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Structured Proofs for Adversarial Cyber-Physical Systems

ROSE BOHRER and ANDRÉ PLATZER, Carnegie Mellon University, USA

Many cyber-physical systems (CPS) are safety-critical, so it is important to formally verify them, e.g. in formal
logics that show a model’s correctness specification always holds. Constructive Differential Game Logic (CdGL)
is such a logic for (constructive) hybrid games, including hybrid systems. To overcome undecidability, the user
first writes a proof, for which we present a proof-checking tool.

We introduce Kaisar, the first language and tool for CdGL proofs, which until now could only be written
by hand with a low-level proof calculus. Kaisar’s structured proofs simplify challenging CPS proof tasks, espe-
cially by using programming language principles and high-level stateful reasoning. Kaisar exploits CdGL’s
constructivity and refinement relations to build proofs around models of game strategies. The evaluation re-
produces and extends existing case studies on 1D and 2D driving. Proof metrics are compared and reported
experiences are discussed for the original studies and their reproductions.
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1 INTRODUCTION

Cyber-physical systems (CPSs), where embedded computers control physical devices, are often
safety-critical. Important examples of safety-critical applications include robotics, automotives,
aviation, spaceflight, medical devices, and power systems. Formal methods for CPS are essential
to ensuring crucial correctness properties of system models and the implementations of CPS on
embedded processors. Among formal methods, theorem-proving approaches are essential both
because they provide the high degree of rigor that CPSs demand and because they can show cor-
rectness of a model for all of its uncountably many behaviors and states, in stark contrast to
testing-based methods, which inherently test only finitely many behaviors and states. This exhaus-
tiveness allows catching bugs that are difficult to find with other approaches and allows catching
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them early, in the design stages of the development workflow, when fixing bugs is cheap. It also
allows proving their absence once corrected, upon which the proof serves as strong evidence that
illustrates a design’s correctness. When combined with synthesis, theorem-proving continues to
ensure correctness throughout the implementation stages of a development workflow [6].

Theorem-proving in the differential dynamic logic (dL) [27, 29, 30] family of logics is of partic-
ular note, because it has been successfully applied to a variety of CPS case studies [30] modeled
as hybrid systems, including case studies in automotives, aviation, and medical robotics. The KeY-
maera X [14] prover implements dL and its generalization to hybrid games, differential game logic

(dGL) [30, Ch. 14][28]. The logics dL and dGL are notable both because they can analyze polyno-
mial ordinary differential equations (ODEs) that have no closed-form solution [30, Ch. 10–11][32]
and because they can prove a broad class of safety and liveness properties that ensure functional
correctness of a model. For example, safety properties of a transportation CPS include collision-
freedom, while liveness properties include reaching a destination in finite time. Games further
excel at modeling CPSs whose environments are adversarial, as well as proving reach-avoid prop-
erties: liveness goals are eventually reached while staying safe throughout. By proving correctness
of a system which operates in an adversarial environment, game proofs also amount to proofs of
security against an adversary who attacks the system to try to violate correctness. This paper con-
siders Constructive Differential Game Logic (CdGL) [4], the recent constructive logic counterpart of
dGL. Its constructive foundations notably simplify synthesis (or extraction) of correct monitoring
and control code [3, Ch. 8] by giving them an immediate theoretical basis. We assume no famil-
iarity with constructive logic, but the constructive notion of proofs as programs is exploited in
Kaisar’s design. Broadly, synthesis is a key motivation, but its details are discussed elsewhere [3,
Ch. 8] to save space.

Hybrid games are applicable to a broad range of applications and adversaries. This paper demon-
strates the usefulness of hybrid games for the correctness and security of adversarial CPSs via case
studies in autonomous driving and ground robotics, which are important examples of embedded
systems. Our examples include adversarial timing and actuation, where the adversary has the
(bounded) power to disturb both a scheduler and a vehicle’s motion. Related literature on CPS ver-
ification [30] indicates that the modeling and proof techniques we provide generalize across the
aforementioned domains. Likewise, our approach generalizes to adversaries which manipulate any

aspect of hybrid games, e.g., timing, sensing, control, and physics.
The undecidable complexity of hybrid systems results in different tradeoffs for every formal

method. The tradeoff for expressive logics like the dL family is that human proof insight is re-
quired for proofs to scale. In contrast, reachability methods typically achieve greater automa-
tion by limiting the class of supported models and properties, or by approximating the system
dynamics.

A user’s proof insights are expressed in a proof language and checked for correctness by a
tool. Proof language design is a significant research topic in its own right. Due to the subtleties
of CPS, proof-writing and revisions can take longer than writing an initial (faulty) controller and
model, motivating the design of languages which increase productivity of verification, especially
productivity of revisions and maintenance of the CPS and its correctness proof.

We introduce a new CPS proof language, so we necessarily discuss logic and language design at
length. Yet, the unique strengths of proofs versus other approaches for achieving CPS correctness
make proof languages relevant to the broader CPS and embedded systems community. All who
develop CPS and embedded systems have a vested interest in the systems’ correctness, thus novel
verification technology is relevant to all. Though formal proofs can present a learning curve for
the broader community, this fact reiterates the value of language-based verification approaches,
because each advancement in language design might help flatten verification’s learning curve.
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This paper presents a standalone structured proof language and tool named Kaisar, the first
proof language for CdGL. At the highest level, Kaisar’s novel design follows from two core de-
sign principles which respectively come from CdGL’s constructivity and structured proof lan-
guages (Section 2): (I) The Curry-Howard isomorphism for games says that a constructive game
proof consists of a programmatic strategy, which behaves like a hybrid system, and a correct-
ness proof for that strategy. (II) Proofs should be stable in the sense that a revision to one model
or proof statement will not require non-local changes to conceptually unrelated statements.

These principles manifest in features which support design priorities including readability, main-
tainability, ease of expression, and flattening the learning curve. Given the current state of the art
(e.g., the language Bellerophon [13] for unstructured dL proofs in the KeYmaera X [14] theorem
prover), these priorities remain crucial to productivity and accessibility of new languages. Since it
is difficult for experiments to conclusively assess the above design priorities, our empirical evalua-
tion (Section 5) uses incomplete metrics as proxies, such as counts of total or changed proof lines.
Those metrics are crucially supplemented with ample examples by which the reader may assess
readability and with discussion of how our novel design decisions pursue the goals.

Principle I is the organizing principle for our workflow’s learning curve. Organizing proofs
around strategy programs with inline annotations both allows easy visual tracing of the relation-
ship between proof and code and also lets us exploit insights on readability, maintainability, and
scalability from programming language design. First, the user simply writes a hybrid game strategy,
analogous to a hybrid system. Next, specifications are inserted gracefully and iteratively into the
model, then Kaisar attempts automatic proofs. If models are simple, the hardest task, manual proof,
can be completed avoided. More often, manual proofs are used, but only for crucial questions and
only once easier tasks are completed. Lastly, the approach is extended from strategies to games
with automatic refinement reasoning [5] that checks whether a given strategy plays a given game.
This ability to build game verification on top of systems verification is crucial (because games are
avant-garde) and also key to Kaisar’s learning philosophy. We do not pursue broader accessibil-
ity by removing the need for proof expertise, but by designing Kaisar to simplify acquiring that
expertise.

Principle II is intentionally broad because stateful systems like hybrid games require notions
of proof stability which subsume, yet exceed, those in common use. Structured proofs (Section 2)
support stability with features like giving persistent names to proven facts for future reference and
defining reusable helper functions that decompose large models. Kaisar additionally introduces a
new feature, labeled reasoning, which provides stable references to past and future system states.

Labeled reasoning significantly simplifies a variety of particularly important CPS paradigms:
(i) model-predictive controllers [25] that predict future states to make safe control choices, (ii) ODE
invariant [25] proofs that compare current and initial states, (iii) stability proofs [8] that track
change in distance, (iv) liveness [25] and reach-avoid [4] proofs which require progress arguments,
(v) sandbox controllers [6] that allow the model-predictive approach to safely interact with external
control code, which is key for synthesis [3].

We prioritize presenting the Kaisar language and its uses over presenting implementation de-
tails, but we briefly note that the implementation of Kaisar’s novel design overcomes novel tech-
nical hurdles. Because hybrid games have mutable state to accurately reflect the state changes of
dynamical systems, Principle II and especially labeled reasoning require a systematic treatment
of past and future state. The extended version of this work [3, Ch. 7], describes that treatment:
in combination with rich data structures for organizing assumptions and definitions, a notion of
static single-assignment proof is used which is inspired by the standard notion from compilers [10],
but serves a distinct purpose of systematically naming and remembering historical program state
for easy processing by high-level proof automation.
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Related work, including comparisons of Kaisar against other structured proof languages and
against Bellerophon, is in Section 2. The connection between games and systems is explained in
Section 3. The heart of the paper, Section 4, introduces Kaisar. It starts with toy examples but builds
to fundamental paradigms. Kaisar is evaluated against Bellerophon, KeYmaera X’s unstructured
language for proofs, on existing case studies in Section 5. Future work is in Section 6.

2 RELATED WORK

We first discuss formal methods for CPS besides theorem proving, then languages related to Kaisar.
For space reasons, we only cite a representative subset of related works.

Formal Methods for CPS. Hybrid systems, a fragment of hybrid games, are canonical models of
CPS because they can model both discrete and continuous change. The two main categories of
(offline) verification methods for hybrid systems are reachability analysis and theorem-proving.
Reachability analysis typically achieves a higher degree of automation, but restricts the class of
allowed models or correctness properties in order to provide scalability. To give a few prominent
examples, SpaceEx [12] scales to ODEs with over 100 variables, but does so by assuming ODEs are
affine (≈linear) and using conservative overapproximations of (sets of) system states. Unbounded-
time safety guarantees are only supported when they can be shown over the conservative dynam-
ics. Flow* [9] is notable for supporting non-linear ODEs, but only supports bounded-time safety
for conservative state representations. Theorem-proving approaches such as dL [30] and CdGL [4]
can show unbounded-time safety and liveness of non-linear ODEs with exact state representations
at the cost of less automation, thus greater reliance on human proof insights to enable scalability.

Other major formal methods topics include runtime verification [33] and synthesis. Runtime ver-
ification shows correctness via runtime checks. Synthesis is the generation of correct code from
a model, specification, and sometimes a proof. For CPS, runtime verification and synthesis have
been combined. For example, VeriPhy [6] generates controllers that sandbox an untrusted con-
troller by replacing any potentially-unsafe action with proven-safe ones. VeriPhy yields a highly
formal, machine-checked proof that an implementation is correct. The first author’s thesis [Ch.
8][3] builds on the present paper to provide a novel synthesis tool for Kaisar in a similar approach.

Code is rarely synthesized from games, and even then only small fragments [18] are addressed.
More often, games are used internally to implement synthesis for hybrid systems [37]. As with
theorem proving and reachability, hybrid systems synthesis approaches make tradeoffs between
expressiveness, decidability, and scalability, e.g., VeriPhy-style synthesis requires a proof to over-
come decidability, but supports non-linear ODEs and provides rigorous machine-checked proofs of
correctness for generated code. Synthesis approaches without reliance on human proofs [18, 35, 37]
typically limit the class of hybrid systems or accept that synthesis will not always succeed.

We now discuss three classes of languages related to Kaisar. The classes are not mutually ex-
clusive. Kaisar combines all three and other provers have combined structured and unstructured
proofs [16, Section 2.2.2] or combined unstructured proofs with limited annotation support [14].

Structured Proofs. Structured proofs allow a high degree of generality and control without sac-
rificing readability. Mizar [16] is the canonical structured proof language and Isar [38] is another
prominent example. Structured features can include fact naming, function definitions, declarative
block structure, and explicit syntax for low-level proof steps.

Kaisar innovates relative to other structured languages in its foundations, design, and imple-
mentation. Whereas Mizar and Isar are respectively founded in set theory and higher-order logic,
Kaisar is founded in a program logic, whose rich, frequent, and non-trivial changes in mutable
state demand a novel design and implementation. Questions of state, though of broad interest,
are certainly of special interest to CPS, which fundamentally rely on state changes resulting from
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their underlying discrete and continuous dynamics. A key novelty of Kaisar’s is its concise and
maintainable notation for reasoning across states. Kaisar’s implementation is equally novel be-
cause it automatically manages state to ensure soundness. For example, a true property may later
become false if some variable it mentions is reassigned, so Kaisar automatically distinguishes past
and current truth. Such careful state managament is essential any time proof and mutation are
intermixed, but it culminates in labeled reasoning, Kaisar’s novel structuring principle for state-
ful systems. Labeling shows its novel impact by simplifying proofs of common CPS proof idioms
(Section 4.8).

Compared to previous structured languages, a second major innovation of Kaisar is its built-
in support for games and specifically its built-in automation for refinement proofs which reduce
hybrid game verification to hybrid system verification. Though the logics underlying Mizar and
Isar are generic enough to formalize games [31] and refinements [2], neither system provides any
special automation for games or refinements. Such automation is crucial to Kaisar’s approach
toward a flat learning curve because it reduces the learning of game verification to two simpler
tasks: learning systems verification and learning (automated) refinements.

Annotation-Based Verification. Annotation-based languages allow gradually adding concise,
high-level specifications to existing models or programs, but can only scale when verification of
those specifications is supported by additional features. Annotation-based proofs are founded in
proof outlines, introduced by Owicki [26] and further studied by Apt et. al. [1]. Proof outlines
annotate programs with assumptions, invariants, and optionally with assertions that must hold
at a given intermediate point. Canonical examples of tools using this approach include the ESC
family [20].

KeYmaera X provides limited annotations for CPS proofs: loops and ODEs can be annotated
with invariants that are consumed by a fully-automatic proof procedure. The crucial limitation is
that the verification paradigm changes entirely once fully-automated proofs fail: the user writes a
proof in Bellerophon [13] or equivalently interacts with a user interface that generates the proof
script.

Tactics and Unstructured Proofs. Other relevant languages include tactic languages [11, 23, 39]
(often capable of implementing automation) and unstructured proof languages [17, Ch. 7][13]
(for writing concrete, individual proofs). The prover’s implementation language may be used,
or a domain-specific language may be provided. We give special attention to KeYmaera X’s
Bellerophon [13] proof language, because its underlying logics dL and dGL are direct ancestors
of the logic CdGL which Kaisar targets and because Bellerophon is applied to the same appli-
cation domain: CPS. Though the application domains and underlying logics of Bellerophon and
Kaisar are intimately related, the two languages could not be more different, when considered as
languages.

The core Bellerophon language is barebones and combines built-in proof procedures using
regular-expression style operations. For example, sequencing allows one proof step to be applied
after another, repetition allows applying the same method multiple times, and alternation allows
several different proof attempts to be tried, until one succeeds. In contrast, Kaisar has a richer core
language, whose key concepts include freely mixing models with proofs, freely mixing automatic
and manual proof styles, freely introducing names and definitions, and the new labeling feature.

By building powerful language constructs into its core design, Kaisar makes its high-level design
goals far easier to achieve, in support of key practical goals such as ease of learning, readability,
and maintainability. Thus the design differences between Bellerophon and Kaisar are not merely of
narrow linguistic interest, but relate directly to Kaisar’s core practical goals. We enumerate several
important practical benefits of Kaisar’s language-driven approach.
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Firstly, Kaisar provides traceability, i.e., Kaisar makes the relationship between proof statements
and model statements immediately obvious: because proofs are written inline with model state-
ments, it is always clear which model statement is proved by a given proof statement. Traceability
is a crucial aspect of readability, yet it is not provided in Bellerophon, where proofs and models are
completely separate from one another and can differ significantly in their structure and content.

Secondly, by choosing core language concepts which are broadly agreed to promote main-
tainability, Kaisar greatly increases the odds that maintainable models and proofs are written in
practice and not only in theory. For example, fact naming is a core Kaisar language feature that
Bellerophon does not provide. The core Bellerophon design refers to facts using numeric indices,
which are highly unstable during proof maintenance (e.g., in case studies mentioned in Section 5)
and do not provide useful high-level information to a reader, and are thus far less likely to re-
sult in maintainable proofs when compared to fact names that are stable during maintenance and
can communicate high-level information. Because the core Bellerophon language design refers
to facts unmaintainably, alternative features must be added after-the-fact. For example, the latest
release of Bellerophon builds optional search-based references on top of numeric ones: the proof
author can ask Bellerophon to search for the index of a suitable formula instead of writing the
index manually. When high-level features are added after-the-fact, they remain optional. Because
older features are typically better-known and better-documented, they are likely to see continued
use from users who stand to benefit from switching to new features. In short, Kaisar makes en-
tire classes of bad proofs impossible, whereas Bellerophon merely makes good proofs possible for
expert users.

Thirdly, Kaisar’s language-based approach enables advanced features which would be far more
difficult to implement without special language support. Kaisar provides to the language implemen-
tation a global view of the model and proof, including detailed information on how program state
changes over time. This global view is used to give facts persistent names which can be soundly
accessed even after the program state changes and is also used to implement the new labeled
reasoning feature. Both features would be difficult to implement without this global view, which
is why neither feature was provided in Bellerophon. The advantages of the language-based ap-
proach are particularly strong when several advanced features must co-exist: though Bellerophon
and Kaisar both allow definitions, Kaisar’s rich language data structures allow freely combining
those definitions with labeling and naming, which would be hard to implement otherwise.

In contrast to the highly general notion of backward and forward labeled references provided
by Kaisar, its predecessors provided only limited special cases of historical reference because they
lack the rich data structures that make Kaisar’s labeling feature possible. There are many tools with
limited historical reference features, of which we cite only a selection [1, 14, 19, 26] and discuss
Bellerophon specifically, because the limitations of the different tools are similar. In Bellerophon,
the notation old(e) stands for the value of the expression e at the start of the program being
proved in the current proof state. References to arbitrary previous states are not supported directly,
nor are references to hypothetical future states. As we discuss in Section 4.8, hypothetical future
references are crucial to expressing a variety of reusable CPS proof idioms in Kaisar. Because
Kaisar’s labeling feature enables important classes of proof approaches which past tools did not
support, it is an entirely new feature in the qualitative sense, i.e., it is so much more general that
it can be (and is) used in notable ways that its predecessors cannot.

Though the contributions of Kaisar compared to Bellerophon are significant, we note that
Bellerophon also contributed important features when compared to general-purpose proof lan-
guages and that those past contributions have helped to make Kaisar possible. Compared to
general-purpose provers, Bellerophon is notable because it provides a broad library of domain-
specific features for proofs about CPS. Those features range from low-level sequent calculus proofs
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to automated proof search and invariant reasoning. Though Kaisar also broadly supports low-level
manual proofs, automated proof search, and invariant-style proof, Bellerophon enjoys the benefits
of age and thus currently provides a more mature standard library. For example, Bellerophon has
access to advanced invariant search methods [34] which are not yet provided in Kaisar.

In summary, Kaisar’s language design provides major novel features when compared to any
of its predecessors, including previous structured languages as well as Bellerophon. These novel
features are not incidental, but rather they directly support Kaisar’s goals of providing a gentler
learning curve for CPS verification and supporting readability and maintainability.

3 CONNECTING GAMES TO SYSTEMS

We connect Kaisar and CdGL [4]. Kaisar is CdGL’s first proof language and tool. Previously, CdGL
only had a low-level proof calculus for paper proofs. Knowledge of CdGL foundations is not as-
sumed in later sections, but this section is aimed at readers interested in the foundations. Formu-
las ϕ,ψ , ρ of CdGL describe existence of computable, non-random winning strategies for 2-player,
zero-sum, perfect-information hybrid games α . Such winning conditions are used to express cor-
rectness theorems. CdGL formulas also include statements about real-valued arithmetic terms f ,
which are often a key part of correctness statements. Terms f , which also appear in games, allow
polynomials, division, and user-defined functions. We define the language of hybrid games as a
recursive grammar. The notation below says games α , β are produced (::=) by freely combining
each game construct. Vertical bars ( | ) are written between (the syntax of) each construct.

α , β ::= x := f | x := ∗ | x ′ = f &Q | ?ϕ | α ; β | α ∪ β | α∗ | αd

Game x := f deterministically assigns variable x : R the value of term f . Game x := ∗ lets the
player pick the value (in R) of x nondeterministically. Game x ′ = f &Q evolves the ODE x ′ = f
for a time 0 ≤ d ∈ R chosen by the player, where the player provesQ holds continuously until time
d . Game ?ϕ is a no-op if the player can prove ϕ, else they lose immediately. Game α ; β is α followed
by β . In α ∪ β, the player picks which of α or β to play. In game α∗, the player chooses after each
play of α whether to play another round. Game αd plays α with the two players reversed.

The players’ standard names are Angel and Demon. In CdGL, Angel is our player, controlled
computably, while Demon is our adversary. The key formulas of CdGL are 〈α〉ϕ and [α]ϕ, which
both mean we (Angel) win α with postcondition ϕ by playing a constructive strategy. They differ
in that we (Angel) control all top-level choices in 〈α〉ϕ while the opponent (Demon) controls all
top-level choices in [α]ϕ . Colloquially, Angel “moves first” in the former case and Demon “moves
first” in the latter. Dualities switch control between players, e.g., Demon resolves the value of x
in 〈{x := ∗}d 〉x2 ≥ 0. For a given logic, a proof system is sound if all proofs it accepts have valid

conclusions. The notion of validity differs between logics. We define Kaisar’s soundness relatively:
all proofs it accepts must have conclusions provable in the (sound) CdGL [4] proof calculus.

Following the Curry-Howard isomorphism for games [4], Kaisar proofs consist of executable

strategies for CdGL games and proof annotations. Kaisar strategies differ from game syntax by
replacing the duality operator with new high-level Angelic constructs. Kaisar strategies are no
less general than CdGL games, but first we show how CdGL theorems are inferred from Kaisar
proofs.

To find the CdGL formula proved by a Kaisar strategy, Kaisar automatically reads off a game α ,
called the strategy’s game reification, and a postconditionϕ, such that the strategy proves the CdGL
formula [α]ϕ. The crucial step is finding α . We define α as the game that forces Angel to follow
her given strategy, but makes no new restrictions on Demon’s strategy since he is an adversary.
The restriction to shape [α]ϕ does not lose generality due to the equivalence [αd ]ϕ ↔ 〈α〉ϕ.
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In the most basic Kaisar workflow, the user never needs to write a theorem statement in CdGL.
After writing their strategy, the user can write the command conclusion proofName; which will
automatically compute proofName’s game reification and display the proven CdGL theorem. This
automation is important for reducing Kaisar’s learning curve because it allows a user to start using
the Kaisar proof language with no prior knowledge of the CdGL logic.

By inferring CdGL theorems from Kaisar proofs, we have connected Kaisar to CdGL, but the
converse connection also matters: can every (low-level) CdGL proof be written in Kaisar, so that
Kaisar is fully general? The practical answer is “yes,” except for a few advanced proof rules [4, Rule
DV]. We discuss Kaisar’s generality via discussion of Kaisar’s proves command. Once theProof
has been checked with its default conclusion, writing proves theProof “[α]ϕ”; asks Kaisar
whether [α]ϕ is (another) valid conclusion of theProof. To reduce the learning curve, proves is
optional, meant for users who find the generated conclusion too verbose.

The proves command is built on automated refinement reasoning [5], which allows generalizing
theorems about one game to a different game. The key rule is refinement elimination [5, Rule R[·]],
which concludes [β]ϕ from the known fact [α]ϕ for any game β which α refines. To apply the rule
and prove [β]ϕ, the crucial step is to check whether α refines β .

Automated refinement-checking follows game and proof structure, letting them differ by simple
game-algebraic [15] laws like distributivity ([5, Rule ;dR]). Strategies’ leaves may use more precise
connectives than the game, but not vice-versa. Notably, deterministic assignments x := f are
reused as strategies of Angelic assignments {x := ∗}d . Differences in assignments are one way that
a game can admit many different winning strategies. When the strategy contains statements (often
assertions of lemmas) not appearing in the game, Kaisar’s ghost statements (Section 4.6), which
serve as justifications but are not interpreted as code, let the refinement checker soundly erase
statements. These refinement methods suffice in both practice and theory; we explain practice first.

The above methods suffice in practice because a typical CdGL proof roughly follows the shape of
the game it proves. If proves fails, the failure’s reason and location are reported. Most failures are
fixed by adding ghosts or ensuring the model and proof make the same assumptions. If refinement
still fails, it may indicate that the user truly wrote a strategy that plays the wrong game.

It would suffice as theoretical justification of Kaisar’s generality to show that for every proof
of a CdGL formula [β]ϕ, there exists a Kaisar strategy whose game reification α can be proven to
satisfy postcondition ϕ and refine β, using the same refinement rules provided by our refinement
checker. The theory of refinement [5] goes further by producing a notion of system reification, i.e.,
it produces game reifications which happen to be proper hybrid systems (1-player games).

It is a theorem [5, Thm. 10] that for every proof of a CdGL modality [β]ϕ, game β is refined by
the system reification α . It is also a theorem [5, Thm. 9] that [α]ϕ is provable in CdGL, i.e., the
game postcondition also holds of the system reification. Crucially, the proof of each consists of
an algorithm that explicitly demonstrates which rules are needed to check refinements and which
CdGL rules are used to prove [α]ϕ. The refinement-checking algorithm provided by the proof is
the direct inspiration for Kaisar’s refinement checker and the CdGL rules used are, with minor
exceptions [4, Rule DV], also provided by Kaisar. In summary, every CdGL paper proof can be
divided into a proof about systems, which are a subset of strategies, and a refinement proof. In
typical use, each proof uses techniques available in Kaisar, thus CdGL proofs can in principle be
mechanically translated into Kaisar strategies and the use of Kaisar’s refinement checker.

Though this argument for Kaisar’s generality was nontrivial, Kaisar’s refinement-based para-
digm itself has the key strength of smoothing Kaisar’s learning curve. Strategies, which act like
hybrid systems, can be verified first, then results can be generalized to hybrid games after the
fact.
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Even though game proofs can be reified as systems, games provide unique advantages in Kaisar
compared to systems. Games support stronger separation between model and proof; for example,
controller models can concisely list the available actions but defer the determination of each ac-
tion’s safety conditions to the proof. As control complexity grows, this separation makes models
shorter, thus typically easier to read, communicate, and trust. On the flip side, verification is more
mature for hybrid systems than for games, so Kaisar’s access to hybrid systems techniques is a
benefit.

The CdGL refinement calculus is at least as expressive as CdGL, thus undecidable [5]. Because
the proves command should always terminate, it uses an incomplete, yet flexible refinement
checker.

4 KAISAR BY EXAMPLE: PROVING HYBRID GAMES

We present the Kaisar language in detail by giving examples which start with toy proofs and
conclude with demonstrations of major idioms: (logical) model-predictive control, sandboxing,
and reach-avoid correctness. As we discuss the examples, we discuss crucial issues of logical
soundness, i.e., ensuring that only correct proofs are accepted. For full-scale case studies, see
Section 5.

We use the adjective Angelic for things we control and Demonic for things we do not, following
the names Angel for our player and Demon for the opponent, respectively. Following the Curry-
Howard isomorphism for games [4], Kaisar proofs prove that Angel computably wins some hybrid
game, meaning she reaches the game without failing any tests, assuming Demon passed his tests
as well. If Demon fails a test, Angel wins immediately. The word fact refers to a formula that is
true, either by proof or because it was assumed.

4.1 Core Propositional Connectives

We begin with propositional operators. Each ? statement, such as in the first line below, means an
assumption. Assumption statements are Demonic tests in that Demon loses if the test condition is
not provable. In this syntax, x = 0 and x = 1 are formulas and bit is a fact name. Dually, an
Angelic test is an assertion, written with the ! symbol. Angel loses an Angelic test if she cannot
provide a constructive proof for it. Kaisar will attempt an automatic proof first, but the user must
manually justify the assertion with an unstructured proof (Section 4.2) if automation does not
suffice.

Symbol ++ is plaintext notation for Demonic choice (∪): when the game is played, our opponent
chooses which of the two branches are played. Kaisar’s treatment of named facts handles choices
automatically, but soundly: because bit is a different formula in each branch. When bit is men-
tioned after the end of the choice, it refers to the (constructive) disjunction x=0 | x=1 because
Angel did not get to choose which branch was taken by Demon. We call such lookups disjunctive

lookups because they disjoin facts across branches. If x is neither 0 nor 1, then Demon fails a test
regardless which branch he takes, at which point the game terminates and Angel wins. Next is a
switch which accepts as its argument the disjunction bit. A switch may omit its argument, in
which case Kaisar attempts an automated proof that the disjunction of branch guards is construc-
tively valid. This example needed an argument because the guards in the subsequent cases do not
cover all program states, let alone constructively. A switch is an Angelic choice strategy: once
it is proved that some branch’s guard holds, Angel’s strategy is to choose to play the first such
branch. Each case has a guard formula, which acts as an assumption within the branch. Guard
formulas optionally support the same fact naming notation name:(formula) used in assumptions.
The example below demonstrates Angelic and Demonic tests and choices by proving that 0 and 1
are both nonnegative.

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 93. Publication date: September 2021.



93:10 R. Bohrer and A. Platzer

� �

{?bit:(x = 0); ++ ?bit:(x = 1);}
switch (bit) {
case (x = 0) => !nonneg:(x >= 0);
case (x = 1) => !nonneg:(x >= 0);

}
� �

While the above switch example uses a fact variable as the argument, more general arguments
are permitted, called proof terms, of which fact variables are one kind. The proof term language [3,
Section 7.3.1] has a steeper learning curve than other Kaisar constructs but provides a high degree
of control by explicitly applying proof rules to their arguments. For that reason, the most crucial
practical use of proof terms is when the user has a proof in mind, but automated proof has failed.
Proof terms also appear in note statements. We introduce note next, along with the let statement.

The statement note <name> = <proofTerm> gives a fact <name> to the conclusion of a
<proof term>. Proof terms [3, Section 7.3.1] use function-like syntax to apply proof rules to avail-
able facts. The next example will use the andI rule to conjoin two facts left and right. A side
benefit of note statements is that their conclusions can be computed automatically and thus need
not be written down. Even for facts which could be proven with an assertion, note statements are
sometimes used if writing the conclusion would be tedious.

The let statement gives a name to term-level, formula-level, and game-level definitions, indi-
cated by the symbols =, <->, and ::=, respectively. The let statement is a core building block for
code reuse, thus promoting readability and maintainability as well. Here, square(z) defines z2, du-
plicating the built-in exponentiation operator z^2 for example purposes. If the right-hand side of a
let mentions variables other than the arguments, those variables take their values from the state
where the definition is invoked. The example note below gives formula x < 0 & square(y) > 0,
which is the conclusion of the conjunction introduction rule andI, the fact name both. Rules, in-
cluding andI, are described elsewhere [3, Section 7.3.1].
� �

let square(z) = z * z;
?left:(x < 0); ?right:(square(y) > 0);
note both = andI(left, right);
� �

4.2 Unstructured Proof Steps

In return for expressiveness, proofs often need human insight. Assertions are no exception, because
it is unknown whether the formulas of constructive arithmetic that typically appear in assertions
are decidable [21]. Unstructured proofs express user insights for assertions. The simplest kind is
by <method>, for proof methods including:

method ::= auto | prop | rcf | solution | induction | guard

Method auto is the default when no unstructured proof is given; it combines the following prop
and rcf methods. Methods prop and rcf respectively use simple propositional rules or a first-
order (real-closed field) arithmetic solver. Methods solution and induction are only used in
differential equation proofs (Section 4.5). The guard method is only used in for loops (Section 4.4).

By default, a proof step uses all available assumptions which mention any of the conclusion’s
free variables. Performance depends greatly on the number of assumptions, so it is crucial to allow
choosing assumptions manually, which we do by writing using <assumptions> before by. To
additionally use the default facts, write ellipses (...) in the <assumptions> list. Assumptions can
be proof terms as in note, most often fact names. As the below example shows, difficult arithmetic
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formulas sometimes have simple propositional proofs, in which case prop is helpful. Note that the
user is responsible for avoiding division by zero in x/y.
� �

?a:(x = 0 -> y = 1); ?b:(x = 0 & ((z - x*w^2/(w^2+1))^42 >= 6));
!c:(y = 1) using a b by prop;
� �

Constructive Arithmetic. Kaisar, like KeYmaera X [14], supports automation of arithmetic
proofs in Mathematica. Classical arithmetic is decidable [36], but constructive decidability is un-
known [21], so Kaisar checks that constructive and classical truth agree before soundly applying
Mathematica.

Specifically, we check for hereditary Harrop formulas, a significant class where classical and
constructive truth agree [24]. A hereditary Harrop formula is one where the ∨ and ∃ only appear
in assumption positions. Hereditary means that, because implication is a “negative” connective, the
notions of “assumption” and “conclusion” switch each time we look to the left of an implication,
e.g., formula (ϕ → ψ ) → ρ mentions ψ in “assumption position” but neither ϕ nor ρ. Negations
cause switching as well because they are defined as implications ¬ϕ ↔ (ϕ → ⊥). If the goal is not
hereditary Harrop, propositional automation and/or manual proof steps are used first, until it is.

4.3 Verifying Assignments

We add assignments. Deterministic assignment of term f to variable x is written x := f . Demonic,
nondeterministic assignments, where Demon chooses the new value x ∈ R, are written x := ∗.
As discussed in Section 3, strategies of Angelic nondeterministic assignments are just determin-
istic assignments x := f . Deterministic assignments can optionally use assumption-like syntax
?id:(x := f); where id gets bound to an equality formula stating that the value of x after
the assignment equals the value of f before. Do not be misled by assumption-like assignment
syntax. The assignment ?id:(x:=f); updates the assigned variable x , thus it is distinct from an
assumption statement ?id:(x=f); that introduces an assumption on the current value of x . The
counterpart !id:(x := f); does not exist. The example below amounts to showing x + 1 > x for
all x .
� �

x := *; y := x + 1; ?zEq:(z := y); !cmp:(z > x) using zEq ... by auto;
� �

4.4 Verifying Demonic and Angelic Loops

We add Demonic and Angelic loops. Demonic loops, where Demon chooses when to repeat the
loop, are written {<body>}*. Angel proves a Demonic loop using an invariant, which she usually
gives a name, e.g., inv. Identifying a loop invariant is a key proof step where human insight is
required to overcome the undecidability of hybrid systems. First, Angel proves the base case just
before the loop. In the body, fact name inv stands for the assumption that the invariant held at
the body’s start. The body must end with a proof of the same invariant in the body’s final state.
Used after the loop’s end, inv is the now-proven fact that the invariant holds at the loop’s end.
The below example shows x ≥ y is an invariant if x initially equals a constant y, then increases.
� �

?yZero:(y := 0); ?xZero:(x := 0); ?cPos:(c = 3);
!inv:(x >= 0);
{ x := x+c; !inductiveStep:(x >= 0) using cPos inv by auto; }*
!geq:(x >= y) using inv yZero by auto;
� �

We also take this opportunity to review Kaisar’s persistent fact naming: fact xZero stays acces-
sible even after the loop modifies x, but merely says the old value of x was zero, as it would be
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unsound to assume that x remained zero in or after the loop. At the end, clearly yZero and cPos
still hold.

Angelic loop proofs are based on for loops, but differ by having additional notation for invariant
and termination reasoning. Our toy example will compute the triangular numbers by sums and
prove that Gauss’s formula is their solution. Non-toy uses of for loops in CPSs are in Section 4.8.

We first discuss loop headers, which have four parts. We present and discuss the header for our
summation example here, then give the full example after discussing the header.
� �

for (x := 1; !(sum = sol(x)); ?(x <= 11); x := x + 1) { ...... }
� �

We describe each part and its role in the following example: i) An assignment initializes the
loop index variable (here, x is initialized to 1). ii) An invariant is proved to hold initially (here, sum
= sol(x) solves the sum as a function of x). When the invariant fact is mentioned in the loop
body, it means the invariant held at the start of the body. iii) A guard condition is provided which
determines when the loop stops. To ensure termination, it must contain (perhaps as a conjunct)
an inequality which gives a locally-constant upper (respectively lower) bound on an increasing
(respectively decreasing) index variable. In the example, x <= 11 bounds x above by 11, ensuring
termination. The value 11 is an arbitrary example. Advanced uses of guards often combine upper
bounds (which show termination) and lower bounds (which show progress). iv) The index is mod-
ified (here, incremented by 1). The sign and constancy of the increment (1) are checked; because
1 is positive and the guard bounds x above, the loop is proved to terminate.
� �

?deltaLo:(delta > 0);
?deltaHi:(delta < 1);
let sol(x) = x*(x+1)/2;
sum := 1;
for (x := 1; !(sum = sol(x)); ?(x <= 11); x := x + 1) {
sum := sum + (x+1);
!step:(sum = sol(x+1));
}
!done:(x >= 11 - delta) by guard(delta);
!total:(sum >= 50) using done sum x deltaHi by auto;

� �

Above, we first assume that delta, which we use for sound real-number comparisons, is in the
interval [0, 1]. Next, we solve thex ’th triangular number in terms ofx by Gauss’s formula. Variable
sum is initialized to the first triangular number (1) and stores the x ’th triangular number as x grows.
We recall the loop header’s meaning: x ranges from 1 to 11 (for example) and Gauss’s formula is
the invariant. The loop body adds x+1 to sum, thus sum becomes the next (x+1) triangular number.
The next step asserts that Gauss’s formula holds for x + 1 assuming it holds for x .

Constructivity makes Kaisar’s real arithmetic subtle: exact real comparisons are undecidable, so
constructive comparisons are inexact. The user optionally specifies the loop guard’s comparison
precision (above: delta) with the special guard proof method. We learn x >= 11 - delta upon
termination since loops end once Kaisar cannot prove the guard true; in the worst case, the guard
holds, but only by a small (delta) margin. The assertion total derives a final bound on sum from
the bound on x. Note that comparison inexactness is one-sided: termination consequence done is
made inexact by a margin of delta so that loop guard x <= 11 need not be made inexact.

In serious uses (Section 4.8), the compared quantities will be proper real numbers rather than
natural numbers, so that inexact comparisons become essential to ensure constructivity and thus
essential to ensure that proofs correspond to executable code. The above example may surprise the
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reader in its use of real numbers to model basic properties of natural numbers; this use is atypical
in practice and serves only as a simple demonstration of for loops.

The argument of the guardmethod can be omitted. If so, guard heuristically searches the context
for positive constants which it reuses in an effort to reduce the number of variables used.

4.5 Verifying Hybrid Games

We now make game strategies hybrid by adding ordinary differential equation proofs (ODE proofs),
then adding crucial proof principles including differential induction, cuts, and solutions [29, 30].
This combination of proof principles reflects Kaisar’s goal of making easy proofs easy but hard
proofs possible: solution reasoning improves automation for simple ODEs while differential in-
duction reasoning supports polynomial ODEs which need not have any closed-form solution, by
exploiting human insights in the form of invariants. In CdGL, the equations of an ODE system
are comma-separated, followed optionally by a domain constraint specifying formulas which must
hold throughout the duration of the ODE. Each domain constraint element is prefixed by the &
symbol like a conjunction. In CdGL, the current player is responsible for choosing the ODE dura-
tion and proving the domain constraint holds at all times up to and including the duration. The
syntax of an ODE proof in Kaisar generalizes the syntax of an ODE system: the statements in
a domain constraint proof include assumptions (?) and/or assertions (!), which are respectively
assumed or proved to be true at all times throughout the ODE’s evolution. To make their syntax
visually distinct, ODE system proofs are wrapped in braces before their terminating semicolon.
We demonstrate the major proof principles on Demonic ODEs first, then add support for Angelic
ODEs.

Assertions (!) in Demonic ODE proofs correspond to differential cuts [30, Ch. 11.11] in CdGL,
meaning they are proved rather than assumed. Differential cuts are crucial in both theory and
practice because, in combination with differential induction, they can prove facts that the latter
could not prove alone [30, Ch. 11.11]. To prove that a differential cut holds at all times throughout
an ODE, Kaisar fixes a time, assumes that previous assertions (and all assumptions) in the domain
constraint hold at that time, then proves the cut (assertion) formula holds at that time. An assertion
in an ODE automatically reasons by its solution if available, else by induction. The solution and
induction methods force the respective approaches. The solution method reports an error on
an ODE whose solution is non-polynomial.

As the next example shows, for ODEs whose solutions are polynomial Kaisar terms, streamlined
solution reasoning is available because polynomial solutions are amenable to automatic arithmetic
solving. The assertion checker automatically uses solutions when relevant. For manual control,
explicit assertions (xSolAgain below) can also be used. Recall (Section 4.3) that ?xInit:(x := 2);
binds xInit to the equality induced by the initializing assignment x := 2.
� �

?xInit:(x := 2); y := 0;
{y' = 1, xSol: x' = -2 & ?dc:(x >= 0) & !xSolAgain:(x = 2*(1 - y))};
!xHi:(x <= 2) using xInit xSol by auto; !xLo:(x >= 0) using dc by auto;
� �

Differential induction [30, Ch. 10-11] is crucial because real models often use ODEs that do not
have closed-form solutions, let alone polynomial ones. In contrast to the solvable fragment above,
Kaisar’s differential induction allows verifying ODEs with polynomial right-hand sides, a broad
class containing both linear and non-linear equations. Differential induction can support this broad
class of ODEs because it reasons analytically on the definition of the ODE and need not know its
solution. For example, an equality f = д between differentiable terms holds by induction if f = д
holds initially and ( f )′ = (д)′ holds throughout. This argument does not rely on ODE-solving.
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Differential induction proofs have base cases and inductive cases like loops do, but differ in that
it is optional to write base cases explicitly. Kaisar attempts an automatic base case proof by default.
To use an explicit proof instead, assert the base case just before the ODE.

Our next example, circular motion, is a common use of differential induction, since many circular
models are nonlinear (e.g., multi-affine [7]) and even simple ones have undecidable trigonometric
solutions. Our example models constant-speed rotation and proves (circle) that (x ,y) stays on
the unit circle. In Section 5, the same differential induction rule is used in serious case studies.
� �

x : = 0 ; y : = 1 ; { x ' = y , y ' = −x & ! c i r c l e : ( x ^2 + y^2 = 1 ) by i n d u c t i o n } ;
� �

Next we discuss Angelic ODEs, where Angel, not Demon, chooses the ODE duration and must
prove the domain constraint. To make an ODE Angelic, we add one assignment to the domain
constraint to specify Angel’s chosen duration. The assigned variable, often named t , must be a
clock, i.e., have initial value t:=0 and derivative t'=1. Because Angel is responsible for proving
the domain constraint, assumption statements are disallowed in every Angelic domain constraint
proof. The below example models 1D driving with an Angelic ODE.
� �

?(T > 0); ?accel:(acc > 0);
x := 0; v := 0; t := 0;
{t' = 1, x' = v, v' = acc
& !vel:(v >= 0) using accel by induction
& !vSol:(v = t * acc) by solution
& !xSol:(x = acc*(t^2)/2) by induction
& ?dur:(t := T)};

!finalV:(x = acc*(T^2)/2) using dur xSol by auto;
� �

The reification of ODE proofs into CdGL games (Section 3), differs subtly between Demonic and
Angelic ODEs. In the Demonic case, the reified domain constraint contains only the assumptions,
because Demon is responsible for showing the domain constraint of a Demonic ODE, which Angel
can thus assume. The reified domain constraint of an Angelic ODE contains assertions, since Angel
is responsible for proving the domain constraint; indeed, assumption statements are prohibited in
Angelic domain constraint proofs. If the user wants to exclude an assertion from an Angelic ODE’s
reification, they enclose it in a (forward) ghost, which we describe next. Ghosts are not specific to
ODEs; they can be applied to any sequence of Kaisar statements.

4.6 Uniform Ghost Reasoning

Recall that it is important for Kaisar to check (Section 3) what theorem is proved by each strategy
in order to clearly communicate the results of verification, but the checker sometimes requires
hints from the user. Those hints are crucially provided using Kaisar’s notions of forward and in-
verse ghost statements, which are respectively written /++ pf ++/ and /-- pf --/. Informally, a
forward ghost /++ pf ++/ belongs to the proof but not the game, while inverse ghost /-- pf --/
belongs to the game but is unused in the proof. By putting different statements inside ghosts, we
provide uniform notation for several standard logical rules. The weakening and differential weaken-

ing rules, which respectively hide facts and ODE dynamics, respectively amount to inverse-ghosts
of facts and domain constraint statements. The cut and differential cut rules, which respectively
prove lemmas for use as facts and domain constraint elements, amount to forward-ghosts of facts
and domain constraint assertions. Forward ghosts of assertions of lemmas are particularly com-
mon in practice because proofs often feature lemmas not shown in the model. Forward differen-

tial ghosts also enable otherwise-impossible proofs [30, Ch. 12], such as proofs of exponential
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decay properties. Inverse ghosts are used less frequently, but make the language design more sym-
metric and can assist proof automation by signaling that ghosted facts should not be selected as
assumptions.

The proof-checker enforces sound scoping rules for ghosts. For anyy bound by a forward-ghost
assignment y := f , free dependencies on y can only appear in other forward ghosts: it would be
unsound to continue assuming y = f after erasing the assignment y := f . Facts introduced within
an inverse ghost can only serve as assumptions to other inverse-ghost proofs, because inverse-
ghosting of facts represents a weakening proof step, which hides or ignores a fact. In contrast,
non-ghost proofs may use forward-ghost facts because erasing an assertion makes its conclusion
no less true. Subtly, facts p (y) about a forward-ghost variable y can be used to prove non-ghost
facts q() which do not mention y. Such proof steps remain sound after ghost erasure because, in
contrast to facts mentioning y, they say mere existence of y satisfying p (y) implies q(), an argu-
ment which holds equally well if y is never actually assigned. Demonic ODEs’ domain constraints
treat their assertions like forward ghosts because only their assumptions correspond to the domain
constraint of a CdGL game, but Angelic ODEs do not, because their assertions do correspond to the
CdGL game’s domain constraint. Crucially, Kaisar enforces these soundness rules automatically
to protect the user from accidentally-unsound uses of refinements.

The next example shows forward-ghost assertions and assignments. The example remembers
the value of x iny with a ghost assignment. Ghost assignments will be essential in differential ghost
proofs to initialize ghost variables before an ODE. At the same time, the example is preparation
for line labels (Section 4.7), which provide a more automatic mechanism to remember states in
practice.
� �

?xInit:(x > 0);
/++ ?yInit:(y := x); !inv:(x >= y); ++/
{ x := x + 1; /++ !(x >= y) using inv by auto; ++/ }*
!positive:(x > 0) using inv yInit xInit by auto;
� �

Assertions such as inv which mention y were crucially ghosted for soundness, whereas assertion
positive does not mention ghost y and need not be ghosted.

Next, we use a differential ghost to add a continuously-changing variable y to an ODE. We show
a canonical use: differential ghosts are essential for proving invariants of exponentially-decaying
systems because those properties are often non-inductive: they approach falsehood without reach-
ing it. To use a differential ghost variable y, we initialize y with a ghost assignment, then give a
ghost proof of an invariant. The invariant is proved true at all times throughout the ODE, after
which it is used to prove a conclusion (e.g., positive) which does not mention the ghost.
� �

x := 1; /++ y := (1/x)^(1/2); !inv:(x*y^2 = 1) by auto; ++/
{x' = -x, /++ y' = y * (1/2) ++/ & !inv:(x*y^2 = 1) by induction };
!positive:(x > 0) using inv by auto;
� �

Soundness requires that the addition of a forward differential ghost variable does not reduce
the ODE’s existence interval (by introducing an infinite asymptote [30, Ex. 12.2]). To ensure this, it
suffices [30, Lem. 12.2] that Kaisar require that the right-hand side fory ′ is linear iny. The invariant
for the ghosted system (here, x · y2 = 1) sometimes seem unintuitive, but can be constructed
systematically [30, Ch. 12] for all true differential equation invariants [32]. Kaisar’s enforcement
of these soundness conditions crucially protects the user should they attempt an unsound ghost
proof.

We now discuss inverse ghosts. Whereas forward ghosts represent proof statements not ap-
pearing in a game, inverse ghosts represent elements of a game which must not be used in the
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proof. Inverse ghosts in ODEs can be used to forget irrelevant dynamics in order to optimize (au-
tomatic or manual) reasoning about the remaining dimensions of the dynamics. Below, we forget
unsolvable dimensions which move in a circle and reason by the (linear) solution of the other
dimension z.
� �

z := 0; {/-- x' = y, y' = -x --/, z'=1 & !zPos:(z >= 0) by solution}
� �

Inverse ghost tests can be useful to indicate that a test should not be selected by automated fact
selection heuristics in following proof steps. The toy example below supposes we wish to model
a 3-dimensional system where motion occurs in only one dimension x . Inverse ghosts provide
machine-checked documentation that assumptions on the dimensions other than x are superfluous
for the proof and can thus be safely erased.
� �

x := 0; /-- y := 25; z := -10; --/ {x' = 3} !(x >= 0);
� �

4.7 Time-Traveling Proofs with Labeled Reasoning

We introduce labeled reasoning, a Kaisar feature which greatly generalizes previous principles for
references across states (Section 2) by freely mixing past, future, and hypothetical states. Labeled
reasoning is applied in Section 4.8.

Specifically, we allow a line (location) to be given a label: and allow statements elsewhere to
write expr@label to mean the value of the expression as of the labeled line. The label: syntax
is an allusion to labels in assembly code. In stark contrast to assembly programs, Kaisar proofs raise

their abstraction level by using labels, which free the user from manually determining the value of
an expression at a state and manually remembering it in ghost variables. As defined elsewhere [3,
7.3.6], we use an analog of static single assignment (SSA) for systematic variable numbering in
proofs, under-the-hood. We informally discuss SSA throughout the labeling discussion. In con-
trast to the use of SSA in compilers, our notion of SSA for proofs serves as a consistent variable
naming system so that high-level proof techniques for past and future states can be implemented
systematically.

Terminology. We briefly define core concepts. The statement label: is referred to as a label
statement. We call its location the labeled point. Informally, we refer to the point by the name of
the label. The expression e@label is a located expression of expression e located at label. Point
label is the referent of the located expression while the point at which e@label is written is called
the referrer. The difference between any two points, when it exists, is the list of statements which
are passed through on every path from the point that appears earlier to the one that appears later.
Kaisar features an SSA translation where a single variable x from the Kaisar source is translated
to a family of variables (SSA-variants) xi , where x0 is the initial value of x . An expression e is
mobile to label if every free (subscripted) variable xi of e for which i > 0 has been assigned by
point label, e.g., x0 is mobile to everywhere. The subscripted variables xi are crucial for making
mobility possible because they remember old values of x throughout the future even if the current
value of x gets overwritten.1 The current variant xi of x at label is the xi with the greatest i which
is mobile to label. We write x@label interchangeably with the current xi at label when doing
so promotes readability. When Kaisar knows the solution and duration of an ODE, the discussion
of assignments extends to ODE solutions.

1A proof following a loop will not remember each of the loop’s intermediate values because there are finitely many xi . If
xi is bound in one iteration, it can be overwritten in the next, and again after the loop ends.
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4.7.1 Historical Proof with Backward Labels. Backward label references are the simplest and are
commonly used to remember initial states of loops, ODEs, or the overall strategy. Kaisar remembers
for each x and label which xi was current at label. A backward reference expr@label simply
replaces each free variable x of expr with the xi associated to label. Below, x@init becomes x0:
� �

init: ?(y = 0); !bc:(y = 2*(x - x@init));
{ x := x + 1; y := y + 2; !step:(y = 2*(x - x@init)); }*
� �

ODE proofs often inductively track the change in a quantity; in the below example, it increases:
� �

old: {x' = 1 & !greater:(x >= x@old)};
� �

or track the fact that a quantity, such as x + y below, is a conserved quantity:
� �

x:=0; y:=0; start: {x' = 1, y' = -1 & !conserved:(x+y = (x+y)@start)};
� �

4.7.2 Predictable Futures and Forward Determined Labels. Forward references are a powerful
application of labels, yet surprising because the future is often unpredictable. To ease the intro-
duction of forward references, we first discuss the special case of forward determined references
with predictable futures. A forward reference is determined if the difference (path) between referrer
and referent contains only deterministic assignments, Angelic or Demonic tests, and non-program
Kaisar statements. This fragment is a natural stepping stone because the change in state between
referrer and referent can be expressed entirely with deterministic assignments. To resolve e@label
below, start with e and apply each assignment in the difference as a substitution, in reverse order.
� �

x := 0; init: !(x < x@final); x := x + 1; x := x + 2; final:
� �

The difference between init and final above contains x := x + 1; and x := x + 2; so that
x@final resolves to (x@init + 1) + 2. Crucially, a resolved expression is always mobile to the
referrer (e.g., init), i.e., an SSA-variant xi is never mentioned before assignment. Next, differences
of determined labels cannot contain choice (++) statements, but may cross choice boundaries:
� �

x := 0; y := x@mid;
init: { {x := x + 3; mid: x := x * x;} ++ x := 5; }
� �

Wheny is assigned, we do not know whether midwill be evaluated, but know that if mid is reached,
x = 3 holds there. Thus, we statically elaborate x@mid to 0 + 3 so thaty will have value 3. Even the
parallel branch x := 5 is permitted to use x@mid with value 3, but such references are rarely useful.
References which exit choices are also supported; the following example also gives y value 3.
� �

{ {y := x@final; x := 2;} ++ x := 5;} x := x + 1; final:
� �

The approach discussed thus far does not support two important cases: the cases of cyclic
dependencies and references across nondeterministic differences. Cyclic dependencies are
fundamentally an error and are reported by Kaisar automatically. An example is:
� �

x := x@two; one: x := x@one; two:
� �

Each assignment asks the other what value to give x . This cycle is an error because it leaves
both values of x undefined. In contrast, references across nondeterministic differences are not
fundamentally errors, they simply require a generalization which we present below.
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4.7.3 Unpredictable Futures and Hypothetical Label Reasoning. When a forward located ex-
pression’s value is not unique, we reason hypothetically: “Suppose x gets assigned y, what is
the value of e?” We extend our prior notation with arguments: label statement label(var1, . . . ,
varN): lets program variables var1, . . . , varN be replaced with arguments f1, . . . , fN. Located
expression e@label(f1, . . . , fN), now replaces each varI with hypothetical value fI during res-
olution (after resolving each fI recursively if needed). To support forward references between
arbitrary locations, one need only introduce arguments for any variables which were bound
nondeterministically along the difference; Kaisar will report the variables that must be made
arguments, if any. The rest of the section implements major CPS proof idioms with Kaisar’s
hypothetical labels.

4.8 Proof Patterns for CPS

We now demonstrate, by example, how Kaisar in general and labeled reasoning in particular
streamline proofs of major recurring CPS proof idioms. Our first idiom is logical model-predictive

control [22, se 8.1], a proof idiom inspired by model-predictive control [25]. This idiom predicts
the physical change resulting from each available control choice to determine a range (or enve-
lope) of safe decisions. The sandbox paradigm extends the approach by Demonically assigning a
control choice and checking it against the model. The sandbox paradigm is crucial for combining
verified models with practical implementations (Section 6) because it treats (potentially-complex)
controller implementations as untrusted black-boxes. Sandboxing has been used in case studies
because of these practical implications (Section 5). We give a 1D driving example where Angel
wants to keep a safe braking distance SB() between her and the goal (d − x ) while Demon con-
trols the ODE duration t ∈ [0,T ]. Angel predicts the effect of each acceleration in the worst case
t = T and allows (env) all accelerations that preserve SB() ≤ d − x . The proof completes by
an arithmetic step showing that safety for t = T implies safety for all t ∈ [0,T ]. Recall from
Section 4.1 that nullary syntax just means function SB() has no parameters; it may still depend on
the state.
� �

let SB() = v^2/(2*B); let safe() <-> (SB() <= (d-x));
?pre:(T > 0 & A > 0 & B > 0); ?initSafe:(safe());
{acc := *; ?env:(-B <= acc & acc <= A & safe()@ode(T));
t := 0; {t'=1, x'=v, v'=acc & ?time:(t <= T) & ?vel:(v >= 0)};
ode(t): !step:(safe()) using env pre time vel ... by auto;
}*
� �

In step env above, Kaisar successfully automated the (non-trivial) resolution of the high-level lo-
cated expression safe()@ode(T). Symbol safe() depends on SB(), which depends on v and x.
Kaisar automatically determined the values at location ode (with t = T ) by solving the ODE:

x@ode (T ) = x +v ·T + acc ·T 2/2 v@ode (T ) = v + acc ·T t@ode (T ) = T

Thus safe()@ode(T) resolves to (v + acc · T )2/(2 · B) ≤ d − (x + v · T + acc · T 2/2). For ODEs
whose solutions Kaisar cannot compute, x and v would be made into label parameters.

Shown below, a major way that hypothetical references streamline idioms including logical
model-predictive control is that they automate deriving the meaning of a high-level specification
like safe()@ode(T). Even SB() can be derived from its first principles: SB() is the least distance
d-x for which full braking B preserves safety throughout the time ST() where the vehicle fully
stops. We then define safety as obeying x<=d at the stopping time ode(ST()), i.e., the final state
of the ODE whose duration was ST(). Lastly, print(safe()) prints the text of safe() to the user,
who uses it to define SB(). The first-principles derivation of ST() is analogous and omitted.
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� �

?(B > 0);
let ST() = v / B;
!stopTime:(v@ode(ST()) = 0);
let safe() <-> x@ode(ST()) <= d;
t := 0; {t' = 1, x' = v, v' = -B & ?(v >= 0)};
ode(t): print(safe());

� �

For this solvable ODE, safe() resolves to x+v · (v/B)+ −B ·(v/B )2

2 ≤ d, yielding SB() = v^2/(2*B).
Next, we extend the predictive model with a sandbox controller. The switch statement below

implements the sandbox, with the fallback guarded by true since it is provably safe regardless
of accCand. The guard true makes Kaisar’s case totality check succeed trivially. Each assertion
predictSafe reasons predictively. The latter assertion predicts motion at time min(T,v/B) specif-
ically to capture the case where the system brakes to a complete stop early, i.e., t < T . The assertion
!step uses disjunctive lookups to be concise: the disjunction of the predictSafe assertions im-
plies safety in the worst case, which (by arithmetic) implies safety in every case.
� �

let SB() = v^2/(2*B);
let safe() <-> SB() <= (d-x) & v >= 0;
?pre:(T > 0 & A > 0 & B > 0);
?initSafe:(safe());
{ accCand := *;

let admiss () <-> -B <= accCand & accCand <= A;
let env() <-> safe()@ode(T, accCand);
switch {

case inEnv:(env()) =>
?theAcc:(acc := accCand);
!predictSafe:(safe()@ode(T, acc));

case true =>
?theAcc:(acc := -B);
!predictSafe:(safe()@ode(min(T,v/B), acc));

}
t:= 0;
{t' = 1, x' = v, v' = acc & ?time: (0 <= t & t <= T) & ?vel:(v >= 0)};

ode(t, acc):
!step:(safe()) using predictSafe pre initSafe time vel ... by auto;

}*
� �

Because Kaisar’s underlying logic CdGL is constructive, we briefly discuss the computational inter-
pretation of switch above. The switch is executed by testing whether env() holds and applying
the true branch only when env() cannot be shown true. The env() branch is first (because its
guard allows accelerating) so taken whenever possible, whereas true branches must be conserva-
tive, e.g. by braking. CdGL compares numbers up to some precision δ > 0 because exact equality
is undecidable for its real numbers. The env() branch is always taken when env() holds by a
margin of δ , but either branch can be taken when env() holds by a margin in [0,δ ).

Precisions δ > 0 are inferred by Kaisar. For switches with true branches (i.e., the one above)
any δ > 0 suffices. Recall that Kaisar checks constructively the validity of the disjunction of guards;
precision δ is inferred during this check, e.g., disjunction x ≥ y ∨ x ≤ y + δ for δ > 0 is valid with
margin δ , but disjunction x ≥ y∨x < y is not constructively valid since comparison is inexact. See
Section 4.4 for comparison δs in the context of loop guards. Related work on CdGL [4] describes
the foundations of inexact comparisons. In short, the constructive foundations are type theory and
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constructive real analysis, which dictate that inexact comparisons, but not exact ones, are decidable
and thus constructively valid. Though constructive validity is the core truth notion of Kaisar and
CdGL, robust truth helps explain this notion by analogy. If comparison f ≥ д holds robustly by a
margin of at least δ > 0, Kaisar can always prove f ≥ д constructively. If f ≥ д holds by a margin
less than δ , Kaisar either reports f ≥ д or f ≤ д + δ , each true by low margins.

Next, we conclude the series of examples by introducing the reach-avoid proof paradigm. This
paradigm is important because it shows two fundamental correctness properties together: safety
and liveness. We model a 1-dimensional, velocity-controlled vehicle which stops as close as it can
to some goal d. Reach-avoid proofs are an important CPS application of for loops (Section 4.4).
� �

?epsPos:(eps > 0); ?consts:(x = 0 & T > 0 & d > eps);
init:
for (pos := 0;

!conv:(pos <= (x-x@init) & x <= d) using epsPos consts ... by auto;
?guard:(pos <= d - (eps + x@init) & x <= d - eps);
pos := pos + eps/2) {

vel := (d - x)/T; t := 0;
{t' = 1, x' = vel & ?time:(t <= T)};
!safe:(x <= d) using conv guard vel time by auto;
?high:(t >= T/2);
!prog:(pos + eps/2 <= (x - x@init)) using high ... by auto;
note step = andI(prog, safe);

}
!done:(pos >= d - (eps + x@init) - eps | x >= d - eps - eps) by guard;
!(x <= d & x + 2 * eps >= d) using done conv by auto;
� �

The above model starts by assuming bounds on constants and the state. The initial state is labeled
init. The loop header initializes the index variable pos, then bounds it above by the change in x
while position x is bounded above by goal d. To ensure termination, the guard bounds pos above by
a (locally) constant term based on x ’s initial value. The guard also requires at least eps remaining
distance to the goal, which will help us show progress. The factor of 1/2 in the final header state-
ment reflects the subtle adversarial nature of games: Demon can pick any duration t ∈ [T /2,T ],
so eps/2 reflects the motion in the worst case t = T /2.

The proofs of safety and liveness, more broadly, demonstrate the rich back-and-forth dynamics
in games. First, Angel makes a control choice for vel without knowing the ODE duration t . Angel
sets vel to (d-x)/T so that the goal is reached in the best case and at least eps/2 progress is made
in the worst case. Next, Demon chooses the duration of the ODE, which is equal to the value of t
upon termination of the ODE. Angel proves safety under weak assumptions on timing: 0 ≤ t ≤ T . It
is essential that Angel proves safety without assuming a positive lower bound on t , as safety ought
to hold at all times. However, liveness needs a positive lower bound: if the ODE were to evolve
for 0 time, no progress would be made. Thus, Demon announces a lower bound t ≥ T /2, but it
only becomes available to Angel as an assumption after safety is proved. The specific lower-bound
T /2 is chosen for the sake of simplicity. Angel is then responsible for proving the invariant, which
includes both progress (prog) and safety (safe) invariants in a reach-avoid proof. Specifically, it is
proved that invariants prog and safe will hold after the update pos := pos + eps/2 is executed,
thus the assertion prog writes pos + eps/2 where conv wrote pos. The proof of safety appeals
to conv, which, when accessed from the loop body, supplies the fact that the invariant held at the
beginning of the body. The note statement conjoins prog and safe to show the full invariant.

In the above example, the optional argument of the guard method is omitted, thus guard heuris-
tically chooses a comparison δ . We review the role of inexactness resulting from both eps and
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constructivity. Recall that comparisons are inexact: the guard tactic optionally accepts a compari-
son δ as an argument, else δ is chosen heuristically. In this case, δ = eps is chosen automatically,
but constructive comparison is not the primary purpose of eps. Rather, the use of eps in the guard
ensures the body only runs when the distance remaining is bounded below, letting us prove a lower
bound on progress and thus prove we reach the goal. Inexact comparisons make their impact in
fact done, where δ = eps is subtracted from the guard term to account for uncertainty. Note that
only one branch of the comparison is made more inexact, specifically done.

This concludes our presentation of Kaisar by example, the first proof-checking language and tool
for CdGL. Labeled reasoning was a major novel feature which simplified key proof paradigms for
hybrid games. At the same time, Kaisar’s design combined high-level features including definitions,
proof terms, ghosts, and lexical scope in the challenging context of proving hybrid games.

5 EVALUATION VIA CASE STUDIES

We evaluate Kaisar against Bellerophon [13], the unstructured proof language of KeYmaera X, a
theorem prover for (classical) hybrid systems and games in dL and dGL. We ported three driving
case studies from the literature (PLDI-DC [6], IJRR [25, Thm. 1], RA-L [7, Thm. 1]) from Bellerophon
to Kaisar. We then generalized PLDI-DC in four stages (PLDI-AS, PLDI-TAC, PLDI-RA, PLDI-RAD),
which we back-ported to Bellerophon for an additional comparison. We record metrics (Section 5.2)
about these case studies which, together with the examples from previous sections, serve as proxies
that help assess Kaisar’s core goals such as its productivity, ability to verify non-trivial systems,
and maintainability. The IJRR and RA-L models explore Kaisar’s capabilities when applied to larger
models, while the PLDI series of models demonstrates Kaisar’s ability to co-evolve models and
proofs over time. We first present one case study in both the Bellerophon language and Kaisar for
comparison in Section 5.1, then discuss all case studies’ detailed statistics in Section 5.2.

5.1 Side-by-side Comparison of Kaisar and Bellerophon

Figure 1 shows the PLDI-TAC example in both Kaisar and Bellerophon. This example was chosen
to demonstrate both Kaisar’s Angelic strategy connectives and adversarial timing. Our discussion
is high-level; detailed descriptions of Bellerophon are in the literature [13].

The Kaisar version of PLDI-TAC is much more concise, both due to combining definitions, mod-
els, and proofs in one artifact and due to proof automation. All assertions (!) in the Kaisar model
proved without manual help. Bellerophon has much proof automation, but little for Angelic loops.
It must use the con tactic to manually write a variant predicate that holds in each iteration as its
fresh argument k decreases. The Bellerophon proof also unfolds program statements and proves
the ODE with differential cuts (dC). The Bellerophon proof is inconvenienced by manual definition
expansion (expandAllDefs), indexed formula references (e.g., the uninsightful numeric argument
−4), and manual weaking with hideR. Moreover, Bellerophon compromises traceability by com-
pletely separating its definitions (Definitions), model (Problem), and proof (Tactic). Kaisar’s
traceability remains an important readability advantage on every example, independent of the ma-
jor conciseness advantage seen in the PLDI-TAC example. The Angelic statements for and switch
also arguably improve readability versus Bellerophon’s (equivalent) use of duality (^@).

5.2 Case Study Statistics and Discussion

We give statistics for the case studies, which we then discuss in greater detail. Line counts are
given in Table 1 and full source listings are given in the extended version [3, App. D]. Line counts
require careful analysis. It is encouraging that many Bellerophon proofs got shorter in Kaisar, but
further interpretation is needed because short code in a given language does not universally reflect
higher productivity. For example, Kaisar consciously chose named assumptions for readability,
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Fig. 1. Listings for PLDI-TAC (top: Kaisar, bottom: Bellerophon). Listings were changed to fit the page.

even at cost of verbosity. Expert users’ line counts can also differ from typical users. To draw
deeper conclusions despite the limitations of line counts, we measured the purpose of each line
and how much models change when maintained. Even in the presence of syntactic differences,
these counts provide insight into the relative effort expended on tasks such as modeling, initial
proof attempts, and proof maintenance.

Even then, metrics do not tell the whole story. Kaisar’s goals included naming facts, making the
textual relationship between model and proof easily traceable, providing a gentle learning curve
from systems to games, and providing a gentle learning curve from models to specification and
proof. Subjective goals such as these are better appreciated by reading the examples from previous
sections, rather than transplanting a subjective motivation onto empirical data.

Specifically, we measure lines of model, total lines of proof, and lines of proof which specify
the assumptions passed to proof automation. In Table 1, the Bellerophon results are in the first
table and Kaisar in the second. Sizes are given in non-blank, non-punctuation, non-comment lines.
The total line count can be less than the sum of modeling and proof lines because the same line
may contribute to both the model and proof. Assertions are counted as proof but not model. The
(Assump) column counts all lines which contain using clauses in Kaisar and hide (weakening)
steps in Bellerophon. Contrary to Kaisar’s positive mention in using, the hide steps specify that
a given assumption should be unused by proof automation. Line counts are based on 70-character
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Table 1. Proof Metrics for Bellerophon Proofs and Kaisar Ports, Respectively

Model Name (Bellerophon) Lines Model Proof Assump Same + Diff
PLDI-DC 15 13 3 0 N/A
PLDI-AS 42 15 27 9 9 + 33
PLDI-TAC 39 15 24 5 19 + 20
PLDI-RA 28 19 9 0 10 + 18
PLDI-RAD 29 20 9 0 27 + 2
IJRR 88 36 52 3 N/A
RA-L 294 67 227 97 N/A
Model Name (Kaisar) Lines Model Proof Assump Same + Diff
PLDI-DC 7 4 3 0 N/A
PLDI-AS 10 7 4 0 6 + 4
PLDI-TAC 9 7 4 0 7 + 2
PLDI-RA 15 11 6 0 2 + 13
PLDI-RAD 16 12 6 0 11 + 5
IJRR 62 31 31 12 N/A
RA-L 491 133 372 138 N/A

lines, except we counted atomic proof steps in the Bellerophon version of RA-L because the line
count would be inflated to at least 340 by line-breaking because such verbose proof steps are used.
In the difference column (Same + Diff), newly added lines are considered different.

We describe the example models and proofs displayed in Table 1. The PLDI-DC [6] model is
a 1D, velocity-controlled driving model where the environment (Demon) controls velocities and
loop repetition. The AS, TAC, RA, and RAD variants respectively extend PLDI-DC with Angelic
sandboxing, time-based Angelic loop durations, a reach-avoid analysis, and (Demonic) actuator
disturbance. The IJRR and RA-L driving models have 2D curved motion and acceleration control.
IJRR emphasizes its support for inexact sensing and actuation, while RA-L emphasizes relative
coordinates, speed limit-following, and inexact waypoint-following.

We discuss proof length. The Kaisar files were shorter, except for RA-L. One important source of
the reduction is that Kaisar removed duplication between models and proofs by combining them
into one artifact. Bellerophon had the shorter RA-L proof because its case analysis rule excels at
deduplicating proofs of differential cuts. We plan to provide the same ability, and thus the shorter
proof, in Kaisar by allowing switch inside a domain constraint. We report this long RA-L proof
as a reminder why the evaluation is important: every new language will have cases in which it
is less elegant than predecessors, but by identifying those cases through practical use, one can
often identify simple feature proposals that restore elegance. The PLDI examples were shorter
than RA-L in both languages. For PLDI-DC, the only Kaisar proof steps were invariants, to which
Bellerophon added one invocation of general-purpose proof automation. No manual assumption
reasoning was needed. As discussed below, the remaining PLDI examples had non-trivial proof
scripts in Bellerophon and concise, annotation-style proofs in Kaisar.

In Kaisar, the largest change occurred in PLDI-RA because the transition from a timed para-
digm to a reach-avoid paradigm affected almost every part of the model, including assumptions,
loop structure, controllers, and invariants. As PLDI-RAD shows, later changes may affect fewer
lines, with PLDI-RAD only changing two lines of model to introduce actuation disturbance and
three lines of proof where assumptions on the disturbance are explicitly used. In PLDI-RA and
PLDI-RAD, the use of multiple line labels (for the initial state and the start of the loop body, re-
spectively) allowed terms and formulas to be written in a stable, maintainable way. In PLDI-TAC
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and PLDI-AS in Kaisar, changes were minimal, because their differences in control schemes are
expressible in a few lines. In Bellerophon, the largest change came in PLDI-AS because the proof
approach switched from highly-automated proof by annotation to an explicit proof with multi-
ple branches, one for each controller branch. Incidentally, this branching-style proof typically in-
creases the number of hides in Bellerophon. In Bellerophon’s defense, it too achieved nontrivial
reuse with auxiliary definitions, but the parts which changed are telling: small conceptual model
changes can require many changes in hides, cuts (assertions), and any proof steps which refer to
facts by numeric identifiers. These are specific cases which Kaisar sought to, and did, address. Con-
versely, Bellerophon’s reuse numbers are strongest in proofs (PLDI-RAD) where most assumptions
are used in most proof steps. As model size increases, however, proof steps need to minimize their
assumptions for performance reasons. Thus the advantage fades not only because more hides
are required, but because maintenance of hides is fundamentally non-local, when compared to
maintenance of Kaisar-style assumption lists.

We discuss the IJRR model. In contrast to RA-L, IJRR had more concise casing structure when
expressed in Kaisar. The concise case structure demonstrated the value of Kaisar’s disjunctive
lookups: each of the 3 control cases proved a correctness lemma, after which a single proof of the
ODE is written which automatically appeals to the disjunction of control lemmas. Notably, the
Bellerophon proof had fewer assumption-management lines. This reflects the fact that the avail-
able assumptions were simple enough that automated solvers could prove the assertions with little
manual assumption hiding. While Kaisar had more explicit assumption lines, its concise assump-
tion syntax is more readable and maintainable than Bellerophon’s, as discussed in Section 1.

We discuss RA-L further. Kaisar’s simpler case-analyses led to a longer proof, but RA-L helped
stress-test Kaisar with its nested cases and multiple ODEs on different branches. Many lines had
using clauses: 138. In practice, the user often starts writing assumptions everywhere once they
are used anywhere; it is unclear which assumption lines are necessary. Bellerophon had 97 hide
statements, a smaller percentage difference between languages than in the smaller IJRR example.
We tested Kaisar on all examples in this paper plus a few dozen unit tests.

6 CONCLUSION AND FUTURE WORK

This paper presented Kaisar, the first proof language for CdGL (Constructive Differential Game
Logic). Kaisar is used for proofs of a broad range of correctness properties for a broad class of
CPS models: hybrid games. Because it is important to show that models of CPS behave correctly
in every scenario, such proofs are also important: rather than achieving scalability through ap-
proximative analyses or restrictions on models or bounds on the correctness of the analyses, scal-
ability is achieved using human insights expressed in the proof. Proof checkers, including Kaisar,
ensure only sound proof rules are used, so that only proofs of valid properties are accepted. Be-
cause writing and maintaining such proofs can require significant time and effort, Kaisar’s design
emphasizes a structured design aimed at managing the time and effort required for proofs. As a
particular example, we showed how Kaisar’s labeled reasoning feature streamlined support for
paradigms including logical model-predictive control, sandboxing, and reach-avoid verification.
Other structured features include block structure, persistent named facts, and definitions. We ar-
gued how these features promote our goals, including readability, maintainability, and traceability,
then measured these goals to the extent practical (Section 5). The features were supported by novel
technical contributions, such as SSA-style variable numbering that supported high-level reasoning
across changing states. In whole, these features provide a smooth learning curve for Kaisar, letting
users focus more on developing the key insights of their proofs.

CdGL helps Kaisar make proofs correspond closely to executable code. A key application is
extracting correct implementation code from Kaisar proofs [3, Ch. 8] by a reduction to strategy

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 93. Publication date: September 2021.



Structured Proofs for Adversarial Cyber-Physical Systems 93:25

synthesis [6] and by the operational semantics of CdGL [4] strategies. Theorem-proving and syn-
thesis, together, show systems correct from design to implementation.
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