KIT | KIT-Bibliothek | Impressum | Datenschutz

Mitigating Dissolution to Enhance the Performance of Pillar[5]quinone in Sodium Batteries

Adil, Md; Schmidt, Maximilian; Vogt, Julia; Diemant, Thomas; Oschatz, Martin; Esser, Birgit

Abstract:

Sodium-ion batteries using organic electrode materials are a promising alternative to state-of-the-art lithium-ion batteries. However, their practical viability is hindered by challenges such as a low specific capacity of the organic electrode materials, or their dissolution in the electrolyte. We herein present a double mitigation strategy to enhance the performance of pillar[5]quinone (P5Q) as positive electrode material in sodium batteries. Using 5 m sodium bis(fluorosulfonyl)imide in succinonitrile as highly concentrated electrolyte, as well as encapsulating P5Q in CMK-3 (Carbon Mesostructured by KAIST with hexagonally ordered rod-like carbon domains) as templated ordered mesoporous carbon, we achieve a record cycling performance with improved cycling stability even at elevated temperature (40° C). The P5Q@CMK-3 composite electrode delivers 430 mAh g$_{-1}$ specific discharge capacity at 0.2 C rate with 90% retention over 200 cycles. This corresponds to an energy density of 831 Wh kg$_{-1}$ (based on P5Q mass) and surpasses previous reports on pillarquinones. When operated at 40° C, the P5Q@CMK-3 composite electrodes deliver a specific discharge capacity of 438 mAh g$_{-1}$ with 88 % capacity retention over 500 cycles (0.02 % per cycle). ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000174239
Veröffentlicht am 16.09.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Helmholtz-Institut Ulm (HIU)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2024
Sprache Englisch
Identifikator ISSN: 2566-6223
KITopen-ID: 1000174239
Erschienen in Batteries & Supercaps
Verlag John Wiley and Sons
Seiten Art.-Nr.: 02400312
Vorab online veröffentlicht am 02.09.2024
Nachgewiesen in Scopus
Web of Science
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page