
Implicit Definitions with Differential
Equations for KeYmaera X

(System Description)

James Gallicchio(B) , Yong Kiam Tan(B) , Stefan Mitsch(B) ,
and André Platzer(B)

Computer Science Department, Carnegie Mellon University, Pittsburgh, USA
jgallicc@andrew.cmu.edu, {yongkiat,smitsch,aplatzer}@cs.cmu.edu

Abstract. Definition packages in theorem provers provide users with
means of defining and organizing concepts of interest. This system
description presents a new definition package for the hybrid systems the-
orem prover KeYmaera X based on differential dynamic logic (dL). The
package adds KeYmaera X support for user-defined smooth functions
whose graphs can be implicitly characterized by dL formulas. Notably,
this makes it possible to implicitly characterize functions, such as the
exponential and trigonometric functions, as solutions of differential equa-
tions and then prove properties of those functions using dL’s differ-
ential equation reasoning principles. Trustworthiness of the package is
achieved by minimally extending KeYmaera X’s soundness-critical ker-
nel with a single axiom scheme that expands function occurrences with
their implicit characterization. Users are provided with a high-level inter-
face for defining functions and non-soundness-critical tactics that auto-
mate low-level reasoning over implicit characterizations in hybrid system
proofs.

Keywords: Definitions · Differential dynamic logic · Verification of
hybrid systems · Theorem proving

1 Introduction

KeYmaera X [7] is a theorem prover implementing differential dynamic logic
dL [17,19–21] for specifying and verifying properties of hybrid systems mixing
discrete dynamics and differential equations. Definitions enable users to express
complex theorem statements in concise terms, e.g., by modularizing hybrid sys-
tem models and their proofs [14]. Prior to this work, KeYmaera X had only one
mechanism for definition, namely, non-recursive abbreviations via uniform sub-
stitution [14,20]. This restriction meant that common and useful functions, e.g.,
the trigonometric and exponential functions, could not be directly used in KeY-
maera X, even though they can be uniquely characterized by dL formulas [17].

This system description introduces a new KeYmaera X definitional mecha-
nism where functions are implicitly defined in dL as solutions of ordinary dif-
ferential equations (ODEs). Although definition packages are available in most
c© The Author(s) 2022
J. Blanchette et al. (Eds.): IJCAR 2022, LNAI 13385, pp. 723–733, 2022.
https://doi.org/10.1007/978-3-031-10769-6_42

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10769-6_42&domain=pdf
http://orcid.org/0000-0002-0838-3240
http://orcid.org/0000-0001-7033-2463
http://orcid.org/0000-0002-3194-9759
http://orcid.org/0000-0001-7238-5710
https://doi.org/10.1007/978-3-031-10769-6_42

724 J. Gallicchio et al.

general-purpose proof assistants, our package is novel in tackling the question
of how best to support user-defined functions in the domain-specific setting for
hybrid systems. In contrast to tools with builtin support for some fixed subsets
of special functions [1,9,23]; or higher-order logics that can work with functions
via their infinitary series expansions [4], e.g., exp(t) =

∑∞
i=0

ti

i! ; our package
strikes a balance between practicality and generality by allowing users to define
and reason about any function characterizable in dL as the solution of an ODE
(Sect. 2), e.g., exp(t) solves the ODE e′ = e with initial value e(0) = 1.

Theoretically, implicit definitions strictly expand the class of ODE invariants
amenable to dL’s complete ODE invariance proof principles [22]; such invariants
play a key role in ODE safety proofs [21] (see Proposition 3). In practice, arith-
metical identities and other specifications involving user-defined functions are
proved by automatically unfolding their implicit ODE characterizations and re-
using existing KeYmaera X support for ODE reasoning (Sect. 3). The package is
designed to provide seamless integration of implicit definitions in KeYmaera X
and its usability is demonstrated on several hybrid system verification examples
drawn from the literature that involve special functions (Sect. 4).

All proofs are in the supplement [8]. The definitions package is part of KeY-
maera X with a usage guide at: http://keymaeraX.org/keymaeraXfunc/.

2 Interpreted Functions in Differential Dynamic Logic

This section briefly recalls differential dynamic logic (dL) [17,18,20,21] and
explains how its term language is extended to support implicit function defi-
nitions.

Syntax. Terms e, ẽ and formulas φ, ψ in dL are generated by the following
grammar, with variable x, rational constant c, k-ary function symbols h (for any
k ∈ N), comparison operator ∼ ∈ {=, �=,≥, >,≤, <}, and hybrid program α:

e, ẽ ::= x | c | e + ẽ | e · ẽ | h(e1, . . . , ek) (1)
φ, ψ ::= e ∼ ẽ | φ ∧ ψ | φ ∨ ψ | ¬φ | ∀xφ | ∃xφ | [α]φ | 〈α〉 φ (2)

The terms and formulas above extend the first-order language of real arith-
metic (FOLR) with the box ([α] φ) and diamond (〈α〉 φ) modality formulas which
express that all or some runs of hybrid program α satisfy postcondition φ, respec-
tively. Table 1 gives an intuitive overview of dL’s hybrid programs language for
modeling systems featuring discrete and continuous dynamics and their inter-
actions thereof. In dL’s uniform substitution calculus, function symbols h are
uninterpreted, i.e., they semantically correspond to an arbitrary (smooth) func-
tion. Such uninterpreted function symbols (along with uninterpreted predicate
and program symbols) are crucially used to give a parsimonious axiomatiza-
tion of dL based on uniform substitution [20] which, in turn, enables a trust-
worthy microkernel implementation of the logic in the theorem prover KeY-
maera X [7,16].

http://keymaeraX.org/keymaeraXfunc/

Implicit Definitions with Differential Equations for KeYmaera X 725

Table 1. Syntax and informal semantics of hybrid programs

Program Behavior

?φ Stay in the current state if φ is true, otherwise abort and discard run
x := e Store the value of term e in variable x

x := ∗ Store an arbitrary real value in variable x

x′ = f(x)&Q Continuously follow ODE x′ = f(x) in domain Q for any duration ≥0

if(φ)α Run program α if φ is true, otherwise skip. Definable by ?φ;α ∪ ?¬φ

α;β Run program α, then run program β in any resulting state(s)
α ∪ β Nondeterministically run either program α or program β

α∗ Nondeterministically repeat program α for n iterations, for any n ∈ N

{α} For readability, braces are used to group and delimit hybrid programs

Hybrid program model (auxiliary variables s, c):

Hybrid program model (trigonometric functions):

safety specification:

Fig. 1. Running example of a swinging pendulum driven by an external force (left), its
hybrid program models and dL safety specification (right). Program αs uses trigono-
metric functions directly, while program α̂s uses variables s, c to implicitly track the
values of sin(θ) and cos(θ), respectively (additions in red). The implicit characteriza-
tions φsin(s, θ), φcos(c, θ) are defined in (4), (5) and are not repeated here for brevity.
(Color figure online)

Running Example. Adequate modeling of hybrid systems often requires the
use of interpreted function symbols that denote specific functions of interest.
As a running example, consider the swinging pendulum shown in Fig. 1. The
ODEs describing its continuous motion are θ′ = ω, ω′ = − g

L sin(θ) − kω, where
θ is the swing angle, ω is the angular velocity, and g, k, L are the gravita-
tional constant, coefficient of friction, and length of the rigid rod suspending
the pendulum, respectively. The hybrid program αs models an external force
that repeatedly pushes the pendulum and changes its angular velocity by a

726 J. Gallicchio et al.

nondeterministically chosen value p; the guard if(. . .) condition is designed to
ensure that the push does not cause the pendulum to swing above the horizontal
as specified by φs. Importantly, the function symbols sin, cos must denote the
usual real trigonometric functions in αs. Program α̂s shows the same pendulum
modeled in dL without the use of interpreted symbols, but instead using aux-
iliary variables s, c. Note that α̂s is cumbersome and subtle to get right: the
implicit characterizations φsin(s, θ), φcos(c, θ) from (4), (5) are lengthy and the
differential equations s′ = ωc, c′ = −ωs must be manually calculated and added
to ensure that s, c correctly track the trigonometric functions as θ evolves con-
tinuously [18,22].

Interpreted Functions. To enable extensible use of interpreted functions in
dL, the term grammar (1) is enriched with k-ary function symbols h that carry
an interpretation annotation [5,27], h�φ�, where φ ≡ φ(x0, y1, . . . , yk) is a
dL formula with free variables in x0, y1, . . . , yk and no uninterpreted symbols.
Intuitively, φ is a formula that characterizes the graph of the intended interpre-
tation for h, where y1, . . . , yk are inputs to the function and x0 is the output.
Since φ depends only on the values of its free variables, its formula semantics [[φ]]
can be equivalently viewed as a subset of Euclidean space [[φ]] ⊆ R×R

k [20,21].
The dL term semantics ν[[e]] [20,21] in a state ν is extended with a case for terms
h�φ�(e1, . . . , ek) by evaluation of the smooth C∞ function characterized by [[φ]]:

ν[[h�φ�(e1, . . . , ek)]] =

{
ĥ(ν[[e1]], . . . , ν[[ek]]) if [[φ]] graph of smooth ĥ:Rk→R

0 otherwise

This semantics says that, if the relation [[φ]] ⊆ R × R
k is the graph of some

smooth C∞ function ĥ : Rk → R, then the annotated syntactic symbol h�φ�
is interpreted semantically as ĥ. Note that the graph relation uniquely defines
ĥ (if it exists). Otherwise, h�φ� is interpreted as the constant zero function
which ensures that the term semantics remain well-defined for all terms. An
alternative is to leave the semantics of some terms (possibly) undefined, but
this would require more extensive changes to the semantics of dL and extra case
distinctions during proofs [2].

Axiomatics and Differentially-Defined Functions. To support reasoning
for implicit definitions, annotated interpretations are reified to characterization
axioms for expanding interpreted functions in the following lemma.

Lemma 1. (Function interpretation). The FI axiom (below) for dL is
sound where h is a k-ary function symbol and the formula semantics [[φ]] is
the graph of a smooth C∞ function ĥ : Rk → R.

FI e0 = h�φ�(e1, . . . , ek) ↔ φ(e0, e1, . . . , ek)

Axiom FI enables reasoning for terms h�φ�(e1, . . . , ek) through their
implicit interpretation φ, but Lemma 1 does not directly yield an implementation

Implicit Definitions with Differential Equations for KeYmaera X 727

because it has a soundness-critical side condition that interpretation φ charac-
terizes the graph of a smooth C∞ function. It is possible to syntactically char-
acterize this side condition [2], e.g., the formula ∀y1, . . . , yk∃x0φ(x0, y1, . . . , yk)
expresses that the graph represented by φ has at least one output value x0 for
each input value y1, . . . , yk, but this burdens users with the task of proving this
side condition in dL before working with their desired function. The KeYmaera X
definition package opts for a middle ground between generality and ease-of-use by
implementing FI for univariate, differentially-defined functions, i.e., the interpre-
tation φ has the following shape, where x = (x0, x1, . . . , xn) abbreviates a vector
of variables, there is one input t = y1, and X = (X0,X1, . . . , Xn), T are dL terms
that do not mention any free variables, e.g., are rational constants, which have
constant value in any dL state:

φ(x0, t) ≡
〈

x1, . . . , xn := ∗;
{

x′ = −f(x, t), t′ = −1 ∪
x′ = f(x, t), t′ = 1

}〉 (
x = X ∧
t = T

)
(3)

Formula (3) says from point x0, there exists a choice of the remaining coor-
dinates x1, . . . , xn such that it is possible to follow the defining ODE either
forward x′ = f(x, t), t′ = 1 or backward x′ = −f(x, t), t′ = −1 in time to reach
the initial values x = X at time t = T . In other words, the implicitly defined
function h�φ(x0,t)� is the x0-coordinate projected solution of the ODE starting
from initial values X at initial time T . For example, the trigonometric functions
used in Fig. 1 are differentially-definable as respective projections:

φsin(s, t) ≡
〈

c := ∗;
{

s′ = −c, c′ = s, t′ = −1 ∪
s′ = c, c′ = −s, t′ = 1

}〉 (
s = 0 ∧ c = 1 ∧
t = 0

)
(4)

φcos(c, t) ≡
〈

s := ∗;
{

s′ = −c, c′ = s, t′ = −1 ∪
s′ = c, c′ = −s, t′ = 1

}〉 (
s = 0 ∧ c = 1 ∧
t = 0

)
(5)

By Picard-Lindelöf [21, Thm. 2.2], the ODE x′ = f(x, t) has a unique solution
Φ : (a, b) → R

n+1 on an open interval (a, b) for some −∞ ≤ a < b ≤ ∞.
Moreover, Φ(t) is C∞ smooth in t because the ODE right-hand sides are dL terms
with smooth interpretations [20]. Therefore, the side condition for Lemma 1
reduces to showing that Φ exists globally, i.e., it is defined on t ∈ (−∞,∞).

Lemma 2. (Smooth interpretation). If formula ∃x0φ(x0, t) is valid, φ(x0, t)
from (3) characterizes a smooth C∞ function and axiom FI is sound for φ(x0, t).

Lemma 2 enables an implementation of axiom FI in KeYmaera X that com-
bines a syntactic check (the interpretation has the shape of formula (3)) and a
side condition check (requiring users to prove existence for their interpretations).

The addition of differentially-defined functions to dL strictly increases the
deductive power of ODE invariants, a key tool in deductive ODE safety reason-
ing [21]. Intuitively, the added functions allow direct, syntactic descriptions of
invariants, e.g., the exponential or trigonometric functions, that have effective
invariance proofs using dL’s complete ODE invariance reasoning principles [22].

728 J. Gallicchio et al.

Proposition 3. (Invariant expressivity). There are valid polynomial dL dif-
ferential equation safety properties which are provable using differentially-defined
function invariants but are not provable using polynomial invariants.

3 KeYmaera X Implementation

The implicit definition package adds interpretation annotations and axiom FI
based on Lemma 2 in ≈170 lines of code extensions to KeYmaera X’s soundness-
critical core [7,16]. This section focuses on non-soundness-critical usability fea-
tures provided by the package that build on those core changes.

3.1 Core-Adjacent Changes

KeYmaera X has a browser-based user interface with concrete, ASCII-based
dL syntax [14]. The package extends KeYmaera X’s parsers and pretty printers
with support for interpretation annotations h«...»(...) and users can simulta-
neously define a family of functions as respective coordinate projections of the
solution of an n-dimensional ODE (given initial conditions) with sugared syntax:

implicit Real h1(Real t), ..., hn(Real t) = {{initcond};{ODE}}

For example, the implicit definitions (4), (5) can be written with the following
sugared syntax; KeYmaera X automatically inserts the associated interpretation
annotations for the trigonometric function symbols, see the supplement [8] for a
KeYmaera X snippet of formula φs from Fig. 1 using this sugared definition.

implicit Real sin(Real t), cos(Real t)
= {{sin:=0; cos:=1;}; {sin’=cos, cos’=-sin}}

In fact, the functions sin, cos, exp are so ubiquitous in hybrid system models
that the package builds their definitions in automatically without requiring users
to write them explicitly. In addition, although arithmetic involving those func-
tions is undecidable [11,24], KeYmaera X can export those functions whenever
its external arithmetic tools have partial arithmetic support for those functions.

3.2 Intermediate and User-Level Proof Automation

The package automatically proves three important lemmas about user-defined
functions that can be transparently re-used in all subsequent proofs:

1. It proves the side condition of axiom FI using KeYmaera X’s automation
for proving sufficient duration existence of solutions for ODEs [26] which
automatically shows global existence of solutions for all affine ODEs and
some univariate nonlinear ODEs. As an example of the latter, the hyperbolic
tanh function is differentially-defined as the solution of ODE x′ = 1−x2 with
initial value x = 0 at t = 0 whose global existence is proved automatically.

Implicit Definitions with Differential Equations for KeYmaera X 729

2. It proves that the functions have initial values as specified by their interpre-
tation, e.g., sin(0) = 0, cos(0) = 1, and tanh(0) = 0.

3. It proves the differential axiom [20] for each function that is used to enable
syntactic derivative calculations in dL, e.g., the differential axioms for sin, cos
are (sin(e))′ = cos(e)(e)′ and (cos(e))′ = − sin(e)(e)′, respectively. Briefly,
these axioms are automatically derived in a correct-by-construction manner
using dL’s syntactic version of the chain rule for differentials [20, Fig. 3], so
the rate of change of sin(e) is the rate of change of sin(·) with respect to its
argument e, multiplied by the rate of change of its argument (e)′.

These lemmas enable the use of differentially-defined functions with all exist-
ing ODE automation in KeYmaera X [22,26]. In particular, since differentially-
defined functions are univariate Noetherian functions, they admit complete ODE
invariance reasoning principles in dL [22] as implemented in KeYmaera X.

The package also adds specialized support for arithmetical reasoning over
differential definitions to supplement external arithmetic tools in proofs. First,
it allows users to manually prove identities and bounds using KeYmaera X’s
ODE reasoning. For example, the bound tanh(λx)2 < 1 used in the example αn

from Sect. 4 is proved by differential unfolding as follows (see supplement [8]):

� tanh(0)2 < 1 tanh(λv)2<1 � [{v′ = 1& v ≤ x} ∪ {v′ = −1& v ≥ x}] tanh(λv)2<1

� tanh(λx)2 < 1

This deduction step says that, to show the conclusion (below rule bar), it
suffices to prove the premises (above rule bar), i.e., the bound is true at v = 0
(left premise) and it is preserved as v is evolved forward v′ = 1 or backward
v′ = −1 along the real line until it reaches x (right premise). The left premise is
proved using the initial value lemma for tanh while the right premise is proved
by ODE invariance reasoning with the differential axiom for tanh [22].

Second, the package uses KeYmaera X’s uniform substitution mechanism [20]
to implement (untrusted) abstraction of functions with fresh variables when
solving arithmetic subgoals, e.g., the following arithmetic bound for example αn

is proved by abstraction after adding the bounds tanh(λx)2 < 1, tanh(λy)2 < 1.

Bound: x(tanh(λx) − tanh(λy)) + y(tanh(λx) + tanh(λy)) ≤ 2
√

x2 + y2

Abstracted: t2x < 1 ∧ t2y < 1 → x(tx − ty) + y(tx + ty) ≤ 2
√

x2 + y2

4 Examples

The definition package enables users to work with differentially-defined functions
in KeYmaera X, including modeling and expressing their design intuitions in
proofs. This section applies the package to verify various continuous and hybrid
system examples from the literature featuring such functions.

Discretely Driven Pendulum. The specification φs from Fig. 1 contains a discrete
loop whose safety property is proved by a loop invariant, i.e., a formula that is
preserved by the discrete and continuous dynamics in each loop iteration [21].

730 J. Gallicchio et al.

The key invariant is Inv ≡ g
L (1 − cos θ) + 1

2ω2 < g
L , which expresses that the

total energy of the system (sum of potential and kinetic energy on the LHS) is
less than the energy needed to cross the horizontal (RHS). The main steps are
as follows (proofs for these steps are automated by KeYmaera X):

1. Inv → [
if

(
1
2 (ω − p)2 < g

L cos(θ)
) {ω := ω − p}]

Inv, which shows that the
discrete guard only allows push p if it preserves the energy invariant, and

2. Inv → [{θ′ = ω, ω′ = − g
L sin(θ) − kω}] Inv, which shows that Inv is an energy

invariant of the pendulum’s ODE.

Neuron Interaction. The ODE αn models the interaction between a pair of neu-
rons [12]; its specification φn nests dL’s diamond and box modalities to express
that the system norm (

√
x2 + y2) is asymptotically bounded by 2τ .

αn ≡ x′ = −x

τ
+ tanh(λx) − tanh(λy), y′ = −y

τ
+ tanh(λx) + tanh(λy)

φn ≡ τ > 0 → ∀ε>0〈αn〉 [αn]
√

x2 + y2 ≤ 2τ + ε

The verification of φn uses differentially-defined functions in concert with
KeYmaera X’s symbolic ODE safety and liveness reasoning [26]. The proof uses
a decaying exponential bound

√
x2 + y2 ≤ exp(− t

τ)
√

x2
0 + y2

0+2τ(1−exp(− t
τ)),

where the constants x0, y0 are symbolic initial values for x, y at initial time t = 0,
respectively. Notably, the arithmetic subgoals from this example are all proved
using abstraction and differential unfolding (Sect. 3) without relying on external
arithmetic solver support for tanh.

Longitudinal Flight Dynamics. The differential equa-
tions αa below describe the 6th order longitudinal
motion of an airplane while climbing or descend-
ing [10,25]. The airplane adjusts its pitch angle θ
with pitch rate q, which determines its axial veloc-
ity u and vertical velocity w, and, in turn, range x
and altitude z (illustrated on the right). The physical parameters are: gravity g,
mass m, aerodynamic thrust and moment M along the lateral axis, aerodynamic
and thrust forces X,Z along x and z, respectively, and the moment of inertia
Iyy, see [10, Sect. 6.2].

αa ≡ u′ =
X

m
− g sin(θ) − qw, w′ =

Z

m
+ g cos(θ) + qu, q′ =

M

Iyy
,

x′ = cos(θ)u + sin(θ)w, z′ = − sin(θ)u + cos(θ)w, θ′ = q

The verification of specification J → [αa]J shows that the safety envelope
J ≡ J1 ∧ J2 ∧ J3 is invariant along the flow of αa with algebraic invariants Ji:

J1 ≡ Mz

Iyy
+ gθ +

(
X

m
− qw

)
cos(θ) +

(
Z

m
+ qu

)
sin(θ) = 0

J2 ≡ Mz

Iyy
−

(
Z

m
+ qu

)
cos(θ) +

(
X

m
− qw

)
sin(θ) = 0 J3 ≡ −q2 +

2Mθ

Iyy
= 0

Additional examples are available in the supplement [8], including: a bouncing
ball on a sinusoidal surface [6,13] and a robot collision avoidance model [15].

Implicit Definitions with Differential Equations for KeYmaera X 731

5 Conclusion

This work presents a convenient mechanism for extending the dL term language
with differentially-defined functions, thereby furthering the class of real-world
systems amenable to modeling and formalization in KeYmaera X. Minimal
soundness-critical changes are made to the KeYmaera X kernel, which main-
tains its trustworthiness while allowing the use of newly defined functions in
concert with all existing dL hybrid systems reasoning principles implemented in
KeYmaera X. Future work could formally verify these kernel changes by extend-
ing the existing formalization of dL [3]. Further integration of external arithmetic
tools [1,9,23] will also help to broaden the classes of arithmetic sub-problems
that can be solved effectively in hybrid systems proofs.

Acknowledgments. We thank the anonymous reviewers for their helpful feedback
on this paper. This material is based upon work supported by the National Science
Foundation under Grant No. CNS-1739629. This research was sponsored by the AFOSR
under grant number FA9550-16-1-0288.

References

1. Akbarpour, B., Paulson, L.C.: MetiTarski: an automatic theorem prover for real-
valued special functions. J. Autom. Reason. 44(3), 175–205 (2010). https://doi.
org/10.1007/s10817-009-9149-2

2. Bohrer, B., Fernández, M., Platzer, A.: dLι: definite descriptions in differential
dynamic logic. In: Fontaine, P. (ed.) CADE 2019. LNCS (LNAI), vol. 11716, pp.
94–110. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29436-6_6

3. Bohrer, R., Rahli, V., Vukotic, I., Völp, M., Platzer, A.: Formally verified differ-
ential dynamic logic. In: Bertot, Y., Vafeiadis, V. (eds.) CPP, pp. 208–221. ACM
(2017). https://doi.org/10.1145/3018610.3018616

4. Boldo, S., Lelay, C., Melquiond, G.: Formalization of real analysis: a survey of
proof assistants and libraries. Math. Struct. Comput. Sci. 26(7), 1196–1233 (2016).
https://doi.org/10.1017/S0960129514000437

5. Bonichon, R., Delahaye, D., Doligez, D.: Zenon: an extensible automated theorem
prover producing checkable proofs. In: Dershowitz, N., Voronkov, A. (eds.) LPAR
2007. LNCS (LNAI), vol. 4790, pp. 151–165. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-75560-9_13

6. Denman, W.: Automated verification of continuous and hybrid dynamical systems.
Ph.D. thesis, University of Cambridge, UK (2015)

7. Fulton, N., Mitsch, S., Quesel, J.-D., Völp, M., Platzer, A.: KeYmaera X: an
axiomatic tactical theorem prover for hybrid systems. In: Felty, A.P., Middeldorp,
A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp. 527–538. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21401-6_36

8. Gallicchio, J., Tan, Y.K., Mitsch, S., Platzer, A.: Implicit definitions with differen-
tial equations for KeYmaera X (system description). CoRR abs/2203.01272 (2022).
http://arxiv.org/abs/2203.01272

9. Gao, S., Kong, S., Clarke, E.M.: dReal: an SMT solver for nonlinear theories over
the reals. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 208–
214. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38574-2_14

https://doi.org/10.1007/s10817-009-9149-2
https://doi.org/10.1007/s10817-009-9149-2
https://doi.org/10.1007/978-3-030-29436-6_6
https://doi.org/10.1145/3018610.3018616
https://doi.org/10.1017/S0960129514000437
https://doi.org/10.1007/978-3-540-75560-9_13
https://doi.org/10.1007/978-3-540-75560-9_13
https://doi.org/10.1007/978-3-319-21401-6_36
http://arxiv.org/abs/2203.01272
https://doi.org/10.1007/978-3-642-38574-2_14

732 J. Gallicchio et al.

10. Ghorbal, K., Platzer, A.: Characterizing algebraic invariants by differential radical
invariants. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp.
279–294. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-
8_19

11. Gödel, K.: Über formal unentscheidbare Sätze der Principia Mathematica und
verwandter Systeme I. Monatshefte für Mathematik und Physik 38(1), 173–198
(1931). https://doi.org/10.1007/BF01700692

12. Khalil, H.K.: Nonlinear Systems. Macmillan, New York (1992)
13. Liu, J., Zhan, N., Zhao, H., Zou, L.: Abstraction of elementary hybrid systems

by variable transformation. In: Bjørner, N., de Boer, F. (eds.) FM 2015. LNCS,
vol. 9109, pp. 360–377. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
19249-9_23

14. Mitsch, S.: Implicit and explicit proof management in KeYmaera X. In: Proença,
J., Paskevich, A. (eds.) F-IDE. EPTCS, vol. 338, pp. 53–67 (2021). https://doi.
org/10.4204/EPTCS.338.8

15. Mitsch, S., Ghorbal, K., Vogelbacher, D., Platzer, A.: Formal verification of obsta-
cle avoidance and navigation of ground robots. Int. J. Robot. Res. 36(12), 1312–
1340 (2017). https://doi.org/10.1177/0278364917733549

16. Mitsch, S., Platzer, A.: A retrospective on developing hybrid system provers in the
KeYmaera family. In: Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Ulbrich,
M. (eds.) Deductive Software Verification: Future Perspectives. LNCS, vol. 12345,
pp. 21–64. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64354-6_2

17. Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reason. 41(2),
143–189 (2008). https://doi.org/10.1007/s10817-008-9103-8

18. Platzer, A.: Logical Analysis of Hybrid Systems: Proving Theorems for
Complex Dynamics. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-14509-4

19. Platzer, A.: The complete proof theory of hybrid systems. In: LICS, pp. 541–550.
IEEE Computer Society (2012). https://doi.org/10.1109/LICS.2012.64

20. Platzer, A.: A complete uniform substitution calculus for differential dynamic logic.
J. Autom. Reason. 59(2), 219–265 (2016). https://doi.org/10.1007/s10817-016-
9385-1

21. Platzer, A.: Logical foundations of cyber-physical systems. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-63588-0

22. Platzer, A., Tan, Y.K.: Differential equation invariance axiomatization. J. ACM
67(1) (2020). https://doi.org/10.1145/3380825

23. Ratschan, S., She, Z.: Safety verification of hybrid systems by constraint
propagation-based abstraction refinement. ACM Trans. Embed. Comput. Syst.
6(1), 8 (2007). https://doi.org/10.1145/1210268.1210276

24. Richardson, D.: Some undecidable problems involving elementary functions of
a real variable. J. Symb. Log. 33(4), 514–520 (1968). https://doi.org/10.2307/
2271358

25. Stengel, R.F.: Flight Dynamics. Princeton University Press (2004)
26. Tan, Y.K., Platzer, A.: An axiomatic approach to existence and liveness for differ-

ential equations. Form. Asp. Comput. 33(4), 461–518 (2021). https://doi.org/10.
1007/s00165-020-00525-0

27. Wiedijk, F.: Stateless HOL. In: Hirschowitz, T. (ed.) TYPES. EPTCS, vol. 53, pp.
47–61 (2009). https://doi.org/10.4204/EPTCS.53.4

https://doi.org/10.1007/978-3-642-54862-8_19
https://doi.org/10.1007/978-3-642-54862-8_19
https://doi.org/10.1007/BF01700692
https://doi.org/10.1007/978-3-319-19249-9_23
https://doi.org/10.1007/978-3-319-19249-9_23
https://doi.org/10.4204/EPTCS.338.8
https://doi.org/10.4204/EPTCS.338.8
https://doi.org/10.1177/0278364917733549
https://doi.org/10.1007/978-3-030-64354-6_2
https://doi.org/10.1007/s10817-008-9103-8
https://doi.org/10.1007/978-3-642-14509-4
https://doi.org/10.1007/978-3-642-14509-4
https://doi.org/10.1109/LICS.2012.64
https://doi.org/10.1007/s10817-016-9385-1
https://doi.org/10.1007/s10817-016-9385-1
https://doi.org/10.1007/978-3-319-63588-0
https://doi.org/10.1145/3380825
https://doi.org/10.1145/1210268.1210276
https://doi.org/10.2307/2271358
https://doi.org/10.2307/2271358
https://doi.org/10.1007/s00165-020-00525-0
https://doi.org/10.1007/s00165-020-00525-0
https://doi.org/10.4204/EPTCS.53.4

Implicit Definitions with Differential Equations for KeYmaera X 733

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Implicit Definitions with Differential Equations for KeYmaera X
	1 Introduction
	2 Interpreted Functions in Differential Dynamic Logic
	3 KeYmaera X Implementation
	3.1 Core-Adjacent Changes
	3.2 Intermediate and User-Level Proof Automation

	4 Examples
	5 Conclusion
	References

