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A B S T R A C T

The computational determination of domain structures in ferroelectric films is achieved through the implemen-
tation of a multiphase-field methodology. In this framework, domain structures are calculated by minimizing
the total energy functional with respect to the multiphase-field order parameter 𝝓. This energy functional
includes the general interfacial energy, which consists of a multi-obstacle potential and a gradient energy, as
well as the phase-dependent bulk energy that incorporates contributions from mechanical forces and electric
fields. Using PbTiO3 (PTO) as the chosen model material, we report on the results of investigating domain
structures, including an examination of the influence of substrate deformation, variations in misfit strains,
different thin film thicknesses, and temperature fluctuations. By implementing the mechanical jump condition
approach, the inelastic strain is calculated independently for both the thin film and the substrate, under
different conditions. Furthermore, this model demonstrates its ability to investigate domain structures without
relying on the Landau potential to characterize the structural stability, providing a valuable reference for
studing various ferroelectric thin films that lack higher-order Landau coefficients.
1. Introduction

Ferroelectric thin films exhibit remarkable properties due to their
intrinsic electrical polarization, with thicknesses in the nanometer
range. Their ability to switch their polarization in response to an
electric field, together with their extraordinary piezoelectric, pyroelec-
tric, and nonlinear optical properties, places them at the forefront
of research and development in fields as diverse as sensors, memory
devices, photovoltaic, and others [1–4]. Domain structures represent
an inherent characteristic within ferroelectric thin films, which play a
defining role in shaping their performance. A deep understanding of
the domain structures, coupled with the manipulation of their configu-
rations, is therefore of importance for developing the ferroelectric thin
films.

Relying on the time-dependent Ginzburg–Landau theory (TDGL),
the phase-field method has been successfully used to predict the domain
structure and phase transformation for ferroelectric materials [5–11].
In particular, the methodology presented by Li et al. in Ref. [12] for
investigating the mechanical boundary conditions of ferroelectric films
constrained by a substrate has paved the way for extensive investi-
gations of ferroelectric thin films, using the phase-field method. Over
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the past two decades, this approach has played an indispensable role
in elucidating the intricacies of ferroelectric transformations and the
resulting domain structures in a variety of ferroelectric thin films [8,10–
13]. These investigations have covered a wide range of scenarios,
including the effects of mechanical strain and electrical control, along
with considerations related to thin film thickness and other relevant
variables [8,14,15]. In addition to the inclusion of the strain gradient
effect, the investigation of the flexoelectric properties of ferroelectric
thin films has developed into an important field of research [16–18].
Furthermore, improvements in boundary conditions and the limitation
of dimensional parameters enable the model to study nanostructures
such as nanoislands [19], nanodots [20,21], nanowires [22,23], and
super lattices [24,25].

It is important to recognize that the polarization vector is the order
parameter in the TDGL model. Simultaneously, the domain structure
serves as a result of energy minimization concerning polarization,
encompassing the Landau potential, elastic, electrical, and domain wall
energies. The stability of the polarization state depends on a thorough
consideration of a higher-order Landau potential that includes terms
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of at least sixth order. In addition, the characterization of the domain
interface is closely related to the gradient energy of the domain wall.
Thus, for a precise and thorough understanding of the stability of polar-
ization states and their associated domain walls, the Landau coefficients
and gradient coefficients are required. However, it is important to
recognize that determining or calculating these parameters is a major
challenge in materials science. Currently, the number of materials
for which Landau potentials are available is still very limited [26],
which makes it difficult to investigate domain structure formation in
materials without the required coefficients. For instance, scientists have
discovered that semiconductor solar cells based on the organic metal
halide framework could have ferroelectric properties. An illustrative
example of this is the semiconductor methylammonium lead iodide
(MAPbI3) [27], which exhibits exceptional electronic properties at
domain walls [28] and is therefore a promising candidate for state-of-
the-art photovoltaic applications. However, the examination of domain
formations and the mechanisms underlying their exceptional perfor-
mance cannot be effectively explored through the phase-field approach,
using the TDGL framework.

To avoid requiring Landau coefficients, we have introduced a novel
model that utilizes the multiphase-field method for analyzing ferroelec-
tric materials, as described in our recent publication [29]. In this ap-
proach, we use the phase-field concept 𝝓 as an order parameter to rep-
resent different domains, ferroelectric phases or grains, and the domain
structures are computed based on the phase transformations between
different states of the order parameter. Using this novel methodology,
we systematically investigated the domain formation, domain switch-
ing, polarization hysteresis, and strain hysteresis within the BaTiO3
material system under external electric fields, including both single-
crystal and polycrystalline systems. In the present study, we have
further extended our multiphase-field model to compute the domain
morphologies in ferroelectric thin films.

The film is constrained by a substrate, where the mobility of the sub-
strate is maintained at zero throughout the simulation to ensure tem-
poral constancy. Differing from the application of periodic boundary
conditions typically applied to bulk materials, we implement specific
mechanical and electric boundary conditions at the upper and lower
boundaries of the system, so as to emulate the constraints encountered
in a thin film scenario. Regarding the mechanical modeling, a jump
condition approach [30] is employed within the diffuse interface. Using
this method provides an accurate scheme for calculating the mechanical
field across the film and substrate, allowing us to easily capture the
misfit strain between the film and substrate. Besides, as 𝝓 is the
order parameter, we defined the structural stability by using a multi-
obstacle potential, instead of the Landau potential in the TDGL model.
This simplifies the input of the material coefficients. Furthermore, the
gradient energy combined with the multi-obstacle potential describes
interfacial energy. The interfacial energy parameter, used to char-
acterize the domain wall properties, can be independently adjusted,
allowing tailored modifications for different interfaces. This provides an
accurate description of the properties of the domain wall and the film-
substrate interface. Moreover, the purpose of this model is to compute
domain structures based on the predetermined polarization state for
each variant. The absence of updating polarization for each variant
in ferroelectric phases during the simulation enhances computational
efficiency, as a significantly large time scale factor can be chosen
while maintaining system stability. The present model is based on
the multiphase-field approach, which enables large-scale simulations,
such as computations of martensite transformations in Ref. [31]. This
manuscript begins with an explanation of the model, followed by an
application of simulated thin film of the classic ferroelectric material
PTO. The analysis includes the investigation of domain structures that
are influenced by the deformation of the substrate, different substrate

constraints, film thicknesses, and different temperature conditions. [

2 
2. Multiphase-field model for the prediction of domain structures
in ferroelectric films

The basic concept underlying the multiphase-field approach for
computing domain structures in ferroelectric thin films is visually
depicted in Fig. 1. The present study focuses on the growth of a (001)-
oriented PTO epitaxial single-crystal thin film on a (001)-oriented cubic
substrate. The epitaxial PTO film, which has a vertical dimension film
thickness (ℎ𝑓 ) along the growth axis, is confined by a substrate with
a permissible deformation height (ℎ𝑠). Drawing on the principles of
the phase-field methodology, a tuple 𝝓 = {𝜙1,… , 𝜙𝑁} of 𝑁 order
arameters 𝜙𝛼 is introduced, which demarcates distinct regions with
iscernible physical attributes. This distinction facilitates the charac-
erization of the substrate via the order parameter 𝜙sub, coupled with
he introduction of 𝜙f ilm to represent a film. In this scenario, which
s demonstrated in Fig. 1(b), the order parameters within the spatial
xtent of the film area take the values 𝜙f ilm(𝒙, 𝑡) = 1 and 𝜙sub(𝒙, 𝑡) = 0,
hile at the same time the values 𝜙f ilm(𝒙, 𝑡) = 0 and 𝜙sub(𝒙, 𝑡) = 1 are
aintained within the boundaries of the substrate area. Furthermore, a
iffuse interface is used to delineate the transitional region extending
rom a thin film to the substrate. In this diffuse interface, 𝜙sub decreases
moothly from one to zero in the 𝑥3-direction, while 𝜙f ilm conversely
ncreases from zero to one (Fig. 1(b)). This results in a small but finite
ransition region, in which a mixture of film and substrate phases
ccurs. To model the non-transformation between the film and the
ubstrate region, their mobility of phase transformation is limited to
ero. Furthermore, the thin film itself persists in different regions with
ndividual polarization variants. Thus, 𝜙f ilm is algebraically defined as
he sum ∑𝑛

𝑖=1 𝜙𝑖, where each 𝜙𝑖 denotes an order parameter correspond-
ng to individual polarization variants, and 𝑛 denotes the number of
olarization variants inherent in the ferroelectric material, as described
n Ref. [29]. Consequently, in the scenario of a single-grain thin film
ontaining exclusively one ferroelectric phase, 𝑁 = 𝑛 + 1. In PTO
ystem with a tetragonal ferroelectric phase, as shown in Fig. 1(c),

is set to six and the polarization variants are oriented along the
100⟩-directions. In addition, domains aligned perpendicular to the
ubstrate are classified as 𝑐-domains, while those aligned with the in-
lane directions are referred to as 𝑎-domains in the present work (see
ig. 1(c)). Taking into consideration these concepts, it is noteworthy
hat our model can also simulate film growth on orientations such as
110) and (111). In such case, stable polarization stemming from low-
ymmetry phases like orthorhombic and monoclinic could be stable
nd lead to complex domain structures. The strategy employed involves
otating the respective variants.

In ferroelectric thin films, elastic and electrostatic energy play a
ecisive role in the formation and stabilization of domain structures.
or example, when a ferroelectric material undergoes a polarization
hange, its lattice adapts, resulting in mechanical strain and deforma-
ion. This interaction is more intricate in thin films, due to substrate
ffects. Strains facilitate domain formation, and specific domain orien-
ations help relax the lattice to minimize the elastic energy associated
ith deformation. In addition, the electrostatic energy, which is rele-
ant for the alignment of the electric dipoles, influences the stability
f the domain. The equilibrium between elastic and electrical energy
etermines the domain properties such as formation, size, shape, and
all dynamics. Therefore, to understand the domain structures in fer-

oelectric thin films, an approach is required that takes into account
ot only the interfacial energies inherent to the domain wall properties
ithin the multiphase-field methodology, but also the bulk driving

orces arising from the elastic and electrical influences. This leads to
he formulation of a total free energy of volume 𝑉 for the thin film
ystem, denoted as:

= ∫𝑉
𝑓grad(𝛁𝝓) + 𝑓ob(𝝓) + 𝑓elast (𝝓, 𝜺, 𝑷 ) + 𝑓elec(𝑷 ,𝑬) d𝑉 , (1)

hich relies on the multiphase-field method described by Nestler et al.

32].
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Fig. 1. Diagram showing the computational framework for computing domain structures in an epitaxial ferroelectric thin film. (a) The model description; (b) A description of the
thin film and the substrate over the diffusion region, where 𝜖𝜋2∕4 captures the interface thickness; (c) The orientation of the polarization variants in the PTO film.
The initial two terms on the right-hand side of Eq. (1) constitute
the interfacial energy density, in which 𝑓grad(𝛁𝝓) denotes the gradient
energy density and 𝑓ob(𝝓) is the multi-obstacle-type potential energy
density. These two terms not only describe the interface profile between
the film and the substrate, but also capture the properties of the domain
walls between different polarization variants.

With 𝛾𝛼𝛽 as the isotropic interfacial energy density and depending
on Ref. [33], the gradient energy density can be formulated as:

𝑓grad(𝛁𝝓) = −𝜖
∑

𝛼,𝛽>𝛼
𝛾𝛼𝛽𝛁𝜙𝛼 ⋅ 𝛁𝜙𝛽 , (2)

in which 𝜖 is a numerical parameter that scales the interface thickness
as 𝜋2∕4 𝜖 in an equilibrium interface profile with the application of an
obstacle potential.

The multi-obstacle potential can be expressed as:

𝑓ob(𝝓) =
⎧

⎪

⎨

⎪

⎩

16
𝜖𝜋2

∑

𝛼<𝛽
𝛾𝛼𝛽𝜙𝛼𝜙𝛽 if 𝝓 ∈ 𝒢

∞ else.
(3)

𝒢 is the Gibbs simplex, conforming to the definition 𝒢 = {𝝓|
∑

𝛼 𝜙𝛼 =
1, and𝜙𝛼 ≥ 0}.

In the present study, the phase-dependent bulk energies, namely the
elastic energy density (𝑓elast) and the electrostatic energy density (𝑓elec)
are interpolated with a function, denoted as ℎ𝛼(𝝓) = 𝜙𝛼 , resulting in:

𝑓elast =
∑

𝛼
𝑓 𝛼elastℎ

𝛼(𝝓) and 𝑓elec =
∑

𝛼
𝑓 𝛼elecℎ

𝛼(𝝓). (4)

It is noteworthy that the identical interpolation function ℎ𝛼(𝝓) also
describes the polarization change along the interface, which can be
expressed as: 𝑷 =

∑

𝑷 𝛼ℎ𝛼(𝝓). 𝑷 𝛼 denotes the polarization vector of 𝜙𝛼 ,
where its magnitude |𝑃 𝛼| is defined by the spontaneous polarization of
the material, namely, |𝑃 𝛼| = 75.7 μC cm−2.

2.1. Multiphase elasticity model and density of elastic free energy

As already mentioned, the mechanical driving force plays a crucial
role in the calculation of domain structures in ferroelectric materials.
This role is particularly pronounced when it comes to epitaxial films
that are constrained by substrates. The inherent properties of the
substrate, which include factors such as its crystalline structure and
its coefficient of thermal expansion, lead to a misfit strain between
the thin film and the substrate. Such a strain leads to considerable
changes in the energy landscape of the domains and thus has a major
influence on their behavior, in terms of switching, dimensions, and
orientation. Therefore, it is essential to accurately replicate the misfit
strain between the substrate and the film, as well as its consequential
impact on the driving forces in the transition region between the differ-
ent ferroelectric variants. In this study, we use a multiphase elasticity
model that is able to fulfill the mechanical jump conditions, as proposed
and referenced in Refs. [31,34,35].
3 
In general, the strain energy density of the phase 𝛼 can be formu-
lated as follows:

𝑓 𝛼elast (𝜺
𝛼 ,𝑷 𝛼) = 1

2
[

(𝜺𝛼 − 𝜺̃𝛼) ⋅ 𝑪𝛼 ⋅ (𝜺𝛼 − 𝜺̃𝛼)
]

, (5)

where 𝑪𝛼 represents the elastic stiffness of the material, a property that
depends on the specific ferroelectric phase. Concurrently, 𝜺𝛼 denotes
the total strain that is particular to the respective phase, while 𝜺̃𝛼
corresponds to the inelastic strain component of 𝝓. With 𝒖 representing
the displacement vector, 𝜺 is defined as 𝜺 = 1

2

(

𝛁𝒖 + (𝛁𝒖)T
)

, capturing
the symmetric part of the displacement gradient 𝛁𝒖. Following the
approach in Refs. [34–37], we decompose the strain tensor into 𝜺 =
∑

𝛼 𝜺𝛼ℎ𝛼(𝝓), and thus into a linear interpolation of the phase-inherent
strains. A corresponding volumetric decomposition of stresses, denoted
as 𝝈, can similarly be defined as 𝝈 =

∑

𝛼 𝝈𝛼ℎ𝛼(𝝓). The nonelastic strain
𝜺̃𝛼 comprises both the spontaneous strain 𝜺𝛼,0(𝑷 𝛼) and the misfit strain
𝜺mis, which results in:

𝜺̃𝛼 = 𝜺𝛼,0(𝑷 𝛼) + 𝜺mis. (6)

The spontaneous strain 𝜺𝛼,0(𝑷 𝛼), represented by the Einstein summation
convention, is:

𝜀𝛼,0𝑖𝑗 = 𝑄𝑖𝑗𝑘𝑙𝑃
𝛼
𝑘 𝑃

𝛼
𝑙 , (7)

where 𝑸𝛼 are the electrostrictive coefficients which are characteristic
for each ferroelectric phase. The reason for the misfit strain lies in the
different crystal structures of the film and substrate. This phenomenon
leads to a tangential interface strain, which can be represented mathe-
matically as follows:

𝜀mis
11 = 𝜀mis

22 =
𝑎s − 𝑎f
𝑎f

,

𝜀mis
12 = 𝜀mis

𝑖3 = 0 (𝑖 = 1, 2, 3),
(8)

where 𝑎f and 𝑎s denote the lattice parameters of the film and sub-
strate, respectively. The mechanical jump condition approach is used
to address the mechanical field within the system. This method uses
normal stress components and tangential strain components to define
a consistent potential type and thus facilitates the formulation of the
driving force. For an overview of this method, the reader is referred
to Appendix A. A detailed description of this approach can be found in
Refs. [34,38].

2.2. Electrostatic energy model

The electric energy density of a phase 𝛼 with polarization 𝑷 𝛼 is
calculated by

𝑓elec(𝑷 𝛼 ,𝑬) = −𝑃𝑖𝐸𝑖 −
1
2
𝜅0𝜅𝑖𝑗𝐸𝑖𝐸𝑗 (9)

in which 𝜅0 = 8.85 × 10−12 Fm−1 denotes the absolute dielectric permit-
tivity, while 𝜅𝑖𝑗 is recognized as the background dielectric permittiv-
ity [39] with 𝜅𝑖𝑗 = 0 when 𝑖 ≠ 𝑗. The symbol 𝐸𝑖 in Eq. (9) denotes a
component of the electric field that is defined by 𝑬 = 𝑬 + 𝑬 . 𝑬
𝐷 𝑒𝑥𝑡 𝑒𝑥𝑡
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represents the external electric field, and 𝑬𝐷 is the depolarization field,
which is described by the relationship 𝐸𝐷,𝑖 = −𝜓,𝑖. The determination
of 𝜓 , the electric potential, is facilitated by the solution of a Poisson
equation, which reads:

𝜅0𝜅𝑖𝑗𝛥𝜓 = ∇ ⋅ 𝑷 𝛼 . (10)

This equation is underpinned by the connection between 𝐸𝐷,𝑖 and the
electrical displacement 𝐷𝑖, which is expressed by the relationship 𝐷𝑖 =
𝜅0𝜅𝑖𝑗𝐸𝐷,𝑗+𝑃𝑖. The solution for the electrical potential is only performed
in the thin film, i.e., for 𝑥3 > 0, while it is assumed to be constant in
the substrate. Thus, the corresponding boundary conditions are applied
at the interface between the film and the substrate.

To characterize the electric field distribution at the lower (𝑥3 = 0)
nd the upper (𝑥3 = ℎ𝑓 ) interface of the film, two different forms

of electrical boundary conditions are used, namely short-circuited and
open-circuited boundary conditions. The short-circuited boundary con-
dition has the property that the electrical potential 𝜓 is given on both
film surfaces, represented as:

𝜓|𝑥3=0 = 𝜓1, 𝜓|𝑥3=ℎ𝑓 = 𝜓2. (11)

Assuming an absence of internal space charge inside the film, the
quantity 𝐷𝑖 conforms to the electrostatic equilibrium equation 𝐷𝑖,𝑖 = 0.

n the top and bottom surfaces of the film, the condition

3|𝑥3=0, 𝑥3=ℎ𝑓 = 0 (12)

haracterizes an open-circuited scenario. Letters 𝑖 and 𝑗 mentioned
bove follow the summation convention for repeated indices, with their
alues ranging from 1 to 3.

.3. Governing equations

Based on the works of Refs. [31,33,40], the minimization of the
nergy functional (Eq. (1)) with a variational approach leads to the
alculation of the domain structure, which is performed according to
he order parameter 𝜙𝛼 :

𝜕𝜙𝛼 (𝒙, 𝑡)
𝜕𝑡

= − 1
𝑁̃𝜖

𝑁̃
∑

𝛽≠𝛼

[

𝑀𝛼𝛽

(

𝛿int

𝛿𝜙𝛼
+ 𝜖𝛼̂(𝜙𝛼 ,𝛁𝜙𝛼 ) −

𝛿int

𝛿𝜙𝛽
− 𝜖𝛼̂(𝜙𝛽 ,𝛁𝜙𝛽 ) −

8
√

𝜙𝛼𝜙𝛽
𝜋

𝛥𝛼𝛽
)]

,

(13)

where 𝑀𝛼𝛽 is known as the phase-field mobility for the phases 𝛼 and 𝛽,
and 𝑁̃ denotes the number of the locally active phases. int represents
he interfacial energy, comprising both gradient energy and obstacle
otential terms. Meanwhile, 𝛥𝛼𝛽 is defined as:

𝛼𝛽 =

(

𝛿
𝛿𝜙𝛼

− 𝛿
𝛿𝜙𝛽

)

bulk (14)

where bulk denotes the bulk contribution, encompassing elastic and
electrostatic energy components. 𝜖𝛼̂(𝜙𝛼 ,∇𝜙𝛼) is defined as:

𝜖𝛼̂(𝜙𝛼 ,∇𝜙𝛼) = 𝜖𝛾𝑐𝛼

(

𝛥𝜙𝛼 − |∇𝜙𝛼|∇ ⋅
(

∇𝜙𝛼
|∇𝜙𝛼|

))

, (15)

hich avoids a dynamic curvature minimization to ensure a correct
nteraction of the gradient and the potential energy density. 𝛾𝑐𝛼 can
e understood as a factor that calibrates the strength of the artificially
onstructed interface. For more comprehensive information, the reader
s advised to refer to the Refs. [29,31].
𝛿∕𝛿𝜙𝛼 is the variational derivative of the total energy, with respect

o 𝜙𝛼 , defined by:
𝛿
𝛿𝜙𝛼

=
𝜕𝑓
𝜕𝜙𝛼

− 𝛁 ⋅
𝜕𝑓
𝜕∇𝜙𝛼

, (16)

where 𝑓 could be 𝑓grad, 𝑓ob, 𝑓elast , and 𝑓elec. This definition allows us to
asily derive the electrostatic driving force 𝜟𝛼𝛽elec as:

𝛼𝛽
elec = 𝑓 𝛽elec

𝜕ℎ𝛽 (𝝓)
− 𝑓 𝛼elec

𝜕ℎ𝛼(𝝓)
. (17)
𝜕𝜙𝛽 𝜕𝜙𝛼

4 
In addition to the phase-field evolution equation, the variation method
provides the stationary momentum balance

∇ ⋅ 𝝈̄ = 𝟎 (18)

s an additional condition to minimize the free energy functional (1).
he solution of the momentum balance provides knowledge of the
isplacement field 𝒖 and thus about the total strain. According to
ef. [30,31,35], the elastic free energy density is evaluated by the
egendre transformation, which gives a comprehensive elastic potential
(𝝈𝑛, 𝜺𝑡,𝝓) that depends on continuous variables. Consequently, this

ransformation leads to the following formulation of the mechanical
riving force:

𝛼𝛽
elast (𝝈𝑛, 𝜺𝑡, 𝝓) =

𝜕𝑊 (𝝈𝑛, 𝜺𝑡,𝝓)
𝜕𝜙𝛽

−
𝜕𝑊 (𝝈𝑛, 𝜺𝑡,𝝓)

𝜕𝜙𝛼
, (19)

with the overall elastic potential 𝑊 (𝝈𝑛, 𝜺𝑡,𝝓) depending on the inter-
face normal stress 𝝈𝑛 and the tangential strain 𝜺𝑡 (see Appendix A for
details).

2.4. Advantages and limitations of the proposed approach

In the TDGL model, the polarization is used as the order param-
eter, and domain structures are calculated by minimizing the energy
functional with respect to polarization. Consequently, the polarization
vector evolves over time, resulting in an inhomogeneous distribution
of the polarization vector even within a single domain. Since the
TDGL model solves for the polarization itself based on the Landau-
Devonshire Theory framework, it could be used to predict equilibrium
polarizations and thus for calculating misfit strain–temperature phase
diagrams [12]. In contrast, in the proposed model, the polarization
state of each variant is defined as an input. Therefore, the polarization
within each variant remains homogeneous. As both the orientation and
magnitude of polarization are predefined for each variant of ferroelec-
tric phases in our model with the current format, the calculation of
the misfit strain–temperature phase diagram is not feasible. Instead, to
explore domain structures of films at specific temperatures alongside
corresponding misfit strains, we can rely on such a phase diagram
to predetermine the polarization state for each variant. Experimental
determinations or theoretical simulations, such as Density Functional
Theory calculations, could also provide the necessary data regarding
the polarization states of ferroelectric variants. Furthermore, since the
evolution of the polarization state for each variant is predefined, we
do not require Landau potential to drive the stable polarization state,
simplifying the computational coefficients in our model and enhanc-
ing computational efficiency. Additional details can be found in the
Introduction or Ref. [29].

3. Simulation setup and numerical procedure

We perform all simulations using our proprietary software Pace3D
(Parallel Algorithms for Crystal Evolution in 3D) [41]. In this frame-
work, we use a finite difference algorithm that includes an explicit
forward Euler scheme to solve the phase-field evolution equation
(Eq. (13)), which allows us to determine the configuration of the
domain. For the spatial discretization of all governing equations, an
equidistant Cartesian grid is used. The flowchart in Fig. 2 provides an
overview of the solution process used in the subsequent simulations.
Both the mechanical and the electrostatic equilibrium (Eqs. (10) and
(18)) are solved at each time step by applying the conjugate gradient
method. The initial setup for the thin film systems was created using the
Voronoi tessellation. To increase the computational efficiency during
the simulation, we partitioned the domain in both the 𝑥1- and 𝑥2-
directions by using the message passing interface (MPI) standard. The
computational analysis of domain structures within a thin film system
relies on the specification of well-defined boundary conditions to solve

variables encompassing phase-field tuple 𝝓, the electric field, and the
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Fig. 2. Overview of the solution procedure for the numerical simulations.

mechanical fields. For all fields, periodic boundary conditions are
prescribed along the 𝑥1- and 𝑥2-axes. With regard to the phase field,
the Neumann boundary condition ∇𝝓⋅𝒆3 = 0, where 𝒆3 denotes the
unit vector in the 𝑥3-direction, is invoked for the upper (𝑥3 = ℎ𝑓 )
nd lower (𝑥3 = 0) surfaces of the thin film, which results in all
nterfaces being perpendicular to the boundary of the film. Since the
olarization is predetermined and interpolated in each cell by 𝝓, such

a boundary condition aligns with a Neumann boundary condition for
the polarization. This boundary specification suggests that the electric
potential 𝜓 at the boundary is zero, which means that there is no flux of
electric charge across the boundary. Correspondingly, a short-circuited
boundary condition is applied to the top and bottom surfaces of the
film to solve the depolarization field. Moreover, in terms of mechanics
on the top and bottom surfaces, a condition of 𝜎𝑖3 = 0 is enforced at
𝑥3 = ℎ𝑓 to emulate a stress free interface, while keeping the substrate
at the bottom layer of the system in a fixed position, by imposing a
vanishing displacement 𝒖|𝑥3=−ℎ𝑠 = 𝟎.

In this study, PTO serves as a simulated material corresponding
o a tetragonal ferroelectric phase that can form either 90◦ or 180◦

omain walls. Taking the interface stability into account, 𝜖 was set
o a value of 2𝛥𝑥1. The interfacial energy 𝛾𝛼𝛽 is calculated according
o the expression 𝛾𝛼𝛽 = 1.26|𝛼1|𝑙0𝑃 2

0 [42]. Here, 𝛼1 represents the
ielectric stiffness at room temperature, while 𝑙0 is determined by the
radient coefficient 𝐺11, using the formula 𝑙0 =

√

𝐺11∕(0.6|𝛼1|). Addi-
ionally, the domain was discretized into cells with uniform dimensions
f 𝛥𝑥1 = 𝛥𝑥2 = 1 nm and 𝛥𝑥3 = 0.5 nm. The mobility coefficient
𝛼𝛽 , which governs the mobility of the ferroelectric variants within

he film, was set to one. The simulation starts with the calculation
f domain structures formation under various constraints for model
alidation, followed by the computation of epitaxial PTO growth on
5 
able 1
he phase-field parameters and material coefficients used in the simulation.
Material coefficients Symbol Value Unit

Dielectric stiffness 𝛼1 (T-497)*3.8a 105 [m F−1]
Interfacial energy 𝛾𝛼𝛽 0.01 Jm−2

– 𝛾𝑐𝛼 0.01 Jm−2

Phase-field mobility 𝑀𝛼𝛽 1 –
Elastic tensor 𝑪 𝐶11 17.46 1010 [Nm−2]

PTO 𝐶12 7.94 1010 [Nm−2]
𝐶44 11.11 1010 [Nm−2]

Electrostrictive tensor 𝑸 𝑄11 8.90 10−2 [m4 C−2]
PTO 𝑄12 −2.60 10−2 [m4 C−2]

𝑄44 6.75 10−2 [m4 C−2]
Elastic tensor 𝑪 𝐶11 43.10 1010 [Nm−2]

KTOb 𝐶12 10.30 1010 [Nm−2]
𝐶44 10.90 1010 [Nm−2]

Gradient coefficient 𝐺11 10.56 10−11 [Nm4 C−2]
Thermal expansionc 𝛼𝑓 12.60 10−6 [K−1]

𝛼𝑠 6.67 10−6 [K−1]

a For PTO, the values for 𝛼1 ,𝑪 , and 𝑸 are taken from Ref. [12].
b For KTO, the values for 𝑪 are taken from Ref. [43].
c 𝛼𝑓 and 𝛼𝑠 are taken from Ref. [44].

the (001)-oriented KTaO3 (KTO) substrate to investigate the influence
of film thickness and temperature on the domain morphology. The
material coefficients required in the current simulation are listed in
Table 1. To increase accuracy, the input coefficients were converted
into dimensionless values. The corresponding transformation process
can be found in Ref. [29].

4. Results and discussion

4.1. Influence of substrate deformation on the domain structures

By a systematic simulation study, we investigated the influence of
the substrate height ℎ𝑠 on the volume fraction of domains and the
morphology of domains at room temperature, within a thin film subject
to a specific tensile misfit strain, represented as 𝜺mis = 0.006. In the
context of our model, the variable ℎ𝑠 delineates the region of the
substrate in which a deformation is permissible, while at 𝑥3 = −ℎ𝑠,
a zero displacement is prescribed by appropriate boundary conditions.
In the special case where ℎ𝑠 = 0, this corresponds to a scenario
characterized by a completely rigid substrate. The initial configuration
of a quasi-2D thin film system was established as shown in Fig. 3(a),
which is discretized with 128 × 1 × (40 + 𝑛𝑠) cells, where 𝑛𝑠 = ℎ𝑠∕𝛥𝑥
is the number of cells discretizing the substrate, which depends on the
considered substrate height ℎ𝑠. The substrate height ℎ𝑠 was allowed to
vary in a range from 0 to 33𝛥𝑥3, with an internal step size of 3𝛥𝑥3. In
this setup, six different polarization states were randomly distributed
within film region, each of which is represented by a corresponding
black arrow. The dots and crosses in the T3 and T4 variants respectively
indicate their polarization direction towards or away from the observer.

The graphical representation of the calculated volume fraction of
the 𝑐-domain within the film, denoted as 𝑉𝑐 , is shown in Fig. 3(b) for
different substrate heights ℎ𝑠 at the equilibrium stage. It can be seen
that as the substrate height (ℎ𝑠) increases, the parameter 𝑉𝑐 decreases
nd finally converges to a constant value when ℎ𝑠 becomes sufficiently
arge, indicating that the influence of the displacement boundary con-
ition at 𝑥3 = −ℎ𝑠 on the domain evolution becomes negligible. To
xplain the background of this phenomenon, we have generated a plot
howing the average bulk driving force 𝑓 ∗

bulk = 𝑓 ∗
elast + 𝑓 ∗

elec and its
elastic contribution 𝑓 ∗

elast of the thin film as a function of the substrate
height (see Fig. 3(b)). Remarkably, the analysis shows that both the
elastic energy and the total bulk energy, which is the sum of the elastic
and electrostatic energy, show a decreasing trend with increasing ℎ𝑠.
This means that the driving force resulting from the elastic energy

promotes the stability of the 𝑎-domain at different substrate heights.
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Fig. 3. (a) shows the initial setup of the quasi-2D film system. (b) represents the computed volume fraction of the 𝑐-domain (𝑉𝑐 ), the elastic energy (𝑓 ∗
elast ), along with the

summation of elastic and electrostatic energies (𝑓 ∗
bulk ). (c) shows the domain structures corresponding to the marked substrate heights (ℎ𝑠), denoted from A to G in (b).
The deformation of the substrate is due to the non-uniform deformation
within the thin film, which causes the displacements in the substrate
to approach zero at a sufficient distance from the interface. This phe-
nomenon, in turn, contributes to a reduction in elastic energy density,
which consequently leads to a decrease in the volume fraction of the
𝑐-domain.

Fig. 3(c) A–G shows the associated domain morphology correspond-
ing to the distinct ℎ𝑠 values marked in Fig. 3(b). It is evident that the
morphology of the domain changes as the substrate height varies, but
eventually stabilizes in a consistent configuration, once the substrate
height reaches a convergent value that alters 𝑉𝑐 only slightly. In ad-
dition, the height of the substrate has a recognizable influence on the
domain morphology. At a substrate height of ℎ𝑠 = 0 (case A), the 𝑎-
domain cannot exist in the immediate vicinity of the film–substrate
interface. Even for relatively large values of ℎ𝑠, ranging from 3𝛥𝑥3 to
15𝛥𝑥3 (case B to D), the width of the 𝑎-domains near the film–substrate
surface is slightly narrower. Additionally, it is observed that T2 emerges
when the substrate height reaches 4.5 nm. Consequently, as shown from
case E to case G, both the 90◦ and 180◦ domain walls stabilize with
increasing substrate height, while the orientation of the domain walls
between the 𝑎-domains and the 𝑐-domains deviates slightly from the
ideal 45◦ angle relative to the film–substrate interface.

It is noteworthy that the motivation behind conducting this com-
parative computation lies in determining the critical substrate height,
which was found to be ℎ𝑠 = 0.6ℎ𝑓 from the simulation. Above this
threshold, the influence of substrate deformation converges to a specific
value. In the context of large-scale simulations, the identification of this
critical value is of central importance, as it shows that substrate heights
exceeding this threshold have a negligible influence on the resulting
domain structures. Thus, by identifying this critical height as a key
parameter to determine the substrate thickness relative to the film, we
can achieve efficient use of computing resources. Drawing from the
insights gained in the present simulations, in subsequent simulations,
we maintain the substrate thickness ℎ𝑠 at a value corresponding to
0.75ℎ𝑓 .

4.2. Effects of substrate constraints on volume fractions and the morphology
of domains

In this subsection, we performed 3D simulations with a grid size of
128 × 128 × 70 cells (with a film thickness ℎ𝑓 = 40𝛥𝑥3= 20 nm and
accordingly a representative substrate height ℎ𝑠 = 30𝛥𝑥3 = 15 nm) to
investigate the effects of substrate constraints on the domain fraction
and configuration at room temperature. The initial 3D setup, the do-
main morphologies, the computed 𝑉𝑐 (second row), and the average 𝜀̄33
(third row) with varying constraints, due to the substrate, are shown in
6 
Fig. 4. Each color in the thin film representation in Fig. 4 corresponds
to a specific tetragonal variant, analogous to the representation in
Fig. 3. Additionally, the polarization orientation for each variant can
be cross-referenced with Fig. 1.

From the observations in Fig. 4, it becomes evident that the misfit
strain exerts a profound influence on both the domain structures and
the stability of polarization variants with varying orientations. For
instance, the 𝑐-domain does not remain stable under the condition of
a considerable tensile strain (𝜺mis = 0.012). As a result, all domain
walls between 𝑎1- and 𝑎2-domains are oriented perpendicular to the
film surface and follow the crystallographic directions [110] or [11̄0].
With a reduction in the magnitude of 𝜺mis, (i.e., a reduction in the
size of the tensile stress), the 𝑐-domain begins to manifest itself, which
leads to an increase in the volume fraction of the 𝑐-domains. Con-
sequently, the equilibrium domain structures include all two domain
types, and the orientations of the domain walls between 𝑎- and 𝑐-
domains show a slight deviation from the 45◦ direction relative to
the film–substrate interface. If the film is subjected to a compressive
misfit strain with an amplitude of 0.003 or more, the 𝑎-domains are
completely missing. The domain morphologies for misfits of 𝜺mis ≥ 0.01
exhibit the typical 90◦ configurations of tetragonal compositions. The
polarization vectors are aligned in the plane of the film, which results
in this characteristic stripe pattern. Misfits of 𝜺mis ≤ −0.001 exhibit
typical watermark domain morphologies, originating from 180◦ domain
configurations. In the two different domain variants shown here, the
polarization vector is aligned outside the film plane, resulting in the
typical meandering domain walls. It is noteworthy that the critical
thresholds for the absolute magnitudes of tensile and compressive
strains, required to maintain either 𝑎-domains or 𝑐-domains, do not
coincide. The disparity can be attributed to the imposition of short-
circuited boundary conditions at both the upper and lower surfaces of
the thin film. This observation is in accordance with previous results
from TDGL-based phase-field simulations, which support the idea that
the application of short-circuited boundary conditions increases the
stability of 𝑐-domains [8].

The average 𝜀̄33 in the 𝜀̄33 vs. 𝜀mis plot of Fig. 4 shows a remarkable
increase with the shift of the misfit strain from the tensile to the
compressive state, possibly favoring the stability of the 𝑐-domain. Con-
sequently, the observed trend in 𝑉𝑐 versus 𝜀mis mirrors that of 𝜀̄33 versus
𝜀mis. It should be noted that due to the imposition of periodic boundary
conditions on the 𝑥1- and 𝑥2-axes, both 𝜀11 and 𝜀22 are equal to zero
on average. These components are therefore not taken into account in
this paper. To gain insight into the mechanisms of domain structures
formation subjected to different constraint by the substrate, we have
elucidated the temporal progression of domain formation at misfit

mis
strain values of 𝜀 ∈ {0.012, 0.006,−0.003}, as shown in Figs. 5 to 7.
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Fig. 4. Variations of the domain configurations, the volume fraction of the 𝑐-domain, and ̄𝜀11, under different misfit strain conditions.
To compare the influence of varying constraints on the final domain
morphology, the evolution of the principal strains, namely 𝜀11, 𝜀22,
and 𝜀33, has also been included in Figs. 5 to 7 for each respective
case.

In the presence of a significant tensile strain 𝜀mis = 0.012 (as
shown in Fig. 5), the observation of the gradual disappearance of
𝑐-domains over time implies that substrate confinement exerts a favor-
able influence on the preferential formation of 𝑎-domains, consistent
with the above discussion. By examining the evolution of the prin-
cipal strain, a noticeable reduction in 𝜀33 can be observed. When
reaching the equilibrium state, it becomes evident that only the two
principal strains oriented along the direction of the 𝑎-domain are
present. This observation underlines the idea that elastic driving forces
strongly promote the formation of the 𝑎-domain with large tensile
constraints.

When the misfit strain is reduced from 𝜀mis = 0.012 to 𝜀mis =
0.006, the temporal evolution shown in Fig. 6(a) revels the coexistence
of all polarization states, which leads to the formation of a complex
domain morphology. In this scenario, the presence of all principal
strains is evident, as shown in Figs. 6(b)–(d). In contrast to the tensile
constraint, an appropriately applied compressive constraint from the
substrate (𝜀mis = −0.003) results in a reduction of the 𝑎-domains, as
shown in Fig. 7(a). Compared to Fig. 5(a), difference in the misfit strain
leads to a complete change in stability of 𝑎- and 𝑐-domains during
the transformation of the variants, which ultimately characterizes the
domain morphology with the exclusive presence of 𝑐-domains. In this
case, the gradients of 𝜀11 and 𝜀22 disappear, which means that the
compressive constraint strengthens the elastic driving force that favors
𝑐-domains, while it becomes weaker for 𝑎-domains.

So far, our model has undergone a thorough validation to eval-
uate its ability to predict domain structures under the influence of
substrate deformations and constraints. The simulated results in this
study are consistent with previous research using the TDGL model, as
documented in Refs. [8,12]. Therefore, in the following subsections,
we will investigate the domain structures related to PTO growth on the

actual substrate KTO.

7 
4.3. Impact of film thickness on domain structures

In further simulation studies, we focused on the growth of (001)-
oriented PTO films on KTO substrates, using a computational grid
with 128 cells along the 𝑥1- and 𝑥2-axes, while the film thickness
was systematically varied. In the above simulations, it was assumed
that the ferroelectric film is completely constrained by the underlying
substrate. This assumption led to the emergence of internal stresses,
due to epitaxy, as well as spontaneous stresses, due to the ferroelec-
tric phase transition. However, considerations of thickness-dependent
phenomena, such as strain relaxation, were not taken into account. If
the internal stresses caused by the misfit of the lattice exceed a critical
threshold, these stresses are immediately relaxed. Consequently, the
aforementioned assumption becomes inappropriate under conditions
where internal stresses are excessively large, which may overestimate
the misfit strain. To address this issue, we considered the misfit strain
as a thickness-dependent strain, which is denoted as 𝜀mis

𝑖𝑗 (ℎ) and is
expressed as follows:

𝜀mis
𝑖𝑗 (ℎ) = 1 −

1 − 𝜀̃0𝑖𝑗
1 − 𝜀̃0𝑖𝑗 (1 − ℎ𝑐∕ℎ)

(𝑖 = 𝑗 = 1, 2) (20)

at room temperature [45]. 𝜀̃0𝑖𝑗 represents the ideal misfit strain at room
temperature, and its calculation is determined by Eq. (8), where 𝜀̃011
and 𝜀̃022 are the only non-vanishing strain components. From the lattice
parameters of cubic unstrained PTO (3.956Å) and KTO (3.989Å) [15],
the ideal misfit strain 𝜀̃0𝑖𝑗 for PTO on KTO is estimated to be 0.83% at
room temperature. ℎ𝑐 in Eq. (20) designates the critical thickness for
dislocation formation, and its computation is derived from a People–
Bean (PB) model [46,47]. For a detailed understanding, it is advisable
to refer to the information provided in Refs. [15,46,47]. Using the PB
model and Eq. (20), the critical thickness corresponding to 𝜀̃0𝑖𝑗 = 0.83%
as well as the actual strain associated with the film thickness can be
derived during the growth of PTO on KTO. Further insights and graph-
ical representations can be found in Fig. 1 and 3 of Ref. [15], which
serve as essential references for the inputs used in this simulation.
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Fig. 5. The temporal evolution of domain structures, together with the corresponding 𝜀11 , 𝜀22, and 𝜀33, at 𝜀mis = 0.012.
Fig. 6. The temporal evolution of domain structures, together with the corresponding 𝜀11 , 𝜀22, and 𝜀33, at 𝜀mis = 0.006.
The computed domain structures, the volume fraction of the 𝑐-
domains, and the dimensional elastic energy with varying film thick-
ness are shown in Fig. 8. In addition, the temporal evolution of domain
formation and the associated strain distributions for three distinct film
thicknesses, namely ℎ𝑓 = 10, 30, 50 nm, are shown in Figs. 9 to 11.
8 
It is shown that the morphology of the domains exhibits a discernible
dependence on thickness. Another remarkable observation is the reduc-
tion of domains 𝑎1 and 𝑎2 with increased film thickness. This aligns
with the trend depicted in the volume fraction plot of 𝑐-domains, which
demonstrates an increase corresponding to larger film thicknesses. In
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Fig. 7. The temporal evolution of domain structures, together with the corresponding 𝜀11 , 𝜀22, and 𝜀33, at 𝜀mis = −0.003.
Fig. 8. Simulation result of (001)-oriented PTO with different thicknesses epitaxial thin films grown on KTO substrates. (a)–(e) represent the domain structures, while (f) shows
the variations of the elastic energy 𝑓elast as well as the volume fraction of the 𝑐-domain with varying film thickness.
addition, the computed increase in elastic energy with increasing film
thickness also indicates that greater elastic energy contributes to the
stability of the 𝑐-domains.

The temporal evolution of the film at different film thicknesses,
denoted as ℎ𝑓 = 10, 30, 50 nm (Figs. 9–11), shows a decreasing trend
in the distributions of 𝜀 and 𝜀 , alongside an increasing trend in the
11 22

9 
distribution of 𝜀33. This observed behavior correlates with the increase
in 𝑐-domains with increasing film thickness. In particular, the signifi-
cant increase in the 𝑐-domains is attributed to the phenomenon of strain
relaxation in the system. Thicker films can be subjected to relatively
less strain than their thinner counterparts. In thin films, strains due to
substrate or lattice mismatches can have an influence on the domain
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Fig. 9. The evolution of the domain morphology and strain distribution for a film thickness of ℎ𝑓 = 10 nm, at various time steps.
structure. As film thickness increases, the formation and stability of
𝑐-domains are enhanced due to an increased tendency toward strain
relaxation. It should be noted that although the observed phenomena
of an increasing 𝑐-domain with higher film thickness are consistent
with the results in Ref. [15], there is a discrepancy in the quantitative
assessment of the 𝑐-domain between the present study and the above
reference. This discrepancy could be attributed to the application of the
short-circuited boundary condition, which has been demonstrated to
promote the formation of 𝑐-domains, aligning with the aforementioned
outcome. Consequently, this condition identifies a non-negligible vol-
ume fraction of the 𝑐-domain, even when the film thickness ℎ𝑓 is set
to 10 nm. Furthermore, in this study, the material parameters of KTO
were used as input for the simulations to replicate a real system, while
the details corresponding to Ref. [15] are not clearly specified.

4.4. Temperature-dependent domain fraction and configuration

This study also investigates the growth of (001)-oriented PTO films
with 128 × 128 × 40 cells on KTO substrates under varying temperature
conditions. Since the temperature influences the thermal expansion,
the thermal vibrations, and the phase transitions [48], a temperature-
dependent modulation of the spontaneous polarization and the inelastic
strain is to be expected. The decrease in spontaneous polarization with
an increasing temperature within the PTO material has been discussed
in Ref. [49], which we have included as a key input for the current
simulation. In view of the different thermal expansion properties of
PTO and KTO, the temperature-dependent misfit strain in the PTO thin
film and the KTO substrate is defined as follows:
𝜀̃mis,𝑓
𝑖𝑗 = 𝜀̃0𝑖𝑗 + 𝛼𝑓𝛥𝑇

𝜀̃mis,𝑠
𝑖𝑗 = 𝜀̃0𝑖𝑗 + 𝛼𝑠𝛥𝑇 ,

(21)

in which 𝑖, 𝑗 = 1, 2 and 𝜀mis
12 = 0. Since the lattice distortion used to eval-

uate the electrostatic coefficients has a temperature-dependent trend
analogous to that of spontaneous polarization, it can lead to unnoticed
changes in the electrostatic coefficients, as also described in Ref. [49].
10 
Consequently, the resulting electrostatic coefficients are considered to
be independent of temperature, while the temperature-induced changes
in the spontaneous strain within the PTO film are primarily attributed
to variations in spontaneous polarization. 𝛼𝑓 and 𝛼𝑠 in Eq. (21) denote
the thermal expansion coefficients for PTO and KTO, respectively, as
given in Table 1. As discussed in the previous subsection, 𝜀̃0𝑖𝑗 ≈ 0.83%
characterizes the mismatch between PTO and KTO at room tempera-
ture. Moreover, 𝛥𝑇 denotes the temperature differential between the
simulated temperature and the room temperature. In accordance with
the formulae shown in Eq. (21), the graphical representation of the
temperature-dependent misfit strains of the PTO and KTO systems,
which do not consider the spontaneous strain, can be seen in Fig. 12(a).

The initial configuration for this simulation was taken from Fig. 4
and served as the basic reference. A homogeneous temperature distri-
bution is considered for each simulation. The structural attributes of the
domain at different temperature points were shown in Fig. 13, while the
computed volume fraction of the 𝑐-domain and average elastic energy
was explained in Fig. 12(b). The observation from Fig. 13 illustrates the
temperature-dependent differences in the domain morphologies, with a
noticeable decrease in the 𝑐-domain, as the temperature increases. As
the temperature increases, the magnitude of misfit strain increases for
both PTO and KTO materials. In light of the preceding subsection, we
have inferred that the tensile misfit favors the formation of 𝑎-domains,
thereby resulting in a reduction of 𝑐-domains at elevated temperatures.
In addition, it becomes clear that the distinctive thermal expansion
properties of PTO and KTO lead to different amplitudes of the increase
of the eigenstrain (Fig. 12(a)). In turn, this phenomenon contributes to
the sustained existence of 𝑐-domains, even at the elevated temperature
of 400 ◦C, with a tensile misfit strain of 0.0125 in the PTO film. This
observation diverges from the findings in the simulation results shown
in Fig. 4, where it was noted that the stability of the 𝑐-domains could
not be maintained under a tensile strain of 0.012.

The computed 𝑉𝑐 in Fig. 12(b) (marked by the dark red line) shows
a decrease with increasing temperature. This observation is consistent
with the expected variation in domain morphology. Besides, the ob-
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Fig. 10. The evolution of the domain morphology and strain distribution for a film thickness of ℎ𝑓 = 30 nm, at different time steps.
Fig. 11. The evolution of the domain morphology and strain distribution for a film thickness of ℎ𝑓 = 50 nm, at different time steps.
served phenomenon of PTO growth on KTO, at varying temperatures,
is also consistent with the findings in Ref. [50]. In Fig. 12(b), the
11 
variation of the average elastic energy density of the thin film with
temperature is depicted by the dark blue line. It is evident that a
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Fig. 12. (a) represents the temperature-dependent elastic strain of the PTO and KTO systems without considering the spontaneous strain; (b) shows the change in the volume
fraction of the 𝑐-domain (𝑉𝑐 ) and the average elastic energy density (𝑓 ∗

elast ) with temperature.
Fig. 13. Domain configuration of (001)-oriented PTO epitaxial thin films on KTO substrate, at different growth temperatures.
similar trend has been observed, where 𝑓elast decreases with increasing
temperature. The simulation results shown in Fig. 3 clearly indicate
that a higher average elastic energy within the thin film system con-
tributes significantly to maintaining the stability of the 𝑐-domain. As
temperature increases, the growing magnitude of inelastic strain leads
to a reduction in the elastic energy within the thin film. This reduction
in elastic energy subsequently weakens the driving force responsible
for the transformation from the 𝑎-domains to the 𝑐-domains. Conse-
quently, at higher temperatures, the 𝑐-domains decrease and the system
reaches an equilibrium with different domain structures, all driven by
the minimization of the total energy. It is worth mentioning that the
energy density 𝑓elec also shows a decreasing tendency with increasing
temperature. Nonetheless, given its relatively insignificant impact on
the overall analysis, we have made a deliberate decision not to take
it into account in this particular context. The temporal evolution of
domain structure formation and associated changes in the three main
strains for temperature at 25, 200 and 400 °Celsius are also documented
in Appendix B. There is an obvious trend in which the distribution of
𝜀33 shows a decreasing pattern associated with increasing temperatures.
This phenomenon indicates a correlated reduction in elastic energy,
with increasing temperature. Consequently, the observed decrease in
the occurrence of 𝑐-domains is associated with increased temperatures.

Using the proposed model, we have successfully computed the
domain structures for films grown on a cubic substrate, considering
factors such as substrate deformation, misfit effects, film thickness, and
temperature variations. Those simulated results align well with both
theoretical predictions and experimental observations documented in
the literature [12,15,50]. In addition, with our new model, we can
analyze the reasons for domain structure formation under different
conditions by examining and comparing the elastic and electric energies
of the films.

5. Conclusion and outlook

In summary, our research has advanced the application of the

multiphase-field approach to compute domain structures in ferroelec-

12 
tric thin films, building on the fundamental principles described in
our previous work [29]. Specifically, we performed simulations using
PTO as a model material, starting with an analysis of substrate de-
formation. Subsequently, the growth of PTO on different substrates
was investigated under varying misfit strain conditions. In the final
phase of our study, we extended our research to the growth of PTO
on KTO, incorporating a range of temperatures and different film
thickness. By replacing the Landau potential and gradient energy in
the TDGL model with the interfacial energy in the multiphase-field
framework, our model provides an effective alternative to characterize
the ferroelectric phase transformation and domain wall properties. This
comprehensive approach allowed us to gain insights into the different
domain structure in variations ferroelectrics. For instance, this method
opens up the possibility of using phase-field simulations to study a
unique and emerging semiconductor ferroelectric, such as MAPbI3.
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Fig. 14. The temporal evolution of the domain structures, together with the corresponding 𝜀11 , 𝜀22, and 𝜀33, at 25 ◦C.
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Appendix A. A brief introduction of the jump condition approach

Using the equilibrium jump condition, which establishes a force
balance along the normal vector of the interface and adheres to the
Hadamard condition in the tangential direction [30,35], the primary
objective is to transform stresses and strains into a reference frame that
is aligned with the interface orientation. Subsequently, energy can be
calculated using locally averaged variables. To achieve this objective, a
scalar field 𝐿(𝝓) = ∑

𝛼<𝛽 𝜙𝛼𝜙𝛽 is introduced and a homogenized normal
vector 𝒏, which effectively accounts for the influence of the interface
orientation, can be defined as:

𝒏 =
𝛁𝐿(𝝓)

. (22)

|𝛁𝐿(𝝓)|

13 
The stresses 𝝈 and strains 𝜺 can then be transferred to a base 𝑩, which
is oriented by the unit vector 𝒏. 𝑩 is defined as 𝑩 = (𝒏, 𝒕, 𝒔), so that
the orthogonality conditions 𝒏 ⋅ 𝒕 = 𝒏 ⋅ 𝒔 = 𝒕 ⋅ 𝒔 = 0 are satisfied. In
accordance with the force equilibrium condition, given as 〚𝝈𝑛〛 = 𝟎, and
the kinematic Hadamard compatibility condition, expressed as 〚𝜺𝑡〛 = 𝟎,
for an infinitesimal deformation in a singular plane, the stresses and
strains can be expressed as follows, using the Voigt notation:

𝝈𝛼𝐵(𝒏) ∶=
(

𝜎𝑛𝑛, 𝜎𝑛𝑡, 𝜎𝑛𝑠, 𝜎𝑡𝑡, 𝜎𝑠𝑠 𝜎𝑡𝑠
)T = (𝝈𝑛, 𝝈𝛼𝑡 )

T,

𝜺𝛼𝐵(𝒏) ∶=
(

𝜀𝑛𝑛, 2𝜀𝑛𝑡, 2𝜀𝑛𝑠, 𝜀𝑡𝑡, 2𝜀𝑠𝑠 𝜀𝑡𝑠
)T = (𝜺𝛼𝑛 , 𝜺𝑡)

T.
(23)

Here, the order is interchanged to distinguish the continuous contribu-
tion (𝝈𝒏 ∶= (𝜎𝑛𝑛, 𝜎𝑛𝑡, 𝜎𝑛𝑠)T, 𝜺𝑡 ∶= (𝜀𝑡𝑡, 2𝜀𝑠𝑠 𝜀𝑡𝑠)T) and the discontinuous
contribution (𝝈𝛼𝑡 ∶= (𝜎𝑡𝑡, 𝜎𝑠𝑠 𝜎𝑡𝑠)T, 𝜺𝛼𝑛 ∶= (𝜀𝑛𝑛, 2𝜀𝑛𝑡, 2𝜀𝑛𝑠)T) [34]. Simi-
larly, the stiffness tensor 𝑪𝛼 in the 𝑩 base can be expressed as 𝑪𝛼

𝑩 and
represented by the Voigt notation as follows:

𝑪𝛼
𝑩 ∶=

[

𝑪𝛼
𝑛𝑛 𝑪𝛼

𝑛𝑡
𝑪𝛼
𝑡𝑛 𝑪𝛼

𝑡𝑡

]

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐶𝛼𝑛𝑛𝑛𝑛 𝐶𝛼𝑛𝑛𝑛𝑡 𝐶𝛼𝑛𝑛𝑛𝑠 𝐶𝛼𝑛𝑛𝑡𝑡 𝐶𝛼𝑛𝑛𝑠𝑠 𝐶𝛼𝑛𝑛𝑡𝑠
𝐶𝛼𝑛𝑡𝑛𝑛 𝐶𝛼𝑛𝑡𝑛𝑡 𝐶𝛼𝑛𝑡𝑛𝑠 𝐶𝛼𝑛𝑡𝑡𝑡 𝐶𝛼𝑛𝑡𝑠𝑠 𝐶𝛼𝑛𝑡𝑡𝑠
𝐶𝛼𝑛𝑠𝑛𝑛 𝐶𝛼𝑛𝑠𝑛𝑡 𝐶𝛼𝑛𝑠𝑛𝑠 𝐶𝛼𝑛𝑠𝑡𝑡 𝐶𝛼𝑛𝑠𝑠𝑠 𝐶𝛼𝑛𝑠𝑡𝑠
𝐶𝛼𝑡𝑡𝑛𝑛 𝐶𝛼𝑡𝑡𝑛𝑡 𝐶𝛼𝑡𝑡𝑛𝑠 𝐶𝛼𝑡𝑡𝑡𝑡 𝐶𝛼𝑡𝑡𝑠𝑠 𝐶𝛼𝑡𝑡𝑡𝑠
𝐶𝛼𝑠𝑠𝑛𝑛 𝐶𝛼𝑠𝑠𝑛𝑡 𝐶𝛼𝑠𝑠𝑛𝑠 𝐶𝛼𝑠𝑠𝑡𝑡 𝐶𝛼𝑠𝑠𝑠𝑠 𝐶𝛼𝑠𝑠𝑡𝑠
𝐶𝛼𝑡𝑠𝑛𝑛 𝐶𝛼𝑡𝑠𝑛𝑡 𝐶𝛼𝑡𝑠𝑛𝑠 𝐶𝛼𝑡𝑠𝑡𝑡 𝐶𝛼𝑡𝑠𝑠𝑠 𝐶𝛼𝑡𝑠𝑡𝑠

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

(24)

In this context, 𝑪𝛼
𝑛𝑛 and 𝑪𝛼

𝑡𝑡 are symmetric 3 × 3 matrices, while 𝑪𝛼
𝑛𝑡 and

𝑪𝛼
𝑡𝑛 are 3 × 3 matrices that satisfy the required condition 𝑪𝛼

𝑛𝑡 = [𝑪𝛼
𝑡𝑛]

T.
With the established notations, the strain energy density associated
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Fig. 15. The temporal evolution of the domain structures, together with the corresponding 𝜀11 , 𝜀22, and 𝜀33, at 200 ◦C.
with phase 𝛼 can be expressed as:

𝑓 𝛼(𝜺𝛼𝑩) =
1
2
[

(𝜺𝛼𝑛 − 𝜺̃𝛼𝑛 ) ⋅ 𝑪
𝛼
𝑛𝑛(𝜺

𝛼
𝑛 − 𝜺̃𝛼𝑛 ) + (𝜺𝛼𝑛 − 𝜺̃𝛼𝑛 ) ⋅ 𝑪

𝛼
𝑛𝑡(𝜺

𝛼
𝑡 − 𝜺̃𝛼𝑡 )

+ (𝜺𝛼𝑡 − 𝜺̃𝛼𝑡 ) ⋅ 𝑪
𝛼
𝑡𝑛(𝜺

𝛼
𝑛 − 𝜺̃𝛼𝑛 ) + (𝜺𝛼𝑡 − 𝜺̃𝛼𝑡 ) ⋅ 𝑪

𝛼
𝑡𝑡(𝜺

𝛼
𝑡 − 𝜺̃𝛼𝑡 )

]

(25)

Therefore, the strain energy density in a multiphase framework is
determined by the linear interpolation of the individual contributions,
using the interpolation function ℎ𝛼(𝝓), which is written as follows:

𝑓 (𝝓, 𝜺𝑩) =
∑

𝛼
𝑓 𝛼(𝜺𝛼𝑩)ℎ

𝛼(𝝓). (26)

The treatment of the variation derivative for this strain energy will be
addressed subsequently.

The overall elastic potential 𝑊 (𝝓,𝝈𝑛, 𝜺𝑡) is defined as:

𝑊 (𝜺𝑡 ,𝝈𝑛 ,𝝓) =
∑

𝛼

[

(

𝝈𝑛
𝜺𝑡

)

⋅ ̃
𝛼
(

𝝈𝑛
𝜺𝑡

)

−

(

𝝈𝑛
𝜺𝑡

)

⋅

(

𝑰  𝛼
𝑛𝑡

𝟎  𝛼
𝑡𝑡

)(

𝜺̃𝛼𝑛
𝜺̃𝛼𝑡

)

+ 1
2
(

𝜺̃𝛼𝑡 ⋅ 
𝛼
𝑡𝑡 𝜺̃

𝛼
𝑡

)

]

ℎ𝛼 (𝝓).

(27)

In Eq. (27), 𝑰 and 𝟎 are the second-order identity and zero tensors,
respectively. ̃ 𝛼 is a proportionality matrix, introduced as:

̃ 𝛼
=

(

̃ 𝛼
𝑛𝑛 ̃ 𝛼

𝑛𝑡
̃ 𝛼 ̃ 𝛼

)

, (28)

 𝑡𝑛  𝑡𝑡
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where each element of ̃ 𝛼 corresponds to an interpolated block and
reads:
 𝛼
𝑛𝑛 ∶= −(𝑪𝛼

𝑛𝑛)
−1

 𝛼
𝑛𝑡 ∶= −(𝑪𝛼

𝑛𝑛)
−1𝑪𝛼

𝑛𝑡

 𝛼
𝑡𝑡 ∶= −

(

𝑪𝛼
𝑡𝑡 − 𝑪𝛼

𝑡𝑛(𝑪
𝛼
𝑛𝑛)

−1𝑪𝛼
𝑛𝑡
)

.

(29)

On the basis of Ref. [34], the stress 𝝈̄𝐵 can be derived from the potential
𝑊 (𝝈𝑛, 𝜺𝑡,𝝓) in a multiphase system, which can be written as:

𝝈̄𝐵 =

[

−[̃ 𝑛𝑛]−1 −[̃ 𝑛𝑛]−1̃ 𝑛𝑡
−̃ 𝑡𝑛[̃ 𝑛𝑛]−1 ̃ 𝑡𝑡 − ̃ 𝑡𝑛[̃ 𝑛𝑛]−1̃ 𝑛𝑡

][

𝜺𝑛
𝜺𝑡

]

+

[

[̃ 𝑛𝑛]−1 𝟎
̃ 𝑡𝑛[̃ 𝑛𝑛]−1 −𝑰

][

̃ 𝑛

̃ 𝑡

]

.

(30)

The components of the averaged proportionality matrix ̃ in Eq. (30)
are determined by ̃ 𝑖𝑗 =

∑

𝛼 ̃
𝛼
𝑖𝑗ℎ

𝛼(𝝓). ̃𝑛 and ̃ 𝑡 are the respective
normal and tangential components of the interpolated nonelastic strain,
which can be defined as follows:
̃𝑛 =

∑

𝛼

[

𝜺̃𝛼𝑛 +  𝛼
𝑛𝑡𝜺̃

𝛼
𝑡
]

ℎ𝛼(𝝓)

̃ 𝑡 =
∑

𝛼
 𝛼
𝑡𝑡 𝜺̃

𝛼
𝑡 ℎ

𝛼(𝝓).
(31)

Appendix B. Simulations of PTO growth on KTO, at different tem-
peratures
See Figs. 14–16.
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Fig. 16. The temporal evolution of the domain structures, together with the corresponding 𝜀11 , 𝜀22, and 𝜀33, at 400 ◦C.
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