KIT | KIT-Bibliothek | Impressum | Datenschutz

A Verified Decision Procedure for Univariate Real Arithmetic with the BKR Algorithm

Cordwell, Katherine ; Tan, Yong Kiam ; Platzer, André ORCID iD icon

Abstract:

We formalize the univariate fragment of Ben-Or, Kozen, and Reif’s (BKR) decision procedure for first-order real arithmetic in Isabelle/HOL. BKR’s algorithm has good potential for parallelism and was designed to be used in practice. Its key insight is a clever recursive procedure that computes the set of all consistent sign assignments for an input set of univariate polynomials while carefully managing intermediate steps to avoid exponential blowup from naively enumerating all possible sign assignments (this insight is fundamental for both the univariate case and the general case). Our proof combines ideas from BKR and a follow-up work by Renegar that are well-suited for formalization. The resulting proof outline allows us to build substantially on Isabelle/HOL’s libraries for algebra, analysis, and matrices. Our main extensions to existing libraries are also detailed.


Verlagsausgabe §
DOI: 10.5445/IR/1000174216
Veröffentlicht am 16.09.2024
Originalveröffentlichung
DOI: 10.4230/LIPIcs.ITP.2021.14
Scopus
Zitationen: 5
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Informationssicherheit und Verlässlichkeit (KASTEL)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 21.06.2021
Sprache Englisch
Identifikator ISSN: 1868-8969
KITopen-ID: 1000174216
Erschienen in 12th International Conference on Interactive Theorem Proving (ITP 2021)
Veranstaltung 12th International Conference on Interactive Theorem Proving (ITP 2021), Rom, Italien, 29.06.2021 – 01.07.2021
Verlag Schloss Dagstuhl - Leibniz-Zentrum für Informatik (LZI)
Seiten 1-14
Serie Leibniz International Proceedings in Informatics (LIPIcs) ; 193
Schlagwörter quantifier elimination, matrix, theorem proving, real arithmetic, Theory of computation → Logic and verification
Nachgewiesen in Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page