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Abstract: Real world systems of interest often feature interactions between discrete and
continuous dynamics. Various hybrid system formalisms have been used to model and analyze
this combination of dynamics, ranging from mathematical descriptions, e.g., using impulsive
differential equations and switching, to automata-theoretic and language-based approaches.
This paper bridges two such formalisms by showing how various classes of switched systems
can be modeled using the language of hybrid programs from differential dynamic logic (dL).
The resulting models enable the formal specification and verification of switched systems using
dL and its existing deductive verification tools such as KeYmaera X. Switched systems also
provide a natural avenue for the generalization of dL’s deductive proof theory for differential
equations. The completeness results for switched system invariants proved in this paper enable
effective safety verification of those systems in dL.
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1. INTRODUCTION

The study of hybrid systems, i.e., mathematical models
that combine discrete and continuous dynamics, is mo-
tivated by the need to understand the hybrid dynam-
ics present in many real world systems (Liberzon, 2003;
Platzer, 2018). Various formalisms can be used to describe
hybrid systems, for example, impulsive differential equa-
tions (Haddad et al., 2006); switched systems (Liberzon,
2003; Sun and Ge, 2011); hybrid time combinations of dis-
crete and continuous dynamics (Goebel et al., 2009, 2012);
hybrid automata (Henzinger, 1996); and language-based
models (Rönkkö et al., 2003; Liu et al., 2010; Platzer,
2010, 2018). These formalisms differ in their generality
and in how the discrete-continuous dynamical combination
is modeled, e.g., ranging from differential equations with
discontinuous right-hand sides, to combinators that piece
together discrete and continuous programs. Consequently,
different formalisms may be better suited for different
hybrid system applications and it is worthwhile to explore
connections between different formalisms in order to ex-
ploit their various strengths for a given application.

A switched system consists of a family of continuous ordi-
nary differential equations (ODEs) together with a discrete
switching signal that prescribes the active ODE the system
follows at each time. These models are commonly found
in control designs where appropriately designed switch-
ing can be used to achieve control goals that cannot be
achieved by purely continuous means (Liberzon, 2003).

Differential dynamic logic (dL) (Platzer, 2010, 2018) pro-
vides the language of hybrid programs, whose hybrid dy-
namics arise from combining discrete programming con-
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structs with continuous ODEs. This combination yields a
rich and flexible language for describing hybrid systems,
e.g., with event- or time-triggered design paradigms.

This paper shows how various classes of switched systems
can be fruitfully modeled in the language of hybrid pro-
grams. The contributions are as follows:

(1) Important classes of switched systems are modeled
as hybrid programs in Sections 3–4. Subtleties asso-
ciated with those models are investigated, along with
methods for detecting and avoiding those pitfalls.

(2) Completeness results for differential equation invari-
ants in dL (Platzer and Tan, 2020) are extended to
invariants of switched systems, yielding an effective
technique for proving switched system safety.

These contributions enable sound deductive verification
of switched systems in dL and they lay the groundwork
for further development of proof automation for switched
systems, such as in the KeYmaera X (Fulton et al., 2015)
hybrid systems prover based on dL. To demonstrate the
versatility of the proposed hybrid program models, Sec-
tion 5 uses KeYmaera X to formally verify stability for
several switched system examples using standard Lya-
punov function techniques (Liberzon, 2003). All proofs are
available in the supplement (Tan and Platzer, 2021b).

2. BACKGROUND

This section informally recalls differential dynamic logic
(dL) and the language of hybrid programs used to model
switched systems in Sections 3 and 4. Formal presentations
of dL are available elsewhere (Platzer, 2010, 2017, 2018).

2.1 Hybrid Programs

The language of hybrid programs is generated by the
following grammar, where x is a variable, e is a dL term,
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Computer Science Department, Carnegie Mellon University,
Pittsburgh, USA (e-mail: {yongkiat,aplatzer}@cs.cmu.edu)

Abstract: Real world systems of interest often feature interactions between discrete and
continuous dynamics. Various hybrid system formalisms have been used to model and analyze
this combination of dynamics, ranging from mathematical descriptions, e.g., using impulsive
differential equations and switching, to automata-theoretic and language-based approaches.
This paper bridges two such formalisms by showing how various classes of switched systems
can be modeled using the language of hybrid programs from differential dynamic logic (dL).
The resulting models enable the formal specification and verification of switched systems using
dL and its existing deductive verification tools such as KeYmaera X. Switched systems also
provide a natural avenue for the generalization of dL’s deductive proof theory for differential
equations. The completeness results for switched system invariants proved in this paper enable
effective safety verification of those systems in dL.

Keywords: Hybrid and switched systems modeling · reachability analysis, verification and
abstraction of hybrid systems · hybrid programs · differential dynamic logic

1. INTRODUCTION

The study of hybrid systems, i.e., mathematical models
that combine discrete and continuous dynamics, is mo-
tivated by the need to understand the hybrid dynam-
ics present in many real world systems (Liberzon, 2003;
Platzer, 2018). Various formalisms can be used to describe
hybrid systems, for example, impulsive differential equa-
tions (Haddad et al., 2006); switched systems (Liberzon,
2003; Sun and Ge, 2011); hybrid time combinations of dis-
crete and continuous dynamics (Goebel et al., 2009, 2012);
hybrid automata (Henzinger, 1996); and language-based
models (Rönkkö et al., 2003; Liu et al., 2010; Platzer,
2010, 2018). These formalisms differ in their generality
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is modeled, e.g., ranging from differential equations with
discontinuous right-hand sides, to combinators that piece
together discrete and continuous programs. Consequently,
different formalisms may be better suited for different
hybrid system applications and it is worthwhile to explore
connections between different formalisms in order to ex-
ploit their various strengths for a given application.

A switched system consists of a family of continuous ordi-
nary differential equations (ODEs) together with a discrete
switching signal that prescribes the active ODE the system
follows at each time. These models are commonly found
in control designs where appropriately designed switch-
ing can be used to achieve control goals that cannot be
achieved by purely continuous means (Liberzon, 2003).

Differential dynamic logic (dL) (Platzer, 2010, 2018) pro-
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structs with continuous ODEs. This combination yields a
rich and flexible language for describing hybrid systems,
e.g., with event- or time-triggered design paradigms.

This paper shows how various classes of switched systems
can be fruitfully modeled in the language of hybrid pro-
grams. The contributions are as follows:

(1) Important classes of switched systems are modeled
as hybrid programs in Sections 3–4. Subtleties asso-
ciated with those models are investigated, along with
methods for detecting and avoiding those pitfalls.

(2) Completeness results for differential equation invari-
ants in dL (Platzer and Tan, 2020) are extended to
invariants of switched systems, yielding an effective
technique for proving switched system safety.

These contributions enable sound deductive verification
of switched systems in dL and they lay the groundwork
for further development of proof automation for switched
systems, such as in the KeYmaera X (Fulton et al., 2015)
hybrid systems prover based on dL. To demonstrate the
versatility of the proposed hybrid program models, Sec-
tion 5 uses KeYmaera X to formally verify stability for
several switched system examples using standard Lya-
punov function techniques (Liberzon, 2003). All proofs are
available in the supplement (Tan and Platzer, 2021b).
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models (Rönkkö et al., 2003; Liu et al., 2010; Platzer,
2010, 2018). These formalisms differ in their generality
and in how the discrete-continuous dynamical combination
is modeled, e.g., ranging from differential equations with
discontinuous right-hand sides, to combinators that piece
together discrete and continuous programs. Consequently,
different formalisms may be better suited for different
hybrid system applications and it is worthwhile to explore
connections between different formalisms in order to ex-
ploit their various strengths for a given application.

A switched system consists of a family of continuous ordi-
nary differential equations (ODEs) together with a discrete
switching signal that prescribes the active ODE the system
follows at each time. These models are commonly found
in control designs where appropriately designed switch-
ing can be used to achieve control goals that cannot be
achieved by purely continuous means (Liberzon, 2003).

Differential dynamic logic (dL) (Platzer, 2010, 2018) pro-
vides the language of hybrid programs, whose hybrid dy-
namics arise from combining discrete programming con-

� This research was sponsored by the AFOSR under grant number
FA9550-16-1-0288. The first author was also supported by A*STAR,
Singapore.

structs with continuous ODEs. This combination yields a
rich and flexible language for describing hybrid systems,
e.g., with event- or time-triggered design paradigms.

This paper shows how various classes of switched systems
can be fruitfully modeled in the language of hybrid pro-
grams. The contributions are as follows:

(1) Important classes of switched systems are modeled
as hybrid programs in Sections 3–4. Subtleties asso-
ciated with those models are investigated, along with
methods for detecting and avoiding those pitfalls.

(2) Completeness results for differential equation invari-
ants in dL (Platzer and Tan, 2020) are extended to
invariants of switched systems, yielding an effective
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systems, such as in the KeYmaera X (Fulton et al., 2015)
hybrid systems prover based on dL. To demonstrate the
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e.g., a polynomial over x, and Q is a dL formula.

α, β ::= x := e | ?Q | x′ = f(x)&Q | α;β | α ∪ β | α∗

Discrete assignment x := e sets the value of variable x
to that of term e in the current state. Test ?Q checks
that formula Q is true in the current state and aborts
the run otherwise. The continuous program x′ = f(x)&Q
continuously evolves the system state by following the
ODE x′ = f(x) for a nondeterministically chosen duration
t ≥ 0, as long as the system remains in the domain
constraintQ for all times 0 ≤ τ ≤ t. The sequence program
α;β runs program β after α, the choice program α ∪ β
nondeterministically chooses to run either α or β, and the
loop program α∗ repeats α for n ∈ N iterations where n is
chosen nondeterministically. The nondeterminism inherent
in hybrid programs is useful for abstractly modeling real
world behaviors (Platzer, 2018). The evolution of various
hybrid programs is illustrated in parts A–C and G of Fig. 1.

A) x := e;x′ = f(x)

B) x′=f(x) ∪ x′=g(x)

C.i) ?Q (true) C.ii) ?Q (false)

D) State-dependent

switchingt = 0

t = 1

t = 2

t ≥ τ

E) Time-dependent switching

F) Controlled

switching

G) α∗

Fig. 1. The green initial state evolving according to a
hybrid program featuring (clockwise from top):

A a discrete assignment (dashed line) followed sequen-
tially by continuous ODE evolution (solid line),

B a choice between two ODEs (Section 3.1),
C a test that aborts (red ×) system evolutions leaving Q,
D switching when the system state crosses the thick blue

switching surface (Section 3.2),
E switching after time t ≥ τ has elapsed (Section 4.1),
F switching control that is designed to drive the system

state close to its initial position (Section 4.2), and
G a loop that repeats system evolution (in lighter colors).

Notationally, x = (x1, . . . , xn) are the state variables of an
n-dimensional system, so x′ = f(x)&Q is an autonomous
n-dimensional system of ordinary differential equations
over x; the ODE is written as x′ = f(x) when there is
no domain constraint, i.e., Q ≡ true. For simplicity, all
ODEs have polynomial right-hand sides, dL terms e are
polynomial over x, and P,Q are formulas of first-order
real arithmetic over x; extensions of the term language
to Noetherian functions are described in Platzer and
Tan (2020). The single-sided conditional if is defined as
if(P ){α} ≡ (?P ;α) ∪ (?¬P ). Nondeterministic choice
over a finite family of hybrid programs αp for p ∈ P,
P ≡ {1, . . . ,m} is denoted

⋃
p∈P αp ≡ α1 ∪ α2 ∪ . . . ∪ αm.

The formula language of dL extends first-order logic formu-
las with dynamic modalities for specifying properties of a
hybrid program α (Platzer, 2017, 2018). The box modality
formula [α]P says that formula P is true for all states
reachable by following the nondeterministic evolutions of

hybrid program α, while the diamond modality formula
〈α〉P says that formula P is true for some reachable state
of α. This paper focuses on using box modality formulas
for specifying safety properties of hybrid programs. For
example, formula R → [α∗]P says that initial states satis-
fying precondition R remain in the safe region P after any
number of runs of the loop α∗. A key technique for proving
safety properties of such a loop is to identify an invariant
I of α such that formula I → [α]I is valid, i.e., true in
all states (Platzer, 2018). To enable effective proofs of
safety, invariance, and various other properties of interest,
dL provides compositional reasoning principles for hybrid
programs (Platzer, 2017, 2018) and a complete axiomati-
zation for ODE invariants (Platzer and Tan, 2020).

2.2 Switched Systems

A switched system is described by the following data:

(1) an open, connected set D ⊆ Rn which is the state
space of interest for the system,

(2) a finite (non-empty) family P of ODEs x′ = fp(x) for
p ∈ P, and,

(3) for each initial state ω ∈ D, a set of switching signals
σ : [0,∞) → P prescribing the ODE x′ = fσ(t)(x) to

follow at time t for the system’s evolution from ω. 1

Switching phenomena can either be described explicitly as
a function of time, or implicitly, e.g., as a state predicate,
depending on the real world switching mechanism being
modeled. Several standard classes of switching mechanisms
are studied in Sections 3 and 4, following the nomenclature
from Liberzon (2003). These switching mechanisms are
illustrated in parts D–F of Fig. 1.

For simplicity, this paper assumes that the state space is
D = Rn. More general definitions of switched systems are
possible but are left out of scope, see Liberzon (2003).
For example, P can more generally be an (uncountably)
infinite family and some switched systems may have im-
pulse effects where the system state is allowed to make
instantaneous, discontinuous jumps during the system’s
evolution, such as the dashed jump in part A of Fig. 1.

3. ARBITRARY AND STATE-DEPENDENT
SWITCHING

3.1 Arbitrary Switching

Real world systems can exhibit switching mechanisms that
are uncontrolled, a priori unknown, or too complicated
to describe succinctly in a model. For example, a driving
vehicle may encounter several different road conditions
depending on the time of day, weather, and other un-
predictable factors—given the multitude of combinations
to consider, it is desirable to have a single model that
exhibits and switches between all of those road conditions.
Arbitrary switching is a useful paradigm for such systems
because it considers all possible switching signals and their
corresponding system evolutions. The arbitrary switching

1 A more precise definition is given in the supplement (Tan and
Platzer, 2021b), where the switching signals σ are also required to
be well-defined (Liberzon, 2003; Sun and Ge, 2011) so that they
model physically realizable switching.

t

x

Fig. 2. Evolution of αarb for x′ = x (solid blue), x′ = 1
(dotted black), and x′ = −x (dashed red) from the
initial state (black circle). Switching steps are marked
by green circles and faded colors illustrate progression
in loop iterations for the loop operator in αarb.

mechanism is modeled by the following hybrid program
and illustrated in Fig. 2.

αarb ≡
( ⋃

p∈P
x′ = fp(x)

)∗

Observe that i) the system nondeterministically chooses
which ODE to follow at each loop iteration; ii) it follows
the chosen ODE for a nondeterministic duration; iii) each
loop iteration corresponds to a switching step and the loop
repeats for a finite, nondeterministically chosen number
of iterations. Two subtle behaviors are illustrated by the
bottom trajectory in Fig. 2: αarb can switch to the same
ODE across a loop iteration or it can chatter by making
several discrete switches without continuously evolving its
state between those switches (Sogokon et al., 2017). These
behaviors are harmless for safety verification because they
do not change the set of reachable states of the switched
system. Formally, the adequacy of αarb as a model of
arbitrary switching is shown in the following proposition.

Proposition 1. A state is reachable by hybrid program
αarb iff it is reachable in finite time by a switched system
x′ = fp(x) for p ∈ P following a switching signal σ.

By Proposition 1, the dL formula [αarb]P specifies safety
for arbitrary switching, i.e., for any switching signal σ, the
system states reached at all times by switching according
to σ satisfy the safety postcondition P .

3.2 State-Dependent Switching

Arbitrary switching can be constrained by enabling switch-
ing to the ODE x′ = fp(x) only when the system state be-
longs to a corresponding domain specified by formula Qp.
This yields the state-dependent switching paradigm, which
is useful for modeling real systems that are either known or
designed to have particular switching surfaces. For the fi-
nite family of ODEs with domains x′ = fp(x)&Qp, p ∈ P,
state-dependent switching is modeled as follows:

αstate ≡
( ⋃

p∈P
x′ = fp(x)&Qp

)∗

Operationally, if the system is currently evolving in do-
main Qi and is about to leave the domain, it must switch
to another ODE with domain Qj that is true in the current
state to continue its evolution. Arbitrary switching αarb is
the special case of αstate with no domain restrictions. The
following result generalizes Proposition 1 to consider only
states reached while obeying the specified domains.

Proposition 2. A state is reachable by hybrid program
αstate iff it is reachable in finite time by a switched system

x′ = fp(x) for p ∈ P following a switching signal σ while
obeying the domains Qp.

The next two results are syntactically provable in dL and
they provide sound and complete invariance reasoning
principles for state-dependent (and arbitrary) switching.
Formula φ is computable from a set of inputs iff there is
an algorithm that outputs φ when given those inputs.

Lemma 3. Formula I is an invariant for αstate iff I is
invariant for all constituent ODEs x′ = fp(x)&Qp, p ∈ P.

Theorem 4. From input ODEs x′ = fp(x)&Qp, p ∈ P and
formula I, there is a computable formula of real arithmetic
φ such that formula I is invariant for αstate iff φ is valid.
In particular, invariance for αstate is decidable.

Lemma3 shows that when searching for an invariant of
αstate, it suffices to search for a common invariant of every
constituent ODE. Theorem4 enables sound and complete
invariance proofs for systems with state-dependent switch-
ing in dL, relying on dL’s complete axiomatization for ODE
invariance and decidability of first-order real arithmetic
over polynomial terms (Tarski, 1951). These results also
extend to Noetherian functions, e.g., exponentials and
trigonometric functions, at the cost of losing decidability
of the resulting arithmetic (Platzer and Tan, 2020).

3.3 Modeling Subtleties

The model αstate as defined above makes no a priori
assumptions about how the ODEs and their domains
x′ = fp(x)&Qp are designed, so results like Theorem4
apply generally to all state-dependent switching designs.
However, state-dependent switching can exhibit some well-
known subtleties (Liberzon, 2003; Sogokon et al., 2017)
and it becomes the onus of modelers to appropriately
account for these subtleties. This section examines various
subtleties that can arise in αstate and prescribes sufficient
arithmetical criteria for avoiding them; like Theorem4,
these arithmetical criteria are decidable for systems with
polynomial terms (Tarski, 1951). As a running example, let
the line x1 = x2 be a switching surface, i.e., the example
systems described below are intended to exhibit switching
when their system state reaches this line.

Well-defined switching. First, observe that the domains
Qp must cover the entire state space; otherwise, there
would be system states of interest where no continuous
dynamics is active. This can be formally guaranteed by
deciding validity of the formula 1 :

∨
p∈P Qp. Next, con-

sider the following ODEs:

x′
1 = 0, x′

2 = 1&x1 ≥ x2︸ ︷︷ ︸
x′=fA(x)&QA

x′
1 = −1, x′

2 = 0&x1 < x2︸ ︷︷ ︸
x′=fB(x)&QB

Consider the system evolution starting in QA ≡ x1 ≥ x2

illustrated above on the right. When the system reaches
x1 = x2 (the illustration is offset for clarity), it is about
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Fig. 2. Evolution of αarb for x′ = x (solid blue), x′ = 1
(dotted black), and x′ = −x (dashed red) from the
initial state (black circle). Switching steps are marked
by green circles and faded colors illustrate progression
in loop iterations for the loop operator in αarb.

mechanism is modeled by the following hybrid program
and illustrated in Fig. 2.

αarb ≡
( ⋃

p∈P
x′ = fp(x)

)∗

Observe that i) the system nondeterministically chooses
which ODE to follow at each loop iteration; ii) it follows
the chosen ODE for a nondeterministic duration; iii) each
loop iteration corresponds to a switching step and the loop
repeats for a finite, nondeterministically chosen number
of iterations. Two subtle behaviors are illustrated by the
bottom trajectory in Fig. 2: αarb can switch to the same
ODE across a loop iteration or it can chatter by making
several discrete switches without continuously evolving its
state between those switches (Sogokon et al., 2017). These
behaviors are harmless for safety verification because they
do not change the set of reachable states of the switched
system. Formally, the adequacy of αarb as a model of
arbitrary switching is shown in the following proposition.

Proposition 1. A state is reachable by hybrid program
αarb iff it is reachable in finite time by a switched system
x′ = fp(x) for p ∈ P following a switching signal σ.

By Proposition 1, the dL formula [αarb]P specifies safety
for arbitrary switching, i.e., for any switching signal σ, the
system states reached at all times by switching according
to σ satisfy the safety postcondition P .
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This yields the state-dependent switching paradigm, which
is useful for modeling real systems that are either known or
designed to have particular switching surfaces. For the fi-
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Operationally, if the system is currently evolving in do-
main Qi and is about to leave the domain, it must switch
to another ODE with domain Qj that is true in the current
state to continue its evolution. Arbitrary switching αarb is
the special case of αstate with no domain restrictions. The
following result generalizes Proposition 1 to consider only
states reached while obeying the specified domains.

Proposition 2. A state is reachable by hybrid program
αstate iff it is reachable in finite time by a switched system

x′ = fp(x) for p ∈ P following a switching signal σ while
obeying the domains Qp.

The next two results are syntactically provable in dL and
they provide sound and complete invariance reasoning
principles for state-dependent (and arbitrary) switching.
Formula φ is computable from a set of inputs iff there is
an algorithm that outputs φ when given those inputs.

Lemma 3. Formula I is an invariant for αstate iff I is
invariant for all constituent ODEs x′ = fp(x)&Qp, p ∈ P.

Theorem 4. From input ODEs x′ = fp(x)&Qp, p ∈ P and
formula I, there is a computable formula of real arithmetic
φ such that formula I is invariant for αstate iff φ is valid.
In particular, invariance for αstate is decidable.

Lemma3 shows that when searching for an invariant of
αstate, it suffices to search for a common invariant of every
constituent ODE. Theorem4 enables sound and complete
invariance proofs for systems with state-dependent switch-
ing in dL, relying on dL’s complete axiomatization for ODE
invariance and decidability of first-order real arithmetic
over polynomial terms (Tarski, 1951). These results also
extend to Noetherian functions, e.g., exponentials and
trigonometric functions, at the cost of losing decidability
of the resulting arithmetic (Platzer and Tan, 2020).

3.3 Modeling Subtleties

The model αstate as defined above makes no a priori
assumptions about how the ODEs and their domains
x′ = fp(x)&Qp are designed, so results like Theorem4
apply generally to all state-dependent switching designs.
However, state-dependent switching can exhibit some well-
known subtleties (Liberzon, 2003; Sogokon et al., 2017)
and it becomes the onus of modelers to appropriately
account for these subtleties. This section examines various
subtleties that can arise in αstate and prescribes sufficient
arithmetical criteria for avoiding them; like Theorem4,
these arithmetical criteria are decidable for systems with
polynomial terms (Tarski, 1951). As a running example, let
the line x1 = x2 be a switching surface, i.e., the example
systems described below are intended to exhibit switching
when their system state reaches this line.

Well-defined switching. First, observe that the domains
Qp must cover the entire state space; otherwise, there
would be system states of interest where no continuous
dynamics is active. This can be formally guaranteed by
deciding validity of the formula 1 :

∨
p∈P Qp. Next, con-

sider the following ODEs:

x′
1 = 0, x′

2 = 1&x1 ≥ x2︸ ︷︷ ︸
x′=fA(x)&QA

x′
1 = −1, x′

2 = 0&x1 < x2︸ ︷︷ ︸
x′=fB(x)&QB

Consider the system evolution starting in QA ≡ x1 ≥ x2

illustrated above on the right. When the system reaches
x1 = x2 (the illustration is offset for clarity), it is about
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to locally progress into QB ≡ x1 < x2 by switching to
ODE x′ = fB(x) but it gets stuck because it cannot make
the infinitesimal jump from QA to enter QB ; augmenting
domain QB to x1 ≤ x2 enables the switch. More generally,
to avoid the need for infinitesimal jumps, domains Qp

should be augmented to include states that locally progress
into Qp under the ODE x′ = fp(x) and, symmetrically,
states that locally exit Qp (Sogokon et al., 2017). Local
progress (and exit) for ODEs is characterized as follows.

Theorem 5. (Platzer and Tan (2020)). From input ODE
x′ = f(x)&Q, there are computable formulas of real arith-

metic
.

(Q)
(∗)
f ,

.

(Q)
(∗)
−f that respectively characterize the

states from which x′ = f(x) locally progresses into Q and
those from which it locally exits Q.

By Theorem5, to avoid the stuck states exemplified above
for ODEs x′ = fp(x)&Qp, p ∈ P in αstate, it suffices to

decide validity of the formula 2 :
.

(Qp)
(∗)
fp

∨
.

(Qp)
(∗)
−fp

→ Qp

for each p ∈ P. Condition 2 is syntactically significantly
simpler but equivalent to the domain augmentation pre-
sented in Sogokon et al. (2017) for piecewise continuous
models, a form of state-dependent switching.

Sliding modes. The preceding subtlety arose from incom-
plete domain constraint specifications. Another subtlety
that can arise because of incomplete specification of ODE
dynamics is exemplified by the following ODEs:

x′
1 = 0, x′

2 = 1&x1 ≥ x2︸ ︷︷ ︸
x′=fA(x)&QA

x′
1 = 1, x′

2 = 0&x1 ≤ x2︸ ︷︷ ︸
x′=fB(x)&QB

x1≥x2

x1≤x2

x1

x2

Systems starting in QA ≡ x1 ≥ x2 or QB ≡ x1 ≤ x2

eventually reach the line x1 = x2 but they then get
stuck because the ODEs on either side of x1 = x2 drive
system evolution onto the line. Mathematically, the system
enters a sliding mode (Liberzon, 2003) along x1 = x2; as
illustrated above, this can be thought of as infinitely fast
switching between the ODEs that results in a new sliding
dynamics along the switching surface x1 = x2.

When the sliding dynamics can be calculated exactly, it
suffices to add those dynamics to the switched system, e.g.,
adding the sliding dynamics x′

1 = 1
2 , x

′
2 = 1

2 &x1 = x2 to
the example above allows stuck system states on x1 = x2

to continuously progress along the line (illustrated below,
left). An alternative is hysteresis switching (Liberzon,
2003) which enlarges domains adjacent to the sliding mode
so that a system that reaches the sliding surface is allowed
to briefly continue following its current dynamics before
switching. For example, for a fixed ε > 0, the enlarged
domains QA ≡ x1 ≥ x2 − ε and QB ≡ x1 ≤ x2 + ε allows
the stuck states to evolve off the line for a short distance.
This yields arbitrary switching in the overlapped part
of both domains (illustrated below, right). For a family
of domains Qp, p ∈ P meeting conditions 1 and 2 ,
hysteresis switching can be introduced by replacing each
Qp with its closed ε-neighborhood for some chosen ε > 0.

x1≥x2

x1≤x2

x 1
=
x 2

x1

x2

x1≥x2-1

x1≤x2+1

x1

x2

To guarantee the absence of stuck states, by Theorem5, it

suffices to decide validity of the formula 3 :
∨

p∈P

.

(Qp)
(∗)
fp

,

i.e., every point in the state space can switch to an ODE
which locally progresses in its associated domain. Models
meeting conditions 2 and 3 also meet condition 1 .

Zeno behavior. Hybrid and switched system models can
also exhibit Zeno behavior, where the model makes in-
finitely many discrete transitions in a finite time inter-
val (Zhang et al., 2001). Such behaviors are an artifact of
the model and are not reflective of the real world. Zeno
traces are typically excluded when reasoning about hybrid
system models (Zhang et al., 2001), e.g., Proposition 2
specifies safety for all finite (thus non-Zeno) executions of
state-dependent switching. The detection of Zeno behavior
in switched systems is left out of scope for this paper.

4. TIME-DEPENDENT AND CONTROLLED
SWITCHING

4.1 Time-Dependent Switching

The time-dependent switching paradigm imposes timing
constraints on switching signals. To specify such con-
straints syntactically, each ODE in the family p ∈ P is
extended with a common, fresh clock variable t with t′ = 1
yielding ODEs of the form x′ = fp(x), t

′ = 1, and a fresh
(discrete) flag variable u is used to select and track the
ODE to follow at each time. One form of timing constraint
is slow switching, where the system switches arbitrarily
between ODEs but must spend a minimum dwell time
τ > 0 between each switch. Sufficiently large dwell times
can be used to stabilize some systems (see Section 5). Slow
switching is modeled by the following hybrid program:

αslow ≡ αr;
(
if(t ≥ τ){αr};

⋃
p∈P

(
?u=p;x′=fp(x), t

′=1
))∗

αr ≡ t := 0;
⋃
p∈P

u := p

The program αr resets the clock t to 0 and nondetermin-
istically chooses a new value for the flag u. For each loop
iteration of αslow, the guard t ≥ τ checks if the current
ODE has executed for at least time τ before running αr to
pick a new value for u. The subsequent choice selects the
ODE to follow based on the value of flag u.

Proposition 6. A state is reachable by hybrid program
αslow iff it is reachable in finite time by a switched system
x′ = fp(x) for p ∈ P following a switching signal σ that
spends at least time τ between its switching times.

Theorem 7. From input ODEs x′ = fp(x), p ∈ P and
formula I, there is a computable formula of real arithmetic
φ such that formula I is invariant for αslow iff φ is valid.
In particular, invariance for αslow is decidable.

4.2 Controlled Switching

The discrete fragment of hybrid programs can be used to
flexibly model (computable) controlled switching mecha-
nisms, e.g., those that combine state-dependent and time-
dependent switching constraints, or make complex switch-
ing decisions based on the state of the system. An abstract
controlled switching model is shown below, where program
αi initializes the system state (e.g., of the clock or flag) and
αu models a controller that assigns a decision u := p.

αctrl ≡ αi;
(
αu;

⋃
p∈P

(
?u = p;x′ = fp(x), t

′ = 1&Qp

))∗

Hybrid program αctrl resembles the shape of standard
models of event-triggered and time-triggered systems in
dL (Platzer, 2018) but is adapted for controlled switching.
The controller program αu inspects the current state
variables x and the clock t. It can modify the clock, e.g., by
resetting it with t := 0, but αu must not discretely change
the state variables x. The subsequent choice selects the
ODE to follow based on the value of flag u assigned in αu.

The slow switching model αslow is an instance of αctrl

where the controller program switches only after the dwell
time is exceeded. Another example is periodic switching,
where the controller periodically cycles through a family
of ODEs. Switching with sufficiently fast period can be
used to stabilize a family of unstable ODEs, e.g., for linear
ODEs whose system matrices have a stable convex com-
bination (Tokarzewski, 1987). Without loss of generality,
assume that P ≡ {1, . . . ,m}, the desired switching order
is 1, . . . ,m, and the periodic signal is required to follow the
i-th ODE for exactly time ζi > 0. Periodic fast switching
is modeled as an instance of αctrl as follows:

αfast ≡ αctrl where αi ≡ t := 0;u := 1, Qp ≡ t ≤ ζp, and

αu ≡
⋃
p∈P

if(u = p ∧ t = ζp)

{
t := 0;u := u+ 1;
if(u > m){u := 1}

}

The system is initialized with t = 0, u = 1 at the start
of the cycle. The controller program αu then deterministi-
cally cycles through u = 1, . . . ,m by discretely increment-
ing the flag variable whenever the time limit ζp for the
currently chosen ODE is reached. The domain constraints
Qp respectively limit each ODE to run for at most time ζp
as prescribed for the switched system.

Proposition 8. A state is reachable by hybrid program
αfast iff it is reachable in finite time by a switched system
x′ = fp(x) for p ∈ {1, . . . ,m} following the switching
signal σ that periodically switches in the order 1, . . . ,m
according to the times ζ1, ζ2, . . . , ζm respectively.

A subtlety occurs in αfast and Proposition 8 when one of
the constituent ODEs exhibits finite time blowup before
reaching its switching time, e.g., consider switching be-
tween ODEs x′ = 1 and x′ = x2 with times ζ1 = ζ2 = 1
starting from a state where x = 0; the latter ODE blows
up in the first cycle. Mathematically, the switching signal
σ is simply ignored after the blowup time, but such blowup
phenomena may not accurately reflect real world behavior.
Global existence of solutions for all ODEs in the switched
system can be verified in dL (Tan and Platzer, 2021a).

5. STABILITY VERIFICATION IN KEYMAERA X

This section shows how stability can be formally verified
in dL using the KeYmaera X theorem prover 2 (Fulton
et al., 2015) for the switched systems modeled by α ∈
{αarb, αstate, αslow}. For these systems, the origin 0 ∈ Rn

is stable iff the following formula is valid:

∀ε > 0 ∃δ > 0 ∀x (‖x‖2 < δ2 → [α] ‖x‖2 < ε2)

This formula expresses that, for initial states sufficiently
close to the origin (‖x‖2 < δ2 for δ > 0), all states reached
by hybrid program α from those states remain close to the
origin (‖x‖2 < ε2 for ε > 0). By Propositions 1, 2, and 6,
the formula specifies stability for the switched systems
modeled by α ∈ {αarb, αstate, αslow} uniformly in their
respective sets of switching signals (Liberzon, 2003).

Unlike invariance, a switched system can be stable (resp.
unstable) even if all of its constituent ODEs are unsta-
ble (resp. stable), depending on the switching mecha-
nism (Liberzon, 2003). Stability verification for such sys-
tems is important because it provides formal guarantees
that specific switching designs correctly eliminate poten-
tial instabilities in systems of interest. An important tech-
nique for proving stability for ODEs and switched systems
is to design an appropriate Lyapunov function, i.e., an
auxiliary energy measure that is non-increasing along all
system trajectories (Liapounoff, 1907; Liberzon, 2003).

Example 9. Consider arbitrary switching αarb with ODEs:

x′
1 = −x1 + x3

2, x
′
2 = −x1 − x2

x′
1 = −x1, x

′
2 = −x2

Both ODEs are stable and share the common Lyapunov

function v =
x2
1

2 +
x4
2

4 . To prove stability for this example,

the key idea is to show that v < k ∧ x2
1 + x2

2 < ε is a loop
invariant of αarb, where k is an upper bound on the initial
value of v close to the origin.

Example 10. The following ODEs A and B are individ-
ually stable (Liberzon, 2003, Example 3.1). However, as
illustrated below on the right, there is a switching signal
that causes the system to diverge from the origin, i.e., these
ODEs are not stable under arbitrary switching.

x′
1 = −x1

8
− x2, x

′
2 = 2x1 −

x2

8︸ ︷︷ ︸
A (solid blue)

x′
1 = −x1

8
− 2x2, x

′
2 = x1 −

x2

8︸ ︷︷ ︸
B (dashed red) x1

x2

Stability can be achieved by a state-dependent switching

design with domains: A x1x2 ≤ 0 and B x1x2 ≥ 0. The
resulting system modeled by αstate has the common Lya-
punov function v = x2

1+x2
2. The proof uses a loop invariant

similar to Example 9 and, crucially, checks the arithmetical
Lyapunov function conditions for the derivative of v only
on the respective domains for each ODE.

2 All examples are formalized in KeYmaera X 4.9.2 at:
https://github.com/LS-Lab/KeYmaeraX-projects/blob/master/

stability/switchedsystems.kyx.
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4.2 Controlled Switching

The discrete fragment of hybrid programs can be used to
flexibly model (computable) controlled switching mecha-
nisms, e.g., those that combine state-dependent and time-
dependent switching constraints, or make complex switch-
ing decisions based on the state of the system. An abstract
controlled switching model is shown below, where program
αi initializes the system state (e.g., of the clock or flag) and
αu models a controller that assigns a decision u := p.

αctrl ≡ αi;
(
αu;

⋃
p∈P

(
?u = p;x′ = fp(x), t

′ = 1&Qp

))∗

Hybrid program αctrl resembles the shape of standard
models of event-triggered and time-triggered systems in
dL (Platzer, 2018) but is adapted for controlled switching.
The controller program αu inspects the current state
variables x and the clock t. It can modify the clock, e.g., by
resetting it with t := 0, but αu must not discretely change
the state variables x. The subsequent choice selects the
ODE to follow based on the value of flag u assigned in αu.

The slow switching model αslow is an instance of αctrl

where the controller program switches only after the dwell
time is exceeded. Another example is periodic switching,
where the controller periodically cycles through a family
of ODEs. Switching with sufficiently fast period can be
used to stabilize a family of unstable ODEs, e.g., for linear
ODEs whose system matrices have a stable convex com-
bination (Tokarzewski, 1987). Without loss of generality,
assume that P ≡ {1, . . . ,m}, the desired switching order
is 1, . . . ,m, and the periodic signal is required to follow the
i-th ODE for exactly time ζi > 0. Periodic fast switching
is modeled as an instance of αctrl as follows:

αfast ≡ αctrl where αi ≡ t := 0;u := 1, Qp ≡ t ≤ ζp, and

αu ≡
⋃
p∈P

if(u = p ∧ t = ζp)

{
t := 0;u := u+ 1;
if(u > m){u := 1}

}

The system is initialized with t = 0, u = 1 at the start
of the cycle. The controller program αu then deterministi-
cally cycles through u = 1, . . . ,m by discretely increment-
ing the flag variable whenever the time limit ζp for the
currently chosen ODE is reached. The domain constraints
Qp respectively limit each ODE to run for at most time ζp
as prescribed for the switched system.

Proposition 8. A state is reachable by hybrid program
αfast iff it is reachable in finite time by a switched system
x′ = fp(x) for p ∈ {1, . . . ,m} following the switching
signal σ that periodically switches in the order 1, . . . ,m
according to the times ζ1, ζ2, . . . , ζm respectively.

A subtlety occurs in αfast and Proposition 8 when one of
the constituent ODEs exhibits finite time blowup before
reaching its switching time, e.g., consider switching be-
tween ODEs x′ = 1 and x′ = x2 with times ζ1 = ζ2 = 1
starting from a state where x = 0; the latter ODE blows
up in the first cycle. Mathematically, the switching signal
σ is simply ignored after the blowup time, but such blowup
phenomena may not accurately reflect real world behavior.
Global existence of solutions for all ODEs in the switched
system can be verified in dL (Tan and Platzer, 2021a).

5. STABILITY VERIFICATION IN KEYMAERA X

This section shows how stability can be formally verified
in dL using the KeYmaera X theorem prover 2 (Fulton
et al., 2015) for the switched systems modeled by α ∈
{αarb, αstate, αslow}. For these systems, the origin 0 ∈ Rn

is stable iff the following formula is valid:

∀ε > 0 ∃δ > 0 ∀x (‖x‖2 < δ2 → [α] ‖x‖2 < ε2)

This formula expresses that, for initial states sufficiently
close to the origin (‖x‖2 < δ2 for δ > 0), all states reached
by hybrid program α from those states remain close to the
origin (‖x‖2 < ε2 for ε > 0). By Propositions 1, 2, and 6,
the formula specifies stability for the switched systems
modeled by α ∈ {αarb, αstate, αslow} uniformly in their
respective sets of switching signals (Liberzon, 2003).

Unlike invariance, a switched system can be stable (resp.
unstable) even if all of its constituent ODEs are unsta-
ble (resp. stable), depending on the switching mecha-
nism (Liberzon, 2003). Stability verification for such sys-
tems is important because it provides formal guarantees
that specific switching designs correctly eliminate poten-
tial instabilities in systems of interest. An important tech-
nique for proving stability for ODEs and switched systems
is to design an appropriate Lyapunov function, i.e., an
auxiliary energy measure that is non-increasing along all
system trajectories (Liapounoff, 1907; Liberzon, 2003).

Example 9. Consider arbitrary switching αarb with ODEs:

x′
1 = −x1 + x3

2, x
′
2 = −x1 − x2

x′
1 = −x1, x

′
2 = −x2

Both ODEs are stable and share the common Lyapunov

function v =
x2
1

2 +
x4
2

4 . To prove stability for this example,

the key idea is to show that v < k ∧ x2
1 + x2

2 < ε is a loop
invariant of αarb, where k is an upper bound on the initial
value of v close to the origin.

Example 10. The following ODEs A and B are individ-
ually stable (Liberzon, 2003, Example 3.1). However, as
illustrated below on the right, there is a switching signal
that causes the system to diverge from the origin, i.e., these
ODEs are not stable under arbitrary switching.

x′
1 = −x1

8
− x2, x

′
2 = 2x1 −

x2

8︸ ︷︷ ︸
A (solid blue)

x′
1 = −x1

8
− 2x2, x

′
2 = x1 −

x2

8︸ ︷︷ ︸
B (dashed red) x1

x2

Stability can be achieved by a state-dependent switching

design with domains: A x1x2 ≤ 0 and B x1x2 ≥ 0. The
resulting system modeled by αstate has the common Lya-
punov function v = x2

1+x2
2. The proof uses a loop invariant

similar to Example 9 and, crucially, checks the arithmetical
Lyapunov function conditions for the derivative of v only
on the respective domains for each ODE.

2 All examples are formalized in KeYmaera X 4.9.2 at:
https://github.com/LS-Lab/KeYmaeraX-projects/blob/master/

stability/switchedsystems.kyx.
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Example 11. The example ODEs A , B can also be
stabilized by sufficiently slow switching in αslow with
minimum dwell time τ = 3 (the value of τ can be further
optimized). Here, two different Lyapunov functions are

used: A 2x2
1+x2

2 and B x2
1+2x2

2. The key proof idea is to
bound both Lyapunov functions by decaying exponentials,
and show that the dwell time τ is sufficiently large to
ensure that both Lyapunov functions have decayed by an
appropriate fraction when a switch occurs at time t ≥ τ .

The minimum dwell time principle can be used more gen-
erally to stabilize any family of stable linear ODEs (Liber-

zon, 2003). For example, the ODE C x′
1 = −x1, x

′
2 = −x2

is also stable and has the Lyapunov function x2
1 + x2

2. All

three ODEs A , B , C can be stabilized with the same
dwell time τ = 3. The KeYmaera X proof required minimal
changes, e.g., the loop invariants were updated to account

for the new ODE C and its Lyapunov function.

6. RELATED WORK

There are numerous hybrid system formalisms in the
literature (Haddad et al., 2006; Liberzon, 2003; Sun and
Ge, 2011; Goebel et al., 2009, 2012; Henzinger, 1996;
Rönkkö et al., 2003; Liu et al., 2010; Platzer, 2010, 2018);
see the cited articles and textbooks for further references.

Connections between several formalisms have been ex-
amined in prior work. Platzer (2010) shows how hybrid
automata can be embedded into hybrid programs for
their safety verification; the book also generalizes dL with
(disjunctive) differential-algebraic constraints that can be
used to model and verify continuous dynamics with state-
dependent switching (Platzer, 2010, Chapter 3). This pa-
per instead models switching with discrete program opera-
tors which enables compositional reasoning for the hybrid
dynamics in switched systems. Sogokon et al. (2017) study
hybrid automata models for ODEs with piecewise contin-
uous right-hand sides and highlight various subtleties in
the resulting models; similar subtleties for state-dependent
switching models are presented in Section 3.3. Goebel et al.
(2009, 2012) show how impulsive differential equations,
hybrid automata, and switched systems can all be under-
stood as hybrid time models, and derive their properties
using this connection; Theorems 4 and 7 are proved for
switched systems using their hybrid program models.

7. CONCLUSION

This paper provides a blueprint for developing and veri-
fying hybrid program models of switched systems. These
contributions enable several future directions, includ-
ing: i) formalizing asymptotic stability for switched sys-
tems (Liberzon, 2003; Sun and Ge, 2011), i.e., the sys-
tems are stable (Section 5) and their trajectories tend
to the origin over time; ii) modeling switched systems
under more general continuous dynamics, e.g., differential
inclusions (Goebel et al., 2012) or differential-algebraic
constraints (Platzer, 2010); iii) developing practical proof
automation for switched systems in KeYmaera X, e.g.,
automated synthesis and verification of invariants and
Lyapunov functions for various switching mechanisms.
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