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Abstract
Continuous invariants are an important component in deductive verification of hybrid and
continuous systems. Just like discrete invariants are used to reason about correctness in dis-
crete systems without having to unroll their loops, continuous invariants are used to reason
about differential equations without having to solve them. Automatic generation of contin-
uous invariants remains one of the biggest practical challenges to the automation of formal
proofs of safety for hybrid systems. There are at present many disparate methods available
for generating continuous invariants; however, this wealth of diverse techniques presents a
number of challenges, with different methods having different strengths and weaknesses. To
address some of these challenges, we develop Pegasus: an automatic continuous invariant
generator which allows for combinations of various methods, and integrate it with the KeY-
maera X theorem prover for hybrid systems. We describe some of the architectural aspects
of this integration, comment on its methods and challenges, and present an experimental
evaluation on a suite of benchmarks.
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1 Introduction

Safety verification problems for ordinary differential equations (ODEs) are continuous
analogs to Hoare triples: the objective is to show that an ODE cannot evolve out of a des-
ignated set of safe states from any of its designated initial states. The role of continuous
invariants is broadly analogous to that of inductive invariants for discrete program verifica-
tion. A continuous invariant is a set of states that can never be left when following the ODE
from that set; such an invariant implies safety when it contains all of the initial states and
is also a subset of the safe states. The problem of automatically generating invariants (also
known as invariant synthesis) is one of the greatest practical challenges in deductive verifi-
cation of both continuous and discrete systems. In theory, it is actually the only challenge for
hybrid systems safety [57].

The proliferation of published techniques [6,39,44,61,68,70,81,89,91] for continuous
invariant generation—targeting various classes of systems, and having different strengths
and weaknesses—presents a complication: ideally, one does not want to be restricted by the
limitations of one particular generation technique (or small family of techniques). Instead, it
is far more desirable to have a framework that accommodates existing generation methods,
allows for their combination, and is extensible with newmethods as they become available. In
this article we (partially) meet the above challenge by developing a single framework which
allows us to combine invariant generation methods into novel invariant generation strategies.
In our work, we are guided by the following considerations:

1. Specialized invariant generation methods are effective only when the problem falls within
their domain; their use must therefore be targeted.

2. A combination of invariant generation methods can be more practical than any of the
methods considered in isolation. A flexible and reconfigurable mechanism for combining
these methods is thus highly desirable.

3. Reasoning with automatically generated invariants needs to be done in a sound fashion:
any deficiencies in the generation procedure must not compromise the final verification
result.

Our interest in automatic invariant generation is motivated by the pressing need to enhance
the level of proof automation in deductive verification tools for hybrid systems. In this work
we target the KeYmaera X theorem prover [25].

Contributions. This article is an extended version of the conference paper [84]. The article
describes the design and implementation of a continuous invariant generator (Pegasus)1 and
its integration into KeYmaera X. It outlines some of the principles behind this coupling,
the techniques used to generate invariants, and the mechanism used for combining them
into more powerful invariant generation strategies. An evaluation of this integration on a set

1 An etymological note on naming conventions. The KeY [4] prover provided the foundation for developing
KeYmaera [62], an interactive theorem prover for hybrid systems. The name KeYmaera was a pun on the
Chimaera, a hybrid monster from Classical Greek mythology. The tactic language of the new (aXiomatic)
KeYmaera X prover [25] is called Bellerophon [24], after the hero who defeats the Chimaera in the myth. In
keeping with an established tradition, the invariant generation framework is called Pegasus because the aid of
this winged horse was crucial to Bellerophon in his feat.
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of verification benchmarks is presented—with very promising results. The present article
extends our previous work [84] with:

1. Extensive coverage of the methods for generating continuous invariants employed
by Pegasus (Sect. 4), including extended descriptions of several invariant genera-
tion methods, as well as new material on conic abstractions [7] and on the theory
and practice of generating rational first integrals for non-linear and linear systems
[21,22,30,47,48,77]. The extended article also includes a detailed account of the pit-
falls and caveats associated with the various invariant generation and checking methods
(Sects. 3–6).

2. New insights on invariant generation strategies based on combining various invariant
generation methods (Sect. 5), including various configuration options for the differen-
tial saturation [61] strategy and a new strategy based on differential divide-and-conquer
[81].

3. An extended benchmark suite with 60 new problems on top of the 90 existing ones
(Sect. 6), together with extended experimental evaluation and analysis of various invari-
ant generation strategy configurations.

Structure of this article. Mathematical preliminaries and definitions are reviewed in Sect. 2.
Section 3 recalls the problem of continuous invariant checking and describes our archi-
tecture for sound invariant checking and generation. Sections 4 and 5 describe some
of the methods employed by Pegasus for generating continuous invariants, along with
mechanisms for their combination. Section 6 presents an empirical evaluation of our integra-
tion with KeYmaera X on a suite of verification benchmarks. Section 7 reviews related
work and Sect. 8 discusses the outlook and possible further extensions. Section 9 ends
with a summary and concluding remarks. Coloured versions of all figures are available
online.

2 Preliminaries

Ordinary Differential Equations. An n-dimensional autonomous system of first-order ODEs
has the form: x′ = f (x), where x = (x1, . . . , xn) ∈ R

n is a vector of state variables,
x′ = (x ′

1, . . . , x
′
n) denotes their time-derivatives, i.e. dxi

dt for each i = 1, . . . , n, and

f (x) = ( f1(x), . . . , fn(x)) specify the right-hand side (RHS) of the equations that these
time-derivatives must obey along solutions to the ODEs. Geometrically, such a system of
ODEs defines a vector field f : R

n → R
n , associating to each point x ∈ R

n the vector
f (x) = ( f1(x), . . . , fn(x)) ∈ R

n specifying in which direction the continuous system
evolves at x. Whenever the state of the system is required to be confined within some
prescribed set of states Q ⊆ R

n , called its evolution domain constraint,2 we will write
x′ = f (x) & Q. If no evolution domain constraint is specified, then Q = R

n . A solution
to the initial value problem for the system of ODEs x′ = f (x) with initial value x0 ∈ R

n

is a differentiable function x(x0, t) : (a, b) → R
n defined on some maximal interval of

existence (a, b) ⊆ R ∪ {∞,−∞} where a < 0 < b, and such that x(x0, 0) = x0 and
d
dt x(x0, t) = f (x(x0, t)) for all t ∈ (a, b). The Lie derivative of a continuously differen-

tiable function p : Rn → R with respect to vector field f is defined as p′ ≡ ∑n
i=1

∂ p
∂xi

fi

2 Evolution domain constraints are also called mode invariants in the context of hybrid automata. We avoid
this name to prevent fundamental confusion with generated invariants.
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and equals the time-derivative of p evaluated along the solutions to the system x′ = f (x)
[60,64].

Semi-algebraic Sets. A set S ⊆ R
n is semi-algebraic iff it is characterized by a finite boolean

combination of polynomial equations and inequalities:

l∨

i=1

⎛

⎝
mi∧

j=1

pi j < 0 ∧
Mi∧

j=mi+1

pi j = 0

⎞

⎠ , (1)

where pi j ∈ R[x1, . . . , xn] (i.e. pi j are multivariate polynomials in the indeterminates
x1, . . . , xn , with real coefficients). By quantifier elimination, every first-order formula of
real arithmetic characterizes a semi-algebraic set and can be expressed in the form (1), see
e.g. Mishra [49, §8.6]. With an abuse of notation, this article uses formulas and the sets they
characterize interchangeably.

Continuous Invariants in Verification. Safety specifications for ODEs and hybrid systems
can be rigorously verified in formal logics, such as differential dynamic logic (dL) [56,59,60]
as implemented in the KeYmaera X proof assistant [25] and hybrid Hoare logic [43] as
implemented in the HHL prover [92]. The use of appropriate continuous invariants is key
to these verification approaches as they allow the complexities of the continuous dynamics
to be handled rigorously even for ODEs without closed-form solutions. For example, the
dL formula Init → [x′ = f (x) & Q] Safe states that the safety property Safe is satisfied
throughout the continuous evolutionof the systemx′ = f (x)&Qwhenever the systembegins
its evolution from a state satisfying Init. The invariant reasoning principle for verifying such
a safety property is given by the following sound rule of inference in dL, with three premisses
above the bar and the conclusion below:

(Safety)
Init → I I → [x′ = f (x) & Q] I I → Safe

Init → [x′ = f (x) & Q] Safe .

In this rule, the first and third premiss respectively state that the initial set Init is contained
within the set I , and that I lies entirely inside the safe set of states Safe. The second premiss
states that I is a continuous invariant, i.e. I ismaintained throughout the continuous evolution
of the system whenever it starts inside I , that is, the following dL formula is true in all states:

I → [x′ = f (x) & Q] I . (2)

Thus, the problem of verifying safety properties of ODEs reduces to finding an invariant
I that can be proved to satisfy all three premisses. Semantically, a continuous invariant can
also be defined as follows.

Definition 1 (Continuous invariant) Given a system x′ = f (x) & Q, the set I ⊆ R
n is a

continuous invariant iff the following statement holds:3

∀ x0 ∈ I ∀ t ≥ 0 : (
(∀ τ ∈ [0, t] : x(x0, τ ) ∈ Q) 
⇒ x(x0, t) ∈ I

)
.

For any given set of initial states Init ⊆ R
n , a continuous invariant I such that Init ⊆ I

provides a sound over-approximation of the states reachable by the system from Init by
following the solutions to the ODEs within the evolution domain constraint Q. Indeed, the
exact set of states reachable by a continuous system from Init provides the smallest such

3 To simplify notation, ∀ t ≥ 0 is implicitly assumed to quantify over all times t ≥ 0 in the maximal interval
of existence of the ODE solution from x0, i.e., where x(x0, t) is defined.
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invariant.4 While Def. 1 above features the solution x(x0, t), which may not be available
explicitly, a crucial advantage afforded by continuous invariants is the possibility of checking
whether a given set is a continuous invariant without computing the solution, i.e. by working
directly with the ODEs.

3 Sound invariant checking and generation

The problem of checking whether a semi-algebraic set I ⊆ R
n is a continuous invariant of

a polynomial system of ODEs x′ = f (x)& Q was shown to be decidable by Liu, Zhan,
and Zhao [44]. This decision procedure, henceforth referred to as LZZ, provides a way of
automatically checking continuous invariants (2) by exploiting facts about higher-order Lie
derivatives of multivariate polynomials appearing in the syntactic description of I and the
Noetherian property of the ring R[x] [28,44]; its implementation requires an algorithm for
constructing Gröbner bases [15], as well as a decision procedure for the universal fragment of
real arithmetic [73]. A logical alternative for invariant checking is provided by the complete
dL axiomatization for differential equation invariants [64]. Whereas using LZZ results in
a yes/no answer to an invariance question (2), dL makes it possible to construct a formal
proof of invariance from a small set of ODE axioms [64] whenever the property holds (or a
refutation whenever it does not).

3.1 Invariant generation with template enumeration

Given a means to perform invariant checking with real arithmetic, an obvious solution to the
invariant generation problem (which has been suggested by numerous authors [44,61,86])
involves the method of template enumeration, which yields a theoretically complete semi-
algorithm, in the sense that it terminates with a positive answer iff that is possible with the
given templates. A template is a parametric formula, such as

a0 + a1x + a2y + a3x
2 + a4xy + a5y

2 < 0 ∧ b0 + b1x + b2y ≥ 0 ,

composed from polynomials in the state variables (in this example x, y) with symbolic
coefficients (here a0,a1,a2,a3,a4,a5 and b0,b1,b2), which are interpreted over the reals. All it
takes in theory is to exhaustively enumerate parametric templatesmatching all real arithmetic
formulas describing all semi-algebraic sets, and use a quantifier elimination algorithm (such
as CAD [14]) to identify whether choices for the template parameters exist that meet the
required arithmetic constraints. While templates make this British Museum Algorithm-like
approach more successful than, e.g. exhaustively enumerating all proofs [34], the method is
nevertheless quite impractical for the resulting real arithmetic [58]. To appreciate why, let us
only remark that quantifier elimination algorithms for real arithmetic used in practice have
doubly-exponential time complexity in the number of variables [69]. Template enumeration
treats every monomial coefficient in the template as a fresh variable, leading to exponentially
many real arithmetic variables, which makes this approach highly unscalable. In practice,
invariant generation is achieved by using incomplete—but considerably more efficient—
generation methods. These methods are numerous and vary considerably in their strengths
and limitations, creating a wide spectrum of possible trade-offs in performance, the quality,
and the form of invariants that one can generate. Effectively navigating this spectrum is an
important practical challenge that this article seeks to address.

4 Unfortunately, reachable sets rarely have a simple description as semi-algebraic sets.
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Fig. 1 Alternative prover architectures for checking conjectured continuous invariants, i.e. formulas for the
form I → [x′ = f (x) & Q] I

3.2 Soundness: proof assistants and invariant generation

There are a number of design decisions that can be exercised in how reasoning with con-
tinuous invariants is performed within a deductive verification framework. A fundamental
design decision is how tightly (i) continuous invariance checking and (ii) continuous invari-
ant generation are to be coupled with the implementation of the prover. This space of design
choices is exemplified by the HHL prover and the KeYmaera X prover.

TheHHLprover [12,92] implements (i) the LZZ decision procedure for invariant checking
and (ii) the method of template enumeration for invariant generation based on real quantifier
elimination and Gröbner bases. From the perspective of the HHL prover, these are trusted
external oracles for checking the validity of statements about continuous invariance; trusting
the output of the HHL prover includes trusting the implementation of its LZZ procedure and
the invariant generator (and any arithmetic tool either of them use).

In contrast, KeYmaera X [25] pursues an LCF-style approach, seeking to minimize the
soundness-critical code that needs to be trusted in its output [51]. For continuous invariants,
it achieves this by (i) checking invariance within the axiomatic framework of dL (rather than
trusting external checking procedures) and (ii) accepting conjectured invariants generated
fromavariety of sources but separately checking the result. Invariant checking inKeYmaeraX
is automatic [64], which is made possible by the use of specialized proof tactics [24]; these
additionally allow it to use a variety of other (incomplete, but computationally inexpensive)
methods for proving continuous invariance [28].

Remark 1 The difference between these two approaches (Fig. 1) is broadly analogous to the
use of trusted decision procedures in PVS [18] and oracles in HOL [8,94] on the one hand,
and LCF-style proof reconstruction (e.g. in Isabelle [93]) on the other.

Remark 2 KeYmaera X also supports witness checking for the universal fragment of real
arithmetic [63] resulting from ODE invariance checking [64]. In theory, this leads to a
complete LCF-style approach, but in practice, the performance of real arithmetic witness
generation is only competitive with second-tier quantifier elimination [63].
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3.3 Syntactic representation of invariants

A subtle issue that arises when interfacing with provers like KeYmaera X or the HHL prover
is which terms can be syntactically represented in the prover. The choice of representation
limits the kinds of invariants that can be described (or generated), but it is an important
consideration for computational efficiency and soundness purposes. For example, Noetherian
functions support a sound and complete axiomatization of invariants in dL [64] but can
lead to undecidable arithmetic. Rational functions and roots could be supported [9] but
would increase the complexity of the required symbolic computations. For decidability of
the invariance and arithmetic questions, this article only considers semi-algebraic invariants,
i.e., those built from polynomials as in (1).

A similar issue arises even when restricted to polynomial terms. Naïvely, for maximum
flexibility, one would like to describe invariants using polynomials p ∈ R[x] that have arbi-
trary real-valued coefficients. In practice though, only computable subfields K of R can be
effectively represented and used on a computer. Thus, any computational tool must neces-
sarily work with polynomials p ∈ K [x] over some choice of representation for the field of
coefficients K . Real algebraic numbers K = Q̄would work as coefficients, but they increase
the complexity of symbolic computations due to the added need toworkwith polynomial ideal
arithmetic for coefficients and can also lead to some subtleties with the non-differentiability
of the resulting root function itself [9]. On the other extreme, floating point numbers are com-
putationally efficient but they do not form a field, and would also cause numerical errors that
make it harder to obtain sound and exact answers in the end. For these reasons, KeYmaera X
works with polynomials p ∈ Q[x] that have rational coefficients.5 This results in fast eval-
uations and symbolic computations, and a reasonable (although nontrivial) complexity for
the resulting real arithmetic validity decision problem. Many invariant generation techniques
described in this article are fairly general and agnostic to the precise choice of field K . Thus,
the rest of this article elides this subtlety and describes the invariant generation algorithms
over p ∈ R[x], i.e., with R as the coefficient field.

4 Invariant generationmethods in Pegasus

Pegasus is a continuous invariant generator implemented in the Wolfram Language with
an interface accessible through both Mathematica and KeYmaera X.6 When KeYmaera X
is faced with a continuous safety verification problem that it is unable to prove directly, it
automatically invokes Pegasus to help find an appropriate invariant (if possible). KeYmaeraX
checks all the invariants it is suppliedwith—including those provided by Pegasus (see Fig. 2).
This design ensures that any correctness issues in Pegasus cannot compromise the soundness
of KeYmaera X. It also presents implementation opportunities:

5 In practice, some generation methods may need to internally use floating point arithmetic when interfacing
with numerical solvers, but Pegasus then applies rounding procedures to obtain polynomials with rational
coefficients.
6 Pegasus (http://pegasus.keymaeraX.org/) is linked to KeYmaera X through the Mathematica interface of
KeYmaera X, which translates between the internal data structures of the prover core and the Mathematica
data structures.
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Fig. 2 Sound invariant generation: invariant generator analyzes safety problem to provide invariants and proof
hints to tactics; the invariants are formally verified to be correct within the soundness-critical dL core

1. Pegasus can freely integrate numerical procedures and heuristic methods while providing
best-effort guarantees of correctness. Final correctness checks for the generated invariants
are left to the purview of KeYmaera X.7

2. Pegasus records proof hints corresponding to the various methods that were used to gener-
ate continuous invariants. These hints enable KeYmaera X to build more efficient shortcut
proofs of continuous invariance [28].

Pegasus currently implements an array of powerful invariant generation methods, which
we describe below, beginning with a large family of related methods that are based on
qualitative analysis, which can be best explained using the machinery of discrete abstraction
of continuous systems. We first briefly recall the main idea behind this approach.

4.1 Exact discrete abstraction

Discrete abstraction is the subject of numerous works [2,88,90]. Briefly, the steps are: (i)
discretize the continuous state space of a system by defining predicates that correspond to
discrete states, (ii) compute a (local) transition relation between the discrete states obtained
from the previous step, yielding a discrete transition system which abstracts the behavior
of the original continuous system, and finally (iii) compute reachable sets in the discrete
abstraction to obtain an over-approximation of the reachable sets of the continuous system.

A discrete abstraction is sound iff the relation computed in step (ii) has a transition
between two discrete states whenever there is a corresponding trajectory of the original
continuous system between the two neighboring sets corresponding to those discrete states.
The abstraction is exact iff these are the only transitions computed in step (ii). Soundness
of the discrete abstraction guarantees that any invariant extracted from the discretization
corresponds to an invariant for the original system. Exactness implies that no invariants are
lost that are representable in the abstraction at all.

Figure 3 illustrates a discretization of a systemofODEs (Fig. 3a),which results in 9 discrete
states in a sound and exact abstraction (Fig. 3b). The state space is discretized using predicates

7 Naturally, the output from Pegasus can also be checked using a trusted implementation of the LZZ decision
procedure before anything is returned. When used with KeYmaera X, though, this additional (soundness-
critical) check is unnecessary.
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Fig. 3 Discrete abstraction of a two-dimensional system

built from sign conditions on polynomials, p1, p2 ∈ R[x1, x2].8 The discrete states of the
abstraction are given by formulas such as S1 ≡ p1 < 0 ∧ p2 = 0, S2 ≡ p1 < 0 ∧ p2 > 0,
and so on. The question whether there should be a discrete transition from S1 to S2 in the
abstraction may be equivalently cast as the following question: is S1 a continuous invariant
of the system x′ = f (x) under evolution domain constraint S1 ∨ S2, i.e. is the following dL
formula valid?

S1 → [x′ = f (x)& S1 ∨ S2] S1 .

This question can be answered with a decision procedure such as LZZ or formally
proved/disproved using dL, as discussed in Sect. 3. If S1 is a continuous invariant under
this evolution domain constraint, then there are no states satisfying S1 fromwhich the system
continuously evolves into a state satisfying S2 along a trajectory that remains within the union
S1 ∪ S2 and thus there should not be a transition from S1 to S2 if the discrete abstraction is
to be exact; on the other hand, if S1 is not a continuous invariant, then there must be such a
transition if the abstraction is to be sound.

The ability to construct sound and exact discrete abstractions [81] has an important con-
sequence: if an appropriate semi-algebraic continuous invariant I exists at all, it can always
be extracted from a discrete abstraction built from discretizing the state space using sign
conditions on the polynomials describing I . The problem of (semi-algebraic) invariant gen-
eration therefore reduces to finding appropriate polynomials whose sign conditions can yield
suitable discrete abstractions and computing reachable states in these abstractions.

Remark 3 Reachable sets (from the initial states) in discrete abstractions are the smallest
invariants with respect to ⊆ (set inclusion) that are representable in that abstraction. The
smallest invariant is the most informative because it allows one to prove the most safety
properties, but it may not be the most useful invariant in practice.

In particular, one often wants to work with invariants that have low descriptive complexity
and are easy to prove in the formal proof calculus. This leads naturally to consider alternative
ways of extracting invariants. Pegasus is able to extract reachable sets of discrete abstractions,
but favours less costly techniques, such as differential saturation [61], which often succeed
in more quickly extracting more conservative invariants.

Finding “good” polynomials that can abstract the system in useful ways and allow prov-
ing properties of interest is generally difficult. While abstraction using predicates that are

8 Sign conditions on a polynomial p are atomic formulas p < 0, p = 0, and p > 0.
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Fig. 4 Qualitative analysis of
one-dimensional ODEs
x ′ = f (x)

extracted from the verification problem itself can be surprisingly effective, in certain cases
useful predicates may not be syntactically extracted from the problem statement. In order
to improve the quality of discrete abstractions, Pegasus employs a separate classifier, which
extracts features from the verification problemwhich can then be used to suggest polynomials
that are more tailored to the problem at hand. Certain systems have structure that, to a human
expert, might suggest an “obvious” choice of good predicates. Below we sketch some basic
examples of what is currently possible.

4.2 Targeted qualitative analysis

As a motivating example, consider the class of one-dimensional ODEs x ′ = f (x), where
f ∈ R[x]. A standard way of studying qualitative behavior in these systems is to inspect the
graph of the function f (x) [85]. Figure 4 illustrates such a graph of f (x), along with a vector
field induced by such a system on the real line.

The ODE x ′ = f (x) is at an equilibrium without any motion at points where f (x) = 0.
By computing the real roots of the polynomial in the right-hand side, i.e the real roots
r1, . . . , rk ∈ R of f (x), we may form a list of polynomials x − r1, . . . , x − rk that can be
used for an algebraic decomposition of R into invariant subregions corresponding to real
intervals from which an over-approximation of the reachable set can be constructed. Such an
algebraic decomposition can be further refined by augmenting the list of polynomials with
x − b1, . . . , x − bl , where b1, . . . , bl ∈ R are the boundary points of the initial set in the
safety specification. From this augmented list, one can exactly construct the reachable set of
the system by computing the reachable set of the corresponding exact abstraction.

Remark 4 If x ′ = f (x) is one-dimensional, one can exploit another useful fact: every one-
dimensional system is a gradient system, i.e. its motion is generated by a potential function
F(x) which can be computed directly by integrating − f (x) with respect to x , i.e. F(x) =
− ∫

f (x) dx . For any k ∈ R, F(x) ≤ k defines a continuous invariant of the one-dimensional
system x ′ = f (x).

In higher dimensions, the behavior of linear systems x′ = Ax with a constant coefficient
matrix A can be studied qualitatively by examining the eigenvalues and eigenvectors9 of the
matrix A [3]. Pegasus implements methods targeted at linear systems that take advantage of
facts such as these to suggest useful abstractions from which invariants can be extracted. The
current strategy is similar in spirit to the abstraction methods proposed in the work of Tiwari
[87], and works by computing linear forms describing the invariant half-spaces in the state
space of linear systems. Briefly, whenever the system matrix A has a real eigenvalue λ ∈ R,
by considering an eigenvector v of the transpose matrix AT , which is associated with the

9 A vector v ∈ R
n is an eigenvector for eigenvalue λ ∈ C of matrix A ∈ R

n×n iff Av = λv. In direction v,
the ODE x′ = Ax, thus, converges to 0 if λ < 0 or diverges if λ > 0.
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Fig. 5 Automatically generated invariants for linear systems

eigenvalue λ (recall that the eigenvalues of square matrices A and AT are the same), one may
construct the linear form p = vT x, which has the property that [87, § 2]:

p′ = vT x′ = vT Ax = (Av)T x = (λv)T x = λp .

Such linear forms correspond to a special case of so-calledDarboux polynomials, which will
be described in more detail in Sect. 4.4.2 and have the property that p > 0, p = 0, and
p < 0 define invariant regions in state space (the fact that λ is a real number also allows us
to construct invariants p ≤ k, where k is an appropriately chosen offset depending on the
sign of λ).

Additionally, when all the eigenvalues of the system matrix A have strictly negative real
parts, the origin0 is asymptotically stable and onemay construct aLyapunov function (see [38,
Ch. 3], [80, Ch. 3]) for the linear system by solving the Lyapunov equation AT P + PA = Q
where Q is some given negative-definite matrix,10 and the solution P is positive-definite
(see [80, Ch. 3, §3.5]); the quadratic Lyapunov function V for the stable system is given by
V (x) = xT Px. Every sub-level set V ≤ k defines a continuous invariant of the system; Fig. 5
(right) illustrates the kind of invariants that can be obtained by using Lyapunov functions
together with invariant half-planes to perform abstraction of linear systems.

Example 1 The linear systems in Fig. 5 exhibit different qualitative behaviors. The invariants
(shown in blue), demonstrate unreachability of the unsafe states (shown in red) from the initial
states (shown as green disks in Fig. 5). In the leftmost system, all eigenvalues of the system
matrix A are purely imaginary. Pegasus generates annular invariants containing the green
disks because trajectories of such systems are always elliptical. For the middle system, the
(asymptotic) behavior of its trajectories is determined by the eigenvectors of its systemmatrix
(eigenvalues are real and of opposite sign [3]). Pegasus uses these eigenvectors to generate
two invariant half-planes, one for each green disc. Invariant half-planes are also generated for
the rightmost systemwhich is asymptotically stable (all real parts of eigenvalues are negative
[3]). Pegasus further refines these half-planes with suitable elliptical regions containing the
green disks because elliptical regions are invariants for such systems.

In textbook examples of linear systems, one usually finds matrices with eigenvalues
and eigenvectors that can be described using rational numbers. However, the situation is not
always that nice in practice: eigenvectors of matrices will often feature irrational components,

10 An n×n matrix Q is negative-definite if it is symmetric, i.e. Q = QT , and xT Qx < 0 for all x ∈ R
n \ {0};

a symmetric matrix P is positive-definite if xT Px > 0 for all x ∈ R
n \ {0}.
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which in the case of the example above leads to invariant half-planes described by linear
polynomialswith irrational coefficients. It is therefore important to have themeans ofworking
with irrational real numbers in the invariant generator and the prover.

In special cases when the verification problem features a purely algebraic initial set, the
strongest algebraic invariants for linear systems (i.e. the smallest continuous invariants that
can be described by polynomial equalities p = 0) can be computed following the method of
Rodríguez-Carbonell and Tiwari [70], which we implement in Pegasus.

Remark 5 Bogomolov et al. [7] introduced a technique called conic abstractions that com-
bines discrete abstraction of affine systems with an associated reachability analysis method.
It is particularly powerful for systems x′ = Ax in which the matrix A is diagonalizable,11

where the authors’ experiments suggest it outperforms other tools for linear reachability anal-
ysis, like SpaceEx [23]. The eponymous idea behind the method is to partition state space
into a number of regions (i.e., cones), so that within each cone the change in angle of the
vector field (i.e., the twisting) is bounded by a tunable parameter θ . Given any point in the
vector field, then, this construction gives a known range of possible slopes for the vector
at that point. This is useful information for the subsequent reachability analysis—instead
of simply computing the transition relation between neighboring cones, as in Sect. 4.1, the
algorithm [7] uses the twisting information to determine what portions of each cone is poten-
tially reachable from an initial set. We experimented with the conic abstraction method in
a limited setting: bounded linear 2-dimensional systems. The major obstacle inhibiting a
complete implementation is that Mathematica’s native support for polyhedra computations
does not quite meet the demands of the algorithm. Our limited implementation is not able to
return an exact invariant region—instead, we produce promising visualizations of the invari-
ant generated for two examples from Fig. 5 (see Fig. 6).12 With better support for polyhedra
computations, this could be an exciting direction for future implementation by interfacing
Pegasus with the Parma Polyhedra Library.

4.3 Qualitative analysis for non-linear systems

General non-linear polynomial systems ofODEs present a hard class of problems for invariant
generation. A number of useful heuristics can be applied to partition the continuous state
space of these systems, in the hope that the resulting abstraction exhibits a suitable invariant.
For example, factorizing the RHS of a differential equation x ′

i = fi (x) yields a set of

irreducible polynomial factors p1, . . . , pk such that fi = ∏k
j=1 p j , which implies that the

flow along the curves p j = 0 vanishes in the xi direction. This information can be used
to cheaply approximate the transition relation in the discrete abstraction and to efficiently
extract invariant candidates. For the non-linear ODE in Fig. 3, the discretization polynomials
p1, p2 are chosen such that x ′

2 = 0 and x ′
1 = 0 on their respective level curves. This yields a

useful discrete abstraction e.g. S4 is an invariant for the resulting abstraction (Fig. 3b). Other
useful sources of polynomials for qualitative analysis of non-linear systems are found in, e.g.
the summands and irreducible factors of the right-hand sides of the ODEs, the Lie derivatives

11 The matrix A is diagonalizable iff it can be written as A = PDP−1 for some invertible matrix P and
diagonal matrix D.
12 The conic abstractions approach does not work directly with the leftmost example from Fig. 5 because
the example’s system matrix has purely imaginary eigenvalues and is consequently not diagonalizable (a key
requirement for termination of the approach [7]).
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Fig. 6 A visualization of our implementation of the conic abstractions method (each example is shown row-
wise). The left figures show the generated conic partition into 20 cones (alternating red and blue colors). The
right figures show the reachable set computation (in blue) from the same green initial sets as in Fig. 5. These
reachable sets, which are invariant sets, suffice to show that the ODE never reaches any unsafe states (in red).
The method automatically produces finer partitions of the state space (using more cones) when the direction
of the vector field changes more drastically. The top partition concentrates several cones around its unstable
manifold [13,85] (the line y = 1

6 (1 + √
13)x), while the bottom partition has more evenly spaced out cones

Fig. 7 Abstractions using locally transverse linear forms (shown as red lines) generated from a grid of points
(in black)

of the factors, and physically meaningful quantities such as the divergence of the system’s
vector field.

Locally transverse linear forms.A simple geometric idea can sometimes help generate linear
polynomials for abstraction. For a system of ODEs x′ = f (x), which may be non-linear, and
a regular point x0 ∈ R

n with f (x0) �= 0, one may construct the linear form f (x0) · (x− x0),
which has the property that its zero set is locally transverse to the vector field near x0.13 With a

13 By continuity of f (·), the vectors f (x) are sufficiently close to f (x0) for points x in a small neighborhood
around x0. Therefore, all ODE solutions in this neighborhood can only cross f (x0) · (x − x0) in the same
direction as f (x0).
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Fig. 8 Discrete abstraction with
first integral p − k (k ∈ R)

sufficiently fine partitioning using regular points, one has a good chance of finding invariant
regions in the abstraction. In problems where the evolution domain constraint describes
a bounded set, it is possible to obtain useful abstractions by choosing a finite number of
regular points x0 within the set and partitioning the constraint with the corresponding locally
transverse linear forms (as illustrated in Fig. 7). Of course, choosing “good” points is the
main problem in this method; one possibility is to use evenly-spaced points forming a grid
covering the evolution domain constraint.

4.4 General-purposemethods

Beyond qualitative analysis, Pegasus implements several general-purpose invariant genera-
tion techniques which represent restricted, but tractable fragments of the general method of
template enumeration. The search for symbolic parameters in thesemethods is not performed
using real quantifier elimination, but instead takes place in more tractable theories.

4.4.1 Polynomial first integrals

A polynomial p ∈ R[x] is a first integral [31, 2.4.1] (also see [65, § 23]) of the system
x′ = f (x) iff its Lie derivative p′ with respect to the vector field f is the zero polynomial. First
integrals are also known as conserved quantities because they have an important property:
their value never changes along the solutions to ODEs; that is to say, for any k ∈ R, p = k
is an invariant of the system.14 For a single first integral p, if one were to use (the signs
of) the polynomial p − k to build an abstraction, the abstract state space would not feature
any transitions between its states (illustrated in Fig. 8). Thus, one has the freedom to choose
values k for which the resulting discrete abstraction suitably partitions the state space. For
example, if the initial states lie entirely within p < k and the unsafe ones within p > k, then
p < k is an invariant separating those sets.

Pegasus can search for all polynomial first integrals up to a configurable degree bound by
solving a system of linear equations whose solutions provide the coefficients of the bounded
degree polynomial template for the first integral. This is known as themethod of undetermined
coefficients; we illustrate the main steps of the method in the following example.

Example 2 (Kasner’s equations) Consider the non-linear system ofODEs describing a special
case of Einstein’s gravitational equations [37]

x ′
1 = x2x3 − x21 ,

x ′
2 = x3x1 − x22 ,

x ′
3 = x1x2 − x23 ,

and a polynomial template of maximum degree 2 in the state variables x1, x2, x3:

pa,2 = a0 + a1x1 + a2x2 + a3x3 + a4x
2
1 + a5x1x2 + a6x1x3 + a7x

2
2 + a8x2x3 + a9x

2
3 .

14 Strictly speaking, first integrals and conserved quantities are not the same: a first integral may only be
considered a conserved quantity in regions where it is defined. In this case, however, polynomial functions are
defined everywhere in R

n and the two notions coincide.
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Computing the Lie derivative of this template with respect to the system, i.e. (pa,2)′ =
∂ pa,2
∂x1

x ′
1 + ∂ pa,2

∂x2
x ′
2 + ∂ pa,2

∂x3
x ′
3 gives a degree 3 parametric polynomial:

(pa,2)
′ = −a1x

2
1 + a3x1x2 + a2x1x3 − a2x

2
2 + a1x2x3 − a3x

2
3 − 2a4x

3
1

+ (a6 − a5)x
2
1 x2 + (a5 − a6)x

2
1 x3 + (a8 − a5)x1x

2
2

+ (2a4 + 2a7 + 2a9)x1x2x3 + (a8 − a6)x1x
2
3 − 2a7x

3
2

+ (a5 − a8)x
2
2 x3 + (a6 − a8)x2x

2
3 − 2a9x

3
3 .

In order to find a first integral, one is required to solve the equation (pa,2)′ = 0, but a
polynomial is 0 precisely when all of its coefficients are 0. Thus, by equating all coefficients
of the Lie derivative to 0, finding a first integral reduces to solving a linear system of equations
over the symbolic coefficients a0, …,a9:

−a1 = 0, a3 = 0, a2 = 0,−a2 = 0, a1 = 0,−a3 = 0,−2a4 = 0, (a6 − a5) = 0,

(a5 − a6) = 0, (a8 − a5) = 0, (2a4 + 2a7 + 2a9) = 0, (a8 − a6) = 0,

−2a7 = 0, (a5 − a8) = 0, (a6 − a8) = 0,−2a9 = 0 .

Solutions are efficiently found using linear algebra [31, § 2.4.1]. In this example, a non-trivial
solution yields the polynomial first integral x1x2 + x1x3 + x2x3. Moreover, all first integrals
of degree (up to) two provide concrete instances of the coefficients a and so must correspond
to a solution of these equations.

When a polynomial first integral p is computed, one has the freedom of choosing its
initial value, which is guaranteed to remain invariant throughout the evolution of the system.
In the above example, one may choose any real number k and partition the state space into
invariant regions defined by the sign conditions on the polynomial x1x2 + x1x3 + x2x3 − k.
To obtain a tight over-approximation of the reachable set from the initial set of states given
in the verification problem, one may choose k by maximizing and minimizing the value of
the first integral p on the initial set of states within the evolution domain constraint, i.e., one
may search for the real values (if they exist):

kmax = max
x∈Init∩Q

p(x) , kmin = min
x∈Init∩Q

p(x) .

If finite values kmax and kmin can be obtained, one may generate a continuous invariant
kmin ≤ p ∧ p ≤ kmax (or just p = kmin if kmax = kmin).

Maximizing/minimizing multivariate polynomials subject to semi-algebraic constraints
often leads to irrational and real algebraic numbers as exact maxima/minima. Numeri-
cal algorithms will yield values that are near-optimal, which may require them to be
increased/decreased by some amount before a genuine invariant is constructed as described
above.

The set Init ∩ Q may have multiple connected components, and tighter invariants may
be obtained from first integrals when the value k is optimized subject to each connected
component separately. A cheapway to approximate the connected components is to normalize
Init ∧ Q to disjunctive normal form and consider each disjunct as a separate component.

If more than one independent first integral for a system is found, one may construct finer
abstractions and generate tighter invariants over-approximating the reachable set. A partic-
ularly interesting case is when an n-dimensional system of ODEs has n − 1 functionally
independent algebraic first integrals: such a system is said to be algebraically integrable
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[31,52]. In such a system, given a state x0 ∈ R
n , one may evaluate the first integrals

p1, p2, . . . , pn−1 at that state to obtain a continuous invariant given by

p1 = p1(x0) ∧ p2 = p2(x0) ∧ · · · ∧ pn−1 = pn−1(x0) .

If the first integrals are functionally independent, i.e. when the matrix

[∇ p1 ∇ p2 · · · ∇ pn−1]

whose columns are formed by the gradients ∇ pi ≡
(

∂ pi
∂x1

,
∂ pi
∂x2

, . . . ,
∂ pi
∂xn

)T
has full rank

at x0 (i.e. when the vectors ∇ pi evaluated at x0 are linearly independent, see e.g. [52]),
the resulting conjunctive formula (locally) describes a 1-dimensional invariant curve in n-
dimensional state space and provides the tightest possible algebraic invariant containing x0.

Example 3 (Algebraic integrability) Consider the non-linear system

x ′
1 = −x2 ,

x ′
2 = x1 ,

x ′
3 = x1x2 .

Using a quadratic polynomial template pa,2 and solving the linear system of equations corre-
sponding to the equality (pa,2)′ = 0 as described in Example 2, one obtains the first integrals
p1 = x21 + x22 and p2 = x21 + x3. The level sets described by p1 = k1 and p2 = k2 are
invariants for any k1, k2 ∈ R. A level set of a first integral corresponds to an invariant surface
to which the system’s vector field is tangent at all points on the surface. For example, Fig. 9a
illustrates two invariant surfaces of this system, which are described by p1 = 1 (correspond-
ing to the red cylinder) and p2 = 0 (corresponding to the blue inverted parabolic surface).
Taking x0 = (0, 1, 0)T , one can easily check that the first integrals p1 and p2 are functionally
independent:

[∇ p1 ∇ p2] =

⎡

⎢
⎢
⎣

∂ p1
x1

∂ p2
x1

∂ p1
x2

∂ p2
x2

∂ p1
x3

∂ p2
x3

⎤

⎥
⎥
⎦ =

⎡

⎣
2x1 2x1
2x2 0
0 1

⎤

⎦ , which at x0 becomes

⎡

⎣
0 0
2 0
0 1

⎤

⎦

Fig. 9 Invariant level sets of two independent first integrals (left) whose intersections define invariant curves
(right)
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and is full rank. Since the systemofODEs is 3-dimensional andwehave2 = 3−1 independent
algebraic first integrals, this system is algebraically integrable.15 Intuitively, the invariant
level surfaces of first integrals will intersect transversally (i.e. will not be tangent) if the first
integrals are functionally independent. Each such intersection results in an invariant which is
of lower dimension: for example, the intersection of the two invariant surfaces in Fig. 9a (i.e.
p1 = 1 ∧ p2 = 0) corresponds to the invariant space curve—a one-dimensional object in
3-dimensional space—which contains the point x0 = (0, 1, 0)T , as illustrated in Fig. 9b by
the middle curve going through the red point x0.16 One may choose other points x0 and use
them to evaluate the first integrals p1(x0) and p2(x0), from which one can construct other
invariant curves described by p1 = p1(x0) ∧ p2 = p2(x0) (as in Fig. 9b).

4.4.2 Darboux polynomials

Darboux polynomials were first introduced in 1878 [17] to study integrability of polynomial
ODEs. A polynomial p ∈ R[x] is said to be a Darboux polynomial for the system x′ = f (x)
if and only if p′ = α p for some polynomial α ∈ R[x], which is known as the cofactor
of p. Like first integrals, discrete abstractions produced with Darboux polynomials result
in three states with no transitions between them (as illustrated in Fig. 8, but with k = 0).
Unlike first integrals, only p = 0 is guaranteed to be an invariant of the system. Darboux
polynomials have been used for predicate abstraction of continuous systems by Zaki et al.
[97], who successfully applied them to verify electrical circuit designs.

The problem of generating Darboux polynomials is generally far more difficult than that
of generating polynomial first integrals (which represent the special case of Darboux poly-
nomials where the cofactor α is 0 in the equation p′ = α p). A modification of the method of
undetermined coefficients described in the previous section can likewise be applied to search
for Darboux polynomials. However, in order to apply this method, one is required to provide
a polynomial template for both the Darboux polynomial and for its cofactor. Whenever one
has a polynomial system of ODEs x′ = f (x) in which the maximum polynomial degree of
the components f1, f2, . . . , fn of f is some r ≥ 0, then the maximum possible degree of
the Lie derivative (w.r.t. this system) of a polynomial p of maximum degree d is given by
d + r − 1. Consequently, to search for a Darboux polynomial of maximum degree d , the
maximumdegree of the cofactorα in the equation p′ = α p that one needs to consider is given
by r − 1. To apply the method of undetermined coefficients, one requires a template pa,d for
the Darboux polynomial and a separate template αb,r−1 for the cofactor. The equation to be
solved is the following:

(pa,d)
′ − αb,r−1 pa,d = 0 .

By expanding the polynomial on the left-hand side and equating each of its monomial coef-
ficients to 0, one obtains a system of equations in the symbolic parameters a,b; however,
while this system is linear in the parameter variables a and b considered separately, it is a
non-linear system of equations in a,b simultaneously. In practice, solving such a non-linear
system is far more computationally expensive than solving the linear systems for polynomial
first integrals; the naïve method of undetermined coefficients does not provide a practically
appealing solution for Darboux polynomial generation.

15 In this example the first integrals are polynomial functions, but in general algebraic first integrals need not
be polynomial: e.g. they may be rational functions, as we shall see in Sect. 4.4.3.
16 In fact, for this particular example this closed curve represents the periodic orbit (see e.g. [13]) of the
system through the point x0.
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Fortunately, automatic generation of Darboux polynomials is an active area of research,
owing largely to their importance as a crucial component in the Prelle-Singer method [67]
for computing elementary closed-form solutions to ODEs. In order to implement the Prelle-
Singer method, more sophisticated algorithms for Darboux polynomial generation have been
developed in the computer algebra community, e.g. two algorithms were reported by Man
[47]. Indeed, in our experiments we have found the algorithms ps_1 and new_ps_1 in
Man [47] to be much more practical and implement them in Pegasus.

Remark 6 We remark also that several algorithms for generating (what are essentially) Dar-
boux polynomials have more recently been developed within the verification community
[39,68,76]. However, our experience with some of these procedures has been less positive.
The method in [68] was in practice found to be very inefficient and incomplete, i.e. unable
in general to find all the Darboux polynomials matching a given polynomial template; the
technique described in [39] is significantly faster but is likewise incomplete.

Determining whether an arbitrary system of polynomial ODEs possesses a Darboux
polynomial (and finding a bound on its degree if it does) remains an open problem [98, §4.1].

4.4.3 Rational first integrals

Beyond polynomial functions, a much larger class of algebraic conserved quantities is that of
rational first integrals; these are first integrals represented by rational functions, i.e. functions
of the form a

b , where a, b are polynomials and b �= 0. Searching for this kind of first integral
is (unsurprisingly) more difficult than is the case with polynomials; however, it is made
possible by exploiting an idea from the seminal work of Darboux (see e.g. Schlomiuk [77]):
multiple Darboux polynomials can be combined to construct a rational first integral.

Theorem 1 Let p1, p2, . . . , pk be Darboux polynomials for the system x′ = f (x), with p′
i =

αi pi , where αi is some polynomial cofactor for each i = 1, . . . , k. If

λ1α1 + λ2α2 + · · · + λkαk = 0 (3)

has a non-trivial integer solution, i.e. λ = (λ1, λ2, . . . , λk) ∈ Z
k \ {0}, then the system has

a rational first integral rλ ∈ R(x) given by the product

rλ = pλ1
1 pλ2

2 · · · pλk
k .

Proof By applying the product rule to compute the Lie derivative r ′
λ, we get

(pλ1
1 pλ2

2 · · · pλk
k )′ = λ1 p

λ1−1
1 p′

1(p
λ2
2 · · · pλk

k ) + · · · + λk p
λk−1
k p′

k(p
λ1
1 · · · pλk−1

k−1 )

= λ1 p
λ1−1
1 α1 p1(p

λ2
2 · · · pλk

k ) + · · · + λk p
λk−1
k αk pk(p

λ1
1 · · · pλk−1

k−1 )

= (λ1α1 + λ2α2 + · · · + λkαk)(p
λ1
1 pλ2

2 · · · pλk
k ).

From equation (3) it follows that r ′
λ = 0 and rλ is therefore a first integral. ��

Remark 7 Obviously, if the solution to (3) is such that λ ∈ Z
k≥0, then the first integral is

polynomial; at least one negative component in λ is therefore required in order to construct a
non-polynomial rational first integral. We also note that one may search for rational solutions
to (3), i.e. λ ∈ Q

k , which will in general result in first integrals featuring radicals. Any
such first integral can be turned into a rational first integral by raising it to an integer power
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Fig. 10 Rational first integral rλ constructed from three Darboux polynomials. Zero sets of the three Darboux
polynomials shown in solid green, blue and red. Invariant level sets of the rational first integral shown in
dashed black for values rλ = 1

10 , 1, −2, respectively

corresponding to the least common multiple of the denominators of the rational numbers
λ1, . . . , λk . In general, λ1, . . . , λk need not be rational or even real numbers in order for the
construction given in Theorem 1 to work; however, irrational solutions lead to first integrals
that are not rational functions.

In light of the above theorem, a straightforward procedure for generating rational first
integrals (which has previously been suggested by Man [48]) involves (i) generating Dar-
boux polynomials p1, p2 . . . , pk for the system x′ = f (x), e.g. using an implementation of
Man’s algorithms [47], and (ii) finding integer (or rational) solutions to the linear system of
equations (3) in Theorem 1. If the coefficients of the cofactors α1, α2, . . . , αk in equation (3)
are all rational numbers, the problem reduces to solving a system of linear Diophantine equa-
tions, for which there exist polynomial-time algorithms. If a rational first integral rλ = a

b
is found, then a

b = l defines an invariant hypersurface for any choice of l ∈ R, assuming
b �= 0; rewriting this, we get that a − lb = 0 is invariant for any l ∈ R (when b �= 0).

Example 4 Consider the following non-linear system of ODEs [22]:

x ′
1 = 6x41 + 27x31 − 9x21 x2 + 42x21 − 24x1x2 + 21x1 + 4x22 − 7x2 + 4 ,

x ′
2 = 18x41 + 99x31 − 39x21 x2 + 150x21 + 2x1x

2
2 − 80x1x2 + 71x1 + 12x22 − 21x2 + 12 .

Usingour implementation ofMan’s algorithm [47],weobtain the following list ofDarboux
polynomials in under one second of computation time:

(p1, p2, p3) =
(

x1 − x2
3

+ 2

3
, x21 + 2x1 − 2x2

3
+ 1

3
, x21 + 3x1 − x2 + 1

)

.

Solving equation (3) in Theorem 1, we obtain the solution (λ1, λ2, λ3) = (2, 1,−1), from
which we obtain the rational first integral (illustrated in Fig. 10)

rλ = p21 p
1
2 p

−1
3 = (x1 − x2

3 + 2
3 )

2(x21 + 2x1 − 2x2
3 + 1

3 )

x21 + 3x1 − x2 + 1
.

Remark 8 Before attempting to search for algebraic first integrals (whether polynomials or
rational functions) it is helpful to have static criteria that determinewhether such first integrals
can arise in a given system of ODEs. Criteria for non-existence of various kinds of first inte-
grals have been studied by numerous authors (notably by Poincaré [98, §7.2]) and typically
make use of the linearization x′ = Ax of the system x′ = f (x) around a point of equilibrium
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(i.e. a point x∗ where f (x∗) = 0). In particular, a sufficient criterion for non-existence of
rational first integrals in non-linear systems of ODEs is given by Shi [78, Theorem 1]; it
requires that the eigenvalues λ1, . . . , λn of the matrix A are such that k1λ1 + · · ·+ knλn = 0
does not have a non-trivial integer solution (k1, . . . , kn) ∈ Z

n \{0}. A similar criterion, which
furthermore accounts for repeated eigenvalues, is given by Goriely [31, Ch. 5, Prop. 5.5].

Combining Darboux Polynomials and Rational First Integrals. As a first hint of its flexibility
for combining invariant generation methods, Pegasus implements rational first integral gen-
eration by combining several ideas described thus far in Sect. 4 as follows. This flexibility is
further exploited in the discussion of strategies in Sect. 5.

1. Compute a list of Darboux polynomials p1, . . . , pk of somemaximum polynomial degree
d using generation methods from Sect. 4.4.2.

2. Abstract the state space into sign invariant cells using those polynomials, e.g., S1 ≡ p1 <

0 ∧ p2 = 0, S2 ≡ p1 < 0 ∧ p2 > 0, S3 ≡ p1 < 0 ∧ p2 < 0, etc., as described
in Sect. 4.1. Notably, the resulting abstraction has no transitions between its discrete
states, as illustrated in Fig. 8.

3. Prune away those invariant cells that do not intersect the initial set of states, e.g., delete
S1 if Init ∩ S1 = ∅ since S1 is then unreachable. Similarly, prune away cells that do not
intersect the unsafe set, e.g., delete S2 if Unsafe ∩ S2 = ∅ because no initial states in S2
can reach the unsafe set.

4. The remaining unpruned conflict cells, say S3, define new invariant generation sub-
problems, where the original evolution domain constraint Q is restricted to Q ∧ S3. Each
of the Darboux polynomials are sign-invariant in these cells; moreover, those Darboux
polynomials that are sign-definite (either strictly positive or negative) in each cell, e.g.
p1, p2 with evolution domain constraint p1 < 0∧ p2 > 0 for S3, can be used to compute
rational first integrals rλ (following Theorem 1). The denominator of rλ is guaranteed
to be a product of (powers of) sign-definite polynomials so these rational functions are
always defined within each conflict cell.

5. Using their respective rational first integrals rλ, refine each conflict cell by maximizing
and minimizing the values of rλ to obtain invariant sub-level sets kmin ≤ rλ ∧ rλ ≤ kmax

over the initial set (restricted to that cell), as described in Sect. 4.4.1.
6. If conflict cells remain, increase the polynomial degree d and go to step 1.

Rational First Integrals of Linear Systems. In the case of linear systems of ODEs x′ = Ax,
more efficient methods exist that allow us to directly construct rational first integrals from
the eigenvalues and eigenvectors of the system matrix A. These explicit constructions are
described, e.g. in the work of Gorbuzov & Pranevich [30] and Falconi & Llibre [21]; in
Pegasus, we implement and deploy the former techniques [30].

It is instructive to compare the results obtained by Lafferriere, Pappas and Yovine [42]
(which state that semi-algebraic reachable sets of linear ODEs x′ = Ax can be constructed
from semi-algebraic initial sets in caseswhen A is diagonalizable and all of its eigenvalues are
rational) to essentially analogous results independently obtained in the study of integrability
of linear systems. For instance, [30, Property 1.1] gives a sufficient condition for algebraic
integrability which states that a linear system x′ = Ax has a basis of rational first integrals
(i.e. is algebraically integrable) if all the eigenvalues of A are rational and of multiplicity 1.
Indeed, such a basis of rational first integrals enables one to construct reachable sets described
by polynomials.
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4.4.4 Barrier certificates

Themethod of barrier certificates is a popular Lyapunov-like technique for safety verification
of continuous and hybrid systems [66]. Barrier certificates are differentiable functions p that
define an invariant region p ≤ 0 which separates the initial states (wholly contained within
p ≤ 0) from the unsafe states (wholly contained within p > 0). In order to ensure continuous
invariance of the region defined by p ≤ 0, the Lie derivative p′ of the barrier certificate needs
to satisfy certain criteria; differences in these criteria give rise to a number of variations of
barrier certificates in the literature. The originalwork by Prajna and Jadbabaie [66] introduced
convex barrier certificates, which employ the differential inequality p′ ≤ 0 to guarantee
invariance of p ≤ 0 under the flow of the system. Later work by Kong et al. [40] introduced
so-called exponential-type barrier certificates, which provide a generalization employing
the differential inequality p′ ≤ λp, where λ ∈ R; this was generalized further yet in the
work of Dai et al. [16], who introduced general barrier certificates employing the differential
inequality p′ ≤ ω(p), whereω is a specifically crafted scalar function to guarantee invariance
of p ≤ 0. All of the above developments are fundamentally based on the classical notion of
comparison systems [71, Ch II, §3, Ch. IX] in the theory of ODEs. A unified understanding of
these generalizations is described in priorwork [83],which introduces a further generalization
of the barrier certificate framework: vector barrier certificates, employing multidimensional
comparison systems in a way analogous to vector Lyapunov functions introduced by Bellman
[5].

Barrier certificates are practically interesting because one may apply the method of unde-
termined coefficients to automatically search for them using tractable techniques: either
sum-of-squares programming (SOS) [66] or linear programming (LP) [95]. Pegasus is able
to search for convex [66], exponential-type [40], and vector barrier certificates [83] using
both SOS and LP techniques. However, the resulting barrier certificates often suffer from
numerical inaccuracies arising from the use of semidefinite solvers and interior point meth-
ods [72]. Pegasus currently uses a simple rounding heuristic on the numerical result and
explicitly checks invariance for the resulting (exact) barrier certificate candidates using real
quantifier elimination. An example of a barrier certificate generation technique implemented
in Pegasus, and an illustration of its numerical issues is given next.

Example 5 Consider the safety verification problem illustrated in Fig. 11 (left). The task is to
generate an invariant showing that ODE solutions starting within the initial set Init (in green)
do not enter the unsafe set Unsafe (in red). A candidate continuous invariant p ≤ 0 (shown
in blue in Fig. 11, left) is found using numerical barrier certificate generation techniques.

The (exponential-type) barrier certificate p is generated from a polynomial template pa,d
of degree d over variables x, y, by solving (and then substituting) for appropriate concrete
values of the template coefficients a. For clarity below, the notation pa,d is used in steps
where the generation algorithm produces constraints on the coefficients a, while p always
refers to the final, generated barrier certificate. Logically, it suffices to find real values for a
so that the following formulas are simultaneously valid:

Init → pa,d ≤ 0 , (4)

Unsafe → pa,d > 0 , (5)

(pa,d)
′ ≤ λpa,d . (6)

Constraints (4) and (5) ensure that the generated barrier separates the initial set from the
unsafe set, e.g., in Fig. 11 (left) the green initial region is wholly contained in the blue candi-
date invariant region p ≤ 0, while the red unsafe region lies entirely outside. Constraint (6)
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Fig. 11 (Left) A candidate invariant generated using numerical barrier certificates (in blue) for the safety
verification problem of showing that solutions from the green initial state never reach the red unsafe states.
(Right) A zoomed out view of the safety verification problem, showing that the candidate invariant is, in fact,
not an invariant of the ODE because some states can exit the invariant (highlighted with a dashed red circle)

ensures that the sub-level set p ≤ 0 is a continuous invariant, intuitively, the vector field
points “inwards” along the boundary of p ≤ 0 (blue region in Fig. 11), so it is impossible
to flow from within p ≤ 0 to p > 0. A more general version of these constraints, and a
soundness proof, is available elsewhere [40].

Sum-of-squares (SOS) programming [53] provides a tractable way of solving for the
coefficients a. Suppose that Init,Unsafe are described with polynomial inequalities Init ≡∧a

i=1 Ii ≥ 0, Unsafe ≡ ∧b
i=1Ui ≥ 0. Inequalities (4)–(6) are respectively implied by the

following SOS inequalities, where ε > 0 is a small positive constant and σIi , σUi are template
SOS polynomials [53]:

− pa,d −
a∑

i=1

σIi Ii ≥ 0 , (7)

pa,d −
b∑

i=1

σUiUi − ε ≥ 0 , (8)

λpa,d − (pa,d)
′ ≥ 0 . (9)

Sum-of-squares solvers, such as SOSTOOLS [53], witness the inequalities (7)–(9) by
finding an SOS representation for their left-hand side. For example, a set of polynomials
g1, . . . , gn satisfying the polynomial identity −pa,d − ∑a

i=1 σIi Ii = ∑n
i=1 g

2
i proves (7)

because the RHS of this inequality is a sum-of-squares, which is non-negative. These poly-
nomial identities are found efficiently by semidefinite programming [55], which is also where
numerical solvers are used. In practice, Pegasus loops through a range of values for the param-
eters d, λ, ε as well as the degrees of the SOS polynomials σIi , σUi and attempts to solve
these constraints for each concrete choice of parameters.

While efficient, the use of numerical solvers has its drawbacks, e.g. because the generated
coefficients a need not truly satisfy all the required constraints. This is why Pegasus (and
KeYmaera X) treats the generated barrier certificate p only as a candidate invariant and
performs additional arithmetical checks to ensure that the constraints are truly met. As a
cautionary example, Fig. 11 (left) rather misleadingly suggests that p ≤ 0 is an invariant
within its small plot domain. Indeed, Fig. 11 (right) is a zoomed out version of the same plot
which shows that the constraint (6) fails to hold for larger values of x, y.
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Linear programming (LP)was employed as an alternative to sum-of-squares programming
by Sankaranarayanan et al. [75] to generate Lyapunov functions, and later applied by Yang
et al. [95] to similarly generate barrier certificates. The main idea behind this approach is to
employ a linear relaxation, whereby non-negativity of a polynomial p is witnessed, subject
to non-negativity of (basis) polynomials p1, p2, . . . , pk , i.e. p1 ≥ 0 ∧ p2 ≥ 0 ∧ · · · ∧ pk ≥
0 → p ≥ 0 is reduced to the existence of non-negative Lagrangianmultipliers λ1, λ2, . . . , λk
such that λ1 p1 + λ2 p2 + · · · + λk pk = p.

In cases when the evolution domain constraint Q is described by a conjunction of polyno-
mial inequalities Q ≡ q1 ≥ 0∧· · ·∧ql ≥ 0 (e.g. in the case of hyperboxes or polyhedra), one
may form all products pi = qα1i

1 · · · qαli
l up to some maximum total degree and use them to

solve the linear relaxation for p1 ≥ 0∧· · ·∧ pk ≥ 0 → pa,d ≥ 0 using linear programming,
obtaining a polynomial which is non-negative on Q. The conditions for barrier certificates
are encoded in an obvious way.

In using convex optimization methods to search for barrier certificates, one is not
concerned with optimizing the value of any particular objective function (the zero function
suffices); one is rather interested in finding a feasible solution to a set of constraints. For
LP, it is possible to use an SMT solver which supports the theory of linear real arithmetic
(LRA, e.g., as supported by Z3) to search for models of formulas describing the constraints
to obtain instantiations of the parameter variables in the template; however, in our experi-
ence, implementations of linear programming solvers (especially employing interior point
algorithms) in Mathematica and MATLAB offer considerably better performance compared
to Z3 (which implements the Dual Simplex algorithm [20]).

5 Strategies for invariant generation

The implementation of primitive invariant generation methods from Sect. 4 in a single frame-
work is a significant undertaking in itself. The overall goal behind Pegasus, however, is to
enable these heterogeneous methods to be effectively deployed and fruitfully combined into
strategies for invariant generation that are tailored to specific classes of verification problems.
Different invariant generation strategies are invoked in Pegasus, depending on the classifi-
cation of the input problem it receives from the problem classifier. In this section, and for
the evaluation, we focus on the most challenging and general class of non-linear systems in
which no further structure is known or assumed beyond the fact that the right-hand sides of
the ODEs are polynomials.

5.1 Differential saturation

The main invariant generation strategy Pegasus uses for general non-linear systems is based
on a differential saturation procedure [61]. Briefly, the procedure loops through a prescribed
sequence of invariant generation methods and successively attempts to strengthen the evo-
lution domain constraint using invariants found by those methods until the desired safety
condition is proved. 17 Notably, this loop allows Pegasus to exploit the strengths of differ-
ent invariant generation methods, even if it is a priori unclear whether one is better than
the other. The precise sequencing of invariant generation methods is also important in this

17 Pegasus partitions problems into subsystems according to variable dependencies in their differential equa-
tions [61]. For x ′

1 = x1, x
′
2 = x1 + x2, for example, Pegasus first searches for invariants involving only x1,

before searching for those involving both x1 and x2.
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Fig. 12 Invariant synthesis using the differential saturation loop in Pegasus. The domain under consideration
at each step is shaded in blue and annotated below each plot, with the polynomial p = 3
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strategy to avoid redundancy. Pegasus orders the methods by computational efficiency, e.g.
it first searches for first integrals, followed by Darboux polynomials and barrier certificates.
This sequencing allows slower methods to exploit invariants that are quickly generated by
earlier methods.

Example 6 The synergy between individual methods exploited by differential saturation is
illustrated in Fig. 12 for an example from our benchmarks.

Initially (leftmost plot Fig. 12a), the entire plane (in blue) is under consideration and
Pegasus wants to show the safety property that trajectories from the initial states (in green)
never reach the unsafe states (in red). In the second plot (Fig. 12b), Pegasus confines its search
to the region x1 > 0 using the generated Darboux polynomial x1. In the third plot (Fig. 12c),
using x1 > 0, qualitative analysis finds the invariant x2 > 0 (whose invariance depends
on x1 > 0) which further confines the evolution domain constraint. Finally (rightmost plot
Fig. 12d), Pegasus finds a barrier certificate (of polynomial degree 2) that suffices to show the
safety property within the strengthened evolution domain constraint (which, by construction,
is invariant). The final invariant region contains several sharp corners and thus cannot be
directly obtained as the sub-level set of a single polynomial barrier certificate. Instead, it
incorporates a conjunction of invariants discovered earlier by other means.

Remark 9 Pegasus extracts proof hints from the internal reasoning sequence used in its
differential saturation strategy, e.g., it tracks the order of construction of the invariants
x1 > 0, x2 > 0, . . . from Example 6 and how they were individually proved. These hints are
useful for deductive tools like KeYmaera X because they can be used to guide its proofs for
the generated invariants in a corresponding, step-by-step manner, with the most appropriate
verification technique for the invariant used at each step.

Given an input safety verification problem, it is a priori unknown which of the invariant
generation methods used for differential saturation would succeed; and even for those that do
succeed, it is difficult to predict the precise duration required. The overall strategy in Pegasus
imposes carefully balanced timeouts, where each method called by differential saturation
attempts to:

– detect their applicability efficiently to conserve time budgets for other methods if they
are not applicable,

– keep track of intermediate results and report partial results (if applicable) when their
individual timeouts are hit,
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– efficiently check when they are done.

Pegasus uses configuration parameters to adjust timeouts and method behavior, e.g., max-
imum degree of barrier certificate templates. In addition, Pegasus supports configuration of
the overall strategy behavior in terms of combining method results, how it handles method
timeouts, and how it detects when the methods succeeded. In the current implementation,
and in Sect. 6, we explore the following strategy configuration options:

(C1) Auto-Reduction: whether or not to filter redundant invariants when combining results
(C2) Heuristic Search:whether or not to apply qualitative analysis and other heuristic search

methods
(C3) Budget Redistribution: strict method timeouts or redistribution of unused time budget

to later methods
(C4) Subsystem Splitting: whether or not to analyze subsystems separately

Option (C1) allows Pegasus to find invariants of lower descriptive complexity, which
may be more insightful for users and easier to prove in KeYmaera X. Options (C2)–(C4)
allow expert users finer control over how Pegasus searches for invariants. For example, (C4)
is useful when the input problem is known to consist of many subsystems of ODEs [61]
that can be tackled separately. The trade-off between these options is qualitatively evaluated
in Sect. 6.

5.2 Differential divide-and-conquer

The differential saturation strategy uses a melting pot of primitive invariant generation meth-
ods without (directly) adding more logical or mathematical considerations. The differential
divide-and-conquer (DDC) proof rule [81] is an example logical technique that also fits well
into the Pegasus framework.

Briefly, the rule says that if p = 0 is an invariant for both the forwards ODE x′ = f (x)
and the backwards ODE x′ = − f (x), then the state space partitions into three invariant
subspaces p < 0, p = 0, p > 0, and it suffices to consider the invariant generation sub-
problems (restricted to each subspace) separately. All Darboux polynomials p (Sect. 4.4.2)
meet the forwards-and-backwards invariance criteria and can be used to partition the state
space. Indeed, this DDC strategy is already implicitly used in the invariant generationmethod
for rational first integrals in Sect. 4.4.3, which partitions the state space using Darboux
polynomials, and then generates rational first integrals on the resulting sub-problems. Pegasus
generalizes this by looking for invariants on each sub-problem instead, i.e., by replacing
steps 4 and 5 from the method described in Sect. 4.4.2 as follows:

4* For each unpruned conflict cell S, define a new invariant generation sub-problem, with
the original evolution domain constraint Q restricted to Q ∧ S.

5* Call the differential saturation strategy (Sect. 5.1) to find an invariant on all newly gen-
erated sub-problems.

Example 7 The differential divide-and-conquer strategy is illustrated in Fig. 13 for a tweaked
Example 6 with larger initial set and smaller unsafe set.

As before, initially (leftmost plot Fig 13a), the entire plane (in blue) is under consideration
and Pegasuswants to show the safety property that trajectories from the initial states (in green)
never reach the unsafe states (in red). Pegasus partitions the problem into three sub-problems,
shown in the subsequent plots, using the Darboux polynomial x1; in those plots, only the part
of the plane relevant to each sub-problem is drawn.In the third plot (Fig. 13c, the evolution
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Fig. 13 Invariant synthesis using differential divide-and-conquer in Pegasus. The domain under consideration
at each step is shaded in blue and annotated below each plot, with the polynomial p = 11
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domain constraint x1 = 0 is slightly (but soundly) enlarged to−0.2 ≤ x1 ≤ 0.2 for visibility
in the illustration as it would otherwise be an infinitesimal line. In the second (evolution
domain constraint x1 < 0, Fig. 13b) and third (evolution domain constraint x1 = 0, enlarged
in Fig. 13c) plots, the sub-problems are proved trivially because they contain no unsafe states.
In the rightmost plot (Fig. 13d, evolution domain constraint x1 > 0), Pegasus finds a barrier
certificate (in blue) that solves the sub-problem.

6 Evaluation

This section presents a qualitative evaluation of the invariant generation capabilities of Pega-
sus and its interaction with the ODE proving tactics of KeYmaera X. The insights obtained
from these benchmarks provide useful default configuration options for Pegasus, e.g., those
described in Sect. 5.

6.1 Benchmark suite

The benchmark suite consists of 150 continuous safety verification problems, with 90 earlier
problems [84] and 60 new ones, all drawn from the literature [1,6,16,19,22,27,30,32,35,
36,39,44,45,54,70,74,82,83,95–97]. Some are drawn from papers that present and discuss
properties of a system of ODEs without explicitly providing initial and safe conditions; in
such cases, we design our own initial and safe sets based on the provided discussion.

The suite consists of problems involving linear, affine, multi-affine, or (non-linear) poly-
nomial ODEs over a range of dimensions: 71 two-dimensional systems, 30 three-dimensional
systems, 35 higher-dimensional (≥4,≤16) systems, and 14 product systems that were formed
by randomly combining pairs of two- and three-dimensional systems, see Fig. 14a, b. The
problems have a range of topological and logical structures to test the applicability of vari-
ous invariant generation methods. A summary of the topological structure of the problems
is shown in Fig. 14c; the sets involved are either topologically bounded or unbounded (or
None, when there is no evolution domain constraint), and either topologically open or closed
(or neither). A summary of the logical structure of the problems is shown in Fig. 14d; the for-
mulas involved are either described algebraically by an equation, or by an atomic inequality,
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Fig. 14 Benchmark suite classification among 150 benchmarks

or, more generally, by a semi-algebraic formula involving conjunctions and disjunctions of
equations and inequalities. The experiment was run on commodity hardware.18

6.2 Differential saturation performance

We analyze the differential saturation strategy compared to each invariant generation method
in isolation, measuring the duration of invariant generation, duration of checking the gener-
ated invariants, and the total proof duration. We analyze the effect of exposing proof hints
with the generated invariants, and the effect of strategy configuration options (C1)–(C4)
from Sect. 5.

6.2.1 Differential saturation versus individual generation methods

The results comparing differential saturation against individual methods for each bench-
mark problem are shown in Fig. 15. Several experimental insights can be drawn from these
results: (i) different invariant generation methods generally solve different subsets of the
problems, (ii) invariant generation almost always dominates total proof duration although
invariant checking becomes more expensive as problem dimension increases, (iii) when

18 MacBook Pro 2019 with 2.6GHz Intel Core i7 (model 9750H) and 32GB memory (2667MHz DDR4
SDRAM), Mathematica 12.1 and MATLAB 2019b with SOSTOOLS 3.03.
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Fig. 15 Comparison of invariant generation methods. Each column represents one benchmark problem and
the color encodes duration (lighter is faster). Empty columns are unsolved. Legend: the combined Differential
Saturation (DS) strategy against Qualitative Analysis (QA), First Integrals (FI), Darboux Polynomials (DP),
and Barrier Certificates (BC), on total proof duration (T), generation duration (G), and checking duration (C).
Results for the earlier implementation [84] (with newhardware, see Footnote 18) are also shown for comparison
(DS’19). The ODE classification for each problem is annotated at the top: homogeneous polynomial (H),
polynomial (P), linear (L), affine (A), multi-affine (M), dashes indicate same class as the enclosing labels

multiple methods solve a problem, qualitative analysis and first integrals are often quickest,
followed by Darboux polynomials and then barrier certificates, (iv) the differential saturation
strategy effectively combines invariant generation methods; it solves 16 additional problems
(of which 7 are product systems) that no individual method solves by itself. Differential
saturation is especially effective on product systems because each part of the product may be
only solvable using a specific method. (v) Finally, the performance of Pegasus (with default
configuration) has remained relatively stable compared to its earlier version [84].

To evaluate the effectiveness of combining methods by differential saturation, Fig. 16
plots the accumulated duration for solving the fastest n out of 150 benchmark problems.
The main insights are: (i) differential saturation solves the largest number of problems per
accumulated time, i.e., despite sequentially executing invariant generation methods, it often
succeeds in trying out the most efficient method first and fails fast when earlier methods are
unsuitable; however, qualitative analysis (in isolation) generates some invariants faster when
the heuristics it employs for guessing invariant candidates are successful, (ii) cumulatively,
invariant generation duration dominates invariant checking duration (note logarithmic scaling
of the time axis in Fig. 16); this effect is especially pronounced for barrier certificates, but can
also be observed in all other methods when solving more expensive (harder) problems, (iii)
first integrals are least expensive to check when they solve problems, (iv) qualitative analysis
is less expensive for generation than other methods, but is most expensive for checking
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because the invariants it generates often have high descriptive complexity and may not have
simple invariance justifications.

6.2.2 Differential saturation configuration options

Next, we explore the effect of configuration options on the invariant generation and sub-
sequent checking duration by disabling features of the differential saturation procedure.
Specifically, we executed differential saturation with:

C1AR No Auto-Reduction, which is expected to speed up generation but may cause
redundant cuts or unnecessarily complicated invariants.
C2HS No Heuristic Search, which is expected to produce more principled invariants
and more specific proof hints but solve fewer problems.
C3BR No Budget Redistribution, which is expected to result in a more predictable
generation duration but solve fewer problems.
C4SS No Subsystem Splitting, which is expected to result in faster performance on
problems without clear subsystems, but solve fewer problems overall (e.g., the product
problems should benefit from C4).
PH No Proof Hints, which is expected to slow down invariant checking but have no
effect on invariant generation.

Figure 17 shows the benefits and drawbacks of each configuration option on the suite
of benchmark problems, while Fig. 18 summarizes the cumulative effect of configuration
options. Since these configurationoptions are tuningparameters that offer fine-grained control
over differential saturation for Pegasus, their cumulative effect over all 150 problems is small,
see Fig. 18.

Except for Heuristic Search (C2), disabling features results in similar (or slightly faster)
generation duration for most problems, but at the expense of not solving others, see Figs. 17a
and 17b (top). On three particular problems, disabling features helped Pegasus to solve the
problem within the given time budget. Overall, the configuration options have little net effect
on most problems but can make a difference on select problems:

– No Proof Hints (PH ): Several problems check slightly fasterwithout following the proof
hints, which indicates that KeYmaera X’s checking procedure is sometimes able to find
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Fig. 17 Influence of configuration options: no Auto-Reduction (C1AR ), no Heuristic Search (C2HS ), no

Budget Redistribution (C3BR ), no Subsystem Splitting (C4SS ), and no Proof Hints(PH ) . A ! mark
indicates that the default Differential Saturation (DS) configuration failed to generate or check that problem,
while one (or more) of the other configuration options succeeded

more efficient proofs than the hints. However, there are also problems that check slightly
slower and several problems that fail to check without proof hints. Conclusion: proof
hints can be extremely helpful; they should be kept wherever possible, especially since
they are inexpensive to produce in Pegasus. KeYmaera X could try its default checking
procedure first and fallback to hints if the default fails.

– No Auto-Reduction (C1AR ): significant increase in proof checking duration on several
examples, but decrease in generation duration on several examples as well. Conclusion:
C1 auto-reduction is useful for checking but at the expense of generation duration; it
should be provided as an optional post-processing step for users interested in more
succinct invariants.

– No Heuristic Search (C2HS ): variable severe impact (both positive and negative) on
generation duration across examples, but fails to generate invariants for several examples.
However, checking duration is generally improved for principled invariants generated
without heuristics. Notably, two problems were successfully solved solely by C2 out
of all other configuration options. Conclusion: C2 should be a configurable option for
users, but should typically be enabled when the ultimate goal is to solve a given problem
and invariant generation time is not a significant constraint.

– No Budget Redistribution (C3BR ): minor impact on both generation and checking dura-
tion, except failing to solve one problem. Conclusion: C3 is not very impactful, but could
be left enabled by default as a failsafe.

– No Subsystem Splitting (C4SS ): minor impact on both generation and checking duration
for solved problems, but solves fewer problems (mostly product system and higher-
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Fig. 18 Configuration options: cumulative logarithmic time (in seconds) taken to solve the fastest n problems
(more problems solved and flatter is better)

dimensional problems). Conclusion: C4 is a useful technique in invariant generation
and should typically be enabled.

7 Related work

Techniques developed for qualitative simulation have been applied to prove temporal prop-
erties of continuous systems by Shults and Kuipers [79], as well as Loeser, Iwasaki and Fikes
[46]. Zhao [99] developed a tool, MAPS, to automatically identify significant features of
dynamical systems, such as stability regions, equilibria, and limit cycles. Since our ultimate
goal is sound invariant generation, we are less interested in a full qualitative analysis of the
state space. In the verification community, discrete abstraction of hybrid systems was studied
by Alur et al. [2]. The case of systems whose continuous motion is governed by non-linear
ODEs was studied in the work of Tiwari and Khanna [88,90]. Tiwari studied reachability
of linear systems [87], using information from real eigenvectors and ideas from qualitative
abstraction to generate invariants. Zaki et al. [97] were the first to apply Darboux polynomi-
als to verification of continuous systems using discrete abstraction. Numerous works employ
barrier certificates for verification [16,40,66,83,95]. Since we implement many of the above
techniques as methods for invariant generation in Pegasus, our work draws heavily upon
ideas developed previously in the verification and hybrid systems communities. Previous
work [81] introduced a construction of exact abstractions and applied rudimentary methods
from qualitative analysis to compute invariants; in certain ways, our present work also builds
on this experience, incorporating some of the techniques as special methods in a more gen-
eral framework. The coupling between KeYmaera X and Pegasus that we pursue is quite
distinct from the use of trusted oracles in the work of Wang et al. [92] (for the HHL prover)
and, notably, provides a sound framework for reasoning with continuous invariants that is
significantly less exposed to soundness issues in external tools.

A complete semi-algorithm for computing algebraic invariants (described by zero sets
of polynomial functions) for polynomial systems of ODEs was developed by Ghorbal and
Platzer [27]. An interesting development along very similar lines was also recently pursued
by Boreale [11], whose method makes use of the algebraic nature of the precondition (initial
set) in the verification problem in order to speed up the algebraic invariant generation. Both of
these (semi-)algorithms involve enumeration of polynomial templates; the biggest practical
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difficulty stems from the computational cost ofminimizing the rankof symbolicmatrices [27],
and computing the generators of real radical ideals [11], both of which are difficult problems
with the latter having few algorithms with robust implementations currently in existence.19

In the future, we hope to extend Pegasus with an implementation of these techniques.

8 Outlook and challenges

The improvements in continuous invariant generation have a significant impact on the overall
proof automation capabilities of KeYmaera X and serve to increase overall system usability
and improve user experience. Better proof automation will certainly also be useful in future
applications of provably correct runtime monitoring frameworks, such as ModelPlex [50],
as well as frameworks for generating verified controller executables, such as VeriPhy [10].
Some interesting directions for extending our work include implementation of reachable set
computation algorithms for all classes of problems where this is possible. For instance, semi-
algebraic reachable sets for diagonalizable classes of linear systems with tame eigenvalues
[26,42], as well as more generally [1]. The complexity of invariants obtained using these
methods may not always make them practical, but they would provide a valuable fallback
when simpler invariants cannot be obtained using our currently implemented methods.

A more pressing challenge lies in expanding the collection of safety verification problems
for continuous systems. While we have done our best to find compelling examples from
the literature, a larger corpus of problems would allow for a more comprehensive empirical
evaluation of invariant generation strategies and could reveal interesting new insights that
can suggest more effective strategies.

Correctness of decision procedures for real arithmetic is another important challenge.
For pragmatic reasons, KeYmaera X currently uses Mathematica’s implementation of real
quantifier elimination to check validity of first-order real arithmetic formulas. Removing this
reliance by efficiently building fully formal proofs of real arithmetic formulas within dL (e.g.
through exhibiting appropriate witnesses or using proof-producing procedures; see [63] for
an overview) is an important task for the future.

Other important topics not addressed in this article concern stability and robustness of con-
tinuous invariants [29,33,38,41]. These notions are important in ensuring that the generated
invariants are reflective of the real world, and are not merely by-products of mathematical
idealization.

9 Conclusion

Among verification practitioners, the amount ofmanual effort required for formal verification
of hybrid systems is one of the chief criticisms leveled against the use of deductive verification
tools. Manually crafting continuous invariants may require expertise and ingenuity, just like
manually selecting support function templates for reachability tools [23], and presents a
major practical hurdle in the way of wider industrial adoption of this technology. In this
article, we describe our development of a system designed to help overcome this hurdle by
automating the discovery of continuous invariants. To our knowledge, thiswork represents the

19 Although an incomplete invariant generation procedure could still employ inexpensive ad-hoc methods to
compute generators of real radical ideals; likewise, generators of (complex) radical ideals can be used instead
in a sound but incomplete algebraic invariant generation algorithm [11, § 5].
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first large-scale effort in combining continuous invariant generation methods into a single
invariant generation framework and making it possible to create more powerful invariant
generation strategies. The approach we pursue is unique in its integration with a theorem
prover, which provides formal guarantees that the generated invariants are indeed correct (in
the form of dL proofs, automatically). The results we observe in our evaluation are highly
encouraging and suggest that invariant discovery can be improved considerably, opening
many exciting avenues for applications and extensions.
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