
Computer Physics Communications 306 (2025) 109357

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Computer Programs in Physics

FeynCalc 10: Do multiloop integrals dream of computer codes? ✩

Vladyslav Shtabovenko a,b,∗, Rolf Mertig c, Frederik Orellana d

a Theoretische Physik 1, Center for Particle Physics Siegen, Universität Siegen, Walter-Flex-Str. 3, 57068 Siegen, Germany
b Institut für Theoretische Teilchenphysik (TTP), Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Straße 1, 76131 Karlsruhe, Germany
c GluonVision GmbH, Bötzowstr. 10, 10407 Berlin, Germany
d Technical University of Denmark, Anker Engelundsvej 1, 2800 Kgs. Lyngby, Denmark

A R T I C L E I N F O A B S T R A C T

Keywords:

High energy physics

Feynman diagrams

Loop integrals

Dimensional regularization

Renormalization

Dirac algebra

Passarino–Veltman

Cheng–Wu

Feynman integrals

Symanzik polynomials

Light-cone

Multiloop

FeynCalc

In this work we report on a new version of FeynCalc, a Mathematica package widely used in the particle 
physics community for manipulating quantum field theoretical expressions and calculating Feynman diagrams. 
Highlights of the new version include greatly improved capabilities for doing multiloop calculations, including 
topology identification and minimization, optimized tensor reduction, rewriting of scalar products in terms of 
inverse denominators, detection of equivalent or scaleless loop integrals, derivation of Symanzik polynomials, 
Feynman parametric as well as graph representation for master integrals and initial support for handling 
differential equations and iterated integrals. In addition to that, the new release also features completely rewritten 
routines for color algebra simplifications, inclusion of symmetry relations between arguments of Passarino–

Veltman functions, tools for determining matching coefficients and quantifying the agreement between numerical 
results, improved export to LATEX and first steps towards a better support of calculations involving light-cone 
vectors.
PROGRAM SUMMARY

Program Title: FeynCalc

CPC Library link to program files: https://doi .org /10 .17632 /cmpjr5ktmp .
3

Developer’s repository link: https://github .com /FeynCalc /feyncalc

Licensing provisions: GPLv3

Programming language: Wolfram Language

Supplementary material: Manual, example notebooks.

Journal reference of previous version: Comput. Phys. Commun. 256 (2020) 
107478

Does the new version supersede the previous version?: Yes.

Reasons for the new version: Addition of new routines required for mul-

tiloop calculations.

Summary of revisions: FeynCalc can be now used to calculate multiloop 
Feynman diagrams either standalone or as a part of a toolchain.

Nature of problem: Analytic calculations of higher-order corrections to 
particle physics processes using Feynman diagrammatic expansion.

Solution method: The required algorithms and algebraic identities are im-

plemented in Wolfram Mathematica.

✩ The review of this paper was arranged by Prof. Z. Was.

* Corresponding author.

Additional comments including restrictions and unusual features: Depending 
on the complexity of the problem, the number of terms might become 
so high that Mathematica alone will not be sufficient to finish the cal-

culation within a reasonable time frame or at all.

1. Introduction

Modern high energy physics heavily relies on Feynman’s diagram-

matic approach to the calculation of perturbative corrections in particle 
reactions. The vast majority of predictions required to match the ex-

pected experimental precision of the High luminosity LHC [1] as well 
as the proposed future colliders are still obtained by calculating multi-

tudes of complicated Feynman diagrams, and it does not seem likely, 
that this situation is going to change in the near future.

The number of diagrams involved can easily go into thousands or 
even millions, which makes the usage of automation indispensable. The 
importance of efficient algorithms for such calculations has already been 
recognized decades ago (cf. e.g. refs. [2,3]) and the unceasing develop-

ment of new calculational techniques is one of the main reasons why 
Available online 29 August 2024
0010-4655/© 2024 The Author(s). Published by Elsevier B.V. This is an open access

E-mail addresses: shtabovenko@physik.uni-siegen.de (V. Shtabovenko), rolfm@g

https://doi.org/10.1016/j.cpc.2024.109357

Received 10 January 2024; Received in revised form 15 August 2024; Accepted 26 A
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

luonvision.com (R. Mertig), fror@dtu.dk (F. Orellana).

ugust 2024

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
https://doi.org/10.17632/cmpjr5ktmp.3
https://doi.org/10.17632/cmpjr5ktmp.3
https://github.com/FeynCalc/feyncalc
mailto:shtabovenko@physik.uni-siegen.de
mailto:rolfm@gluonvision.com
mailto:fror@dtu.dk
https://doi.org/10.1016/j.cpc.2024.109357
https://doi.org/10.1016/j.cpc.2024.109357
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2024.109357&domain=pdf
http://creativecommons.org/licenses/by/4.0/


V. Shtabovenko, R. Mertig and F. Orellana

calculations unthinkable now might nonetheless become feasible in the 
next years. A good overview over modern methods used in higher-order 
perturbative calculations can be found e.g. in refs. [4,5].

While efficient codes for automatic numerical calculations at tree-

level and one-loop accuracy are available to the wide public since years, 
the treatment of multiloop diagrams remains challenging and requires 
considerable expertise.

Beyond one-loop the proliferation of diagrams becomes an issue, 
where processes involving thousands or tens of thousands diagrams are 
not uncommon. Their complexity increases as well, meaning that al-

gebraic evaluation requires significantly more time and computational 
resources. At one loop all integrals with quadratic propagators can be 
conveniently reduced to a basis (e.g. that of Passarino–Veltman [6]) and 
then evaluated either analytically or numerically using existing libraries. 
However, already at two loops this approach becomes unfeasible. First, 
the complete basis of two-loop master integrals with arbitrary masses 
and multiple legs is not known yet. Second, the analytic reduction of 
multiloop integrals to some basis integrals is currently doable only when 
they involve few kinematic scales. For example, as of now a reduction 
of integrals appearing in the 2 → 3 process 𝑞𝑞 → 𝑡𝑡𝐻 with five scales 
requires an intricate combination of state-of-the-art numerical and ana-

lytic techniques [7] and cannot be done by brute force. At the same time, 
at one-loop a diagram with five legs and five scales would not pose any 
major difficulties. Even when one manages to obtain a final set of master 
integrals, their evaluation often turns out to be a significant challenge. 
Analytic results are scarce [8] and are often not generic enough to cover 
all phenomenologically interesting (i.e. those with different masses and 
multiple legs) master integrals even at two loops. Numerical evaluation 
using sector decomposition [9–12] is always possible,1 but achieving 
sufficient precision in problematic phase space regions can quickly be-

come challenging. In this sense, performance issues arising in multiloop 
calculations are usually solved on a case-by-case basis, but for a general-

purpose code one would need better algorithms that are efficient enough 
to cover all interesting processes, in particular those involving massive 
particles.

Limiting ourselves to multiloop calculations that are feasible with 
the current-day technology, the task of streamlining all the necessary 
calculational steps such, that they can be performed in a fully automatic 
fashion, is still very much work in progress. A recent review of the field 
can be found e.g. in ref. [13]. Some remarkable achievements towards 
multiloop automation are the release of Caravel [14], a framework for 
multiloop computations using numerical unitarity, as well as the recent 
version of pySecDec [15] capable of evaluating multiloop amplitudes 
numerically. Apart from that, there are also ongoing efforts to “upgrade” 
existing one-loop codes at least to two-loop accuracy (cf. e.g. [16–20]).

Irrespective of whether one wants to calculate a cross section, a 
matching coefficient or a renormalization constant, the vast majority 
of multiloop calculations usually require the completion of some funda-

mental steps that can be summarized as follows: (i) generation of Feyn-

man diagrams for the given process, (ii) algebraic simplification of the 
corresponding amplitudes (including suitable expansions in small pa-

rameters), (iii) reduction of the occurring loop integrals to a smaller set 
of master integrals, using Integration-By-Parts (IBP) [21,22] techniques, 
(iv) evaluation of the master integrals. Fortunately, the first three steps 
in the above list can be completed in a highly automatized fashion by 
combining publicly available software with suitable self-written code. 
In most cases the problems one has to deal with happen to be of techni-

cal (e.g. bugs in the code, performance bottlenecks, lack of computing 
power) rather than conceptual nature. Analytic calculations of master 
integrals usually require more experience and creativity, unless the de-

sired results are already available in the literature and can be directly 
plugged into the final result.

1 For some problematic integrals one may need to request help from the code 
2

developers, though.
Computer Physics Communications 306 (2025) 109357

A lot of frameworks addressing steps (i)-(iii) happen to be some pri-

vate codes developed by single researchers or whole research groups 
specializing on loop calculations. Sometimes they can be obtained upon 
request (albeit without much support or proper documentation) but 
most tools are still available only to collaborators. With the new genera-

tion of researchers embracing open source ideas and making their codes 
public (cf. e.g. refs. [23,25,24,26]) this situation started to change. The 
corresponding tools aim at connecting different steps behind a multi-

loop calculation to each other within a single framework and normally 
need to address the tasks of generating Feynman diagrams, inserting 
Feynman rules, identifying the occurring loop integral topologies, min-

imizing their number and supplying some templates for the subsequent 
amplitude evaluation in FORM [27,28].

One aim of the present work is to make analytic multiloop calcula-

tions accessible to a broader range of particle theorists. The method is 
to extend the well-established one-loop functionality of FeynCalc [29–

32] with the modern state-of-the art algorithms. The new version of the 
package presented here thus includes a large set of optimized routines 
for dealing with multiloop calculations.

This paper is the first in a series of three publications describing 
our take on creating a new framework for semi-automatic multiloop 
calculations. While this work revolves solely around FeynCalc, the two 
subsequent papers will introduce a new version of FeynHelpers [33]

— an add-on for connecting FeynCalc to other software tools related 
to quantum field theory (QFT) and finally a FORM-based framework for 
symbolic evaluation of Feynman diagrams that makes use of FeynCalc

and Mathematica during certain calculational steps.

The remainder of the present paper is organized as follows: In Sec-

tion 2 we briefly introduce FeynCalc and compare it to similar codes, 
while instructions on installing the package from GitHub can be found 
in Section 3. New symbols and functions related to the multiloop capa-

bilities of the package are presented in Section 4. Section 5 discusses 
some special routines that can be handy when calculating master inte-

grals. Last but not least, new features and improvements that are not 
directly related to multiloop calculations can be found in Section 6. A 
description of example calculations utilizing new multiloop capabilities 
is offered in Section 7. Finally, in Section 8 we summarize our results 
and provide an outlook on the future of the package.

Contrary to previous FeynCalc papers, the amount of Mathemat-

ica code presented will be kept to a bare minimum. The reason is that

FeynCalc 10 features a comprehensive manual, covering every symbol 
introduced in the package (including examples) and containing a tuto-

rial for learning the basics of the package. In addition to that, examples 
related to the functionality described in this paper can be found in the 
accompanying Mathematica notebook.

2. Context and state of the art

Originally, FeynCalc was designed to handle loop integrals using 
Passarino-Veltman [6] reduction, which effectively limited its applica-

bility to one-loop calculations only. Subsequent iterations of the code 
[34] allowed for working with certain types of multiloop integrals (e.g. 
using the TARCER [35] add-on) but until version 10 it was neither very 
efficient nor suitable for general purpose multiloop calculations.

The number of actively developed tools for semi-automatic calcula-

tions with an emphasis on tree- and one-loop level similar to FeynCalc

has been steadily decreasing over the last years. Both HepMath [36]

and Package-X [37,38] have unfortunately been abandoned, while 
there seems to be hardly new codes covering a wide range of applica-

tions as well as receiving regular updates and bug fixes. In this context it 
is also worth mentioning Physics,2 a package shipped with Maple com-

puter algebra system, whose particle physics related capabilities have 

2 https://www .maplesoft .com /products /maple /features /physicsresearch .

aspx.

https://www.maplesoft.com/products/maple/features/physicsresearch.aspx
https://www.maplesoft.com/products/maple/features/physicsresearch.aspx


V. Shtabovenko, R. Mertig and F. Orellana

been significantly extended in the last few years. Also, formtracer

[39] can be handy in some circumstances, although this tool is mostly 
limited to algebraic simplifications.

What we regard as a crucial feature of semi-automatic codes is the 
ability to access intermediate expressions at any stage of the calculation 
and to organize calculations in a flexible way by sequentially applying 
high-level functions to the original input. Depending on the quantities 
one wants to derive, this approach might be more efficient than using 
programs offering a higher level of automation and less flexibility. Of 
course, fully automated tools for tree-level and one-loop calculations 
such as MadGraph [40], GoSam [41,42], Herwig [43,44], HELAC-

NLO [45], POWHEG-BOX [46–48], Sherpa [49,50], Whizard [51,52],

CalcHep [53], CompHep [54], GRACE [55,56] etc. are very useful 
when performing the tasks they were originally designed for, e.g. calcu-

lating cross-sections and decay rates.

Since version 10 FeynCalc can be in principle used to perform real 
multiloop calculations or at least to derive multiloop amplitudes writ-

ten as linear combinations of loop integrals belonging to a certain set 
of integral topologies. Of course, due to the performance limitations 
of Mathematica as compared to FORM the number of multiloop dia-

grams one can completely evaluate with FeynCalc and their complexity 
are rather limited. Thus, in this context, FeynCalc should be seen as 
providing supplementary tools for structuring and reducing multiloop 
calculations and a supplementary way to check specific calculations of 
other multiloop frameworks. Our code has already been employed in 
this fashion in some research projects cf. e.g. [57–63] and we expect 
more publications to appear in the near future.

Alibrary3 is one of the few tools that uses Mathematica for gluing 
different parts of the computational setup together and implementing 
some convenience functions. Nevertheless, this code uses QGRAF [64]

for generating Feynman diagrams (Feynman rules for QCD are already 
included) and FORM for evaluating them. The topology identification 
part is outsourced to a dedicated tool called feynson [25] — devel-

oped by the author of Alibrary. The package also includes interfaces 
to GraphViz [65], LiteRed [66,67], FIRE [68–70], KIRA [71–75], py-

SecDec [76–78] and other related programs. FORM source files or con-

figuration files for FIRE and KIRA generated by Alibrary can be used 
independently — which is an approach similar to that of FeynCalc. 
Tensor reduction and Dirac algebra simplifications are not included, 
since the code tacitly assumes the usage of projectors. However, those 
parts can be still added to the generated FORM code by hand at a later 
stage.

The original idea behind the Python package tapir [23] was to 
create a modern replacement for q2e [79,80], a C++ code for insert-

ing Feynman rules into QGRAF output. Together with exp and calc,

q2e is a part of the so-called Karlsruhe tool chain4 that has been used 
in many cutting-edge multiloop calculations. In the course of its de-

velopment, tapir obtained numerous features that go far beyond the 
capabilities of q2e. In particular, it can be also used for identifying and 
minimizing integral topologies, visualizing Feynman diagrams, perform-

ing partial fraction decomposition and generating amplitudes in FORM

format. Furthermore, it understands Feynman rules in the Universal 
FeynRules Output (UFO) [81,82] format. The FORM code for evaluat-

ing the amplitudes is, however, not part of tapir. Just as in the case of

Alibrary, tapir has no built-in capabilities to perform tensor reduc-

tion of loop integrals or to simplify chains of Dirac matrices that do not 
involve Dirac traces.

The program FeAmGen.jl [26] is written in the Julia language, 
has built-in support for UFO models and uses YAML run cards describ-

ing the process that needs to be calculated. Automatically generated

FORM code takes care of Dirac and color algebra, while a built-in rou-

3 https://magv .github .io /alibrary/.
4 The tools q2e, exp and calc are not public, but can be obtained upon re-
3

quest, cf. http://sfb -tr9 .ttp .kit .edu /software /html /q2eexp .html
Computer Physics Communications 306 (2025) 109357

tine of FeAmGen.jl minimizes the number of loop integral topologies. 
However, the evaluated amplitude still requires tensor reduction or a 
suitable projector, while the obtained topologies are not readily con-

verted into configuration files for IBP-reduction tools such as FIRE or

KIRA. On the other hand, since the output of FeAmGen.jl is offered in 
form of JDL2 or plain text files, those additional steps can be also done 
by the user.

In the case of HepLib [24,83], the authors chose to employ C++ and 
in particular the GiNaC [84] library as the means of connecting differ-

ent calculational steps with each other. As such, this tool is usable both 
in C++ and Python. Apart from the fact that HepLib uses QGRAF and

FORM for the common tasks of generating and evaluating amplitudes, 
it also features tensor reduction, partial fraction decomposition and au-

tomatic creation of configuration files for FIRE and KIRA as well as a 
custom implementation of sector decomposition [9–12] for numerical 
evaluation of master integrals.

A comparison of some loop-related features present in FeynCalc

and other tools is presented in Table 1. It goes without saying that since 
all the above-mentioned codes employ FORM, they easily outperform

Mathematica (and hence FeynCalc) when it comes to the evaluation 
of Feynman diagrams. FeynCalc can identify the occurring topologies 
and minimize their number as well as directly simplify Dirac and color 
algebra and carry out tensor reduction of loop integrals. Feynman di-

agram generation is done using FeynArts, although an experimental 
interface to QGRAF is available in the development version of the yet 
unreleased FeynHelpers add-on. The same goes for automatic gener-

ation of run cards needed to perform an IBP-reduction of the master 
integrals: This feature is not part FeynCalc but will be offered in near 
future via FeynHelpers.

3. Installation

The fastest and most convenient way to install feyncalc is to use 
the automatic installer by evaluating

In[1]:= Import@"https://raw.githubusercontent.com/

FeynCalc/feyncalc/master/install.m"
InstallFeynCalc[]

on a freshly started Mathematica kernel. All versions of Mathemat-

ica from 10.0 upwards are supported. The code above will install the 
stable version of the package. The development version — with potential 
bugs but also the newest features, can be obtained by setting the option

InstallFeynCalcDevelopmentVersion of InstallFeynCalc to

True. In the case of internet connection problems one can also install 
the package manually. For further instructions we refer to the section 
“Installation” of the package manual. The source code of FeynCalc can 
be obtained from https://github .com /FeynCalc /feyncalc.

4. Topologies and loop integrals

At one loop, almost every calculation involving only integrals with 
quadratic propagators can be handled using the so-called Passarino–

Veltman (PaVe) technique. By considering the most generic basis of 
tensor structures for the given rank made of metric tensors and ex-

ternal momenta, each occurring tensor integral can be reduced to a 
linear combination of scalar functions. These quantities are known as 
PaVe coefficient or scalar functions and can be straightforwardly eval-

uated analytically or numerically. Rewriting the amplitude in terms 
of these functions usually concludes the loop-related part of the cal-

culation. PaVe-Reduction is implemented in numerous codes including

FeynCalc — where the relevant routines are called TID and PaVeRe-
duce. The conceptual simplicity behind the PaVe technology and the 
availability of reliable numerical codes (cf. e.g. refs. [85–91]) make it 
the default choice for the majority of practitioners. Unfortunately, the 
complexity of multiscale multiloop integrals does not allow one to ap-
ply these methods beyond one-loop with the same ease and efficiency. 

https://magv.github.io/alibrary/
http://sfb-tr9.ttp.kit.edu/software/html/q2eexp.html
https://github.com/FeynCalc/feyncalc


Computer Physics Communications 306 (2025) 109357V. Shtabovenko, R. Mertig and F. Orellana

Table 1

Some differences between tools for automatizing multiloop amplitude evaluation.

Feature FeynCalc Alibrary TAPIR FeAmGen.jl HepLib

Language Mathematica Mathematica Python Julia C++

Diagram generation FeynArts, QGRAF (FeynHelpers) QGRAF QGRAF QGRAF QGRAF

Diagram visualization FeynArts, TikZ-Feynman (FeynHelpers) TikZ, GraphViz TikZ-Feynman TikZ-Feynman TikZ-Feynman

Topology mappings yes feynson yes yes yes

Partial fractioning yes yes yes no yes

Dirac algebra except traces yes no no yes yes

Color algebra yes color.h color.h yes yes

Tensor reduction yes no no no yes

Uses FORM no yes yes yes yes

Interface to IBP codes FeynHelpers yes no yes yes

New models FeynRules by hand UFO UFO by hand
Instead, it is customary to treat each integral family on its own, by first 
reducing all relevant integrals to a smaller set of master integrals and 
then calculating those using suitable analytic or numerical techniques.

To that aim it is necessary to have code(s) that can (i) introduce 
integral families from analyzing the propagators present in the ampli-

tude, (ii) minimize the number of integral families by finding possible 
mappings between them, (iii) ensure that the set of propagators in each 
family forms a basis and, if necessary, (iv) perform tensor reduction or 
(v) partial fraction decomposition. Upon completing these steps, one 
should obtain a list of integral topologies present in the amplitude and 
the corresponding loop integrals belonging to these topologies. This in-

formation can be then passed to an IBP-reduction program such as FIRE,

KIRA, LiteRed, Reduze [92,93], AZURITE [94] etc. that will minimize 
the number of integrals that need to be evaluated. In the following we 
would like to focus on explaining how these five steps can be performed 
with the aid of FeynCalc.

4.1. Three main building blocks

The three main building blocks of FeynCalc’s new multiloop capa-
bilities are the symbols FCTopology and GLI as well as the routine
FCFeynmanPrepare. In this context FCTopology represents an inte-
gral family that consists of propagators forming a basis. The syntax reads

In[1]:= FCTopology[id, {propagators}, {loop momenta}, {

external momenta}, {kinematics}, {extra}]

where the first argument denotes the name of the topology, the second 
argument enumerates the propagators, while the third and fourth lists 
contain names of loop and external momenta. id can be a string or a 
symbol, while {propagators} must be a list of FAD, SFAD, or GFAD
propagator containers.

Kinematic constraints (e.g. specific values of scalar products made 
of external momenta) can be specified in the fifth argument, while the 
last argument may be used to incorporate some addition information 
(e.g. that this topology is a subtopology of a larger topology). A simple
FCTopology example would be

In[1]:= FCTopology[topo1, {SFAD[p1], SFAD[p2], SFAD[q -

p1 - p2], SFAD[q - p2], SFAD[q - p1]}, {p1, p2},

{q}, {Hold[SPD][q] -> qq}, {}]

that describes an on-shell 2-loop propagator-type topology. Notice that 
the construction Hold[SPD][q] prevents the scalar product 𝑞2 from 
being immediately evaluated in case it has already been assigned a value 
via SPD[q] = xyz.

Having defined an integral family, we can also introduce integrals 
belonging to it. To that aim FeynCalc uses GLIs (a shortcut for “Generic 
Loop Integral”) defined as

In[1]:= GLI[id, {powers}]

where the first argument denotes the family name (and must match the
id of the corresponding FCTopology) and the second contains powers 
4

of the involved propagators. The propagator powers must integers, e.g.
In[1]:= GLI[topo1, {1,1,1,-2,2}]

but most routines can also deal with symbolic powers. Similar notation is 
used in many other software packages related to multiloop calculations, 
such as FIRE, LiteRed, KIRA or pySecDec.

The function FCFeynmanPrepare is used to derive the Symanzik 
polynomials  and  for the given topology or set of master inte-

grals. It can be invoked, not only on FCTopology or GLI objects, but 
also on integrals using explicit propagator representation via Feyn-
AmpDenominator. The underlying algorithm is based on the code

UF.m [95] that is used in FIRE and FIESTA [96,97]. The  and  poly-

nomials encode numerous properties of the related topologies or master 
integrals (cf. ref. [98] for an extensive review) and can be used to derive 
one-to-one mappings between those objects.

FCFeynmanPrepare is not limited to the derivation of Symanzik 
polynomials. It can also calculate other useful quantities such as the 
matrix 𝑀 with  = det𝑀 or 𝐽 and 𝑄𝜇 as in  = det𝑀(𝑄𝑀−1𝑄 − 𝐽 ). 
Moreover, the routine is capable of dealing with both Minkowskian and 
Euclidean integrals. To avoid any confusion, let us stress that with “Eu-

clidean” we explicitly mean integrals defined in the flat space with the 
Euclidean metric signature 𝑔𝜇𝜈

𝐸
= diag(1, 1, 1, 1). To that aim one needs 

to set the option “Euclidean” to True.

4.2. Basic operations

The “old” loop-related FeynCalc functions such as TID, FDS or

PaVeReduce are designed to work with loop integrals in the prop-

agator representation. Therefore, upon introducing the new GLI-

representation it became necessary to add a large set of new routines 
that accept input containing GLI- and FCTopology-symbols. However, 
in some cases the existing routines were just modified to be able to deal 
with the new objects.

One of the simplest manipulations applicable to a GLI is the con-

version into the propagator representation. This can be done using

FCLoopFromGLI. This function requires two arguments, which are a
GLI integral and the corresponding topology in the form of an FC-
Topology. Both arguments can be also lists, which is useful when 
processing multiple integrals in one go.

Since a topology has a rather involved syntax, it can be validated 
using FCLoopValidTopologyQ. This helps to avoid user errors when 
entering topologies by hand or converting them from the output of other 
tools. A list of all kinematic invariants present in a topology (or a list 
thereof) can be obtained with the aid of FCLoopGetKinematicIn-
variants.

A priori, the set of propagators contained in an FCTopology does 
not necessarily have to form a basis. However, since many loop-related 
manipulations make sense only when working with a proper propaga-

tor basis, FeynCalc provides tools to verify this property. These are

FCLoopBasisOverdeterminedQ and FCLoopBasisIncompleteQ, 
which can tell whether the given set of propagators is overdetermined or 
incomplete. In the latter case the basis can be automatically completed 

with suitable propagators using FCLoopBasisFindCompletion.



V. Shtabovenko, R. Mertig and F. Orellana

Table 2

Differences between different computer codes in the assumed 𝑖𝜂-prescription for 
propagators. Expressions in green correspond to input yielding a correct imagi-

nary part, while red terms will create inconsistencies.

Symbolic expression Meaning in FIESTA Meaning in FC / pySecDec

[(𝑝+ 𝑞)2]−1 [(𝑝+ 𝑞)2 − 𝑖𝜂]−1 [(𝑝+ 𝑞)2 + 𝑖𝜂]−1
[−(𝑝+ 𝑞)2]−1 [−(𝑝+ 𝑞)2 − 𝑖𝜂]−1 [−(𝑝+ 𝑞)2 + 𝑖𝜂]−1
[(𝑝+ 𝑞)2 −𝑚2]−1 [(𝑝+ 𝑞)2 −𝑚2 − 𝑖𝜂]−1 [(𝑝+ 𝑞)2 −𝑚2 + 𝑖𝜂]−1
[−(𝑝+ 𝑞)2 +𝑚2]−1 [−(𝑝+ 𝑞)2 +𝑚2 − 𝑖𝜂]−1 [−(𝑝+ 𝑞)2 +𝑚2 + 𝑖𝜂]−1

Integrals containing too many propagators must be subjected to par-

tial fraction decomposition. Although FeynCalc’s ApartFF can now 
handle GLIs, in the context of loop calculations done with FORM, one 
would usually like to get explicit replacement rules that rewrite a prod-

uct of overdetermined denominators into a linear combination of terms 
with fewer denominators. To cover that case we introduced a new 
routine called FCLoopCreatePartialFractioningRules that will 
generate such rules and return a list of new topologies appearing on the 
right-hand side of the replacement rule.

Sometimes one might be interested in selecting particular topologies 
from a large list under the condition that those appear in the given loop 
integrals. To this aim we can use FCLoopSelectTopology, which is 
also employed by numerous high-level FeynCalc functions.

Differentiation of loop integrals with respect to vectors (similar to 
what can be achieved with FourDivergence) or scalars is imple-

mented in FCLoopGLIDifferentiate. This can be used e.g. when 
deriving symbolic IBP relations, systems of differential equations or 
performing asymptotic expansions [99]. The routine is therefore very 
similar to LiteRed’s Dinv. Notice that to have a proper differential 
equation, the differentiated loop integrals still require an IBP reduction. 
In this sense the function does not give one the final equation right 
away but merely performs one important step in the derivation thereof. 
Equally, it does not implement any methods to solve the resulting equa-

tion.

When doing asymptotic expansions one normally would like to at-

tach a particular scaling parameter (say 𝜆) to specific masses or mo-

menta in the topology and expand the loop integrals in 𝜆 to the given 
order. The former can be accomplished via FCLoopAddScalingPa-

rameter while for the latter one would use FCLoopGLIExpand.

An important point to keep in mind when working with loop inte-

grals is the 𝑖𝜂-prescription in the propagators. By default, FeynCalc

uses the standard convention, where a Minkowskian propagator is un-

derstood to be

[𝑝2 −𝑚2 + 𝑖𝜂]−1 (1)

However, an alternative prescription used e.g. in FIESTA is to pull out 
an overall minus sign, which leads to

[−𝑝2 +𝑚2 − 𝑖𝜂]−1 (2)

Notice that this propagator is still Minkowskian, just written in different 
way as compared to Eq. (1). For the sake of completeness, we list the 
relevant conventions for FeynCalc, FIESTA and pySecDec in Table 2. 
Notice that when using SFAD and GFAD shortcuts to enter loop inte-

gral propagators, FeynCalc will explicitly display 𝑖𝜂, unless the global 
variable $FCShowIEta has been set to $False.

FeynCalc can convert topologies to the convention of Eq. (2) via 
the function FCLoopSwitchEtaSigns. FCLoopGetEtaSigns is used 
internally to ensure the consistency of the 𝑖𝜂-prescription among prop-

agators present in integrals and topologies.

4.3. Topology identification

Given a multiloop amplitude expressed as a linear combination of 
5

scalar loop integrals, one usually wants to reduce these integrals to a 
Computer Physics Communications 306 (2025) 109357

basis of master integrals. This procedure, usually referred to as the IBP-

reduction, is not a mere convenience, but a strict necessity. While the 
number of unreduced loop integrals can easily go into hundreds of thou-

sands or even millions, the number of master integrals often lies between 
(100) and (1000) for two- and three-loop calculations that are feasi-

ble with modern techniques. In practice, the reduction often turns out to 
be one of the main bottlenecks in analytic calculations and it is impera-

tive to organize it in the most efficient way. For example, reducing each 
loop integral separately would be a waste of computational resources 
that should be avoided.

A better approach is to organize integrals into families and then do 
the reduction for each family. An integral family or a topology is defined 
as a set of linear independent propagators plus additional kinematic con-

straints such as values of masses or external momenta squared. It goes 
without saying that the number of families should better be as small as 
possible, otherwise one would be wasting computer time and resources. 
A caveat, however, lies in the fact that dimensionally regularized loop 
integrals are invariant under shifts of loop momenta. Hence, two inte-

grals that look very different might still belong to the same family. Also, 
two topologies that seem to be quite distinct could represent the same 
quantity modulo momentum shifts.

Such ambiguities can be avoided using a procedure called topol-

ogy identification or minimization, where the set of all loop integral 
topologies present in the amplitude is mapped to a smaller set of topolo-

gies independent of each other. Most algorithms for solving this task 
either consider graph representations of Feynman diagrams and am-

plitudes or analyze the propagators present in the amplitude. In the 
former case the initial problem of finding mappings between different 
topologies is converted into the requirement to find subgraph isomor-

phisms. When working with symbolic propagators one is mainly in-

terested in finding a representation that removes the invariance under 
momentum shifts and generates unique expressions that can be directly 
compared with each other. Of course, a brute-force enumeration of all 
possible momentum shifts is also possible, although mostly prohibitively 
expensive performance-wise. A purely graph-based algorithm is imple-

mented e.g. in the C++ programs q2e/exp, while the Mathematica

package TopoID [100] and the generator of optimized IBP identities

NeatIBP [101] look only at propagators of the loop integrals. Hybrid 
approaches are realized e.g. in Reduze, feynson, tapir or pySecDec.

FeynCalc follows a purely propagator-based approached by using 
the so-called Pak algorithm [102] — a special prescription for compar-

ing topologies or integrals with each other invented by Alexey Pak. Our 
implementation heavily relies on the ideas and tricks that can be found 
in the doctoral thesis of Jens Hoff [103] and their realization in Hoff’s 
program TopoID.5

The starting point for Pak’s algorithm is the naive observation that 
in the Feynman parametric representation of loop integrals (or topolo-

gies) the loop momenta are integrated out. Hence, the shift invariance 
seems to be gone. Unfortunately, there still remains a residual ambigu-

ity, which is related to the relabeling of Feynman parameters 𝑥𝑖 ↔ 𝑥𝑗 . 
Pak’s insight was to introduce a canonical way to label 𝑥𝑖 for the given 
combination of  and  polynomials. Then, given two canonically 
ordered characteristic polynomials 1 ≡ 1 × 1 and 2 ≡ 2 × 2, 
it is guaranteed that for identical integrals or topologies we will find 
1 = 2. This property is the corner stone for FeynCalc’s functionality 
of finding one-to-one mappings between topologies or master integrals.

When implementing this technique we introduced a number of aux-

iliary functions that return the necessary building blocks for applying 
Pak’s algorithm. For example, FCLoopToPakForm can be used to gener-

ate the canonically ordered characteristic polynomial  from the given 
propagator representation, while FCLoopPakOrder can apply Pak or-

dering to any polynomial.
5 https://github .com /thejensemann /TopoID.

https://github.com/thejensemann/TopoID


V. Shtabovenko, R. Mertig and F. Orellana

A nice property of  is that it can be used to detect scaleless integrals 
that vanish in dimensional regularization. The description of the under-

lying algorithm can be found in Section 2.3 of ref. [100]. In FeynCalc

the scalefulness property can be checked using the functions FCLoop-
PakScalelessQ (for characteristic polynomials) and FCLoopScale-
lessQ (for loop integrals).

The workflow envisioned in FeynCalc begins with applying FCLoop-
FindTopologies to the given amplitude. The function will return a 
list of the form {amp, topos}, with amp being the amplitude rewrit-

ten in a form suitable for further processing and topos constituting a 
list of all distinct sets of propagator denominators. In amp these sets 
are grouped into GLIs, while topos is made of FCTopology objects. 
In the next step one should get rid of tensor integrals, unless this has 
already been done by applying suitable projectors.

To this aim one can use the function FCLoopTensorReduce — 
which still uses Tdec as back-end, but is optimized for the represen-

tation of the amplitude generated by FCLoopIdentifyTopologies. 
Alternatively, one could also apply FCMultiLoopTID to the amplitude 
before running FCLoopIdentifyTopologies, but for performance 
reasons we do not recommend this. It is also worth mentioning that 
the old code used in Tdec6 for recognizing symmetries between tensor 
reduction coefficients has been replaced with the algorithm described in 
ref. [102]. On selected examples the new symmetrizer can lead to sys-

tems of linear equations being much smaller as compared to FeynCalc

9.3.1. Still, for higher rank tensor integrals Mathematica’s capabilities 
might be insufficient to solve the linear system in a reasonable amount 
of time. This issue can be worked around using the new version of Feyn-

Helpers, which allows Tdec to use FERMAT [105] as a solver back-end.

The one-to-one mappings between topologies can be revealed by 
applying FCLoopFindTopologyMappings to the topos list. Every 
mapping rule between two topologies contains of a list of momentum 
shifts that convert the propagators of the first topology into those of 
the second topology and should be also applied to all numerators multi-

plying the first topology. It is also possible to map the given topologies 
onto a specific set of selected topologies (e.g. to facilitate comparisons 
to other calculations) using the option PreferredTopologies.

Due to the nature of Pak’s algorithm FCLoopFindTopologyMap-
pings can only find relations between topologies that contain exactly 
the same number of propagators. Since not all topologies appearing in 
the amplitude normally have the full set of propagators required to form 
a basis, this often leaves some room for mapping smaller topologies into 
larger ones. Here with “larger topologies” we mean both incomplete 
topologies with a larger number of propagators as well as the so-called 
supertopologies that have a complete propagator basis. In FeynCalc

one can deal with this situation by first identifying all nonvanishing 
subtopologies of the given topology via FCLoopFindSubtopologies. 
Then, one can try to find mappings between those subtopologies and the 
actual smaller topologies appearing in the amplitude. The subtopologies 
contain a special marker that relates them to the parent topology, so 
that FCLoopFindTopologyMappings knows how to generate correct 
mappings pointing to the original topology.

Once the final set of topologies has been sufficiently minimized, 
one can apply the generated mapping rules to the full amplitude with 
the aid of FCLoopApplyTopologyMappings. In fact, this routine 
will also rewrite all scalar products in terms of invert propagators and 
combine them with the existing propagator denominators, so that the 
resulting amplitude will appear as a linear combination of different

GLIs. In the background this high-level function uses the auxiliary rou-

tines FCLoopCreateRulesToGLI and FCLoopCreateRuleGLITo-
GLI. The output of FCLoopApplyTopologyMappings is, in principle, 
suitable for the subsequent IBP reduction. The process of converting the 
occurring loop integrals and the list of final topologies into run cards 

6 Tdec is an auxiliary routine generating tensor decomposition formulas for 
6

generic multiloop integrals that can be used in FeynCalc or FORM [104].
Computer Physics Communications 306 (2025) 109357

for tools such as FIRE and KIRA can be easily automatized. The relevant 
code is already part of FeynHelpers that will be presented elsewhere.

5. Master integrals

Unless one is trying to perform a cutting-edge calculation7 or lacks 
access to sufficient computational resources, the IBP reduction usually 
goes through without much additional effort. Even when some fine-

tuning is needed, this usually amounts to playing with the configuration 
files of the respective programs, resubmitting jobs running on a cluster 
or possibly asking the developers for an advice. Once all reduction tasks 
have been completed, one is normally left with a list of master integrals 
from different integral topologies.

Depending on the tool that was used to perform the reduction, it 
may be necessary to check whether all of these integrals are indeed dis-

tinct. Given that identical masters can have rather different propagator 
representations, this task should be better performed in an algorithmic 
fashion. FeynCalc can make use of the built-in Pak’s method to reveal 
all one-to-one mappings between the master integrals. The correspond-

ing function is called FCLoopFindIntegralMappings and has been 
modeled after the routine FindRules in FIRE. Using the option Pre-
ferredIntegrals one can choose a list of preferred master integrals 
to be mapped onto. This also works for factorizing integrals, which can 
be entered as products of GLIs.

Graphical representations of master integrals serve as an important 
tool to better understand the obtained results and relate them to the cal-

culations that has already been done in the literature. The most common 
visualization method is to relate the propagators and the flow of loop 
momenta inside the integral to graphs made of directed edges. These 
edges can be styled to account for the types of propagators and their 
masses. For example, massless propagators are usually plotted as dashed 
or dotted lines, while massive propagators are shown as solid lines of 
different colors. If the propagator appears squared, this can be hinted 
using a dot or a cross.

While switching from a graph to a propagator representation for 
the given integral (or topology) is a trivial step, the converse is not 
true. The construction of graphs for arbitrary integrals can be tricky 
and requires both care and effort. Some publicly available tools such as

AZURITE, PlanarityTest [106] or LiteRed allow for automatizing this 
task to some extent. In FeynCalc, the corresponding function is called

FCLoopIntegralToGraph. In the case of a successful reconstruction, 
it returns a directed Mathematica graph as well as the line momenta 
running through the edges and some additional information. Although 
the graph can be directly shown using the built-in Mathematica func-

tion GraphPlot, one should better use FeynCalc’s FCLoopGraph-
Plot which takes options for styling the edges and making the output 
look more similar to what is usually seen in the literature. However, it 
should be noted that due to multiple problems that older Mathematica

versions have with the visualizations of graphs, FCLoopGraphPlot re-

quires at least Mathematica 11.0, while best results can be expected 
with the version 12.2 or newer. We would also like to stress that the 
graph obtained with FCLoopIntegralToGraph can also (upon some 
minimal adjustments) be plotted using other suitable software such as

GraphViz.

One of the advantages of having master integrals shown as graphs 
is that one can readily assess possible cuts via visual examination. In 
this context we understand “cutting” as the process of sending the cut 
propagators on-shell so that pictorially the graph splits into two graphs. 
However, analyzing dozens or even hundreds of graphs by eye can still 
be tedious and prone to human errors. To streamline this process Feyn-

Calc offers FCGraphCuttableQ, which can decide whether the given 
graph can be cut without touching the specified lines. This is relevant 

7 Of course, if the given calculation involves enough masses and/or legs, even 

the reduction of two-loop amplitudes can quickly become unfeasible.



V. Shtabovenko, R. Mertig and F. Orellana

e.g. for heavy particles in the loops that kinematically cannot go on-

shell. This way one can readily determine whether the given master 
integrals can develop an imaginary part or not. A more generic routine 
is offered under the name FCGraphFindPath. Its task is to determine, 
whether the given graph can be traversed by starting and finishing at 
one of the external edges. The internal edges can be assigned weights 1
or −1, with the latter meaning that this edge cannot be passed.

Having dealt with the problem of obtaining a set of unique master 
integrals and visualizing them, it is fair to ask whether FeynCalc can 
also be useful for evaluating the master integrals. As far as numerical 
evaluation is concerned, the FeynHelpers interface (to be presented in 
a future publication) makes it easy to generate ready-to-use FIESTA or

pySecDec scripts for evaluating the given GLIs. Analytic results are of 
course much more difficult to obtain. Calculating loop integrals in this 
fashion often involves trying or even combining different techniques 
available on the market (cf. e.g. refs. [4,5]) in the hope that an inte-

gral, that is intractable using method A may turn out to be easy when 
attacked with method B. While FeynCalc obviously cannot deliver an-

alytic solutions upon pressing a button, it nevertheless offers a set of 
handy routines that facilitate common steps required for some calcula-

tional methods.

As far as the derivation of the Symanzik polynomials  and 
is concerned, the previously mentioned function FCFeynmanPrepare
can readily generate those expressions. If one is interested in evaluat-

ing the master integral via a direct analytic integration of its Feynman 
parametric representation, the more useful routine would be FCFeyn-
manParametrize. Notice that this function supports both quadratic 
and eikonal propagators and can also deal with Euclidean or tensor 
integrals. Cartesian integrals living in 𝐷−1 dimensions are equally sup-

ported.

In general, it is very difficult to carry out all Feynman parametric 
integrations while keeping the full dependence on the dimensional reg-

ulator 𝜀. For simpler integrals this can be often achieved by first joining 
specific subsets of propagators before combining the rest in the final 
integrand. This trick may often result in a greater freedom when ex-

ploiting the Cheng–Wu theorem [107] and trying to find a working 
sequence of integrations. To this aim FeynCalc offers FCFeynmanPa-
rameterJoin, which makes the unification of different propagators 
simple and straightforward. Its output can be then passed to FCFeyn-
manParametrize, thus obtaining the final integrand depending on the 
introduced sets of Feynman parameters 𝑥𝑖, 𝑦𝑖, 𝑧𝑖 etc.

The applicability of the Cheng–Wu theorem can be readily checked 
via FCFeynmanProjectiveQ. If, for some reason, the integral turns 
out not to be projective, it can be rendered projective using FCFeyn-
manProjectivize by automatically performing a projective transfor-

mation.

If one insists on integrating Feynman parameters order by order 
in 𝜀, one should keep in mind that naively expanding the integrand 
in the dimensional regulator may introduce divergences in the Feyn-

man parameters, which is clearly undesirable. One possible solution 
to this problem involves the so-called analytic regularization that was 
developed in refs. [108–110] and implemented in the Maple pack-

age HyperInt [108]. In a nutshell, when expanding an integrand that 
has been treated using this technique, all 𝜀 poles become explicit so 
that the integrations in 𝑥𝑖 remain finite. Unlike sector decomposition, 
analytic regularization is guaranteed not to spoil the linear reducibil-

ity property of the integrand. In FeynCalc analytic regularization is 
implemented using the functions FCFeynmanFindDivergences and

FCFeynmanRegularizeDivergence, that were inspired by Hyper-

Int’s findDivergence and dimregPartial.

Nowadays, the method of differential equations [111–116] belongs 
to the most popular and efficient techniques for calculating large num-

bers of master integrals analytically or numerically. The discovery of 
the canonical form [117,118] and a rapid advance in the software for 
automatically finding such forms was very beneficial for the field of mul-
7

tiloop calculations. When using tools such as Fuchsia [119], CANON-
Computer Physics Communications 306 (2025) 109357

ICA [120,121], Libra [122,123], epsilon [124], Initial [125,126]

etc. one is often confronted with the necessity to perform a change of 
variables e.g. for rationalizing square roots appearing at intermediate 
stages.8 To automatize this step FeynCalc offers a function called FCD-

iffEqChangeVariables. At the moment only differential equations 
of one variable are supported. Given the old variable 𝑥, the new vari-

able 𝑦(𝑥) as well as the inverse relation 𝑥(𝑦), this routine eliminates 𝑥
in favor of 𝑦 in the given matrix. This can be  from the pre-canonical 
form of the differential equation 𝐹 ′ =𝐹 , but also  from the canon-

ical form 𝐺′ = 𝜀𝐺 or just the transformation matrix  with 𝐹 =  𝐺. 
Notice that in the case of  one should disable the inclusion of the 
prefactor 1∕𝑓 ′(𝑦) to avoid incorrect results. This is done by setting the 
option Prefactor to False.

Having obtained a canonical form using one of the existing tools, one 
usually starts constructing the solution to the system order by order in 𝜀. 
Here one can make use of FCDiffEqSolve that can quickly generate 
such expressions written in terms of FCIteratedIntegral objects. 
The latter can be regarded as a placeholder for expressions of the type

𝑏

∫
𝑎

𝑑𝑥𝑓 (𝑥), (3)

where 𝑓 (𝑥) can be an iterated integral itself. This way nested integrals 
can be represented in FeynCalc by wrapping new FCIteratedInte-

gral heads around the existing ones.

To facilitate the evaluation of such integrals, the rational func-

tions involved are transformed into a special representation called

FCPartialFractionForm. The main idea is to write expressions of 
the form

𝑛+
𝑓1

[𝑥− 𝑟1]𝑝1
+

𝑓2
[𝑥− 𝑟2]𝑝2

+… (4)

as FCPartialFractionForm[n,{{f1,x-r1,p1},{f2,x-r2,p2}, 
...},x]. From here one can easily rewrite FCIteratedIntegral

objects in terms of Harmonic or Goncharov polylogarithms [128–130]. 
This is done using FCIteratedIntegralEvaluate with the result 
containing FCGPL symbols. The conversion of rational functions to this 
representation is handled by ToFCPartialFractionForm.

Notice that for the time being, FCGPLs are mere placeholders. More 
GPL-related routines are expected to be added in future versions of

FeynCalc. Our goal is to have some minimal implementation of core 
symbolic properties of GPLs that can be used by the related FeynCalc

functions (mainly for computing loop integrals) without the need to em-

ploy any external packages. This way we can ensure that there will not 
be any unwanted side effects that often arise when having multiple pack-

ages loaded on the same kernel or when using packages that have not 
yet been made 100% compatible with the most recent Mathematica

version.9

Of course, for extensive manipulations of multiple polylogarithms 
the users should resort to special codes such as HPL [131,132], Poly-

LogTools [133] or MPL [134] that have been developed over the years 
and are well established in the field.

8 The transformations intended to remove such square roots can be automat-

ically obtained using RationalizeRoots [127].
9 For example, PolyLogTools currently relies on the Combinatorica li-

brary that is being deprecated since Mathematica 10 and generates multiple 
warnings when loaded on version 13.3 or 14.0. The HPL package that is equally 
required by PolyLogTools is not being actively maintained since years and 
gets patched on the fly whenever it is loaded by PolyLogTools. Then, MPL is 

a Maple package and hence cannot be used directly with Mathematica.



V. Shtabovenko, R. Mertig and F. Orellana

6. Features and improvements unrelated to multiloop 
calculations

6.1. Improved color algebra simplifications

In the past, FeynCalc was often unable to simplify various SU(𝑁)
color algebraic expressions using SUNSimplify and SUNTrace. Some-

times chaining multiple instances of the two routines with different 
options would do the trick, but such workarounds were different to find 
and far from being obvious to users.

To improve on this situation, in FeynCalc 10 the function SUNSim-

plify was rewritten from scratch. The new version implements a much 
larger number of color algebraic relations, while the new code is easier 
to maintain and extend. Notice that the evaluation of the color trace is 
now handled in a manner similar to what is done in DiracSimplify. 
By default, an SUNTrace object remains unevaluated, unless the op-

tion SUNTraceEvaluate is set to True. However, the more convenient 
way to evaluate such expressions is to use SUNSimplify. The default 
value of the SUNTraceEvaluate option in SUNSimplify is set to Au-
tomatic. This means that if a trace can be simplified without naively 
rewriting everything in terms of structure constants, the function will do 
so. Setting this option to False will leave all traces untouched, while

True means that the user explicitly wants to eliminate the traces in fa-

vor of SUNF and SUND symbols.

6.2. Passarino–Veltman functions

As a package, that was originally developed with one-loop calcu-

lations in mind, FeynCalc is of course equipped with symbols repre-

senting Passarino–Veltman functions and a set of routines for working 
with them. One particular shortcoming related to this functionality that 
became obvious in the past few years, was FeynCalc’s ignorance of 
many symmetry relations between PaVe functions. This way some re-

sults looked longer and more complicated than they actually should 
have been and certain cancellations did not take place.

In FeynCalc 10 we tried to add all symmetries up to rank 10 for 
𝐵-functions, rank 9 for 𝐶 -functions, rank 8 for 𝐷-functions, rank 7 for 
𝐸-functions and rank 6 for 𝐹 -functions. The corresponding files are lo-

cated inside the directory Tables/PaVeSymmetries and can be (if 
needed) extended to even higher ranks. Whenever the user enters PaVe

functions, PaVeOrder will automatically reorder their arguments in a 
canonical way, unless the option PaVeAutoOrder has been explicitly 
set to False.

Also, the deprecated OneLoop routine offered a functionality that 
was tricky to reproduce using other functions: The ability to simplify IR-

finite expressions involving PaVe functions by analyzing their UV-poles 
and expanding the 𝐷-dependent prefactors accordingly so that the ex-

pression becomes (𝜀0). To improve on this, we added PaVeLimitTo4

which does exactly that. Notice that the absence of IR-poles is assumed 
but not explicitly checked, meaning that it is the user’s duty to ensure 
this condition’s validity.

6.3. Lagrangians and operators

In the course of our ongoing work to improve the usefulness of

FeynCalc for nonrelativistic calculations, we extended the functional-

ity of the package for manipulating Lagrangians to support Cartesian 
nabla operators. Supplementing the already existing symbols Left-

PartialD (∼ ⃖⃖𝐷⃖𝜇), RightPartialD (∼ ⃖⃖⃗𝐷𝜇), LeftRightPartialD

(∼ ⃖⃖𝐷𝜇) and LeftRightPartialD2 (∼ ⃖⃖𝐷2) we now also have Left-

NablaD (∼ ⃖⃖∇⃖𝑖), RightNablaD (∼ ⃖⃖⃗∇𝜇), LeftRightNablaD (∼ ⃖⃖⃗∇𝜇) and

LeftRightNablaD2 (∼ ⃖⃖⃗∇2).

Notice that although one still cannot use FeynRule to derive Feyn-

man rules for nonrelativistic operators, other useful routines such as
8

ExpandPartialD and ExplicitPartialD can now deal with nabla 
Computer Physics Communications 306 (2025) 109357

operators or gauge covariant derivatives with Cartesian indices (i.e. 𝐷𝑖
from 𝐷𝜇 = (𝐷0, 𝐷𝑖)).

Another useful addition to this part of FeynCalc’s capabilities is
ShiftPartialD, which allows the user to reshuffle derivatives in spe-

cific operators by applying integration by parts on the Lagrangian level. 
In this case the surface terms are always assumed to vanish.

Last but not least, in order to further facilitate the process of writ-

ing custom functions working with FeynCalc symbols (e.g. for deriving 
Feynman rules in the spirit of Appendix C from [135]), version 10 also 
features FCTripleProduct as a shortcut for vector products (𝑎× 𝑏⃗) ⋅ 𝑐
as well as two routines for extracting all free or dummy indices in the 
given expression. They are called FCGetFreeIndices and FCGet-

DummyIndices respectively.

6.4. Dirac algebra

It is now possible to apply Gordon identities to suitable spinor chains 
by means of GordonSimplify. The function works both in 4 and 𝐷
dimensions, while the option Select allows to choose whether one 
wants to trade the right-handed projector 𝑃𝑅 for the left-handed 𝑃𝐿
one or vice versa.

Furthermore, the calculation of Dirac traces in the Larin [136]

scheme now proceeds according to the so-called Moch-Vermaseren-Vogt 
[137] formula, which greatly improves the computational efficiency as 
compared to the previous implementation.

The code for the evaluation of some special spinor chains such as 
𝑣̄(𝑝)𝛾5𝑣(𝑝), 𝑢̄(𝑝)𝑢(𝑝) or 𝑣̄(𝑝)𝑣(𝑝) was moved from DiracSimplify to 
a dedicated routine called SpinorChainEvaluate. Setting the same-

named option of DiracSimplify to False will prevent FeynCalc

from replacing such objects with their explicit values — which can be 
useful for certain types of calculations.

Unfortunately, FeynCalc still does not support the spinor-helicity 
formalism [138–144], which constitutes a much more efficient way to 
deal with fermions, especially in the massless case. This feature remains 
on our to-do list.

6.5. Convenience functions for research activities

Some of the functions introduced in FeynCalc 10 are not directly 
related to the evaluation of amplitudes or loop integrals but rather be-

long to the category of the so-called convenience routines. One of them 
is called FCMatchSolve and has been developed to automatize the 
determination of renormalization constants, matching coefficients and 
other parameters. To this aim, for a given expression (e.g. the difference 
of two amplitudes or the sum of some diagrams and the correspond-

ing counterterms), one first needs to collect all unique structures (e.g. 
Dirac chains, color factors, 𝜀, 𝛼𝑠 etc.). Then, one can pass this expres-

sion to FCMatchSolve together with the list of symbols that should be 
regarded as fixed variables. In this case the function regards all other 
variables as free parameters and tries to choose them such, that the in-

put expression vanishes. In practice, this approach turns out to be more 
efficient and robust than using Collect and Solve.

Another common task in particle phenomenology is the numerical 
evaluation of the final analytic expressions for cross sections, decay 
rates, matching coefficients and other experimentally accessible param-

eters. Comparing such quantities to the literature or to the results of 
peers can be nontrivial for several reasons: Firstly, contrary to symbolic 
expressions, the comparison will not be exact, but rather up to a given 
number of 𝑛 significant digits. Second, when finding disagreement be-

tween two large expressions involving numbers of different origin, one 
would often want to identify terms that agree with less significant digits 
than required, rather than merely state the lack of numerical agreement. 
Using FCCompareNumbers one can streamline the task of comparing 
two numerical or semi-numerical expressions, while retaining full con-
trol over the number of significant digits required. Again, even though a 



V. Shtabovenko, R. Mertig and F. Orellana

similar result could be achieved using custom codes, FCCompareNum-
bers is an attempt at saving time by automating trivial operations and 
avoiding the most common pitfalls of manual evaluation.

Putting the often long and complicated analytic expressions obtained 
in a multiloop calculation into a proper form suitable for a publication, 
can be regarded as an art of its own. When using Mathematica for 
organizing the expressions and converting them into LATEX, one is often 
faced with the problem that sums of terms are not ordered in the way one 
would want them to. This is because Mathematica’s Times and Plus
functions sort terms using an internal canonical ordering that does not 
necessarily agree with one’s aesthetic preferences. To remedy this, Feyn-

Calc now comes with a function called FCToTeXReorder that first 
converts Times- and Plus-type expressions into nested lists of the form

{a,b,...,Plus} and {a,b,...,Times} respectively. Terms inside 
those lists can then be grouped and ordered according to the user’s pref-

erences, using custom factoring and sorting functions. The intermediate 
result of such manipulations can be readily previewed with FCToTeX-
PreviewTermOrder. Once the expressions have been brought into a 
suitable form, one can directly apply the built-in TeXForm command to 
the output of FCToTeXPreviewTermOrder and then copy the gener-

ated LATEX code into the source file of the publication.

6.6. Tensors with light-cone components

In many QFT calculations (especially those involving highly ener-

getic particles) it is natural to decompose Lorentz tensors into compo-

nents along two light-like reference vectors 𝑛 and 𝑛̄ satisfying

𝑛2 = 𝑛̄2 = 0, 𝑛 ⋅ 𝑛̄ = 2. (5)

For example, a four-vector can be then written as

𝑝𝜇 = 𝑛̄
𝜇

2
(𝑝 ⋅ 𝑛) + 𝑛

𝜇

2
(𝑝 ⋅ 𝑛̄) + 𝑝𝜇⟂ ≡ 𝑝𝜇+ + 𝑝𝜇− + 𝑝𝜇⟂, (6)

with the perpendicular component being defined as the difference be-

tween the full vector and the sum of the plus and minus components

𝑝
𝜇

⟂ ≡ 𝑝𝜇 − 𝑝𝜇+ − 𝑝𝜇⟂ = 𝑝𝜇 − 𝑛̄
𝜇

2
(𝑝 ⋅ 𝑛) − 𝑛

𝜇

2
(𝑝 ⋅ 𝑛̄). (7)

To facilitate such calculations using FeynCalc, version 10 of the pack-
age introduces special symbols for defining light-like reference vectors 
as well as additional quantities specifying the plus, minus and perpen-
dicular components of Lorentz tensors. First of all, one has to tell Feyn-
Calc, which symbols represent 𝑛 and 𝑛̄ by assigning the corresponding 
values to $FCDefaultLightConeVectorN and $FCDefaultLight-
ConeVectorNB. In addition to that, one should also implement the 
constraints from Eq. (5) e.g. as in

In[1]:= FCClearScalarProducts[]

ScalarProduct[n,n] = 0; ScalarProduct[nb,nb] = 0;

ScalarProduct[n,nb] = 2;

After these preliminary steps one can start using new shortcuts for 
the lightcone components such as FVPL[p,𝜇] for 𝑝𝜇+ or SPLR[p,q], 
(𝑝 ⋅ 𝑞)⟂ etc. In the case of plus and minus components, FeynCalc would 
insert explicit expressions constructed from the full tensor contracted 
with 𝑛 and 𝑛̄ vectors. Perpendicular components are represented us-

ing the symbol LightConePerpendicularComponent, which takes 
a LorentzIndex or Momentum as first argument and requires Momen-
tum[n] and Momentum[nb] for the remaining two arguments.

FeynCalc can work with expressions involving light-cone compo-

nents of vectors, metric tensors and scalar products in 4 or 𝐷 dimen-

sions. Dirac matrices can be also defined on the light-cone — with both

DiracSimplify and DiracTrace able to simplify the corresponding 
expressions.

6.7. Up-to-date documentation using continuous integration

With this release we also address shortcomings of the FeynCalc
9

documentation: The lack of a proper manual in the form of a PDF file, 
Computer Physics Communications 306 (2025) 109357

new functions introduced but not documented, the absence of a novice-

friendly tutorial. Technical issues forced us to rethink the whole concept 
behind the documentation of the package. We decided to stop maintain-

ing the documentation sources in form of Mathematica notebooks in 
favor of switching to text-based .m and markdown files. Using a mod-

ified version of J. Podkalicki’s Mathematica to Markdown converter

M2MD10 together with the Pandoc [145] document converter, we cre-

ated a workflow, where .m and .md (markdown) files containing the 
whole documentation can be semi-automatically converted to HTML 
(for the online documentation) or LATEX (for the PDF manual). The LATEX-

form of the manual is kept in a separate repository11 and every change 
in the source files triggers an update of the public PDF file that can be 
readily downloaded12 by anyone. This way, it is easy to keep both the 
online and PDF versions of the manual up to date without the need to up-

date or modify their content manually. Furthermore, we also took care 
to automatically synchronize the descriptions of FeynCalc symbols and 
functions in the documentation to the texts shown when looking up their 
usage information (e.g. as in ?FV or ?TID). We hope and believe that 
these changes will significantly improve the user experience of Feyn-

Calc and make the program more accessible to new users.

7. Examples

In this section we would like to draw reader’s attention to sev-

eral examples included with the package that make use of the new 
multiloop-related routines. Unlike old FeynCalc codes, where one-loop 
amplitudes were always expressed in terms of Passarino–Veltman func-

tions, the calculations presented below are carried out in a different way, 
where the resulting amplitudes are written in terms of GLIs belonging 
to previously identified integral families in the FCTopology notation.

7.1. Electron self-energy in massless QED at 2 loops

We start by generating the 3 required 2-loop diagrams in QED 
using FeynArts. Upon setting the electron mass to zero, we apply

DiracSimplify to the amplitudes and then continue to the topol-

ogy identification stage. Using FCLoopFindTopologies we find two 
distinct sets of propagators that can be fitted into two trial topo-

gies. However, upon identifying all nonvanishing subtopologies by 
means of FCLoopFindSubtopologies, we can apply FCLoopFind-
TopologyMappings and map everything into one single topology.

The next step is to carry out the tensor reduction (FCLoopTensor 
Reduce) and then apply mappings between trial topologies to the di-

agrams. This can be conveniently handled by FCLoopApplyTopol-
ogyMappings. In addition to the above steps this routine will also 
rewrite the scalar products involving loop momenta in terms of inverse 
denominators (in the GLI-notation) and bring the amplitudes into a 
form where they are expressed as linear combinations of various GLI
integrals.

We omit the technicalities related to the IBP reduction (which can 
be also automatized using FeynHelpers) and use an already available 
reduction table to reduce everything to 3 master integrals. Two of them 
are, however, identical — which can be revealed via FCLoopFind-
IntegralMappings. Thus, we obtain the final result for the 2-loop 
electron self-energy in massless QED expressed in terms of 2 master in-

tegrals. Comparing this to the result given in Eq. 5.51 of ref. [146] we 
find full agreement, as expected.

7.2. Photon self-energy in massless QED at 2 loops

This example is almost identical to the previous one apart from the 
obvious fact that we need to generate another set of diagrams. The calcu-

10 https://github .com /kubaPod /M2MD.
11 https://github .com /FeynCalc /feyncalc -manual.

12 https://github .com /FeynCalc /feyncalc -manual /releases /tag /dev -manual.

https://github.com/kubaPod/M2MD
https://github.com/FeynCalc/feyncalc-manual
https://github.com/FeynCalc/feyncalc-manual/releases/tag/dev-manual


V. Shtabovenko, R. Mertig and F. Orellana

lation is carried out with full gauge dependence, even though 𝜉 cancels 
in the final result. The obtained result given in terms of 2 master inte-

grals can be compared in Eq. 5.18 of ref. [146].

7.3. Gluon self-energy in massless QCD at 2 loops

The gluon self-energy calculation shares many similarities with the 
previous examples but also requires some adjustments. First of all, due 
to the complexity of this calculation (18 diagrams) we use Feynman 
gauge. Then, we employ Lorentz and color projectors to extract the 
scalar self-energy function Π(𝑝2) directly. Apart from these technical-

ities, the main steps of the calculation closely follow those of the two 
previous examples. Here we choose to insert explicit expressions for the 
2 master integrals and compare the so-obtained results at (𝜀0) with the 
sum of Eqs. 6.10-6.11 in ref. [147], finding complete agreement.

7.4. Topology identification for 𝐵𝑐 → 𝜂𝑐 form factors at 2 loops

This examples demonstrate the usage of FeynCalc for the sole pur-

pose of minimizing a set of topologies obtained from elsewhere (e.g. 
in FORM calculation). We refer to refs. [148,149] for more details 
on the underlying physics and the technical aspects of this calcula-

tion. The given set of 251 2-loop topologies with 3 external momenta 
and 3 scales contains not only quadratic but also eikonal as well as 
mixed quadratic-eikonal propagators (cf. Appendix C). We first deal 
with the mixed propagators by completing the square using the rou-

tine FCLoopReplaceQuadraticEikonalPropagators. Then we 
address topologies containing overdetermined sets of propagators by 
generating the corresponding partial fraction decomposition rules via

FCLoopCreatePartialFractioningRules. Having uncovered all 
suitable topology mappings with the aid of FCLoopFindTopology-
Mappings, we add missing propagators needed to have a complete 
basis in each topology (FCLoopBasisFindCompletion) and gener-

ate rules for rewriting scalar products containing loop momenta in terms 
of inverse propagators (FCLoopCreateRuleGLIToGLI) so that the full 
amplitude can be written solely in terms of GLIs. All these results can be 
readily converted into FORM id-statements and thus used in a FORM-

based setup.

8. Summary

FeynCalc 10 is a big step towards the goal of bringing multiloop cal-

culations closer to the broad audience of interested phenomenologists. 
The presented release of the package integrates numerous new functions 
designed to facilitate and streamline manipulations of loop integrals and 
topologies. Even though the underlying algorithms are well-known to 
the practitioners and have already been implemented in many publicly 
available software packages, having them all conveniently accessible 
via high-level functions within one framework significantly lowers the 
bar for using those techniques in daily research. Owing to FeynCalc’s 
focus on flexibility, modularity and ease-of-use, users can casually em-

ploy these new functions whenever it is convenient for them, without the 
need to abandon their existing codes. The only condition is to convert 
the integral families appearing in the calculation into the FCTopology-

notation, which normally can be done using just a few simple replace-

ment rules.

Despite of all this progress, we would again like to stress that do-

ing multiloop calculations with FeynCalc alone is not the goal we are 
aiming for. Our vision is to have a FORM-based calculational frame-

work, where only certain steps (e.g. topology minimization) should be 
performed using FeynCalc. To this end it was necessary to equip Feyn-

Calc with the functions and symbols described in the present work. The 
next steps are to release an improved interface (a new version of Feyn-

Helpers) connecting FeynCalc to other popular tools used in multiloop 
calculations and to make the related FORM-based setup publicly avail-

able. These tasks are currently being worked on and we hope to complete 
10

them in the near future.
Computer Physics Communications 306 (2025) 109357

CRediT authorship contribution statement

Vladyslav Shtabovenko: Writing – review & editing, Writing – orig-

inal draft, Software. Rolf Mertig: Writing – review & editing, Writing – 
original draft, Software. Frederik Orellana: Writing – review & editing, 
Writing – original draft, Software.

Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgements

One of the authors (VS) would like to acknowledge Guido Bell, 
Simone Biondini, William Torres Bobadilla, David Broadhurst, Kon-

stantin Chetyrkin, Joshua Davies, Florian Herren, Marvin Gerlach, Den-

nis Horstmann, Tobias Huber, Vitaly Magerya, Martin Lang, Fabian 
Lange, Ulrich Nierste, Erik Panzer, Kai Schönwald, Alexander Smirnov, 
Vladimir Smirnov and Matthias Steinhauser for useful discussions on 
different aspects of automatic perturbative calculations. The research of 
VS was supported by the Deutsche Forschungsgemeinschaft (DFG, Ger-

man Research Foundation) under grant 396021762 — TRR 257 “Particle 
Physics Phenomenology after the Higgs Discovery”. This paper has been 
assigned preprint numbers TTP23-056, P3H-23-089 and SI-HEP-2023-

27.

Appendix A. Pak’s algorithm

In this section we provide a brief description of Pak’s algorithm in-

cluding an illustrative example, similar to the one that was presented in 
ref. [100]. The starting point is always the derivation of the Symanzik 
polynomials  and  for the given integral or topology. Then we can 
construct a characteristic polynomial  ≡ +13 describing the given 
integral family. In the case of a loop integral we also need to save the 
power of each denominator.

The polynomial is  typically of the form

 =
𝑙∑
𝑖=1
ℎ𝑖 𝑥

𝑖1
1 ⋅… ⋅ 𝑥𝑖𝑛𝑛 , (A.1)

where ℎ𝑖 is a kinematics-dependent factor, 𝑛 stands for the number of 
propagators or Feynman parameters 𝑥𝑖 and 𝑙 is the total number of 
terms. It is convenient to write  as an 𝑙 × (𝑛 + 1) matrix,

 →

⎛⎜⎜⎜⎜⎝

ℎ1 𝑥
𝑎1
1 𝑥

𝑎2
2 ⋯ 𝑥

𝑎𝑛
𝑛

ℎ2 𝑥
𝑏1
1 𝑥

𝑏2
2 ⋯ 𝑥

𝑏𝑛
𝑛

⋮ ⋮ ⋮ ⋯ ⋮
ℎ𝑙 𝑥

𝑧1
1 𝑥

𝑧2
2 ⋯ 𝑥

𝑧𝑛
𝑛

⎞⎟⎟⎟⎟⎠
, (A.2)

where we now want to find a canonical way to rename the 𝑥𝑖. To that 
aim we set 𝑖 = 1 and generate new matrices by switching the (𝑖 + 1)-th 
column with each of the next columns. We can keep track of these per-

mutations by giving the matrices suitable names containing the column 
numbers.

Looking only at the first (𝑖 +1)-columns of the new matrices we need 
to sort their rows. The exact nature of the sorting algorithm is irrelevant 
here, as long as we always use the same procedure for all matrices. 

13 The choice  × is also possible, but will usually contain a larger number 

of terms, so for performance reasons we prefer the sum and not the product.



V. Shtabovenko, R. Mertig and F. Orellana

Computer algebra systems such as Mathematica or Maple usually can 
sort lists out-of-the box. For other programming languages one could e.g. 
implement some lexicographic sorting algorithm.

Having obtained the sorted matrices we extract the 𝑖-th column from 
each of them, generating a list of vectors. Upon sorting this list we take 
the first vector and keep only matrices that contain the corresponding 
column while discarding the rest. Then we increase 𝑖 by one unit and 
start another iteration of the cycle, where we start with the set of ma-

trices obtained previously.

This procedure is repeated until we reach 𝑖 = 𝑛 − 1. Then we collect 
the final permutations 𝜎 of the remaining matrices, sort them and take 
the first permutation as our canonical way to name the Feynman param-

eters 𝑥𝑖. Notice that 𝜎 also provides us with a list of symmetries under 
𝑥𝑖-renamings.

To illustrate this procedure let us consider the following character-

istic polynomial

 = 𝑐2𝑥2𝑥3 + 𝑐1𝑥22 + 𝑐2𝑥1𝑥3 + 𝑐1𝑥
2
1 ⇒

⎛⎜⎜⎜⎝

𝑐2 0 1 1
𝑐1 0 2 0
𝑐2 1 0 1
𝑐1 2 0 0

⎞⎟⎟⎟⎠
≡𝑀 (123)

0 (A.3)

In the first iteration (𝑖 = 1) we start with {𝑀 (123)
0 } and permute the 

second column

{𝑀 (123)
0 =

⎛⎜⎜⎜⎝

𝑐2 0 1 1
𝑐1 0 2 0
𝑐2 1 0 1
𝑐1 2 0 0

⎞⎟⎟⎟⎠
, 𝑀

(213)
0 =

⎛⎜⎜⎜⎝

𝑐2 1 0 1
𝑐1 2 0 0
𝑐2 0 1 1
𝑐1 0 2 0

⎞⎟⎟⎟⎠
,

𝑀
(321)
0 =

⎛⎜⎜⎜⎝

𝑐2 1 1 0
𝑐1 0 2 0
𝑐2 1 0 1
𝑐1 0 0 2

⎞⎟⎟⎟⎠
}. (A.4)

After sorting rows with respect to the first two columns we get

{𝑀̃ (123)
0 =

⎛⎜⎜⎜⎝

𝒄1 𝟎 2 0
𝒄1 𝟐 0 0
𝒄2 𝟎 1 1
𝒄2 𝟏 0 1

⎞⎟⎟⎟⎠
, 𝑀̃

(213)
0 =

⎛⎜⎜⎜⎝

𝒄1 𝟎 2 0
𝒄1 𝟐 0 0
𝒄2 𝟎 1 1
𝒄2 𝟏 0 1

⎞⎟⎟⎟⎠
,

𝑀̃
(321)
0 =

⎛⎜⎜⎜⎝

𝒄1 𝟎 2 0
𝒄1 𝟎 0 2
𝒄2 𝟏 1 0
𝒄2 𝟏 0 1

⎞⎟⎟⎟⎠
}. (A.5)

The maximal vector among the second columns of all matrices is 
(0,2,0,1)𝑇 , which means that we need to keep 𝑀̃ (123)

0 and 𝑀̃ (213)
0 while 

discarding 𝑀̃ (321)
0 .

The next iteration (𝑖 = 2) starts with

{𝑀̃ (123)
0 =

⎛⎜⎜⎜⎝

𝑐1 0 2 0
𝑐1 2 0 0
𝑐2 0 1 1
𝑐2 1 0 1

⎞⎟⎟⎟⎠
, 𝑀̃

(213)
0 =

⎛⎜⎜⎜⎝

𝑐1 0 2 0
𝑐1 2 0 0
𝑐2 0 1 1
𝑐2 1 0 1

⎞⎟⎟⎟⎠
}. (A.6)

Permuting the third column we get

{𝑀 (123)
1 =

⎛⎜⎜⎜⎝

𝑐1 0 2 0
𝑐1 2 0 0
𝑐2 0 1 1
𝑐2 1 0 1

⎞⎟⎟⎟⎠
, 𝑀

(132)
1 =

⎛⎜⎜⎜⎝

𝑐1 0 0 2
𝑐1 2 0 0
𝑐2 0 1 1
𝑐2 1 1 0

⎞⎟⎟⎟⎠
,

𝑀
(213)
1 =

⎛⎜⎜⎜⎝

𝑐1 0 2 0
𝑐1 2 0 0
𝑐2 0 1 1
𝑐2 1 0 1

⎞⎟⎟⎟⎠
, 𝑀

(231)
1 =

⎛⎜⎜⎜⎝

𝑐1 0 0 2
𝑐1 2 0 0
𝑐2 0 1 1
𝑐2 1 1 0

⎞⎟⎟⎟⎠
}. (A.7)

Sorting rows with respect to the first three columns does not introduce 
11

any changes in the matrices
Computer Physics Communications 306 (2025) 109357

{𝑀̃ (123)
1 =𝑀 (123)

1 , 𝑀̃
(132)
1 =𝑀 (132)

1 , 𝑀̃
(213)
1 =𝑀 (213)

1 , 𝑀̃
(231)
1 =𝑀 (231)

1 }
(A.8)

This time the maximal vector the third columns is (2,0,1,0)𝑇 so that 
we keep only 𝑀̃ (123)

1 and 𝑀̃ (213)
1 . Since 𝑖 = 3 = 𝑛 − 1 = 3 the algorithm 

terminates here.

The outcome of this procedure is the symmetries under the renam-

ings of 𝑥𝑖

𝜎 = {(123), (213)}, (A.9)

meaning that

 (123) = 𝑐2𝑥2𝑥3 + 𝑐1𝑥22 + 𝑐2𝑥1𝑥3 + 𝑐1𝑥
2
1, (A.10)

 (213) = 𝑐2𝑥1𝑥3 + 𝑐1𝑥21 + 𝑐2𝑥2𝑥3 + 𝑐1𝑥
2
2 (A.11)

are equivalent. Here (123) is our canonical naming scheme. With  (123)

we have an expression that uniquely characterizes the corresponding set 
of propagators. Any other loop integral or integral topology that differs 
from the given one only by a finite set of loop momentum shifts should 
have the same characteristic polynomial. This is why by comparing  ’s 
(and propagator powers) we can identify one-to-one mappings between 
different integrals.

Appendix B. Mapping of smaller topologies into larger topologies

Pak algorithm can only find mappings between topologies that con-

tain the same number of propagators. In practice, one often encounters 
cases were a topology with a smaller number of propagators happens to 
fit into a topology with a larger number of propagators. Such relations 
can be uncovered in the following way.

First, we need a list of parent topologies that contain enough prop-

agators to allow fitting smaller topologies. Those parent topologies can 
have external origin or stem from the current calculation. Ideally, each 
parent topology should have a complete set of propagators forming a 
basis, so that it can be directly used for IBP reduction. In the next step, 
we can analyze each parent topology and determine all of its nonva-

nishing subtopologies. This means that we try removing one, two or 
more propagators from that topology and then check if the resulting 
topology becomes scaleless and hence vanishes.14 This can be done 
using the routine FCLoopFindSubtopologies. Each nonvanishing 
subtopology receives a marker of the form FCGV["SubtopologyOf"] 
-> topologyID which is added to the 6th slot of the corresponding

FCTopology object, where topologyID refers to the parent topology 
from which this subtopology has been obtained.

Then, we can run FCLoopFindTopologyMappings where the 
smaller topologies are given as the first argument of the function, while 
the list of subtopologies obtained from FCLoopFindSubtopologies
is passed via the option PreferredTopologies. Mappings between 
small topologies and nonvanishing subtopologies with the same num-

ber of propagators can be now determined using the conventional Pak 
algorithm. Once we have the momentum shifts that allow us to map a 
small topology into a nonvanishing subtopology of a larger topology, we 
can immediately work out the mapping into the parent topology. Thanks 
to the SubtopologyOf-marker we already know the name of the par-

ent topology, so we only need to apply the momentum shifts to it and 
pass both topologies to the auxiliary routine FCLoopCreateRuleGLI-
ToGLI. This gives us the desired relation between a smaller and a larger 
topology.

One should remark, that the determination of nonvanishing subtopolo-

gies can be quite time-consuming and tends to generate large numbers 

14 The criterion for checking the scalefulness of an arbitrary loop integral was 
presented in ref. [150]. A good description of the algorithm can be found in 
Sec. 2.3.4 of ref. [103]. In FeynCalc the corresponding routines are called

FCLoopScalelessQ (for checking loop integrals or topologies) and FCLoop-
PakScalelessQ (for checking characteristic polynomials ).



V. Shtabovenko, R. Mertig and F. Orellana

of resulting topologies. Thus, given a big set of complicated topologies, 
the total number of their nonvanishing subtopologies can easily get sev-

eral orders of magnitude larger. Processing all those topologies using

FCLoopFindTopologyMappings can, therefore, take a lot of time. 
For this reason we do not recommend using this feature extensively, un-

less the number of topologies is small (e.g. (100)) or it is absolutely 
necessary to find some specific mappings. However, we aim to speed up 
this functionality in near future.

Appendix C. Limitations of the current approach to topology 
minimization

While Pak algorithm can tell us that two topologies are identical, 
finding a set of momentum shifts that realizes this mapping may not 
always be straightforward.

For topologies containing only standard quadratic propagators of the 
form15 𝑙2 ±𝑚2 the situation is very simple. The line momentum 𝑙, which 
is a linear combination of some loop momenta 𝑝𝑗 and external momenta 
𝑞𝑘, directly gives us the momentum flow through the corresponding 
propagator. The Pak algorithm orders the Feynman parameters of each 
topology in a canonical way and this ordering can be applied also to the 
propagators since each Feynman parameter 𝑥𝑖 corresponds to the 𝑖th 
propagator of the integral family. Having two sets of ordered propaga-

tors {𝐷1, 𝐷2, … , 𝐷𝑛} and {𝐷′
1, 𝐷

′
2, … , 𝐷′

𝑛} with 𝐷(′)
𝑖

= 𝑙(′)
2
𝑖 ± 𝑚

(′)2
𝑖 we 

can directly write down a system of equations16 for the line momenta

𝑙21 = (𝑙′1)
2, 𝑙22 = (𝑙′2)

2, … , 𝑙2𝑛 = (𝑙′𝑛)
2 (C.1)

and solve it for 𝑝𝑘 or 𝑝′
𝑘
. Since both topologies are identical, there must 

be at least one solution, which gives us the desired momentum shifts. 
Notice, that in general such systems turn out to be overdetermined since 
the number of loop momenta is usually much smaller than the total 
number of propagators.

Now let us consider topologies containing some eikonal propagators 
𝐸𝑖. Pak algorithm still can recognize that they are identical, as eikonal 
propagators do not pose any additional complications when calculat-

ing the Symanzik polynomials  and  . However, denominators of 
the form 𝑞 ⋅ 𝑠 ± 𝑚2 do not allow us to recover the momentum flow 
through this propagator unambiguously. This complicates the process 
of determining the necessary momentum shifts. To avoid dealing with 
other than linear systems of equations, we choose a pragmatic approach, 
where we simply remove the eikonal propagators from both sets of or-

dered propagators.

Since every loop integral containing only eikonal propagators will be 
scaleless, there must be at least one quadratic propagator 𝐷𝑖 for each 
loop momentum. Furthermore, as have been observed above, the system 
of equations we need to solve is usually overdetermined so that upon 
removing suitable equations it should still remain solvable. Although 
we recognize that there may be pathological cases where this approach 
will fail, as of now we are not aware of a better solution to this problem 
that does not involve massive performance penalties.

Last but not least, there also exists an interpolating case between 
quadratic and purely eikonal propagators, where the denominators are 
of the form 𝑙2 + 𝑐1𝑙 ⋅ 𝑠 + 𝑐2 with 𝑐𝑖 being some constants. Such propaga-

tors can arise e.g. when doing asymptotic expansions at the integrand 
level. On the one hand, naively discarding them may lead to unsolv-

able systems of equations. On the other hand, automatic determinations 
of the momentum flow through such lines can be tricky. To this aim

FeynCalc contains a helper function FCLoopReplaceQuadratic-
EikonalPropagators that should be applied to a list of topologies 
containing mixed propagators. Given the loop momenta as well as some 

15 Here and below it is understood that 𝑚 can be also zero without changing 
the presented discussion.
16 We square both sides of the equation to allow for solutions that introduce 
12

sign changes of some loop momenta e.g. 𝑝𝑗 → −𝑝𝑗 .
Computer Physics Communications 306 (2025) 109357

extra replacement rules17 this routine should be able to rewrite mixed 
propagators in terms of purely quadratic ones.

References

[1] G. Apollinari, O. Brüning, T. Nakamoto, L. Rossi, High luminosity large hadron col-

lider HL-LHC, CERN Yellow Rep. 5 (2015) 1–19, https://doi .org /10 .5170 /CERN -
2015 -005 .1, arXiv :1705 .08830.

[2] M. Veltman, Algebraic techniques, Comput. Phys. Commun. 3 (1972) 75–78, 
https://doi .org /10 .1016 /0010 -4655(72 )90115 -4.

[3] F.V. Tkachov, Algebraic algorithms for multiloop calculations. The first 15 years. 
What’s next?, Nucl. Instrum. Methods A 389 (1997) 309–313, https://doi .org /10 .
1016 /S0168 -9002(97 )00110 -1, arXiv :hep -ph /9609429.

[4] V.A. Smirnov, Feynman Integral Calculus, Springer, Berlin, Heidelberg, 2006.

[5] S. Weinzierl, Feynman Integrals. A Comprehensive Treatment for Students and Re-

searchers, UNITEXT for Physics, Springer, 2022, arXiv :2201 .03593.

[6] G. Passarino, M.J.G. Veltman, One loop corrections for e+ e- annihilation into 
mu+ mu- in the Weinberg model, Nucl. Phys. B 160 (1979) 151–207, https://

doi .org /10 .1016 /0550 -3213(79 )90234 -7.

[7] B. Agarwal, G. Heinrich, S.P. Jones, M. Kerner, S.Y. Klein, J. Lang, V. Magerya, 
A. Olsson, Two-loop amplitudes for 𝑡𝑡𝐻 production: the quark-initiated N𝑓 -part, 
J. High Energy Phys. 05 (2024) 013, https://doi .org /10 .1007 /JHEP05(2024 )013, 
Erratum: J. High Energy Phys. 06 (2024) 142, arXiv :2402 .03301.

[8] C. Bogner, S. Borowka, T. Hahn, G. Heinrich, S.P. Jones, M. Kerner, A. von Manteuf-

fel, M. Michel, E. Panzer, V. Papara, Loopedia, a database for loop integrals, Com-

put. Phys. Commun. 225 (2018) 1–9, https://doi .org /10 .1016 /j .cpc .2017 .12 .017, 
arXiv :1709 .01266.

[9] K. Hepp, Proof of the Bogolyubov-Parasiuk theorem on renormalization, Commun. 
Math. Phys. 2 (1966) 301–326, https://doi .org /10 .1007 /BF01773358.

[10] E.R. Speer, Mass singularities of generic Feynman amplitudes, Ann. Inst. Henri 
Poincaré Phys. Théor. 26 (1977) 87–105.

[11] T. Binoth, G. Heinrich, An automatized algorithm to compute infrared divergent 
multiloop integrals, Nucl. Phys. B 585 (2000) 741–759, https://doi .org /10 .1016 /
S0550 -3213(00 )00429 -6, arXiv :hep -ph /0004013.

[12] G. Heinrich, Sector decomposition, Int. J. Mod. Phys. A 23 (2008) 1457–1486, 
https://doi .org /10 .1142 /S0217751X08040263, arXiv :0803 .4177.

[13] J.M. Campbell, et al., Event generators for high-energy physics experiments, SciPost 
Phys. 16 (5) (2024) 130, https://doi .org /10 .21468 /SciPostPhys .16 .5 .130, arXiv :
2203 .11110.

[14] S. Abreu, J. Dormans, F. Febres Cordero, H. Ita, M. Kraus, B. Page, E. Pascual, M.S. 
Ruf, V. Sotnikov, Caravel: a C++ framework for the computation of multi-loop 
amplitudes with numerical unitarity, Comput. Phys. Commun. 267 (2021) 108069, 
https://doi .org /10 .1016 /j .cpc .2021 .108069, arXiv :2009 .11957.

[15] G. Heinrich, S.P. Jones, M. Kerner, V. Magerya, A. Olsson, J. Schlenk, Numerical 
scattering amplitudes with pySecDec, Comput. Phys. Commun. 295 (2024) 108956, 
https://doi .org /10 .1016 /j .cpc .2023 .108956, arXiv :2305 .19768.

[16] S. Borowka, G. Heinrich, S. Jahn, S.P. Jones, M. Kerner, J. Schlenk, T. Zirke, Nu-

merical multi-loop calculations: tools and applications, J. Phys. Conf. Ser. 762 (1) 
(2016) 012073, https://doi .org /10 .1088 /1742 -6596 /762 /1 /012073, arXiv :1604 .
00267.

[17] S. Borowka, N. Greiner, G. Heinrich, S.P. Jones, M. Kerner, J. Schlenk, U. Schubert, 
T. Zirke, Higgs boson pair production in gluon fusion at next-to-leading order with 
full top-quark mass dependence, Phys. Rev. Lett. 117 (1) (2016) 012001, https://

doi .org /10 .1103 /PhysRevLett .117 .079901, Erratum: Phys. Rev. Lett. 117 (2016) 
079901, arXiv :1604 .06447.

[18] S. Pozzorini, N. Schär, M.F. Zoller, Two-loop tensor integral coefficients in 
OpenLoops, J. High Energy Phys. 05 (2022) 161, https://doi .org /10 .1007 /
JHEP05(2022 )161, arXiv :2201 .11615.

[19] M.F. Zoller, S. Pozzorini, N. Schaer, Towards two-loop automation in OpenLoops, 
PoS LL2022 (2022) 073, https://doi .org /10 .22323 /1 .416 .0073, arXiv :2207 .07468.

[20] D. Canko, G. Bevilacqua, C. Papadopoulos, Two-loop amplitude reduction with 
HELAC, PoS RADCOR2023 (2024) 081, https://doi .org /10 .22323 /1 .432 .0081, 
arXiv :2309 .14886.

[21] K.G. Chetyrkin, F.V. Tkachov, Integration by parts: the algorithm to calculate 𝛽-

functions in 4 loops, Nucl. Phys. B 192 (1981) 159–204, https://doi .org /10 .1016 /
0550 -3213(81 )90199 -1.

[22] F.V. Tkachov, A theorem on analytical calculability of 4-loop renormalization group 
functions, Phys. Lett. B 100 (1981) 65–68, https://doi .org /10 .1016 /0370 -2693(81 )
90288 -4.

[23] M. Gerlach, F. Herren, M. Lang, tapir: a tool for topologies, amplitudes, partial frac-

tion decomposition and input for reductions, Comput. Phys. Commun. 282 (2023) 
108544, https://doi .org /10 .1016 /j .cpc .2022 .108544, arXiv :2201 .05618.

[24] F. Feng, Y.-F. Xie, Q.-C. Zhou, S.-R. Tang, HepLib: a C++ library for high energy 
physics, Comput. Phys. Commun. 265 (2021) 107982, https://doi .org /10 .1016 /j .
cpc .2021 .107982, arXiv :2103 .08507.
17 e.g. that 𝑝21 − 2𝑝1 ⋅ 𝑝2 + 𝑝22 combines to (𝑝1 − 𝑝2)2.

https://doi.org/10.5170/CERN-2015-005.1
https://doi.org/10.5170/CERN-2015-005.1
https://doi.org/10.1016/0010-4655(72)90115-4
https://doi.org/10.1016/S0168-9002(97)00110-1
https://doi.org/10.1016/S0168-9002(97)00110-1
http://refhub.elsevier.com/S0010-4655(24)00280-7/bib98151594C413D7CE421F3310BFD0B5AAs1
http://refhub.elsevier.com/S0010-4655(24)00280-7/bib63C2E56970608DACC9E8A3C52E4B9BCFs1
http://refhub.elsevier.com/S0010-4655(24)00280-7/bib63C2E56970608DACC9E8A3C52E4B9BCFs1
https://doi.org/10.1016/0550-3213(79)90234-7
https://doi.org/10.1016/0550-3213(79)90234-7
https://doi.org/10.1007/JHEP05(2024)013
https://doi.org/10.1016/j.cpc.2017.12.017
https://doi.org/10.1007/BF01773358
http://refhub.elsevier.com/S0010-4655(24)00280-7/bib7228C8D29B2EFC400E27A36C12BD2C3As1
http://refhub.elsevier.com/S0010-4655(24)00280-7/bib7228C8D29B2EFC400E27A36C12BD2C3As1
https://doi.org/10.1016/S0550-3213(00)00429-6
https://doi.org/10.1016/S0550-3213(00)00429-6
https://doi.org/10.1142/S0217751X08040263
https://doi.org/10.21468/SciPostPhys.16.5.130
https://doi.org/10.1016/j.cpc.2021.108069
https://doi.org/10.1016/j.cpc.2023.108956
https://doi.org/10.1088/1742-6596/762/1/012073
https://doi.org/10.1103/PhysRevLett.117.079901
https://doi.org/10.1103/PhysRevLett.117.079901
https://doi.org/10.1007/JHEP05(2022)161
https://doi.org/10.1007/JHEP05(2022)161
https://doi.org/10.22323/1.416.0073
https://doi.org/10.22323/1.432.0081
https://doi.org/10.1016/0550-3213(81)90199-1
https://doi.org/10.1016/0550-3213(81)90199-1
https://doi.org/10.1016/0370-2693(81)90288-4
https://doi.org/10.1016/0370-2693(81)90288-4
https://doi.org/10.1016/j.cpc.2022.108544
https://doi.org/10.1016/j.cpc.2021.107982
https://doi.org/10.1016/j.cpc.2021.107982


V. Shtabovenko, R. Mertig and F. Orellana

[25] V. Maheria, Semi- and Fully-Inclusive Phase-Space Integrals at Four Loops, PhD. 
thesis, 2022.

[26] Q.-f. Wu, Z. Li, FeAmGen.jl: a Julia program for Feynman amplitude generation, 
Comput. Phys. Commun. 301 (2024) 109230, https://doi .org /10 .1016 /j .cpc .2024 .
109230, arXiv :2310 .07634.

[27] J.A.M. Vermaseren, New features of FORM, arXiv :math -ph /0010025, 10 2000.

[28] J. Kuipers, T. Ueda, J.A.M. Vermaseren, J. Vollinga, FORM version 4.0, Comput. 
Phys. Commun. 184 (2013) 1453–1467, https://doi .org /10 .1016 /j .cpc .2012 .12 .
028, arXiv :1203 .6543.

[29] R. Mertig, M. Bohm, A. Denner, FEYN CALC: computer algebraic calculation of 
Feynman amplitudes, Comput. Phys. Commun. 64 (1991) 345–359, https://doi .
org /10 .1016 /0010 -4655(91 )90130 -D.

[30] V. Shtabovenko, R. Mertig, F. Orellana, New developments in FeynCalc 9.0, Com-

put. Phys. Commun. 207 (2016) 432–444, https://doi .org /10 .1016 /j .cpc .2016 .06 .
008, arXiv :1601 .01167.

[31] V. Shtabovenko, R. Mertig, F. Orellana, FeynCalc 9.3: new features and improve-

ments, Comput. Phys. Commun. 256 (2020) 107478, https://doi .org /10 .1016 /j .
cpc .2020 .107478, arXiv :2001 .04407.

[32] V. Shtabovenko, FeynCalc goes multiloop, J. Phys. Conf. Ser. 2438 (1) (2023) 
012140, https://doi .org /10 .1088 /1742 -6596 /2438 /1 /012140, arXiv :2112 .14132.

[33] V. Shtabovenko, FeynHelpers: connecting FeynCalc to FIRE and Package-X, Com-

put. Phys. Commun. 218 (2017) 48–65, https://doi .org /10 .1016 /j .cpc .2017 .04 .
014, arXiv :1611 .06793.

[34] R. Mertig, W.L. van Neerven, The calculation of the two loop spin splitting 
functions P(ij)(1)(x), Z. Phys. C 70 (1996) 637–654, https://doi .org /10 .1007 /
s002880050138, arXiv :hep -ph /9506451.

[35] R. Mertig, R. Scharf, TARCER: a Mathematica program for the reduction of two 
loop propagator integrals, Comput. Phys. Commun. 111 (1998) 265–273, https://

doi .org /10 .1016 /S0010 -4655(98 )00042 -3, arXiv :hep -ph /9801383.

[36] M. Wiebusch, HEPMath 1.4: a mathematica package for semi-automatic compu-

tations in high energy physics, Comput. Phys. Commun. 195 (2015) 172–190, 
https://doi .org /10 .1016 /j .cpc .2015 .04 .022, arXiv :1412 .6102.

[37] H.H. Patel, Package-X: a Mathematica package for the analytic calculation of one-

loop integrals, Comput. Phys. Commun. 197 (2015) 276–290, https://doi .org /10 .
1016 /j .cpc .2015 .08 .017, arXiv :1503 .01469.

[38] H.H. Patel, Package-X 2.0: a Mathematica package for the analytic calculation of 
one-loop integrals, Comput. Phys. Commun. 218 (2017) 66–70, https://doi .org /
10 .1016 /j .cpc .2017 .04 .015, arXiv :1612 .00009.

[39] A.K. Cyrol, M. Mitter, N. Strodthoff, FormTracer - a mathematica tracing package 
using FORM, Comput. Phys. Commun. 219 (2017) 346–352, https://doi .org /10 .
1016 /j .cpc .2017 .05 .024, arXiv :1610 .09331.

[40] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H.S. Shao, 
T. Stelzer, P. Torrielli, M. Zaro, The automated computation of tree-level and 
next-to-leading order differential cross sections, and their matching to parton 
shower simulations, J. High Energy Phys. 07 (2014) 079, https://doi .org /10 .1007 /
JHEP07(2014 )079, arXiv :1405 .0301.

[41] G. Cullen, N. Greiner, G. Heinrich, G. Luisoni, P. Mastrolia, G. Ossola, T. Reiter, 
F. Tramontano, Automated one-loop calculations with GoSam, Eur. Phys. J. C 72 
(2012) 1889, https://doi .org /10 .1140 /epjc /s10052 -012 -1889 -1, arXiv :1111 .2034.

[42] G. Cullen, et al., G𝑂S𝐴𝑀 -2.0: a tool for automated one-loop calculations within 
the Standard Model and beyond, Eur. Phys. J. C 74 (8) (2014) 3001, https://doi .
org /10 .1140 /epjc /s10052 -014 -3001 -5, arXiv :1404 .7096.

[43] M. Bahr, et al., Herwig++ physics and manual, Eur. Phys. J. C 58 (2008) 639–707, 
https://doi .org /10 .1140 /epjc /s10052 -008 -0798 -9, arXiv :0803 .0883.

[44] J. Bellm, et al., Herwig 7.0/Herwig++ 3.0 release note, Eur. Phys. J. C 76 (4) (2016) 
196, https://doi .org /10 .1140 /epjc /s10052 -016 -4018 -8, arXiv :1512 .01178.

[45] G. Bevilacqua, M. Czakon, M.V. Garzelli, A. van Hameren, A. Kardos, C.G. Pa-

padopoulos, R. Pittau, M. Worek, HELAC-NLO, Comput. Phys. Commun. 184 (2013) 
986–997, https://doi .org /10 .1016 /j .cpc .2012 .10 .033, arXiv :1110 .1499.

[46] P. Nason, A new method for combining NLO QCD with shower Monte Carlo algo-

rithms, J. High Energy Phys. 11 (2004) 040, https://doi .org /10 .1088 /1126 -6708 /
2004 /11 /040, arXiv :hep -ph /0409146.

[47] S. Frixione, P. Nason, C. Oleari, Matching NLO QCD computations with parton 
shower simulations: the POWHEG method, J. High Energy Phys. 11 (2007) 070, 
https://doi .org /10 .1088 /1126 -6708 /2007 /11 /070, arXiv :0709 .2092.

[48] S. Alioli, P. Nason, C. Oleari, E. Re, A general framework for implementing NLO cal-

culations in shower Monte Carlo programs: the POWHEG BOX, J. High Energy Phys. 
06 (2010) 043, https://doi .org /10 .1007 /JHEP06(2010 )043, arXiv :1002 .2581.

[49] T. Gleisberg, S. Hoeche, F. Krauss, M. Schonherr, S. Schumann, F. Siegert, J. Winter, 
Event generation with SHERPA 1.1, J. High Energy Phys. 02 (2009) 007, https://

doi .org /10 .1088 /1126 -6708 /2009 /02 /007, arXiv :0811 .4622.

[50] E. Bothmann, et al., Event generation with Sherpa 2.2, SciPost Phys. 7 (3) (2019) 
034, https://doi .org /10 .21468 /SciPostPhys .7 .3 .034, arXiv :1905 .09127.

[51] M. Moretti, T. Ohl, J. Reuter, O’Mega: an optimizing matrix element generator 
(2001) 1981–2009, arXiv :hep -ph /0102195.

[52] W. Kilian, T. Ohl, J. Reuter, WHIZARD: simulating multi-particle processes at LHC 
and ILC, Eur. Phys. J. C 71 (2011) 1742, https://doi .org /10 .1140 /epjc /s10052 -
011 -1742 -y, arXiv :0708 .4233.

[53] A. Belyaev, N.D. Christensen, A. Pukhov, CalcHEP 3.4 for collider physics within 
and beyond the Standard Model, Comput. Phys. Commun. 184 (2013) 1729–1769, 
13

https://doi .org /10 .1016 /j .cpc .2013 .01 .014, arXiv :1207 .6082.
Computer Physics Communications 306 (2025) 109357

[54] E. Boos, V. Bunichev, M. Dubinin, L. Dudko, V. Ilyin, A. Kryukov, V. Edneral, V. 
Savrin, A. Semenov, A. Sherstnev, CompHEP 4.4: automatic computations from 
Lagrangians to events, Nucl. Instrum. Methods A 534 (2004) 250–259, https://

doi .org /10 .1016 /j .nima .2004 .07 .096, arXiv :hep -ph /0403113.

[55] F. Yuasa, et al., Automatic computation of cross-sections in HEP: status of GRACE 
system, Prog. Theor. Phys. Suppl. 138 (2000) 18–23, https://doi .org /10 .1143 /
PTPS .138 .18, arXiv :hep -ph /0007053.

[56] J. Fujimoto, et al., GRACE/SUSY automatic generation of tree amplitudes in 
the minimal supersymmetric standard model, Comput. Phys. Commun. 153 
(2003) 106–134, https://doi .org /10 .1016 /S0010 -4655(03 )00159 -0, arXiv :hep -
ph /0208036.

[57] M. Gerlach, U. Nierste, V. Shtabovenko, M. Steinhauser, Width difference in the B-

B− system at next-to-next-to-leading order of QCD, Phys. Rev. Lett. 129 (10) (2022) 
102001, https://doi .org /10 .1103 /PhysRevLett .129 .102001, arXiv :2205 .07907.

[58] D. Stöckinger, M. Weißwange, Full three-loop renormalisation of an abelian chi-

ral gauge theory with non-anticommuting 𝛾 5 in the BMHV scheme, J. High 
Energy Phys. 02 (2024) 139, https://doi .org /10 .1007 /JHEP02(2024 )139, arXiv :
2312 .11291.

[59] T. Yang, Renormalization of twist-two operators and four-loop splitting functions 
in QCD, PoS RADCOR2023 (2024) 056, https://doi .org /10 .22323 /1 .432 .0056.

[60] T. Gehrmann, A. von Manteuffel, T.-Z. Yang, Renormalization of twist-two opera-

tors in covariant gauge to three loops in QCD, J. High Energy Phys. 04 (2023) 041, 
https://doi .org /10 .1007 /JHEP04(2023 )041, arXiv :2302 .00022.

[61] P. Kühler, D. Stöckinger, M. Weißwange, Advances at the 𝛾5 -frontier, arXiv :2407 .
07247, 7 2024.

[62] P. Reeck, Update on technical aspects of 𝐵 meson mixing at NNLO, in: Loops and 
Legs in Quantum Field Theory, 2024, arXiv :2406 .16084.

[63] D. Akpinar, F. Febres Cordero, M. Kraus, M.S. Ruf, M. Zeng, Spinning black hole 
scattering at (𝐺3𝑆2): Casimir terms, radial action and hidden symmetry, arXiv :
2407 .19005, 7 2024.

[64] P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys. 105 (1993) 
279–289, https://doi .org /10 .1006 /jcph .1993 .1074.

[65] https://www .graphviz .org/.

[66] R.N. Lee, Presenting LiteRed: a tool for the loop InTEgrals REDuction, arXiv :1212 .
2685, 12 2012.

[67] R.N. Lee, LiteRed 1.4: a powerful tool for reduction of multiloop integrals, J. 
Phys. Conf. Ser. 523 (2014) 012059, https://doi .org /10 .1088 /1742 -6596 /523 /1 /
012059, arXiv :1310 .1145.

[68] A.V. Smirnov, FIRE5: a C++ implementation of Feynman integral REduction, Com-

put. Phys. Commun. 189 (2015) 182–191, https://doi .org /10 .1016 /j .cpc .2014 .11 .
024, arXiv :1408 .2372.

[69] A.V. Smirnov, F.S. Chuharev, FIRE6: Feynman integral REduction with modular 
arithmetic, Comput. Phys. Commun. 247 (2020) 106877, https://doi .org /10 .1016 /
j .cpc .2019 .106877, arXiv :1901 .07808.

[70] A.V. Smirnov, M. Zeng, FIRE 6.5: Feynman integral reduction with new simplifi-

cation library, Comput. Phys. Commun. 302 (2024) 109261, https://doi .org /10 .
1016 /j .cpc .2024 .109261, arXiv :2311 .02370.

[71] P. Maierhöfer, J. Usovitsch, P. Uwer, Kira—a Feynman integral reduction program, 
Comput. Phys. Commun. 230 (2018) 99–112, https://doi .org /10 .1016 /j .cpc .2018 .
04 .012, arXiv :1705 .05610.

[72] P. Maierhöfer, J. Usovitsch, Kira 1.2 release notes, arXiv :1812 .01491, 12 2018.

[73] P. Maierhöfer, J. Usovitsch, Recent developments in Kira, CERN Yellow Rep.: 
Monogr. 3 (2020) 201–204, https://doi .org /10 .23731 /CYRM -2020 -003 .201.

[74] J. Klappert, F. Lange, P. Maierhöfer, J. Usovitsch, Integral reduction with Kira 2.0 
and finite field methods, Comput. Phys. Commun. 266 (2021) 108024, https://

doi .org /10 .1016 /j .cpc .2021 .108024, arXiv :2008 .06494.

[75] F. Lange, P. Maierhöfer, J. Usovitsch, Developments since Kira 2.0, SciPost Phys. 
Proc. 7 (2022) 017, https://doi .org /10 .21468 /SciPostPhysProc .7 .017, arXiv :2111 .
01045.

[76] S. Borowka, G. Heinrich, S. Jahn, S.P. Jones, M. Kerner, J. Schlenk, T. Zirke, py-

SecDec: a toolbox for the numerical evaluation of multi-scale integrals, Comput. 
Phys. Commun. 222 (2018) 313–326, https://doi .org /10 .1016 /j .cpc .2017 .09 .015, 
arXiv :1703 .09692.

[77] S. Borowka, G. Heinrich, S. Jahn, S.P. Jones, M. Kerner, J. Schlenk, A GPU 
compatible quasi-Monte Carlo integrator interfaced to pySecDec, Comput. Phys. 
Commun. 240 (2019) 120–137, https://doi .org /10 .1016 /j .cpc .2019 .02 .015, arXiv :
1811 .11720.

[78] G. Heinrich, S. Jahn, S.P. Jones, M. Kerner, F. Langer, V. Magerya, A. Pöl-

daru, J. Schlenk, E. Villa, Expansion by regions with pySecDec, Comput. Phys. 
Commun. 273 (2022) 108267, https://doi .org /10 .1016 /j .cpc .2021 .108267, arXiv :
2108 .10807.

[79] R. Harlander, T. Seidensticker, M. Steinhauser, Complete corrections of order 
alpha alpha-s to the decay of the Z boson into bottom quarks, Phys. Lett. 
B 426 (1998) 125–132, https://doi .org /10 .1016 /S0370 -2693(98 )00220 -2, arXiv :
hep -ph /9712228.

[80] T. Seidensticker, Automatic application of successive asymptotic expansions of 
Feynman diagrams, in: 6th International Workshop on New Computing Tech-

niques in Physics Research: Software Engineering, Artificial Intelligence Neural 
Nets, Genetic Algorithms, Symbolic Algebra, Automatic Calculation, 1999, arXiv :

hep -ph /9905298.

http://refhub.elsevier.com/S0010-4655(24)00280-7/bib6DB21B534AF8E6329EDEB2F0ED3D837As1
http://refhub.elsevier.com/S0010-4655(24)00280-7/bib6DB21B534AF8E6329EDEB2F0ED3D837As1
https://doi.org/10.1016/j.cpc.2024.109230
https://doi.org/10.1016/j.cpc.2024.109230
http://refhub.elsevier.com/S0010-4655(24)00280-7/bib3B68F55E0CCC8A66D3AE8E32FD871CAEs1
https://doi.org/10.1016/j.cpc.2012.12.028
https://doi.org/10.1016/j.cpc.2012.12.028
https://doi.org/10.1016/0010-4655(91)90130-D
https://doi.org/10.1016/0010-4655(91)90130-D
https://doi.org/10.1016/j.cpc.2016.06.008
https://doi.org/10.1016/j.cpc.2016.06.008
https://doi.org/10.1016/j.cpc.2020.107478
https://doi.org/10.1016/j.cpc.2020.107478
https://doi.org/10.1088/1742-6596/2438/1/012140
https://doi.org/10.1016/j.cpc.2017.04.014
https://doi.org/10.1016/j.cpc.2017.04.014
https://doi.org/10.1007/s002880050138
https://doi.org/10.1007/s002880050138
https://doi.org/10.1016/S0010-4655(98)00042-3
https://doi.org/10.1016/S0010-4655(98)00042-3
https://doi.org/10.1016/j.cpc.2015.04.022
https://doi.org/10.1016/j.cpc.2015.08.017
https://doi.org/10.1016/j.cpc.2015.08.017
https://doi.org/10.1016/j.cpc.2017.04.015
https://doi.org/10.1016/j.cpc.2017.04.015
https://doi.org/10.1016/j.cpc.2017.05.024
https://doi.org/10.1016/j.cpc.2017.05.024
https://doi.org/10.1007/JHEP07(2014)079
https://doi.org/10.1007/JHEP07(2014)079
https://doi.org/10.1140/epjc/s10052-012-1889-1
https://doi.org/10.1140/epjc/s10052-014-3001-5
https://doi.org/10.1140/epjc/s10052-014-3001-5
https://doi.org/10.1140/epjc/s10052-008-0798-9
https://doi.org/10.1140/epjc/s10052-016-4018-8
https://doi.org/10.1016/j.cpc.2012.10.033
https://doi.org/10.1088/1126-6708/2004/11/040
https://doi.org/10.1088/1126-6708/2004/11/040
https://doi.org/10.1088/1126-6708/2007/11/070
https://doi.org/10.1007/JHEP06(2010)043
https://doi.org/10.1088/1126-6708/2009/02/007
https://doi.org/10.1088/1126-6708/2009/02/007
https://doi.org/10.21468/SciPostPhys.7.3.034
http://refhub.elsevier.com/S0010-4655(24)00280-7/bib0674CA6E100C19E3A08F106014E6C63Fs1
http://refhub.elsevier.com/S0010-4655(24)00280-7/bib0674CA6E100C19E3A08F106014E6C63Fs1
https://doi.org/10.1140/epjc/s10052-011-1742-y
https://doi.org/10.1140/epjc/s10052-011-1742-y
https://doi.org/10.1016/j.cpc.2013.01.014
https://doi.org/10.1016/j.nima.2004.07.096
https://doi.org/10.1016/j.nima.2004.07.096
https://doi.org/10.1143/PTPS.138.18
https://doi.org/10.1143/PTPS.138.18
https://doi.org/10.1016/S0010-4655(03)00159-0
https://doi.org/10.1103/PhysRevLett.129.102001
https://doi.org/10.1007/JHEP02(2024)139
https://doi.org/10.22323/1.432.0056
https://doi.org/10.1007/JHEP04(2023)041
http://refhub.elsevier.com/S0010-4655(24)00280-7/bib62346B074EA7BCCA7882E1C1DAB4E08Es1
http://refhub.elsevier.com/S0010-4655(24)00280-7/bib62346B074EA7BCCA7882E1C1DAB4E08Es1
http://refhub.elsevier.com/S0010-4655(24)00280-7/bib5844DA251B48521D45523601A6ACBA51s1
http://refhub.elsevier.com/S0010-4655(24)00280-7/bib5844DA251B48521D45523601A6ACBA51s1
http://refhub.elsevier.com/S0010-4655(24)00280-7/bib3D936D70AA03B7BE0A8FFEE141F3C323s1
http://refhub.elsevier.com/S0010-4655(24)00280-7/bib3D936D70AA03B7BE0A8FFEE141F3C323s1
http://refhub.elsevier.com/S0010-4655(24)00280-7/bib3D936D70AA03B7BE0A8FFEE141F3C323s1
https://doi.org/10.1006/jcph.1993.1074
https://www.graphviz.org/
http://refhub.elsevier.com/S0010-4655(24)00280-7/bib187ED54B5C9A274C414F90A73D2CA09Cs1
http://refhub.elsevier.com/S0010-4655(24)00280-7/bib187ED54B5C9A274C414F90A73D2CA09Cs1
https://doi.org/10.1088/1742-6596/523/1/012059
https://doi.org/10.1088/1742-6596/523/1/012059
https://doi.org/10.1016/j.cpc.2014.11.024
https://doi.org/10.1016/j.cpc.2014.11.024
https://doi.org/10.1016/j.cpc.2019.106877
https://doi.org/10.1016/j.cpc.2019.106877
https://doi.org/10.1016/j.cpc.2024.109261
https://doi.org/10.1016/j.cpc.2024.109261
https://doi.org/10.1016/j.cpc.2018.04.012
https://doi.org/10.1016/j.cpc.2018.04.012
http://refhub.elsevier.com/S0010-4655(24)00280-7/bibAD060D2465458DC8D4842F4054018F38s1
https://doi.org/10.23731/CYRM-2020-003.201
https://doi.org/10.1016/j.cpc.2021.108024
https://doi.org/10.1016/j.cpc.2021.108024
https://doi.org/10.21468/SciPostPhysProc.7.017
https://doi.org/10.1016/j.cpc.2017.09.015
https://doi.org/10.1016/j.cpc.2019.02.015
https://doi.org/10.1016/j.cpc.2021.108267
https://doi.org/10.1016/S0370-2693(98)00220-2
http://refhub.elsevier.com/S0010-4655(24)00280-7/bib6F9C9FBE65E273E2540C0131FBB6EEC6s1
http://refhub.elsevier.com/S0010-4655(24)00280-7/bib6F9C9FBE65E273E2540C0131FBB6EEC6s1
http://refhub.elsevier.com/S0010-4655(24)00280-7/bib6F9C9FBE65E273E2540C0131FBB6EEC6s1
http://refhub.elsevier.com/S0010-4655(24)00280-7/bib6F9C9FBE65E273E2540C0131FBB6EEC6s1
http://refhub.elsevier.com/S0010-4655(24)00280-7/bib6F9C9FBE65E273E2540C0131FBB6EEC6s1


V. Shtabovenko, R. Mertig and F. Orellana

[81] C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer, T. Reiter, UFO - the uni-

versal FeynRules output, Comput. Phys. Commun. 183 (2012) 1201–1214, https://

doi .org /10 .1016 /j .cpc .2012 .01 .022, arXiv :1108 .2040.

[82] L. Darmé, et al., UFO 2.0: the ‘universal Feynman output’ format, Eur. Phys. J. 
C 83 (7) (2023) 631, https://doi .org /10 .1140 /epjc /s10052 -023 -11780 -9, arXiv :
2304 .09883.

[83] F. Feng, S.-R. Tang, Y.-D. Gao, HepLib: a C++ library for high energy physics (ver-

sion 1.1), Comput. Phys. Commun. 285 (2023) 108631, https://doi .org /10 .1016 /
j .cpc .2022 .108631.

[84] C.W. Bauer, A. Frink, R. Kreckel, Introduction to the GiNaC framework for symbolic 
computation within the C++ programming language, J. Symb. Comput. 33 (2002) 
1–12, https://doi .org /10 .1006 /jsco .2001 .0494, arXiv :cs /0004015.

[85] T. Hahn, M. Perez-Victoria, Automatized one loop calculations in four-dimensions 
and D-dimensions, Comput. Phys. Commun. 118 (1999) 153–165, https://doi .org /
10 .1016 /S0010 -4655(98 )00173 -8, arXiv :hep -ph /9807565.

[86] A. Denner, S. Dittmaier, L. Hofer, Collier: a fortran-based complex one-loop LIbrary 
in extended regularizations, Comput. Phys. Commun. 212 (2017) 220–238, https://

doi .org /10 .1016 /j .cpc .2016 .10 .013, arXiv :1604 .06792.

[87] A. Denner, S. Dittmaier, Reduction of one loop tensor five point integrals, Nucl. 
Phys. B 658 (2003) 175–202, https://doi .org /10 .1016 /S0550 -3213(03 )00184 -6, 
arXiv :hep -ph /0212259.

[88] A. Denner, S. Dittmaier, Reduction schemes for one-loop tensor integrals, Nucl. 
Phys. B 734 (2006) 62–115, https://doi .org /10 .1016 /j .nuclphysb .2005 .11 .007, 
arXiv :hep -ph /0509141.

[89] A. Denner, S. Dittmaier, Scalar one-loop 4-point integrals, Nucl. Phys. B 844 (2011) 
199–242, https://doi .org /10 .1016 /j .nuclphysb .2010 .11 .002, arXiv :1005 .2076.

[90] R.K. Ellis, G. Zanderighi, Scalar one-loop integrals for QCD, J. High Energy Phys. 02 
(2008) 002, https://doi .org /10 .1088 /1126 -6708 /2008 /02 /002, arXiv :0712 .1851.

[91] A. van Hameren, OneLOop: for the evaluation of one-loop scalar functions, Com-

put. Phys. Commun. 182 (2011) 2427–2438, https://doi .org /10 .1016 /j .cpc .2011 .
06 .011, arXiv :1007 .4716.

[92] C. Studerus, Reduze-Feynman integral reduction in C++, Comput. Phys. Commun. 
181 (2010) 1293–1300, https://doi .org /10 .1016 /j .cpc .2010 .03 .012, arXiv :0912 .
2546.

[93] A. von Manteuffel, C. Studerus, Reduze 2 - distributed Feynman integral reduction, 
arXiv :1201 .4330, 1 2012.

[94] A. Georgoudis, K.J. Larsen, Y. Zhang, Azurite: an algebraic geometry based package 
for finding bases of loop integrals, Comput. Phys. Commun. 221 (2017) 203–215, 
https://doi .org /10 .1016 /j .cpc .2017 .08 .013, arXiv :1612 .04252.

[95] V.A. Smirnov, Analytic Tools for Feynman Integrals, vol. 250, Springer, Berlin, Hei-

delberg, 2012.

[96] A.V. Smirnov, FIESTA4: optimized Feynman integral calculations with GPU sup-

port, Comput. Phys. Commun. 204 (2016) 189–199, https://doi .org /10 .1016 /j .cpc .
2016 .03 .013, arXiv :1511 .03614.

[97] A.V. Smirnov, N.D. Shapurov, L.I. Vysotsky, FIESTA5: numerical high-performance 
Feynman integral evaluation, Comput. Phys. Commun. 277 (2022) 108386, 
https://doi .org /10 .1016 /j .cpc .2022 .108386, arXiv :2110 .11660.

[98] C. Bogner, S. Weinzierl, Feynman graph polynomials, Int. J. Mod. Phys. A 25 (2010) 
2585–2618, https://doi .org /10 .1142 /S0217751X10049438, arXiv :1002 .3458.

[99] M. Beneke, V.A. Smirnov, Asymptotic expansion of Feynman integrals near thresh-

old, Nucl. Phys. B 522 (1998) 321–344, https://doi .org /10 .1016 /S0550 -3213(98 )
00138 -2, arXiv :hep -ph /9711391.

[100] J. Hoff, The Mathematica package TopoID and its application to the Higgs boson 
production cross section, J. Phys. Conf. Ser. 762 (1) (2016) 012061, https://doi .
org /10 .1088 /1742 -6596 /762 /1 /012061, arXiv :1607 .04465.

[101] Z. Wu, J. Boehm, R. Ma, H. Xu, Y. Zhang, NeatIBP 1.0, a package generat-

ing small-size integration-by-parts relations for Feynman integrals, Comput. Phys. 
Commun. 295 (2024) 108999, https://doi .org /10 .1016 /j .cpc .2023 .108999, arXiv :
2305 .08783.

[102] A. Pak, The toolbox of modern multi-loop calculations: novel analytic and semi-

analytic techniques, J. Phys. Conf. Ser. 368 (2012) 012049, https://doi .org /10 .
1088 /1742 -6596 /368 /1 /012049, arXiv :1111 .0868.

[103] J.S. Hoff, Methods for multiloop calculations and Higgs boson production at the 
LHC, Ph.D. thesis, KIT, Karlsruhe, 2015.

[104] P. Reeck, V. Shtabovenko, M. Steinhauser, B meson mixing at NNLO: technical as-

pects, J. High Energy Phys. 08 (2024) 002, https://doi .org /10 .1007 /JHEP08(2024 )
002, arXiv :2405 .14698.

[105] R. Lewis, FERMAT, https://home .bway .net /lewis.

[106] K. Bielas, I. Dubovyk, J. Gluza, T. Riemann, Some remarks on non-planar Feynman 
diagrams, Acta Phys. Pol. B 44 (11) (2013) 2249–2255, https://doi .org /10 .5506 /
APhysPolB .44 .2249, arXiv :1312 .5603.

[107] H. Cheng, T.T. Wu, Expanding Protons: Scattering at High-Energies, 1987.

[108] E. Panzer, Algorithms for the symbolic integration of hyperlogarithms with applica-

tions to Feynman integrals, Comput. Phys. Commun. 188 (2015) 148–166, https://

doi .org /10 .1016 /j .cpc .2014 .10 .019, arXiv :1403 .3385.

[109] E. Panzer, On hyperlogarithms and Feynman integrals with divergences and 
many scales, J. High Energy Phys. 03 (2014) 071, https://doi .org /10 .1007 /
JHEP03(2014 )071, arXiv :1401 .4361.

[110] E. Panzer, Feynman integrals and hyperlogarithms, Ph.D. thesis, Humboldt U, 2015, 
14

arXiv :1506 .07243.
Computer Physics Communications 306 (2025) 109357

[111] A.V. Kotikov, Differential equation method: the calculation of N point Feynman dia-

grams, Phys. Lett. B 267 (1991) 123–127, https://doi .org /10 .1016 /0370 -2693(91 )
90536 -Y, Erratum: Phys. Lett. B 295 (1992) 409.

[112] A.V. Kotikov, Differential equations method: new technique for massive Feynman 
diagrams calculation, Phys. Lett. B 254 (1991) 158–164, https://doi .org /10 .1016 /
0370 -2693(91 )90413 -K.

[113] A.V. Kotikov, Differential equations method: the calculation of vertex type Feyn-

man diagrams, Phys. Lett. B 259 (1991) 314–322, https://doi .org /10 .1016 /0370 -
2693(91 )90834 -D.

[114] Z. Bern, L.J. Dixon, D.A. Kosower, Dimensionally regulated pentagon inte-

grals, Nucl. Phys. B 412 (1994) 751–816, https://doi .org /10 .1016 /0550 -3213(94 )
90398 -0, arXiv :hep -ph /9306240.

[115] E. Remiddi, Differential equations for Feynman graph amplitudes, Nuovo Cimento 
A 110 (1997) 1435–1452, https://doi .org /10 .1007 /BF03185566, arXiv :hep -th /
9711188.

[116] T. Gehrmann, E. Remiddi, Differential equations for two-loop four-point functions, 
Nucl. Phys. B 580 (2000) 485–518, https://doi .org /10 .1016 /S0550 -3213(00 )
00223 -6, arXiv :hep -ph /9912329.

[117] J.M. Henn, Multiloop integrals in dimensional regularization made simple, Phys. 
Rev. Lett. 110 (2013) 251601, https://doi .org /10 .1103 /PhysRevLett .110 .251601, 
arXiv :1304 .1806.

[118] J.M. Henn, Lectures on differential equations for Feynman integrals, J. Phys. A 48 
(2015) 153001, https://doi .org /10 .1088 /1751 -8113 /48 /15 /153001, arXiv :1412 .
2296.

[119] O. Gituliar, V. Magerya, Fuchsia: a tool for reducing differential equations for 
Feynman master integrals to epsilon form, Comput. Phys. Commun. 219 (2017) 
329–338, https://doi .org /10 .1016 /j .cpc .2017 .05 .004, arXiv :1701 .04269.

[120] C. Meyer, Transforming differential equations of multi-loop Feynman integrals into 
canonical form, J. High Energy Phys. 04 (2017) 006, https://doi .org /10 .1007 /
JHEP04(2017 )006, arXiv :1611 .01087.

[121] C. Meyer, Algorithmic transformation of multi-loop master integrals to a canonical 
basis with CANONICA, Comput. Phys. Commun. 222 (2018) 295–312, https://doi .
org /10 .1016 /j .cpc .2017 .09 .014, arXiv :1705 .06252.

[122] R.N. Lee, Reducing differential equations for multiloop master integrals, J. High 
Energy Phys. 04 (2015) 108, https://doi .org /10 .1007 /JHEP04(2015 )108, arXiv :
1411 .0911.

[123] R.N. Lee, Libra: a package for transformation of differential systems for multiloop 
integrals, Comput. Phys. Commun. 267 (2021) 108058, https://doi .org /10 .1016 /
j .cpc .2021 .108058, arXiv :2012 .00279.

[124] M. Prausa, Epsilon: a tool to find a canonical basis of master integrals, Comput. 
Phys. Commun. 219 (2017) 361–376, https://doi .org /10 .1016 /j .cpc .2017 .05 .026, 
arXiv :1701 .00725.

[125] C. Dlapa, J. Henn, K. Yan, Deriving canonical differential equations for Feynman 
integrals from a single uniform weight integral, J. High Energy Phys. 05 (2020) 
025, https://doi .org /10 .1007 /JHEP05(2020 )025, arXiv :2002 .02340.

[126] C. Dlapa, J.M. Henn, F.J. Wagner, An algorithmic approach to finding canonical 
differential equations for elliptic Feynman integrals, J. High Energy Phys. 08 (2023) 
120, https://doi .org /10 .1007 /JHEP08(2023 )120, arXiv :2211 .16357.

[127] M. Besier, P. Wasser, S. Weinzierl, RationalizeRoots: software package for the ratio-

nalization of square roots, Comput. Phys. Commun. 253 (2020) 107197, https://

doi .org /10 .1016 /j .cpc .2020 .107197, arXiv :1910 .13251.

[128] E. Remiddi, J.A.M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys. 
A 15 (2000) 725–754, https://doi .org /10 .1142 /S0217751X00000367, arXiv :hep -
ph /9905237.

[129] A.B. Goncharov, Multiple polylogarithms, cyclotomy and modular complexes, 
Math. Res. Lett. 5 (1998) 497–516, https://doi .org /10 .4310 /MRL .1998 .v5 .n4 .a7, 
arXiv :1105 .2076.

[130] A.B. Goncharov, Multiple polylogarithms and mixed Tate motives, arXiv :math /
0103059, 3 2001.

[131] D. Maitre, HPL, a mathematica implementation of the harmonic polylogarithms, 
Comput. Phys. Commun. 174 (2006) 222–240, https://doi .org /10 .1016 /j .cpc .
2005 .10 .008, arXiv :hep -ph /0507152.

[132] D. Maitre, Extension of HPL to complex arguments, Comput. Phys. Commun. 183 
(2012) 846, https://doi .org /10 .1016 /j .cpc .2011 .11 .015, arXiv :hep -ph /0703052.

[133] C. Duhr, F. Dulat, PolyLogTools — polylogs for the masses, J. High Energy Phys. 
08 (2019) 135, https://doi .org /10 .1007 /JHEP08(2019 )135, arXiv :1904 .07279.

[134] C. Bogner, MPL—a program for computations with iterated integrals on moduli 
spaces of curves of genus zero, Comput. Phys. Commun. 203 (2016) 339–353, 
https://doi .org /10 .1016 /j .cpc .2016 .02 .033, arXiv :1510 .04562.

[135] N. Brambilla, H.S. Chung, V. Shtabovenko, A. Vairo, FeynOnium: using Feyn-

Calc for automatic calculations in nonrelativistic effective field theories, J. High 
Energy Phys. 11 (2020) 130, https://doi .org /10 .1007 /JHEP11(2020 )130, arXiv :
2006 .15451.

[136] S.A. Larin, The renormalization of the axial anomaly in dimensional regularization, 
Phys. Lett. B 303 (1993) 113–118, https://doi .org /10 .1016 /0370 -2693(93 )90053 -
K, arXiv :hep -ph /9302240.

[137] S. Moch, J.A.M. Vermaseren, A. Vogt, On 𝛾5 in higher-order QCD calculations and 
the NNLO evolution of the polarized valence distribution, Phys. Lett. B 748 (2015) 

432–438, https://doi .org /10 .1016 /j .physletb .2015 .07 .027, arXiv :1506 .04517.

https://doi.org/10.1016/j.cpc.2012.01.022
https://doi.org/10.1016/j.cpc.2012.01.022
https://doi.org/10.1140/epjc/s10052-023-11780-9
https://doi.org/10.1016/j.cpc.2022.108631
https://doi.org/10.1016/j.cpc.2022.108631
https://doi.org/10.1006/jsco.2001.0494
https://doi.org/10.1016/S0010-4655(98)00173-8
https://doi.org/10.1016/S0010-4655(98)00173-8
https://doi.org/10.1016/j.cpc.2016.10.013
https://doi.org/10.1016/j.cpc.2016.10.013
https://doi.org/10.1016/S0550-3213(03)00184-6
https://doi.org/10.1016/j.nuclphysb.2005.11.007
https://doi.org/10.1016/j.nuclphysb.2010.11.002
https://doi.org/10.1088/1126-6708/2008/02/002
https://doi.org/10.1016/j.cpc.2011.06.011
https://doi.org/10.1016/j.cpc.2011.06.011
https://doi.org/10.1016/j.cpc.2010.03.012
http://refhub.elsevier.com/S0010-4655(24)00280-7/bib02C5B5923B5490C604857616526F20D0s1
http://refhub.elsevier.com/S0010-4655(24)00280-7/bib02C5B5923B5490C604857616526F20D0s1
https://doi.org/10.1016/j.cpc.2017.08.013
http://refhub.elsevier.com/S0010-4655(24)00280-7/bibF4F9E314F5DD446FD693D4876FBBCD4As1
http://refhub.elsevier.com/S0010-4655(24)00280-7/bibF4F9E314F5DD446FD693D4876FBBCD4As1
https://doi.org/10.1016/j.cpc.2016.03.013
https://doi.org/10.1016/j.cpc.2016.03.013
https://doi.org/10.1016/j.cpc.2022.108386
https://doi.org/10.1142/S0217751X10049438
https://doi.org/10.1016/S0550-3213(98)00138-2
https://doi.org/10.1016/S0550-3213(98)00138-2
https://doi.org/10.1088/1742-6596/762/1/012061
https://doi.org/10.1088/1742-6596/762/1/012061
https://doi.org/10.1016/j.cpc.2023.108999
https://doi.org/10.1088/1742-6596/368/1/012049
https://doi.org/10.1088/1742-6596/368/1/012049
http://refhub.elsevier.com/S0010-4655(24)00280-7/bib437896982FC5157B8852CC74EBB8BF8Bs1
http://refhub.elsevier.com/S0010-4655(24)00280-7/bib437896982FC5157B8852CC74EBB8BF8Bs1
https://doi.org/10.1007/JHEP08(2024)002
https://doi.org/10.1007/JHEP08(2024)002
https://home.bway.net/lewis
https://doi.org/10.5506/APhysPolB.44.2249
https://doi.org/10.5506/APhysPolB.44.2249
http://refhub.elsevier.com/S0010-4655(24)00280-7/bib4AAF75AE83053B6F187A8BE8FE828AD2s1
https://doi.org/10.1016/j.cpc.2014.10.019
https://doi.org/10.1016/j.cpc.2014.10.019
https://doi.org/10.1007/JHEP03(2014)071
https://doi.org/10.1007/JHEP03(2014)071
http://refhub.elsevier.com/S0010-4655(24)00280-7/bib31D0E5D3C034A3EFCBC03D1550E6B69Ds1
http://refhub.elsevier.com/S0010-4655(24)00280-7/bib31D0E5D3C034A3EFCBC03D1550E6B69Ds1
https://doi.org/10.1016/0370-2693(91)90536-Y
https://doi.org/10.1016/0370-2693(91)90536-Y
https://doi.org/10.1016/0370-2693(91)90413-K
https://doi.org/10.1016/0370-2693(91)90413-K
https://doi.org/10.1016/0370-2693(91)90834-D
https://doi.org/10.1016/0370-2693(91)90834-D
https://doi.org/10.1016/0550-3213(94)90398-0
https://doi.org/10.1016/0550-3213(94)90398-0
https://doi.org/10.1007/BF03185566
https://doi.org/10.1016/S0550-3213(00)00223-6
https://doi.org/10.1016/S0550-3213(00)00223-6
https://doi.org/10.1103/PhysRevLett.110.251601
https://doi.org/10.1088/1751-8113/48/15/153001
https://doi.org/10.1016/j.cpc.2017.05.004
https://doi.org/10.1007/JHEP04(2017)006
https://doi.org/10.1007/JHEP04(2017)006
https://doi.org/10.1016/j.cpc.2017.09.014
https://doi.org/10.1016/j.cpc.2017.09.014
https://doi.org/10.1007/JHEP04(2015)108
https://doi.org/10.1016/j.cpc.2021.108058
https://doi.org/10.1016/j.cpc.2021.108058
https://doi.org/10.1016/j.cpc.2017.05.026
https://doi.org/10.1007/JHEP05(2020)025
https://doi.org/10.1007/JHEP08(2023)120
https://doi.org/10.1016/j.cpc.2020.107197
https://doi.org/10.1016/j.cpc.2020.107197
https://doi.org/10.1142/S0217751X00000367
https://doi.org/10.4310/MRL.1998.v5.n4.a7
http://refhub.elsevier.com/S0010-4655(24)00280-7/bibE263242DE10971F6B9F3FBB90C1B9521s1
http://refhub.elsevier.com/S0010-4655(24)00280-7/bibE263242DE10971F6B9F3FBB90C1B9521s1
https://doi.org/10.1016/j.cpc.2005.10.008
https://doi.org/10.1016/j.cpc.2005.10.008
https://doi.org/10.1016/j.cpc.2011.11.015
https://doi.org/10.1007/JHEP08(2019)135
https://doi.org/10.1016/j.cpc.2016.02.033
https://doi.org/10.1007/JHEP11(2020)130
https://doi.org/10.1016/0370-2693(93)90053-K
https://doi.org/10.1016/0370-2693(93)90053-K
https://doi.org/10.1016/j.physletb.2015.07.027


Computer Physics Communications 306 (2025) 109357V. Shtabovenko, R. Mertig and F. Orellana

[138] F.A. Berends, R. Kleiss, P. De Causmaecker, R. Gastmans, T.T. Wu, Single 
Bremsstrahlung processes in gauge theories, Phys. Lett. B 103 (1981) 124–128, 
https://doi .org /10 .1016 /0370 -2693(81 )90685 -7.

[139] M. Caffo, E. Remiddi, Evaluation of transition amplitudes between Dirac spinors, 
Helv. Phys. Acta 55 (1982) 339.

[140] P. De Causmaecker, R. Gastmans, W. Troost, T.T. Wu, Multiple Bremsstrahlung 
in gauge theories at high-energies. 1. General formalism for quantum electrody-

namics, Nucl. Phys. B 206 (1982) 53–60, https://doi .org /10 .1016 /0550 -3213(82 )
90488 -6.

[141] Z. Xu, D.-H. Zhang, L. Chang, Helicity Amplitudes for Multiple Bremsstrahlung in 
Massless Nonabelian Gauge Theory. 1. New Definition of Polarization Vector and 
Formulation of Amplitudes in Grassmann Algebra, 12 1984.

[142] R. Kleiss, W.J. Stirling, Spinor techniques for calculating p anti-p —> W+- / Z0 + 
Jets, Nucl. Phys. B 262 (1985) 235–262, https://doi .org /10 .1016 /0550 -3213(85 )
90285 -8.

[143] J.F. Gunion, Z. Kunszt, Improved analytic techniques for tree graph calculations 
and the G g q anti-q lepton anti-lepton subprocess, Phys. Lett. B 161 (1985) 333, 
https://doi .org /10 .1016 /0370 -2693(85 )90774 -9.

[144] Z. Xu, D.-H. Zhang, L. Chang, Helicity amplitudes for multiple Bremsstrahlung in 
massless nonabelian gauge theories, Nucl. Phys. B 291 (1987) 392–428, https://

doi .org /10 .1016 /0550 -3213(87 )90479 -2.

[145] https://pandoc .org/.

[146] A. Grozin, Lectures on QED and QCD, in: 3rd Dubna international advanced school 
of theoretical physics, arXiv :hep -ph /0508242, 2005.

[147] A.I. Davydychev, P. Osland, O.V. Tarasov, Two loop three gluon vertex in zero 
momentum limit, Phys. Rev. D 58 (1998) 036007, https://doi .org /10 .1103 /
PhysRevD .58 .036007, arXiv :hep -ph /9801380.

[148] P. Böer, G. Bell, T. Feldmann, D. Horstmann, V. Shtabovenko, Soft-overlap con-

tribution to 𝑩𝒄 → 𝜼𝒄 form factors: diagrammatic resummation of double log-

arithms, PoS RADCOR2023 (2024) 086, https://doi .org /10 .22323 /1 .432 .0086, 
arXiv :2309 .08410.

[149] V. Shtabovenko, New multiloop capabilities of FeynCalc 10, in: Loops and Legs in 
Quantum Field Theory, 2024, arXiv :2407 .01447.

[150] A. Pak, A. Smirnov, Geometric approach to asymptotic expansion of Feynman inte-

grals, Eur. Phys. J. C 71 (2011) 1626, https://doi .org /10 .1140 /epjc /s10052 -011 -
1626 -1, arXiv :1011 .4863.
15

https://doi.org/10.1016/0370-2693(81)90685-7
http://refhub.elsevier.com/S0010-4655(24)00280-7/bibDB41CB9B5BDF3A4158964472EE6DDA36s1
http://refhub.elsevier.com/S0010-4655(24)00280-7/bibDB41CB9B5BDF3A4158964472EE6DDA36s1
https://doi.org/10.1016/0550-3213(82)90488-6
https://doi.org/10.1016/0550-3213(82)90488-6
http://refhub.elsevier.com/S0010-4655(24)00280-7/bibA88C04C7E2A0E9BCAE9B3734943C336As1
http://refhub.elsevier.com/S0010-4655(24)00280-7/bibA88C04C7E2A0E9BCAE9B3734943C336As1
http://refhub.elsevier.com/S0010-4655(24)00280-7/bibA88C04C7E2A0E9BCAE9B3734943C336As1
https://doi.org/10.1016/0550-3213(85)90285-8
https://doi.org/10.1016/0550-3213(85)90285-8
https://doi.org/10.1016/0370-2693(85)90774-9
https://doi.org/10.1016/0550-3213(87)90479-2
https://doi.org/10.1016/0550-3213(87)90479-2
https://pandoc.org/
http://refhub.elsevier.com/S0010-4655(24)00280-7/bib80A80474EEFDA5FD3D8DEAA0D1AA9A08s1
http://refhub.elsevier.com/S0010-4655(24)00280-7/bib80A80474EEFDA5FD3D8DEAA0D1AA9A08s1
https://doi.org/10.1103/PhysRevD.58.036007
https://doi.org/10.1103/PhysRevD.58.036007
https://doi.org/10.22323/1.432.0086
http://refhub.elsevier.com/S0010-4655(24)00280-7/bibF3B8E4F84B8ED3FECA97B02951A3C9B2s1
http://refhub.elsevier.com/S0010-4655(24)00280-7/bibF3B8E4F84B8ED3FECA97B02951A3C9B2s1
https://doi.org/10.1140/epjc/s10052-011-1626-1
https://doi.org/10.1140/epjc/s10052-011-1626-1

	FeynCalc 10: Do multiloop integrals dream of computer codes?
	1 Introduction
	2 Context and state of the art
	3 Installation
	4 Topologies and loop integrals
	4.1 Three main building blocks
	4.2 Basic operations
	4.3 Topology identification

	5 Master integrals
	6 Features and improvements unrelated to multiloop calculations
	6.1 Improved color algebra simplifications
	6.2 Passarino--Veltman functions
	6.3 Lagrangians and operators
	6.4 Dirac algebra
	6.5 Convenience functions for research activities
	6.6 Tensors with light-cone components
	6.7 Up-to-date documentation using continuous integration

	7 Examples
	7.1 Electron self-energy in massless QED at 2 loops
	7.2 Photon self-energy in massless QED at 2 loops
	7.3 Gluon self-energy in massless QCD at 2 loops
	7.4 Topology identification for Bc→ηc form factors at 2 loops

	8 Summary
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A Pak’s algorithm
	Appendix B Mapping of smaller topologies into larger topologies
	Appendix C Limitations of the current approach to topology minimization
	References


