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Phylogenetic placement refers to a family of tools and methods to an-
alyze, visualize, and interpret the tsunami of metagenomic sequenc-
ing data generated by high-throughput sequencing. Compared to al-
ternative (e. g., similarity-based) methods, it puts metabarcoding se-
quences into a phylogenetic context using a set of known reference
sequences and taking evolutionary history into account. Thereby,
one can increase the accuracy of metagenomic surveys and elimi-
nate the requirement for having exact or close matches with existing
sequence databases.
Phylogenetic placement constitutes a valuable analysis tool per se,
but also entails a plethora of downstream tools to interpret its re-
sults. A common use case is to analyze species communities ob-
tained from metagenomic sequencing, for example via taxonomic as-
signment, diversity quantification, sample comparison, and identifi-
cation of correlations with environmental variables.
In this review, we provide an overview over the methods developed
during the first ten years. In particular, the goals of this review are
(i) to motivate the usage of phylogenetic placement and illustrate
some of its use cases, (ii) to outline the full workflow, from raw
sequences to publishable figures, including best practices, (iii) to
introduce the most common tools and methods and their capabili-
ties, (iv) to point out common placement pitfalls and misconceptions,
(v) to showcase typical placement-based analyses, and how they can
help to analyze, visualize, and interpret phylogenetic placement data.
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1. Introduction

Advances in sequencing technologies enable the broad sequenc-
ing of genetic material in environmental samples (1, 2), for
instance, from water (3–5), soil (6, 7), and air (8), which is
known as environmental DNA (eDNA, 9, 10), or from the
human body (11–14) and other sources (15–18). Crucially,
this enables the ecological survey of a community of organisms
in their immediate environment (i. e., in situ), and allows to
directly study the genetic composition of species communities
(from viruses to megafauna); a field known as metagenomics
(19–22).

Metagenomic data typically stem from so-called High-
Throughput Sequencing (HTS, 23–25) technologies, such as
Next Generation Sequencing (NGS, 26, 27), as well as later
generations (28–32). For a sample of biological material, these
technologies typically produce thousands to millions or even
billions of short genetic sequences (also called “reads”) with
a length of some hundred base pairs length each. Over the
past decades, decreasing costs and increasing throughput of
sequencing technologies have caused an exponential growth
in sequencing data (33), which has now passed the peta-scale
barrier (34).

A major analysis step in metagenomic studies is to char-
acterize the reads obtained from an environment by means
of comparison to reference sequences of known species (35).
A straight-forward way to accomplish this is to quantify the
similarity between the reads and reference sequences. We ob-
tain an indication of possible novelty if the sequence similarity
to known species is low (36, 37). However, such approaches
do not provide the user with the evolutionary context of the
read, and have been found to incorrectly identify sequences
(7, 38, 39).

Instead, general phylogenetic methods can be used directly
to classify and characterize the reads, providing highly accu-
rate and information-rich results (40–44). However, trying to
resolve the phylogenetic relationships between millions of short
reads and the given reference sequences represents a significant
computational challenge. Furthermore, as most phylogenetic
methods require an alignment of sequences, metagenomic data
can often not be used directly, as whole-genome reference
data might not be available or computationally intractable.
Instead, specific marker genes can be targeted (or filtered
from the metagenomic data), which are genetic regions that
are well-suited for differentiating between species (45). The
use of marker genes to identify species is called DNA (meta-)
barcoding (9, 46–48); see Section “Types of Query Sequences”
for details.

A powerful and increasingly popular class of methods to
identify and analyze diverse (meta-)genomic (barcode) data
is the so-called phylogenetic placement (or evolutionary place-
ment) of genetic sequences onto a given fixed phylogenetic
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reference tree. By placing unknown, anonymous sequences
(in this context called query sequences) into the evolutionary
context of a tree, these methods allow for the taxonomic as-
signment of the sequences (i. e., the association of genomic
reads to existing species, for example 43, 49, 50). Moreover,
they can also provide information on the evolutionary rela-
tionships between these query sequences and the reference
species/sequences, and thus go beyond simple species iden-
tification. Phylogenetic placement has found applications in
a variety of situations, such as data cleaning and retention
(7), inference of new clades (51, 52), estimation of ecological
profiles (53), identification of low-coverage genomes of viral
strains (54), phylogenetic analysis of viruses such as SARS-
CoV-2 (55, 56), and in clinical studies of microbial diseases
(57).

When analyzing the resulting data, there are two comple-
mentary interpretations of phylogenetic placement: (1) as a set
of individual sequences, placed with respect to the reference
phylogeny, e. g., for taxonomic assignment, phylo-geographic
tracing, or even possible clinical relevance; (2) as a combined
distribution of sequences on the tree, characterizing the sam-
pled environment at a given point in time or space to examine
the composition of a species community as a whole, for in-
stance as a means of sample ordination and visualization, and
association with environmental variables.

In this review, we provide an overview of existing methods
to conduct phylogenetic placement, as well as post-analysis
methods for visualization and knowledge inference from place-
ment data. We also discuss some practical aspects, such as
common pitfalls and misconceptions, as well as caveats and
limitations of these methods. We mainly refer to metagenomic
input data (or more accurately, metabarcoding data, see below
for details) as it represents the most common use case, but
also highlight some alternative use cases where phylogenetic
placement is employed for other types of sequence data.

Glossary and Abbreviations

Likelihood Weight Ratio (LWR). The probability (confidence) that a
QS is placed onto a particular branch (i. e., a single Placement Loca-
tion).

Maximum Likelihood (ML). A statistical framework to estimate the
parameters of a probability distribution.

Phylogenetic Placement. A family of methods to place a set of QSs
onto the branches of an RT, by mapping each QS to one or several
most likely Placement Locations on the tree.

Placement Location. An individual location (branch and position along
the branch) onto which a specific QS has been placed; often annotated
with a probability score (LWR) whose sum over all branches is 1 for that
QS.

Query Sequence (QS). A single sequence to be placed into the RT.
Typically, this is a short read or amplicon obtained via metabarcoding
or metagenomics.

Reference Alignment (RA). The underlying multiple sequence align-
ment (MSA), based on a set of RSs, that is used in ML-based phyloge-
netic placement and was used to infer the RT.

Reference Sequence (RS). A typically high-quality sequence of a
species or strain that is used as reference to compare the QSs against.
Used to compute the RA and infer the RT.

Reference Tree (RT). The (bifurcating) phylogenetic tree used as a
scaffold to place the QSs into, mostly inferred via ML methods.

2. Phylogenetic Placement

2.1. Overview and Terminology
The modern approach to phylogenetic tree inference is based
on molecular sequence data, and uses stochastic models of
sequence evolution (58) to infer the tree topology and its branch
lengths (59, 60). Note that the computational cost to infer the
optimal tree under the given optimality criterion grows super-
exponentially in the number of sequences (59). In addition,
large trees comprising more than a couple of hundred sequences
are often cumbersome to visualize, rendering the approach
challenging for current (e. g., metagenomic) large datasets.
Furthermore, the lack of phylogenetic signal contained in the
short reads of most HTS technology usually does not suffice
for a robust tree inference (51, 61–63). Hence, phylogenetic
placement emerged from the demand to obtain phylogenetic
information about sequence sets that are too large in number
and too short in length to infer comprehensive phylogenetic
trees (64, 65). In a metagenomic context, a set of sequences
obtained from an environment such as water, soil, or the
human body, is here called a sample. This is often the data
that we intend to place, and might have further metadata
associated with it, e. g., environmental factors/variables such
as temperature or geo-locations where the sample was taken.

Generally, the input of a phylogenetic placement analysis
is a phylogenetic Reference Tree (RT) consisting of sequences
spanning the genetic diversity that is expected in the sequences
to be placed into the tree. The tree can be rooted or unrooted;
in the latter case however, a “virtual” root (or top-level trifur-
cation) is used in the computation as a fixed point of reference
(66). Then, for a single sequence (e. g., a short read), in this
context called a Query Sequence (QS), the goal of phylogenetic
placement is to determine the branches of the RT to which the
QS is most closely evolutionarily related. Note that the RT is
kept fixed, that is, the QSs are not inserted as new branches
into the tree, but rather “mapped” onto its branches. Hence,
the phylogenetic relationships between individual QSs are not
resolved.

This is the key insight that makes it possible to efficiently
compute the placement of large numbers of QSs. By only de-
termining the evolutionary relationship between the sequences
of the RT and each individual QS, the process can be efficiently
parallelized, and the required processing time scales linearly
in the number of QS. Furthermore, this allows us to consider
multiple branches as potential Placement Locations for a given
QS, representing uncertainty in the placement, often expressed
as a probability (or confidence) of the QS being placed on
that branch. This uncertainty might result from weak phy-
logenetic signal, or might indicate some other issue with the
data, as explained later. In maximum-likelihood (ML) based
placement (see Section “Maximum Likelihood Placement” for
details), these probabilities are computed as the Likelihood
Weight Ratio (LWR) resulting from the evaluation of placing
the QS attached to an additional (hypothetical) branch into
the tree. Hence, for historic reasons, the probability of a place-
ment location (one QS placed on a specific branch) is often
called its LWR, and for a given QS, the sum of LWRs over all
branches is 1 (equivalent to the total probability). See Table 1
for an overview of different placement tools, and which of the
aforementioned quantities they can compute.

In other words, phylogenetic placement can be thought
of as an all-to-all mapping from QSs to branches of the RT,
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Fig. 1. Overview of phylogenetic placement. Here, we show the typical process, focused on ML-based placement. For the sake of simplicity, we here omit heuristics and
other algorithmic improvements. Alignment-free placement works conceptually in an analogous way, but does not compute tree likelihoods. (a) Pipeline and data flow. The
input to phylogenetic placement are the Reference Tree (RT) and its corresponding Reference Alignment (RA), as well as the set of Query Sequences (QSs) that we are
interested in. The placement algorithm computes potential placement locations of a QS on the branches of the RT, for each QS in the input. (b) Terminology. The nodes D and
P belong to the Reference Tree (RT). When placing a Query Sequence (QS), the branch between these nodes is split into two parts by a temporary new node C, which serves
as the attachment point for another temporary new node Q that represents the QS. Note that these two new nodes are only conceptually inserted into the RT – they represent
the mapping of the QS onto that branch. The pendant branch leads to Q. The original branch is split into the proximal branch, which leads towards the (possibly virtual) root of
the RT, and the distal branch, which leads away from the root. (c) A single QS is placed onto a single branch (that is, one placement location). Vertical distances symbolize
branch lengths. Note that the QS is located at a certain position along its Reference Tree branch (splitting that branch into distal and proximal parts), and has a (pendant) branch
length of its own. At this step, ML-based placement computes the likelihood of the RT with the QS as a (temporary) extra branch. For one single QS, this step is then repeated
at every branch of the tree. (d) Once the likelihoods of placing the QS onto every branch have been computed, the Likelihood Weight Ratios (LWRs) for this QS are computed.
They express the confidence of placing the QS onto each branch, and can be interpreted as a probability distribution of the QS across the tree (and hence sum to one across all
branches). In the image, we omit pendant branch lengths for the sake of simplicity. (e) The process is repeated for every QS, yielding an LWR-weighted “mapping” of each QS
to each branch. We can visualize this as a cumulative distribution across all QSs on the tree, coloring branches according to the total sum of the LWRs at that branch over all
QS. See Figure 3(a) for a real-world example of this.

with a probability for each placement location, as shown in
Figure 1(d) and Figure 1(e). We can however also interpret
each such placement location as if it was an extra branch
inserted into the RT, as shown in Figure 1(b) and Figure 1(c).
In particular, maximum likelihood placement makes use of its
underlying evolutionary model to also estimate the involved
branch lengths that are altered through the insertion of a QS,
see Figure 1(b) for details. This interpretation highlights the
aspect of each individual QS being part of the underlying
phylogeny. For example, this allows its taxonomic assignment
to that clade of the reference tree where the QS shows the
highest accumulated placement probability, as explained later.

Misconceptions. In the existing literature, and from our ex-
perience in teaching the topic as well as supporting the users
of our software, some concepts of phylogenetic placement are
not always well explained or understood. Although we have
introduced these concepts above already, we briefly address
two common misconceptions here, for clarity.

Firstly, a common misconception is that the tree is amended
by the QSs, that is, that new branches are added to the RT,
and that the phylogenetic relationships of the QSs with each
other are hence resolved. This is not the case; instead, the RT
is kept fixed, the QSs are only aligned against the reference
alignment, but not against each other (in ML placement), and
the QSs are mapped only to the existing branches in the RT.
This mapping can however be interpreted “as if” the QS was a
new terminal node (leaf or tip) of the tree, usually inserted (or

“grafted”) into the branch with the most probable placement
location, which can be useful in some applications.

Secondly, a further common misconception is that a QS is
only placed onto a single branch, or that only the best (most
likely) placement location is taken as the result for each placed
QS. Instead, each branch is seen as a potential placement
location with a certain probability, which sum to one over
the tree. It can however be useful to reduce the placement
distribution of a QS to only its most probable placement
location. Also, for practical reasons, typically not all locations
are stored in the resulting file (or even considered in the
computation by application of heuristics), as low probability
locations can often be discarded to save storage space and
downstream processing time; see Section “File Format” for
details. Lastly, some placement methods do only output a
single best placement, see Table 1.

In summary, phylogenetic placement yields a distribution
of potential locations of where a QS could be attached in the
RT – but it does not extend the RT by the QS with an actual
branch.

File Format. Placement data is usually stored in the so-called
jplace format (67), which is based on the json format (68, 69).
See Figure 2 for an example. It uses a custom augmenta-
tion of the Newick format (70) to store the reference tree,
where each branch is additionally annotated by a unique
edge number, so that placement locations can easily refer
to the branches. For each QS (named via the list "n"), the
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{
    "tree": "((A:0.2{0},B:0.09{1}):0.7{2},C:0.5{3}){4};", 
    "placements": 
    [{
        "p": [
            [1, 22578.16, 0.777385, 0.004132, 0.0006], 
            [0, 22580.15, 0.107065, 0.000009, 0.0153]
        ],
        "n": ["fragment1", "fragment2"] 
    }, {
        "p": [[2, 22576.46, 1.0, 0.003555, 0.000006]], 
        "nm": [["fragment3", 1.5], ["fragment4", 2]]
    }], 
    "fields": [
        "edge_num", "likelihood", "like_weight_ratio", 
        "distal_length", "pendant_length"
    ],
    "metadata": {
        "invocation": "epa-ng --ref-msa $REF_MSA 
            --tree $TREE --query $QRY_MSA --model $MODEL"
    },
    "version": 3
}

Fig. 2. Jplace format for phylogenetic placement. The exemplary file consists
of a reference "tree" in a custom Newick format that annotates edge numbers
in curly brackets, followed by two pqueries, which is the term for combined lists
of sequence names and their placement locations. The first pquery contains two
placement locations ("p") for two query sequences ("n"), and the second contains a
single location ("p") for two other sequences including their multiplicities/abundances
("nm"). The order to interpret the values per location is given via the "fields" list,
and highlighted by colors here; additional "metadata" and a "version" of the file
format can be given. Example adapted from (67).

format then stores a set of possible placement locations (in
the list "p"), where each location is described by the values:
(1) "edge_num", which identifies the branch of this placement
location, (2) "likelihood", which is used by maximum like-
lihood based placement methods, (3) "like_weight_ratio"
(LWR), which denotes the probability (or confidence) of this
placement location for the given QS, (4) "distal_length" and
(5) "pendant_length", which are the branch lengths involved
in the placement of the QS for the given placement location;
see Figure 1(b) for an explanation of these lengths.

These five data fields are the standard fields of the jplace
format; further fields can be added as needed. As noted above,
typically not all placement locations for a given QS are stored
in the file, as low probability placements unnecessarily increase
the file size without providing substantial information; in that
case, the sum of the stored LWR values might actually be
smaller than 1.

The format furthermore allows for multiple names in the
"n" list, as well as assigning a “multiplicity” to each such name
(by using a list called "nm" instead of "n"). For instance, this
allows to only store the placement locations for identical reads
once, while keeping track of the original raw abundances of
these reads or OTUs. A pair of a "n"/"nm" list and a "p"
list is called a “pquery”, and describes a set of placement
locations for one or more (identical) QSs. This structure is
then repeated for each QS that has been placed.

To our knowledge, the genesis library (71) is the only
general purpose toolkit for working with, and manipulating,
placement data in jplace format. It also incorporates many
of the downstream visualization and analysis techniques we
describe later on. Some other tools that offer basic capability

to work with jplace files are BoSSA (72), ggtree (73), and
treeio (74), all of which can read jplace files for processing
in R.

With the release of several placement tools that do not
use the ML framework, see Section “Distance-Based Place-
ment”, the jplace file format (67) may require an update.
The standard is written currently (as of version 3) with place-
ment properties such as branch lengths and likelihood scores
in mind, which do not translate well to other types of place-
ment algorithms (pers. comm. with S. Mirarab, July 2020).
Furthermore, it might be helpful to support sample names,
multiple samples per file, and additional per-sample or even
per-query annotations and other metadata in the file format.
Being based on json, this can already be achieved now by
adding these entries ad-hoc, but would lack support by parsers
if not properly standardized.

2.2. Types of Query Sequences
In principle, any type of genetic sequence data can be subjected
to placement, as long as the reference sequences span the
genomic regions where the query sequences originate from.
Apart from the availability of suitable reference sequences used
to construct a reference tree (see Section “Sequence Selection”),
the primary limiting factor is the extent to which a given
placement tool supports the data. Currently, the majority of
placement tools supports nucleotide (DNA/RNA) and amino
acid (protein) data. Many placement methods require query
reads to be aligned to the reference, i. e. they need to be
homologs.

Metabarcoding and Amplicons. For the above reasons, a com-
mon approach to obtain sequences is metabarcoding (9, 46–48).
In metabarcoding, one or several marker or barcoding genes,
such as 16S (75), 18S (76), ITS, COI, etc. (2, 77–79) are typi-
cally chosen to compute the reference alignment, and appropri-
ate primers are selected to enable metabarcode sequencing of
the sample (9). A marker gene should be universally present
in the studied organisms, and ideally should only occur once in
the genome of each organism (51, 80), i. e., be single-copy. In
practice, marker genes often occur multiple times per genome,
possibly requiring the need for copy number correction. A
marker gene should exhibit sufficient between-species variation
to distinguish them from each other, but show low within-
species variation (48). Using a metabarcoding approach has
several advantages: it targets loci of interest and focuses the
sequencing effort there (incidentally also limiting the size of
the reference MSA), barcoding genes are typically well suited
for phylogenetics (stable regions to aid alignment paired with
variable regions to discriminate organisms), and the approach
is generally cost-effective. Such approaches use amplicon se-
quencing (37, 81), wherein only DNA originating from the
targeted region is amplified using the Polymerase Chain Reac-
tion (PCR, 82), thus yielding the subsequent sequencing of
any remaining DNA fragments from other regions highly im-
probable. The resulting amplicon sequences have been shown
to be well-suited for phylogenetic placement (7, 83).

However, PCR-based amplifications are known to introduce
biases in the abundance of the sequencing reads, as some
fragments may be copied with a higher likelihood than others
(84, 85). Similarly, a further bias that skews abundance results
exists as different organisms may have a different number of
copies of the targeted gene, ranging from single copies to 15
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copies, depending on the organism (86). Some methods exist
that attempt to account for copy number bias (87–89) as well
as for PCR amplification bias (90, 91).

When an untargeted sequencing approach is chosen instead
(such as shotgun metagenomic sequencing), using a broader
scope for the reference sequences may be advisable, such as
using whole genome data. This might only be feasible for
small genomes such as some viruses or mitochondrial DNA.
Alternatively, a sensible approach is to filter out any reads that
did likely not originate from the genetic regions that constitute
the reference alignment. This can be achieved, for example,
using hmmsearch from the HMMER-package (92, 93), which
allows the user to obtain a list of reads that have an alignment
score above a given threshold. Similarly, so-called mitags (84)
represent a shotgun-based alternative to amplicon sequencing.

Recently, placement methods have emerged that do not
require the alignment of query sequences to a reference, and
some do not even require the references to be aligned against
each other (see Section “Distance-Based Placement”). How-
ever, establishing that query reads and reference sequences are
homologous is still necessary.

Sequencing Technologies. A further consideration is the
choice of sequencing technology, with the primary property
being the length of the resulting sequencing reads. So far, the
vast majority of studies utilizing phylogenetic placement have
relied on short-read sequencing technologies such as NGS, us-
ing by now well established protocols to perform broad low-cost
sequencing (94). However, this approach produces very short
(150-400 nucleotide) reads, that typically only cover fragments
of a reference gene. For universal single-copy markers, this
can limit their applicability to phylogenetics due to the lower
information content. However, the approach has been applied
successfully to other types of data (95, 96).

More recent sequencing technologies, called third genera-
tion sequencing, or long-read sequencing (LRS), yield indi-
vidual reads that cover entire genes, or even entire genomes
(97). While placement was originally developed for short read
sequencing, longer read lengths typically increase the phyloge-
netic signal contained in reads, thus increasing the reliability
of phylogenetic methods. Indeed, such sequence data have
been shown to overcome this fundamental hurdle to phyloge-
netically resolving the relationships between query sequences
that originally gave rise to phylogenetic placement (43).

An emerging third way to obtain longer reads is to combine
short reads into longer so-called Synthetic Long-Reads (SLRs),
which have been used successfully to characterize metagenomes
(98, 99) and which improve upon short-read metabarcoding
approaches for taxonomic classification (43, 100, 101).

Clustering. Once the wet-lab sequencing strategy has been
determined, a user eventually obtains a (typically large) set
of sequences. After quality control, a potential next step is
to consider if, and how, to cluster these raw sequences in
order to reduce the amount of data that has to be processed,
often at the cost of losing information. Common choices
include clustering by similarity threshold (≥ 97%) resulting in
Operational Taxonomic Units (OTUs, 102–106), more strictly
based on single nucleotide differences resulting in Amplicon
Sequencing Variants (ASVs, 107), or more recent alternatives
such as SWARM clustering (108). These methods are most
commonly used for clustering reads from marker regions, and

hence applicable in the placement context; for a comprehensive
review of clustering methods, see (109).

If possible, it is recommended to avoid clustering, in order
to retain potential phylogenetic signal; this choice however also
depends on study design and goals. However, even if sequences
are not clustered, we strongly recommend dereplication, that
is, removal of exact (strict) duplicates of sequences, to avoid
unnecessary redundant computations. For the same reason,
sequence dereplication is also useful when pooling the sequences
from multiple samples together and placing the resulting set
via a single placement run. Tools that offer this capability
include USEARCH (103), and VSEARCH (105), as well as
the placement-specific chunkify command in gappa (71).

Outgroup Rooting. Finally, an often overlooked source of query
sequences are high-quality reference sequence databases. Here,
the use-case of placement shifts away from taxonomic assign-
ment: instead such data can be used to attempt an outgroup
rooting of an existing tree, using already classified sequences
(55, 110, 111). The result of placement, in this case, is a set
of suggested branches on which to root the tree, including a
probability estimate for each root placement onto each branch
(111).

2.3. Reference Sequences, Alignment, and Tree
The phylogenetic reference tree (RT), inferred from a set of
reference sequences (RSs) using their alignment (Reference
Alignment, RA), is the foundation and scaffold for conducting
phylogenetic placement. Ideally, to avoid duplicating work, to
ensure high quality, and to provide stable points of reference for
comparison between studies, suitable reference trees should be
provided by the respective research/organismal communities.
First efforts for microbial eukaryotes are on their way (112–
115), although some of these are not designed explicitly for
phylogenetic placements, but more taxonomic groups will
follow. As such, references are however not yet available for all
taxonomic groups, we here provide an overview of the process
(see also 7, 114, for practical examples).

Sequence Selection. As phylogenetic placement cannot infer
evolutionary relationships below the taxonomic level of the
reference tree, the first step is the selection of suitable RSs,
which should (i) cover the diversity that is expected in the
query sequences (QSs), and (ii) be well-established and rep-
resentative for their respective clades to facilitate meaningful
interpretation. In order to capture unexpected diversity and
potential outliers, it can be advantageous to include a wider
range of sequences as well (7), or to run preliminary tests
and filtering (placement- or similarity-based) with a broad
reference to ensure that all diversity in the QSs is accounted
for.

In many cases, the selection process is (unfortunately) labor-
intense, as it requires hand-selecting known sequences from
reference databases such as SILVA (116–118), NCBI (119, 120),
GreenGenes (121, 122), or RDP (123, 124). This manual
process however also often provides the highest quality, and
allows to optimally assemble the RSs for a given project. See
also (125) for a comparison of these databases.

Important selection criteria are the number of sequences to
be selected, as well as their diversity; both of which depend
on the study design and goals. Generally, a number of RSs
in the order of hundreds to a few thousands has shown to
provide enough coverage for most QS datasets, while still
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being small enough to properly visualize their phylogeny and
to conduct all necessary computations in reasonable time.
Often, it is sufficient to include a single species to represent
a whole clade (115). Depending on the types of downstream
analyses, it can be a disadvantage to select sequences that
are too similar to each other (i. e., closely related species,
or different strains of the same species), as this can spread
the placement distribution across nearby branches. In other
words, placements with similar probability in many branches
are mostly a consequence of reference alignment regions for
which large subtrees contain (almost) identical sequences. This
is however expected when conducting taxonomic assignment
at species or below-species level, and the reference should be
built with the targeted taxonomic resolution in mind.

On the other hand, if the QSs contain enough phyloge-
netic signal (e. g., when using long reads, whole genome data,
or when the target gene has sufficient variability), including
multiple representatives of a taxonomic group might allow to
obtain more finely resolved placements. For example, in short
genomes such as HIV or arthropod mitochondria, where mu-
tations are not concentrated in specific regions but spread all
over the genome, reads matching a reference alignment region
likely show a decent amount of variation, making placements
exploitable (126).

Lastly, the RSs need to at least span the genomic region
that the QSs come from. For a more robust inference of the
RT however, it can be advantageous to include a larger region
with more phylogenetic signal. Theoretically, if one wanted to
place shotgun sequences from entire genomes, whole-genome
RSs would be needed.

As an alternative to manual selection, the Phylogenetic
Automatic Reference Tree (PhAT, 127) is a method that uses
reference taxonomic databases to select suitable RSs which
represent the diversity of (subsets of) the database. In cases
where taxonomic resolution at the species-level does not require
expert curation, the PhAT method can provide a basis for
rapid data exploration, and help to obtain an overview of the
data and its intrinsic diversity.

Reference Alignment Computation. Next, for ML-based tree in-
ference and placement, the RSs need to be aligned against
each other to obtain the reference alignment (RA). Typically,
this is conducted with de novo multiple sequence alignment
tools such as T-Coffee (128), MUSCLE (129), MAFFT
(130), and others; see (131–133) for reviews. Recently, MUS-
CLE v5 introduced an interesting new approach that generates
alignment ensembles to capture alignment uncertainty (134,
preprint). In the ML framework, the QSs also need to be
aligned against the RA, see next section.

Tree Inference. Finally, given the RA, a phylogenetic tree of
the RSs is inferred, which is henceforth used as the reference
tree (RT); see (135) for a general review on this topic. In theory,
any method that yields a fully resolved (bifurcating) tree is
applicable, e. g., neighbor joining (136), maximum parsimony
(137), or Bayesian inference (60, 138). In practice however,
maximum likelihood (ML) tree inference (60, 139) is preferred,
in particular when using ML-based placement, as otherwise
inconsistencies in the assumed models of sequence evolution
can affect placement accuracy. To this end, common software
tools include IQ-TREE (140), FastTree2 (141), and RAxML
(142, 143); see (144) for a review and evaluation of ML-based
tree inference tools. An open research question in this context

is how to incorporate uncertainty in the tree inference (and
in the alignment computation) with phylogenetic placement
(134, 145, 146).

Alignment of Query Sequences. For many placement methods,
the query sequences need to be aligned against the reference
alignment. In principle, de novo alignment methods can be
deployed to obtain a comprehensive alignment of both the
reference and query sequences. These tools are however not
intended for HTS data, and are not well suited for handling the
heterogeneity of phylogenetic placement data, with (typically)
longer, curated, high-quality reference sequences, and short
lower-quality reads (query sequences).

Hence, with the rise of high-throughput sequencing, special-
ized tools have been developed that extend a given (reference)
alignment without fully recomputing the entire alignment. In
the context of phylogenetic placement, there are two addi-
tional advantages that can be exploited to improve efficiency:
(i) query sequences only need to be aligned against the refer-
ence, but not against each other (as their phylogenetic relation-
ship is not resolved during placement), and (ii) insertions into
the reference that result from aligning a QS against the refer-
ence can be omitted as they do not contain any phylogenetic
signal for the placement of the QS.

In the simplest case, only the reference alignment and query
sequences are required as input. For instance, the hmmalign
command of HMMER (92, 93) can align query sequences to
the reference alignment using a profile Hidden Markov Model
(HMM) built from the reference alignment. Note that the
option -m has to be set in order to not insert columns of
gaps into the reference. Alternatively, the mafft command
--addfragments (147) uses an internally constructed guide tree
built from a pairwise distance matrix of the reference alignment
to aid the alignment process; here, the option --keeplength
has to be set to not add columns of gaps to the reference.

Furthermore, the PaPaRa tool (148, 149) can be used
that was was specifically developed to target phylogenetic
placement. It takes the RT as additional input, and uses
inferred ancestral sequences at the inner nodes of the tree to
improve the alignment process. Here, the option -r has to be
set to not insert columns of gaps into the reference. Similarly,
PAGAN (150) also utilizes the information in the reference
tree, but it does extend the reference alignment with gaps as
needed for the query sequence, causing higher computational
effort during placement.

Note that typically, read mapping tools such as Bowtie2
(151) or BWA (152, 153) are not recommended for phylogenetic
placement, as they expect low-divergent sequences as input,
e. g., from a single species.

2.4. General Purpose Placement Methods
Once initial tasks such as reference tree creation and sequence
alignment are completed, the actual placement can commence.
There exist several distinct algorithmic approaches for con-
ducting the core part of phylogenetic placement, which we
introduce here; see Table 1 for an overview.

Maximum Likelihood Placement. Maximum Likelihood (ML) is
a statistically interpretable and robust general inference frame-
work, and one of the most common approaches for phylogenetic
tree inference (59, 60, 139). It works by searching through the
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Table 1. General purpose placement tools. This table compares the
features of the general purpose (i. e., not use-case specific) phylogenetic
placement tools. Columns are as follows. Alignment: Does the tool need
the QSs to be aligned against the reference alignment? Multiple: Does
the tool produce multiple placement locations per QS, or just a single
(best) one? Uncertainty: Is there some measure of uncertainty (such as
LWR) assigned to each placement location? Branch Length: Does the tool
compute the involved branch lengths at each placement location for each
QS?

Placement Tool Alignment Multiple Uncertainty Branch Lengths
PPLACER yes yes yes yes
RAXML-EPA yes yes yes yes
EPA-NG yes yes yes yes
RAPPAS no yes yes no
APPLES no no no yes
APP-SPAM no no no yes

super-exponentially large space of potential tree topologies for
a given set of sequences (taxa), and computing the phyloge-
netic likelihood of the sequence data of these taxa being the
result of the evolutionary relationships between the taxa as
described by each potential tree, while also computing branch
lengths of the tree. The result of this inference is the tree
topology one is able to find using some heuristic search strat-
egy that best (most likely) “explains” the underlying sequence
data. Due to the NP-hardness of the tree search problem, the
best tree one can find might not be the globally best one.

To calculate this likelihood, ML methods use statistical
models of sequence evolution that describe substitutions be-
tween sequences (insertions and deletions are mostly ignored; it
is hence also called a substitution model), see (58) for a review.
Consequently, the estimated parameters of these models are
an inherent property of the resulting phylogenetic tree. The
choice of model parameters also directly informs the specific
branch lengths of a tree, interpreting a tree under a differ-
ent set of model parameters thus may lead to inconsistencies.
Therefore, under the ML framework, we strongly recommend
to use the same substitution model and parameters for tree
inference and for phylogenetic placement.

Based on the general ML tree inference framework, ML-
based phylogenetic placement works in two steps: First, the
QSs are aligned against the RA as described above, and sec-
ond, using the resulting comprehensive alignment with both
reference and query sequences, the QSs are placed on the RT
using the maximum likelihood method to evaluate possible
placement locations (64, 65, 154).

Standard methods used in ML tree inference use search
heuristics to explore some possible tree topologies for a given
set of sequences. Instead, for a given QS, ML-based placement
only searches through the branches of the reference tree (RT)
as potential placement locations for the QS. That is, each
branch of the RT is evaluated as a placement location, and
branch lengths of the involved branches are optimized, follow-
ing the same approaches as for de novo tree inference. However,
the distal and proximal branch lengths of the placement (see
Figure 1(b) for details) are typically re-scaled, so that their
sum is equal to the original branch length in the RT. Finally,
the phylogenetic likelihood of the tree with the QS amended
as a temporary extra taxon is calculated.

For each QS and each branch of the RT, this process yields
a likelihood score (which is stored in the jplace format, see
Section “File Format”). The Likelihood Weight Ratio (LWR)

of a placement location is then computed as the ratio between
this likelihood score and the sum over all likelihood scores
for the QS across the entire tree (63, 155). These likelihood
scores sum to one across all branches, and hence express the
confidence (or probability) of the QS being placed on a given
branch.

The first two tools to conduct phylogenetic placement in an
ML framework were the simultaneously published (as preprints)
pplacer (64) and RAxML-EPA (65). Both build on the
same general ML concepts, but employ different strategies
for improving computational efficiency, e. g., by heuristically
limiting the number of evaluated branches (potential placement
locations). Additionally, pplacer offers a Bayesian placement
mode. The more recent EPA-ng (156) tool combines features
from both pplacer and RAxML-EPA, is substantially faster
and more scalable on large numbers of cores, and hence is the
recommended tool for ML-based placement.

Ancestral-Reconstruction-Based Placement. Recently, multiple
methods were introduced that do not rely on aligning query
sequences to a reference MSA. The first such group of methods
is based on reconstructing ancestral states at interior nodes of
the reference tree, again using an ML framework. From these
ancestral sequences, k-mers are generated and associated with
the branches of the reference tree. Subsequently, phylogenetic
placement is performed by comparing the constituent k-mers
of a QS with the set of k-mers indexing the reference tree
branches, thereby obviating the need for QS alignment. This
is the general approach used in both RAPPAS (157) and
LSHplace (158).

It should be noted that using this procedure, distal and
pendant branch lengths of a given RT branch are determined
during the association of k-mers with RT branches, meaning
that all placements on a given branch have the same fixed
location. This means that an additional step to conduct branch
length optimization that is not directly offered by RAPPAS or
LSHplace may be required to obtain more realistic placement
branch lengths. RAPPAS however does produce multiple
placements per QS and calculates a confidence measure akin
to the LWR, yielding a distribution for placing a single QS
onto different branches of the tree.

Distance-Based Placement. Finally, the most recent placement
approaches utilize methods from distance-based phylogenetic
inference.

For example, APPLES (159) is based on the least-squares
criterion for tree reconstruction (59). For a given tree, the
least-squares method calculates the difference between the pair-
wise sequence distances and the pairwise patristic distances
(i. e., the path lengths between two leaves). A least-squares
optimal tree is the tree for which this difference is minimized.
In APPLES, this criterion is used to score possible placement
locations of a QS on an existing tree, returning the branch
which minimizes the between-distances difference. A key ad-
vantage of the least-squares approach is its ability to efficiently
handle reference trees with hundreds of thousands of leaves,
which is currently not computationally feasible using ML meth-
ods. Further, the method does not require an alignment of
the sequences involved, requiring only a measure of pairwise
distance between them. Note however that as these methods
still require a reference tree, computing a reference MSA may
still be needed, unless the tree is inferred via distance-based
methods as well. Consequently, even unassembled sequences,
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such as genome skims (160), may be used both as reference
and query sequences. Recently, an updated APPLES-2 was
published that further improves upon the scalability and accu-
racy of the tool (161). Note also that APPLES can take as
input, but does not require, aligned sequences.

The most recent alignment-free method is App-SpaM (162).
It utilizes the concept of a spaced-word, which can be under-
stood as a type of k-mer for which only some characters have
to be identical for two subsequences to be considered as having
the same k-mer. This relaxed equality definition is informed
by a binary pattern, indicating for each site of a spaced word
whether it should be taken into account (1) or disregarded (0).
Building on this, the tool calculates pairwise distances between
a QS and the RSs based on the number of shared spaced-words.
Subsequently, the tool identifies the placement branch of a QS
as either the terminal branch of the closest RS, or the branch
leading to the parental node of the LCA of the two closest
RSs, depending on the strength of the signal of the closest RS.
Notably, App-SpaM is able to provide both distal and pendant
branch lengths for the placements it produces, and does so
using an estimated phylogenetic distance (the Jukes-Cantor
distance, 163). Note that both APPLES and App-SpaM only
produce a single placement per QS and can therefore not offer
statistical measures of placement uncertainty such as the LWR.

Generally, distance-based placement methods produce re-
sults with lower accuracy compared to ML-based placement,
though this gap appears to be narrowing. These newer ap-
proaches do however expand the scope of placement to sizes
of reference trees, and lengths of reference sequences, that are
orders of magnitude larger than what is currently possible
with ML methods.

2.5. Application-Specific Placement Methods
Several additional placement methods exist. We provide a
survey of these in this section. The placement methods covered
in this section set themselves apart through their more specific
use-cases, however this does not imply that their scope of use
is necessarily limited.

Viral Data. A particularly challenging use case for phyloge-
netic methods is the investigation of viral data, with a highly
relevant example coming from the SARS-CoV-2 pandemic.
Due to the dense sampling involved in studying such viral
outbreaks, differences between individual taxa in a prospective
tree may only be due to a very low number of, or even single,
mutations. Consequently the amount of phylogenetic signal is
generally very low, complicating tree reconstruction (55). Yet,
distinguishing between major viral variants and identifying
them precisely from a given clinical sample is crucial for epi-
demiological studies. In this context the UShER software was
introduced that specifically focuses on phylogenetic placement
of SARS-CoV-2 sequences (56). In contrast to ML methods,
UShER uses a Maximum Parsimony (MP) approach, and
does not operate on the full sequence alignment. This allows
the method to focus directly on individual mutations, and
consequently only use a fraction of the runtime and memory
footprint of conventional ML placement methods. Note that
the accuracy of MP-based phylogenetic methods can suffer
when one or more lineages in the tree have experienced rapid
evolution that results in long branch lengths. In such cases MP
may incorrectly determine such lineages to be closely related,
an effect termed long branch attraction (164, 165). While this

is less of an issue for very closely related sequences such as
SARS-CoV-2 or other (but not all) viral data, it may yield
the application of such approaches to different types of data
more challenging.

Gene Trees. In principle, all placement methods aim to pro-
vide the location of a QS on a phylogeny that accurately
reflects the underlying pattern of speciation, i. e., the species
tree. In practice, the reference tree is typically only inferred on
a single gene (16S, 18S, ITS, etc.), yielding a gene tree which
may substantially differ from the species tree, called gene-tree
discordance (166). Alternatively, we may have multiple such
gene trees that induce a species tree, and subsequently want
to perform query placement onto the species tree via place-
ment onto the constituent gene trees (2). Currently, only two
placement methods are able to handle such cases: INSTRAL
and DEPP. INSTRAL (167) performs placement of QSs for
a species tree induced by a set of gene trees. It does so by
first placing into the individual gene trees using existing ML
placement methods, then re-inferring the species tree from
the extended gene trees. In contrast to this, DEPP (168,
preprint) only considers the problem of discordance between a
gene tree and its species tree and attempts to account for this
during the placement into the species tree. The approach is
based on a model of gene tree discordance learned from the
data using deep neural networks that yields an embedding
of given sequences into a euclidean space. Incidentally, this
makes DEPP the first and so-far only phylogenetic placement
method to incorporate machine learning. DEPP then uses
the pairwise distances that result from the embedding of both
reference and query sequences as input to APPLES, which
computes the least-squares placement of the QSs.

Other Use Cases. Some further tools make application-specific
usage of placement. The first pertains to the specific case of
samples containing sequences from exactly two organisms,
and the task of identifying their respective known reference
organisms. The tool MISA was developed with this specific
use-case in mind (169).

The second relates to either placing morphological sequences
from fossils typically represented by binary characters (pres-
ence/absence of a trait) or Ancient DNA (aDNA) sequences.
Placing ancient DNA sequences is generally challenging for
analysis because of the high degree of degradation due to
the age of the DNA molecules, generally shorter read lengths
ranging between 50 and 150 base pairs, and post-mortem
deamination (170). The pathPhynder tool aims to solve this
use-case (171, preprint). Like UShER, pathPhynder operates
on nucleotide variants, focusing on single nucleotide polymor-
phisms. Furthermore, phylogenetic placement has been used
for placement of fossils (172, 173) using morphological data.
This approach uses the maximum likelihood framework to use
the signal from mixed morphological (binary) and molecular
partitions in the underlying MSA.

Lastly, phylogenetic placement has also been proposed as
a way to perform OTU clustering. The HmmUFOtu (174)
tool implements this specific use-case, along with automated
taxonomic assignment (see also Section “Taxonomic Classifi-
cation and Functional Analysis”). A unique characteristic in
comparison to other placement tools is that HmmUFOtu also
performs QS alignment and uses this information to pre-select
promising placement locations.
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2.6. Workflows based on Phylogenetic Placement
Over the last decade, several pipelines have been published
that use phylogenetic placement tools as their core method,
building on it and using its result in various ways.

Automated Analysis Pipelines. One class of placement pipelines
focus on simplifying the overall use of placement methods, typ-
ically providing the user with the option to use a pre-computed
reference tree, obviating the need for manual selection of refer-
ence taxa (154, 175–180). A number of these pipelines also au-
tomate the generation of key metrics and downstream analysis
steps. Among these pipelines, of particular note is PICRUSt2
(177, 178), which stands out for accounting for 16S copy num-
ber correction, and providing the user with a prediction of the
functional content of a sample. Similarly, paprica (179) is
a pipeline that computes metabolic pathway predictions for
bacterial metagenomic sample data.

Divide-and-Conquer Placement. A further key challenge for ex-
isting phylogenetic placement tools is scalability with regards
to the size of the reference tree. While more recent meth-
ods have shown significant improvements in both the memory
footprint and execution time required when placing QSs on
reference trees on the order of 105 reference taxa (see Sec-
tion “Distance-Based Placement”), such input sizes remain
extremely challenging for ML-based placement methods. A
number of workflows have been proposed to scale existing place-
ment methods for this use-case by splitting up the reference
tree into smaller subtrees on which phylogenetic placement is
then performed, creating a divide-and-conquer approach to
phylogenetic placement (71, 127, 181–183). These approaches
vary primarily in how they select subtrees. SEPP (181) and
pplacerDC (182) generate a subtree based on the topology
of the reference tree. SEPP is a general boosting technique in
particular for highly diverse reference trees (181, 184). Further,
a multi-level placement approach exists (71, 127), which first
places onto a broad RT, and then extracts QSs in pre-selected
clades of that RT to place them again onto clade-specific high-
resolution RTs. Finally, pplacer-XR (183) selects a set of
neighboring reference branches based on similarity to each
query sequence, out of which it creates a subtree. Note that in
this case, when decomposing the reference tree differently for
every query sequence, scalability with regards to the number
of query sequences is severely reduced.

A central promise of placement on very large trees is to
simplify the curation and engineering tasks involved in creat-
ing a reference tree, as here a typical challenge is to decide
which taxa to include in the tree. If placement can instead
be performed on a tree encompassing an entire database, the
curation challenge is circumvented. However, as another com-
mon issue with reference tree generation is the inclusion of
overly similar reference sequences resulting in unclear or fuzzy
placement signal, divide-and-conquer placement approaches
may not be sufficient on their own.

Evaluation of Placement Tools. Lastly, PEWO is an extensible
testing framework specifically aimed at benchmarking and
comparing different phylogenetic placement softwares (126).
It includes a wide range of datasets and thus provides an
important resource for identifying which placement tool is
best suited for specific use-cases by evaluating the accuracy
of existing tools, given some dataset. PEWO does so using a
pruning-based evaluation procedure, where a subset of leaves

is removed from a reference tree. This subset of sequences is
subsequently used as input QSs for placement. The accuracy
of a placement is calculated as the number of nodes between
the best placement location, and the original location of the
QS on the reference tree (called the node distance). This
basic approach is used for evaluation in most publications
that introduce new placement approaches. Note that the node
distance measures two sources of error: error introduced by
the placement algorithm, and error introduced by the pruning
of the reference tree. In contrast to this, the “delta error”
used in the evaluation of APPLES measures the additional
error introduced through placement, in addition to the er-
ror introduced by the process of altering the reference tree
through pruning (159). This new metric is however not yet
included in the PEWO workflow. Nevertheless, the useful-
ness of a comprehensive and standardized testing framework
cannot be emphasized enough, as it substantially facilitates
further advancement and standardization in the field and the
development of novel methods.

3. Visualization and Analysis

As mentioned before, there are two ways to conceptualize
phylogenetic placement: (i) as an assignment (or mapping)
of individual sequences to the branches of a phylogeny, usu-
ally taking the (n-)most likely placement location(s) of each
sequence, or (ii) as the distribution of all sequences of a sam-
ple across the tree, taking their respective abundances and
placement probabilities into account. The former is similar to
taxonomic assignment, but with full phylogenetic resolution
instead of resolution at the taxonomic levels only, while the
latter focuses on, e. g., species communities and their diversity
as a whole. In the following we provide an overview of analysis
methods that make use of such data.

Abundances and Multiplicities. In both interpretations, an im-
portant consideration is whether to take sequence abundances
into account. When working with strictly identical sequences,
or sequences resulting from some (OTU) clustering, the num-
ber of occurrences of each sequence or size of each cluster
can be used as additional information for interpreting, e. g.,
community structure. On the one hand, including their abun-
dances with the placement of each sequence yields information
on how prevalent the species of these sequences are; for ex-
ample, this can provide insight into the key (most abundant)
species in environmental samples. On the other hand, drop-
ping abundances and instead considering each sequence once
(as a singleton) is more useful for estimating total diversity and
taxonomic composition. For example, this way the number of
distinct sequences can be regarded as a proxy for the number
of species that are present in a sample. Whether to include
abundances should hence be decided depending on the type of
analysis conducted.

In the jplace format, these abundances can be stored as
the so-called “multiplicity” of each placement (67), in the
"nm" data field. Unfortunately, the fasta (185) and phylip
(186) formats used as input to placement do not natively
support abundance annotations, and current placement tools
often do not handle them automatically, meaning that the
information can be lost. However, the chunkify workflow (71,
127) mentioned in Section “Clustering” takes abundances into
account and annotates them as multiplicities in the resulting
jplace file. Furthermore, gappa (71) offers a command to
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edit the multiplicities as needed, for example setting them
post-hoc to the initial sequence abundance determination.

Visualization. Prior to more in-depth analyses, a first step
in most workflows is a visualization of the immediate results.
Following the two interpretations of phylogenetic placement
(and hence, depending on the research question at hand), there
are several ways to visualize placement results.

First, individual placements can be shown as actual
branches attached to the RT, e. g., Figure 1(c). Typically,
only the most likely placement location per sequence is used
for this, in order to avoid cluttering of the tree; this hence
omits the information about uncertainty. This can be con-
ducted by generating trees from placement results, e. g., in
newick format. Tools to this end are gappa (71) and guppy,
which is part of pplacer (64). This can subsequently be
visualized via standard tree viewing tools (for a review, see 66).
Note however that such a visualizations can quickly become
overloaded when the number of QSs becomes large.

Second, the LWR distribution of a single sequence can be
visualized, to depict the uncertainty in placement across the
tree, for example with ggtree (73) and iTOL (187, 188).

Third, the distribution of all sequences can be visualized
directly on the reference tree, for example as shown in Fig-
ure 1(e), taking their per-branch probabilities (and potentially
their multiplicities/abundances) into account. This gives an
overview of all placements, and can for example reveal im-
portant clades that received a high fraction of placements,
or indicate whether placements are concentrated in a specific
region of the tree. These visualizations can directly be gener-
ated by gappa (71) and iTOL (187, 188); furthermore, guppy,
can produce tree visualizations in the phyloXML format (189),
which can subsequently be displayed by tree viewer tools such
as Archaeopteryx (189).

3.1. Placement Quality and Uncertainty Quantification

An important post-analysis aspect is quality control, both in
order to assess the suitability of the RT for the given placed
sequences (to, e. g., test for missing reference sequences), and
in order to assess the placed sequences themselves. Assuming
a ‘perfect’ reference tree that exactly represents the diversity
of the query sequences, the theoretical expectation is that each
sequence gets placed onto a leaf of the tree with an LWR close
to 1. Ignoring sequencing errors and other technical issues,
deviations from this expectation can be due to several issues.

To this end, plotting the histograms or the distribution of
the confidences (LWRs) across all placements can be useful,
Figure 3(c). A more involved metric is the so-called Expected
Distance between Placement Locations (EDPL, 64), which for
a given sequence represents the uncertainty-weighted average
distance between all placement locations of that sequence, or in
other words, the sum of distances between locations, weighted
by their respective probability, see Figure 3(d). The EDPL is a
measure of how far the likely placement locations of a sequence
are spread out across the tree. It hence can distinguish between
local and global uncertainty of the placements, that is, between
cases where nearby edges constitute equally good placement
locations versus cases where the sequence does not have a clear
placement position in the tree (64). These metrics can be
explored with gappa (71) and guppy (64); see their respective
manuals for the available commands.

Examining the distribution of placement statistics, Fig-
ure 3(c)-(d), or even the values of individual sequences, can
help to identify the causes of problematic placements: (i) Se-
quences that are spread out across a clade with a flat placement
distribution might indicate that too many closely related se-
quences, such as strains, are included in the RT; the EDPL
can be used to quantify this. The query sequence is then
likely another variant belonging to this subtree. (ii) Place-
ments towards inner branches of the RT might hint a hard
to place query sequence, or at a lack of reference sequence
diversity. This occurs if the (putative) ancestor represented
by an inner node of the tree is more closely related to the
QSs than the extant representatives included in the RT. This
can either be the result of missing taxa in the RT, or even
because the diversity of the clade is not fully known yet (also
known as incomplete taxon sampling), in which case the QS
might have originated from a previously undescribed species.
(iii) Sequences placed in two distinct clades might indicate
technical errors such as the presence of chimeric sequences
(192). (iv) Sequences with elevated placement probability in
multiple clades (e. g., placements in more than two subtrees)
usually result from more severe issues, such as a total lack of
suitable reference sequences for the QS, or a severe misalign-
ment of the QS to the reference. This can for instance occur
if metagenomic shotgun data has not been properly filtered,
such that the genome region that the QS originated from is
not included in the underlying MSA. (v) Lastly, long pendant
lengths can also occur if a QS does not fit anywhere in the
RT, in particular when the RT contains outgroups, which can
cause long branch attraction for placed sequences (165).

Quantifying these uncertainties in a meaningful and inter-
pretable way, and distinguishing between their causes, are open
research questions. Approaches such as considering the EDPL,
flatness of the LWR distribution, pendant lengths relative to
the surrounding branch lengths of the RT, might help here, but
more work is needed in order to distinguish actual issues from
the identification of a new species based on their placement.

3.2. Taxonomic Classification and Functional Analysis
By understanding the taxonomic composition of an environ-
ment, questions about its species diversity and richness can
be answered. Typical metagenomic data analyses hence often
include a taxonomic classification of reads with respect to a
database of known sequences (193), for example by aggregating
relative abundances per taxonomic group. In addition, such a
classification based on known data enables to analyze which
pathways and functions are present in a sample, and hence
to gain insight into the metabolic capabilities of a microbial
community.

Preexisting Tools. Many tools exist to these ends: BLAST
(194) and other similarity-based methods were among the early
methods, but depend on the threshold settings for various pa-
rameters (195), only provide meaningful results if the reference
database contains sequences closely related to the queries (7),
and the closest hit does often not represent the most closely
related species (38, 39). Thus, the advantages of leveraging
the power of phylogenetics for taxonomic assignment have long
been recognized (196). The classification can be based on de
novo construction of a phylogeny (197, 198), which as men-
tioned is computationally expensive, and tree topologies might
change between samples, yielding downstream analyses and
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Fig. 3. Examination of phylogenetic placement data. Here, we show some techniques for visually inspecting placement data, using an exemplary dataset consisting of 154
soil samples from neotropical rain forests placed on an eukaryotic reference tree (7). (a) Heat tree showing the distribution of millions of amplicon reads on the reference
tree by summing over the per-branch Likelihood Weight Ratios (LWRs) of all reads. The high abundance of placed reads in the Alveolata clade (dark branches in the lower
left) visualizes a main finding of the dataset in form of an over-abundance of reads from that clade, shown in the phylogenetic context of the reference tree. Figure adapted
from (7). (b) Taxonomic assignment of all reads based on the PR2 (120, 190) taxonomy. The taxonomy of the reference sequences was used to label each branch of the
reference tree by its highest non-conflicting taxonomic path. Then, for each read, the LWRs of its placement locations were accumulated for the branches, creating an overview
of taxonomic abundances taking placement confidences into account. The result across all reads is shown here as a Krona plot (191). (c) Histogram of the LWRs of the first
three most likely placement locations of each read, showing how many of the reads have their first, second, and third most likely placement at each (binned) LWR value. For
example, the highest bin of LWR.1 on the right hand side indicates that 20% of the reads have a first (most likely) placement position at or above an LWR of 0.95. That is, these
placements have a high LWR and are hence placed with high certainty onto their respective branches. Note that the second most likely placement (LWR.2) can never have an
LWR exceeding 1/2 (otherwise, it would be the most likely), the third most likely (LWR.3) not more than 1/3 (otherwise, it would be the second most likely), and so forth. (d)
Histogram of the Expected Distance between Placement Locations (EDPL), which are computed as the distances (in terms of ML branch path length) between placement
locations of a query sequence, weighted by the respective LWR of each location. The EDPL measures how far the placements of a sequence are spread across the branches of
the reference tree, and hence how certain the placement in a “neighborhood” of the tree is. Here, most reads have an EDPL below 0.24 branch length units (mean expected
number of substitutions per site). This indicates that the reads have most of their likely placements close to one another, within two branches on average, given that the used
reference tree has an average branch length of about 0.12.

independent comparisons between studies challenging (199).
Alternatively, dedicated pipelines for 16S metabarcoding data
such as QIIME (200, 201) and mothur (202) are routinely
used to conduct taxonomic assignment based on sequence
databases and established phylogenies as well as taxonomies;
see Section “Sequence Selection” for a list of common databases,
and see (203, 204) for comparisons of such pipelines. Other
tools for taxonomic assignment and profiling are available, for
example based on k-mers, which often use a fixed taxonomy
such as the NCBI taxonomy (119, 120) to propose an evolution-
ary context for query sequences. They hence use a taxonomic
tree without branch lengths, which can be an advantage when

a fully resolved phylogeny is not available. Tools to this end
are for example MEGAN (205), Kraken2 (206, 207), and
Kaiju (208), see (209–212) for benchmarks and comparisons.
However, these approaches are based on sequence similarity
and related approaches, and can therefore be incongruent with
the true underlying phylogenetic relationships of the sequences
under comparison (213).

Placement-Based Approaches. Phylogenetic placement can be
employed to perform an accurate assignment of QSs to tax-
onomic labels (127), with potentially higher resolution than
methods based on manually curated taxonomies (114, 214).
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This approach leverages models of sequence evolution (214),
and is hence more accurate than similarity-based methods (63).
A further advantage over the above pipelines is the ability to
use custom reference trees, thus providing a better context
for interpreting the data under study. Incongruencies between
the taxonomy and the phylogeny can however hinder the as-
signment, if they are not resolved (215). Furthermore, it is
important to note that placement-based methods only work
when the query sequences are homologous to the available
reference data, hence currently limiting the approach to, e. g.,
short genomes, metabarcoding or filtered metagenomic data.

A simple approach for taxonomic annotation based on
placements is to label each branch of the RT by the most
descriptive taxonomic path of its descendants, and to assign
each QS to these labels based on its placement locations,
potentially weighted by LWRs (127, 216). This is implemented
in gappa (71), see Figure 3(b) for an example; a similar
visualization of the taxonomic assignment of placements can
be conducted with BoSSA (72).

More involved and specialized approaches have also been
suggested. PhyloSift (214) is a workflow that employs place-
ment for taxonomic classification, using a database of gene
families that are particularly well suited for metagenomics.
The workflow further includes Edge PCA (introduced in Sec-
tion “Similarity between Samples”) to assess community struc-
ture across samples, and offers Bayesian hypothesis testing
for the presence of phylogenetic lineages. The gene-centric
taxonomic profiling tool metAnnotate (217) uses a similar
approach to identify organisms within a metagenomic sample
that perform a function of interest. To this end, it searches
shotgun sequences against the NCBI database (119, 120) first,
and then employs placement to classify the reads with respect
to genes and pathways of interest. GraftM (199) is a tool for
phylogenetic classification of genes of interest in large metage-
nomic datasets. Its primary application is to characterize
sample composition using taxonomic marker genes, which can
also target specific populations or functions. The abundance
profiling methods TIPP (80) and TIPP2 (218) also use marker
genes, and employ the SEPP (181, 184) boosting technique
for phylogenetic placement with highly diverse reference trees,
which increases classification accuracy when under-represented
(novel) genomes are present in the dataset. The more recently
introduced TreeSAPP tool (219) uses a similar underlying
framework, but improves functional and taxonomic annotation
by regressing on the evolutionary distances (branch lengths) of
the placed sequences, thereby increasing accuracy and reducing
false discovery. Lastly, PhyloMagnet (220) is a workflow for
gene-centric metagenome assembly (MAGs) that can deter-
mine the presence of taxa and pathways of interest in large
short-read datasets. It allows to explore and pre-screen mi-
crobial datasets, in order to select good candidate sets for
metagenomic assembly.

3.3. Diversity Estimates
A goal that is intrinsically connected to taxonomic assign-
ment in studies that involve metagenomic and metabarcode
sequencing is to quantify the diversity within a sample (called
α-diversity) and the diversity between samples (called β-
diversity). A plethora of methods exists to quantify the di-
versity of a set of sequences (for an excellent review, see 221).
Here, we focus on those approaches that specifically work in
conjunction with phylogenetic placement.

Among the α-diversity metrics, Faith’s Phylogenetic Di-
versity (PD) stands out, both for its widespread use in the
literature and its direct use of phylogenetic information (222).
More recently, a parameterized generalization of the PD was
introduced that is able to interpolate between the classical PD
and its abundance weighted formulation (223). Notably, this
Balance Weighted Phylogenetic Diversity (BWPD) has been
implemented to work directly with the results of phylogenetic
placement, using the guppy fpd command (64, 214).

To our knowledge, the only other method that computes a
measure of α-diversity directly from phylogenetic placement
results is SCRAPP (224), which also deploys species delimi-
tation methods (225, 226). In this method, the connection of
phylogenetics to diversity is through the concept of a molecu-
lar species (227), and quantifying how many such species are
contained within a given sample. To facilitate this, SCRAPP
resolves the between-QS phylogenetic relationships, resulting
in per-reference-branch trees of those QSs that had their most
likely placement on that specific branch. Thus, a byproduct
of applying this method is a set of phylogenetic trees of the
query sequences.

When the goal is to compute a β-diversity measure, a
common choice for non-placement based approaches is the
so-called Unifrac distance (228, 229), which quantifies the
relatedness of two communities that are represented by leaves of
a shared phylogenetic tree. Interestingly, the weighted version
of the Unifrac distance has been shown to be equivalent to the
KR-distance (230), see Section “Similarity between Samples”.
As the Unifrac distance is widely used and well understood, this
makes the KR-distance a safe choice for calculating between-
sample distances, and thus a measure of β-diversity based on
phylogenetic placement results.

3.4. Placement Distribution
Depending on the research question at hand, and for larger
numbers of QSs, it is often more convenient and easier to
interpret to look at the overall placement distribution instead
of individually placed sequences. This distribution, as shown
in Figure 1(e) and Figure 3(a), summarizes an entire sam-
ple (or even multiple samples) by adding up the per-branch
probabilities (i. e., LWRs) of each placement location of all
sequences in the sample(s), ignoring all branch lengths (distal,
proximal, and pendant) of the placements. In this context,
the accumulated per-branch probabilities are also called the
edge mass of a given branch. This terminology is derived from
viewing the reference tree as a graph consisting of nodes and
edges, and viewing the placements as a mass distribution on
that graph. This focuses more on the mathematical aspects
of the data, and provides a useful framework for the analysis
methods described below.

Normalization of Absolute Abundances. High-throughput meta-
genomic sequence data are inherently compositional (235–237),
meaning that the total number of reads from HTS (absolute
abundances) are mostly a function of available biological mate-
rial and the specifics of the sequencing process. In other words,
the total number of sequences per sample (often also called
library size) is insignificant when comparing samples. This
implies that sequence abundances are not comparable across
samples, and that they can only be interpreted as proportions
relative to each another (238, 239). However, the PCR ampli-
fication process is known to introduce biases (84), potentially
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Fig. 4. Analyses of phylogenetic placement data. Here, we show several analysis techniques for placement data, which relate multiple samples to each other (e. g., from
different locations or points in time) that have been placed on the same underlying reference tree. The example dataset contains 220 vaginal samples of human patients
with and without Bacterial Vaginosis (BV), a condition caused by an abnormal vaginal microbiome (57), placed on a bacterial tree. The “Nugent” score is an external clinical
indicator of the disease (231), which is shown in (c)–(e) as blue (healthy, low score) vs red colors (severe disease, high score). In healthy patients, two types of Lactobacilli
dominate the microbiome, while in diseased patients, a diverse mixture of other bacteria take over. All figures are adapted from (232), for details see (57, 232–234). (a) Edge
Correlation between read abundances in clades of the reference tree (measured via the imbalance transformation) and the per-sample Nugent score. This visualization
method identifies taxa whose abundances exhibit a relationship with environmental factors. Here, the red path towards the left identifies the Lactobacillus clade, that exhibits a
strong anti-correlation with the Nugent score (healthy patients with a low score have high abundances in this clade), while blue and green paths show a multitude of clades
that correlate with the score (diseased patients with a high score and high abundances in these diverse clades). (b) Placement-Factorization discretely identifies these
clades by splitting up the tree into a number of “factors”: Black edges (with colorized clades below them) indicate the first ten factors (groups of taxa, some of them nested)
whose differential placement abundances between samples exhibit a strong relationship with the Nugent score. That is, a factor is a clade in which abundances co-vary
with metadata (e. g., the Nugent score). Here, these factors are again the Lactobacillus clade and a multitude of other clades that are also highlighted in (a) by colored
paths. (c) Placement-Factorization can also ordinate samples, by plotting the balances (i. e., the abundance contrasts) across the edges identified by factors. Here, the first
two factors of (b) are shown (each dot represents one sample, colored by its Nugent score), which split healthy and diseased patients. (d) Edge Principal Components
Analysis (EdgePCA) is another ordination method, using PCA on the edge imbalances. Here, the first two PC axes are shown, which separate healthy from diseased patients
(Lactobacillus presence vs absence) on the first axis, and further distinguish the healthy patients based on the two types of Lactobacilli on the second axis. These interpretations
of the axes are derived from visualizing the PCA directly on the reference tree, which is another way to show Edge PCA results, see (233, 234). (e) Squash Clustering is
a hierarchical clustering method, here showing the clustering tree of the samples (not a phylogeny). Tip nodes (leaves) correspond to samples (individual patients), again
colorized by their Nugent score, with samples clustered based on similarity of their placement distribution, and vertical distances showing this similarity, measured as the
phylogenetic Kantorovich-Rubinstein (KR) distance between samples. Patients with a similar health status are close to each other, in particular the healthy (blue) ones.

skewing these proportions. For example, the relative abun-
dances of the final amplicons do not necessarily reflect the
original ratio of the input gene regions (235, 240); this can
be problematic in comparative studies. If these characteris-
tics are not considered in analyses of the data (241), spurious
statistical results can occur (242–245); see (234) for further
details. For this reason, the estimation of indices such as the
species richness is often implemented via so-called rarefaction
and rarefaction curves (246), which might however ignore a
potentially large amount of the available valid data (247).

Phylogenetic placement of such data hence also needs to
take this into account. The total edge masses (e. g., computed
as the sum over all LWRs of a sample) are not informative,
and merely reflect the total number of placed sequences. A
simple strategy, upon which several of the analysis methods
introduced below are based, is the normalization of the masses
by dividing them by their total sum, effectively turning abso-
lute abundances into relative abundances. This also eliminates
the need for rarefaction, as low-abundance sequences only
contribute marginally to the data. However, using this ap-
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proach can still induce compositional artifacts in the data,
as the per-branch probabilities (and hence the edge masses
per sequence) have to sum to one for all branches of the tree.
In other words, it is conceptually not possible to change the
relative edge mass on a branch without also affecting edges
masses on other branches.

Transformations of Compositional Data. A statistically advanta-
geous way to circumvent these effects, and resulting misinter-
pretations of compositional placement data, is to transform
the data from per-branch values to per-clade values. This
way, individual placement masses in the nearby branches of a
clade are transformed into a single value for the entire clade,
which expresses a measure of difference (called contrast) of the
placement masses within the clade versus the masses in the
remainder of the tree. This makes such transformations robust
against placement uncertainty in a clade (e. g., due to similar
reference sequences), implicitly captures the tree topology,
and solves the issues of compositional data. From a technical
point of view, this transforms the data from a compositional
space into an Euclidean coordinate system (248), where the
individual dimensions of a data point are unconstrained and
independent of each other. This can be achieved by utilizing
the reference tree, whose branches imply bi-partitions of the
two clades that are split by each branch (238, 249). Instead of
working with the per-branch placement masses, the accumu-
lated masses on each side of a branch are contrasted against
each other. This yields a view of the data that summarizes
all placements in the clades implied by each branch. These
transformations are, for example, achieved via two methods
that in the existing literature have unfortunately confusingly
similar names: imbalances and balances (234).

The edge imbalance (233) is computed on the normalized
edge masses of a sample: For each edge, the sum over all
masses in the two clades defined by that edge are computed;
their difference is then called the imbalance of the edge. The
edge balance (232, 238) is computationally similar, but instead
of a difference of sums, it is computed as the (isometric) log-
ratio of the geometric means of the masses in each clade; the
resulting coordinates are called balances (237, 248, 250). Both
transformations yield a contrast value for each (inner) branch
of the tree, which can then, for example, be used to compare
different samples to each other, see Section “Analysis of Mul-
tiple Samples”. They differ in the details of their statistical
properties, but more work is needed to examine the effects
of this on placement analyses (234); in practice, both can be
(and are) used to avoid compositional artifacts.

3.5. Analysis of Multiple Samples
In typical metagenomic and metabarcoding studies, more than
one sample is sequenced, e. g., from different locations or points
in time of an environment. Furthermore, often per-sample
metadata is collected as well, such as the pH-value of the soil
or the temperature of the water where a sample was collected.
These data allow to infer connections between the species com-
munity composition of the samples and environmental features.
Given a set of samples (and potentially, metadata variables),
an important goal is to understand the community structure
(251). To this end, fundamental tasks include measuring their
similarity (a distance between samples), clustering samples
that are similar to each other according to that distance mea-
sure, and relating the samples to their environmental variables.

To this end, the methods introduced in this section utilize
phylogenetic placement, and assume that the sequences from
all samples have been placed onto the same underlying refer-
ence tree; they are implemented in gappa (71) and partially
in guppy (64).

Similarity between Samples. A simple first data exploration
method consists in computing the Edge Dispersion (232) of a
set of samples, which detects branches or clades of the tree that
exhibit a high heterogeneity across the samples by visualizing a
measure of dispersion (such as the variance) of the per-sample
placement mass. The method hence identifies branches and
clades “of interest”, where samples differ in the amount of
sequences being placed onto these parts of the tree.

The similarity between the placement distributions of two
samples can be measured with the phylogenetic Kantorovich-
Rubinstein (KR) distance (230, 233), which is an adaptation
of the Earth Mover’s distance to phylogenetic placement. The
KR distance between two samples is a metric that quantifies
by at least how much the normalized mass distribution of one
sample has to be moved across the reference tree to obtain
the distribution of the other sample. In other words, it is the
minimum work needed to solve the transportation problem
between the two distributions (transforming one into the other),
and is related to the UniFrac distance (228, 229). The distance
is symmetrical, and increases the more mass needs to be moved
(that is, the more the abundances per branch and clade differ
between the two samples), and the larger the respective moving
distance is (that is, the greater the phylogenetic distance along
the branches of the tree between the clades is). It is hence
an intuitive and phylogenetically informed distance metric for
placement data, for example to quantify differences in the
species composition of two environments.

Edge Principal Component Analysis (Edge PCA) is a
method to detect community structure, which can also be
employed for sample ordination and visualization (214, 233).
Edge PCA identifies lineages of the RT that explain the great-
est extent of variation between the sample communities, and is
computed via standard Principal Component Analysis on the
per-edge imbalances across all samples. The resulting principal
components distinguish samples based on differences in abun-
dances within clades of the reference tree. See for example
Figure 4(d), where each point corresponds to a sample and
is colorized according to a metadata variable of the sample,
showing that the ordination discriminates samples according
to that variable. Furthermore, as the eigenvectors of each
principal component correspond to edges of the tree, these can
be visualized on the tree (233, 234), so that those edges and
clades of the tree that explain differences between the samples
can be identified, e. g., with guppy (64) and Archaeopteryx
(189), or with gappa (71). Principal components can also be
computed from the balances instead of the imbalances (234).

Clustering of Samples. Given a measure of pairwise distance
between samples, a fundamental task consists in clustering,
that is, finding groups of samples that are similar according
to that measure. Squash Clustering (233) is a hierarchical ag-
glomerative clustering method for a set of placement samples,
and is based on the KR distance. Its results can be visualized
as a clustering tree, where terminal nodes represent samples,
each inner node represents the cumulative distribution of all
samples below that node (“squashed” samples), and distances
along the tree edges are KR distances. We show an example
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in Figure 4(e), where each sample (terminal node) is colorized
according to associated per-sample metadata variables (fea-
tures measured for each sample), indicating that the clustering
(based on the placement distribution) recovers characteristics
of the samples based on that metadata variable.

The clustering hierarchy obtained from Squash Clustering
grows with the number of samples, which contains a lot of de-
tail, but can be cumbersome to visualize and interpret for large
datasets with many samples. Phylogenetic k-means clustering
and Imbalance k-means clustering (232) are further clustering
approaches, which instead yield an assignment of each sample
to one of a predefined number of k clusters. Phylogenetic
k-means uses the KR distance for determining the cluster
assignment of the samples, and hence yields results that are
consistent with Squash Clustering, while Imbalance k-means
uses edge imbalances, and hence is consistent with results
obtained from Edge PCA. Having the choice over the value k
can be beneficial to answer specific questions with a known set
of categories of samples (e. g., different body locations where
samples were obtained from), but is also considered a downside
of k-means clustering. Hence, various suggestions exist in the
literature to select an appropriate k that reflects the number
of “natural” clusters in the data (252–257). Visualizing the
cluster centroids obtained from both methods can further help
to interpret results by showing the average distributions of all
samples in one of the k clusters; see again (234) for details.

Relationship with Environmental Metadata Variables. The above
methods only implicitly take metadata into account, e. g.,
by colorizing their resulting plots according to a variable.
Environmental variables can also be incorporated explicitly
in phylogenetic placement analysis, to more directly infer the
relationships between the species composition of the samples
(e. g., in form of abundances per clade) and the environments
these communities live in.

The Edge Correlation (232) visualizes parts of the tree
where species abundances (as measured by the accumulated
probability mass of each sample) exhibit a strong connection
with a metadata variable, see Figure 4(a). It is computed as
the per-edge correlation coefficient between the per-sample
metadata variable and either the edge masses (highlighting in-
dividual edges), or imbalances or balances (highlighting clades)
of each sample.

Placement-Factorization (232, 234) is a more involved
method. It is an adaption of PhyloFactorization (258, 259) to
phylogenetic placement data. Its goal is to identify branches
in the tree along which putative functional traits might have
arisen in adaptation to changes in environmental variables. In
other words, it can detect clades of the reference tree whose
abundances are linked to environmental factors. By “factoring
out” the clade with the strongest signal in each step of the
algorithm (hence the name of the method), nested dependen-
cies with variables within clades can also be discovered, see
Figure 4(b). This factorization of the tree into nested clades
can further be used as an ordination tool to visualize how
samples are separated by changes along the factors, and as a
dimensionality-reduction tool, see Figure 4(c). The method
assesses the relationship between per-sample metadata fea-
tures and the balances computed on the samples; by using
Generalized Linear Models, it allows to simultaneously incor-
porate multiple metadata variables of different types, such as
numerical values (pH-value, temperature, latitude/longitude,

etc), binary values (presence/absence patterns, diseased or
not), or categorical values (body site that a sample was taken
from).

4. Conclusion and Outlook

In this review we broadly surveyed the concepts, methods,
and software tools that constitute and relate to phylogenetic
placement. We have also presented guidelines and best prac-
tices for many typical use cases, showcased some common
misconceptions and pitfalls, and introduced the most promi-
nent downstream analysis methods. Phylogenetic placement is
a versatile approach that is particularly applicable in metage-
nomics (e. g., for metabarcoding data) and broader eDNA-
based ecology studies. It allows for the annotation of sequence
data with phylogenetic information, and thereby to investi-
gate the taxonomic content, functional capacity, diversity, and
interactions of a community of organisms. Further, it allows
for comparing samples from multiple spatial and temporal
locations, enabling the analysis of community patterns across
time and space, as well as their association with environmental
metadata variables.

Despite the growing popularity of phylogenetic placement,
there are several methodological and usage aspects that will
benefit from further developments.

Currently, significant effort is required to create high-quality
reference trees. We believe research effort should focus on
simplifying this process, potentially through the design of
methods that streamline and automate the commonly involved
tasks. For example, while there are some metrics that quantify
the quality of an inferred phylogenetic tree (139, 260, 261),
there is a lack of metrics to specifically evaluate the suitability
of a tree for phylogenetic placement, given some expected
input data. Note that the PEWO testing framework (126)
(see Section “Workflows based on Phylogenetic Placement”)
represents a first step in this direction.

Ideally, reference trees and alignments should be created by,
and shared in, research communities that investigate the same
group(s) of organisms. This would not only yield obtaining
high-quality reference trees trivial, but would also immensely
increase the comparability across studies, as well as their
reproducibility. Consequently, we would highly encourage
such collaborations, and the public sharing of (perhaps even
versioned instances of) gold-standard reference trees. Notably,
for some environments, first efforts into this direction have
already been undertaken (112–115, 262).

Furthermore, as mentioned, there is a lack of established
methods that evaluate placement quality in a standardized
and meaningful way. In particular, robust metrics are missing
to distinguish the case where reference sequences of known
species are missing from the tree from the case where the
placed data actually contains yet undescribed species. A
classification based on the LWR and pendant length of the
placement locations might offer a solution here.

Lastly, further work is required to connect environmental
metadata to the results of phylogenetic placement. Placement-
based spatio-temporal methods are of high interest for ad-
dressing research questions in ecology and phylogeography.
For example, relating geo-locations of samples to their place-
ment could indicate how species communities differ across
space, while creating placement time series could show how
community compositions develop and change over time.
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