds into
the ML model, and reset afterwards. Each feature used in
traffic aggregation is used for one or more feature calculations,
which are color-coded in Fig. 2, i.e., Hashed features are
only counted; Count features are not processed further before
classification (illustrated by the identity operation in green),
while Sum features are used to calculate both mean and
variance for the corresponding feature.

In contrast to traffic aggregation, feature calculation can per-
form more expensive operations, such as division operations
(required for mean and variance), because feature calculation
is only performed once a time frame and not once a packet
arrival.

Time frame δ is chosen before training and is then fixed.
The smaller δ is, the shorter is the reaction time of eMinD, as
δ implies the lower boundary of the ML model’s classification
frequency at the end of eMinD’s workflow. On the other hand,



TABLE I
TRAFFIC AGGREGATES AND CALCULATED FEATURES’ COUNT

a longer time frame goes along with two benefits. First, eMinD
aggregates more traffic during a longer time frame, which
leads to more traffic information in the monitored features,
providing more information to the ML model and improving
detection performance. Second, longer time frames enable the
use of more complex ML models that require more time
for classification, which may also lead to better detection
performance. Therefore, a trade-off between eMinD’s reac-
tion time and the attack detection performance needs to be
considered.

Feature List

Tab. I summarizes all Hash, Count and Sum features
eMinD is monitoring during traffic aggregation and fur-
ther shows, how the features are processed during feature
calculation (compare with Fig. 2). The table also provides
information about the total amount of resulting features
fed into the ML model. eMinD uses only one set of 13
features, which represents a very low memory footprint com-
pared to micro-flow-based NIDS using 84 traffic features per
micro-flow [10]. Note that hash features can be efficiently
implemented with one bit per array field, as each field only
stores binary state. To conclude, eMinD has fixed monitoring
state size independent of the active micro-flow count or the
ingress traffic volume.

C. Traffic Classification

The ML model is trained offline in a supervisory manner.
After eMinD has calculated derived features from traffic
aggregation of the corresponding time frame, they serve as
input for the employed ML model. We show the performance
of eMinD with Decision Trees, Random Forests, Support
Vector Machines (SVM), and Multi-layer Perceptrons (MLP)
in the evaluation to provide comparability to related work and
to demonstrate eMinD’s flexibility regarding the ML approach.
The output of the ML model represents attack detection
during the corresponding time frame, which constitutes a
classification of the time frame’s traffic. eMinD performs only
one classification per time frame, independent of the ingress
traffic volume and the number of active micro-flows, which
guarantees scalability at high data rates while at the same time

encouraging the utilization of more complex ML models with
longer classification durations.

IV. DATA SETS

This section covers data set descriptions, as well as the pre-
processing and training procedure. We selected two different
types of data sets. First, we use the CIC-IDS2017 data set,
as it contains both DDoS attack traffic and port scans, whose
detection is the focus of this paper. It is publicly available and
widely used in related work, so results provide comparability.
Second, we use real Internet backbone traffic from MAWI
and CAIDA to create a data set composition that contains an
authentic DDoS attack at high data rates to show scalibility
of eMinD. In addition, we inject authentic port scans with the
tool ID2T into MAWI backbone traffic to evaluate port scan
detection in a high bandwidth scenario. ML model training
and hyperparameter optimization is performed offline in a
supervisory manner. Traffic composition, preprocessing and
model training are publicly available [24].

A. CIC-IDS2017 Data Set

The CIC-IDS2017 data set [9] was developed and published
by the Canadian Institute for Cybersecurity (CIC) in 2017.
Traffic has been recorded over five days and contains various
different network attacks. However, for training and testing
eMinD, we only use a specific part of the data set, namely
Friday afternoon, as this part of the data set contains both
DDoS and port scan traffic. We explicitly use this data set
to provide comparability to related approaches, particularly to
Choobdar et al. [10], considering detection performance.

B. MAWI and CAIDA2007 Data Set Composition

To evaluate the scalability of eMinD, we use authentic
traffic traces recorded in the backbone of the Internet from
MAWI [11], [12], [13], [14], as well as DDoS traffic provided
by CAIDA [15]. Each of the MAWI traces lasts 15 minutes,
resulting in 60 minutes of background traffic in total. From
the CAIDA data set, we cut 30 minutes of high-volume DDoS
traffic to create a traffic composition of background and attack
traffic. Data rates in this traffic composition exceed 1 Gbit/s
and contain thousands of attack sources.

C. MAWI and ID2T Data Set Composition

To also evaluate the scalability of eMinD regarding port scan
detection, we injected port scans into high-volume MAWI traf-
fic with the Intrusion Detection Dataset Toolkit (ID2T) [16].
ID2T enables injecting port scans into background traffic with
certain parameters, e.g., start of the scan, duration of the scan
and its intensity (in ports per second). Scans with higher
intensities are easier to detect than scans with low intensities,
which are often referred to as stealthy scans. Injected scans
are non-stealthy TCP SYN scans with randomized source and
destination ports.

D. Preprocessing

Once a time frame is selected for eMinD, it is fixed during
training and testing. Therefore, testing different time frames



requires individual data sets. For the CIC-IDS2017 data set,
which is not a self-composition, the start and the duration of
the contained attacks is required, as well as the labeled micro-
flows, to extract correct parts of the traffic trace and preform
correct labeling.

All features are normalized individually before training and
testing using z-score normalization, which requires the mean
and standard deviation of the used data. The mean and the
standard deviation is only obtained from training data and
then used for the normalization of test data, ensuring that no
information is gained about testing data through normalization.

V. EVALUATION GOALS AND SETUP

The evaluation of eMinD focuses on the detection of DDoS
attacks and port scans and is three-fold:

1) We evaluate eMinD’s detection performance
(Section VI) of DDoS attacks and port scans and
compare results with related work. We further evaluate
the ML models’ classification duration to show that time
frames are not too short for periodic attack detection.

2) We conduct a feature importance (Section VII) evalua-
tion to show that micro-flow-overarching features, e.g.,
Hash features that are observable through eMinD, are
highly important for detecting distributed attacks.

3) We compare eMinD with micro-flow-based NIDS
regarding its scalability (Section X), i.e., reaction time,
classification frequency, state space, and saved micro-
flow management.

We restrict time frame space for evaluation, such that
δ ∈ {0.25s, 0.5s, 0.75s, 1.0s, 1.25s, 1.5s, 1.75s}. We chose
1.75s as upper boundary for the time frames because the
median duration of micro-flows in the inspected part of the
CIC-IDS2017 data set is 1.6s. As the compared micro-flow-
based approach [10] classifies completed micro-flows, the
flow-duration represents the minimum reaction time, providing
comparability regarding eMinD’s reaction time.

Each hash feature is monitored with an array of size
1000. Experiments concerning the array size are not contained
due to space limitations. We monitor the metrics Accuracy,
Precision, Recall and the derived F1-score during training,
hyperparameter optimization, and testing. Training and testing
is performed on two disjunct data sets, the training set (70
percent of the original data set) and the test set (30 percent of
the original data set) to guarantee that no training data is used
for testing. Both training and testing sets are balanced, i.e.,
they contain an equal amount of benign and attack samples,
ensuring the expressiveness of the accuracy metric.

VI. DETECTION PERFORMANCE

For DDoS attacks and port scans, we evaluate
eMinD’s detection performance on the CIC-IDS2017 data
set (Section IV-A) and compositions of data sets with
high data rates, i.e., MAWI/CAIDA (Section IV-B) and
MAWI/ID2T (Section IV-C). Results are collected from 100
individual test runs.

We compare our results with Choobdar et al. [10], as
they perform micro-flow-level classification on the same data

set (CIC-IDS2017). They explicitly evaluate DDoS and port
scan detection performance, which makes their approach com-
parable with eMinD. We use eMinD’s MLP for comparison
because the MLP shows the largest similarity to their approach
regarding the ML model.

A. DDoS Detection Performance

Fig. 3 shows the DDoS detection performance results on the
MAWI/CAIDA and the CIC-IDS2017 data sets. Each column
represents individual metrics, while color-coded rows indicate
the employed ML model. In addition, each row contains
two subrows containing results for either the MAWI/CAIDA
(upper subrow) or the CIC-IDS2017 (lower subrow) data set.
Black markers indicate the median performance over all test
runs, while colored areas fill the range between the 5th and
the 95th percentile.

First, inspecting results on the CIC-IDS2017 data set, there
is a correlation between the duration of time frames and
the detection performance. The longer the time frames, the
better the detection performance, which holds for every tested
ML model and metric. As the time frame duration determines
the amount of aggregated traffic, longer time frames imply
more aggregated traffic information contained in individual
calculated features, which again results in better detection
results. This increase is not observable in the MAWI/CAIDA
backbone scenario, as traffic arrives at a Gbit data rate (com-
pare Fig. 10(c)), already providing enough information for
perfect detection even with short time frames.

In the bottom row of Fig. 3, the performance of [10] is
indicated with a blue triangle for each metric. We selected 1.6s
for the triangles’ x-coordinate according to the median reaction
time (see Section X-A) of micro-flow-based NIDS in the CIC-
IDS2017 scenario. eMinD achieves better performance for
every metric with the time frame δ = 1.75s . Even for the time
frame δ = 1.5s implying a median reaction time improvement
of 0.1s, eMinD achieves better performance for every metric.

For time frames δ ≥ 1.75s , eMinD achieves 100 percent
performance for all metrics on the CIC-IDS2017 data set. This
results hold for all tested ML approaches, indicating eMinDs
flexibility regarding the employed ML approach. Improved
detection performance implies that an aggregated view of the
arriving network traffic leads to better detection of DDoS
attacks, compared to the classification of individual micro-
flows.

B. Port Scan Detection Performance

Fig. 4 shows the detection performance results for eMinD’s
port scan detection. Columns and rows follow the same
structure as in Fig. 3, except that the upper subrows contain
results from MAWI/ID2T (Section IV-C) data sets instead
of MAWI/CAIDA (Section IV-B) data sets. Furthermore, the
y-scale shows a different value range, namely between 90 and
100%.

The worst result for port scan detection on the CIC-IDS2017
data set (lower subrows) is the recall of 93% achieved by the
MLP at δ = 0.25s . All remaining results, independent of the
metric and ML model, are better than 93%, while MLP and



Fig. 3. DDoS detection results for different time frames on CIC-2017 and MAWI/CAIDA data sets with different ML models.

Fig. 4. Port scan detection results for different time frames on CIC-2017 and MAWI/ID2T data sets with different ML models.

Random Forest performing best, with median precision and
recall equal to 100% for δ ≥ 0.75s .

Results of Choobdar et al. [10] are again displayed as blue
triangle in the MLP row for comparison. For every metric,

eMinD outperforms the micro-flow-level approach even at
all time frames 0.75s ≤ δ < 1.6s , constituting improved
detection performance with an even shorter median reaction
time.



Fig. 5. Feature importance for DDoS detection on MAWI/CAIDA data with time frame δ = 0.5s .

Fig. 6. Feature importance for port scan detection on MAWI/ID2T data with time frame δ = 0.5s .

Traffic in the MAWI/ID2T data set contains portscans with
an intensity of 1000 ports per second, which means that 1000
attack packets are monitored every second. In contrast, back-
ground MAWI traffic contains about 150k packets per second.
Therefore, attack traffic constitutes only 1000

150k = 1
150 = 0.6%

of all traffic, in contrast to more than 50% attack traffic in both
DDoS scenarios (Section VI-A). This implies an increased dif-
ficulty for port scan detection on aggregated traffic compared
to DDoS detection, as attack traffic has smaller influence on
calculated features. However, the results in Fig. 4 show that
eMinD achieves very good results for all metrics and time
frames, having its peak detection performance at δ = 0.5s
for all ML models, e.g., 99.8% achieved by the MLP. On the
other hand, performance decreases for increasing time frames
δ > 0.5s , because attack traffic has less impact on calculated
features the more traffic is aggregated due to the imbalance
between attack and benign traffic volume.

C. Classification Duration

We have shown in the sections before that eMinD can detect
distributed attacks in very short time frames. However, short
time frames are only reasonable if the classification duration of
the ML model is shorter than the time frame itself. Otherwise,
classification cannot keep up with feature calculation (compare
Fig. 2), and the reaction time increases. To exclude the
classification being the bottleneck, we measured the duration
of 1000 classifications by each tested ML model throughout
100 runs and summarized the results in Tab. II, where Q1 and
Q3 represent the first and third quartiles.

For every tested ML model, the maximum classification
duration (for 1000 classifications!) is between 0.71ms and
22.7ms. This shows that the classification duration is not
a bottleneck in the eMinD workflow, enabling the usage of
computationally more expensive ML models to achieve even
better detection performance.

VII. FEATURE IMPORTANCE

We evaluated eMinD’s features with the permutation feature
importance score for 100 individual training and test sets.
After training, models perform one test run per feature, i.e.,
13 runs in the case of eMinD (see Tab. I). In each test run,

TABLE II
CLASSIFICATION DURATION OF TRAINED ML MODELS

the values of one feature are randomly shuffled. Shuffling
breaks the correlation between the corresponding feature and
the target value and dependencies between multiple features.
The decrease in the inspected metric, e.g., accuracy, compared
to results obtained from unmodified test data, represents the
importance of the feature for the ML model. The higher the
decrease in the performance metric, the more important the
feature is for correct classification. e.g., a feature importance
of 50 percent means that a perfect model is not better than
guessing after shuffling the corresponding feature.

Fig. 5 shows the permutation feature importance score for
all tested ML approaches trained on the MAWI/CAIDA DDoS
data set with time frame δ = 0.5s . Results show an importance
between zero and five percent for most features. However,
the estimated number of unique source IP addresses is the
most important feature (surrounded by the dashed rectangle)
for all models except the MLP, for which it is still important
with an average score of 10 percent. For the decision tree
and the SVM, it even shows an importance of 50 percent.
This confirms the assumption that an aggregated view of the
arriving traffic, e.g., the source address distribution, is highly
important for detecting DDoS attacks, which is not observerd
by micro-flow-based NIDS. This result is expected because
DDoS attacks are originated from thousands of different
sources, leading to an increase in unique source IP addresses
during an attack.

The same holds for port scans. Fig. 6 shows the feature
importance evaluation for the MAWI/ID2T data set and the
time frame δ = 0.5s . Results indicate that for port scan
detection unique source and destination port counts are the
most important features, which are also not observed by
micro-flow-based NIDS. This results is also expected, as
port scans address many different destination ports that are
not necessarily addressed by the benign traffic. Further, port



Fig. 7. Feature importance ranking for DDoS detection on MAWI/CAIDA data with time frame δ = 0.5s .

Fig. 8. Feature importance ranking for port scan detection on MAWI/ID2T data with time frame δ = 0.5s .

scans are potentially conducted from randomized source ports
(as also in the MAWI/ID2T data set), which explains the
importance of the unique source port count.

In contrast to micro-flow-based monitoring, eMinD can
obtain source IP address and destination port distributions,
covering the most important characteristics of DDoS attacks
and port scans with its monitoring.

VIII. FEATURE RANKING

As outlined in the previous section, the feature importance
evaluation shows that hash features are the most important
features for DDoS attack and port scan detection. However,
the employed feature importance metric (permutation feature
importance) only indicates those features that are utilized for
the classification by the ML model. It is possible that the
ML model only uses a small subset of all features for the
classification, because this small subset is already sufficient
for a qualified decision. On the other hand, this results in a
subset of remaining features that are not used by the ML model
and therefore show feature importance of zero percent, but
might still be sufficient for a qualified decision (starvation).
To determine the importance of individual features and decide
whether an individual feature is unimportant or only suffered
from starvation, we employ a feature ranking.

The feature ranking approach utilizes an active feature set
that contains all 13 features at the beginning. The ranking
iteratively calculates the permutation feature importance for
all features in the active feature set, as well as the models’
overall performance on the test data (e.g., accuracy) utilizing
the active feature set. The feature with the highest importance
score is removed from the active feature set and the next
iteration starts. This is repeated until the active feature set is
empty, resulting in a ranking of all features according to their
importance for the ML model to perform a qualified decision.

Fig. 7 and Fig. 8 show the feature importance ranking
for DDoS detection on MAWI/CAIDA data and port scan
detection on MAWI/ID2T data, respectively. The box plots
show the distribution of the feature importance scores for
100 test runs with the corresponding scale on the left y-
axis. The dashed black line indicates the average classification
performance (F1-score) of the ML models on the test data
with the corresponding scale on the right y-axis. The filled
gray area around the dashed black line illustrates the range

between the quartiles of the classification performance. The x-
axis shows the features in the order of their importance for the
ML model. The most important feature is located on the left,
the least important feature on the right. The active feature set
is inclusive from right to left, i.e., the most important feature
is removed first, the least important feature is removed last.

A. DDoS Attacks

Fig. 7 shows the feature importance ranking for DDoS
detection on MAWI/CAIDA data with time frame δ = 0.5s .
The most important feature is the source IP address hash
feature, followed by packet length mean and the destination
IP address hash feature, which was already observed in the
feature importance evaluation (see Fig. 5).

In contrast to the feature importance that indicated an
importance of zero percent for most of the features, the feature
ranking now shows that there are a lot of features that suffer
from starvation, as they show an importance larger than zero
percent in the feature ranking, while still achieving an average
classification performance of 100 percent on the test data
with the reduced active feature sets. The average classification
performance of the ML models is still 99 percent for the active
feature set with 5 remaining features (see SYN count). The
classification performance first drops below 90 percent when
the active feature set is reduced to the four least important
features, i.e., TCP count, Unique dst ports, FIN count, and
UDP count.

In essence, many features are not used by the ML model for
the classification, but are still sufficient for a qualified DDoS
detection. The reason for this is that the attack volume of the
DDoS attack in the MAWI/CAIDA data set is so high that the
impact of the attack traffic on most count and sum features,
compared to the impact of the background traffic, is so high
that the ML model can already make a qualified decision based
on these features. However, if there is a feature available in
the active feature set that is even more important for the ML
model to make a qualified decision, the ML model will focus
on this feature instead causing the starvation of other features.

B. Port Scans

Fig. 8 shows the feature importance ranking for port scan
detection on MAWI/ID2T data with time frame δ = 0.5s .
The three most important features are the destination port



Fig. 9. Hash feature importance evaluation for port scan detection, different numbers of hash bins and time frames.

hash feature, the source port hash feature and the SYN count
feature. When comparing the feature importance ranking to
the feature importance evaluation (see Fig. 6), the feature
importance ranking shows that the SYN count feature suffers
from starvation, as it shows an importance of zero percent
in the feature importance evaluation, but is still the third
most important feature in the feature importance ranking.
Furthermore, the SYN count feature is sufficient for a perfect
port scan detection, as the average classification performance
of the ML models is still 100 percent for the active feature
set with 11 remaining features (see SYN count). Removing the
SYN count feature from the active feature set results in a drop
of the average classification performance.

Compared to the feature ranking for DDoS detection, the
feature ranking for port scan detection shows that there are
less features sufficient for a qualified detection. The reason
for this is that port scans are conducted with a lower attack
volume (1000 packets per second) compared to the CAIDA
DDoS attack (130k packets per second), resulting in a lower
impact of the attack traffic on the count and sum features.

IX. HASH FEATURE IMPORTANCE

The previous sections showed that hash features are the
most important features regarding DDoS attack and port
scan detection. They provide an estimation about the number
of unique IP addresses and ports in the network traffic,
which constitutes a significant indicator for distributed attacks.
However, the quality of this estimation strongly depends on
the number of hash bins. The more hash bins are used, the
more accurate the estimation becomes. The less hash bins
are used, the more hash collisions occur, which leads to an
underestimation of the number of unique IP addresses and
ports on the one hand, and to an indistinguishability between
benign and attack traffic on the other hand.

This section covers the evaluation of the hash feature
importance in dependence of the number of hash bins and the
time frame δ.

A. Impact of the Number of Hash Bins

First, we evaluate the impact of the number of hash bins
on the feature importance with the unique destination ports
feature for port scan detection on the MAWI/ID2T data set.
We assume that the importance of this hash feature is directly

correlated to the number of hash bins: The more hash bins
are used, the more accurate the estimation of the number of
unique destination ports becomes, and therefore the port scan
detection becomes more accurate. If the number of hash bins
is too low, the importance of the feature should be also low,
because attack and benign traffic cannot be distinguished.

Fig. 9(a) illustrates the feature importance (F1-score) for the
destination ports hash feature for different numbers of hash
bins, i.e., 128, 256, 512, 1024, and 4096. The time frame δ is
1.0 seconds. It shows that the previous assumption is correct:
The feature importance increases with the number of hash bins
and is zero if the number of hash bins is too low to distinguish
between benign and attack traffic.

B. Interdependence of Hash Bin Count and Time Frames

Second, we evaluate the interdependence between the num-
ber of hash bins, the time frame δ and the hash feature
importance on the MAWI/ID2T data set. Fig. 9(b) illustrates
the feature importance (F1-score) for the destination ports hash
feature and the SYN count feature for different numbers of
hash bins and time frames.

Results show that the hash feature’s importance increases
with an increasing number of hash bins for all time frames.
However, the hash feature’s importance decreases with increas-
ing time frames for all numbers of hash bins, as longer time
frames lead to more aggregated traffic and, therefore, to more
hash collisions, obliberating attack and benign traffic.

The importance of the SYN count feature behaves vice
versa: It decreases with an increasing number of hash bins
for all time frames, but increases with increasing time frames
for all numbers of hash bins. As the SYN count feature is
independent of the number of hash bins, this behavior is
unexpected. When comparing both heat maps in Fig. 9(b),
it seems that the ML model utilizes the SYN count feature
to compensate the destination port hash feature’s decreasing
importance with increasing time frames.

X. SCALABILITY

A. Short Reaction Time

We compare eMinD’s reaction time with micro-flow-based
approaches that classify complete micro-flows, which is done
by related work using the CIC-IDS2017 data set. Therefore,



Fig. 10. Traffic statistics from 10 minute sections of CIC-IDS2017 and MAWI/CAIDA data sets during the DDoS attack.

the micro-flow completion duration represents a lower bound-
ary for the reaction time of related work, making it a suitable
metric for comparison with eMinD’s time frames.

Fig. 10(a) presents the micro-flow duration histogram of all
micro-flows in the CIC-IDS2017 data set during the DDoS
attack (Friday afternoon DDoS) with a logarithmically scaled
y-axis. The histogram includes vertical lines, indicating the
median (1.6 seconds) and the average (16.4 seconds) micro-
flow completion duration.

With the time frame δ = 1.5s , eMinD outperforms micro-
flow-based approaches for half of the active micro-flows and
even reduces the average reaction time by 90% = 1 −
1.5s
16.4s . In addition, eMinD periodically classifies traffic (for
every time frame), making the reaction time predictable
in contrast to micro-flow-based approaches that rely on
micro-flow completion, which can last two minutes in the
CIC-IDS2017 scenario (compare Fig. 10(a)) depending on
individual micro-flows.

B. Strictly Limited Classification Frequency

eMinD performs only one classification with the ML model
per time frame, while micro-flow-based NIDS require one
classification per micro-flow. Therefore, the amount of active
micro-flows represents the worst-case number of classifica-
tions required for attack detection for a micro-flow-based
NIDS. Fig. 10(b) shows the amount of active unidirectional
micro-flows for both CIC-IDS2017 and MAWI/CAIDA data
sets during a 10-minute interval of the DDoS attack. During
the CIC-IDS2017 DDoS attack, there are about 500 active
micro-flows on average per second, compared to about 50k in
the MAWI/CAIDA scenario.

Even in the small testbed setup of the CIC-IDS2017, eMinD
reduces the average amount of classifications from 500 to one
classification per second, saving 99.8% of all classifications. In
the context of the MAWI/CAIDA backbone scenario with high
data rates and large amounts of micro-flows, tens of thousands
of classifications are saved per second, showing both the need
for micro-flow independent NIDS and the scalability of eMinD
regarding the number of ML classifications.

C. Predictable and Strictly Limited State Space

We compare the required state space of eMinD to micro-
flow-based approaches. State space is the memory necessary
to store traffic features fed into the ML model and used
for classification. eMinD monitors only a fixed set of 13
features (compare Tab. I) and requires only a fixed and
predictable amount of memory. In contrast, micro-flow-based

approaches monitor one set of features per active micro-flow,
resulting in varying memory needs depending on the traffic.

Fig. 10(b) presents the number of active micro-flows
per second. Micro-flow-based approaches monitor up to
84 features [10], [25] per micro-flow (500 per second),
resulting in a total amount of 42k individual features per
second (84 features

micro−flow · 500micro−flows
s = 42k features

s ) to be
monitored, calculated and processed, e.g., normalized, in
the CIC-IDS2017 scenario. Therefore, eMinD reduces the
required state space to 0.03% = 13features

42k features of the state space
required by a micro-flow-based NIDS. This impact is even
more significant in the MAWI/CAIDA backbone scenario, as it
contains a lot more active micro-flows. Furthermore, eMinD’s
monitoring provides predictability and scalability, as it does
not depend on the number of active micro-flows or the arriving
traffic volume.

D. No Micro-Flow State Management

Micro-flow state management consists of two parts: First,
matching arriving packets to their corresponding micro-flow to
update monitored traffic features. Second, adding new micro-
flows to monitoring while removing already completed flows
from monitoring to save state space.

Packet-to-micro-flow matching is performed for every arriv-
ing packet. Fig. 10(c) shows the number of arriving packets
per second. In the context of the CIC-IDS2017 DDoS attack,
about 1400 packets need to be matched every second, while
in the MAWI/CAIDA backbone scenario, about 314k packets
need to be matched every second. eMinD does not perform
five-tuple matching at all, providing high scalability and saving
computational effort.

We denote the sum of appeared micro-flows, i.e., not
existing in the previous time frame, and vanished micro-
flows, i.e., not existing in the current time frame anymore,
as the micro-flow churn. Fig. 10(d) presents the churn of
micro-flows per second. In contrast to micro-flow-based NIDS,
eMinD completely avoids micro-flow state management and
therefore saves all computational effort for checking appeared
or vanished micro-flows, providing scalability, and facing
increasing data rates and micro-flow amounts.

E. Discussion and Limitations

eMinD achieves better detection performance than micro-
flow-based NIDS, while being very efficient in processing
large traffic volumes due to traffic aggregation. However,
traffic aggregation has its price, as it goes along with an



information loss, i.e., there are fewer available traffic features
and they are not segregated according to micro-flows.

If a micro-flow-based NIDS detects malicious micro-flows,
it can derive appropriate network filter rules from the corre-
sponding five-tuple. With eMinD, the only result is whether
an attack is ongoing. To mitigate attacks with eMinD, traffic
monitoring, and feature calculation must be adapted to derive
appropriate information for filter rules. One possibility to
preserve mitigation information in eMinD is using prefix-
preserving hash features, such as [26], to derive IP-based filter
rules.

Nevertheless, micro-flow independent traffic monitoring is
an essential step towards developing sustainable NIDS facing
increasing traffic volumes and micro-flow counts in Networks
of the Future.

XI. CONCLUSION

eMinD is a micro-flow independent network intrusion
detection system leveraging supervised machine learning. We
compare eMinD to related work through evaluation with real-
world data sets from the CIC, MAWI, and CAIDA.

eMinD provides scalability regarding the active micro-flow
count and the ingress data rate by highly aggregating arriving
network traffic, reducing required state space by 99.97%
compared to micro-flow-based approaches. Furthermore, the
required state space is fixed and a priori known. Simple
aggregation operations, such as addition, allow eMinD to
monitor traffic fast, avoiding discarding traffic, e.g., through
sampling. eMinD periodically provides attack detection results
on very short time scales and reduces the average reaction
time by 90%. We further show that micro-flow independent
traffic monitoring even improves the detection performance of
distributed attacks, namely DDoS attacks and port scans, and
we prove the importance of micro-flow-overarching features
for their detection, e.g., IP address and port distributions.
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