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ABSTRACT
Switched systems are known to exhibit subtle (in)stability behav-

iors requiring system designers to carefully analyze the stability

of closed-loop systems that arise from their proposed switching

control laws. This paper presents a formal approach for verifying

switched system stability that blends classical ideas from the con-

trols and verification literature using differential dynamic logic (dL),
a logic for deductive verification of hybrid systems. From controls,

we use standard stability notions for various classes of switching

mechanisms and their corresponding Lyapunov function-based

analysis techniques. From verification, we use dL’s ability to verify

quantified properties of hybrid systems and dL models of switched

systems as looping hybrid programs whose stability can be for-

mally specified and proven by finding appropriate loop invariants,
i.e., properties that are preserved across each loop iteration. This

blend of ideas enables a trustworthy implementation of switched

system stability verification in the KeYmaera X prover based on dL.
For standard classes of switching mechanisms, the implementation

provides fully automated stability proofs, including searching for

suitable Lyapunov functions. Moreover, the generality of the deduc-

tive approach also enables verification of switching control laws

that require non-standard stability arguments through the design of

loop invariants that suitably express specific intuitions behind those

control laws. This flexibility is demonstrated on three case studies:

a model for longitudinal flight control by Branicky, an automatic

cruise controller, and Brockett’s nonholonomic integrator.

CCS CONCEPTS
• Theory of computation → Logic and verification; Timed
and hybrid models; • Computing methodologies→ Computa-
tional control theory; • Computer systems organization → Em-
bedded systems.
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1 INTRODUCTION
Switched systems provide a powerful mathematical paradigm for

the design and analysis of discontinuous (or nondifferentiable) con-

trol mechanisms [10, 22, 27, 42]. Examples of such mechanisms

include: bang-bang controllers that switch between on/off modes;

gain schedulers that switch between a family of locally valid linear

controllers; and supervisory control, where a supervisor switches

between candidate controllers based on logical criteria [22, 27].

However, switched systems are known to exhibit subtle (in)stability

behaviors, e.g., switching between stable subsystems can lead to

instability [22], so it is important for system designers to adequately

justify the stability of their proposed switching designs. Verification

and validation are complementary approaches for such justifica-

tions: validation approaches, such as system simulations or lab

experiments, allow designers to check that their models and con-

trollers conform to real world behavior; verification approaches

yield formal mathematical proofs that the stability properties hold

for all possible switching decisions everywhere in the model’s infi-

nite state space, not just for finitely-many simulated trajectories.

This paper presents a logic-based, deductive approach for veri-

fying switched system stability under various classes of switching

mechanisms. The key insight is that control-theoretic stability ar-

guments for switching control can be formally justified by blending

techniques from discrete program verification with continuous dif-

ferential equations analysis using differential dynamic logic (dL),
a logic for deductive verification of hybrid systems [32, 33]. In-

tuitively, switched systems are modeled in dL as looping hybrid
programs [45], as in the following snippet ({·}∗ denotes repetition):

{ u := ctrl(x); // switching controller (discrete dynamics)

x ′ = fu (x) // actuate decision (continuous dynamics)

}∗@invariant( ... ) // switching loop with invariant annotation

Accordingly, switched system stability is formally specified in

dL as first-order quantified safety properties of switching loops

(Section 2.2), and the resulting specifications can then be proved

rigorously by combining fundamental ideas from verification and

control, namely: i) identification of loop invariants (@invariant
above), i.e., properties of the (discrete) loop that are preserved

across all executions of the loop body, ii) compositional verification
for separately analyzing the discrete and continuous dynamics of

the loop body, and iii) Lyapunov functions, i.e., auxiliary energy

functions that enable stability analysis for the continuous dynamics.

Section 3 identifies key loop invariants underlying stability ar-

guments for various classes of switching mechanisms and derives

sound stability proof rules for those mechanisms. Crucially, these

syntactic derivations are built from dL’s sound foundations for hy-

brid program reasoning [32, 33], without the need to introduce new
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mathematical concepts such as non-classical weak solutions or non-

differentiable Lyapunov functions [9, 16]. The remaining practical

challenge is how to (automatically) find suitable Lyapunov function

candidates for a given switching mechanism; the correctness of

any generated candidates can be soundly checked in dL. Section 4
adds support for switched systems in the KeYmaera X prover based

on dL [12], including a modeling interface for switched systems,

sum-of-squares search for Lyapunov function candidates [30, 36],

and fully automatic verification of stability specifications for stan-

dard switching mechanisms. Notably, the implementation requires

no extensions to KeYmaera X’s soundness-critical core and thereby

directly inherits all of KeYmaera X’s correctness guarantees [12, 25].

This trustworthiness is necessary for computer-aided verification of

complex switching designs because the number of correctness con-

ditions on their Lyapunov functions scales quadratically with the

number of switching modes (Section 3.2), making pen-and-paper

proofs error-prone or infeasible. Section 5 further applies the deduc-

tive approach on three case studies, chosen because each require

subtle twists to standard switched system stability arguments:

• Longitudinal flight control [4]: This model is parametric (5

parameters, 2 state variables) and its stability justification

due to Branicky uses a “noncustomary” Lyapunov func-

tion [4, 10] with intricate arithmetic reasoning. The proof

uses ghost switching, where virtual switching modes are in-

troduced for the sake of stability analysis, analogous to the

use of ghost variables in program verification [29, 33, 34].

• Automatic cruise control [28]: This hybrid automaton features

switching between several modes based on specific guard

conditions: standard/emergency braking, accelerating, and

PI control. Lyapunov function candidates can be numerically

generated [26], but must be corrected for soundness.

• Brockett’s nonholonomic integrator [7]: A large class of con-

trol systems can be transformed to the nonholonomic in-

tegrator but this system is not stabilizable by continuous

feedback [7, 22]. The stability argument must account for

an initial control mode that drives the system into a suitable

region before a stabilizing control law can be applied.

These case studies are verified semi-automatically in KeYmaera X,

with user guidance to design and prove modified loop invariants

that suitably capture the specific intuitions behind their respective

control laws. The flexibility and generality of this paper’s deductive

approach enables such (modified) stability arguments, while ensur-

ing that every step in the argument is rigorously justified using

sound dL logical foundations. All proofs are in the supplement [43].

2 BACKGROUND
This section recalls switched systems and their hybrid programmod-

els [45]. It then explains how stability for these models is formally

specified and verified using differential dynamic logic (dL) [32, 33].

2.1 Switched Systems as Hybrid Programs
2.1.1 Hybrid Programs. The language of hybrid programs is gen-
erated by the following grammar, where x is a variable, e is a dL
term, and Q is a formula of first-order real arithmetic [32, 33].

α , β ::= x ′ = f (x)&Q | x := e | ?Q | α ; β | α ∪ β | α∗

Continuous dynamics are modeled using systems of ordinary

differential equations (ODEs) x ′ = f (x)&Q evolving within do-

main Q ; the ODE is written as x ′ = f (x) when there is no domain

constraint, i.e., Q ≡ true. Discrete dynamics are modeled using

assignments (x := e assigns the value of term e to x) and tests (?Q
checks whether condition Q is true in the current state). The pro-

gram combinators are used to piece together sub-programs to form

programs with hybrid dynamics. The combinators are: sequential

composition (α ; β runs α followed by β), nondeterministic choice

(α ∪ β runs α or β nondeterministically), and nondeterministic

repetition (α∗ repeats α for any number of iterations).

Throughout this paper, x = (x1, . . . ,xn ) denotes the vector

of continuous state variables for the system under consideration.

Other variables are used for program auxiliaries, e.g., to describe

memory and timing components of switching controllers.

2.1.2 Switched systems. A switched system is described by a finite

family P of ODEs x ′ = fp (x),p ∈ P and a set of switching signals
σ : [0,∞) → P that prescribe the ODE x ′ = fσ (t )(x) to follow at

time t along the system’s evolution. Tan and Platzer [45] use hybrid

programs as formal models for various classes of switching mecha-

nisms; one example is arbitrary switching [22] where the system

is allowed to follow any switching signal in order to model real

world systems whose switching behavior is uncontrolled or a priori

unknown. The hybrid program αarb ≡

( ⋃
p∈P x ′ = fp (x)

)∗
mod-

els arbitrary switching analogously to a computer simulation [45,

Proposition 1]: on each loop iteration, the program makes a (dis-

crete) nondeterministic choice of switching decision

⋃
p∈P

(
·
)
to

select an ODE x ′ = fp (x) which it then follows continuously for an

arbitrarily chosen duration before repeating the simulation loop.

The hybrid programs language can be used to model various

other classes of switching mechanisms [22, 45], including general

controlled switching, as illustrated in Section 1, where a (discrete)

control law u := ctrl(x) decides the ODE x ′ = fu (x) to switch to on

each loop iteration. Stability for these models is explained next.

2.2 Stability as Quantified Loop Safety
This paper studies uniform global pre-asymptotic stability (UGpAS)

for switched systems [16, 17, 22], defined as follows:

Definition 1 (UGpAS [16, 17]). Let Φ(x) denote the set of all

(domain-obeying) solutions
1 φ : [0,Tφ ] → R

n
for a switched sys-

tem from state x ∈ Rn . The origin 0 ∈ Rn is:

• uniformly stable if, for all ε > 0, there exists δ > 0 such

that from all initial states x ∈ Rn with ∥x ∥ < δ , all solutions
φ ∈ Φ(x) satisfy ∥φ(t)∥ < ε for all times 0 ≤ t ≤ Tφ ,

• uniformly globally pre-attractive if, for all ε > 0,δ > 0,

there exists T ≥ 0 such that from all initial states x ∈ Rn

with ∥x ∥ < δ , all solutions φ ∈ Φ(x) satisfy ∥φ(t)∥ < ε for
all times T ≤ t ≤ Tφ , and

• uniformly globally pre-asymptotically stable if the sys-
tem is uniformly stable and uniformly globally pre-attractive.

The UGpAS definition can be understood intuitively for a system

with a given switching control mechanism:

1
A formal construction of the (right-maximal) solution φ for a given switching signal

σ is available elsewhere [45, Appendix A].
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• stability means the mechanism keeps the system close to the

origin if the system is initially perturbed close to the origin,

• global pre-attractivity means the mechanism drives the sys-

tem to the origin asymptotically as t → ∞, and

• uniform means the stability and pre-attractivity properties

are independent of both the nondeterminism in the switching

mechanism (e.g., arbitrary switching) and the choice of initial

states satisfying ∥x ∥ < δ ; for brevity in subsequent sections,

“uniform” is elided when describing stability properties.

Remark 1. Switched systems whose solutions are all uniformly

bounded in time, i.e., there exists Tm such that for all solutions φ,
Tφ ≤ Tm , are trivially pre-attractive. Goebel et al. [16, 17] introduce

the notion of pre-attractivity as opposed to attractivity for hybrid

systems because it separates considerations about whether a hybrid

system’s solutions are complete, i.e., solutions exist for all (forward)
time, from conditions for stability and attractivity. Pre-attractivity

also sidesteps the difficult question of whether a switched system

exhibits Zeno behavior, i.e., where infinitely many discrete switches

occur in finite time [22, 48]. Indeed, it is common in the hybrid and

switched systems literature to either ignore incomplete solutions or

assume the models under consideration only have complete solu-

tions [22, 26, 48]. Instead of predicating proofs on these hypotheses,

this paper formalizes the (weaker) notion of UGpAS for switched

systems, leaving proofs of completeness of solutions out of scope.

The definition of UGpAS nests alternating quantification over

real numbers with temporal quantification over the solutions φ of

switched systems. This combination of quantifiers can be expressed

formally using the formula language of dL [32, 33], whose grammar

is shown below, ∼ ∈ {=,,, ≥, >, ≤, <} is a comparison operator

between dL terms e, ẽ and α is a hybrid program:

ϕ,ψ ::= e ∼ ẽ | ϕ ∧ψ | ϕ ∨ψ | ¬ϕ | ∀v ϕ | ∃v ϕ | [α]ϕ | ⟨α⟩ϕ

This grammar extends the first-order language of real arithmetic

(FOLR) with the box ([α]ϕ) and diamond (⟨α⟩ϕ) modality formulas

which express that all or some runs of hybrid program α satisfy

postcondition ϕ, respectively. Real arithmetic FOLR is decidable by

quantifier elimination [46] and serves as a useful base specification

language. Various specifications are equivalently definable in FOLR,

e.g., Euclidean norm bounds ∥x ∥ ∼ ε
def

≡ (
∑n
i=1 x

2

i ) ∼ ε2 (for ε ≥ 0)

and topological operations such as the boundary ∂ϕ and closure ϕ
of the set characterized by formula ϕ [3].

The box modality formula [α]ϕ expresses safety properties ϕ of

program α that must hold along all of its executions [33]. When α
models a switched system, the box modality quantifies (uniformly)

over all times for all solutions arising from the switching mecha-

nism. Accordingly, UGpAS for switched systems is formally speci-

fied by nesting the box modality with the first-order quantifiers.

Lemma 2 (UGpAS in differential dynamic logic). The origin
0 ∈ Rn for a switched system modeled by program α is UGpAS iff the
dL formula UGpAS(α) is valid. Variables ε,δ ,T , t are fresh in α :

UStab(α) ≡ ∀ε>0∃δ>0∀x (
∥x ∥ < δ → [α] ∥x ∥ < ε

)
UGpAttr(α) ≡ ∀ε>0∀δ>0∃T≥0∀x (

∥x ∥ < δ →

[t := 0;α , t ′ = 1] (t ≥ T → ∥x ∥ < ε)
)

UGpAS(α) ≡ UStab(α) ∧ UGpAttr(α)

Here, UStab(α) and UGpAttr(α) characterize stability and global
pre-attractivity of α , respectively. In UGpAttr(α), α , t ′ = 1 denotes
the hybrid program obtained from α by augmenting its continuous
dynamics so that variable t tracks the progression of time.

Formulas UStab(α) and UGpAttr(α) syntactically formalize in

dL the corresponding quantifiers in Def. 1. In UGpAttr(α), the fresh
clock variable t is initialized to 0 and syntactically tracks the pro-

gression of time along switched system solutions. The program

α , t ′ = 1 can, e.g., be constructed by adding a clock ODE t ′ = 1 to

all ODEs in the switched system model α . Accordingly, the post-
condition t ≥ T → ∥x ∥ < ε expresses that the system state norm is

bounded by ε afterT time units along any switching trajectory, as re-

quired in Def. 1. Various other stability notions are of interest in the

continuous and hybrid systems literature [13, 17, 22, 28, 35, 42, 44].

These variations can also be formally specified in dL [44] but are

left out of scope for this paper.

2.3 Proof Calculus
The dL proof calculus enables formal, deductive verification of

UGpAS stability specifications through compositional reasoning

principles for hybrid programs [32, 33] and a complete axiomatiza-

tion for ODE invariants [34]. For example, an important syntactic

tool for differential equations reasoning is the Lie derivative of term

e along ODE x ′ = f (x), defined as Lf (e)
def

= ∇e · f . The sound

calculation and manipulation of Lie derivatives is enabled in dL
through the use of syntactic differentials [32].

All proofs are presented in a classical sequent calculus with the

usual rules for manipulating logical connectives and sequents. The

semantics of sequent Γ ⊢ ϕ is equivalent to the formula (
∧
ψ ∈Γψ ) →

ϕ and a sequent is valid iff its corresponding formula is valid. The

key (derived) dL proof rule used in this paper is:

loop

Γ ⊢ Inv Inv ⊢ [α] Inv Inv ⊢ ϕ
Γ ⊢ [α∗]ϕ

The loop rule says that, in order to prove validity of the conclu-

sion (below the rule bar), it suffices to prove the three premises

(above the rule bar), respectively from left to right: i) the initial

assumptions Γ imply Inv, ii) Inv is preserved across the loop body α ,
i.e., Inv is a loop invariant for α∗, and iii) Inv implies the postcondi-

tion ϕ. The identification of loop invariants Inv is crucial for formal

proofs of UGpAS, as illustrated by the following deductive proof

skeleton for stability (a similar skeleton is used for pre-attractivity):

Deductionx
loop

...

Γ ⊢ Inv

Γ1 ⊢ ϕ1 · · · Γk ⊢ ϕk

...
(
hybrid program

reasoning for α

)
Inv ⊢ [α] Inv

...

Inv ⊢ ∥x ∥ < ε

Γ ⊢ [α∗] ∥x ∥ < ε

...
(
logic/arithmetic

reasoning for Γ

)
⊢ UStab(α∗)

Proofs proceed upwards by deduction, where each reasoning

step is justified by sound dL axioms and rules of inference, e.g.,

the loop rule. The proof skeleton above syntactically derives a proof
rule that reduces a stability proof for α∗ to proofs of its top-most

premises, Γ1 ⊢ ϕ1 · · · Γk ⊢ ϕk . These correspond to required logical
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ε

δ
0

V <W

Lfp
(V )≤0

Stability

ε

δ

0

V <W
(bounded)

V ≥U→
V <W +ktV <U

Pre-attractivity

Figure 1: Loop invariants for UGpAS (arbitrary switching),
stability (left) and pre-attractivity (right). Switching trajec-
tories are illustrated by alternating black and green arrows.

and arithmetical conditions on Lyapunov functions for various

switching mechanisms. The loop invariant step (highlighted in red)

crucially ties together these conditions on Lyapunov functions and

hybrid program reasoning for switched systems.

3 LOOP INVARIANTS FOR SWITCHED
SYSTEM STABILITY

This section identifies loop invariants for proving UGpAS under

various classes of switching mechanisms with Lyapunov func-

tions [5, 21, 22]; relevant mathematical arguments are presented

briefly (see supplement [43]). Throughout the section, loop invari-

ants are progressively tweaked to account for new design insights

behind increasingly complex switching mechanisms.

3.1 Arbitrary and State-Dependent Switching
3.1.1 Arbitrary Switching. Stability for the arbitrary switching

model αarb from Section 2 can be verified by finding a so-called

common Lyapunov functionV for all of the ODEs x ′ = fp (x),p ∈ P

satisfying the following arithmetical conditions [22, 42]:

i) V (0) = 0 and V (x) > 0 for all ∥x ∥ > 0,

ii) V is radially unbounded, i.e., for all b, there exists γ > 0 such

that ∥x ∥ < γ for all V (x) ≤ b, and
iii) for each ODE x ′ = fp (x),p ∈ P, the Lie derivative Lfp

(V )

satisfies: Lfp
(V )(0) = 0 and Lfp

(V )(x) < 0 for all ∥x ∥ > 0.

Conditions i)–iii) are generalizations of well-known conditions

for stability of ODEs [8, 21] to arbitrary switching. Intuitively, con-

ditions i) and iii) ensure thatV acts as an auxiliary energy function

whose value decreases asymptotically to zero (at the origin) along

all switching trajectories of the system; the radial unboundedness

condition ii) ensures that this argument applies to all system states

for global pre-attractivity [21]. Correctness of these conditions can

be proved in dL using loop invariants, see Fig. 1 (explained below).

Stability. The specification UStab(αarb) requires that all trajec-
tories of αarb stay in the grey ball ∥x ∥ < ε , starting from a chosen

ball ∥x ∥ < δ , see Fig. 1 (left). Condition i) guarantees that the ball
∥x ∥ < ε contains (a connected component of) the sublevel set

V<W for someW >0 (dashed blue curve) and this sublevel set con-

tains a smaller ball ∥x ∥ < δ [8, 21]. Condition iii) shows that this
sublevel set is invariant for each ODE x ′ = fp (x),p ∈ P because

Lfp
(V )(x) ≤ 0, as illustrated by the dashed black and green arrows

for two different switching choices p ∈ P both locally pointing

inwards on the boundary of the sublevel set. Thus, the formula

Invs ≡ ∥x ∥ < ε ∧V <W , which characterizes the blue sublevel set,

is an invariant for all possible switching choices in the loop body of

αarb, which makes Invs a suitable loop invariant for UStab(αarb).

Pre-attractivity. The specification UGpAttr(αarb) requires that
all trajectories of αarb stay in the grey ball ∥x ∥ < ε after a chosen
time T , starting from the initial ball ∥x ∥ < δ , see Fig. 1 (right).

The ball ∥x ∥ < δ is bounded, so it is contained in a sublevel set

satisfying V <W for someW > 0 (outer dashed blue curve); this

sublevel set is bounded by condition ii). Like the stability argument,

condition i) guarantees that there is a sublevel set V < U for some

U > 0 (inner dashed blue curve) contained in the ball ∥x ∥ < ε , and
condition iii) shows that the sublevel sets characterized by V <W
and V < U are both invariants for every ODE in the loop body of

αarb. The set characterized by formulaV ≥ U ∧V ≤W is compact

and bounded away from the origin, which implies by condition iii)
that there is a uniform bound k < 0 on this set, where for each ODE

x ′ = fp (x),p ∈ P, Lfp
(V )(x) ≤ k . Thus, the value of Lyapunov

function V decreases at rate k , regardless of switching choices in
the loop body of αarb, as long as it has not enteredV < U . The loop

invariant for UGpAttr(αarb) syntactically expresses this intuition:

Inva ≡ V <W ∧ (V ≥ U → V <W + kt). For a sufficiently large

choice of T withW + kT ≤ U , trajectories at time t ≥ T satisfy

V < U so they are contained in the ∥x ∥ < ε ball.
The loop invariants identified above enable derivation of a for-

mal dL stability proof rule for αarb (deferred to a more general

version in Corollary 3 below). In fact, since arbitrary switching is

the most permissive form of switching [22], UGpAS for any switch-

ing mechanism can be soundly justified using the loop invariants

above in case a suitable common Lyapunov function can be found.

3.1.2 State-dependent Switching. The state-dependent switching
mechanism [22] constrains arbitrary switching by allowing execu-

tion of (and switching to) an ODE x ′ = fp (x),p ∈ P only when

the system state is in domain Qp . This is modeled by the hybrid

program αstate ≡

( ⋃
p∈P x ′ = fp (x)&Qp

)∗
[45, Proposition 2],

where arbitrary switching αarb corresponds to the special case with
Qp ≡ true for all p ∈ P.

The same loop invariants for αarb are used for αstate to derive

the following proof rule. For brevity, premises of all derived stability

proof rules are implicitly conjunctively quantified over p ∈ P.

Corollary 3 (UGpAS for state-dependent switching, CLF).

The following proof rule for common Lyapunov functionV with three
stacked premises is syntactically derivable in dL.

CLF

⊢ V (0) = 0 ∧ ∀x (∥x ∥ > 0 → V (x) > 0)

⊢ ∀b ∃γ ∀x (V (x) ≤ b → ∥x ∥ ≤ γ )

⊢ Lfp
(V )(0) = 0 ∧ ∀x (∥x ∥ > 0 ∧Qp → Lfp

(V )(x) < 0)

⊢ UGpAS(αstate)

Corollary 3 syntactically derives a slight generalization of condi-

tions i)–iii) from Section 3.1.1 for αstate, where the Lie derivatives
Lfp

(V )(x) for each p ∈ P are required to be negative on their re-

spective domain closures
2 Qp . This generalization is justified by the

2
The topological closure Q of domain Q is needed for soundness of a technical

compactness argument used in the pre-attractivity proof (see supplement [43]).
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Figure 2: A switching trajectory for Example 7 from Sec-
tion 4.2 with state-dependent switching (left) and the value
of two Lyapunov functions along that trajectory (right, log-
scale on vertical axis). Solid lines indicate the active Lya-
punov function at time t . Two sublevel sets Vp ,Vq < W =

0.012 are shown dashed on the left within which the switch-
ing trajectory is respectively trapped at any given time.

same loop invariants in Section 3.1.1 because the ODE invariance

properties are only required to hold in their respective domains.

The domain asymmetry in αstate suggests another way of gener-
alizing the stability arguments, namely, through the use of multiple
Lyapunov functions, where a (possibly) different Lyapunov function
Vp is associated to each p ∈ P [5]. Here, the functionVp is responsi-

ble for justifying stability within domainQp , i.e., its value decreases

along system trajectories whenever the system is within Qp , as il-

lustrated in Fig. 2. Constraints on these functions are obtained by

modifying the loop invariants to account for this intuition.

Stability. The stability loop invariant is modified by case split-

ting disjunctively on the domains Qp ,p ∈ P, and requiring that

the sublevel set characterized by Vp < W is invariant within its

respective domain Qp : Invs ≡ ∥x ∥ < ε ∧
∨
p∈P

(
Qp ∧ Vp < W

)
.

Similar to Section 3.1.1, the boundW is chosen so that each sublevel

set characterized by Vp <W is contained in the ball ∥x ∥ < ε .

Pre-attractivity. The pre-attractivity loop invariant is similarly

modified by disjunctively requiring that each Vp decreases along

system trajectories when the system is in their respective domains

Qp : Inva ≡
∨
p∈P

(
Qp ∧ Vp < W ∧ (Vp ≥ U → Vp < W + kt)

)
.

The constants U ,W ,k,T are chosen as appropriate lower or upper

bounds for all the Lyapunov functions (see proof of Corollary 4).

Arithmetical conditions for the Lyapunov functions Vp ,p ∈ P

are derived from the modified invariants in the following rule.

Corollary 4 (UGpAS for state-dependent switching, MLF).

The following proof rule for multiple Lyapunov functions Vp ,p ∈ P

with four stacked premises is syntactically derivable in dL.

MLF

⊢ Vp (0) = 0 ∧ ∀x (∥x ∥ > 0 → Vp (x) > 0)

⊢ ∀b ∃γ ∀x (Vp (x) ≤ b → ∥x ∥ ≤ γ )

⊢ Lfp
(Vp )(0)=0 ∧ ∀x (∥x ∥>0 ∧Qp → Lfp

(Vp )(x)<0)

⊢
∧
q∈P

(
Qp ∧Qq → Vp = Vq

)
⊢ UGpAS(αstate)

The top three premises of Corollary 4 are similar to those of Corol-

lary 3, but are now required to hold for each Lyapunov function

Vp ,p ∈ P separately. The (new) bottom premise corresponds to a

compatibility condition between the Lyapunov functions arising

from the loop invariants. For example, consider the stability loop

invariant (similarly for pre-attractivity) and suppose the system

currently satisfies disjunct Qp ∧Vp <W with Vp justifying stabil-

ity in domain Qp . If the system switches to the ODE x ′ = fq (x)
within domain Qq , then Lyapunov function Vq becomes the active

Lyapunov function which must satisfy Vq < W to preserve the

stability loop invariant. The premiseQp ∧Qq → Vp = Vq says that

the Lyapunov functionsVp ,Vq are equal whenever such a switch is

possible (in either direction), i.e., when their domains overlap.

3.2 Controlled Switching
This section turns to controlled switching models [45], where an ex-

plicit controller program is responsible for making logical switching

decisions between the ODEs x ′ = fp (x),p ∈ P. This is in contrast

to earlier models αarb,αstate which exhibit autonomous switching,
i.e., without an explicit control logic [6, 22]. General controlled

switching is modeled by the hybrid program αctrl:

αctrl ≡ αi
↓

initialization

;

(switching controller

↑

αu ;

αp (plant, actuate decision)︷                                                        ︸︸                                                        ︷⋃
p∈P

(
?u = p;x ′ = fp (x ,y),y

′ = дp (x ,y)&Qp
) )∗

The model αctrl uses three subprograms: αi initializes the sys-
tem, then αu (modeling the switching controller) and αp (modeling

the continuous plant dynamics) are run in a switching loop. The

discrete programs αi ,αu decide on values for the control output

u = p,p ∈ P and the program αp responds to this output by evolv-

ing the corresponding ODE x ′ = fp (x ,y),y
′ = дp (x ,y)&Qp . The

programs αi ,αu must not modify the system state variables x , but
they may modify other auxiliaries, including auxiliary continuous
state variables y used to model timers or integral terms used in con-

trollers, see Section 5.2. This control-plant loop is a typical structure

for hybrid systems modeled in dL [31, 33], e.g., the controller αu
below models the discrete switching logic present in hybrid au-

tomata [6, 18, 31] (without jumps in the system state):

αu ≡
⋃
p∈P

(
?u = p;

⋃
q∈P

(
?Gp,q ;Rp,q ;u :=q

) )
Rp,q ≡ y1 := e1;y2 := e2; . . . ;yk := ek

(1)

For each mode p ∈ P, the switching controller may nondeter-

ministically switch to mode q ∈ P if the guard formulaGp,q is true

in the current state (Gp,p ≡ true for self-transitions); if the transi-
tion is taken, the reset map Rp,q sets the values of auxiliary state

variables y1, . . . ,yk respectively to the value of terms e1, . . . , ek .
Stability analysis for controlled switching proceeds by identify-

ing suitable loop invariants Inv for αctrl. A powerful proof tech-

nique applied here is compositional reasoning [31, 33] which sepa-

rately analyses the discrete (αi ,αu ) and continuous (αp ) dynamics,

and then lifts those results to the full hybrid dynamics. This idea is

exemplified by the following derived variation of the loop rule:

loopT

Γ ⊢ [αi ]Inv Inv ⊢ [αu ]Inv Inv ⊢ [αp ]Inv Inv ⊢ ϕ

Γ ⊢ [αi ; (αu ;αp )
∗]ϕ

The premises of rule loopT say that system initialization αi puts
the system in a state satisfying the invariant Inv, and that Inv is
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compositionally preserved by both the discrete switching logic αu
and the continuous dynamics αp . This rule is applied to analyze

stability for two important special instances of αctrl next.

3.2.1 Guarded State-dependent Switching. The instance αguard cor-
responds to the automata controller from (1) with αi ≡

⋃
p∈P u :=p

and guard formulas Gp,q . It does not use auxiliaries y nor the reset

map Rp,q . This model adds hysteresis [19] to the state-dependent
switching model from Section 3.1.2, so that switching decisions

at each Gp,q depend explicitly on the current discrete mode u in

addition to the continuous state. This design change is reflected in

the loop invariants and in the corresponding proof rule below.

Stability. The stability loop invariant ismodified (cf. Section 3.1.2)

to case split on the possible discrete modes u = p rather than the

ODE domains: Invs ≡ ∥x ∥ < ε ∧
∨
p∈P

(
u = p ∧Vp <W

)
.

Pre-attractivity. The pre-attractivity loop invariant is modified

similarly: Inva ≡
∨
p∈P

(
u=p∧Vp<W ∧(Vp ≥ U → Vp <W +kt)

)
.

Corollary 5 (UGpAS for guarded state-dependent switch-

ing, MLF). The following proof rule for multiple Lyapunov functions
Vp ,p ∈ P with four stacked premises is syntactically derivable in dL.

MLFG

⊢ Vp (0) = 0 ∧ ∀x (∥x ∥ > 0 → Vp (x) > 0)

⊢ ∀b ∃γ ∀x (Vp (x) ≤ b → ∥x ∥ ≤ γ )

⊢ Lfp
(Vp )(0)=0 ∧ ∀x (∥x ∥>0 ∧Qp → Lfp

(Vp )(x)<0)

⊢
∧
q∈P

(
Gp,q → Vq ≤ Vp

)
⊢ UGpAS(αguard)

The premises of rule MLFG are identical to those from MLF ex-

cept the bottom premise, which derives from loopT and unfolding

the controller αu with dL’s hybrid program axioms, e.g., the fol-

lowing proof skeleton shows the unfolding for the stability loop

invariant Invs corresponding to a switch from mode p to mode q:

x
Unfold

⊢ Gp,q → Vq ≤ Vp
Vp <W ⊢ Gp,q → Vq <W

u = p ∧Vp <W ⊢ [?Gp,q ;u :=q](u = q ∧Vq <W )

Invs ⊢ [αu ]Invs

Arithmeticx
Unlike rule MLF, the bottom premise of rule MLFG only uses an in-

equality, because the guards Gp,q determine permissible switching.

3.2.2 Time-dependent Switching. The instance αtime shown below

models time-dependent switching, where the controller αu makes

switching decisions based on the time τ elapsed in each mode.

αtime ≡



αi ≡ τ := 0;
⋃
p∈P

u :=p

αu ≡
⋃
p∈P

(
?u = p;

⋃
q∈P

(
?θp,q ≤ τ ;τ := 0;u :=q

) )
αp ≡

⋃
p∈P

(
?u = p;x ′ = fp (x),τ

′ = 1&τ ≤ Θp
)

The controller αu enables switching from mode p to q when a

minimum dwell time 0 ≤ θp,q ≤ τ has elapsed and resets the timer

whenever such a switch occurs. Conversely, the plant αp restricts

modes with a maximum dwell time τ ≤ Θp ,Θp > 0; an unbounded

dwell time Θp = ∞ is represented by the domain constraint true.
Dwell time restrictions can be used to stabilize systems that switch

between stable and unstable modes [47]. Intuitively, the system

should stay in stable modes for sufficient duration (θp,q ≤ τ ) while
it should avoid staying in unstable modes for too long (τ ≤ Θp ).

To reason about stability for αtime, consider Lyapunov function

conditions Lfp
(Vp )(x) ≤ −λpVp , where λp is a constant associated

with each mode p ∈ P. This condition bounds the value ofVp along

the solution of x ′ = fp (x) by either a decaying exponential for

stable modes (λp > 0) or a growing exponential for unstable modes

(λp ≤ 0). Let S = {p ∈ P, λp > 0} and U = {p ∈ P, λp ≤ 0} be

the indexes of the stable and unstable modes in the loop invariants

below, and let e(·) denote the real exponential function, which is

definable in dL by differential axiomatization [31, 34].

Stability. The stability loop invariant expresses the required ex-

ponential bounds with a case split depending if p ∈ S or p ∈ U:

Invs ≡ τ ≥ 0 ∧ ∥x ∥ < ε ∧

©«
∨
p∈S

(
u = p ∧Vp <We−λpτ

)
∨∨

p∈U

(
u = p ∧Vp <We−λp (τ−Θp ) ∧ τ ≤ Θp

)ª®®®®¬
For p ∈ S, e−λpτ is the accumulated decay factor for Vp after

staying in the stable mode for time τ . For p ∈ U, e−λp (τ−Θp ) is
a buffer factor for the growth of Vp in the unstable mode so that

Vp < W still holds at the maximum dwell time τ = Θp . In both

cases, the internal timer variable is non-negative (τ ≥ 0).

Pre-attractivity. The pre-attractivity loop invariant has similar

exponential decay and growth bounds for each p ∈ P in the current

mode. In addition, it has an overall exponential decay term e−σ (t−τ )

for some σ > 0, which ensures that the value of Vp tends to 0 as

t → ∞ for all switching trajectories; recall t is the global clock

introduced in the specification of pre-attractivity in Lemma 2.

Inva ≡ τ ≥ 0 ∧ t ≥ τ ∧

©«
∨
p∈S

(
u = p ∧Vp <We−σ (t−τ )e−λpτ

)
∨∨

p∈U

(
u = p ∧Vp <We−σ (t−τ )e−λp (τ−Θp ) ∧ τ ≤ Θp

)ª®®®®¬
Intuitively, e−σ (t−τ ) is the accumulated overall decay factor for

Vp until the switch to mode p which occurred at time t − τ , while

e−λpτ (resp. e−λp (τ−Θp )) is the current decay (resp. growth) factor

since the switch to mode p.

Corollary 6 (UGpAS for time-dependent switching, MLF).

The following proof rule for multiple Lyapunov functions Vp ,p ∈ P

with five stacked premises is syntactically derivable in dL.

MLFτ

⊢ Vp (0) = 0 ∧ ∀x (∥x ∥ > 0 → Vp (x) > 0)

⊢ ∀b ∃γ ∀x (Vp (x) ≤ b → ∥x ∥ ≤ γ )
⊢ Lfp

(Vp ) ≤ −λpVp

Invs ⊢ [αu ]Invs Inva ⊢ [αu ]Inva
⊢ UGpAS(αtime)

The two red premises on the bottom row are expanded to arithmeti-
cal conditions on Vp by unfolding the program structure of αu with
dL axioms in the supplement [43].
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The bottom premises of MLFτ and MLFG exemplify a key ben-

efit of dL stability reasoning: conditions on Vp that arise from

Invs , Inva are derived by systematically unfolding the discrete dy-

namics of αu with sound dL axioms. This enables automatic, correct-
by-construction derivation of those conditions, which is especially

important for controlled switching because the number of possible

transitions scales quadratically |P |2 with the number of modes |P |.

4 KEYMAERA X IMPLEMENTATION
This section presents a prototype implementation of switched sys-

tems support in the KeYmaera X prover based on dL [12]. The

implementation consists of ≈2700 lines and, crucially, does not re-

quire any extension to KeYmaera X’s existing soundness-critical

core. Accordingly, verification results for switched systems obtained

through this implementation directly inherit the strong correctness

properties guaranteed by the design of KeYmaera X [12, 25].

4.1 Modeling and Proof Interface
The implementation builds on KeYmaera X’s proof IDE [24] to pro-

vide a convenient interface for modeling switching mechanisms,

as shown in Fig. 3. The interface allows users to express switch-

ing mechanisms intuitively by rendering automaton plots while

abstracting away the underlying hybrid programs. It provides tem-

plates for switched systems following the switching mechanisms of

Section 3: state-dependent, guarded, timed, and general controlled

switching (tabs “Autonomous”, “Guarded”, “Timed”, “Generic” in

Fig. 3). From these templates, KeYmaera X automatically generates

programs and stability specifications, ensuring that they have the

correct dL hybrid program and formula structure.

Figure 3: Screenshot of the KeYmaera X switched systems
modeling editor: automata input on top-left, rendered au-
tomaton top-right, generated hybrid program and specifica-
tion(s) in dL at the bottom

Switched systems are represented internally with a common

interface SwitchedSystem which is currently implemented by four

classes: StateDependentαstate, Guardedαguard, Timedαtime, and
Controlled αctrl. The SwitchedSystem interface provides default
stability and pre-attractivity specifications, which can be adapted

by users on the UI if needed. Corollaries 3–6 are implemented as UG-

pAS proof tactics in KeYmaera X’s Bellerophon tactic language [11].

These tactics automate all of the reasoning steps underlying sta-

bility proofs for their respective switching mechanisms, so that

Table 1: Available tactics in KeYmaera X for switched sys-
tems stability proofs and Lyapunov function generation.

SwitchedSystem
Common Lyap. Multiple Lyap.

Proof Gen. Proof Gen.

StateDependent αstate ✓ ✓ ✓ ✓
Guarded αguard ✓ ✓ ✓ ✓
Timed αtime ✓ ✓ ✓ —

Controlled αctrl ✓ ✓ — —

Table 2: Stability proofs for examples drawn from the lit-
erature. The “Time” columns indicate time (in seconds) to
run the KeYmaera X proofs, × indicates incomplete proof. A
✓ in the “Gen.” column indicates successful Lyapunov func-
tion(s) generation, ? indicates that a candidatewas generated
butwithnumerical issues, and— indicates inapplicability. In
the latter two cases (?, —) known Lyapunov functions from
the literature were used for the proofs (if available).

Example Model Time (Stab.) Time (Attr.) Gen.

1 [5, Ex. 2.1] αstate 2.6 3.0 ✓
2 [19, Motiv. ex.] αstate 2.2 2.3 ✓
3 [19, Ex. 1] αstate 3.3 4.1 ✓
4 [19, Ex. 2 & 3] αguard 2.8 3.8 ?

5 [36, Ex. 6] αguard × × ?

6 [42, Ex. 2.45] αarb 19.4 11.1 ✓
7 [42, Ex. 3.25] αstate 2.4 2.9 ✓
8 [42, Ex. 3.49] αtime 4.4 5.6 —

9 [47, Ex. 1] αtime 4.7 5.3 —

10 [47, Ex. 2] αtime 256.9 × —

users only need to input candidate Lyapunov functions for KeY-

maera X to (attempt to) complete their proofs. Additionally, when

candidates are not provided by the user, the implementation uses

sum-of-squares programming [30, 36] to automatically generate

candidate Lyapunov functions for a subset of switching designs. The

generated candidates are checked for correctness by KeYmaera X

so the generator does not need to be trusted for correctness of the

resulting proofs. Table 1 summarizes the available proof tactics and

Lyapunov function generation for classes of switching mechanisms.

4.2 Examples
The implementation is tested on a suite of examples drawn from the

literature [5, 19, 36, 42] featuring various switching mechanisms,

with results summarized in Table 2. These examples have a 2 di-

mensional state space and switch between 2modes except Example

6 (3 dimensions, 2 modes) and Example 4 (2 dimensions, 4 modes).

The proof tactics successfully prove most of the examples across

various switching mechanisms. For Example 5, a suitable Lyapunov

function (without numerical errors) could not be found. For the

time-dependent switching models (Examples 8–10), KeYmaera X

internally uses verified polynomial Taylor approximations to the ex-

ponential function for decidability of arithmetic [3, 46]; Example 10

needs a high degree approximation (15 terms in the polynomial) for
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sufficient accuracy and its attractivity proof could not be completed

in reasonable time.

5 CASE STUDIES
This section presents three case studies applying the deductive

verification approach to justify various non-standard stability argu-

ments in KeYmaera X.
3

5.1 Canonical Max System
Branicky [4] investigates the longitudinal dynamics of an aircraft

with an elevator controller that mediates between two control ob-

jectives: i) tracking potentially unsafe pilot input and ii) respecting
safety constraints on the aircraft’s angle of attack. Assuming a state

feedback control law, the model is transformed to the following

canonical max system [4, Remark 5], with state variables x ,y and

parameters a,b, f ,д,γ satisfying a,b,a − f ,b − д > 0 and γ ≤ 0.

x ′ = y,y′ = −ax − by +max(f x + дy + γ , 0) (2)

The right-hand side of system (2) is non-differentiable but the

equations can be equivalently rewritten as a family of two ODEs

corresponding to either possibility for themax(f x +дy +γ , 0) term
in the equation for y′ as follows, where the system follows ODE A

in domain f x +дy +γ ≤ 0 and ODE B in domain f x +дy +γ ≥ 0.

A ≡ x ′ = y,y′ = −ax − by

B ≡ x ′ = y,y′ = −(a − f )x − (b − д)y + γ

Stability of this parametric system is not directly provable using

standard techniques for state-dependent switching presented in Sec-

tion 3.1.2. For example, the ODE A stabilizes the system to the

origin but the ODE B stabilizes to the point (−
γ

a−f , 0), away from

the origin for γ < 0. Branicky proves global asymptotic stability

of (2) with the following “noncustomary” [10] Lyapunov function

involving a nondifferentiable integrand:

V =
1

2

y2 +

∫ x

0

aξ −max(f ξ + γ , 0)dξ (3)

The key idea used to deductively prove stability here instead is

ghost switching: analogous to ghost variables in program verifica-

tion which are added for the sake of program proofs [29, 33, 34],

ghost switching modes do not change the physical dynamics of the

system but are introduced for the purposes of the stability analysis.

Here, ghost switching between f x + γ ≤ 0 and f x + γ ≥ 0 is

used to obtain closed form representations for the integral in (3).

This yields an instance of state-dependent switching αstate with 4

switching modes and the corresponding stability specification Pm :

αm ≡

(
A

1
∪ A

2
∪ B

1
∪ B

2

)∗
p ≡ f x + дy + γ q ≡ f x + γ

A
1
≡ A &p ≤ 0 ∧ q ≤ 0 A

2
≡ A &p ≤ 0 ∧ q ≥ 0

B
1
≡ B &p ≥ 0 ∧ q ≤ 0 B

2
≡ B &p ≥ 0 ∧ q ≥ 0

Pm ≡ a>0∧b>0∧a−f >0∧b−д>0∧f ,0∧γ≤0 → UGpAS(αm )

The ghost switching modes enable a multiple Lyapunov function

argument for stability using the following modified closed-form

representations of Branicky’s Lyapunov function (3), with V1 =
1

2
(bcx2 + 2cxy +y2) + a

2
x2 for A

1
, B

1
andV2 =

1

2
(bcx2 + 2cxy +

3
See https://github.com/LS-Lab/KeYmaeraX-projects/blob/master/stability/UGpAS

y2)+ a
2
x2 −

(f x+γ )2

2f for A
2
, B

2
.
4
The sub-terms highlighted in red

forV1,V2 are closed form expressions for

∫ x
0
aξ −max(f ξ +γ , 0)dξ

where f ξ + γ ≤ 0 and f ξ + γ ≥ 0 respectively. The Lyapunov

functions V1,V2 are modified from (3) to use a quadratic form with

an additional constant c satisfying constraints 0 < c < b, c <

b − д, c <
(a−f )(b−д)
a−f +д2 , c <

a(b−д)
a+д2 (such a constant always exists

under the assumptions on a,b, f ,д). This technical modification

is required to prove UGpAS for αm directly with the Lyapunov

functions. Branicky’s earlier proof requires LaSalle’s principle [4].

Another challenging aspect of this case study is verification of

the parametric arithmetical conditions for V1,V2, i.e., stability is

verified for all possible parameter values a,b, f ,д,γ that satisfy

the assumptions in Pm . Such questions are decidable in theory [3,

46], but are difficult for automated solvers in practice (even out of

reach of solvers that require numerically bounded parameters [14]).

KeYmaera X enables a user-aided proof of the required arithmetic

conditions. For example, the Lie derivative of the Lyapunov function

V1 for B
1
is given byV ′

1
= −(b−c)y2−acx2+ (cx +y)(f x +дy+γ ),

whereV ′
1
is required to be strictly negative away from the origin for

stability. The arithmetical argument is as follows: if cx +y ≤ 0, then

by constraint f x + дy + γ ≥ 0, V ′
1
satisfies V ′

1
≤ −(b − c)y2 − acx2.

Otherwise, cx + y > 0, then by constraint f x + γ ≤ 0, V ′
1
satisfies

V ′
1
≤ −(b−д−c)y2−acx2+дcxy. In either case, the RHS bound is a

negative definite quadratic form by the earlier choice of parameter

c and therefore, V ′
1
is negative away from the origin.

5.2 Automated Cruise Control
Oehlerking [28, Sect. 4.6] verifies the stability of an automatic

cruise controller modeled as a hybrid automaton with 6 operat-

ing modes and 11 transitions between them: normal proportional-

integral (PI) control, acceleration, service braking (2 modes), and

emergency braking (2 modes). Figure 4 shows an abridged version

of the corresponding KeYmaera X model (using αctrl) with the PI

control mode, where v is the relative velocity to be controlled to

v = 0 and x , t are auxiliary integral and timer variables used in the

controller. Briefly, this controller is designed to use the PI controller

near v = 0 for stability, while its other control modes drive the

system toward v = 0 by accelerating or braking.

Lyapunov function candidates for this model can be successfully

generated using the Stabhyli [26] stability tool for hybrid automata.

However, Stabhyli (with default configurations) outputs a Lyapunov

function candidate for the PI control mode that is numerically un-

sound, see the supplement [43]; this is a known issue with Stabhyli

for control modes at the origin [26]. For this case study, the issue

is manually resolved by truncating terms with very small mag-

nitude coefficients in the generated output and then checking in

KeYmaera X that the arithmetical conditions for the PI mode are

satisfied exactly for the truncated candidate.

Further insights from the controller design are used in the UGpAS

proof in KeYmaera X. Briefly, stability only concerns states and

modes that are active near the origin so the stability argument and

loop invariant only need to mention a single Lyapunov function for

the PI control mode, while choosing δ (in Def. 1) sufficiently small

4
An important technical requirement forV2 to be well-defined is f , 0. The case with

f = 0 is also verified in KeYmaera X but the details are omitted here for brevity. It

does not require ghost switching and uses only V1 as its common Lyapunov function.

https://github.com/LS-Lab/KeYmaeraX-projects/blob/master/stability/UGpAS
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normalPI("v' = -0.001*x-0.052*v, x' = v, t' = 0
& -15 <= v & v <= 15 & -500 <= x & x <= 500")

normalPI -->|"?(13 <= v & v <= 15 &
-500 <= x & x <= 500); t := 0;"| sbrakeact

normalPI -->|"?(-15 <= v & v <= -14 &
-500 <= x & x <= 500);"| accelerate

... // Other modes

\forall eps ( eps > 0 -> // Abridged stability specification
...
[ ... // Initialize
{ { ... ++ // Transitions for other modes

?mode = normalPI();
{ {?13 <= v & v <= 15 & -500 <= x & x <= 500; t := 0;}

mode := sbrakeact(); ++
?-15 <= v & v <= -14 & -500 <= x & x <= 500;
mode := accelerate(); ++
mode := mode; } }

{ ... ++ // Plant ODEs for other modes
?mode = normalPI();
{ v' = -0.001*x-0.052*v, x' = v, t' = 0 &

-15 <= v & v <= 15 & -500 <= x & x <= 500 } }
}* // Switching loop
] v^2 < eps^2

Figure 4: Snippets of an automated cruise controller [28]modeled as a (switching) hybrid automaton. Users express the automa-
ton within the description language (top left) and KeYmaera X visualizes the automaton on-the-fly (bottom left). The imple-
mentation automatically generates the appropriate hybrid program representation and UGpAS specification (right); ++,&,()
denote choice, conjunction, and constants in KeYmaera X’s ASCII syntax respectively.

so that none of the other modes can be entered.
5
Similarly, pre-

attractivity only requires reasoning about asymptotic convergence
to the origin for the PI control mode so it suffices to show that the

system leaves all other modes in finite time.

5.3 Brockett’s Nonholonomic Integrator
Verification of stabilizing control laws for Brockett’s nonholonomic

integrator [7] is of significant interest because stability for a large

class of models can be reduced to that of the integrator via co-

ordinate transformations, e.g., Liberzon [22] transforms a unicy-

cle model to the integrator and provides a stabilizing switching

control law corresponding to parking of the unicycle. The non-

holonomic integrator is described by the system of differential

equations x ′ = u,y′ = v, z′ = xv − yu, with state variables x ,y, z
and state feedback control inputs u = u(x ,y, z),v = v(x ,y, z) (to be
determined below). Notably, this is a classical example of a system

that is not stabilizable by purely continuous feedback control. In-

tuitively, no choice of controls u,v can produce motion along the

z-axis (x = y = 0). Thus, to stabilize the system to the origin, the

controller must first drive the system away from the z-axis before
switching to a control law that stabilizes the system from states

away from the z-axis. This intuition can be realized using two differ-
ent switching strategies that are analogous to the event-triggered

and time-triggered CPS design paradigms respectively [33].

5.3.1 Event-triggered Controller. Bloch and Drakunov [2] use the

switching controller u = −x + ay sign(z),v = −y − ax sign(z) to
asymptotically stabilize the integrator in the region

a
2
(x2+y2) ≥ |z |

for any given constant a > 0. This controller first drives the system

towards the plane z = 0 and, once it reaches the plane, slides along
the plane towards the origin. The closed-loop system is modeled

as an instance of state-dependent switching αstate with 3 modes

5
In fact, the PI controller equations are exactly those of a linearized pendulum, which

has known Lyapunov functions [21, 44]. It could be interesting to modify Stabhyli to

accept user-provided Lyapunov function hints for certain modes.

depending on the sign of z and specification Pe :

A ≡ x ′ = −x + ay,y′ = −y − ax , z′ = −a(x2 + y2)& z ≥ 0

B ≡ x ′ = −x − ay,y′ = −y + ax , z′ = a(x2 + y2)& z ≤ 0

C ≡ x ′ = −x ,y′ = −y, z′ = 0& z = 0 αe ≡

(
A ∪ B ∪ C

)∗
Pe ≡ a > 0 → UStab(α)∧

∀δ>0∀ε>0∃T≥0∀x ,y, z
(
∥x ,y, z∥ < δ ∧

a

2

(x2 + y2) ≥ |z | →

[t := 0;αe , t
′ = 1](t ≥ T → ∥x ,y, z∥ < ε

)
The specification Pe is identical to UGpAS except it restricts

pre-attractivity to the applicable region
a
2
(x2 + y2) ≥ |z | for the

controller.
6
Its verification uses the squared normV = x2 +y2 + z2

as a common Lyapunov function. The key modification to the pre-

attractivity proof, cf. Section 3.1, is to use (and verify) the fact that

a
2
(x2 + y2) ≥ |z | is a loop invariant of αe . This additional invariant

corresponds to the fact that the controller keeps the system within

its applicable region (if the system is initially within that region).

In fact, αe can be extended to a globally stabilizing controller,

as modeled by αê below (if, else branching is supported as an

abbreviation in KeYmaera X [33]):

D ≡ x ′ = u,y′ = v, z′ = xv − yu &
a

2

(x2 + y2) ≤ |z |

E ≡ x ′ = u,y′ = v, z′ = xv − yu &
a

2

(x2 + y2) ≥ |z |

αê ≡

(
if

(a
2

(x2 + y2) ≥ |z |
) {

A ∪ B ∪ C

}
else

{
if((x − y)z ≤ 0){u := c;v := c}

else{u :=−c;v :=−c};{
D ∪ E

} })∗
6
The applicable region is equivalently characterized by the real arithmetic formula

(z≥0 → a
2
(x 2 + y2)≥z) ∧ (z≤0 → a

2
(x 2 + y2)≥−z), omitted for brevity.
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If the system is in the applicable region (outer if branch), then

the previous controller from αe is used. Otherwise, outside the

applicable region (outer else branch), the system applies a constant

control c > 0 chosen to drive the system into the applicable region.

The pair of ODEs D and E model an event-trigger in dL [33],

where the switching controller is triggered to make its next decision

when the system reaches the switching surface
a
2
(x2 + y2) = |z |.

The specification Pê ≡ a>0 ∧ c>0 → UGpAS(αê ) is proved
by modifying the loop invariants to account for an initial period

where the system is outside the applicable region. For example,

the stability loop invariant Invs ≡ (¬a
2
(x2 + y2)≥|z | → |z |<δ ) ∧

(a
2
(x2 + y2)≥|z | → ∥x ,y, z∥<ε) expresses that the controller keeps

|z | sufficiently small with |z |<δ to preserve stability outside the

applicable region. The pre-attractivity loop invariant is similarly

split between the two cases, with an explicit time estimate on the

time it takes for the system to enter the applicable region.

5.3.2 Time-triggered Controller. The time-triggered switching strat-

egy [33], modeled by ατ below, is similar to that proposed by Liber-

zon [22, Section 4.2]. If the system is on the z-axis and away from

the origin A , the controller sets an internal stopwatch τ and drives

the system away from the axis for maximum duration T0 > 0 with

u = z,v = z. Otherwise B , the controller drives the system towards

the origin along a parabolic curve of the form
a
2
(x2 + y2) = z.

ατ ≡

(
if(x = 0 ∧ y = 0 ∧ z , 0)

{
A τ := 0;x ′ = z,y′ = z, z′ = xz − yz &τ ≤ T0

}
else

{
a :=

2z

x2 + y2
;

B x ′ = −x + ay,y′ = −y − ax , z′ = −a(x2 + y2)
})∗

The specification Pτ ≡ T0 > 0 → UGpAS(ατ ) is again proved by

analyzing both cases of the controller in the loop invariants, e.g.,

with the pre-attractivity invariant Inva :(
x = 0 ∧ y = 0 ∧ z , 0 → |z | < δ ∧ t = 0

)
∧(

¬(x = 0 ∧ y = 0 ∧ z , 0) →

∥x ,y, z∥ > ε → ∥x ,y, z∥2 < δ2(2T 2

0
+ 1) − ε2(t −T0)

)
The top conjunct says the system may start transiently on the

z-axis (away from z = 0) at time t = 0. The bottom conjunct gives ex-

plicit bounds on ∥x ,y, z∥, which, for sufficiently large t ≥ T , implies

that the system enters ∥x ,y, z∥ < ε as required for pre-attractivity.

The transient term δ2(2T 2

0
+ 1) upper bounds the (squared) norm of

the system state after starting on the z-axis in ball ∥x ,y, z∥ < δ and

following mode A for the maximum stopwatch duration τ = T0.

6 RELATEDWORK
Switched Systems. Comprehensive introductions to the analysis

and design of switching control can be found in the literature [10, 22,

42]. An important design consideration (which this paper sidesteps,

cf. Remark 1) is whether a given switched or hybrid system has com-

plete solutions [16, 17, 23, 48]. Justification of such design consider-

ations, and other stability notions of interest for switching designs,

e.g., quadratic, region, or set-based stability [16, 17, 22, 35, 42], can

be done in dL with appropriate formal specifications of the desired

properties from the literature [31, 33, 44, 45]. Another complemen-

tary question is how to design a switching control law that stabilizes
a given system. Switching design approaches are often guided by

underlying stability arguments [22, 37, 42]; the loop invariants

from Section 3 are expected to help guide correct-by-construction

synthesis of such controllers.

Stability Analysis and Verification. Corollaries 3–6 formalize var-

ious Lyapunov function-based stability arguments from the litera-

ture [5, 47] using loop invariants, yielding trustworthy, computer-

checked stability proofs in KeYmaera X [11, 12]. Other computer-

aided approaches for switched system stability analysis are based

on finding Lyapunov functions that satisfy the requisite arith-

metical conditions [20, 26, 28, 36, 39, 40]. Although the search for

such functions can often be done efficiently with numerical tech-

niques [26, 30, 36], various authors have emphasized the need to

check that their outputs satisfy the arithmetical conditions exactly,
i.e., without numerical errors compromising the resulting stabil-

ity claims [1, 20, 38] (see, e.g., Section 5.2). This paper’s deductive

approach goes further as it comprehensively verifies all steps of
the stability argument down to its underlying discrete and contin-

uous reasoning steps [32, 33]. The generality of this approach is

precisely what enables verification of various classes of switching

mechanisms all within a common logical framework (Section 3)

and verification of non-standard stability arguments (Section 5).

Alternative approaches to stability verification are based on ab-

straction [15, 41] and model checking [35].

7 CONCLUSION
This paper shows how to deductively verify switched system sta-

bility, using dL’s nested quantification over hybrid programs to

specify stability, and dL’s axiomatics to prove those specifications.

Loop invariants—a classical technique from verification—are used

to succinctly capture the desired properties of a given switching

design; through deductive proofs, these invariants yield system-

atic, correct-by-construction derivation of the requisite arithmetical

conditions on Lyapunov functions for stability arguments in imple-

mentations. An interesting direction for future work is to use other

Lyapunov function generation techniques [20, 26, 28, 40], which—

thanks to the presented approach—do not have to be trusted since

their results can be checked independently by KeYmaera X. This

would enable fully automated, yet sound and trustworthy verifica-

tion of switched system stability based on dL’s parsimonious hybrid

program reasoning principles.
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